Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61
62 #define MAJ 4
63 #define MIN 0
64 #define BUILD 17
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70                                 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73 static const struct e1000_info *igb_info_tbl[] = {
74         [board_82575] = &e1000_82575_info,
75 };
76
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108         /* required last entry */
109         {0, }
110 };
111
112 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114 void igb_reset(struct igb_adapter *);
115 static int igb_setup_all_tx_resources(struct igb_adapter *);
116 static int igb_setup_all_rx_resources(struct igb_adapter *);
117 static void igb_free_all_tx_resources(struct igb_adapter *);
118 static void igb_free_all_rx_resources(struct igb_adapter *);
119 static void igb_setup_mrqc(struct igb_adapter *);
120 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121 static void __devexit igb_remove(struct pci_dev *pdev);
122 static int igb_sw_init(struct igb_adapter *);
123 static int igb_open(struct net_device *);
124 static int igb_close(struct net_device *);
125 static void igb_configure_tx(struct igb_adapter *);
126 static void igb_configure_rx(struct igb_adapter *);
127 static void igb_clean_all_tx_rings(struct igb_adapter *);
128 static void igb_clean_all_rx_rings(struct igb_adapter *);
129 static void igb_clean_tx_ring(struct igb_ring *);
130 static void igb_clean_rx_ring(struct igb_ring *);
131 static void igb_set_rx_mode(struct net_device *);
132 static void igb_update_phy_info(unsigned long);
133 static void igb_watchdog(unsigned long);
134 static void igb_watchdog_task(struct work_struct *);
135 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137                                                  struct rtnl_link_stats64 *stats);
138 static int igb_change_mtu(struct net_device *, int);
139 static int igb_set_mac(struct net_device *, void *);
140 static void igb_set_uta(struct igb_adapter *adapter);
141 static irqreturn_t igb_intr(int irq, void *);
142 static irqreturn_t igb_intr_msi(int irq, void *);
143 static irqreturn_t igb_msix_other(int irq, void *);
144 static irqreturn_t igb_msix_ring(int irq, void *);
145 #ifdef CONFIG_IGB_DCA
146 static void igb_update_dca(struct igb_q_vector *);
147 static void igb_setup_dca(struct igb_adapter *);
148 #endif /* CONFIG_IGB_DCA */
149 static int igb_poll(struct napi_struct *, int);
150 static bool igb_clean_tx_irq(struct igb_q_vector *);
151 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153 static void igb_tx_timeout(struct net_device *);
154 static void igb_reset_task(struct work_struct *);
155 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 static int igb_vlan_rx_add_vid(struct net_device *, u16);
157 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158 static void igb_restore_vlan(struct igb_adapter *);
159 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 static void igb_ping_all_vfs(struct igb_adapter *);
161 static void igb_msg_task(struct igb_adapter *);
162 static void igb_vmm_control(struct igb_adapter *);
163 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167                                int vf, u16 vlan, u8 qos);
168 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170                                  struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173 #ifdef CONFIG_PCI_IOV
174 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176 #endif
177
178 #ifdef CONFIG_PM
179 #ifdef CONFIG_PM_SLEEP
180 static int igb_suspend(struct device *);
181 #endif
182 static int igb_resume(struct device *);
183 #ifdef CONFIG_PM_RUNTIME
184 static int igb_runtime_suspend(struct device *dev);
185 static int igb_runtime_resume(struct device *dev);
186 static int igb_runtime_idle(struct device *dev);
187 #endif
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 #endif
194 static void igb_shutdown(struct pci_dev *);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 /* for netdump / net console */
205 static void igb_netpoll(struct net_device *);
206 #endif
207 #ifdef CONFIG_PCI_IOV
208 static unsigned int max_vfs = 0;
209 module_param(max_vfs, uint, 0);
210 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211                  "per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215                      pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220         .error_detected = igb_io_error_detected,
221         .slot_reset = igb_io_slot_reset,
222         .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228         .name     = igb_driver_name,
229         .id_table = igb_pci_tbl,
230         .probe    = igb_probe,
231         .remove   = __devexit_p(igb_remove),
232 #ifdef CONFIG_PM
233         .driver.pm = &igb_pm_ops,
234 #endif
235         .shutdown = igb_shutdown,
236         .err_handler = &igb_err_handler
237 };
238
239 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241 MODULE_LICENSE("GPL");
242 MODULE_VERSION(DRV_VERSION);
243
244 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249 struct igb_reg_info {
250         u32 ofs;
251         char *name;
252 };
253
254 static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256         /* General Registers */
257         {E1000_CTRL, "CTRL"},
258         {E1000_STATUS, "STATUS"},
259         {E1000_CTRL_EXT, "CTRL_EXT"},
260
261         /* Interrupt Registers */
262         {E1000_ICR, "ICR"},
263
264         /* RX Registers */
265         {E1000_RCTL, "RCTL"},
266         {E1000_RDLEN(0), "RDLEN"},
267         {E1000_RDH(0), "RDH"},
268         {E1000_RDT(0), "RDT"},
269         {E1000_RXDCTL(0), "RXDCTL"},
270         {E1000_RDBAL(0), "RDBAL"},
271         {E1000_RDBAH(0), "RDBAH"},
272
273         /* TX Registers */
274         {E1000_TCTL, "TCTL"},
275         {E1000_TDBAL(0), "TDBAL"},
276         {E1000_TDBAH(0), "TDBAH"},
277         {E1000_TDLEN(0), "TDLEN"},
278         {E1000_TDH(0), "TDH"},
279         {E1000_TDT(0), "TDT"},
280         {E1000_TXDCTL(0), "TXDCTL"},
281         {E1000_TDFH, "TDFH"},
282         {E1000_TDFT, "TDFT"},
283         {E1000_TDFHS, "TDFHS"},
284         {E1000_TDFPC, "TDFPC"},
285
286         /* List Terminator */
287         {}
288 };
289
290 /*
291  * igb_regdump - register printout routine
292  */
293 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294 {
295         int n = 0;
296         char rname[16];
297         u32 regs[8];
298
299         switch (reginfo->ofs) {
300         case E1000_RDLEN(0):
301                 for (n = 0; n < 4; n++)
302                         regs[n] = rd32(E1000_RDLEN(n));
303                 break;
304         case E1000_RDH(0):
305                 for (n = 0; n < 4; n++)
306                         regs[n] = rd32(E1000_RDH(n));
307                 break;
308         case E1000_RDT(0):
309                 for (n = 0; n < 4; n++)
310                         regs[n] = rd32(E1000_RDT(n));
311                 break;
312         case E1000_RXDCTL(0):
313                 for (n = 0; n < 4; n++)
314                         regs[n] = rd32(E1000_RXDCTL(n));
315                 break;
316         case E1000_RDBAL(0):
317                 for (n = 0; n < 4; n++)
318                         regs[n] = rd32(E1000_RDBAL(n));
319                 break;
320         case E1000_RDBAH(0):
321                 for (n = 0; n < 4; n++)
322                         regs[n] = rd32(E1000_RDBAH(n));
323                 break;
324         case E1000_TDBAL(0):
325                 for (n = 0; n < 4; n++)
326                         regs[n] = rd32(E1000_RDBAL(n));
327                 break;
328         case E1000_TDBAH(0):
329                 for (n = 0; n < 4; n++)
330                         regs[n] = rd32(E1000_TDBAH(n));
331                 break;
332         case E1000_TDLEN(0):
333                 for (n = 0; n < 4; n++)
334                         regs[n] = rd32(E1000_TDLEN(n));
335                 break;
336         case E1000_TDH(0):
337                 for (n = 0; n < 4; n++)
338                         regs[n] = rd32(E1000_TDH(n));
339                 break;
340         case E1000_TDT(0):
341                 for (n = 0; n < 4; n++)
342                         regs[n] = rd32(E1000_TDT(n));
343                 break;
344         case E1000_TXDCTL(0):
345                 for (n = 0; n < 4; n++)
346                         regs[n] = rd32(E1000_TXDCTL(n));
347                 break;
348         default:
349                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350                 return;
351         }
352
353         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355                 regs[2], regs[3]);
356 }
357
358 /*
359  * igb_dump - Print registers, tx-rings and rx-rings
360  */
361 static void igb_dump(struct igb_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         struct e1000_hw *hw = &adapter->hw;
365         struct igb_reg_info *reginfo;
366         struct igb_ring *tx_ring;
367         union e1000_adv_tx_desc *tx_desc;
368         struct my_u0 { u64 a; u64 b; } *u0;
369         struct igb_ring *rx_ring;
370         union e1000_adv_rx_desc *rx_desc;
371         u32 staterr;
372         u16 i, n;
373
374         if (!netif_msg_hw(adapter))
375                 return;
376
377         /* Print netdevice Info */
378         if (netdev) {
379                 dev_info(&adapter->pdev->dev, "Net device Info\n");
380                 pr_info("Device Name     state            trans_start      "
381                         "last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
435                         "[bi->dma       ] leng  ntw timestamp        "
