igb: Support to read and export SFF-8472/8079 data
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41
42 #include "igb.h"
43
44 struct igb_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define IGB_STAT(_name, _stat) { \
51         .stat_string = _name, \
52         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53         .stat_offset = offsetof(struct igb_adapter, _stat) \
54 }
55 static const struct igb_stats igb_gstrings_stats[] = {
56         IGB_STAT("rx_packets", stats.gprc),
57         IGB_STAT("tx_packets", stats.gptc),
58         IGB_STAT("rx_bytes", stats.gorc),
59         IGB_STAT("tx_bytes", stats.gotc),
60         IGB_STAT("rx_broadcast", stats.bprc),
61         IGB_STAT("tx_broadcast", stats.bptc),
62         IGB_STAT("rx_multicast", stats.mprc),
63         IGB_STAT("tx_multicast", stats.mptc),
64         IGB_STAT("multicast", stats.mprc),
65         IGB_STAT("collisions", stats.colc),
66         IGB_STAT("rx_crc_errors", stats.crcerrs),
67         IGB_STAT("rx_no_buffer_count", stats.rnbc),
68         IGB_STAT("rx_missed_errors", stats.mpc),
69         IGB_STAT("tx_aborted_errors", stats.ecol),
70         IGB_STAT("tx_carrier_errors", stats.tncrs),
71         IGB_STAT("tx_window_errors", stats.latecol),
72         IGB_STAT("tx_abort_late_coll", stats.latecol),
73         IGB_STAT("tx_deferred_ok", stats.dc),
74         IGB_STAT("tx_single_coll_ok", stats.scc),
75         IGB_STAT("tx_multi_coll_ok", stats.mcc),
76         IGB_STAT("tx_timeout_count", tx_timeout_count),
77         IGB_STAT("rx_long_length_errors", stats.roc),
78         IGB_STAT("rx_short_length_errors", stats.ruc),
79         IGB_STAT("rx_align_errors", stats.algnerrc),
80         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84         IGB_STAT("tx_flow_control_xon", stats.xontxc),
85         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86         IGB_STAT("rx_long_byte_count", stats.gorc),
87         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88         IGB_STAT("tx_smbus", stats.mgptc),
89         IGB_STAT("rx_smbus", stats.mgprc),
90         IGB_STAT("dropped_smbus", stats.mgpdc),
91         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97 };
98
99 #define IGB_NETDEV_STAT(_net_stat) { \
100         .stat_string = __stringify(_net_stat), \
101         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103 }
104 static const struct igb_stats igb_gstrings_net_stats[] = {
105         IGB_NETDEV_STAT(rx_errors),
106         IGB_NETDEV_STAT(tx_errors),
107         IGB_NETDEV_STAT(tx_dropped),
108         IGB_NETDEV_STAT(rx_length_errors),
109         IGB_NETDEV_STAT(rx_over_errors),
110         IGB_NETDEV_STAT(rx_frame_errors),
111         IGB_NETDEV_STAT(rx_fifo_errors),
112         IGB_NETDEV_STAT(tx_fifo_errors),
113         IGB_NETDEV_STAT(tx_heartbeat_errors)
114 };
115
116 #define IGB_GLOBAL_STATS_LEN    \
117         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118 #define IGB_NETDEV_STATS_LEN    \
119         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120 #define IGB_RX_QUEUE_STATS_LEN \
121         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125 #define IGB_QUEUE_STATS_LEN \
126         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127           IGB_RX_QUEUE_STATS_LEN) + \
128          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129           IGB_TX_QUEUE_STATS_LEN))
130 #define IGB_STATS_LEN \
131         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134         "Register test  (offline)", "Eeprom test    (offline)",
135         "Interrupt test (offline)", "Loopback test  (offline)",
136         "Link test   (on/offline)"
137 };
138 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141 {
142         struct igb_adapter *adapter = netdev_priv(netdev);
143         struct e1000_hw *hw = &adapter->hw;
144         u32 status;
145
146         if (hw->phy.media_type == e1000_media_type_copper) {
147
148                 ecmd->supported = (SUPPORTED_10baseT_Half |
149                                    SUPPORTED_10baseT_Full |
150                                    SUPPORTED_100baseT_Half |
151                                    SUPPORTED_100baseT_Full |
152                                    SUPPORTED_1000baseT_Full|
153                                    SUPPORTED_Autoneg |
154                                    SUPPORTED_TP |
155                                    SUPPORTED_Pause);
156                 ecmd->advertising = ADVERTISED_TP;
157
158                 if (hw->mac.autoneg == 1) {
159                         ecmd->advertising |= ADVERTISED_Autoneg;
160                         /* the e1000 autoneg seems to match ethtool nicely */
161                         ecmd->advertising |= hw->phy.autoneg_advertised;
162                 }
163
164                 if (hw->mac.autoneg != 1)
165                         ecmd->advertising &= ~(ADVERTISED_Pause |
166                                                ADVERTISED_Asym_Pause);
167
168                 if (hw->fc.requested_mode == e1000_fc_full)
169                         ecmd->advertising |= ADVERTISED_Pause;
170                 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
171                         ecmd->advertising |= (ADVERTISED_Pause |
172                                               ADVERTISED_Asym_Pause);
173                 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
174                         ecmd->advertising |=  ADVERTISED_Asym_Pause;
175                 else
176                         ecmd->advertising &= ~(ADVERTISED_Pause |
177                                                ADVERTISED_Asym_Pause);
178
179                 ecmd->port = PORT_TP;
180                 ecmd->phy_address = hw->phy.addr;
181                 ecmd->transceiver = XCVR_INTERNAL;
182         } else {
183                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
184                                      SUPPORTED_100baseT_Full |
185                                      SUPPORTED_Autoneg |
186                                      SUPPORTED_FIBRE |
187                                      SUPPORTED_Pause);
188
189                 ecmd->advertising = ADVERTISED_FIBRE;
190
191                 if (adapter->link_speed == SPEED_100)
192                         ecmd->advertising = ADVERTISED_100baseT_Full;
193                 else if (adapter->link_speed == SPEED_1000)
194                         ecmd->advertising = ADVERTISED_1000baseT_Full;
195
196                 if (hw->mac.autoneg == 1)
197                         ecmd->advertising |= ADVERTISED_Autoneg;
198
199                 ecmd->port = PORT_FIBRE;
200                 ecmd->transceiver = XCVR_EXTERNAL;
201         }
202
203         status = rd32(E1000_STATUS);
204
205         if (status & E1000_STATUS_LU) {
206
207                 if (status & E1000_STATUS_SPEED_1000)
208                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
209                 else if (status & E1000_STATUS_SPEED_100)
210                         ethtool_cmd_speed_set(ecmd, SPEED_100);
211                 else
212                         ethtool_cmd_speed_set(ecmd, SPEED_10);
213
214                 if ((status & E1000_STATUS_FD) ||
215                     hw->phy.media_type != e1000_media_type_copper)
216                         ecmd->duplex = DUPLEX_FULL;
217                 else
218                         ecmd->duplex = DUPLEX_HALF;
219         } else {
220                 ethtool_cmd_speed_set(ecmd, -1);
221                 ecmd->duplex = -1;
222         }
223
224         if ((hw->phy.media_type == e1000_media_type_fiber) ||
225             hw->mac.autoneg)
226                 ecmd->autoneg = AUTONEG_ENABLE;
227         else
228                 ecmd->autoneg = AUTONEG_DISABLE;
229
230         /* MDI-X => 2; MDI =>1; Invalid =>0 */
231         if (hw->phy.media_type == e1000_media_type_copper)
232                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
233                                                       ETH_TP_MDI;
234         else
235                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
236
237         if (hw->phy.mdix == AUTO_ALL_MODES)
238                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
239         else
240                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
241
242         return 0;
243 }
244
245 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
246 {
247         struct igb_adapter *adapter = netdev_priv(netdev);
248         struct e1000_hw *hw = &adapter->hw;
249
250         /* When SoL/IDER sessions are active, autoneg/speed/duplex
251          * cannot be changed */
252         if (igb_check_reset_block(hw)) {
253                 dev_err(&adapter->pdev->dev,
254                         "Cannot change link characteristics when SoL/IDER is active.\n");
255                 return -EINVAL;
256         }
257
258         /*
259          * MDI setting is only allowed when autoneg enabled because
260          * some hardware doesn't allow MDI setting when speed or
261          * duplex is forced.
262          */
263         if (ecmd->eth_tp_mdix_ctrl) {
264                 if (hw->phy.media_type != e1000_media_type_copper)
265                         return -EOPNOTSUPP;
266
267                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
268                     (ecmd->autoneg != AUTONEG_ENABLE)) {
269                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
270                         return -EINVAL;
271                 }
272         }
273
274         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
275                 msleep(1);
276
277         if (ecmd->autoneg == AUTONEG_ENABLE) {
278                 hw->mac.autoneg = 1;
279                 if (hw->phy.media_type == e1000_media_type_fiber) {
280                         hw->phy.autoneg_advertised = ecmd->advertising |
281                                                      ADVERTISED_FIBRE |
282                                                      ADVERTISED_Autoneg;
283                         if (adapter->link_speed == SPEED_1000)
284                                 hw->phy.autoneg_advertised =
285                                         ADVERTISED_1000baseT_Full;
286                         else if (adapter->link_speed == SPEED_100)
287                                 hw->phy.autoneg_advertised =
288                                         ADVERTISED_100baseT_Full;
289                 } else {
290                         hw->phy.autoneg_advertised = ecmd->advertising |
291                                                      ADVERTISED_TP |
292                                                      ADVERTISED_Autoneg;
293                 }
294                 ecmd->advertising = hw->phy.autoneg_advertised;
295                 if (adapter->fc_autoneg)
296                         hw->fc.requested_mode = e1000_fc_default;
297         } else {
298                 u32 speed = ethtool_cmd_speed(ecmd);
299                 /* calling this overrides forced MDI setting */
300                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
301                         clear_bit(__IGB_RESETTING, &adapter->state);
302                         return -EINVAL;
303                 }
304         }
305
306         /* MDI-X => 2; MDI => 1; Auto => 3 */
307         if (ecmd->eth_tp_mdix_ctrl) {
308                 /*
309                  * fix up the value for auto (3 => 0) as zero is mapped
310                  * internally to auto
311                  */
312                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
313                         hw->phy.mdix = AUTO_ALL_MODES;
314                 else
315                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
316         }
317
318         /* reset the link */
319         if (netif_running(adapter->netdev)) {
320                 igb_down(adapter);
321                 igb_up(adapter);
322         } else
323                 igb_reset(adapter);
324
325         clear_bit(__IGB_RESETTING, &adapter->state);
326         return 0;
327 }
328
329 static u32 igb_get_link(struct net_device *netdev)
330 {
331         struct igb_adapter *adapter = netdev_priv(netdev);
332         struct e1000_mac_info *mac = &adapter->hw.mac;
333
334         /*
335          * If the link is not reported up to netdev, interrupts are disabled,
336          * and so the physical link state may have changed since we last
337          * looked. Set get_link_status to make sure that the true link
338          * state is interrogated, rather than pulling a cached and possibly
339          * stale link state from the driver.
