igb: Fix code comments and whitespace
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41
42 #include "igb.h"
43
44 struct igb_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define IGB_STAT(_name, _stat) { \
51         .stat_string = _name, \
52         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53         .stat_offset = offsetof(struct igb_adapter, _stat) \
54 }
55 static const struct igb_stats igb_gstrings_stats[] = {
56         IGB_STAT("rx_packets", stats.gprc),
57         IGB_STAT("tx_packets", stats.gptc),
58         IGB_STAT("rx_bytes", stats.gorc),
59         IGB_STAT("tx_bytes", stats.gotc),
60         IGB_STAT("rx_broadcast", stats.bprc),
61         IGB_STAT("tx_broadcast", stats.bptc),
62         IGB_STAT("rx_multicast", stats.mprc),
63         IGB_STAT("tx_multicast", stats.mptc),
64         IGB_STAT("multicast", stats.mprc),
65         IGB_STAT("collisions", stats.colc),
66         IGB_STAT("rx_crc_errors", stats.crcerrs),
67         IGB_STAT("rx_no_buffer_count", stats.rnbc),
68         IGB_STAT("rx_missed_errors", stats.mpc),
69         IGB_STAT("tx_aborted_errors", stats.ecol),
70         IGB_STAT("tx_carrier_errors", stats.tncrs),
71         IGB_STAT("tx_window_errors", stats.latecol),
72         IGB_STAT("tx_abort_late_coll", stats.latecol),
73         IGB_STAT("tx_deferred_ok", stats.dc),
74         IGB_STAT("tx_single_coll_ok", stats.scc),
75         IGB_STAT("tx_multi_coll_ok", stats.mcc),
76         IGB_STAT("tx_timeout_count", tx_timeout_count),
77         IGB_STAT("rx_long_length_errors", stats.roc),
78         IGB_STAT("rx_short_length_errors", stats.ruc),
79         IGB_STAT("rx_align_errors", stats.algnerrc),
80         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84         IGB_STAT("tx_flow_control_xon", stats.xontxc),
85         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86         IGB_STAT("rx_long_byte_count", stats.gorc),
87         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88         IGB_STAT("tx_smbus", stats.mgptc),
89         IGB_STAT("rx_smbus", stats.mgprc),
90         IGB_STAT("dropped_smbus", stats.mgpdc),
91         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97 };
98
99 #define IGB_NETDEV_STAT(_net_stat) { \
100         .stat_string = __stringify(_net_stat), \
101         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103 }
104 static const struct igb_stats igb_gstrings_net_stats[] = {
105         IGB_NETDEV_STAT(rx_errors),
106         IGB_NETDEV_STAT(tx_errors),
107         IGB_NETDEV_STAT(tx_dropped),
108         IGB_NETDEV_STAT(rx_length_errors),
109         IGB_NETDEV_STAT(rx_over_errors),
110         IGB_NETDEV_STAT(rx_frame_errors),
111         IGB_NETDEV_STAT(rx_fifo_errors),
112         IGB_NETDEV_STAT(tx_fifo_errors),
113         IGB_NETDEV_STAT(tx_heartbeat_errors)
114 };
115
116 #define IGB_GLOBAL_STATS_LEN    \
117         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118 #define IGB_NETDEV_STATS_LEN    \
119         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120 #define IGB_RX_QUEUE_STATS_LEN \
121         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125 #define IGB_QUEUE_STATS_LEN \
126         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127           IGB_RX_QUEUE_STATS_LEN) + \
128          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129           IGB_TX_QUEUE_STATS_LEN))
130 #define IGB_STATS_LEN \
131         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134         "Register test  (offline)", "Eeprom test    (offline)",
135         "Interrupt test (offline)", "Loopback test  (offline)",
136         "Link test   (on/offline)"
137 };
138 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141 {
142         struct igb_adapter *adapter = netdev_priv(netdev);
143         struct e1000_hw *hw = &adapter->hw;
144         u32 status;
145
146         if (hw->phy.media_type == e1000_media_type_copper) {
147
148                 ecmd->supported = (SUPPORTED_10baseT_Half |
149                                    SUPPORTED_10baseT_Full |
150                                    SUPPORTED_100baseT_Half |
151                                    SUPPORTED_100baseT_Full |
152                                    SUPPORTED_1000baseT_Full|
153                                    SUPPORTED_Autoneg |
154                                    SUPPORTED_TP |
155                                    SUPPORTED_Pause);
156                 ecmd->advertising = ADVERTISED_TP;
157
158                 if (hw->mac.autoneg == 1) {
159                         ecmd->advertising |= ADVERTISED_Autoneg;
160                         /* the e1000 autoneg seems to match ethtool nicely */
161                         ecmd->advertising |= hw->phy.autoneg_advertised;
162                 }
163
164                 if (hw->mac.autoneg != 1)
165                         ecmd->advertising &= ~(ADVERTISED_Pause |
166                                                ADVERTISED_Asym_Pause);
167
168                 if (hw->fc.requested_mode == e1000_fc_full)
169                         ecmd->advertising |= ADVERTISED_Pause;
170                 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
171                         ecmd->advertising |= (ADVERTISED_Pause |
172                                               ADVERTISED_Asym_Pause);
173                 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
174                         ecmd->advertising |=  ADVERTISED_Asym_Pause;
175                 else
176                         ecmd->advertising &= ~(ADVERTISED_Pause |
177                                                ADVERTISED_Asym_Pause);
178
179                 ecmd->port = PORT_TP;
180                 ecmd->phy_address = hw->phy.addr;
181                 ecmd->transceiver = XCVR_INTERNAL;
182         } else {
183                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
184                                      SUPPORTED_100baseT_Full |
185                                      SUPPORTED_Autoneg |
186                                      SUPPORTED_FIBRE |
187                                      SUPPORTED_Pause);
188
189                 ecmd->advertising = ADVERTISED_FIBRE;
190
191                 if (adapter->link_speed == SPEED_100)
192                         ecmd->advertising = ADVERTISED_100baseT_Full;
193                 else if (adapter->link_speed == SPEED_1000)
194                         ecmd->advertising = ADVERTISED_1000baseT_Full;
195
196                 if (hw->mac.autoneg == 1)
197                         ecmd->advertising |= ADVERTISED_Autoneg;
198
199                 ecmd->port = PORT_FIBRE;
200                 ecmd->transceiver = XCVR_EXTERNAL;
201         }
202
203         status = rd32(E1000_STATUS);
204
205         if (status & E1000_STATUS_LU) {
206
207                 if (status & E1000_STATUS_SPEED_1000)
208                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
209                 else if (status & E1000_STATUS_SPEED_100)
210                         ethtool_cmd_speed_set(ecmd, SPEED_100);
211                 else
212                         ethtool_cmd_speed_set(ecmd, SPEED_10);
213
214                 if ((status & E1000_STATUS_FD) ||
215                     hw->phy.media_type != e1000_media_type_copper)
216                         ecmd->duplex = DUPLEX_FULL;
217                 else
218                         ecmd->duplex = DUPLEX_HALF;
219         } else {
220                 ethtool_cmd_speed_set(ecmd, -1);
221                 ecmd->duplex = -1;
222         }
223
224         if ((hw->phy.media_type == e1000_media_type_fiber) ||
225             hw->mac.autoneg)
226                 ecmd->autoneg = AUTONEG_ENABLE;
227         else
228                 ecmd->autoneg = AUTONEG_DISABLE;
229
230         /* MDI-X => 2; MDI =>1; Invalid =>0 */
231         if (hw->phy.media_type == e1000_media_type_copper)
232                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
233                                                       ETH_TP_MDI;
234         else
235                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
236
237         if (hw->phy.mdix == AUTO_ALL_MODES)
238                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
239         else
240                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
241
242         return 0;
243 }
244
245 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
246 {
247         struct igb_adapter *adapter = netdev_priv(netdev);
248         struct e1000_hw *hw = &adapter->hw;
249
250         /* When SoL/IDER sessions are active, autoneg/speed/duplex
251          * cannot be changed
252          */
253         if (igb_check_reset_block(hw)) {
254                 dev_err(&adapter->pdev->dev,
255                         "Cannot change link characteristics when SoL/IDER is active.\n");
256                 return -EINVAL;
257         }
258
259         /* MDI setting is only allowed when autoneg enabled because
260          * some hardware doesn't allow MDI setting when speed or
261          * duplex is forced.
262          */
263         if (ecmd->eth_tp_mdix_ctrl) {
264                 if (hw->phy.media_type != e1000_media_type_copper)
265                         return -EOPNOTSUPP;
266
267                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
268                     (ecmd->autoneg != AUTONEG_ENABLE)) {
269                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
270                         return -EINVAL;
271                 }
272         }
273
274         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
275                 msleep(1);
276
277         if (ecmd->autoneg == AUTONEG_ENABLE) {
278                 hw->mac.autoneg = 1;
279                 if (hw->phy.media_type == e1000_media_type_fiber) {
280                         hw->phy.autoneg_advertised = ecmd->advertising |
281                                                      ADVERTISED_FIBRE |
282                                                      ADVERTISED_Autoneg;
283                         if (adapter->link_speed == SPEED_1000)
284                                 hw->phy.autoneg_advertised =
285                                         ADVERTISED_1000baseT_Full;
286                         else if (adapter->link_speed == SPEED_100)
287                                 hw->phy.autoneg_advertised =
288                                         ADVERTISED_100baseT_Full;
289                 } else {
290                         hw->phy.autoneg_advertised = ecmd->advertising |
291                                                      ADVERTISED_TP |
292                                                      ADVERTISED_Autoneg;
293                 }
294                 ecmd->advertising = hw->phy.autoneg_advertised;
295                 if (adapter->fc_autoneg)
296                         hw->fc.requested_mode = e1000_fc_default;
297         } else {
298                 u32 speed = ethtool_cmd_speed(ecmd);
299                 /* calling this overrides forced MDI setting */
300                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
301                         clear_bit(__IGB_RESETTING, &adapter->state);
302                         return -EINVAL;
303                 }
304         }
305
306         /* MDI-X => 2; MDI => 1; Auto => 3 */
307         if (ecmd->eth_tp_mdix_ctrl) {
308                 /* fix up the value for auto (3 => 0) as zero is mapped
309                  * internally to auto
310                  */
311                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
312                         hw->phy.mdix = AUTO_ALL_MODES;
313                 else
314                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
315         }
316
317         /* reset the link */
318         if (netif_running(adapter->netdev)) {
319                 igb_down(adapter);
320                 igb_up(adapter);
321         } else
322                 igb_reset(adapter);
323
324         clear_bit(__IGB_RESETTING, &adapter->state);
325         return 0;
326 }
327
328 static u32 igb_get_link(struct net_device *netdev)
329 {
330         struct igb_adapter *adapter = netdev_priv(netdev);
331         struct e1000_mac_info *mac = &adapter->hw.mac;
332
333         /* If the link is not reported up to netdev, interrupts are disabled,
334          * and so the physical link state may have changed since we last
335          * looked. Set get_link_status to make sure that the true link
336          * state is interrogated, rather than pulling a cached and possibly
337          * stale link state from the driver.