436                         "bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
455                                 " %04X  %p %016llX %p%s\n", i,
456                                 le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
516                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
517                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520                 for (i = 0; i < rx_ring->count; i++) {
521                         const char *next_desc;
522                         struct igb_rx_buffer *buffer_info;
523                         buffer_info = &rx_ring->rx_buffer_info[i];
524                         rx_desc = IGB_RX_DESC(rx_ring, i);
525                         u0 = (struct my_u0 *)rx_desc;
526                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528                         if (i == rx_ring->next_to_use)
529                                 next_desc = " NTU";
530                         else if (i == rx_ring->next_to_clean)
531                                 next_desc = " NTC";
532                         else
533                                 next_desc = "";
534
535                         if (staterr & E1000_RXD_STAT_DD) {
536                                 /* Descriptor Done */
537                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538                                         "RWB", i,
539                                         le64_to_cpu(u0->a),
540                                         le64_to_cpu(u0->b),
541                                         next_desc);
542                         } else {
543                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544                                         "R  ", i,
545                                         le64_to_cpu(u0->a),
546                                         le64_to_cpu(u0->b),
547                                         (u64)buffer_info->dma,
548                                         next_desc);
549
550                                 if (netif_msg_pktdata(adapter) &&
551                                     buffer_info->dma && buffer_info->page) {
552                                         print_hex_dump(KERN_INFO, "",
553                                           DUMP_PREFIX_ADDRESS,
554                                           16, 1,
555                                           page_address(buffer_info->page) +
556                                                       buffer_info->page_offset,
557                                           IGB_RX_BUFSZ, true);
558                                 }
559                         }
560                 }
561         }
562
563 exit:
564         return;
565 }
566
567 /**
568  * igb_get_hw_dev - return device
569  * used by hardware layer to print debugging information
570  **/
571 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572 {
573         struct igb_adapter *adapter = hw->back;
574         return adapter->netdev;
575 }
576
577 /**
578  * igb_init_module - Driver Registration Routine
579  *
580  * igb_init_module is the first routine called when the driver is
581  * loaded. All it does is register with the PCI subsystem.
582  **/
583 static int __init igb_init_module(void)
584 {
585         int ret;
586         pr_info("%s - version %s\n",
587                igb_driver_string, igb_driver_version);
588
589         pr_info("%s\n", igb_copyright);
590
591 #ifdef CONFIG_IGB_DCA
592         dca_register_notify(&dca_notifier);
593 #endif
594         ret = pci_register_driver(&igb_driver);
595         return ret;
596 }
597
598 module_init(igb_init_module);
599
600 /**
601  * igb_exit_module - Driver Exit Cleanup Routine
602  *
603  * igb_exit_module is called just before the driver is removed
604  * from memory.
605  **/
606 static void __exit igb_exit_module(void)
607 {
608 #ifdef CONFIG_IGB_DCA
609         dca_unregister_notify(&dca_notifier);
610 #endif
611         pci_unregister_driver(&igb_driver);
612 }
613
614 module_exit(igb_exit_module);
615
616 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
617 /**
618  * igb_cache_ring_register - Descriptor ring to register mapping
619  * @adapter: board private structure to initialize
620  *
621  * Once we know the feature-set enabled for the device, we'll cache
622  * the register offset the descriptor ring is assigned to.
623  **/
624 static void igb_cache_ring_register(struct igb_adapter *adapter)
625 {
626         int i = 0, j = 0;
627         u32 rbase_offset = adapter->vfs_allocated_count;
628
629         switch (adapter->hw.mac.type) {
630         case e1000_82576:
631                 /* The queues are allocated for virtualization such that VF 0
632                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633                  * In order to avoid collision we start at the first free queue
634                  * and continue consuming queues in the same sequence
635                  */
636                 if (adapter->vfs_allocated_count) {
637                         for (; i < adapter->rss_queues; i++)
638                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
639                                                                Q_IDX_82576(i);
640                 }
641         case e1000_82575:
642         case e1000_82580:
643         case e1000_i350:
644         case e1000_i210:
645         case e1000_i211:
646         default:
647                 for (; i < adapter->num_rx_queues; i++)
648                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649                 for (; j < adapter->num_tx_queues; j++)
650                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651                 break;
652         }
653 }
654
655 /**
656  *  igb_write_ivar - configure ivar for given MSI-X vector
657  *  @hw: pointer to the HW structure
658  *  @msix_vector: vector number we are allocating to a given ring
659  *  @index: row index of IVAR register to write within IVAR table
660  *  @offset: column offset of in IVAR, should be multiple of 8
661  *
662  *  This function is intended to handle the writing of the IVAR register
663  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
664  *  each containing an cause allocation for an Rx and Tx ring, and a
665  *  variable number of rows depending on the number of queues supported.
666  **/
667 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
668                            int index, int offset)
669 {
670         u32 ivar = array_rd32(E1000_IVAR0, index);
671
672         /* clear any bits that are currently set */
673         ivar &= ~((u32)0xFF << offset);
674
675         /* write vector and valid bit */
676         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
677
678         array_wr32(E1000_IVAR0, index, ivar);
679 }
680
681 #define IGB_N0_QUEUE -1
682 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
683 {
684         struct igb_adapter *adapter = q_vector->adapter;
685         struct e1000_hw *hw = &adapter->hw;
686         int rx_queue = IGB_N0_QUEUE;
687         int tx_queue = IGB_N0_QUEUE;
688         u32 msixbm = 0;
689
690         if (q_vector->rx.ring)
691                 rx_queue = q_vector->rx.ring->reg_idx;
692         if (q_vector->tx.ring)
693                 tx_queue = q_vector->tx.ring->reg_idx;
694
695         switch (hw->mac.type) {
696         case e1000_82575:
697                 /* The 82575 assigns vectors using a bitmask, which matches the
698                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
699                    or more queues to a vector, we write the appropriate bits
700                    into the MSIXBM register for that vector. */
701                 if (rx_queue > IGB_N0_QUEUE)
702                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
703                 if (tx_queue > IGB_N0_QUEUE)
704                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
705                 if (!adapter->msix_entries && msix_vector == 0)
706                         msixbm |= E1000_EIMS_OTHER;
707                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
708                 q_vector->eims_value = msixbm;
709                 break;
710         case e1000_82576:
711                 /*
712                  * 82576 uses a table that essentially consists of 2 columns
713                  * with 8 rows.  The ordering is column-major so we use the
714                  * lower 3 bits as the row index, and the 4th bit as the
715                  * column offset.
716                  */
717                 if (rx_queue > IGB_N0_QUEUE)
718                         igb_write_ivar(hw, msix_vector,
719                                        rx_queue & 0x7,
720                                        (rx_queue & 0x8) << 1);
721                 if (tx_queue > IGB_N0_QUEUE)
722                         igb_write_ivar(hw, msix_vector,
723                                        tx_queue & 0x7,
724                                        ((tx_queue & 0x8) << 1) + 8);
725                 q_vector->eims_value = 1 << msix_vector;
726                 break;
727         case e1000_82580:
728         case e1000_i350:
729         case e1000_i210:
730         case e1000_i211:
731                 /*
732                  * On 82580 and newer adapters the scheme is similar to 82576
733                  * however instead of ordering column-major we have things
734                  * ordered row-major.  So we traverse the table by using
735                  * bit 0 as the column offset, and the remaining bits as the
736                  * row index.