340          */
341         if (!netif_carrier_ok(netdev))
342                 mac->get_link_status = 1;
343
344         return igb_has_link(adapter);
345 }
346
347 static void igb_get_pauseparam(struct net_device *netdev,
348                                struct ethtool_pauseparam *pause)
349 {
350         struct igb_adapter *adapter = netdev_priv(netdev);
351         struct e1000_hw *hw = &adapter->hw;
352
353         pause->autoneg =
354                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355
356         if (hw->fc.current_mode == e1000_fc_rx_pause)
357                 pause->rx_pause = 1;
358         else if (hw->fc.current_mode == e1000_fc_tx_pause)
359                 pause->tx_pause = 1;
360         else if (hw->fc.current_mode == e1000_fc_full) {
361                 pause->rx_pause = 1;
362                 pause->tx_pause = 1;
363         }
364 }
365
366 static int igb_set_pauseparam(struct net_device *netdev,
367                               struct ethtool_pauseparam *pause)
368 {
369         struct igb_adapter *adapter = netdev_priv(netdev);
370         struct e1000_hw *hw = &adapter->hw;
371         int retval = 0;
372
373         adapter->fc_autoneg = pause->autoneg;
374
375         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
376                 msleep(1);
377
378         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
379                 hw->fc.requested_mode = e1000_fc_default;
380                 if (netif_running(adapter->netdev)) {
381                         igb_down(adapter);
382                         igb_up(adapter);
383                 } else {
384                         igb_reset(adapter);
385                 }
386         } else {
387                 if (pause->rx_pause && pause->tx_pause)
388                         hw->fc.requested_mode = e1000_fc_full;
389                 else if (pause->rx_pause && !pause->tx_pause)
390                         hw->fc.requested_mode = e1000_fc_rx_pause;
391                 else if (!pause->rx_pause && pause->tx_pause)
392                         hw->fc.requested_mode = e1000_fc_tx_pause;
393                 else if (!pause->rx_pause && !pause->tx_pause)
394                         hw->fc.requested_mode = e1000_fc_none;
395
396                 hw->fc.current_mode = hw->fc.requested_mode;
397
398                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
399                           igb_force_mac_fc(hw) : igb_setup_link(hw));
400         }
401
402         clear_bit(__IGB_RESETTING, &adapter->state);
403         return retval;
404 }
405
406 static u32 igb_get_msglevel(struct net_device *netdev)
407 {
408         struct igb_adapter *adapter = netdev_priv(netdev);
409         return adapter->msg_enable;
410 }
411
412 static void igb_set_msglevel(struct net_device *netdev, u32 data)
413 {
414         struct igb_adapter *adapter = netdev_priv(netdev);
415         adapter->msg_enable = data;
416 }
417
418 static int igb_get_regs_len(struct net_device *netdev)
419 {
420 #define IGB_REGS_LEN 739
421         return IGB_REGS_LEN * sizeof(u32);
422 }
423
424 static void igb_get_regs(struct net_device *netdev,
425                          struct ethtool_regs *regs, void *p)
426 {
427         struct igb_adapter *adapter = netdev_priv(netdev);
428         struct e1000_hw *hw = &adapter->hw;
429         u32 *regs_buff = p;
430         u8 i;
431
432         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
433
434         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
435
436         /* General Registers */
437         regs_buff[0] = rd32(E1000_CTRL);
438         regs_buff[1] = rd32(E1000_STATUS);
439         regs_buff[2] = rd32(E1000_CTRL_EXT);
440         regs_buff[3] = rd32(E1000_MDIC);
441         regs_buff[4] = rd32(E1000_SCTL);
442         regs_buff[5] = rd32(E1000_CONNSW);
443         regs_buff[6] = rd32(E1000_VET);
444         regs_buff[7] = rd32(E1000_LEDCTL);
445         regs_buff[8] = rd32(E1000_PBA);
446         regs_buff[9] = rd32(E1000_PBS);
447         regs_buff[10] = rd32(E1000_FRTIMER);
448         regs_buff[11] = rd32(E1000_TCPTIMER);
449
450         /* NVM Register */
451         regs_buff[12] = rd32(E1000_EECD);
452
453         /* Interrupt */
454         /* Reading EICS for EICR because they read the
455          * same but EICS does not clear on read */
456         regs_buff[13] = rd32(E1000_EICS);
457         regs_buff[14] = rd32(E1000_EICS);
458         regs_buff[15] = rd32(E1000_EIMS);
459         regs_buff[16] = rd32(E1000_EIMC);
460         regs_buff[17] = rd32(E1000_EIAC);
461         regs_buff[18] = rd32(E1000_EIAM);
462         /* Reading ICS for ICR because they read the
463          * same but ICS does not clear on read */
464         regs_buff[19] = rd32(E1000_ICS);
465         regs_buff[20] = rd32(E1000_ICS);
466         regs_buff[21] = rd32(E1000_IMS);
467         regs_buff[22] = rd32(E1000_IMC);
468         regs_buff[23] = rd32(E1000_IAC);
469         regs_buff[24] = rd32(E1000_IAM);
470         regs_buff[25] = rd32(E1000_IMIRVP);
471
472         /* Flow Control */
473         regs_buff[26] = rd32(E1000_FCAL);
474         regs_buff[27] = rd32(E1000_FCAH);
475         regs_buff[28] = rd32(E1000_FCTTV);
476         regs_buff[29] = rd32(E1000_FCRTL);
477         regs_buff[30] = rd32(E1000_FCRTH);
478         regs_buff[31] = rd32(E1000_FCRTV);
479
480         /* Receive */
481         regs_buff[32] = rd32(E1000_RCTL);
482         regs_buff[33] = rd32(E1000_RXCSUM);
483         regs_buff[34] = rd32(E1000_RLPML);
484         regs_buff[35] = rd32(E1000_RFCTL);
485         regs_buff[36] = rd32(E1000_MRQC);
486         regs_buff[37] = rd32(E1000_VT_CTL);
487
488         /* Transmit */
489         regs_buff[38] = rd32(E1000_TCTL);
490         regs_buff[39] = rd32(E1000_TCTL_EXT);
491         regs_buff[40] = rd32(E1000_TIPG);
492         regs_buff[41] = rd32(E1000_DTXCTL);
493
494         /* Wake Up */
495         regs_buff[42] = rd32(E1000_WUC);
496         regs_buff[43] = rd32(E1000_WUFC);
497         regs_buff[44] = rd32(E1000_WUS);
498         regs_buff[45] = rd32(E1000_IPAV);
499         regs_buff[46] = rd32(E1000_WUPL);
500
501         /* MAC */
502         regs_buff[47] = rd32(E1000_PCS_CFG0);
503         regs_buff[48] = rd32(E1000_PCS_LCTL);
504         regs_buff[49] = rd32(E1000_PCS_LSTAT);
505         regs_buff[50] = rd32(E1000_PCS_ANADV);
506         regs_buff[51] = rd32(E1000_PCS_LPAB);
507         regs_buff[52] = rd32(E1000_PCS_NPTX);
508         regs_buff[53] = rd32(E1000_PCS_LPABNP);
509
510         /* Statistics */
511         regs_buff[54] = adapter->stats.crcerrs;
512         regs_buff[55] = adapter->stats.algnerrc;
513         regs_buff[56] = adapter->stats.symerrs;
514         regs_buff[57] = adapter->stats.rxerrc;
515         regs_buff[58] = adapter->stats.mpc;
516         regs_buff[59] = adapter->stats.scc;
517         regs_buff[60] = adapter->stats.ecol;
518         regs_buff[61] = adapter->stats.mcc;
519         regs_buff[62] = adapter->stats.latecol;
520         regs_buff[63] = adapter->stats.colc;
521         regs_buff[64] = adapter->stats.dc;
522         regs_buff[65] = adapter->stats.tncrs;
523         regs_buff[66] = adapter->stats.sec;
524         regs_buff[67] = adapter->stats.htdpmc;
525         regs_buff[68] = adapter->stats.rlec;
526         regs_buff[69] = adapter->stats.xonrxc;
527         regs_buff[70] = adapter->stats.xontxc;
528         regs_buff[71] = adapter->stats.xoffrxc;
529         regs_buff[72] = adapter->stats.xofftxc;
530         regs_buff[73] = adapter->stats.fcruc;
531         regs_buff[74] = adapter->stats.prc64;
532         regs_buff[75] = adapter->stats.prc127;
533         regs_buff[76] = adapter->stats.prc255;
534         regs_buff[77] = adapter->stats.prc511;
535         regs_buff[78] = adapter->stats.prc1023;
536         regs_buff[79] = adapter->stats.prc1522;
537         regs_buff[80] = adapter->stats.gprc;
538         regs_buff[81] = adapter->stats.bprc;
539         regs_buff[82] = adapter->stats.mprc;
540         regs_buff[83] = adapter->stats.gptc;
541         regs_buff[84] = adapter->stats.gorc;
542         regs_buff[86] = adapter->stats.gotc;
543         regs_buff[88] = adapter->stats.rnbc;
544         regs_buff[89] = adapter->stats.ruc;
545         regs_buff[90] = adapter->stats.rfc;
546         regs_buff[91] = adapter->stats.roc;
547         regs_buff[92] = adapter->stats.rjc;
548         regs_buff[93] = adapter->stats.mgprc;
549         regs_buff[94] = adapter->stats.mgpdc;
550         regs_buff[95] = adapter->stats.mgptc;
551         regs_buff[96] = adapter->stats.tor;
552         regs_buff[98] = adapter->stats.tot;
553         regs_buff[100] = adapter->stats.tpr;
554         regs_buff[101] = adapter->stats.tpt;
555         regs_buff[102] = adapter->stats.ptc64;
556         regs_buff[103] = adapter->stats.ptc127;
557         regs_buff[104] = adapter->stats.ptc255;
558         regs_buff[105] = adapter->stats.ptc511;
559         regs_buff[106] = adapter->stats.ptc1023;
560         regs_buff[107] = adapter->stats.ptc1522;
561         regs_buff[108] = adapter->stats.mptc;
562         regs_buff[109] = adapter->stats.bptc;
563         regs_buff[110] = adapter->stats.tsctc;
564         regs_buff[111] = adapter->stats.iac;
565         regs_buff[112] = adapter->stats.rpthc;
566         regs_buff[113] = adapter->stats.hgptc;
567         regs_buff[114] = adapter->stats.hgorc;
568         regs_buff[116] = adapter->stats.hgotc;
569         regs_buff[118] = adapter->stats.lenerrs;
570         regs_buff[119] = adapter->stats.scvpc;
571         regs_buff[120] = adapter->stats.hrmpc;
572
573         for (i = 0; i < 4; i++)
574                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
575         for (i = 0; i < 4; i++)
576                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
577         for (i = 0; i < 4; i++)
578                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
579         for (i = 0; i < 4; i++)
580                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
581         for (i = 0; i < 4; i++)
582                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
583         for (i = 0; i < 4; i++)
584                 regs_buff[141 + i] = rd32(E1000_RDH(i));
585         for (i = 0; i < 4; i++)
586                 regs_buff[145 + i] = rd32(E1000_RDT(i));
587         for (i = 0; i < 4; i++)
588                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
589
590         for (i = 0; i < 10; i++)
591                 regs_buff[153 + i] = rd32(E1000_EITR(i));
592         for (i = 0; i < 8; i++)
593                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
594         for (i = 0; i < 8; i++)
595                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
596         for (i = 0; i < 16; i++)
597                 regs_buff[179 + i] = rd32(E1000_RAL(i));
598         for (i = 0; i < 16; i++)
599                 regs_buff[195 + i] = rd32(E1000_RAH(i));
600
601         for (i = 0; i < 4; i++)
602                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
603         for (i = 0; i < 4; i++)
604                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
605         for (i = 0; i < 4; i++)
606                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
607         for (i = 0; i < 4; i++)
608                 regs_buff[223 + i] = rd32(E1000_TDH(i));
609         for (i = 0; i < 4; i++)
610                 regs_buff[227 + i] = rd32(E1000_TDT(i));
611         for (i = 0; i < 4; i++)
612                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
613         for (i = 0; i < 4; i++)
614                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
615         for (i = 0; i < 4; i++)
616                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
617         for (i = 0; i < 4; i++)
618                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
619
620         for (i = 0; i < 4; i++)
621                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
622         for (i = 0; i < 4; i++)
623                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
624         for (i = 0; i < 32; i++)
625                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
626         for (i = 0; i < 128; i++)
627                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
628         for (i = 0; i < 128; i++)
629                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
630         for (i = 0; i < 4; i++)
631                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
632
633         regs_buff[547] = rd32(E1000_TDFH);
634         regs_buff[548] = rd32(E1000_TDFT);
635         regs_buff[549] = rd32(E1000_TDFHS);
636         regs_buff[550] = rd32(E1000_TDFPC);
637
638         if (hw->mac.type > e1000_82580) {
639                 regs_buff[551] = adapter->stats.o2bgptc;
640                 regs_buff[552] = adapter->stats.b2ospc;
641                 regs_buff[553] = adapter->stats.o2bspc;