338          */
339         if (!netif_carrier_ok(netdev))
340                 mac->get_link_status = 1;
341
342         return igb_has_link(adapter);
343 }
344
345 static void igb_get_pauseparam(struct net_device *netdev,
346                                struct ethtool_pauseparam *pause)
347 {
348         struct igb_adapter *adapter = netdev_priv(netdev);
349         struct e1000_hw *hw = &adapter->hw;
350
351         pause->autoneg =
352                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
353
354         if (hw->fc.current_mode == e1000_fc_rx_pause)
355                 pause->rx_pause = 1;
356         else if (hw->fc.current_mode == e1000_fc_tx_pause)
357                 pause->tx_pause = 1;
358         else if (hw->fc.current_mode == e1000_fc_full) {
359                 pause->rx_pause = 1;
360                 pause->tx_pause = 1;
361         }
362 }
363
364 static int igb_set_pauseparam(struct net_device *netdev,
365                               struct ethtool_pauseparam *pause)
366 {
367         struct igb_adapter *adapter = netdev_priv(netdev);
368         struct e1000_hw *hw = &adapter->hw;
369         int retval = 0;
370
371         adapter->fc_autoneg = pause->autoneg;
372
373         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
374                 msleep(1);
375
376         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
377                 hw->fc.requested_mode = e1000_fc_default;
378                 if (netif_running(adapter->netdev)) {
379                         igb_down(adapter);
380                         igb_up(adapter);
381                 } else {
382                         igb_reset(adapter);
383                 }
384         } else {
385                 if (pause->rx_pause && pause->tx_pause)
386                         hw->fc.requested_mode = e1000_fc_full;
387                 else if (pause->rx_pause && !pause->tx_pause)
388                         hw->fc.requested_mode = e1000_fc_rx_pause;
389                 else if (!pause->rx_pause && pause->tx_pause)
390                         hw->fc.requested_mode = e1000_fc_tx_pause;
391                 else if (!pause->rx_pause && !pause->tx_pause)
392                         hw->fc.requested_mode = e1000_fc_none;
393
394                 hw->fc.current_mode = hw->fc.requested_mode;
395
396                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
397                           igb_force_mac_fc(hw) : igb_setup_link(hw));
398         }
399
400         clear_bit(__IGB_RESETTING, &adapter->state);
401         return retval;
402 }
403
404 static u32 igb_get_msglevel(struct net_device *netdev)
405 {
406         struct igb_adapter *adapter = netdev_priv(netdev);
407         return adapter->msg_enable;
408 }
409
410 static void igb_set_msglevel(struct net_device *netdev, u32 data)
411 {
412         struct igb_adapter *adapter = netdev_priv(netdev);
413         adapter->msg_enable = data;
414 }
415
416 static int igb_get_regs_len(struct net_device *netdev)
417 {
418 #define IGB_REGS_LEN 739
419         return IGB_REGS_LEN * sizeof(u32);
420 }
421
422 static void igb_get_regs(struct net_device *netdev,
423                          struct ethtool_regs *regs, void *p)
424 {
425         struct igb_adapter *adapter = netdev_priv(netdev);
426         struct e1000_hw *hw = &adapter->hw;
427         u32 *regs_buff = p;
428         u8 i;
429
430         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
431
432         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
433
434         /* General Registers */
435         regs_buff[0] = rd32(E1000_CTRL);
436         regs_buff[1] = rd32(E1000_STATUS);
437         regs_buff[2] = rd32(E1000_CTRL_EXT);
438         regs_buff[3] = rd32(E1000_MDIC);
439         regs_buff[4] = rd32(E1000_SCTL);
440         regs_buff[5] = rd32(E1000_CONNSW);
441         regs_buff[6] = rd32(E1000_VET);
442         regs_buff[7] = rd32(E1000_LEDCTL);
443         regs_buff[8] = rd32(E1000_PBA);
444         regs_buff[9] = rd32(E1000_PBS);
445         regs_buff[10] = rd32(E1000_FRTIMER);
446         regs_buff[11] = rd32(E1000_TCPTIMER);
447
448         /* NVM Register */
449         regs_buff[12] = rd32(E1000_EECD);
450
451         /* Interrupt */
452         /* Reading EICS for EICR because they read the
453          * same but EICS does not clear on read
454          */
455         regs_buff[13] = rd32(E1000_EICS);
456         regs_buff[14] = rd32(E1000_EICS);
457         regs_buff[15] = rd32(E1000_EIMS);
458         regs_buff[16] = rd32(E1000_EIMC);
459         regs_buff[17] = rd32(E1000_EIAC);
460         regs_buff[18] = rd32(E1000_EIAM);
461         /* Reading ICS for ICR because they read the
462          * same but ICS does not clear on read
463          */
464         regs_buff[19] = rd32(E1000_ICS);
465         regs_buff[20] = rd32(E1000_ICS);
466         regs_buff[21] = rd32(E1000_IMS);
467         regs_buff[22] = rd32(E1000_IMC);
468         regs_buff[23] = rd32(E1000_IAC);
469         regs_buff[24] = rd32(E1000_IAM);
470         regs_buff[25] = rd32(E1000_IMIRVP);
471
472         /* Flow Control */
473         regs_buff[26] = rd32(E1000_FCAL);
474         regs_buff[27] = rd32(E1000_FCAH);
475         regs_buff[28] = rd32(E1000_FCTTV);
476         regs_buff[29] = rd32(E1000_FCRTL);
477         regs_buff[30] = rd32(E1000_FCRTH);
478         regs_buff[31] = rd32(E1000_FCRTV);
479
480         /* Receive */
481         regs_buff[32] = rd32(E1000_RCTL);
482         regs_buff[33] = rd32(E1000_RXCSUM);
483         regs_buff[34] = rd32(E1000_RLPML);
484         regs_buff[35] = rd32(E1000_RFCTL);
485         regs_buff[36] = rd32(E1000_MRQC);
486         regs_buff[37] = rd32(E1000_VT_CTL);
487
488         /* Transmit */
489         regs_buff[38] = rd32(E1000_TCTL);
490         regs_buff[39] = rd32(E1000_TCTL_EXT);
491         regs_buff[40] = rd32(E1000_TIPG);
492         regs_buff[41] = rd32(E1000_DTXCTL);
493
494         /* Wake Up */
495         regs_buff[42] = rd32(E1000_WUC);
496         regs_buff[43] = rd32(E1000_WUFC);
497         regs_buff[44] = rd32(E1000_WUS);
498         regs_buff[45] = rd32(E1000_IPAV);
499         regs_buff[46] = rd32(E1000_WUPL);
500
501         /* MAC */
502         regs_buff[47] = rd32(E1000_PCS_CFG0);
503         regs_buff[48] = rd32(E1000_PCS_LCTL);
504         regs_buff[49] = rd32(E1000_PCS_LSTAT);
505         regs_buff[50] = rd32(E1000_PCS_ANADV);
506         regs_buff[51] = rd32(E1000_PCS_LPAB);
507         regs_buff[52] = rd32(E1000_PCS_NPTX);
508         regs_buff[53] = rd32(E1000_PCS_LPABNP);
509
510         /* Statistics */
511         regs_buff[54] = adapter->stats.crcerrs;
512         regs_buff[55] = adapter->stats.algnerrc;
513         regs_buff[56] = adapter->stats.symerrs;
514         regs_buff[57] = adapter->stats.rxerrc;
515         regs_buff[58] = adapter->stats.mpc;
516         regs_buff[59] = adapter->stats.scc;
517         regs_buff[60] = adapter->stats.ecol;
518         regs_buff[61] = adapter->stats.mcc;
519         regs_buff[62] = adapter->stats.latecol;
520         regs_buff[63] = adapter->stats.colc;
521         regs_buff[64] = adapter->stats.dc;
522         regs_buff[65] = adapter->stats.tncrs;
523         regs_buff[66] = adapter->stats.sec;
524         regs_buff[67] = adapter->stats.htdpmc;
525         regs_buff[68] = adapter->stats.rlec;
526         regs_buff[69] = adapter->stats.xonrxc;
527         regs_buff[70] = adapter->stats.xontxc;
528         regs_buff[71] = adapter->stats.xoffrxc;
529         regs_buff[72] = adapter->stats.xofftxc;
530         regs_buff[73] = adapter->stats.fcruc;
531         regs_buff[74] = adapter->stats.prc64;
532         regs_buff[75] = adapter->stats.prc127;
533         regs_buff[76] = adapter->stats.prc255;
534         regs_buff[77] = adapter->stats.prc511;
535         regs_buff[78] = adapter->stats.prc1023;
536         regs_buff[79] = adapter->stats.prc1522;
537         regs_buff[80] = adapter->stats.gprc;
538         regs_buff[81] = adapter->stats.bprc;
539         regs_buff[82] = adapter->stats.mprc;
540         regs_buff[83] = adapter->stats.gptc;
541         regs_buff[84] = adapter->stats.gorc;
542         regs_buff[86] = adapter->stats.gotc;
543         regs_buff[88] = adapter->stats.rnbc;
544         regs_buff[89] = adapter->stats.ruc;
545         regs_buff[90] = adapter->stats.rfc;
546         regs_buff[91] = adapter->stats.roc;
547         regs_buff[92] = adapter->stats.rjc;
548         regs_buff[93] = adapter->stats.mgprc;
549         regs_buff[94] = adapter->stats.mgpdc;
550         regs_buff[95] = adapter->stats.mgptc;
551         regs_buff[96] = adapter->stats.tor;
552         regs_buff[98] = adapter->stats.tot;
553         regs_buff[100] = adapter->stats.tpr;
554         regs_buff[101] = adapter->stats.tpt;
555         regs_buff[102] = adapter->stats.ptc64;
556         regs_buff[103] = adapter->stats.ptc127;
557         regs_buff[104] = adapter->stats.ptc255;
558         regs_buff[105] = adapter->stats.ptc511;
559         regs_buff[106] = adapter->stats.ptc1023;
560         regs_buff[107] = adapter->stats.ptc1522;
561         regs_buff[108] = adapter->stats.mptc;
562         regs_buff[109] = adapter->stats.bptc;
563         regs_buff[110] = adapter->stats.tsctc;
564         regs_buff[111] = adapter->stats.iac;
565         regs_buff[112] = adapter->stats.rpthc;
566         regs_buff[113] = adapter->stats.hgptc;
567         regs_buff[114] = adapter->stats.hgorc;
568         regs_buff[116] = adapter->stats.hgotc;
569         regs_buff[118] = adapter->stats.lenerrs;
570         regs_buff[119] = adapter->stats.scvpc;
571         regs_buff[120] = adapter->stats.hrmpc;
572
573         for (i = 0; i < 4; i++)
574                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
575         for (i = 0; i < 4; i++)
576                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
577         for (i = 0; i < 4; i++)
578                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
579         for (i = 0; i < 4; i++)
580                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
581         for (i = 0; i < 4; i++)
582                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
583         for (i = 0; i < 4; i++)
584                 regs_buff[141 + i] = rd32(E1000_RDH(i));
585         for (i = 0; i < 4; i++)
586                 regs_buff[145 + i] = rd32(E1000_RDT(i));
587         for (i = 0; i < 4; i++)
588                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
589
590         for (i = 0; i < 10; i++)
591                 regs_buff[153 + i] = rd32(E1000_EITR(i));
592         for (i = 0; i < 8; i++)
593                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
594         for (i = 0; i < 8; i++)
595                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
596         for (i = 0; i < 16; i++)
597                 regs_buff[179 + i] = rd32(E1000_RAL(i));
598         for (i = 0; i < 16; i++)
599                 regs_buff[195 + i] = rd32(E1000_RAH(i));
600
601         for (i = 0; i < 4; i++)
602                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
603         for (i = 0; i < 4; i++)
604                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
605         for (i = 0; i < 4; i++)
606                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
607         for (i = 0; i < 4; i++)
608                 regs_buff[223 + i] = rd32(E1000_TDH(i));
609         for (i = 0; i < 4; i++)
610                 regs_buff[227 + i] = rd32(E1000_TDT(i));
611         for (i = 0; i < 4; i++)
612                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
613         for (i = 0; i < 4; i++)
614                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
615         for (i = 0; i < 4; i++)
616                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
617         for (i = 0; i < 4; i++)
618                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
619
620         for (i = 0; i < 4; i++)
621                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
622         for (i = 0; i < 4; i++)
623                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
624         for (i = 0; i < 32; i++)
625                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
626         for (i = 0; i < 128; i++)
627                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
628         for (i = 0; i < 128; i++)
629                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
630         for (i = 0; i < 4; i++)
631                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
632
633         regs_buff[547] = rd32(E1000_TDFH);
634         regs_buff[548] = rd32(E1000_TDFT);
635         regs_buff[549] = rd32(E1000_TDFHS);
636         regs_buff[550] = rd32(E1000_TDFPC);
637
638         if (hw->mac.type > e1000_82580) {
639                 regs_buff[551] = adapter->stats.o2bgptc;
640                 regs_buff[552] = adapter->stats.b2ospc;
641                 regs_buff[553] = adapter->stats.o2bspc;
642                 regs_buff[554] = adapter->stats.b2ogprc;