737                  */
738                 if (rx_queue > IGB_N0_QUEUE)
739                         igb_write_ivar(hw, msix_vector,
740                                        rx_queue >> 1,
741                                        (rx_queue & 0x1) << 4);
742                 if (tx_queue > IGB_N0_QUEUE)
743                         igb_write_ivar(hw, msix_vector,
744                                        tx_queue >> 1,
745                                        ((tx_queue & 0x1) << 4) + 8);
746                 q_vector->eims_value = 1 << msix_vector;
747                 break;
748         default:
749                 BUG();
750                 break;
751         }
752
753         /* add q_vector eims value to global eims_enable_mask */
754         adapter->eims_enable_mask |= q_vector->eims_value;
755
756         /* configure q_vector to set itr on first interrupt */
757         q_vector->set_itr = 1;
758 }
759
760 /**
761  * igb_configure_msix - Configure MSI-X hardware
762  *
763  * igb_configure_msix sets up the hardware to properly
764  * generate MSI-X interrupts.
765  **/
766 static void igb_configure_msix(struct igb_adapter *adapter)
767 {
768         u32 tmp;
769         int i, vector = 0;
770         struct e1000_hw *hw = &adapter->hw;
771
772         adapter->eims_enable_mask = 0;
773
774         /* set vector for other causes, i.e. link changes */
775         switch (hw->mac.type) {
776         case e1000_82575:
777                 tmp = rd32(E1000_CTRL_EXT);
778                 /* enable MSI-X PBA support*/
779                 tmp |= E1000_CTRL_EXT_PBA_CLR;
780
781                 /* Auto-Mask interrupts upon ICR read. */
782                 tmp |= E1000_CTRL_EXT_EIAME;
783                 tmp |= E1000_CTRL_EXT_IRCA;
784
785                 wr32(E1000_CTRL_EXT, tmp);
786
787                 /* enable msix_other interrupt */
788                 array_wr32(E1000_MSIXBM(0), vector++,
789                                       E1000_EIMS_OTHER);
790                 adapter->eims_other = E1000_EIMS_OTHER;
791
792                 break;
793
794         case e1000_82576:
795         case e1000_82580:
796         case e1000_i350:
797         case e1000_i210:
798         case e1000_i211:
799                 /* Turn on MSI-X capability first, or our settings
800                  * won't stick.  And it will take days to debug. */
801                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
802                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
803                                 E1000_GPIE_NSICR);
804
805                 /* enable msix_other interrupt */
806                 adapter->eims_other = 1 << vector;
807                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
808
809                 wr32(E1000_IVAR_MISC, tmp);
810                 break;
811         default:
812                 /* do nothing, since nothing else supports MSI-X */
813                 break;
814         } /* switch (hw->mac.type) */
815
816         adapter->eims_enable_mask |= adapter->eims_other;
817
818         for (i = 0; i < adapter->num_q_vectors; i++)
819                 igb_assign_vector(adapter->q_vector[i], vector++);
820
821         wrfl();
822 }
823
824 /**
825  * igb_request_msix - Initialize MSI-X interrupts
826  *
827  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
828  * kernel.
829  **/
830 static int igb_request_msix(struct igb_adapter *adapter)
831 {
832         struct net_device *netdev = adapter->netdev;
833         struct e1000_hw *hw = &adapter->hw;
834         int i, err = 0, vector = 0;
835
836         err = request_irq(adapter->msix_entries[vector].vector,
837                           igb_msix_other, 0, netdev->name, adapter);
838         if (err)
839                 goto out;
840         vector++;
841
842         for (i = 0; i < adapter->num_q_vectors; i++) {
843                 struct igb_q_vector *q_vector = adapter->q_vector[i];
844
845                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
846
847                 if (q_vector->rx.ring && q_vector->tx.ring)
848                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
849                                 q_vector->rx.ring->queue_index);
850                 else if (q_vector->tx.ring)
851                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
852                                 q_vector->tx.ring->queue_index);
853                 else if (q_vector->rx.ring)
854                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
855                                 q_vector->rx.ring->queue_index);
856                 else
857                         sprintf(q_vector->name, "%s-unused", netdev->name);
858
859                 err = request_irq(adapter->msix_entries[vector].vector,
860                                   igb_msix_ring, 0, q_vector->name,
861                                   q_vector);
862                 if (err)
863                         goto out;
864                 vector++;
865         }
866
867         igb_configure_msix(adapter);
868         return 0;
869 out:
870         return err;
871 }
872
873 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
874 {
875         if (adapter->msix_entries) {
876                 pci_disable_msix(adapter->pdev);
877                 kfree(adapter->msix_entries);
878                 adapter->msix_entries = NULL;
879         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
880                 pci_disable_msi(adapter->pdev);
881         }
882 }
883
884 /**
885  * igb_free_q_vector - Free memory allocated for specific interrupt vector
886  * @adapter: board private structure to initialize
887  * @v_idx: Index of vector to be freed
888  *
889  * This function frees the memory allocated to the q_vector.  In addition if
890  * NAPI is enabled it will delete any references to the NAPI struct prior
891  * to freeing the q_vector.
892  **/
893 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
894 {
895         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
896
897         if (q_vector->tx.ring)
898                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
899
900         if (q_vector->rx.ring)
901                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
902
903         adapter->q_vector[v_idx] = NULL;
904         netif_napi_del(&q_vector->napi);
905
906         /*
907          * ixgbe_get_stats64() might access the rings on this vector,
908          * we must wait a grace period before freeing it.
909          */
910         kfree_rcu(q_vector, rcu);
911 }
912
913 /**
914  * igb_free_q_vectors - Free memory allocated for interrupt vectors
915  * @adapter: board private structure to initialize
916  *
917  * This function frees the memory allocated to the q_vectors.  In addition if
918  * NAPI is enabled it will delete any references to the NAPI struct prior
919  * to freeing the q_vector.
920  **/
921 static void igb_free_q_vectors(struct igb_adapter *adapter)
922 {
923         int v_idx = adapter->num_q_vectors;
924
925         adapter->num_tx_queues = 0;
926         adapter->num_rx_queues = 0;
927         adapter->num_q_vectors = 0;
928
929         while (v_idx--)
930                 igb_free_q_vector(adapter, v_idx);
931 }
932
933 /**
934  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
935  *
936  * This function resets the device so that it has 0 rx queues, tx queues, and
937  * MSI-X interrupts allocated.
938  */
939 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
940 {
941         igb_free_q_vectors(adapter);
942         igb_reset_interrupt_capability(adapter);
943 }
944
945 /**
946  * igb_set_interrupt_capability - set MSI or MSI-X if supported
947  *
948  * Attempt to configure interrupts using the best available
949  * capabilities of the hardware and kernel.