642                 regs_buff[554] = adapter->stats.b2ogprc;
643         }
644
645         if (hw->mac.type != e1000_82576)
646                 return;
647         for (i = 0; i < 12; i++)
648                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
649         for (i = 0; i < 4; i++)
650                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
651         for (i = 0; i < 12; i++)
652                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
653         for (i = 0; i < 12; i++)
654                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
655         for (i = 0; i < 12; i++)
656                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
657         for (i = 0; i < 12; i++)
658                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
659         for (i = 0; i < 12; i++)
660                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
661         for (i = 0; i < 12; i++)
662                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
663
664         for (i = 0; i < 12; i++)
665                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
666         for (i = 0; i < 12; i++)
667                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
668         for (i = 0; i < 12; i++)
669                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
670         for (i = 0; i < 12; i++)
671                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
672         for (i = 0; i < 12; i++)
673                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
674         for (i = 0; i < 12; i++)
675                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
676         for (i = 0; i < 12; i++)
677                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
678         for (i = 0; i < 12; i++)
679                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
680 }
681
682 static int igb_get_eeprom_len(struct net_device *netdev)
683 {
684         struct igb_adapter *adapter = netdev_priv(netdev);
685         return adapter->hw.nvm.word_size * 2;
686 }
687
688 static int igb_get_eeprom(struct net_device *netdev,
689                           struct ethtool_eeprom *eeprom, u8 *bytes)
690 {
691         struct igb_adapter *adapter = netdev_priv(netdev);
692         struct e1000_hw *hw = &adapter->hw;
693         u16 *eeprom_buff;
694         int first_word, last_word;
695         int ret_val = 0;
696         u16 i;
697
698         if (eeprom->len == 0)
699                 return -EINVAL;
700
701         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
702
703         first_word = eeprom->offset >> 1;
704         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
705
706         eeprom_buff = kmalloc(sizeof(u16) *
707                         (last_word - first_word + 1), GFP_KERNEL);
708         if (!eeprom_buff)
709                 return -ENOMEM;
710
711         if (hw->nvm.type == e1000_nvm_eeprom_spi)
712                 ret_val = hw->nvm.ops.read(hw, first_word,
713                                             last_word - first_word + 1,
714                                             eeprom_buff);
715         else {
716                 for (i = 0; i < last_word - first_word + 1; i++) {
717                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
718                                                     &eeprom_buff[i]);
719                         if (ret_val)
720                                 break;
721                 }
722         }
723
724         /* Device's eeprom is always little-endian, word addressable */
725         for (i = 0; i < last_word - first_word + 1; i++)
726                 le16_to_cpus(&eeprom_buff[i]);
727
728         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
729                         eeprom->len);
730         kfree(eeprom_buff);
731
732         return ret_val;
733 }
734
735 static int igb_set_eeprom(struct net_device *netdev,
736                           struct ethtool_eeprom *eeprom, u8 *bytes)
737 {
738         struct igb_adapter *adapter = netdev_priv(netdev);
739         struct e1000_hw *hw = &adapter->hw;
740         u16 *eeprom_buff;
741         void *ptr;
742         int max_len, first_word, last_word, ret_val = 0;
743         u16 i;
744
745         if (eeprom->len == 0)
746                 return -EOPNOTSUPP;
747
748         if (hw->mac.type == e1000_i211)
749                 return -EOPNOTSUPP;
750
751         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
752                 return -EFAULT;
753
754         max_len = hw->nvm.word_size * 2;
755
756         first_word = eeprom->offset >> 1;
757         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
758         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
759         if (!eeprom_buff)
760                 return -ENOMEM;
761
762         ptr = (void *)eeprom_buff;
763
764         if (eeprom->offset & 1) {
765                 /* need read/modify/write of first changed EEPROM word */
766                 /* only the second byte of the word is being modified */
767                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
768                                             &eeprom_buff[0]);
769                 ptr++;
770         }
771         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
772                 /* need read/modify/write of last changed EEPROM word */
773                 /* only the first byte of the word is being modified */
774                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
775                                    &eeprom_buff[last_word - first_word]);
776         }
777
778         /* Device's eeprom is always little-endian, word addressable */
779         for (i = 0; i < last_word - first_word + 1; i++)
780                 le16_to_cpus(&eeprom_buff[i]);
781
782         memcpy(ptr, bytes, eeprom->len);
783
784         for (i = 0; i < last_word - first_word + 1; i++)
785                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
786
787         ret_val = hw->nvm.ops.write(hw, first_word,
788                                      last_word - first_word + 1, eeprom_buff);
789
790         /* Update the checksum over the first part of the EEPROM if needed
791          * and flush shadow RAM for 82573 controllers */
792         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
793                 hw->nvm.ops.update(hw);
794
795         igb_set_fw_version(adapter);
796         kfree(eeprom_buff);
797         return ret_val;
798 }
799
800 static void igb_get_drvinfo(struct net_device *netdev,
801                             struct ethtool_drvinfo *drvinfo)
802 {
803         struct igb_adapter *adapter = netdev_priv(netdev);
804
805         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
806         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
807
808         /*
809          * EEPROM image version # is reported as firmware version # for
810          * 82575 controllers
811          */
812         strlcpy(drvinfo->fw_version, adapter->fw_version,
813                 sizeof(drvinfo->fw_version));
814         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
815                 sizeof(drvinfo->bus_info));
816         drvinfo->n_stats = IGB_STATS_LEN;
817         drvinfo->testinfo_len = IGB_TEST_LEN;
818         drvinfo->regdump_len = igb_get_regs_len(netdev);
819         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
820 }
821
822 static void igb_get_ringparam(struct net_device *netdev,
823                               struct ethtool_ringparam *ring)
824 {
825         struct igb_adapter *adapter = netdev_priv(netdev);
826
827         ring->rx_max_pending = IGB_MAX_RXD;
828         ring->tx_max_pending = IGB_MAX_TXD;
829         ring->rx_pending = adapter->rx_ring_count;
830         ring->tx_pending = adapter->tx_ring_count;
831 }
832
833 static int igb_set_ringparam(struct net_device *netdev,
834                              struct ethtool_ringparam *ring)
835 {
836         struct igb_adapter *adapter = netdev_priv(netdev);
837         struct igb_ring *temp_ring;
838         int i, err = 0;
839         u16 new_rx_count, new_tx_count;
840
841         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
842                 return -EINVAL;
843
844         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
845         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
846         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
847
848         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
849         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
850         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
851
852         if ((new_tx_count == adapter->tx_ring_count) &&
853             (new_rx_count == adapter->rx_ring_count)) {
854                 /* nothing to do */
855                 return 0;
856         }
857
858         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
859                 msleep(1);
860
861         if (!netif_running(adapter->netdev)) {
862                 for (i = 0; i < adapter->num_tx_queues; i++)
863                         adapter->tx_ring[i]->count = new_tx_count;
864                 for (i = 0; i < adapter->num_rx_queues; i++)
865                         adapter->rx_ring[i]->count = new_rx_count;
866                 adapter->tx_ring_count = new_tx_count;
867                 adapter->rx_ring_count = new_rx_count;
868                 goto clear_reset;
869         }
870
871         if (adapter->num_tx_queues > adapter->num_rx_queues)
872                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
873         else
874                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
875
876         if (!temp_ring) {
877                 err = -ENOMEM;
878                 goto clear_reset;
879         }
880
881         igb_down(adapter);
882
883         /*
884          * We can't just free everything and then setup again,
885          * because the ISRs in MSI-X mode get passed pointers
886          * to the tx and rx ring structs.
887          */
888         if (new_tx_count != adapter->tx_ring_count) {
889                 for (i = 0; i < adapter->num_tx_queues; i++) {
890                         memcpy(&temp_ring[i], adapter->tx_ring[i],
891                                sizeof(struct igb_ring));
892
893                         temp_ring[i].count = new_tx_count;
894                         err = igb_setup_tx_resources(&temp_ring[i]);
895                         if (err) {
896                                 while (i) {
897                                         i--;
898                                         igb_free_tx_resources(&temp_ring[i]);
899                                 }
900                                 goto err_setup;
901                         }
902                 }
903
904                 for (i = 0; i < adapter->num_tx_queues; i++) {
905                         igb_free_tx_resources(adapter->tx_ring[i]);
906
907                         memcpy(adapter->tx_ring[i], &temp_ring[i],
908                                sizeof(struct igb_ring));
909                 }
910
911                 adapter->tx_ring_count = new_tx_count;
912         }
913
914         if (new_rx_count != adapter->rx_ring_count) {
915                 for (i = 0; i < adapter->num_rx_queues; i++) {
916                         memcpy(&temp_ring[i], adapter->rx_ring[i],
917                                sizeof(struct igb_ring));
918
919                         temp_ring[i].count = new_rx_count;
920                         err = igb_setup_rx_resources(&temp_ring[i]);
921                         if (err) {
922                                 while (i) {
923                                         i--;
924                                         igb_free_rx_resources(&temp_ring[i]);
925                                 }
926                                 goto err_setup;
927                         }
928
929                 }
930
931                 for (i = 0; i < adapter->num_rx_queues; i++) {
932                         igb_free_rx_resources(adapter->rx_ring[i]);
933
934                         memcpy(adapter->rx_ring[i], &temp_ring[i],
935                                sizeof(struct igb_ring));
936                 }
937
938                 adapter->rx_ring_count = new_rx_count;
939         }
940 err_setup:
941         igb_up(adapter);
942         vfree(temp_ring);
943 clear_reset:
944         clear_bit(__IGB_RESETTING, &adapter->state);
945         return err;
946 }
947
948 /* ethtool register test data */
949 struct igb_reg_test {
950         u16 reg;
951         u16 reg_offset;
952         u16 array_len;
953         u16 test_type;
954         u32 mask;
955         u32 write;
956 };
957
958 /* In the hardware, registers are laid out either singly, in arrays
959  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
960  * most tests take place on arrays or single registers (handled
961  * as a single-element array) and special-case the tables.