643         }
644
645         if (hw->mac.type != e1000_82576)
646                 return;
647         for (i = 0; i < 12; i++)
648                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
649         for (i = 0; i < 4; i++)
650                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
651         for (i = 0; i < 12; i++)
652                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
653         for (i = 0; i < 12; i++)
654                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
655         for (i = 0; i < 12; i++)
656                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
657         for (i = 0; i < 12; i++)
658                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
659         for (i = 0; i < 12; i++)
660                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
661         for (i = 0; i < 12; i++)
662                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
663
664         for (i = 0; i < 12; i++)
665                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
666         for (i = 0; i < 12; i++)
667                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
668         for (i = 0; i < 12; i++)
669                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
670         for (i = 0; i < 12; i++)
671                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
672         for (i = 0; i < 12; i++)
673                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
674         for (i = 0; i < 12; i++)
675                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
676         for (i = 0; i < 12; i++)
677                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
678         for (i = 0; i < 12; i++)
679                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
680 }
681
682 static int igb_get_eeprom_len(struct net_device *netdev)
683 {
684         struct igb_adapter *adapter = netdev_priv(netdev);
685         return adapter->hw.nvm.word_size * 2;
686 }
687
688 static int igb_get_eeprom(struct net_device *netdev,
689                           struct ethtool_eeprom *eeprom, u8 *bytes)
690 {
691         struct igb_adapter *adapter = netdev_priv(netdev);
692         struct e1000_hw *hw = &adapter->hw;
693         u16 *eeprom_buff;
694         int first_word, last_word;
695         int ret_val = 0;
696         u16 i;
697
698         if (eeprom->len == 0)
699                 return -EINVAL;
700
701         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
702
703         first_word = eeprom->offset >> 1;
704         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
705
706         eeprom_buff = kmalloc(sizeof(u16) *
707                         (last_word - first_word + 1), GFP_KERNEL);
708         if (!eeprom_buff)
709                 return -ENOMEM;
710
711         if (hw->nvm.type == e1000_nvm_eeprom_spi)
712                 ret_val = hw->nvm.ops.read(hw, first_word,
713                                            last_word - first_word + 1,
714                                            eeprom_buff);
715         else {
716                 for (i = 0; i < last_word - first_word + 1; i++) {
717                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
718                                                    &eeprom_buff[i]);
719                         if (ret_val)
720                                 break;
721                 }
722         }
723
724         /* Device's eeprom is always little-endian, word addressable */
725         for (i = 0; i < last_word - first_word + 1; i++)
726                 le16_to_cpus(&eeprom_buff[i]);
727
728         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
729                         eeprom->len);
730         kfree(eeprom_buff);
731
732         return ret_val;
733 }
734
735 static int igb_set_eeprom(struct net_device *netdev,
736                           struct ethtool_eeprom *eeprom, u8 *bytes)
737 {
738         struct igb_adapter *adapter = netdev_priv(netdev);
739         struct e1000_hw *hw = &adapter->hw;
740         u16 *eeprom_buff;
741         void *ptr;
742         int max_len, first_word, last_word, ret_val = 0;
743         u16 i;
744
745         if (eeprom->len == 0)
746                 return -EOPNOTSUPP;
747
748         if (hw->mac.type == e1000_i211)
749                 return -EOPNOTSUPP;
750
751         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
752                 return -EFAULT;
753
754         max_len = hw->nvm.word_size * 2;
755
756         first_word = eeprom->offset >> 1;
757         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
758         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
759         if (!eeprom_buff)
760                 return -ENOMEM;
761
762         ptr = (void *)eeprom_buff;
763
764         if (eeprom->offset & 1) {
765                 /* need read/modify/write of first changed EEPROM word
766                  * only the second byte of the word is being modified
767                  */
768                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
769                                             &eeprom_buff[0]);
770                 ptr++;
771         }
772         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
773                 /* need read/modify/write of last changed EEPROM word
774                  * only the first byte of the word is being modified
775                  */
776                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
777                                    &eeprom_buff[last_word - first_word]);
778         }
779
780         /* Device's eeprom is always little-endian, word addressable */
781         for (i = 0; i < last_word - first_word + 1; i++)
782                 le16_to_cpus(&eeprom_buff[i]);
783
784         memcpy(ptr, bytes, eeprom->len);
785
786         for (i = 0; i < last_word - first_word + 1; i++)
787                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
788
789         ret_val = hw->nvm.ops.write(hw, first_word,
790                                     last_word - first_word + 1, eeprom_buff);
791
792         /* Update the checksum over the first part of the EEPROM if needed
793          * and flush shadow RAM for 82573 controllers
794          */
795         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
796                 hw->nvm.ops.update(hw);
797
798         igb_set_fw_version(adapter);
799         kfree(eeprom_buff);
800         return ret_val;
801 }
802
803 static void igb_get_drvinfo(struct net_device *netdev,
804                             struct ethtool_drvinfo *drvinfo)
805 {
806         struct igb_adapter *adapter = netdev_priv(netdev);
807
808         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
809         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
810
811         /* EEPROM image version # is reported as firmware version # for
812          * 82575 controllers
813          */
814         strlcpy(drvinfo->fw_version, adapter->fw_version,
815                 sizeof(drvinfo->fw_version));
816         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
817                 sizeof(drvinfo->bus_info));
818         drvinfo->n_stats = IGB_STATS_LEN;
819         drvinfo->testinfo_len = IGB_TEST_LEN;
820         drvinfo->regdump_len = igb_get_regs_len(netdev);
821         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
822 }
823
824 static void igb_get_ringparam(struct net_device *netdev,
825                               struct ethtool_ringparam *ring)
826 {
827         struct igb_adapter *adapter = netdev_priv(netdev);
828
829         ring->rx_max_pending = IGB_MAX_RXD;
830         ring->tx_max_pending = IGB_MAX_TXD;
831         ring->rx_pending = adapter->rx_ring_count;
832         ring->tx_pending = adapter->tx_ring_count;
833 }
834
835 static int igb_set_ringparam(struct net_device *netdev,
836                              struct ethtool_ringparam *ring)
837 {
838         struct igb_adapter *adapter = netdev_priv(netdev);
839         struct igb_ring *temp_ring;
840         int i, err = 0;
841         u16 new_rx_count, new_tx_count;
842
843         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
844                 return -EINVAL;
845
846         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
847         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
848         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
849
850         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
851         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
852         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
853
854         if ((new_tx_count == adapter->tx_ring_count) &&
855             (new_rx_count == adapter->rx_ring_count)) {
856                 /* nothing to do */
857                 return 0;
858         }
859
860         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
861                 msleep(1);
862
863         if (!netif_running(adapter->netdev)) {
864                 for (i = 0; i < adapter->num_tx_queues; i++)
865                         adapter->tx_ring[i]->count = new_tx_count;
866                 for (i = 0; i < adapter->num_rx_queues; i++)
867                         adapter->rx_ring[i]->count = new_rx_count;
868                 adapter->tx_ring_count = new_tx_count;
869                 adapter->rx_ring_count = new_rx_count;
870                 goto clear_reset;
871         }
872
873         if (adapter->num_tx_queues > adapter->num_rx_queues)
874                 temp_ring = vmalloc(adapter->num_tx_queues *
875                                     sizeof(struct igb_ring));
876         else
877                 temp_ring = vmalloc(adapter->num_rx_queues *
878                                     sizeof(struct igb_ring));
879
880         if (!temp_ring) {
881                 err = -ENOMEM;
882                 goto clear_reset;
883         }
884
885         igb_down(adapter);
886
887         /* We can't just free everything and then setup again,
888          * because the ISRs in MSI-X mode get passed pointers
889          * to the Tx and Rx ring structs.
890          */
891         if (new_tx_count != adapter->tx_ring_count) {
892                 for (i = 0; i < adapter->num_tx_queues; i++) {
893                         memcpy(&temp_ring[i], adapter->tx_ring[i],
894                                sizeof(struct igb_ring));
895
896                         temp_ring[i].count = new_tx_count;
897                         err = igb_setup_tx_resources(&temp_ring[i]);
898                         if (err) {
899                                 while (i) {
900                                         i--;
901                                         igb_free_tx_resources(&temp_ring[i]);
902                                 }
903                                 goto err_setup;
904                         }
905                 }
906
907                 for (i = 0; i < adapter->num_tx_queues; i++) {
908                         igb_free_tx_resources(adapter->tx_ring[i]);
909
910                         memcpy(adapter->tx_ring[i], &temp_ring[i],
911                                sizeof(struct igb_ring));
912                 }
913
914                 adapter->tx_ring_count = new_tx_count;
915         }
916
917         if (new_rx_count != adapter->rx_ring_count) {
918                 for (i = 0; i < adapter->num_rx_queues; i++) {
919                         memcpy(&temp_ring[i], adapter->rx_ring[i],
920                                sizeof(struct igb_ring));
921
922                         temp_ring[i].count = new_rx_count;
923                         err = igb_setup_rx_resources(&temp_ring[i]);
924                         if (err) {
925                                 while (i) {
926                                         i--;
927                                         igb_free_rx_resources(&temp_ring[i]);
928                                 }
929                                 goto err_setup;
930                         }
931
932                 }
933
934                 for (i = 0; i < adapter->num_rx_queues; i++) {
935                         igb_free_rx_resources(adapter->rx_ring[i]);
936
937                         memcpy(adapter->rx_ring[i], &temp_ring[i],
938                                sizeof(struct igb_ring));
939                 }
940
941                 adapter->rx_ring_count = new_rx_count;
942         }
943 err_setup:
944         igb_up(adapter);
945         vfree(temp_ring);
946 clear_reset:
947         clear_bit(__IGB_RESETTING, &adapter->state);
948         return err;
949 }
950
951 /* ethtool register test data */
952 struct igb_reg_test {
953         u16 reg;
954         u16 reg_offset;
955         u16 array_len;
956         u16 test_type;
957         u32 mask;
958         u32 write;
959 };
960
961 /* In the hardware, registers are laid out either singly, in arrays
962  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
963  * most tests take place on arrays or single registers (handled
964  * as a single-element array) and special-case the tables.