950  **/
951 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
952 {
953         int err;
954         int numvecs, i;
955
956         /* Number of supported queues. */
957         adapter->num_rx_queues = adapter->rss_queues;
958         if (adapter->vfs_allocated_count)
959                 adapter->num_tx_queues = 1;
960         else
961                 adapter->num_tx_queues = adapter->rss_queues;
962
963         /* start with one vector for every rx queue */
964         numvecs = adapter->num_rx_queues;
965
966         /* if tx handler is separate add 1 for every tx queue */
967         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
968                 numvecs += adapter->num_tx_queues;
969
970         /* store the number of vectors reserved for queues */
971         adapter->num_q_vectors = numvecs;
972
973         /* add 1 vector for link status interrupts */
974         numvecs++;
975         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
976                                         GFP_KERNEL);
977
978         if (!adapter->msix_entries)
979                 goto msi_only;
980
981         for (i = 0; i < numvecs; i++)
982                 adapter->msix_entries[i].entry = i;
983
984         err = pci_enable_msix(adapter->pdev,
985                               adapter->msix_entries,
986                               numvecs);
987         if (err == 0)
988                 return;
989
990         igb_reset_interrupt_capability(adapter);
991
992         /* If we can't do MSI-X, try MSI */
993 msi_only:
994 #ifdef CONFIG_PCI_IOV
995         /* disable SR-IOV for non MSI-X configurations */
996         if (adapter->vf_data) {
997                 struct e1000_hw *hw = &adapter->hw;
998                 /* disable iov and allow time for transactions to clear */
999                 pci_disable_sriov(adapter->pdev);
1000                 msleep(500);
1001
1002                 kfree(adapter->vf_data);
1003                 adapter->vf_data = NULL;
1004                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1005                 wrfl();
1006                 msleep(100);
1007                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1008         }
1009 #endif
1010         adapter->vfs_allocated_count = 0;
1011         adapter->rss_queues = 1;
1012         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1013         adapter->num_rx_queues = 1;
1014         adapter->num_tx_queues = 1;
1015         adapter->num_q_vectors = 1;
1016         if (!pci_enable_msi(adapter->pdev))
1017                 adapter->flags |= IGB_FLAG_HAS_MSI;
1018 }
1019
1020 static void igb_add_ring(struct igb_ring *ring,
1021                          struct igb_ring_container *head)
1022 {
1023         head->ring = ring;
1024         head->count++;
1025 }
1026
1027 /**
1028  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1029  * @adapter: board private structure to initialize
1030  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1031  * @v_idx: index of vector in adapter struct
1032  * @txr_count: total number of Tx rings to allocate
1033  * @txr_idx: index of first Tx ring to allocate
1034  * @rxr_count: total number of Rx rings to allocate
1035  * @rxr_idx: index of first Rx ring to allocate
1036  *
1037  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1038  **/
1039 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1040                               int v_count, int v_idx,
1041                               int txr_count, int txr_idx,
1042                               int rxr_count, int rxr_idx)
1043 {
1044         struct igb_q_vector *q_vector;
1045         struct igb_ring *ring;
1046         int ring_count, size;
1047
1048         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1049         if (txr_count > 1 || rxr_count > 1)
1050                 return -ENOMEM;
1051
1052         ring_count = txr_count + rxr_count;
1053         size = sizeof(struct igb_q_vector) +
1054                (sizeof(struct igb_ring) * ring_count);
1055
1056         /* allocate q_vector and rings */
1057         q_vector = kzalloc(size, GFP_KERNEL);
1058         if (!q_vector)
1059                 return -ENOMEM;
1060
1061         /* initialize NAPI */
1062         netif_napi_add(adapter->netdev, &q_vector->napi,
1063                        igb_poll, 64);
1064
1065         /* tie q_vector and adapter together */
1066         adapter->q_vector[v_idx] = q_vector;
1067         q_vector->adapter = adapter;
1068
1069         /* initialize work limits */
1070         q_vector->tx.work_limit = adapter->tx_work_limit;
1071
1072         /* initialize ITR configuration */
1073         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1074         q_vector->itr_val = IGB_START_ITR;
1075
1076         /* initialize pointer to rings */
1077         ring = q_vector->ring;
1078
1079         if (txr_count) {
1080                 /* assign generic ring traits */
1081                 ring->dev = &adapter->pdev->dev;
1082                 ring->netdev = adapter->netdev;
1083
1084                 /* configure backlink on ring */
1085                 ring->q_vector = q_vector;
1086
1087                 /* update q_vector Tx values */
1088                 igb_add_ring(ring, &q_vector->tx);
1089
1090                 /* For 82575, context index must be unique per ring. */
1091                 if (adapter->hw.mac.type == e1000_82575)
1092                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1093
1094                 /* apply Tx specific ring traits */
1095                 ring->count = adapter->tx_ring_count;
1096                 ring->queue_index = txr_idx;
1097
1098                 /* assign ring to adapter */
1099                 adapter->tx_ring[txr_idx] = ring;
1100
1101                 /* push pointer to next ring */
1102                 ring++;
1103         }
1104
1105         if (rxr_count) {
1106                 /* assign generic ring traits */
1107                 ring->dev = &adapter->pdev->dev;
1108                 ring->netdev = adapter->netdev;
1109
1110                 /* configure backlink on ring */
1111                 ring->q_vector = q_vector;
1112
1113                 /* update q_vector Rx values */
1114                 igb_add_ring(ring, &q_vector->rx);
1115
1116                 /* set flag indicating ring supports SCTP checksum offload */
1117                 if (adapter->hw.mac.type >= e1000_82576)
1118                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1119
1120                 /*
1121                  * On i350, i210, and i211, loopback VLAN packets
1122                  * have the tag byte-swapped.
1123                  * */
1124                 if (adapter->hw.mac.type >= e1000_i350)
1125                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1126
1127                 /* apply Rx specific ring traits */
1128                 ring->count = adapter->rx_ring_count;
1129                 ring->queue_index = rxr_idx;
1130
1131                 /* assign ring to adapter */
1132                 adapter->rx_ring[rxr_idx] = ring;
1133         }
1134
1135         return 0;
1136 }
1137
1138
1139 /**
1140  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1141  * @adapter: board private structure to initialize
1142  *
1143  * We allocate one q_vector per queue interrupt.  If allocation fails we
1144  * return -ENOMEM.
1145  **/
1146 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1147 {
1148         int q_vectors = adapter->num_q_vectors;
1149         int rxr_remaining = adapter->num_rx_queues;
1150         int txr_remaining = adapter->num_tx_queues;
1151         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1152         int err;
1153
1154         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1155                 for (; rxr_remaining; v_idx++) {
1156                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1157                                                  0, 0, 1, rxr_idx);
1158
1159                         if (err)
1160                                 goto err_out;
1161
1162                         /* update counts and index */
1163                         rxr_remaining--;
1164                         rxr_idx++;
1165                 }
1166         }
1167
1168         for (; v_idx < q_vectors; v_idx++) {
1169                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1170                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1171                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1172                                          tqpv, txr_idx, rqpv, rxr_idx);
1173
1174                 if (err)
1175                         goto err_out;
1176
1177                 /* update counts and index */
1178                 rxr_remaining -= rqpv;
1179                 txr_remaining -= tqpv;
1180                 rxr_idx++;
1181                 txr_idx++;
1182         }
1183
1184         return 0;
1185
1186 err_out:
1187         adapter->num_tx_queues = 0;
1188         adapter->num_rx_queues = 0;
1189         adapter->num_q_vectors = 0;
1190
1191         while (v_idx--)
1192                 igb_free_q_vector(adapter, v_idx);
1193
1194         return -ENOMEM;
1195 }
1196
1197 /**
1198  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1199  *
1200  * This function initializes the interrupts and allocates all of the queues.
1201  **/
1202 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1203 {
1204         struct pci_dev *pdev = adapter->pdev;
1205         int err;
1206
1207         igb_set_interrupt_capability(adapter);
1208
1209         err = igb_alloc_q_vectors(adapter);
1210         if (err) {
1211                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1212                 goto err_alloc_q_vectors;
1213         }
1214
1215         igb_cache_ring_register(adapter);
1216
1217         return 0;
1218
1219 err_alloc_q_vectors:
1220         igb_reset_interrupt_capability(adapter);
1221         return err;
1222 }
1223
1224 /**
1225  * igb_request_irq - initialize interrupts
1226  *
1227  * Attempts to configure interrupts using the best available
1228  * capabilities of the hardware and kernel.