962  * Table tests are always pattern tests.
963  *
964  * We also make provision for some required setup steps by specifying
965  * registers to be written without any read-back testing.
966  */
967
968 #define PATTERN_TEST    1
969 #define SET_READ_TEST   2
970 #define WRITE_NO_TEST   3
971 #define TABLE32_TEST    4
972 #define TABLE64_TEST_LO 5
973 #define TABLE64_TEST_HI 6
974
975 /* i210 reg test */
976 static struct igb_reg_test reg_test_i210[] = {
977         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
978         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
979         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
980         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
981         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
983         /* RDH is read-only for i210, only test RDT. */
984         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
985         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
986         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
987         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
988         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
989         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
990         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
991         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
992         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
993         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
994         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
995         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996         { E1000_RA,        0, 16, TABLE64_TEST_LO,
997                                                 0xFFFFFFFF, 0xFFFFFFFF },
998         { E1000_RA,        0, 16, TABLE64_TEST_HI,
999                                                 0x900FFFFF, 0xFFFFFFFF },
1000         { E1000_MTA,       0, 128, TABLE32_TEST,
1001                                                 0xFFFFFFFF, 0xFFFFFFFF },
1002         { 0, 0, 0, 0, 0 }
1003 };
1004
1005 /* i350 reg test */
1006 static struct igb_reg_test reg_test_i350[] = {
1007         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1009         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1011         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017         /* RDH is read-only for i350, only test RDT. */
1018         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1021         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1023         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1024         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1025         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1026         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1027         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1028         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1029         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1031         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1033         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1034         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1035         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1036                                                 0xFFFFFFFF, 0xFFFFFFFF },
1037         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1038                                                 0xC3FFFFFF, 0xFFFFFFFF },
1039         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1040                                                 0xFFFFFFFF, 0xFFFFFFFF },
1041         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1042                                                 0xC3FFFFFF, 0xFFFFFFFF },
1043         { E1000_MTA,       0, 128, TABLE32_TEST,
1044                                                 0xFFFFFFFF, 0xFFFFFFFF },
1045         { 0, 0, 0, 0 }
1046 };
1047
1048 /* 82580 reg test */
1049 static struct igb_reg_test reg_test_82580[] = {
1050         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1052         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1053         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1054         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1057         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1060         /* RDH is read-only for 82580, only test RDT. */
1061         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1064         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1066         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1069         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1070         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1072         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1073         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1075         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1076         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1077         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1078         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1079                                                 0xFFFFFFFF, 0xFFFFFFFF },
1080         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1081                                                 0x83FFFFFF, 0xFFFFFFFF },
1082         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1083                                                 0xFFFFFFFF, 0xFFFFFFFF },
1084         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1085                                                 0x83FFFFFF, 0xFFFFFFFF },
1086         { E1000_MTA,       0, 128, TABLE32_TEST,
1087                                                 0xFFFFFFFF, 0xFFFFFFFF },
1088         { 0, 0, 0, 0 }
1089 };
1090
1091 /* 82576 reg test */
1092 static struct igb_reg_test reg_test_82576[] = {
1093         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1095         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1096         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103         /* Enable all RX queues before testing. */
1104         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1105         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1106         /* RDH is read-only for 82576, only test RDT. */
1107         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1110         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1111         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1112         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1113         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1114         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1115         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1117         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1118         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1119         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1120         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1121         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1122         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1123         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1125         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1126         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1127         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1128         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129         { 0, 0, 0, 0 }
1130 };
1131
1132 /* 82575 register test */
1133 static struct igb_reg_test reg_test_82575[] = {
1134         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1136         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1137         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1139         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1140         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1141         /* Enable all four RX queues before testing. */
1142         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1143         /* RDH is read-only for 82575, only test RDT. */
1144         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1146         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1147         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1148         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1149         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1152         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1154         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1155         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1157         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1158         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1159         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160         { 0, 0, 0, 0 }
1161 };
1162
1163 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1164                              int reg, u32 mask, u32 write)
1165 {
1166         struct e1000_hw *hw = &adapter->hw;
1167         u32 pat, val;
1168         static const u32 _test[] =
1169                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1170         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1171                 wr32(reg, (_test[pat] & write));
1172                 val = rd32(reg) & mask;
1173                 if (val != (_test[pat] & write & mask)) {
1174                         dev_err(&adapter->pdev->dev,
1175                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1176                                 reg, val, (_test[pat] & write & mask));
1177                         *data = reg;
1178                         return 1;
1179                 }
1180         }
1181
1182         return 0;
1183 }
1184
1185 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1186                               int reg, u32 mask, u32 write)
1187 {
1188         struct e1000_hw *hw = &adapter->hw;
1189         u32 val;
1190         wr32(reg, write & mask);
1191         val = rd32(reg);
1192         if ((write & mask) != (val & mask)) {
1193                 dev_err(&adapter->pdev->dev,
1194                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1195                         (val & mask), (write & mask));
1196                 *data = reg;
1197                 return 1;
1198         }
1199
1200         return 0;
1201 }
1202
1203 #define REG_PATTERN_TEST(reg, mask, write) \
1204         do { \
1205                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1206                         return 1; \
1207         } while (0)
1208
1209 #define REG_SET_AND_CHECK(reg, mask, write) \
1210         do { \
1211                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1212                         return 1; \
1213         } while (0)
1214
1215 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1216 {
1217         struct e1000_hw *hw = &adapter->hw;
1218         struct igb_reg_test *test;
1219         u32 value, before, after;
1220         u32 i, toggle;
1221
1222         switch (adapter->hw.mac.type) {
1223         case e1000_i350:
1224                 test = reg_test_i350;
1225                 toggle = 0x7FEFF3FF;
1226                 break;
1227         case e1000_i210:
1228         case e1000_i211:
1229                 test = reg_test_i210;
1230                 toggle = 0x7FEFF3FF;
1231                 break;
1232         case e1000_82580:
1233                 test = reg_test_82580;
1234                 toggle = 0x7FEFF3FF;
1235                 break;
1236         case e1000_82576:
1237                 test = reg_test_82576;
1238                 toggle = 0x7FFFF3FF;
1239                 break;
1240         default:
1241                 test = reg_test_82575;
1242                 toggle = 0x7FFFF3FF;
1243                 break;
1244         }
1245
1246         /* Because the status register is such a special case,
1247          * we handle it separately from the rest of the register
1248          * tests.  Some bits are read-only, some toggle, and some
1249          * are writable on newer MACs.
1250          */
1251         before = rd32(E1000_STATUS);
1252         value = (rd32(E1000_STATUS) & toggle);
1253         wr32(E1000_STATUS, toggle);
1254         after = rd32(E1000_STATUS) & toggle;
1255         if (value != after) {
1256                 dev_err(&adapter->pdev->dev,
1257                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1258                         after, value);
1259                 *data = 1;
1260                 return 1;
1261         }
1262         /* restore previous status */
1263         wr32(E1000_STATUS, before);
1264
1265         /* Perform the remainder of the register test, looping through
1266          * the test table until we either fail or reach the null entry.
1267          */
1268         while (test->reg) {
1269                 for (i = 0; i < test->array_len; i++) {
1270                         switch (test->test_type) {
1271                         case PATTERN_TEST:
1272                                 REG_PATTERN_TEST(test->reg +
1273                                                 (i * test->reg_offset),
1274                                                 test->mask,
1275                                                 test->write);
1276                                 break;
1277                         case SET_READ_TEST:
1278                                 REG_SET_AND_CHECK(test->reg +
1279                                                 (i * test->reg_offset),
1280                                                 test->mask,
1281                                                 test->write);
1282                                 break;
1283                         case WRITE_NO_TEST:
1284                                 writel(test->write,
1285                                     (adapter->hw.hw_addr + test->reg)
1286                                         + (i * test->reg_offset));
1287                                 break;
1288                         case TABLE32_TEST:
1289                                 REG_PATTERN_TEST(test->reg + (i * 4),
1290                                                 test->mask,
1291                                                 test->write);
1292                                 break;
1293                         case TABLE64_TEST_LO:
1294                                 REG_PATTERN_TEST(test->reg + (i * 8),
1295                                                 test->mask,
1296                                                 test->write);
1297                                 break;
1298                         case TABLE64_TEST_HI:
1299                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1300                                                 test->mask,
1301                                                 test->write);
1302                                 break;
1303                         }
1304                 }
1305                 test++;
1306         }
1307
1308         *data = 0;
1309         return 0;
1310 }
1311
1312 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1313 {
1314         *data = 0;
1315
1316         /* Validate eeprom on all parts but i211 */
1317         if (adapter->hw.mac.type != e1000_i211) {
1318                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1319                         *data = 2;
1320         }
1321
1322         return *data;
1323 }
1324
1325 static irqreturn_t igb_test_intr(int irq, void *data)
1326 {
1327         struct igb_adapter *adapter = (struct igb_adapter *) data;
1328         struct e1000_hw *hw = &adapter->hw;
1329
1330         adapter->test_icr |= rd32(E1000_ICR);
1331
1332         return IRQ_HANDLED;
1333 }
1334
1335 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1336 {
1337         struct e1000_hw *hw = &adapter->hw;
1338         struct net_device *netdev = adapter->netdev;
1339         u32 mask, ics_mask, i = 0, shared_int = true;
1340         u32 irq = adapter->pdev->irq;
1341
1342         *data = 0;
1343
1344         /* Hook up test interrupt handler just for this test */
1345         if (adapter->msix_entries) {
1346                 if (request_irq(adapter->msix_entries[0].vector,
1347                                 igb_test_intr, 0, netdev->name, adapter)) {
1348                         *data = 1;
1349                         return -1;
1350                 }
1351         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1352                 shared_int = false;
1353                 if (request_irq(irq,
1354                                 igb_test_intr, 0, netdev->name, adapter)) {
1355                         *data = 1;
1356                         return -1;
1357                 }
1358         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1359                                 netdev->name, adapter)) {
1360                 shared_int = false;
1361         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1362                  netdev->name, adapter)) {
1363                 *data = 1;
1364                 return -1;
1365         }
1366         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1367                 (shared_int ? "shared" : "unshared"));
1368
1369         /* Disable all the interrupts */
1370         wr32(E1000_IMC, ~0);
1371         wrfl();
1372         msleep(10);
1373
1374         /* Define all writable bits for ICS */
1375         switch (hw->mac.type) {
1376         case e1000_82575:
1377                 ics_mask = 0x37F47EDD;
1378                 break;
1379         case e1000_82576:
1380                 ics_mask = 0x77D4FBFD;
1381                 break;
1382         case e1000_82580:
1383                 ics_mask = 0x77DCFED5;
1384                 break;
1385         case e1000_i350:
1386         case e1000_i210:
1387         case e1000_i211:
1388                 ics_mask = 0x77DCFED5;
1389                 break;
1390         default:
1391                 ics_mask = 0x7FFFFFFF;
1392                 break;
1393         }
1394
1395         /* Test each interrupt */
1396         for (; i < 31; i++) {
1397                 /* Interrupt to test */
1398                 mask = 1 << i;
1399
1400                 if (!(mask & ics_mask))
1401                         continue;
1402
1403                 if (!shared_int) {
1404                         /* Disable the interrupt to be reported in
1405                          * the cause register and then force the same
1406                          * interrupt and see if one gets posted.  If
1407                          * an interrupt was posted to the bus, the
1408                          * test failed.