965  * Table tests are always pattern tests.
966  *
967  * We also make provision for some required setup steps by specifying
968  * registers to be written without any read-back testing.
969  */
970
971 #define PATTERN_TEST    1
972 #define SET_READ_TEST   2
973 #define WRITE_NO_TEST   3
974 #define TABLE32_TEST    4
975 #define TABLE64_TEST_LO 5
976 #define TABLE64_TEST_HI 6
977
978 /* i210 reg test */
979 static struct igb_reg_test reg_test_i210[] = {
980         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
981         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
982         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
983         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
984         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
985         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
986         /* RDH is read-only for i210, only test RDT. */
987         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
988         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
989         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
990         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
991         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
992         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
993         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
994         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
997         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
998         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
999         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1000                                                 0xFFFFFFFF, 0xFFFFFFFF },
1001         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1002                                                 0x900FFFFF, 0xFFFFFFFF },
1003         { E1000_MTA,       0, 128, TABLE32_TEST,
1004                                                 0xFFFFFFFF, 0xFFFFFFFF },
1005         { 0, 0, 0, 0, 0 }
1006 };
1007
1008 /* i350 reg test */
1009 static struct igb_reg_test reg_test_i350[] = {
1010         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1011         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1012         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1014         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1020         /* RDH is read-only for i350, only test RDT. */
1021         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1024         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1025         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1026         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1027         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1028         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1029         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1033         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1035         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1036         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1037         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1038         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1039                                                 0xFFFFFFFF, 0xFFFFFFFF },
1040         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1041                                                 0xC3FFFFFF, 0xFFFFFFFF },
1042         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1043                                                 0xFFFFFFFF, 0xFFFFFFFF },
1044         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1045                                                 0xC3FFFFFF, 0xFFFFFFFF },
1046         { E1000_MTA,       0, 128, TABLE32_TEST,
1047                                                 0xFFFFFFFF, 0xFFFFFFFF },
1048         { 0, 0, 0, 0 }
1049 };
1050
1051 /* 82580 reg test */
1052 static struct igb_reg_test reg_test_82580[] = {
1053         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1054         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1056         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1060         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1063         /* RDH is read-only for 82580, only test RDT. */
1064         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1067         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1069         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1070         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1072         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1075         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1076         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1077         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1078         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1079         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1080         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1082                                                 0xFFFFFFFF, 0xFFFFFFFF },
1083         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1084                                                 0x83FFFFFF, 0xFFFFFFFF },
1085         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1086                                                 0xFFFFFFFF, 0xFFFFFFFF },
1087         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1088                                                 0x83FFFFFF, 0xFFFFFFFF },
1089         { E1000_MTA,       0, 128, TABLE32_TEST,
1090                                                 0xFFFFFFFF, 0xFFFFFFFF },
1091         { 0, 0, 0, 0 }
1092 };
1093
1094 /* 82576 reg test */
1095 static struct igb_reg_test reg_test_82576[] = {
1096         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1098         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1099         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106         /* Enable all RX queues before testing. */
1107         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1108         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1109         /* RDH is read-only for 82576, only test RDT. */
1110         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1113         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1114         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1115         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1116         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1117         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1118         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1119         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1120         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1128         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1129         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1130         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1131         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1132         { 0, 0, 0, 0 }
1133 };
1134
1135 /* 82575 register test */
1136 static struct igb_reg_test reg_test_82575[] = {
1137         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1139         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1140         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1141         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1144         /* Enable all four RX queues before testing. */
1145         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1146         /* RDH is read-only for 82575, only test RDT. */
1147         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1148         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1149         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1150         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1151         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1152         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1155         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1157         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1158         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1159         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1160         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1161         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1162         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163         { 0, 0, 0, 0 }
1164 };
1165
1166 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1167                              int reg, u32 mask, u32 write)
1168 {
1169         struct e1000_hw *hw = &adapter->hw;
1170         u32 pat, val;
1171         static const u32 _test[] =
1172                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1173         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1174                 wr32(reg, (_test[pat] & write));
1175                 val = rd32(reg) & mask;
1176                 if (val != (_test[pat] & write & mask)) {
1177                         dev_err(&adapter->pdev->dev,
1178                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1179                                 reg, val, (_test[pat] & write & mask));
1180                         *data = reg;
1181                         return 1;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1189                               int reg, u32 mask, u32 write)
1190 {
1191         struct e1000_hw *hw = &adapter->hw;
1192         u32 val;
1193         wr32(reg, write & mask);
1194         val = rd32(reg);
1195         if ((write & mask) != (val & mask)) {
1196                 dev_err(&adapter->pdev->dev,
1197                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1198                         (val & mask), (write & mask));
1199                 *data = reg;
1200                 return 1;
1201         }
1202
1203         return 0;
1204 }
1205
1206 #define REG_PATTERN_TEST(reg, mask, write) \
1207         do { \
1208                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1209                         return 1; \
1210         } while (0)
1211
1212 #define REG_SET_AND_CHECK(reg, mask, write) \
1213         do { \
1214                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1215                         return 1; \
1216         } while (0)
1217
1218 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1219 {
1220         struct e1000_hw *hw = &adapter->hw;
1221         struct igb_reg_test *test;
1222         u32 value, before, after;
1223         u32 i, toggle;
1224
1225         switch (adapter->hw.mac.type) {
1226         case e1000_i350:
1227                 test = reg_test_i350;
1228                 toggle = 0x7FEFF3FF;
1229                 break;
1230         case e1000_i210:
1231         case e1000_i211:
1232                 test = reg_test_i210;
1233                 toggle = 0x7FEFF3FF;
1234                 break;
1235         case e1000_82580:
1236                 test = reg_test_82580;
1237                 toggle = 0x7FEFF3FF;
1238                 break;
1239         case e1000_82576:
1240                 test = reg_test_82576;
1241                 toggle = 0x7FFFF3FF;
1242                 break;
1243         default:
1244                 test = reg_test_82575;
1245                 toggle = 0x7FFFF3FF;
1246                 break;
1247         }
1248
1249         /* Because the status register is such a special case,
1250          * we handle it separately from the rest of the register
1251          * tests.  Some bits are read-only, some toggle, and some
1252          * are writable on newer MACs.
1253          */
1254         before = rd32(E1000_STATUS);
1255         value = (rd32(E1000_STATUS) & toggle);
1256         wr32(E1000_STATUS, toggle);
1257         after = rd32(E1000_STATUS) & toggle;
1258         if (value != after) {
1259                 dev_err(&adapter->pdev->dev,
1260                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1261                         after, value);
1262                 *data = 1;
1263                 return 1;
1264         }
1265         /* restore previous status */
1266         wr32(E1000_STATUS, before);
1267
1268         /* Perform the remainder of the register test, looping through
1269          * the test table until we either fail or reach the null entry.
1270          */
1271         while (test->reg) {
1272                 for (i = 0; i < test->array_len; i++) {
1273                         switch (test->test_type) {
1274                         case PATTERN_TEST:
1275                                 REG_PATTERN_TEST(test->reg +
1276                                                 (i * test->reg_offset),
1277                                                 test->mask,
1278                                                 test->write);
1279                                 break;
1280                         case SET_READ_TEST:
1281                                 REG_SET_AND_CHECK(test->reg +
1282                                                 (i * test->reg_offset),
1283                                                 test->mask,
1284                                                 test->write);
1285                                 break;
1286                         case WRITE_NO_TEST:
1287                                 writel(test->write,
1288                                     (adapter->hw.hw_addr + test->reg)
1289                                         + (i * test->reg_offset));
1290                                 break;
1291                         case TABLE32_TEST:
1292                                 REG_PATTERN_TEST(test->reg + (i * 4),
1293                                                 test->mask,
1294                                                 test->write);
1295                                 break;
1296                         case TABLE64_TEST_LO:
1297                                 REG_PATTERN_TEST(test->reg + (i * 8),
1298                                                 test->mask,
1299                                                 test->write);
1300                                 break;
1301                         case TABLE64_TEST_HI:
1302                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1303                                                 test->mask,
1304                                                 test->write);
1305                                 break;
1306                         }
1307                 }
1308                 test++;
1309         }
1310
1311         *data = 0;
1312         return 0;
1313 }
1314
1315 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1316 {
1317         *data = 0;
1318
1319         /* Validate eeprom on all parts but i211 */
1320         if (adapter->hw.mac.type != e1000_i211) {
1321                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1322                         *data = 2;
1323         }
1324
1325         return *data;
1326 }
1327
1328 static irqreturn_t igb_test_intr(int irq, void *data)
1329 {
1330         struct igb_adapter *adapter = (struct igb_adapter *) data;
1331         struct e1000_hw *hw = &adapter->hw;
1332
1333         adapter->test_icr |= rd32(E1000_ICR);
1334
1335         return IRQ_HANDLED;
1336 }
1337
1338 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1339 {
1340         struct e1000_hw *hw = &adapter->hw;
1341         struct net_device *netdev = adapter->netdev;
1342         u32 mask, ics_mask, i = 0, shared_int = true;
1343         u32 irq = adapter->pdev->irq;
1344
1345         *data = 0;
1346
1347         /* Hook up test interrupt handler just for this test */
1348         if (adapter->msix_entries) {
1349                 if (request_irq(adapter->msix_entries[0].vector,
1350                                 igb_test_intr, 0, netdev->name, adapter)) {
1351                         *data = 1;
1352                         return -1;
1353                 }
1354         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1355                 shared_int = false;
1356                 if (request_irq(irq,
1357                                 igb_test_intr, 0, netdev->name, adapter)) {
1358                         *data = 1;
1359                         return -1;
1360                 }
1361         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1362                                 netdev->name, adapter)) {
1363                 shared_int = false;
1364         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1365                  netdev->name, adapter)) {
1366                 *data = 1;
1367                 return -1;
1368         }
1369         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1370                 (shared_int ? "shared" : "unshared"));
1371
1372         /* Disable all the interrupts */
1373         wr32(E1000_IMC, ~0);
1374         wrfl();
1375         msleep(10);
1376
1377         /* Define all writable bits for ICS */
1378         switch (hw->mac.type) {
1379         case e1000_82575:
1380                 ics_mask = 0x37F47EDD;
1381                 break;
1382         case e1000_82576:
1383                 ics_mask = 0x77D4FBFD;
1384                 break;
1385         case e1000_82580:
1386                 ics_mask = 0x77DCFED5;
1387                 break;
1388         case e1000_i350:
1389         case e1000_i210:
1390         case e1000_i211:
1391                 ics_mask = 0x77DCFED5;
1392                 break;
1393         default:
1394                 ics_mask = 0x7FFFFFFF;
1395                 break;
1396         }
1397
1398         /* Test each interrupt */
1399         for (; i < 31; i++) {
1400                 /* Interrupt to test */
1401                 mask = 1 << i;
1402
1403                 if (!(mask & ics_mask))
1404                         continue;
1405
1406                 if (!shared_int) {
1407                         /* Disable the interrupt to be reported in
1408                          * the cause register and then force the same
1409                          * interrupt and see if one gets posted.  If
1410                          * an interrupt was posted to the bus, the
1411                          * test failed.