1229  **/
1230 static int igb_request_irq(struct igb_adapter *adapter)
1231 {
1232         struct net_device *netdev = adapter->netdev;
1233         struct pci_dev *pdev = adapter->pdev;
1234         int err = 0;
1235
1236         if (adapter->msix_entries) {
1237                 err = igb_request_msix(adapter);
1238                 if (!err)
1239                         goto request_done;
1240                 /* fall back to MSI */
1241                 igb_free_all_tx_resources(adapter);
1242                 igb_free_all_rx_resources(adapter);
1243                 igb_clear_interrupt_scheme(adapter);
1244                 if (!pci_enable_msi(pdev))
1245                         adapter->flags |= IGB_FLAG_HAS_MSI;
1246                 adapter->num_tx_queues = 1;
1247                 adapter->num_rx_queues = 1;
1248                 adapter->num_q_vectors = 1;
1249                 err = igb_alloc_q_vectors(adapter);
1250                 if (err) {
1251                         dev_err(&pdev->dev,
1252                                 "Unable to allocate memory for vectors\n");
1253                         goto request_done;
1254                 }
1255                 igb_setup_all_tx_resources(adapter);
1256                 igb_setup_all_rx_resources(adapter);
1257         }
1258
1259         igb_assign_vector(adapter->q_vector[0], 0);
1260
1261         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1262                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1263                                   netdev->name, adapter);
1264                 if (!err)
1265                         goto request_done;
1266
1267                 /* fall back to legacy interrupts */
1268                 igb_reset_interrupt_capability(adapter);
1269                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1270         }
1271
1272         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1273                           netdev->name, adapter);
1274
1275         if (err)
1276                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1277                         err);
1278
1279 request_done:
1280         return err;
1281 }
1282
1283 static void igb_free_irq(struct igb_adapter *adapter)
1284 {
1285         if (adapter->msix_entries) {
1286                 int vector = 0, i;
1287
1288                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1289
1290                 for (i = 0; i < adapter->num_q_vectors; i++)
1291                         free_irq(adapter->msix_entries[vector++].vector,
1292                                  adapter->q_vector[i]);
1293         } else {
1294                 free_irq(adapter->pdev->irq, adapter);
1295         }
1296 }
1297
1298 /**
1299  * igb_irq_disable - Mask off interrupt generation on the NIC
1300  * @adapter: board private structure
1301  **/
1302 static void igb_irq_disable(struct igb_adapter *adapter)
1303 {
1304         struct e1000_hw *hw = &adapter->hw;
1305
1306         /*
1307          * we need to be careful when disabling interrupts.  The VFs are also
1308          * mapped into these registers and so clearing the bits can cause
1309          * issues on the VF drivers so we only need to clear what we set
1310          */
1311         if (adapter->msix_entries) {
1312                 u32 regval = rd32(E1000_EIAM);
1313                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1314                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1315                 regval = rd32(E1000_EIAC);
1316                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1317         }
1318
1319         wr32(E1000_IAM, 0);
1320         wr32(E1000_IMC, ~0);
1321         wrfl();
1322         if (adapter->msix_entries) {
1323                 int i;
1324                 for (i = 0; i < adapter->num_q_vectors; i++)
1325                         synchronize_irq(adapter->msix_entries[i].vector);
1326         } else {
1327                 synchronize_irq(adapter->pdev->irq);
1328         }
1329 }
1330
1331 /**
1332  * igb_irq_enable - Enable default interrupt generation settings
1333  * @adapter: board private structure
1334  **/
1335 static void igb_irq_enable(struct igb_adapter *adapter)
1336 {
1337         struct e1000_hw *hw = &adapter->hw;
1338
1339         if (adapter->msix_entries) {
1340                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1341                 u32 regval = rd32(E1000_EIAC);
1342                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1343                 regval = rd32(E1000_EIAM);
1344                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1345                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1346                 if (adapter->vfs_allocated_count) {
1347                         wr32(E1000_MBVFIMR, 0xFF);
1348                         ims |= E1000_IMS_VMMB;
1349                 }
1350                 wr32(E1000_IMS, ims);
1351         } else {
1352                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1353                                 E1000_IMS_DRSTA);
1354                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1355                                 E1000_IMS_DRSTA);
1356         }
1357 }
1358
1359 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         u16 vid = adapter->hw.mng_cookie.vlan_id;
1363         u16 old_vid = adapter->mng_vlan_id;
1364
1365         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1366                 /* add VID to filter table */
1367                 igb_vfta_set(hw, vid, true);
1368                 adapter->mng_vlan_id = vid;
1369         } else {
1370                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1371         }
1372
1373         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1374             (vid != old_vid) &&
1375             !test_bit(old_vid, adapter->active_vlans)) {
1376                 /* remove VID from filter table */
1377                 igb_vfta_set(hw, old_vid, false);
1378         }
1379 }
1380
1381 /**
1382  * igb_release_hw_control - release control of the h/w to f/w
1383  * @adapter: address of board private structure
1384  *
1385  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1386  * For ASF and Pass Through versions of f/w this means that the
1387  * driver is no longer loaded.
1388  *
1389  **/
1390 static void igb_release_hw_control(struct igb_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393         u32 ctrl_ext;
1394
1395         /* Let firmware take over control of h/w */
1396         ctrl_ext = rd32(E1000_CTRL_EXT);
1397         wr32(E1000_CTRL_EXT,
1398                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1399 }
1400
1401 /**
1402  * igb_get_hw_control - get control of the h/w from f/w
1403  * @adapter: address of board private structure
1404  *
1405  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1406  * For ASF and Pass Through versions of f/w this means that
1407  * the driver is loaded.
1408  *
1409  **/
1410 static void igb_get_hw_control(struct igb_adapter *adapter)
1411 {
1412         struct e1000_hw *hw = &adapter->hw;
1413         u32 ctrl_ext;
1414
1415         /* Let firmware know the driver has taken over */
1416         ctrl_ext = rd32(E1000_CTRL_EXT);
1417         wr32(E1000_CTRL_EXT,
1418                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1419 }
1420
1421 /**
1422  * igb_configure - configure the hardware for RX and TX
1423  * @adapter: private board structure
1424  **/
1425 static void igb_configure(struct igb_adapter *adapter)
1426 {
1427         struct net_device *netdev = adapter->netdev;
1428         int i;
1429
1430         igb_get_hw_control(adapter);
1431         igb_set_rx_mode(netdev);
1432
1433         igb_restore_vlan(adapter);
1434
1435         igb_setup_tctl(adapter);
1436         igb_setup_mrqc(adapter);
1437         igb_setup_rctl(adapter);
1438
1439         igb_configure_tx(adapter);
1440         igb_configure_rx(adapter);
1441
1442         igb_rx_fifo_flush_82575(&adapter->hw);
1443
1444         /* call igb_desc_unused which always leaves
1445          * at least 1 descriptor unused to make sure
1446          * next_to_use != next_to_clean */
1447         for (i = 0; i < adapter->num_rx_queues; i++) {
1448                 struct igb_ring *ring = adapter->rx_ring[i];
1449                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450         }
1451 }
1452
1453 /**
1454  * igb_power_up_link - Power up the phy/serdes link
1455  * @adapter: address of board private structure
1456  **/
1457 void igb_power_up_link(struct igb_adapter *adapter)
1458 {
1459         igb_reset_phy(&adapter->hw);
1460
1461         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462                 igb_power_up_phy_copper(&adapter->hw);
1463         else
1464                 igb_power_up_serdes_link_82575(&adapter->hw);
1465 }
1466
1467 /**
1468  * igb_power_down_link - Power down the phy/serdes link
1469  * @adapter: address of board private structure
1470  */
1471 static void igb_power_down_link(struct igb_adapter *adapter)