1409                          */
1410                         adapter->test_icr = 0;
1411
1412                         /* Flush any pending interrupts */
1413                         wr32(E1000_ICR, ~0);
1414
1415                         wr32(E1000_IMC, mask);
1416                         wr32(E1000_ICS, mask);
1417                         wrfl();
1418                         msleep(10);
1419
1420                         if (adapter->test_icr & mask) {
1421                                 *data = 3;
1422                                 break;
1423                         }
1424                 }
1425
1426                 /* Enable the interrupt to be reported in
1427                  * the cause register and then force the same
1428                  * interrupt and see if one gets posted.  If
1429                  * an interrupt was not posted to the bus, the
1430                  * test failed.
1431                  */
1432                 adapter->test_icr = 0;
1433
1434                 /* Flush any pending interrupts */
1435                 wr32(E1000_ICR, ~0);
1436
1437                 wr32(E1000_IMS, mask);
1438                 wr32(E1000_ICS, mask);
1439                 wrfl();
1440                 msleep(10);
1441
1442                 if (!(adapter->test_icr & mask)) {
1443                         *data = 4;
1444                         break;
1445                 }
1446
1447                 if (!shared_int) {
1448                         /* Disable the other interrupts to be reported in
1449                          * the cause register and then force the other
1450                          * interrupts and see if any get posted.  If
1451                          * an interrupt was posted to the bus, the
1452                          * test failed.
1453                          */
1454                         adapter->test_icr = 0;
1455
1456                         /* Flush any pending interrupts */
1457                         wr32(E1000_ICR, ~0);
1458
1459                         wr32(E1000_IMC, ~mask);
1460                         wr32(E1000_ICS, ~mask);
1461                         wrfl();
1462                         msleep(10);
1463
1464                         if (adapter->test_icr & mask) {
1465                                 *data = 5;
1466                                 break;
1467                         }
1468                 }
1469         }
1470
1471         /* Disable all the interrupts */
1472         wr32(E1000_IMC, ~0);
1473         wrfl();
1474         msleep(10);
1475
1476         /* Unhook test interrupt handler */
1477         if (adapter->msix_entries)
1478                 free_irq(adapter->msix_entries[0].vector, adapter);
1479         else
1480                 free_irq(irq, adapter);
1481
1482         return *data;
1483 }
1484
1485 static void igb_free_desc_rings(struct igb_adapter *adapter)
1486 {
1487         igb_free_tx_resources(&adapter->test_tx_ring);
1488         igb_free_rx_resources(&adapter->test_rx_ring);
1489 }
1490
1491 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1492 {
1493         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1494         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1495         struct e1000_hw *hw = &adapter->hw;
1496         int ret_val;
1497
1498         /* Setup Tx descriptor ring and Tx buffers */
1499         tx_ring->count = IGB_DEFAULT_TXD;
1500         tx_ring->dev = &adapter->pdev->dev;
1501         tx_ring->netdev = adapter->netdev;
1502         tx_ring->reg_idx = adapter->vfs_allocated_count;
1503
1504         if (igb_setup_tx_resources(tx_ring)) {
1505                 ret_val = 1;
1506                 goto err_nomem;
1507         }
1508
1509         igb_setup_tctl(adapter);
1510         igb_configure_tx_ring(adapter, tx_ring);
1511
1512         /* Setup Rx descriptor ring and Rx buffers */
1513         rx_ring->count = IGB_DEFAULT_RXD;
1514         rx_ring->dev = &adapter->pdev->dev;
1515         rx_ring->netdev = adapter->netdev;
1516         rx_ring->reg_idx = adapter->vfs_allocated_count;
1517
1518         if (igb_setup_rx_resources(rx_ring)) {
1519                 ret_val = 3;
1520                 goto err_nomem;
1521         }
1522
1523         /* set the default queue to queue 0 of PF */
1524         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1525
1526         /* enable receive ring */
1527         igb_setup_rctl(adapter);
1528         igb_configure_rx_ring(adapter, rx_ring);
1529
1530         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1531
1532         return 0;
1533
1534 err_nomem:
1535         igb_free_desc_rings(adapter);
1536         return ret_val;
1537 }
1538
1539 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1540 {
1541         struct e1000_hw *hw = &adapter->hw;
1542
1543         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1544         igb_write_phy_reg(hw, 29, 0x001F);
1545         igb_write_phy_reg(hw, 30, 0x8FFC);
1546         igb_write_phy_reg(hw, 29, 0x001A);
1547         igb_write_phy_reg(hw, 30, 0x8FF0);
1548 }
1549
1550 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1551 {
1552         struct e1000_hw *hw = &adapter->hw;
1553         u32 ctrl_reg = 0;
1554
1555         hw->mac.autoneg = false;
1556
1557         if (hw->phy.type == e1000_phy_m88) {
1558                 if (hw->phy.id != I210_I_PHY_ID) {
1559                         /* Auto-MDI/MDIX Off */
1560                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1561                         /* reset to update Auto-MDI/MDIX */
1562                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1563                         /* autoneg off */
1564                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1565                 } else {
1566                         /* force 1000, set loopback  */
1567                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1568                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1569                 }
1570         }
1571
1572         /* add small delay to avoid loopback test failure */
1573         msleep(50);
1574
1575         /* force 1000, set loopback */
1576         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1577
1578         /* Now set up the MAC to the same speed/duplex as the PHY. */
1579         ctrl_reg = rd32(E1000_CTRL);
1580         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1581         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1582                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1583                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1584                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1585                      E1000_CTRL_SLU);    /* Set link up enable bit */
1586
1587         if (hw->phy.type == e1000_phy_m88)
1588                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1589
1590         wr32(E1000_CTRL, ctrl_reg);
1591
1592         /* Disable the receiver on the PHY so when a cable is plugged in, the
1593          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1594          */
1595         if (hw->phy.type == e1000_phy_m88)
1596                 igb_phy_disable_receiver(adapter);
1597
1598         mdelay(500);
1599         return 0;
1600 }
1601
1602 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1603 {
1604         return igb_integrated_phy_loopback(adapter);
1605 }
1606
1607 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1608 {
1609         struct e1000_hw *hw = &adapter->hw;
1610         u32 reg;
1611
1612         reg = rd32(E1000_CTRL_EXT);
1613
1614         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1615         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1616                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1617                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1618                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1619                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1620
1621                         /* Enable DH89xxCC MPHY for near end loopback */
1622                         reg = rd32(E1000_MPHY_ADDR_CTL);
1623                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1624                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1625                         wr32(E1000_MPHY_ADDR_CTL, reg);
1626
1627                         reg = rd32(E1000_MPHY_DATA);
1628                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1629                         wr32(E1000_MPHY_DATA, reg);
1630                 }
1631
1632                 reg = rd32(E1000_RCTL);
1633                 reg |= E1000_RCTL_LBM_TCVR;
1634                 wr32(E1000_RCTL, reg);
1635
1636                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1637
1638                 reg = rd32(E1000_CTRL);
1639                 reg &= ~(E1000_CTRL_RFCE |
1640                          E1000_CTRL_TFCE |
1641                          E1000_CTRL_LRST);
1642                 reg |= E1000_CTRL_SLU |
1643                        E1000_CTRL_FD;
1644                 wr32(E1000_CTRL, reg);
1645
1646                 /* Unset switch control to serdes energy detect */
1647                 reg = rd32(E1000_CONNSW);
1648                 reg &= ~E1000_CONNSW_ENRGSRC;
1649                 wr32(E1000_CONNSW, reg);
1650
1651                 /* Unset sigdetect for SERDES loopback on
1652                  * 82580 and i350 devices.