1412                          */
1413                         adapter->test_icr = 0;
1414
1415                         /* Flush any pending interrupts */
1416                         wr32(E1000_ICR, ~0);
1417
1418                         wr32(E1000_IMC, mask);
1419                         wr32(E1000_ICS, mask);
1420                         wrfl();
1421                         msleep(10);
1422
1423                         if (adapter->test_icr & mask) {
1424                                 *data = 3;
1425                                 break;
1426                         }
1427                 }
1428
1429                 /* Enable the interrupt to be reported in
1430                  * the cause register and then force the same
1431                  * interrupt and see if one gets posted.  If
1432                  * an interrupt was not posted to the bus, the
1433                  * test failed.
1434                  */
1435                 adapter->test_icr = 0;
1436
1437                 /* Flush any pending interrupts */
1438                 wr32(E1000_ICR, ~0);
1439
1440                 wr32(E1000_IMS, mask);
1441                 wr32(E1000_ICS, mask);
1442                 wrfl();
1443                 msleep(10);
1444
1445                 if (!(adapter->test_icr & mask)) {
1446                         *data = 4;
1447                         break;
1448                 }
1449
1450                 if (!shared_int) {
1451                         /* Disable the other interrupts to be reported in
1452                          * the cause register and then force the other
1453                          * interrupts and see if any get posted.  If
1454                          * an interrupt was posted to the bus, the
1455                          * test failed.
1456                          */
1457                         adapter->test_icr = 0;
1458
1459                         /* Flush any pending interrupts */
1460                         wr32(E1000_ICR, ~0);
1461
1462                         wr32(E1000_IMC, ~mask);
1463                         wr32(E1000_ICS, ~mask);
1464                         wrfl();
1465                         msleep(10);
1466
1467                         if (adapter->test_icr & mask) {
1468                                 *data = 5;
1469                                 break;
1470                         }
1471                 }
1472         }
1473
1474         /* Disable all the interrupts */
1475         wr32(E1000_IMC, ~0);
1476         wrfl();
1477         msleep(10);
1478
1479         /* Unhook test interrupt handler */
1480         if (adapter->msix_entries)
1481                 free_irq(adapter->msix_entries[0].vector, adapter);
1482         else
1483                 free_irq(irq, adapter);
1484
1485         return *data;
1486 }
1487
1488 static void igb_free_desc_rings(struct igb_adapter *adapter)
1489 {
1490         igb_free_tx_resources(&adapter->test_tx_ring);
1491         igb_free_rx_resources(&adapter->test_rx_ring);
1492 }
1493
1494 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1495 {
1496         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1497         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1498         struct e1000_hw *hw = &adapter->hw;
1499         int ret_val;
1500
1501         /* Setup Tx descriptor ring and Tx buffers */
1502         tx_ring->count = IGB_DEFAULT_TXD;
1503         tx_ring->dev = &adapter->pdev->dev;
1504         tx_ring->netdev = adapter->netdev;
1505         tx_ring->reg_idx = adapter->vfs_allocated_count;
1506
1507         if (igb_setup_tx_resources(tx_ring)) {
1508                 ret_val = 1;
1509                 goto err_nomem;
1510         }
1511
1512         igb_setup_tctl(adapter);
1513         igb_configure_tx_ring(adapter, tx_ring);
1514
1515         /* Setup Rx descriptor ring and Rx buffers */
1516         rx_ring->count = IGB_DEFAULT_RXD;
1517         rx_ring->dev = &adapter->pdev->dev;
1518         rx_ring->netdev = adapter->netdev;
1519         rx_ring->reg_idx = adapter->vfs_allocated_count;
1520
1521         if (igb_setup_rx_resources(rx_ring)) {
1522                 ret_val = 3;
1523                 goto err_nomem;
1524         }
1525
1526         /* set the default queue to queue 0 of PF */
1527         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1528
1529         /* enable receive ring */
1530         igb_setup_rctl(adapter);
1531         igb_configure_rx_ring(adapter, rx_ring);
1532
1533         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1534
1535         return 0;
1536
1537 err_nomem:
1538         igb_free_desc_rings(adapter);
1539         return ret_val;
1540 }
1541
1542 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1543 {
1544         struct e1000_hw *hw = &adapter->hw;
1545
1546         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1547         igb_write_phy_reg(hw, 29, 0x001F);
1548         igb_write_phy_reg(hw, 30, 0x8FFC);
1549         igb_write_phy_reg(hw, 29, 0x001A);
1550         igb_write_phy_reg(hw, 30, 0x8FF0);
1551 }
1552
1553 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1554 {
1555         struct e1000_hw *hw = &adapter->hw;
1556         u32 ctrl_reg = 0;
1557
1558         hw->mac.autoneg = false;
1559
1560         if (hw->phy.type == e1000_phy_m88) {
1561                 if (hw->phy.id != I210_I_PHY_ID) {
1562                         /* Auto-MDI/MDIX Off */
1563                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1564                         /* reset to update Auto-MDI/MDIX */
1565                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1566                         /* autoneg off */
1567                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1568                 } else {
1569                         /* force 1000, set loopback  */
1570                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1571                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1572                 }
1573         }
1574
1575         /* add small delay to avoid loopback test failure */
1576         msleep(50);
1577
1578         /* force 1000, set loopback */
1579         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1580
1581         /* Now set up the MAC to the same speed/duplex as the PHY. */
1582         ctrl_reg = rd32(E1000_CTRL);
1583         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1584         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1585                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1586                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1587                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1588                      E1000_CTRL_SLU);    /* Set link up enable bit */
1589
1590         if (hw->phy.type == e1000_phy_m88)
1591                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1592
1593         wr32(E1000_CTRL, ctrl_reg);
1594
1595         /* Disable the receiver on the PHY so when a cable is plugged in, the
1596          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1597          */
1598         if (hw->phy.type == e1000_phy_m88)
1599                 igb_phy_disable_receiver(adapter);
1600
1601         mdelay(500);
1602         return 0;
1603 }
1604
1605 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1606 {
1607         return igb_integrated_phy_loopback(adapter);
1608 }
1609
1610 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1611 {
1612         struct e1000_hw *hw = &adapter->hw;
1613         u32 reg;
1614
1615         reg = rd32(E1000_CTRL_EXT);
1616
1617         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1618         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1619                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1620                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1621                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1622                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1623
1624                         /* Enable DH89xxCC MPHY for near end loopback */
1625                         reg = rd32(E1000_MPHY_ADDR_CTL);
1626                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1627                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1628                         wr32(E1000_MPHY_ADDR_CTL, reg);
1629
1630                         reg = rd32(E1000_MPHY_DATA);
1631                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1632                         wr32(E1000_MPHY_DATA, reg);
1633                 }
1634
1635                 reg = rd32(E1000_RCTL);
1636                 reg |= E1000_RCTL_LBM_TCVR;
1637                 wr32(E1000_RCTL, reg);
1638
1639                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1640
1641                 reg = rd32(E1000_CTRL);
1642                 reg &= ~(E1000_CTRL_RFCE |
1643                          E1000_CTRL_TFCE |
1644                          E1000_CTRL_LRST);
1645                 reg |= E1000_CTRL_SLU |
1646                        E1000_CTRL_FD;
1647                 wr32(E1000_CTRL, reg);
1648
1649                 /* Unset switch control to serdes energy detect */
1650                 reg = rd32(E1000_CONNSW);
1651                 reg &= ~E1000_CONNSW_ENRGSRC;
1652                 wr32(E1000_CONNSW, reg);
1653
1654                 /* Unset sigdetect for SERDES loopback on
1655                  * 82580 and i350 devices.