1472 {
1473         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1474                 igb_power_down_phy_copper_82575(&adapter->hw);
1475         else
1476                 igb_shutdown_serdes_link_82575(&adapter->hw);
1477 }
1478
1479 /**
1480  * igb_up - Open the interface and prepare it to handle traffic
1481  * @adapter: board private structure
1482  **/
1483 int igb_up(struct igb_adapter *adapter)
1484 {
1485         struct e1000_hw *hw = &adapter->hw;
1486         int i;
1487
1488         /* hardware has been reset, we need to reload some things */
1489         igb_configure(adapter);
1490
1491         clear_bit(__IGB_DOWN, &adapter->state);
1492
1493         for (i = 0; i < adapter->num_q_vectors; i++)
1494                 napi_enable(&(adapter->q_vector[i]->napi));
1495
1496         if (adapter->msix_entries)
1497                 igb_configure_msix(adapter);
1498         else
1499                 igb_assign_vector(adapter->q_vector[0], 0);
1500
1501         /* Clear any pending interrupts. */
1502         rd32(E1000_ICR);
1503         igb_irq_enable(adapter);
1504
1505         /* notify VFs that reset has been completed */
1506         if (adapter->vfs_allocated_count) {
1507                 u32 reg_data = rd32(E1000_CTRL_EXT);
1508                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1509                 wr32(E1000_CTRL_EXT, reg_data);
1510         }
1511
1512         netif_tx_start_all_queues(adapter->netdev);
1513
1514         /* start the watchdog. */
1515         hw->mac.get_link_status = 1;
1516         schedule_work(&adapter->watchdog_task);
1517
1518         return 0;
1519 }
1520
1521 void igb_down(struct igb_adapter *adapter)
1522 {
1523         struct net_device *netdev = adapter->netdev;
1524         struct e1000_hw *hw = &adapter->hw;
1525         u32 tctl, rctl;
1526         int i;
1527
1528         /* signal that we're down so the interrupt handler does not
1529          * reschedule our watchdog timer */
1530         set_bit(__IGB_DOWN, &adapter->state);
1531
1532         /* disable receives in the hardware */
1533         rctl = rd32(E1000_RCTL);
1534         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1535         /* flush and sleep below */
1536
1537         netif_tx_stop_all_queues(netdev);
1538
1539         /* disable transmits in the hardware */
1540         tctl = rd32(E1000_TCTL);
1541         tctl &= ~E1000_TCTL_EN;
1542         wr32(E1000_TCTL, tctl);
1543         /* flush both disables and wait for them to finish */
1544         wrfl();
1545         msleep(10);
1546
1547         for (i = 0; i < adapter->num_q_vectors; i++)
1548                 napi_disable(&(adapter->q_vector[i]->napi));
1549
1550         igb_irq_disable(adapter);
1551
1552         del_timer_sync(&adapter->watchdog_timer);
1553         del_timer_sync(&adapter->phy_info_timer);
1554
1555         netif_carrier_off(netdev);
1556
1557         /* record the stats before reset*/
1558         spin_lock(&adapter->stats64_lock);
1559         igb_update_stats(adapter, &adapter->stats64);
1560         spin_unlock(&adapter->stats64_lock);
1561
1562         adapter->link_speed = 0;
1563         adapter->link_duplex = 0;
1564
1565         if (!pci_channel_offline(adapter->pdev))
1566                 igb_reset(adapter);
1567         igb_clean_all_tx_rings(adapter);
1568         igb_clean_all_rx_rings(adapter);
1569 #ifdef CONFIG_IGB_DCA
1570
1571         /* since we reset the hardware DCA settings were cleared */
1572         igb_setup_dca(adapter);
1573 #endif
1574 }
1575
1576 void igb_reinit_locked(struct igb_adapter *adapter)
1577 {
1578         WARN_ON(in_interrupt());
1579         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1580                 msleep(1);
1581         igb_down(adapter);
1582         igb_up(adapter);
1583         clear_bit(__IGB_RESETTING, &adapter->state);
1584 }
1585
1586 void igb_reset(struct igb_adapter *adapter)
1587 {
1588         struct pci_dev *pdev = adapter->pdev;
1589         struct e1000_hw *hw = &adapter->hw;
1590         struct e1000_mac_info *mac = &hw->mac;
1591         struct e1000_fc_info *fc = &hw->fc;
1592         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1593         u16 hwm;
1594
1595         /* Repartition Pba for greater than 9k mtu
1596          * To take effect CTRL.RST is required.
1597          */
1598         switch (mac->type) {
1599         case e1000_i350:
1600         case e1000_82580:
1601                 pba = rd32(E1000_RXPBS);
1602                 pba = igb_rxpbs_adjust_82580(pba);
1603                 break;
1604         case e1000_82576:
1605                 pba = rd32(E1000_RXPBS);
1606                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1607                 break;
1608         case e1000_82575:
1609         case e1000_i210:
1610         case e1000_i211:
1611         default:
1612                 pba = E1000_PBA_34K;
1613                 break;
1614         }
1615
1616         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1617             (mac->type < e1000_82576)) {
1618                 /* adjust PBA for jumbo frames */
1619                 wr32(E1000_PBA, pba);
1620
1621                 /* To maintain wire speed transmits, the Tx FIFO should be
1622                  * large enough to accommodate two full transmit packets,
1623                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1624                  * the Rx FIFO should be large enough to accommodate at least
1625                  * one full receive packet and is similarly rounded up and
1626                  * expressed in KB. */
1627                 pba = rd32(E1000_PBA);
1628                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1629                 tx_space = pba >> 16;
1630                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1631                 pba &= 0xffff;
1632                 /* the tx fifo also stores 16 bytes of information about the tx
1633                  * but don't include ethernet FCS because hardware appends it */
1634                 min_tx_space = (adapter->max_frame_size +
1635                                 sizeof(union e1000_adv_tx_desc) -
1636                                 ETH_FCS_LEN) * 2;
1637                 min_tx_space = ALIGN(min_tx_space, 1024);
1638                 min_tx_space >>= 10;
1639                 /* software strips receive CRC, so leave room for it */
1640                 min_rx_space = adapter->max_frame_size;
1641                 min_rx_space = ALIGN(min_rx_space, 1024);
1642                 min_rx_space >>= 10;
1643
1644                 /* If current Tx allocation is less than the min Tx FIFO size,
1645                  * and the min Tx FIFO size is less than the current Rx FIFO
1646                  * allocation, take space away from current Rx allocation */
1647                 if (tx_space < min_tx_space &&
1648                     ((min_tx_space - tx_space) < pba)) {
1649                         pba = pba - (min_tx_space - tx_space);
1650
1651                         /* if short on rx space, rx wins and must trump tx
1652                          * adjustment */
1653                         if (pba < min_rx_space)
1654                                 pba = min_rx_space;
1655                 }
1656                 wr32(E1000_PBA, pba);
1657         }
1658
1659         /* flow control settings */
1660         /* The high water mark must be low enough to fit one full frame
1661          * (or the size used for early receive) above it in the Rx FIFO.
1662          * Set it to the lower of:
1663          * - 90% of the Rx FIFO size, or
1664          * - the full Rx FIFO size minus one full frame */
1665         hwm = min(((pba << 10) * 9 / 10),
1666                         ((pba << 10) - 2 * adapter->max_frame_size));
1667
1668         fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1669         fc->low_water = fc->high_water - 16;
1670         fc->pause_time = 0xFFFF;
1671         fc->send_xon = 1;
1672         fc->current_mode = fc->requested_mode;
1673
1674         /* disable receive for all VFs and wait one second */
1675         if (adapter->vfs_allocated_count) {
1676                 int i;
1677                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1678                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1679
1680                 /* ping all the active vfs to let them know we are going down */
1681                 igb_ping_all_vfs(adapter);
1682
1683                 /* disable transmits and receives */
1684                 wr32(E1000_VFRE, 0);
1685                 wr32(E1000_VFTE, 0);
1686         }
1687
1688         /* Allow time for pending master requests to run */
1689         hw->mac.ops.reset_hw(hw);
1690         wr32(E1000_WUC, 0);
1691
1692         if (hw->mac.ops.init_hw(hw))
1693                 dev_err(&pdev->dev, "Hardware Error\n");
1694
1695         /*
1696          * Flow control settings reset on hardware reset, so guarantee flow
1697          * control is off when forcing speed.