1653                  */
1654                 switch (hw->mac.type) {
1655                 case e1000_82580:
1656                 case e1000_i350:
1657                         reg = rd32(E1000_PCS_CFG0);
1658                         reg |= E1000_PCS_CFG_IGN_SD;
1659                         wr32(E1000_PCS_CFG0, reg);
1660                         break;
1661                 default:
1662                         break;
1663                 }
1664
1665                 /* Set PCS register for forced speed */
1666                 reg = rd32(E1000_PCS_LCTL);
1667                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1668                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1669                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1670                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1671                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1672                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1673                 wr32(E1000_PCS_LCTL, reg);
1674
1675                 return 0;
1676         }
1677
1678         return igb_set_phy_loopback(adapter);
1679 }
1680
1681 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1682 {
1683         struct e1000_hw *hw = &adapter->hw;
1684         u32 rctl;
1685         u16 phy_reg;
1686
1687         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1688         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1689         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1690         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1691                 u32 reg;
1692
1693                 /* Disable near end loopback on DH89xxCC */
1694                 reg = rd32(E1000_MPHY_ADDR_CTL);
1695                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1696                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1697                 wr32(E1000_MPHY_ADDR_CTL, reg);
1698
1699                 reg = rd32(E1000_MPHY_DATA);
1700                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1701                 wr32(E1000_MPHY_DATA, reg);
1702         }
1703
1704         rctl = rd32(E1000_RCTL);
1705         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1706         wr32(E1000_RCTL, rctl);
1707
1708         hw->mac.autoneg = true;
1709         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1710         if (phy_reg & MII_CR_LOOPBACK) {
1711                 phy_reg &= ~MII_CR_LOOPBACK;
1712                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1713                 igb_phy_sw_reset(hw);
1714         }
1715 }
1716
1717 static void igb_create_lbtest_frame(struct sk_buff *skb,
1718                                     unsigned int frame_size)
1719 {
1720         memset(skb->data, 0xFF, frame_size);
1721         frame_size /= 2;
1722         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1723         memset(&skb->data[frame_size + 10], 0xBE, 1);
1724         memset(&skb->data[frame_size + 12], 0xAF, 1);
1725 }
1726
1727 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1728                                   unsigned int frame_size)
1729 {
1730         unsigned char *data;
1731         bool match = true;
1732
1733         frame_size >>= 1;
1734
1735         data = kmap(rx_buffer->page);
1736
1737         if (data[3] != 0xFF ||
1738             data[frame_size + 10] != 0xBE ||
1739             data[frame_size + 12] != 0xAF)
1740                 match = false;
1741
1742         kunmap(rx_buffer->page);
1743
1744         return match;
1745 }
1746
1747 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1748                                 struct igb_ring *tx_ring,
1749                                 unsigned int size)
1750 {
1751         union e1000_adv_rx_desc *rx_desc;
1752         struct igb_rx_buffer *rx_buffer_info;
1753         struct igb_tx_buffer *tx_buffer_info;
1754         u16 rx_ntc, tx_ntc, count = 0;
1755
1756         /* initialize next to clean and descriptor values */
1757         rx_ntc = rx_ring->next_to_clean;
1758         tx_ntc = tx_ring->next_to_clean;
1759         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1760
1761         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1762                 /* check rx buffer */
1763                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1764
1765                 /* sync Rx buffer for CPU read */
1766                 dma_sync_single_for_cpu(rx_ring->dev,
1767                                         rx_buffer_info->dma,
1768                                         IGB_RX_BUFSZ,
1769                                         DMA_FROM_DEVICE);
1770
1771                 /* verify contents of skb */
1772                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1773                         count++;
1774
1775                 /* sync Rx buffer for device write */
1776                 dma_sync_single_for_device(rx_ring->dev,
1777                                            rx_buffer_info->dma,
1778                                            IGB_RX_BUFSZ,
1779                                            DMA_FROM_DEVICE);
1780
1781                 /* unmap buffer on tx side */
1782                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1783                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1784
1785                 /* increment rx/tx next to clean counters */
1786                 rx_ntc++;
1787                 if (rx_ntc == rx_ring->count)
1788                         rx_ntc = 0;
1789                 tx_ntc++;
1790                 if (tx_ntc == tx_ring->count)
1791                         tx_ntc = 0;
1792
1793                 /* fetch next descriptor */
1794                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1795         }
1796
1797         netdev_tx_reset_queue(txring_txq(tx_ring));
1798
1799         /* re-map buffers to ring, store next to clean values */
1800         igb_alloc_rx_buffers(rx_ring, count);
1801         rx_ring->next_to_clean = rx_ntc;
1802         tx_ring->next_to_clean = tx_ntc;
1803
1804         return count;
1805 }
1806
1807 static int igb_run_loopback_test(struct igb_adapter *adapter)
1808 {
1809         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1810         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1811         u16 i, j, lc, good_cnt;
1812         int ret_val = 0;
1813         unsigned int size = IGB_RX_HDR_LEN;
1814         netdev_tx_t tx_ret_val;
1815         struct sk_buff *skb;
1816
1817         /* allocate test skb */
1818         skb = alloc_skb(size, GFP_KERNEL);
1819         if (!skb)
1820                 return 11;
1821
1822         /* place data into test skb */
1823         igb_create_lbtest_frame(skb, size);
1824         skb_put(skb, size);
1825
1826         /*
1827          * Calculate the loop count based on the largest descriptor ring
1828          * The idea is to wrap the largest ring a number of times using 64
1829          * send/receive pairs during each loop
1830          */
1831
1832         if (rx_ring->count <= tx_ring->count)
1833                 lc = ((tx_ring->count / 64) * 2) + 1;
1834         else
1835                 lc = ((rx_ring->count / 64) * 2) + 1;
1836
1837         for (j = 0; j <= lc; j++) { /* loop count loop */
1838                 /* reset count of good packets */
1839                 good_cnt = 0;
1840
1841                 /* place 64 packets on the transmit queue*/
1842                 for (i = 0; i < 64; i++) {
1843                         skb_get(skb);
1844                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1845                         if (tx_ret_val == NETDEV_TX_OK)
1846                                 good_cnt++;
1847                 }
1848
1849                 if (good_cnt != 64) {
1850                         ret_val = 12;
1851                         break;
1852                 }
1853
1854                 /* allow 200 milliseconds for packets to go from tx to rx */
1855                 msleep(200);
1856
1857                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1858                 if (good_cnt != 64) {
1859                         ret_val = 13;
1860                         break;
1861                 }
1862         } /* end loop count loop */
1863
1864         /* free the original skb */
1865         kfree_skb(skb);
1866
1867         return ret_val;
1868 }
1869
1870 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1871 {
1872         /* PHY loopback cannot be performed if SoL/IDER
1873          * sessions are active */
1874         if (igb_check_reset_block(&adapter->hw)) {
1875                 dev_err(&adapter->pdev->dev,
1876                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1877                 *data = 0;
1878                 goto out;
1879         }
1880         *data = igb_setup_desc_rings(adapter);
1881         if (*data)
1882                 goto out;
1883         *data = igb_setup_loopback_test(adapter);
1884         if (*data)
1885                 goto err_loopback;
1886         *data = igb_run_loopback_test(adapter);
1887         igb_loopback_cleanup(adapter);
1888
1889 err_loopback:
1890         igb_free_desc_rings(adapter);
1891 out:
1892         return *data;
1893 }
1894
1895 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1896 {
1897         struct e1000_hw *hw = &adapter->hw;
1898         *data = 0;
1899         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1900                 int i = 0;
1901                 hw->mac.serdes_has_link = false;
1902
1903                 /* On some blade server designs, link establishment
1904                  * could take as long as 2-3 minutes */
1905                 do {
1906                         hw->mac.ops.check_for_link(&adapter->hw);
1907                         if (hw->mac.serdes_has_link)
1908                                 return *data;
1909                         msleep(20);
1910                 } while (i++ < 3750);
1911
1912                 *data = 1;
1913         } else {
1914                 hw->mac.ops.check_for_link(&adapter->hw);
1915                 if (hw->mac.autoneg)
1916                         msleep(5000);
1917
1918                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1919                         *data = 1;
1920         }
1921         return *data;
1922 }
1923
1924 static void igb_diag_test(struct net_device *netdev,
1925                           struct ethtool_test *eth_test, u64 *data)
1926 {
1927         struct igb_adapter *adapter = netdev_priv(netdev);
1928         u16 autoneg_advertised;
1929         u8 forced_speed_duplex, autoneg;
1930         bool if_running = netif_running(netdev);
1931
1932         set_bit(__IGB_TESTING, &adapter->state);
1933         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1934                 /* Offline tests */
1935
1936                 /* save speed, duplex, autoneg settings */
1937                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1938                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1939                 autoneg = adapter->hw.mac.autoneg;
1940
1941                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1942
1943                 /* power up link for link test */
1944                 igb_power_up_link(adapter);
1945
1946                 /* Link test performed before hardware reset so autoneg doesn't
1947                  * interfere with test result */
1948                 if (igb_link_test(adapter, &data[4]))
1949                         eth_test->flags |= ETH_TEST_FL_FAILED;
1950
1951                 if (if_running)
1952                         /* indicate we're in test mode */
1953                         dev_close(netdev);
1954                 else
1955                         igb_reset(adapter);
1956
1957                 if (igb_reg_test(adapter, &data[0]))
1958                         eth_test->flags |= ETH_TEST_FL_FAILED;
1959
1960                 igb_reset(adapter);
1961                 if (igb_eeprom_test(adapter, &data[1]))
1962                         eth_test->flags |= ETH_TEST_FL_FAILED;
1963
1964                 igb_reset(adapter);
1965                 if (igb_intr_test(adapter, &data[2]))
1966                         eth_test->flags |= ETH_TEST_FL_FAILED;
1967
1968                 igb_reset(adapter);
1969                 /* power up link for loopback test */
1970                 igb_power_up_link(adapter);
1971                 if (igb_loopback_test(adapter, &data[3]))
1972                         eth_test->flags |= ETH_TEST_FL_FAILED;
1973
1974                 /* restore speed, duplex, autoneg settings */
1975                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1976                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1977                 adapter->hw.mac.autoneg = autoneg;
1978
1979                 /* force this routine to wait until autoneg complete/timeout */
1980                 adapter->hw.phy.autoneg_wait_to_complete = true;
1981                 igb_reset(adapter);
1982                 adapter->hw.phy.autoneg_wait_to_complete = false;
1983
1984                 clear_bit(__IGB_TESTING, &adapter->state);
1985                 if (if_running)
1986                         dev_open(netdev);
1987         } else {
1988                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1989
1990                 /* PHY is powered down when interface is down */
1991                 if (if_running && igb_link_test(adapter, &data[4]))
1992                         eth_test->flags |= ETH_TEST_FL_FAILED;
1993                 else
1994                         data[4] = 0;
1995
1996                 /* Online tests aren't run; pass by default */
1997                 data[0] = 0;
1998                 data[1] = 0;
1999                 data[2] = 0;
2000                 data[3] = 0;
2001
2002                 clear_bit(__IGB_TESTING, &adapter->state);
2003         }
2004         msleep_interruptible(4 * 1000);
2005 }
2006
2007 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2008 {
2009         struct igb_adapter *adapter = netdev_priv(netdev);
2010
2011         wol->supported = WAKE_UCAST | WAKE_MCAST |
2012                          WAKE_BCAST | WAKE_MAGIC |
2013                          WAKE_PHY;
2014         wol->wolopts = 0;
2015
2016         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2017                 return;
2018
2019         /* apply any specific unsupported masks here */
2020         switch (adapter->hw.device_id) {
2021         default:
2022                 break;
2023         }
2024
2025         if (adapter->wol & E1000_WUFC_EX)
2026                 wol->wolopts |= WAKE_UCAST;
2027         if (adapter->wol & E1000_WUFC_MC)
2028                 wol->wolopts |= WAKE_MCAST;
2029         if (adapter->wol & E1000_WUFC_BC)
2030                 wol->wolopts |= WAKE_BCAST;