1656                  */
1657                 switch (hw->mac.type) {
1658                 case e1000_82580:
1659                 case e1000_i350:
1660                         reg = rd32(E1000_PCS_CFG0);
1661                         reg |= E1000_PCS_CFG_IGN_SD;
1662                         wr32(E1000_PCS_CFG0, reg);
1663                         break;
1664                 default:
1665                         break;
1666                 }
1667
1668                 /* Set PCS register for forced speed */
1669                 reg = rd32(E1000_PCS_LCTL);
1670                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1671                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1672                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1673                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1674                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1675                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1676                 wr32(E1000_PCS_LCTL, reg);
1677
1678                 return 0;
1679         }
1680
1681         return igb_set_phy_loopback(adapter);
1682 }
1683
1684 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1685 {
1686         struct e1000_hw *hw = &adapter->hw;
1687         u32 rctl;
1688         u16 phy_reg;
1689
1690         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1694                 u32 reg;
1695
1696                 /* Disable near end loopback on DH89xxCC */
1697                 reg = rd32(E1000_MPHY_ADDR_CTL);
1698                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1700                 wr32(E1000_MPHY_ADDR_CTL, reg);
1701
1702                 reg = rd32(E1000_MPHY_DATA);
1703                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704                 wr32(E1000_MPHY_DATA, reg);
1705         }
1706
1707         rctl = rd32(E1000_RCTL);
1708         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1709         wr32(E1000_RCTL, rctl);
1710
1711         hw->mac.autoneg = true;
1712         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1713         if (phy_reg & MII_CR_LOOPBACK) {
1714                 phy_reg &= ~MII_CR_LOOPBACK;
1715                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1716                 igb_phy_sw_reset(hw);
1717         }
1718 }
1719
1720 static void igb_create_lbtest_frame(struct sk_buff *skb,
1721                                     unsigned int frame_size)
1722 {
1723         memset(skb->data, 0xFF, frame_size);
1724         frame_size /= 2;
1725         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1726         memset(&skb->data[frame_size + 10], 0xBE, 1);
1727         memset(&skb->data[frame_size + 12], 0xAF, 1);
1728 }
1729
1730 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1731                                   unsigned int frame_size)
1732 {
1733         unsigned char *data;
1734         bool match = true;
1735
1736         frame_size >>= 1;
1737
1738         data = kmap(rx_buffer->page);
1739
1740         if (data[3] != 0xFF ||
1741             data[frame_size + 10] != 0xBE ||
1742             data[frame_size + 12] != 0xAF)
1743                 match = false;
1744
1745         kunmap(rx_buffer->page);
1746
1747         return match;
1748 }
1749
1750 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1751                                 struct igb_ring *tx_ring,
1752                                 unsigned int size)
1753 {
1754         union e1000_adv_rx_desc *rx_desc;
1755         struct igb_rx_buffer *rx_buffer_info;
1756         struct igb_tx_buffer *tx_buffer_info;
1757         u16 rx_ntc, tx_ntc, count = 0;
1758
1759         /* initialize next to clean and descriptor values */
1760         rx_ntc = rx_ring->next_to_clean;
1761         tx_ntc = tx_ring->next_to_clean;
1762         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1763
1764         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1765                 /* check Rx buffer */
1766                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1767
1768                 /* sync Rx buffer for CPU read */
1769                 dma_sync_single_for_cpu(rx_ring->dev,
1770                                         rx_buffer_info->dma,
1771                                         IGB_RX_BUFSZ,
1772                                         DMA_FROM_DEVICE);
1773
1774                 /* verify contents of skb */
1775                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1776                         count++;
1777
1778                 /* sync Rx buffer for device write */
1779                 dma_sync_single_for_device(rx_ring->dev,
1780                                            rx_buffer_info->dma,
1781                                            IGB_RX_BUFSZ,
1782                                            DMA_FROM_DEVICE);
1783
1784                 /* unmap buffer on Tx side */
1785                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1786                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1787
1788                 /* increment Rx/Tx next to clean counters */
1789                 rx_ntc++;
1790                 if (rx_ntc == rx_ring->count)
1791                         rx_ntc = 0;
1792                 tx_ntc++;
1793                 if (tx_ntc == tx_ring->count)
1794                         tx_ntc = 0;
1795
1796                 /* fetch next descriptor */
1797                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1798         }
1799
1800         netdev_tx_reset_queue(txring_txq(tx_ring));
1801
1802         /* re-map buffers to ring, store next to clean values */
1803         igb_alloc_rx_buffers(rx_ring, count);
1804         rx_ring->next_to_clean = rx_ntc;
1805         tx_ring->next_to_clean = tx_ntc;
1806
1807         return count;
1808 }
1809
1810 static int igb_run_loopback_test(struct igb_adapter *adapter)
1811 {
1812         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1813         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1814         u16 i, j, lc, good_cnt;
1815         int ret_val = 0;
1816         unsigned int size = IGB_RX_HDR_LEN;
1817         netdev_tx_t tx_ret_val;
1818         struct sk_buff *skb;
1819
1820         /* allocate test skb */
1821         skb = alloc_skb(size, GFP_KERNEL);
1822         if (!skb)
1823                 return 11;
1824
1825         /* place data into test skb */
1826         igb_create_lbtest_frame(skb, size);
1827         skb_put(skb, size);
1828
1829         /* Calculate the loop count based on the largest descriptor ring
1830          * The idea is to wrap the largest ring a number of times using 64
1831          * send/receive pairs during each loop
1832          */
1833
1834         if (rx_ring->count <= tx_ring->count)
1835                 lc = ((tx_ring->count / 64) * 2) + 1;
1836         else
1837                 lc = ((rx_ring->count / 64) * 2) + 1;
1838
1839         for (j = 0; j <= lc; j++) { /* loop count loop */
1840                 /* reset count of good packets */
1841                 good_cnt = 0;
1842
1843                 /* place 64 packets on the transmit queue*/
1844                 for (i = 0; i < 64; i++) {
1845                         skb_get(skb);
1846                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1847                         if (tx_ret_val == NETDEV_TX_OK)
1848                                 good_cnt++;
1849                 }
1850
1851                 if (good_cnt != 64) {
1852                         ret_val = 12;
1853                         break;
1854                 }
1855
1856                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1857                 msleep(200);
1858
1859                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1860                 if (good_cnt != 64) {
1861                         ret_val = 13;
1862                         break;
1863                 }
1864         } /* end loop count loop */
1865
1866         /* free the original skb */
1867         kfree_skb(skb);
1868
1869         return ret_val;
1870 }
1871
1872 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1873 {
1874         /* PHY loopback cannot be performed if SoL/IDER
1875          * sessions are active
1876          */
1877         if (igb_check_reset_block(&adapter->hw)) {
1878                 dev_err(&adapter->pdev->dev,
1879                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1880                 *data = 0;
1881                 goto out;
1882         }
1883         *data = igb_setup_desc_rings(adapter);
1884         if (*data)
1885                 goto out;
1886         *data = igb_setup_loopback_test(adapter);
1887         if (*data)
1888                 goto err_loopback;
1889         *data = igb_run_loopback_test(adapter);
1890         igb_loopback_cleanup(adapter);
1891
1892 err_loopback:
1893         igb_free_desc_rings(adapter);
1894 out:
1895         return *data;
1896 }
1897
1898 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1899 {
1900         struct e1000_hw *hw = &adapter->hw;
1901         *data = 0;
1902         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1903                 int i = 0;
1904                 hw->mac.serdes_has_link = false;
1905
1906                 /* On some blade server designs, link establishment
1907                  * could take as long as 2-3 minutes
1908                  */
1909                 do {
1910                         hw->mac.ops.check_for_link(&adapter->hw);
1911                         if (hw->mac.serdes_has_link)
1912                                 return *data;
1913                         msleep(20);
1914                 } while (i++ < 3750);
1915
1916                 *data = 1;
1917         } else {
1918                 hw->mac.ops.check_for_link(&adapter->hw);
1919                 if (hw->mac.autoneg)
1920                         msleep(5000);
1921
1922                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1923                         *data = 1;
1924         }
1925         return *data;
1926 }
1927
1928 static void igb_diag_test(struct net_device *netdev,
1929                           struct ethtool_test *eth_test, u64 *data)
1930 {
1931         struct igb_adapter *adapter = netdev_priv(netdev);
1932         u16 autoneg_advertised;
1933         u8 forced_speed_duplex, autoneg;
1934         bool if_running = netif_running(netdev);
1935
1936         set_bit(__IGB_TESTING, &adapter->state);
1937         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1938                 /* Offline tests */
1939
1940                 /* save speed, duplex, autoneg settings */
1941                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1942                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1943                 autoneg = adapter->hw.mac.autoneg;
1944
1945                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1946
1947                 /* power up link for link test */
1948                 igb_power_up_link(adapter);
1949
1950                 /* Link test performed before hardware reset so autoneg doesn't
1951                  * interfere with test result
1952                  */
1953                 if (igb_link_test(adapter, &data[4]))
1954                         eth_test->flags |= ETH_TEST_FL_FAILED;
1955
1956                 if (if_running)
1957                         /* indicate we're in test mode */
1958                         dev_close(netdev);
1959                 else
1960                         igb_reset(adapter);
1961
1962                 if (igb_reg_test(adapter, &data[0]))
1963                         eth_test->flags |= ETH_TEST_FL_FAILED;
1964
1965                 igb_reset(adapter);
1966                 if (igb_eeprom_test(adapter, &data[1]))
1967                         eth_test->flags |= ETH_TEST_FL_FAILED;
1968
1969                 igb_reset(adapter);
1970                 if (igb_intr_test(adapter, &data[2]))
1971                         eth_test->flags |= ETH_TEST_FL_FAILED;
1972
1973                 igb_reset(adapter);
1974                 /* power up link for loopback test */
1975                 igb_power_up_link(adapter);
1976                 if (igb_loopback_test(adapter, &data[3]))
1977                         eth_test->flags |= ETH_TEST_FL_FAILED;
1978
1979                 /* restore speed, duplex, autoneg settings */
1980                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1981                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1982                 adapter->hw.mac.autoneg = autoneg;
1983
1984                 /* force this routine to wait until autoneg complete/timeout */
1985                 adapter->hw.phy.autoneg_wait_to_complete = true;
1986                 igb_reset(adapter);
1987                 adapter->hw.phy.autoneg_wait_to_complete = false;
1988
1989                 clear_bit(__IGB_TESTING, &adapter->state);
1990                 if (if_running)
1991                         dev_open(netdev);
1992         } else {
1993                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1994
1995                 /* PHY is powered down when interface is down */
1996                 if (if_running && igb_link_test(adapter, &data[4]))
1997                         eth_test->flags |= ETH_TEST_FL_FAILED;
1998                 else
1999                         data[4] = 0;
2000
2001                 /* Online tests aren't run; pass by default */
2002                 data[0] = 0;
2003                 data[1] = 0;
2004                 data[2] = 0;
2005                 data[3] = 0;
2006
2007                 clear_bit(__IGB_TESTING, &adapter->state);
2008         }
2009         msleep_interruptible(4 * 1000);
2010 }
2011
2012 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2013 {
2014         struct igb_adapter *adapter = netdev_priv(netdev);
2015
2016         wol->supported = WAKE_UCAST | WAKE_MCAST |
2017                          WAKE_BCAST | WAKE_MAGIC |
2018                          WAKE_PHY;
2019         wol->wolopts = 0;
2020
2021         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2022                 return;
2023
2024         /* apply any specific unsupported masks here */
2025         switch (adapter->hw.device_id) {
2026         default:
2027                 break;
2028         }
2029
2030         if (adapter->wol & E1000_WUFC_EX)
2031                 wol->wolopts |= WAKE_UCAST;
2032         if (adapter->wol & E1000_WUFC_MC)
2033                 wol->wolopts |= WAKE_MCAST;
2034         if (adapter->wol & E1000_WUFC_BC)
2035                 wol->wolopts |= WAKE_BCAST;
2036         if (adapter->wol & E1000_WUFC_MAG)
2037                 wol->wolopts |= WAKE_MAGIC;
2038         if (adapter->wol & E1000_WUFC_LNKC)