1698          */
1699         if (!hw->mac.autoneg)
1700                 igb_force_mac_fc(hw);
1701
1702         igb_init_dmac(adapter, pba);
1703         if (!netif_running(adapter->netdev))
1704                 igb_power_down_link(adapter);
1705
1706         igb_update_mng_vlan(adapter);
1707
1708         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1709         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1710
1711         /* Re-enable PTP, where applicable. */
1712         igb_ptp_reset(adapter);
1713
1714         igb_get_phy_info(hw);
1715 }
1716
1717 static netdev_features_t igb_fix_features(struct net_device *netdev,
1718         netdev_features_t features)
1719 {
1720         /*
1721          * Since there is no support for separate rx/tx vlan accel
1722          * enable/disable make sure tx flag is always in same state as rx.
1723          */
1724         if (features & NETIF_F_HW_VLAN_RX)
1725                 features |= NETIF_F_HW_VLAN_TX;
1726         else
1727                 features &= ~NETIF_F_HW_VLAN_TX;
1728
1729         return features;
1730 }
1731
1732 static int igb_set_features(struct net_device *netdev,
1733         netdev_features_t features)
1734 {
1735         netdev_features_t changed = netdev->features ^ features;
1736         struct igb_adapter *adapter = netdev_priv(netdev);
1737
1738         if (changed & NETIF_F_HW_VLAN_RX)
1739                 igb_vlan_mode(netdev, features);
1740
1741         if (!(changed & NETIF_F_RXALL))
1742                 return 0;
1743
1744         netdev->features = features;
1745
1746         if (netif_running(netdev))
1747                 igb_reinit_locked(adapter);
1748         else
1749                 igb_reset(adapter);
1750
1751         return 0;
1752 }
1753
1754 static const struct net_device_ops igb_netdev_ops = {
1755         .ndo_open               = igb_open,
1756         .ndo_stop               = igb_close,
1757         .ndo_start_xmit         = igb_xmit_frame,
1758         .ndo_get_stats64        = igb_get_stats64,
1759         .ndo_set_rx_mode        = igb_set_rx_mode,
1760         .ndo_set_mac_address    = igb_set_mac,
1761         .ndo_change_mtu         = igb_change_mtu,
1762         .ndo_do_ioctl           = igb_ioctl,
1763         .ndo_tx_timeout         = igb_tx_timeout,
1764         .ndo_validate_addr      = eth_validate_addr,
1765         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1766         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1767         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1768         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1769         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1770         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1771 #ifdef CONFIG_NET_POLL_CONTROLLER
1772         .ndo_poll_controller    = igb_netpoll,
1773 #endif
1774         .ndo_fix_features       = igb_fix_features,
1775         .ndo_set_features       = igb_set_features,
1776 };
1777
1778 /**
1779  * igb_set_fw_version - Configure version string for ethtool
1780  * @adapter: adapter struct
1781  *
1782  **/
1783 void igb_set_fw_version(struct igb_adapter *adapter)
1784 {
1785         struct e1000_hw *hw = &adapter->hw;
1786         struct e1000_fw_version fw;
1787
1788         igb_get_fw_version(hw, &fw);
1789
1790         switch (hw->mac.type) {
1791         case e1000_i211:
1792                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1793                          "%2d.%2d-%d",
1794                          fw.invm_major, fw.invm_minor, fw.invm_img_type);
1795                 break;
1796
1797         default:
1798                 /* if option is rom valid, display its version too */
1799                 if (fw.or_valid) {
1800                         snprintf(adapter->fw_version,
1801                                  sizeof(adapter->fw_version),
1802                                  "%d.%d, 0x%08x, %d.%d.%d",
1803                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1804                                  fw.or_major, fw.or_build, fw.or_patch);
1805                 /* no option rom */
1806                 } else {
1807                         snprintf(adapter->fw_version,
1808                                  sizeof(adapter->fw_version),
1809                                  "%d.%d, 0x%08x",
1810                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
1811                 }
1812                 break;
1813         }
1814         return;
1815 }
1816
1817 /**
1818  * igb_probe - Device Initialization Routine
1819  * @pdev: PCI device information struct
1820  * @ent: entry in igb_pci_tbl
1821  *
1822  * Returns 0 on success, negative on failure
1823  *
1824  * igb_probe initializes an adapter identified by a pci_dev structure.
1825  * The OS initialization, configuring of the adapter private structure,
1826  * and a hardware reset occur.
1827  **/
1828 static int __devinit igb_probe(struct pci_dev *pdev,
1829                                const struct pci_device_id *ent)
1830 {
1831         struct net_device *netdev;
1832         struct igb_adapter *adapter;
1833         struct e1000_hw *hw;
1834         u16 eeprom_data = 0;
1835         s32 ret_val;
1836         static int global_quad_port_a; /* global quad port a indication */
1837         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1838         unsigned long mmio_start, mmio_len;
1839         int err, pci_using_dac;
1840         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1841         u8 part_str[E1000_PBANUM_LENGTH];
1842
1843         /* Catch broken hardware that put the wrong VF device ID in
1844          * the PCIe SR-IOV capability.
1845          */
1846         if (pdev->is_virtfn) {
1847                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1848                         pci_name(pdev), pdev->vendor, pdev->device);
1849                 return -EINVAL;
1850         }
1851
1852         err = pci_enable_device_mem(pdev);
1853         if (err)
1854                 return err;
1855
1856         pci_using_dac = 0;
1857         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1858         if (!err) {
1859                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1860                 if (!err)
1861                         pci_using_dac = 1;
1862         } else {
1863                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1864                 if (err) {
1865                         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1866                         if (err) {
1867                                 dev_err(&pdev->dev, "No usable DMA "
1868                                         "configuration, aborting\n");
1869                                 goto err_dma;
1870                         }
1871                 }
1872         }
1873
1874         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1875                                            IORESOURCE_MEM),
1876                                            igb_driver_name);
1877         if (err)
1878                 goto err_pci_reg;
1879
1880         pci_enable_pcie_error_reporting(pdev);
1881
1882         pci_set_master(pdev);
1883         pci_save_state(pdev);
1884
1885         err = -ENOMEM;
1886         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1887                                    IGB_MAX_TX_QUEUES);
1888         if (!netdev)
1889                 goto err_alloc_etherdev;
1890
1891         SET_NETDEV_DEV(netdev, &pdev->dev);
1892
1893         pci_set_drvdata(pdev, netdev);
1894         adapter = netdev_priv(netdev);
1895         adapter->netdev = netdev;
1896         adapter->pdev = pdev;
1897         hw = &adapter->hw;
1898         hw->back = adapter;
1899         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1900
1901         mmio_start = pci_resource_start(pdev, 0);
1902         mmio_len = pci_resource_len(pdev, 0);
1903
1904         err = -EIO;
1905         hw->hw_addr = ioremap(mmio_start, mmio_len);
1906         if (!hw->hw_addr)
1907                 goto err_ioremap;
1908
1909         netdev->netdev_ops = &igb_netdev_ops;
1910         igb_set_ethtool_ops(netdev);
1911         netdev->watchdog_timeo = 5 * HZ;
1912
1913         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1914
1915         netdev->mem_start = mmio_start;
1916         netdev->mem_end = mmio_start + mmio_len;
1917
1918         /* PCI config space info */
1919         hw->vendor_id = pdev->vendor;
1920         hw->device_id = pdev->device;
1921         hw->revision_id = pdev->revision;
1922         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1923         hw->subsystem_device_id = pdev->subsystem_device;
1924
1925         /* Copy the default MAC, PHY and NVM function pointers */
1926         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1927         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1928         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1929         /* Initialize skew-specific constants */
1930         err = ei->get_invariants(hw);
1931         if (err)
1932                 goto err_sw_init;
1933
1934         /* setup the private structure */
1935         err = igb_sw_init(adapter);
1936         if (err)
1937                 goto err_sw_init;
1938
1939         igb_get_bus_info_pcie(hw);
1940
1941         hw->phy.autoneg_wait_to_complete = false;
1942
1943         /* Copper options */
1944         if (hw->phy.media_type == e1000_media_type_copper) {
1945                 hw->phy.mdix = AUTO_ALL_MODES;
1946                 hw->phy.disable_polarity_correction = false;
1947                 hw->phy.ms_type = e1000_ms_hw_default;
1948         }
1949
1950         if (igb_check_reset_block(hw))
1951                 dev_info(&pdev->dev,
1952                         "PHY reset is blocked due to SOL/IDER session.\n");
1953
1954         /*
1955          * features is initialized to 0 in allocation, it might have bits
1956          * set by igb_sw_init so we should use an or instead of an
1957          * assignment.