2031         if (adapter->wol & E1000_WUFC_MAG)
2032                 wol->wolopts |= WAKE_MAGIC;
2033         if (adapter->wol & E1000_WUFC_LNKC)
2034                 wol->wolopts |= WAKE_PHY;
2035 }
2036
2037 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2038 {
2039         struct igb_adapter *adapter = netdev_priv(netdev);
2040
2041         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2042                 return -EOPNOTSUPP;
2043
2044         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2045                 return wol->wolopts ? -EOPNOTSUPP : 0;
2046
2047         /* these settings will always override what we currently have */
2048         adapter->wol = 0;
2049
2050         if (wol->wolopts & WAKE_UCAST)
2051                 adapter->wol |= E1000_WUFC_EX;
2052         if (wol->wolopts & WAKE_MCAST)
2053                 adapter->wol |= E1000_WUFC_MC;
2054         if (wol->wolopts & WAKE_BCAST)
2055                 adapter->wol |= E1000_WUFC_BC;
2056         if (wol->wolopts & WAKE_MAGIC)
2057                 adapter->wol |= E1000_WUFC_MAG;
2058         if (wol->wolopts & WAKE_PHY)
2059                 adapter->wol |= E1000_WUFC_LNKC;
2060         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2061
2062         return 0;
2063 }
2064
2065 /* bit defines for adapter->led_status */
2066 #define IGB_LED_ON              0
2067
2068 static int igb_set_phys_id(struct net_device *netdev,
2069                            enum ethtool_phys_id_state state)
2070 {
2071         struct igb_adapter *adapter = netdev_priv(netdev);
2072         struct e1000_hw *hw = &adapter->hw;
2073
2074         switch (state) {
2075         case ETHTOOL_ID_ACTIVE:
2076                 igb_blink_led(hw);
2077                 return 2;
2078         case ETHTOOL_ID_ON:
2079                 igb_blink_led(hw);
2080                 break;
2081         case ETHTOOL_ID_OFF:
2082                 igb_led_off(hw);
2083                 break;
2084         case ETHTOOL_ID_INACTIVE:
2085                 igb_led_off(hw);
2086                 clear_bit(IGB_LED_ON, &adapter->led_status);
2087                 igb_cleanup_led(hw);
2088                 break;
2089         }
2090
2091         return 0;
2092 }
2093
2094 static int igb_set_coalesce(struct net_device *netdev,
2095                             struct ethtool_coalesce *ec)
2096 {
2097         struct igb_adapter *adapter = netdev_priv(netdev);
2098         int i;
2099
2100         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2101             ((ec->rx_coalesce_usecs > 3) &&
2102              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2103             (ec->rx_coalesce_usecs == 2))
2104                 return -EINVAL;
2105
2106         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2107             ((ec->tx_coalesce_usecs > 3) &&
2108              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2109             (ec->tx_coalesce_usecs == 2))
2110                 return -EINVAL;
2111
2112         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2113                 return -EINVAL;
2114
2115         /* If ITR is disabled, disable DMAC */
2116         if (ec->rx_coalesce_usecs == 0) {
2117                 if (adapter->flags & IGB_FLAG_DMAC)
2118                         adapter->flags &= ~IGB_FLAG_DMAC;
2119         }
2120
2121         /* convert to rate of irq's per second */
2122         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2123                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2124         else
2125                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2126
2127         /* convert to rate of irq's per second */
2128         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2129                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2130         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2131                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2132         else
2133                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2134
2135         for (i = 0; i < adapter->num_q_vectors; i++) {
2136                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2137                 q_vector->tx.work_limit = adapter->tx_work_limit;
2138                 if (q_vector->rx.ring)
2139                         q_vector->itr_val = adapter->rx_itr_setting;
2140                 else
2141                         q_vector->itr_val = adapter->tx_itr_setting;
2142                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2143                         q_vector->itr_val = IGB_START_ITR;
2144                 q_vector->set_itr = 1;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int igb_get_coalesce(struct net_device *netdev,
2151                             struct ethtool_coalesce *ec)
2152 {
2153         struct igb_adapter *adapter = netdev_priv(netdev);
2154
2155         if (adapter->rx_itr_setting <= 3)
2156                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2157         else
2158                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2159
2160         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2161                 if (adapter->tx_itr_setting <= 3)
2162                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2163                 else
2164                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2165         }
2166
2167         return 0;
2168 }
2169
2170 static int igb_nway_reset(struct net_device *netdev)
2171 {
2172         struct igb_adapter *adapter = netdev_priv(netdev);
2173         if (netif_running(netdev))
2174                 igb_reinit_locked(adapter);
2175         return 0;
2176 }
2177
2178 static int igb_get_sset_count(struct net_device *netdev, int sset)
2179 {
2180         switch (sset) {
2181         case ETH_SS_STATS:
2182                 return IGB_STATS_LEN;
2183         case ETH_SS_TEST:
2184                 return IGB_TEST_LEN;
2185         default:
2186                 return -ENOTSUPP;
2187         }
2188 }
2189
2190 static void igb_get_ethtool_stats(struct net_device *netdev,
2191                                   struct ethtool_stats *stats, u64 *data)
2192 {
2193         struct igb_adapter *adapter = netdev_priv(netdev);
2194         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2195         unsigned int start;
2196         struct igb_ring *ring;
2197         int i, j;
2198         char *p;
2199
2200         spin_lock(&adapter->stats64_lock);
2201         igb_update_stats(adapter, net_stats);
2202
2203         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2204                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2205                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2206                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2207         }
2208         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2209                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2210                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2211                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2212         }
2213         for (j = 0; j < adapter->num_tx_queues; j++) {
2214                 u64     restart2;
2215
2216                 ring = adapter->tx_ring[j];
2217                 do {
2218                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2219                         data[i]   = ring->tx_stats.packets;
2220                         data[i+1] = ring->tx_stats.bytes;
2221                         data[i+2] = ring->tx_stats.restart_queue;
2222                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2223                 do {
2224                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2225                         restart2  = ring->tx_stats.restart_queue2;
2226                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2227                 data[i+2] += restart2;
2228
2229                 i += IGB_TX_QUEUE_STATS_LEN;
2230         }
2231         for (j = 0; j < adapter->num_rx_queues; j++) {
2232                 ring = adapter->rx_ring[j];
2233                 do {
2234                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2235                         data[i]   = ring->rx_stats.packets;
2236                         data[i+1] = ring->rx_stats.bytes;
2237                         data[i+2] = ring->rx_stats.drops;
2238                         data[i+3] = ring->rx_stats.csum_err;
2239                         data[i+4] = ring->rx_stats.alloc_failed;
2240                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2241                 i += IGB_RX_QUEUE_STATS_LEN;
2242         }
2243         spin_unlock(&adapter->stats64_lock);
2244 }
2245
2246 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2247 {
2248         struct igb_adapter *adapter = netdev_priv(netdev);
2249         u8 *p = data;
2250         int i;
2251
2252         switch (stringset) {
2253         case ETH_SS_TEST:
2254                 memcpy(data, *igb_gstrings_test,
2255                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2256                 break;
2257         case ETH_SS_STATS:
2258                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2259                         memcpy(p, igb_gstrings_stats[i].stat_string,
2260                                ETH_GSTRING_LEN);
2261                         p += ETH_GSTRING_LEN;
2262                 }
2263                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2264                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2265                                ETH_GSTRING_LEN);
2266                         p += ETH_GSTRING_LEN;
2267                 }
2268                 for (i = 0; i < adapter->num_tx_queues; i++) {
2269                         sprintf(p, "tx_queue_%u_packets", i);
2270                         p += ETH_GSTRING_LEN;
2271                         sprintf(p, "tx_queue_%u_bytes", i);
2272                         p += ETH_GSTRING_LEN;
2273                         sprintf(p, "tx_queue_%u_restart", i);
2274                         p += ETH_GSTRING_LEN;
2275                 }
2276                 for (i = 0; i < adapter->num_rx_queues; i++) {
2277                         sprintf(p, "rx_queue_%u_packets", i);
2278                         p += ETH_GSTRING_LEN;
2279                         sprintf(p, "rx_queue_%u_bytes", i);
2280                         p += ETH_GSTRING_LEN;
2281                         sprintf(p, "rx_queue_%u_drops", i);
2282                         p += ETH_GSTRING_LEN;
2283                         sprintf(p, "rx_queue_%u_csum_err", i);
2284                         p += ETH_GSTRING_LEN;
2285                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2286                         p += ETH_GSTRING_LEN;
2287                 }
2288 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2289                 break;
2290         }
2291 }
2292
2293 static int igb_get_ts_info(struct net_device *dev,
2294                            struct ethtool_ts_info *info)
2295 {
2296         struct igb_adapter *adapter = netdev_priv(dev);
2297
2298         switch (adapter->hw.mac.type) {
2299         case e1000_82575:
2300                 info->so_timestamping =
2301                         SOF_TIMESTAMPING_TX_SOFTWARE |
2302                         SOF_TIMESTAMPING_RX_SOFTWARE |
2303                         SOF_TIMESTAMPING_SOFTWARE;
2304                 return 0;
2305         case e1000_82576:
2306         case e1000_82580:
2307         case e1000_i350:
2308         case e1000_i210:
2309         case e1000_i211:
2310                 info->so_timestamping =
2311                         SOF_TIMESTAMPING_TX_SOFTWARE |
2312                         SOF_TIMESTAMPING_RX_SOFTWARE |
2313                         SOF_TIMESTAMPING_SOFTWARE |
2314                         SOF_TIMESTAMPING_TX_HARDWARE |
2315                         SOF_TIMESTAMPING_RX_HARDWARE |
2316                         SOF_TIMESTAMPING_RAW_HARDWARE;
2317
2318                 if (adapter->ptp_clock)
2319                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2320                 else
2321                         info->phc_index = -1;
2322
2323                 info->tx_types =
2324                         (1 << HWTSTAMP_TX_OFF) |
2325                         (1 << HWTSTAMP_TX_ON);
2326
2327                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2328
2329                 /* 82576 does not support timestamping all packets. */
2330                 if (adapter->hw.mac.type >= e1000_82580)
2331                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2332                 else
2333                         info->rx_filters |=
2334                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2335                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2336                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2337                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2338                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2339                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2340                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2341
2342                 return 0;
2343         default:
2344                 return -EOPNOTSUPP;
2345         }
2346 }
2347
2348 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2349                                  struct ethtool_rxnfc *cmd)
2350 {
2351         cmd->data = 0;
2352
2353         /* Report default options for RSS on igb */
2354         switch (cmd->flow_type) {
2355         case TCP_V4_FLOW:
2356                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2357         case UDP_V4_FLOW:
2358                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2359                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2360         case SCTP_V4_FLOW:
2361         case AH_ESP_V4_FLOW:
2362         case AH_V4_FLOW:
2363         case ESP_V4_FLOW:
2364         case IPV4_FLOW:
2365                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2366                 break;
2367         case TCP_V6_FLOW:
2368                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2369         case UDP_V6_FLOW:
2370                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2371                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2372         case SCTP_V6_FLOW:
2373         case AH_ESP_V6_FLOW:
2374         case AH_V6_FLOW:
2375         case ESP_V6_FLOW:
2376         case IPV6_FLOW:
2377                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2378                 break;
2379         default:
2380                 return -EINVAL;
2381         }
2382
2383         return 0;
2384 }
2385