2039                 wol->wolopts |= WAKE_PHY;
2040 }
2041
2042 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2043 {
2044         struct igb_adapter *adapter = netdev_priv(netdev);
2045
2046         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2047                 return -EOPNOTSUPP;
2048
2049         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2050                 return wol->wolopts ? -EOPNOTSUPP : 0;
2051
2052         /* these settings will always override what we currently have */
2053         adapter->wol = 0;
2054
2055         if (wol->wolopts & WAKE_UCAST)
2056                 adapter->wol |= E1000_WUFC_EX;
2057         if (wol->wolopts & WAKE_MCAST)
2058                 adapter->wol |= E1000_WUFC_MC;
2059         if (wol->wolopts & WAKE_BCAST)
2060                 adapter->wol |= E1000_WUFC_BC;
2061         if (wol->wolopts & WAKE_MAGIC)
2062                 adapter->wol |= E1000_WUFC_MAG;
2063         if (wol->wolopts & WAKE_PHY)
2064                 adapter->wol |= E1000_WUFC_LNKC;
2065         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2066
2067         return 0;
2068 }
2069
2070 /* bit defines for adapter->led_status */
2071 #define IGB_LED_ON              0
2072
2073 static int igb_set_phys_id(struct net_device *netdev,
2074                            enum ethtool_phys_id_state state)
2075 {
2076         struct igb_adapter *adapter = netdev_priv(netdev);
2077         struct e1000_hw *hw = &adapter->hw;
2078
2079         switch (state) {
2080         case ETHTOOL_ID_ACTIVE:
2081                 igb_blink_led(hw);
2082                 return 2;
2083         case ETHTOOL_ID_ON:
2084                 igb_blink_led(hw);
2085                 break;
2086         case ETHTOOL_ID_OFF:
2087                 igb_led_off(hw);
2088                 break;
2089         case ETHTOOL_ID_INACTIVE:
2090                 igb_led_off(hw);
2091                 clear_bit(IGB_LED_ON, &adapter->led_status);
2092                 igb_cleanup_led(hw);
2093                 break;
2094         }
2095
2096         return 0;
2097 }
2098
2099 static int igb_set_coalesce(struct net_device *netdev,
2100                             struct ethtool_coalesce *ec)
2101 {
2102         struct igb_adapter *adapter = netdev_priv(netdev);
2103         int i;
2104
2105         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2106             ((ec->rx_coalesce_usecs > 3) &&
2107              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2108             (ec->rx_coalesce_usecs == 2))
2109                 return -EINVAL;
2110
2111         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2112             ((ec->tx_coalesce_usecs > 3) &&
2113              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2114             (ec->tx_coalesce_usecs == 2))
2115                 return -EINVAL;
2116
2117         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2118                 return -EINVAL;
2119
2120         /* If ITR is disabled, disable DMAC */
2121         if (ec->rx_coalesce_usecs == 0) {
2122                 if (adapter->flags & IGB_FLAG_DMAC)
2123                         adapter->flags &= ~IGB_FLAG_DMAC;
2124         }
2125
2126         /* convert to rate of irq's per second */
2127         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2128                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2129         else
2130                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2131
2132         /* convert to rate of irq's per second */
2133         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2134                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2135         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2136                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2137         else
2138                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2139
2140         for (i = 0; i < adapter->num_q_vectors; i++) {
2141                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2142                 q_vector->tx.work_limit = adapter->tx_work_limit;
2143                 if (q_vector->rx.ring)
2144                         q_vector->itr_val = adapter->rx_itr_setting;
2145                 else
2146                         q_vector->itr_val = adapter->tx_itr_setting;
2147                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2148                         q_vector->itr_val = IGB_START_ITR;
2149                 q_vector->set_itr = 1;
2150         }
2151
2152         return 0;
2153 }
2154
2155 static int igb_get_coalesce(struct net_device *netdev,
2156                             struct ethtool_coalesce *ec)
2157 {
2158         struct igb_adapter *adapter = netdev_priv(netdev);
2159
2160         if (adapter->rx_itr_setting <= 3)
2161                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2162         else
2163                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2164
2165         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2166                 if (adapter->tx_itr_setting <= 3)
2167                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2168                 else
2169                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2170         }
2171
2172         return 0;
2173 }
2174
2175 static int igb_nway_reset(struct net_device *netdev)
2176 {
2177         struct igb_adapter *adapter = netdev_priv(netdev);
2178         if (netif_running(netdev))
2179                 igb_reinit_locked(adapter);
2180         return 0;
2181 }
2182
2183 static int igb_get_sset_count(struct net_device *netdev, int sset)
2184 {
2185         switch (sset) {
2186         case ETH_SS_STATS:
2187                 return IGB_STATS_LEN;
2188         case ETH_SS_TEST:
2189                 return IGB_TEST_LEN;
2190         default:
2191                 return -ENOTSUPP;
2192         }
2193 }
2194
2195 static void igb_get_ethtool_stats(struct net_device *netdev,
2196                                   struct ethtool_stats *stats, u64 *data)
2197 {
2198         struct igb_adapter *adapter = netdev_priv(netdev);
2199         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2200         unsigned int start;
2201         struct igb_ring *ring;
2202         int i, j;
2203         char *p;
2204
2205         spin_lock(&adapter->stats64_lock);
2206         igb_update_stats(adapter, net_stats);
2207
2208         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2209                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2210                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2211                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2212         }
2213         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2214                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2215                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2216                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2217         }
2218         for (j = 0; j < adapter->num_tx_queues; j++) {
2219                 u64     restart2;
2220
2221                 ring = adapter->tx_ring[j];
2222                 do {
2223                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2224                         data[i]   = ring->tx_stats.packets;
2225                         data[i+1] = ring->tx_stats.bytes;
2226                         data[i+2] = ring->tx_stats.restart_queue;
2227                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2228                 do {
2229                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2230                         restart2  = ring->tx_stats.restart_queue2;
2231                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2232                 data[i+2] += restart2;
2233
2234                 i += IGB_TX_QUEUE_STATS_LEN;
2235         }
2236         for (j = 0; j < adapter->num_rx_queues; j++) {
2237                 ring = adapter->rx_ring[j];
2238                 do {
2239                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2240                         data[i]   = ring->rx_stats.packets;
2241                         data[i+1] = ring->rx_stats.bytes;
2242                         data[i+2] = ring->rx_stats.drops;
2243                         data[i+3] = ring->rx_stats.csum_err;
2244                         data[i+4] = ring->rx_stats.alloc_failed;
2245                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2246                 i += IGB_RX_QUEUE_STATS_LEN;
2247         }
2248         spin_unlock(&adapter->stats64_lock);
2249 }
2250
2251 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2252 {
2253         struct igb_adapter *adapter = netdev_priv(netdev);
2254         u8 *p = data;
2255         int i;
2256
2257         switch (stringset) {
2258         case ETH_SS_TEST:
2259                 memcpy(data, *igb_gstrings_test,
2260                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2261                 break;
2262         case ETH_SS_STATS:
2263                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264                         memcpy(p, igb_gstrings_stats[i].stat_string,
2265                                ETH_GSTRING_LEN);
2266                         p += ETH_GSTRING_LEN;
2267                 }
2268                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2269                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2270                                ETH_GSTRING_LEN);
2271                         p += ETH_GSTRING_LEN;
2272                 }
2273                 for (i = 0; i < adapter->num_tx_queues; i++) {
2274                         sprintf(p, "tx_queue_%u_packets", i);
2275                         p += ETH_GSTRING_LEN;
2276                         sprintf(p, "tx_queue_%u_bytes", i);
2277                         p += ETH_GSTRING_LEN;
2278                         sprintf(p, "tx_queue_%u_restart", i);
2279                         p += ETH_GSTRING_LEN;
2280                 }
2281                 for (i = 0; i < adapter->num_rx_queues; i++) {
2282                         sprintf(p, "rx_queue_%u_packets", i);
2283                         p += ETH_GSTRING_LEN;
2284                         sprintf(p, "rx_queue_%u_bytes", i);
2285                         p += ETH_GSTRING_LEN;
2286                         sprintf(p, "rx_queue_%u_drops", i);
2287                         p += ETH_GSTRING_LEN;
2288                         sprintf(p, "rx_queue_%u_csum_err", i);
2289                         p += ETH_GSTRING_LEN;
2290                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2291                         p += ETH_GSTRING_LEN;
2292                 }
2293                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2294                 break;
2295         }
2296 }
2297
2298 static int igb_get_ts_info(struct net_device *dev,
2299                            struct ethtool_ts_info *info)
2300 {
2301         struct igb_adapter *adapter = netdev_priv(dev);
2302
2303         switch (adapter->hw.mac.type) {
2304         case e1000_82575:
2305                 info->so_timestamping =
2306                         SOF_TIMESTAMPING_TX_SOFTWARE |
2307                         SOF_TIMESTAMPING_RX_SOFTWARE |
2308                         SOF_TIMESTAMPING_SOFTWARE;
2309                 return 0;
2310         case e1000_82576:
2311         case e1000_82580:
2312         case e1000_i350:
2313         case e1000_i210:
2314         case e1000_i211:
2315                 info->so_timestamping =
2316                         SOF_TIMESTAMPING_TX_SOFTWARE |
2317                         SOF_TIMESTAMPING_RX_SOFTWARE |
2318                         SOF_TIMESTAMPING_SOFTWARE |
2319                         SOF_TIMESTAMPING_TX_HARDWARE |
2320                         SOF_TIMESTAMPING_RX_HARDWARE |
2321                         SOF_TIMESTAMPING_RAW_HARDWARE;
2322
2323                 if (adapter->ptp_clock)
2324                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2325                 else
2326                         info->phc_index = -1;
2327
2328                 info->tx_types =
2329                         (1 << HWTSTAMP_TX_OFF) |
2330                         (1 << HWTSTAMP_TX_ON);
2331
2332                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2333
2334                 /* 82576 does not support timestamping all packets. */
2335                 if (adapter->hw.mac.type >= e1000_82580)
2336                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2337                 else
2338                         info->rx_filters |=
2339                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2340                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2341                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2342                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2343                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2344                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2345                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2346
2347                 return 0;
2348         default:
2349                 return -EOPNOTSUPP;
2350         }
2351 }
2352
2353 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2354                                  struct ethtool_rxnfc *cmd)
2355 {
2356         cmd->data = 0;
2357
2358         /* Report default options for RSS on igb */
2359         switch (cmd->flow_type) {
2360         case TCP_V4_FLOW:
2361                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2362         case UDP_V4_FLOW:
2363                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2364                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2365         case SCTP_V4_FLOW:
2366         case AH_ESP_V4_FLOW:
2367         case AH_V4_FLOW:
2368         case ESP_V4_FLOW:
2369         case IPV4_FLOW:
2370                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2371                 break;
2372         case TCP_V6_FLOW:
2373                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2374         case UDP_V6_FLOW:
2375                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2376                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2377         case SCTP_V6_FLOW:
2378         case AH_ESP_V6_FLOW:
2379         case AH_V6_FLOW:
2380         case ESP_V6_FLOW:
2381         case IPV6_FLOW:
2382                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2383                 break;
2384         default:
2385                 return -EINVAL;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2392                          u32 *rule_locs)
2393 {