2386 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2387                            u32 *rule_locs)
2388 {
2389         struct igb_adapter *adapter = netdev_priv(dev);
2390         int ret = -EOPNOTSUPP;
2391
2392         switch (cmd->cmd) {
2393         case ETHTOOL_GRXRINGS:
2394                 cmd->data = adapter->num_rx_queues;
2395                 ret = 0;
2396                 break;
2397         case ETHTOOL_GRXFH:
2398                 ret = igb_get_rss_hash_opts(adapter, cmd);
2399                 break;
2400         default:
2401                 break;
2402         }
2403
2404         return ret;
2405 }
2406
2407 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2408                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2409 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2410                                 struct ethtool_rxnfc *nfc)
2411 {
2412         u32 flags = adapter->flags;
2413
2414         /* RSS does not support anything other than hashing
2415          * to queues on src and dst IPs and ports
2416          */
2417         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2418                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2419                 return -EINVAL;
2420
2421         switch (nfc->flow_type) {
2422         case TCP_V4_FLOW:
2423         case TCP_V6_FLOW:
2424                 if (!(nfc->data & RXH_IP_SRC) ||
2425                     !(nfc->data & RXH_IP_DST) ||
2426                     !(nfc->data & RXH_L4_B_0_1) ||
2427                     !(nfc->data & RXH_L4_B_2_3))
2428                         return -EINVAL;
2429                 break;
2430         case UDP_V4_FLOW:
2431                 if (!(nfc->data & RXH_IP_SRC) ||
2432                     !(nfc->data & RXH_IP_DST))
2433                         return -EINVAL;
2434                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2435                 case 0:
2436                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2437                         break;
2438                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2439                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2440                         break;
2441                 default:
2442                         return -EINVAL;
2443                 }
2444                 break;
2445         case UDP_V6_FLOW:
2446                 if (!(nfc->data & RXH_IP_SRC) ||
2447                     !(nfc->data & RXH_IP_DST))
2448                         return -EINVAL;
2449                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2450                 case 0:
2451                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2452                         break;
2453                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2454                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2455                         break;
2456                 default:
2457                         return -EINVAL;
2458                 }
2459                 break;
2460         case AH_ESP_V4_FLOW:
2461         case AH_V4_FLOW:
2462         case ESP_V4_FLOW:
2463         case SCTP_V4_FLOW:
2464         case AH_ESP_V6_FLOW:
2465         case AH_V6_FLOW:
2466         case ESP_V6_FLOW:
2467         case SCTP_V6_FLOW:
2468                 if (!(nfc->data & RXH_IP_SRC) ||
2469                     !(nfc->data & RXH_IP_DST) ||
2470                     (nfc->data & RXH_L4_B_0_1) ||
2471                     (nfc->data & RXH_L4_B_2_3))
2472                         return -EINVAL;
2473                 break;
2474         default:
2475                 return -EINVAL;
2476         }
2477
2478         /* if we changed something we need to update flags */
2479         if (flags != adapter->flags) {
2480                 struct e1000_hw *hw = &adapter->hw;
2481                 u32 mrqc = rd32(E1000_MRQC);
2482
2483                 if ((flags & UDP_RSS_FLAGS) &&
2484                     !(adapter->flags & UDP_RSS_FLAGS))
2485                         dev_err(&adapter->pdev->dev,
2486                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2487
2488                 adapter->flags = flags;
2489
2490                 /* Perform hash on these packet types */
2491                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2492                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2493                         E1000_MRQC_RSS_FIELD_IPV6 |
2494                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2495
2496                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2497                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2498
2499                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2500                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2501
2502                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2503                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2504
2505                 wr32(E1000_MRQC, mrqc);
2506         }
2507
2508         return 0;
2509 }
2510
2511 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2512 {
2513         struct igb_adapter *adapter = netdev_priv(dev);
2514         int ret = -EOPNOTSUPP;
2515
2516         switch (cmd->cmd) {
2517         case ETHTOOL_SRXFH:
2518                 ret = igb_set_rss_hash_opt(adapter, cmd);
2519                 break;
2520         default:
2521                 break;
2522         }
2523
2524         return ret;
2525 }
2526
2527 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2528 {
2529         struct igb_adapter *adapter = netdev_priv(netdev);
2530         struct e1000_hw *hw = &adapter->hw;
2531         u32 ipcnfg, eeer;
2532
2533         if ((hw->mac.type < e1000_i350) ||
2534             (hw->phy.media_type != e1000_media_type_copper))
2535                 return -EOPNOTSUPP;
2536
2537         edata->supported = (SUPPORTED_1000baseT_Full |
2538                             SUPPORTED_100baseT_Full);
2539
2540         ipcnfg = rd32(E1000_IPCNFG);
2541         eeer = rd32(E1000_EEER);
2542
2543         /* EEE status on negotiated link */
2544         if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2545                 edata->advertised = ADVERTISED_1000baseT_Full;
2546
2547         if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2548                 edata->advertised |= ADVERTISED_100baseT_Full;
2549
2550         if (eeer & E1000_EEER_EEE_NEG)
2551                 edata->eee_active = true;
2552
2553         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2554
2555         if (eeer & E1000_EEER_TX_LPI_EN)
2556                 edata->tx_lpi_enabled = true;
2557
2558         /* Report correct negotiated EEE status for devices that
2559          * wrongly report EEE at half-duplex
2560          */
2561         if (adapter->link_duplex == HALF_DUPLEX) {
2562                 edata->eee_enabled = false;
2563                 edata->eee_active = false;
2564                 edata->tx_lpi_enabled = false;
2565                 edata->advertised &= ~edata->advertised;
2566         }
2567
2568         return 0;
2569 }
2570
2571 static int igb_set_eee(struct net_device *netdev,
2572                        struct ethtool_eee *edata)
2573 {
2574         struct igb_adapter *adapter = netdev_priv(netdev);
2575         struct e1000_hw *hw = &adapter->hw;
2576         struct ethtool_eee eee_curr;
2577         s32 ret_val;
2578
2579         if ((hw->mac.type < e1000_i350) ||
2580             (hw->phy.media_type != e1000_media_type_copper))
2581                 return -EOPNOTSUPP;
2582
2583         ret_val = igb_get_eee(netdev, &eee_curr);
2584         if (ret_val)
2585                 return ret_val;
2586
2587         if (eee_curr.eee_enabled) {
2588                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2589                         dev_err(&adapter->pdev->dev,
2590                                 "Setting EEE tx-lpi is not supported\n");
2591                         return -EINVAL;
2592                 }
2593
2594                 /* Tx LPI timer is not implemented currently */
2595                 if (edata->tx_lpi_timer) {
2596                         dev_err(&adapter->pdev->dev,
2597                                 "Setting EEE Tx LPI timer is not supported\n");
2598                         return -EINVAL;
2599                 }
2600
2601                 if (eee_curr.advertised != edata->advertised) {
2602                         dev_err(&adapter->pdev->dev,
2603                                 "Setting EEE Advertisement is not supported\n");
2604                         return -EINVAL;
2605                 }
2606
2607         } else if (!edata->eee_enabled) {
2608                 dev_err(&adapter->pdev->dev,
2609                         "Setting EEE options are not supported with EEE disabled\n");
2610                         return -EINVAL;
2611                 }
2612
2613         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2614                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2615                 igb_set_eee_i350(hw);
2616
2617                 /* reset link */
2618                 if (!netif_running(netdev))
2619                         igb_reset(adapter);
2620         }
2621
2622         return 0;
2623 }
2624
2625 static int igb_get_module_info(struct net_device *netdev,
2626                                struct ethtool_modinfo *modinfo)
2627 {
2628         struct igb_adapter *adapter = netdev_priv(netdev);
2629         struct e1000_hw *hw = &adapter->hw;
2630         u32 status = E1000_SUCCESS;
2631         u16 sff8472_rev, addr_mode;
2632         bool page_swap = false;
2633
2634         if ((hw->phy.media_type == e1000_media_type_copper) ||
2635             (hw->phy.media_type == e1000_media_type_unknown))
2636                 return -EOPNOTSUPP;
2637
2638         /* Check whether we support SFF-8472 or not */
2639         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2640         if (status != E1000_SUCCESS)
2641                 return -EIO;
2642
2643         /* addressing mode is not supported */
2644         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2645         if (status != E1000_SUCCESS)
2646                 return -EIO;
2647
2648         /* addressing mode is not supported */
2649         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2650                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2651                 page_swap = true;
2652         }
2653
2654         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2655                 /* We have an SFP, but it does not support SFF-8472 */
2656                 modinfo->type = ETH_MODULE_SFF_8079;
2657                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2658         } else {
2659                 /* We have an SFP which supports a revision of SFF-8472 */
2660                 modinfo->type = ETH_MODULE_SFF_8472;
2661                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2662         }
2663
2664         return 0;
2665 }
2666
2667 static int igb_get_module_eeprom(struct net_device *netdev,
2668                                  struct ethtool_eeprom *ee, u8 *data)
2669 {
2670         struct igb_adapter *adapter = netdev_priv(netdev);
2671         struct e1000_hw *hw = &adapter->hw;
2672         u32 status = E1000_SUCCESS;
2673         u16 *dataword;
2674         u16 first_word, last_word;
2675         int i = 0;
2676
2677         if (ee->len == 0)
2678                 return -EINVAL;
2679
2680         first_word = ee->offset >> 1;
2681         last_word = (ee->offset + ee->len - 1) >> 1;
2682
2683         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2684                            GFP_KERNEL);
2685         if (!dataword)
2686                 return -ENOMEM;
2687
2688         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2689         for (i = 0; i < last_word - first_word + 1; i++) {
2690                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2691                 if (status != E1000_SUCCESS)
2692                         /* Error occurred while reading module */
2693                         return -EIO;
2694
2695                 be16_to_cpus(&dataword[i]);
2696         }
2697
2698         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2699         kfree(dataword);
2700
2701         return 0;
2702 }
2703
2704 static int igb_ethtool_begin(struct net_device *netdev)
2705 {
2706         struct igb_adapter *adapter = netdev_priv(netdev);
2707         pm_runtime_get_sync(&adapter->pdev->dev);
2708         return 0;
2709 }
2710
2711 static void igb_ethtool_complete(struct net_device *netdev)
2712 {
2713         struct igb_adapter *adapter = netdev_priv(netdev);
2714         pm_runtime_put(&adapter->pdev->dev);
2715 }
2716
2717 static const struct ethtool_ops igb_ethtool_ops = {
2718         .get_settings           = igb_get_settings,
2719         .set_settings           = igb_set_settings,
2720         .get_drvinfo            = igb_get_drvinfo,
2721         .get_regs_len           = igb_get_regs_len,
2722         .get_regs               = igb_get_regs,
2723         .get_wol                = igb_get_wol,
2724         .set_wol                = igb_set_wol,
2725         .get_msglevel           = igb_get_msglevel,
2726         .set_msglevel           = igb_set_msglevel,
2727         .nway_reset             = igb_nway_reset,
2728         .get_link               = igb_get_link,
2729         .get_eeprom_len         = igb_get_eeprom_len,
2730         .get_eeprom             = igb_get_eeprom,
2731         .set_eeprom             = igb_set_eeprom,
2732         .get_ringparam          = igb_get_ringparam,
2733         .set_ringparam          = igb_set_ringparam,
2734         .get_pauseparam         = igb_get_pauseparam,
2735         .set_pauseparam         = igb_set_pauseparam,
2736         .self_test              = igb_diag_test,
2737         .get_strings            = igb_get_strings,
2738         .set_phys_id            = igb_set_phys_id,
2739         .get_sset_count         = igb_get_sset_count,
2740         .get_ethtool_stats      = igb_get_ethtool_stats,
2741         .get_coalesce           = igb_get_coalesce,
2742         .set_coalesce           = igb_set_coalesce,
2743         .get_ts_info            = igb_get_ts_info,
2744         .get_rxnfc              = igb_get_rxnfc,
2745         .set_rxnfc              = igb_set_rxnfc,
2746         .get_eee                = igb_get_eee,
2747         .set_eee                = igb_set_eee,
2748         .get_module_info        = igb_get_module_info,
2749         .get_module_eeprom      = igb_get_module_eeprom,
2750         .begin                  = igb_ethtool_begin,
2751         .complete               = igb_ethtool_complete,
2752 };
2753
2754 void igb_set_ethtool_ops(struct net_device *netdev)
2755 {
2756         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2757 }