2394         struct igb_adapter *adapter = netdev_priv(dev);
2395         int ret = -EOPNOTSUPP;
2396
2397         switch (cmd->cmd) {
2398         case ETHTOOL_GRXRINGS:
2399                 cmd->data = adapter->num_rx_queues;
2400                 ret = 0;
2401                 break;
2402         case ETHTOOL_GRXFH:
2403                 ret = igb_get_rss_hash_opts(adapter, cmd);
2404                 break;
2405         default:
2406                 break;
2407         }
2408
2409         return ret;
2410 }
2411
2412 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2413                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2414 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2415                                 struct ethtool_rxnfc *nfc)
2416 {
2417         u32 flags = adapter->flags;
2418
2419         /* RSS does not support anything other than hashing
2420          * to queues on src and dst IPs and ports
2421          */
2422         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2423                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2424                 return -EINVAL;
2425
2426         switch (nfc->flow_type) {
2427         case TCP_V4_FLOW:
2428         case TCP_V6_FLOW:
2429                 if (!(nfc->data & RXH_IP_SRC) ||
2430                     !(nfc->data & RXH_IP_DST) ||
2431                     !(nfc->data & RXH_L4_B_0_1) ||
2432                     !(nfc->data & RXH_L4_B_2_3))
2433                         return -EINVAL;
2434                 break;
2435         case UDP_V4_FLOW:
2436                 if (!(nfc->data & RXH_IP_SRC) ||
2437                     !(nfc->data & RXH_IP_DST))
2438                         return -EINVAL;
2439                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2440                 case 0:
2441                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2442                         break;
2443                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2444                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2445                         break;
2446                 default:
2447                         return -EINVAL;
2448                 }
2449                 break;
2450         case UDP_V6_FLOW:
2451                 if (!(nfc->data & RXH_IP_SRC) ||
2452                     !(nfc->data & RXH_IP_DST))
2453                         return -EINVAL;
2454                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2455                 case 0:
2456                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2457                         break;
2458                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2459                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2460                         break;
2461                 default:
2462                         return -EINVAL;
2463                 }
2464                 break;
2465         case AH_ESP_V4_FLOW:
2466         case AH_V4_FLOW:
2467         case ESP_V4_FLOW:
2468         case SCTP_V4_FLOW:
2469         case AH_ESP_V6_FLOW:
2470         case AH_V6_FLOW:
2471         case ESP_V6_FLOW:
2472         case SCTP_V6_FLOW:
2473                 if (!(nfc->data & RXH_IP_SRC) ||
2474                     !(nfc->data & RXH_IP_DST) ||
2475                     (nfc->data & RXH_L4_B_0_1) ||
2476                     (nfc->data & RXH_L4_B_2_3))
2477                         return -EINVAL;
2478                 break;
2479         default:
2480                 return -EINVAL;
2481         }
2482
2483         /* if we changed something we need to update flags */
2484         if (flags != adapter->flags) {
2485                 struct e1000_hw *hw = &adapter->hw;
2486                 u32 mrqc = rd32(E1000_MRQC);
2487
2488                 if ((flags & UDP_RSS_FLAGS) &&
2489                     !(adapter->flags & UDP_RSS_FLAGS))
2490                         dev_err(&adapter->pdev->dev,
2491                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2492
2493                 adapter->flags = flags;
2494
2495                 /* Perform hash on these packet types */
2496                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2497                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2498                         E1000_MRQC_RSS_FIELD_IPV6 |
2499                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2500
2501                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2502                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2503
2504                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2505                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2506
2507                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2508                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2509
2510                 wr32(E1000_MRQC, mrqc);
2511         }
2512
2513         return 0;
2514 }
2515
2516 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2517 {
2518         struct igb_adapter *adapter = netdev_priv(dev);
2519         int ret = -EOPNOTSUPP;
2520
2521         switch (cmd->cmd) {
2522         case ETHTOOL_SRXFH:
2523                 ret = igb_set_rss_hash_opt(adapter, cmd);
2524                 break;
2525         default:
2526                 break;
2527         }
2528
2529         return ret;
2530 }
2531
2532 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2533 {
2534         struct igb_adapter *adapter = netdev_priv(netdev);
2535         struct e1000_hw *hw = &adapter->hw;
2536         u32 ipcnfg, eeer;
2537
2538         if ((hw->mac.type < e1000_i350) ||
2539             (hw->phy.media_type != e1000_media_type_copper))
2540                 return -EOPNOTSUPP;
2541
2542         edata->supported = (SUPPORTED_1000baseT_Full |
2543                             SUPPORTED_100baseT_Full);
2544
2545         ipcnfg = rd32(E1000_IPCNFG);
2546         eeer = rd32(E1000_EEER);
2547
2548         /* EEE status on negotiated link */
2549         if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2550                 edata->advertised = ADVERTISED_1000baseT_Full;
2551
2552         if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2553                 edata->advertised |= ADVERTISED_100baseT_Full;
2554
2555         if (eeer & E1000_EEER_EEE_NEG)
2556                 edata->eee_active = true;
2557
2558         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2559
2560         if (eeer & E1000_EEER_TX_LPI_EN)
2561                 edata->tx_lpi_enabled = true;
2562
2563         /* Report correct negotiated EEE status for devices that
2564          * wrongly report EEE at half-duplex
2565          */
2566         if (adapter->link_duplex == HALF_DUPLEX) {
2567                 edata->eee_enabled = false;
2568                 edata->eee_active = false;
2569                 edata->tx_lpi_enabled = false;
2570                 edata->advertised &= ~edata->advertised;
2571         }
2572
2573         return 0;
2574 }
2575
2576 static int igb_set_eee(struct net_device *netdev,
2577                        struct ethtool_eee *edata)
2578 {
2579         struct igb_adapter *adapter = netdev_priv(netdev);
2580         struct e1000_hw *hw = &adapter->hw;
2581         struct ethtool_eee eee_curr;
2582         s32 ret_val;
2583
2584         if ((hw->mac.type < e1000_i350) ||
2585             (hw->phy.media_type != e1000_media_type_copper))
2586                 return -EOPNOTSUPP;
2587
2588         ret_val = igb_get_eee(netdev, &eee_curr);
2589         if (ret_val)
2590                 return ret_val;
2591
2592         if (eee_curr.eee_enabled) {
2593                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2594                         dev_err(&adapter->pdev->dev,
2595                                 "Setting EEE tx-lpi is not supported\n");
2596                         return -EINVAL;
2597                 }
2598
2599                 /* Tx LPI timer is not implemented currently */
2600                 if (edata->tx_lpi_timer) {
2601                         dev_err(&adapter->pdev->dev,
2602                                 "Setting EEE Tx LPI timer is not supported\n");
2603                         return -EINVAL;
2604                 }
2605
2606                 if (eee_curr.advertised != edata->advertised) {
2607                         dev_err(&adapter->pdev->dev,
2608                                 "Setting EEE Advertisement is not supported\n");
2609                         return -EINVAL;
2610                 }
2611
2612         } else if (!edata->eee_enabled) {
2613                 dev_err(&adapter->pdev->dev,
2614                         "Setting EEE options are not supported with EEE disabled\n");
2615                         return -EINVAL;
2616                 }
2617
2618         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2619                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2620                 igb_set_eee_i350(hw);
2621
2622                 /* reset link */
2623                 if (!netif_running(netdev))
2624                         igb_reset(adapter);
2625         }
2626
2627         return 0;
2628 }
2629
2630 static int igb_get_module_info(struct net_device *netdev,
2631                                struct ethtool_modinfo *modinfo)
2632 {
2633         struct igb_adapter *adapter = netdev_priv(netdev);
2634         struct e1000_hw *hw = &adapter->hw;
2635         u32 status = E1000_SUCCESS;
2636         u16 sff8472_rev, addr_mode;
2637         bool page_swap = false;
2638
2639         if ((hw->phy.media_type == e1000_media_type_copper) ||
2640             (hw->phy.media_type == e1000_media_type_unknown))
2641                 return -EOPNOTSUPP;
2642
2643         /* Check whether we support SFF-8472 or not */
2644         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2645         if (status != E1000_SUCCESS)
2646                 return -EIO;
2647
2648         /* addressing mode is not supported */
2649         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2650         if (status != E1000_SUCCESS)
2651                 return -EIO;
2652
2653         /* addressing mode is not supported */
2654         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2655                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2656                 page_swap = true;
2657         }
2658
2659         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2660                 /* We have an SFP, but it does not support SFF-8472 */
2661                 modinfo->type = ETH_MODULE_SFF_8079;
2662                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2663         } else {
2664                 /* We have an SFP which supports a revision of SFF-8472 */
2665                 modinfo->type = ETH_MODULE_SFF_8472;
2666                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2667         }
2668
2669         return 0;
2670 }
2671
2672 static int igb_get_module_eeprom(struct net_device *netdev,
2673                                  struct ethtool_eeprom *ee, u8 *data)
2674 {
2675         struct igb_adapter *adapter = netdev_priv(netdev);
2676         struct e1000_hw *hw = &adapter->hw;
2677         u32 status = E1000_SUCCESS;
2678         u16 *dataword;
2679         u16 first_word, last_word;
2680         int i = 0;
2681
2682         if (ee->len == 0)
2683                 return -EINVAL;
2684
2685         first_word = ee->offset >> 1;
2686         last_word = (ee->offset + ee->len - 1) >> 1;
2687
2688         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2689                            GFP_KERNEL);
2690         if (!dataword)
2691                 return -ENOMEM;
2692
2693         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2694         for (i = 0; i < last_word - first_word + 1; i++) {
2695                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2696                 if (status != E1000_SUCCESS)
2697                         /* Error occurred while reading module */
2698                         return -EIO;
2699
2700                 be16_to_cpus(&dataword[i]);
2701         }
2702
2703         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2704         kfree(dataword);
2705
2706         return 0;
2707 }
2708
2709 static int igb_ethtool_begin(struct net_device *netdev)
2710 {
2711         struct igb_adapter *adapter = netdev_priv(netdev);
2712         pm_runtime_get_sync(&adapter->pdev->dev);
2713         return 0;
2714 }
2715
2716 static void igb_ethtool_complete(struct net_device *netdev)
2717 {
2718         struct igb_adapter *adapter = netdev_priv(netdev);
2719         pm_runtime_put(&adapter->pdev->dev);
2720 }
2721
2722 static const struct ethtool_ops igb_ethtool_ops = {
2723         .get_settings           = igb_get_settings,
2724         .set_settings           = igb_set_settings,
2725         .get_drvinfo            = igb_get_drvinfo,
2726         .get_regs_len           = igb_get_regs_len,
2727         .get_regs               = igb_get_regs,
2728         .get_wol                = igb_get_wol,
2729         .set_wol                = igb_set_wol,
2730         .get_msglevel           = igb_get_msglevel,
2731         .set_msglevel           = igb_set_msglevel,
2732         .nway_reset             = igb_nway_reset,
2733         .get_link               = igb_get_link,
2734         .get_eeprom_len         = igb_get_eeprom_len,
2735         .get_eeprom             = igb_get_eeprom,
2736         .set_eeprom             = igb_set_eeprom,
2737         .get_ringparam          = igb_get_ringparam,
2738         .set_ringparam          = igb_set_ringparam,
2739         .get_pauseparam         = igb_get_pauseparam,
2740         .set_pauseparam         = igb_set_pauseparam,
2741         .self_test              = igb_diag_test,
2742         .get_strings            = igb_get_strings,
2743         .set_phys_id            = igb_set_phys_id,
2744         .get_sset_count         = igb_get_sset_count,
2745         .get_ethtool_stats      = igb_get_ethtool_stats,
2746         .get_coalesce           = igb_get_coalesce,
2747         .set_coalesce           = igb_set_coalesce,
2748         .get_ts_info            = igb_get_ts_info,
2749         .get_rxnfc              = igb_get_rxnfc,
2750         .set_rxnfc              = igb_set_rxnfc,
2751         .get_eee                = igb_get_eee,
2752         .set_eee                = igb_set_eee,
2753         .get_module_info        = igb_get_module_info,
2754         .get_module_eeprom      = igb_get_module_eeprom,
2755         .begin                  = igb_ethtool_begin,
2756         .complete               = igb_ethtool_complete,
2757 };
2758
2759 void igb_set_ethtool_ops(struct net_device *netdev)
2760 {
2761         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2762 }