1958          */
1959         netdev->features |= NETIF_F_SG |
1960                             NETIF_F_IP_CSUM |
1961                             NETIF_F_IPV6_CSUM |
1962                             NETIF_F_TSO |
1963                             NETIF_F_TSO6 |
1964                             NETIF_F_RXHASH |
1965                             NETIF_F_RXCSUM |
1966                             NETIF_F_HW_VLAN_RX |
1967                             NETIF_F_HW_VLAN_TX;
1968
1969         /* copy netdev features into list of user selectable features */
1970         netdev->hw_features |= netdev->features;
1971         netdev->hw_features |= NETIF_F_RXALL;
1972
1973         /* set this bit last since it cannot be part of hw_features */
1974         netdev->features |= NETIF_F_HW_VLAN_FILTER;
1975
1976         netdev->vlan_features |= NETIF_F_TSO |
1977                                  NETIF_F_TSO6 |
1978                                  NETIF_F_IP_CSUM |
1979                                  NETIF_F_IPV6_CSUM |
1980                                  NETIF_F_SG;
1981
1982         netdev->priv_flags |= IFF_SUPP_NOFCS;
1983
1984         if (pci_using_dac) {
1985                 netdev->features |= NETIF_F_HIGHDMA;
1986                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1987         }
1988
1989         if (hw->mac.type >= e1000_82576) {
1990                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
1991                 netdev->features |= NETIF_F_SCTP_CSUM;
1992         }
1993
1994         netdev->priv_flags |= IFF_UNICAST_FLT;
1995
1996         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1997
1998         /* before reading the NVM, reset the controller to put the device in a
1999          * known good starting state */
2000         hw->mac.ops.reset_hw(hw);
2001
2002         /*
2003          * make sure the NVM is good , i211 parts have special NVM that
2004          * doesn't contain a checksum
2005          */
2006         if (hw->mac.type != e1000_i211) {
2007                 if (hw->nvm.ops.validate(hw) < 0) {
2008                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2009                         err = -EIO;
2010                         goto err_eeprom;
2011                 }
2012         }
2013
2014         /* copy the MAC address out of the NVM */
2015         if (hw->mac.ops.read_mac_addr(hw))
2016                 dev_err(&pdev->dev, "NVM Read Error\n");
2017
2018         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2019         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2020
2021         if (!is_valid_ether_addr(netdev->perm_addr)) {
2022                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2023                 err = -EIO;
2024                 goto err_eeprom;
2025         }
2026
2027         /* get firmware version for ethtool -i */
2028         igb_set_fw_version(adapter);
2029
2030         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2031                     (unsigned long) adapter);
2032         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2033                     (unsigned long) adapter);
2034
2035         INIT_WORK(&adapter->reset_task, igb_reset_task);
2036         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2037
2038         /* Initialize link properties that are user-changeable */
2039         adapter->fc_autoneg = true;
2040         hw->mac.autoneg = true;
2041         hw->phy.autoneg_advertised = 0x2f;
2042
2043         hw->fc.requested_mode = e1000_fc_default;
2044         hw->fc.current_mode = e1000_fc_default;
2045
2046         igb_validate_mdi_setting(hw);
2047
2048         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2049          * enable the ACPI Magic Packet filter
2050          */
2051
2052         if (hw->bus.func == 0)
2053                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2054         else if (hw->mac.type >= e1000_82580)
2055                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2056                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2057                                  &eeprom_data);
2058         else if (hw->bus.func == 1)
2059                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2060
2061         if (eeprom_data & eeprom_apme_mask)
2062                 adapter->eeprom_wol |= E1000_WUFC_MAG;
2063
2064         /* now that we have the eeprom settings, apply the special cases where
2065          * the eeprom may be wrong or the board simply won't support wake on
2066          * lan on a particular port */
2067         switch (pdev->device) {
2068         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2069                 adapter->eeprom_wol = 0;
2070                 break;
2071         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2072         case E1000_DEV_ID_82576_FIBER:
2073         case E1000_DEV_ID_82576_SERDES:
2074                 /* Wake events only supported on port A for dual fiber
2075                  * regardless of eeprom setting */
2076                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2077                         adapter->eeprom_wol = 0;
2078                 break;
2079         case E1000_DEV_ID_82576_QUAD_COPPER:
2080         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2081                 /* if quad port adapter, disable WoL on all but port A */
2082                 if (global_quad_port_a != 0)
2083                         adapter->eeprom_wol = 0;
2084                 else
2085                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2086                 /* Reset for multiple quad port adapters */
2087                 if (++global_quad_port_a == 4)
2088                         global_quad_port_a = 0;
2089                 break;
2090         }
2091
2092         /* initialize the wol settings based on the eeprom settings */
2093         adapter->wol = adapter->eeprom_wol;
2094         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2095
2096         /* reset the hardware with the new settings */
2097         igb_reset(adapter);
2098
2099         /* let the f/w know that the h/w is now under the control of the
2100          * driver. */
2101         igb_get_hw_control(adapter);
2102
2103         strcpy(netdev->name, "eth%d");
2104         err = register_netdev(netdev);
2105         if (err)
2106                 goto err_register;
2107
2108         /* carrier off reporting is important to ethtool even BEFORE open */
2109         netif_carrier_off(netdev);
2110
2111 #ifdef CONFIG_IGB_DCA
2112         if (dca_add_requester(&pdev->dev) == 0) {
2113                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2114                 dev_info(&pdev->dev, "DCA enabled\n");
2115                 igb_setup_dca(adapter);
2116         }
2117
2118 #endif
2119
2120         /* do hw tstamp init after resetting */
2121         igb_ptp_init(adapter);
2122
2123         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2124         /* print bus type/speed/width info */
2125         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2126                  netdev->name,
2127                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2128                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2129                                                             "unknown"),
2130                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2131                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2132                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2133                    "unknown"),
2134                  netdev->dev_addr);
2135
2136         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2137         if (ret_val)
2138                 strcpy(part_str, "Unknown");
2139         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2140         dev_info(&pdev->dev,
2141                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2142                 adapter->msix_entries ? "MSI-X" :
2143                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2144                 adapter->num_rx_queues, adapter->num_tx_queues);
2145         switch (hw->mac.type) {
2146         case e1000_i350:
2147         case e1000_i210:
2148         case e1000_i211:
2149                 igb_set_eee_i350(hw);
2150                 break;
2151         default:
2152                 break;
2153         }
2154
2155         pm_runtime_put_noidle(&pdev->dev);
2156         return 0;
2157
2158 err_register:
2159         igb_release_hw_control(adapter);
2160 err_eeprom:
2161         if (!igb_check_reset_block(hw))
2162                 igb_reset_phy(hw);
2163
2164         if (hw->flash_address)
2165                 iounmap(hw->flash_address);
2166 err_sw_init:
2167         igb_clear_interrupt_scheme(adapter);
2168         iounmap(hw->hw_addr);
2169 err_ioremap:
2170         free_netdev(netdev);
2171 err_alloc_etherdev:
2172         pci_release_selected_regions(pdev,
2173                                      pci_select_bars(pdev, IORESOURCE_MEM));
2174 err_pci_reg:
2175 err_dma:
2176         pci_disable_device(pdev);
2177         return err;
2178 }
2179
2180 /**
2181  * igb_remove - Device Removal Routine
2182  * @pdev: PCI device information struct
2183  *
2184  * igb_remove is called by the PCI subsystem to alert the driver
2185  * that it should release a PCI device.  The could be caused by a
2186  * Hot-Plug event, or because the driver is going to be removed from
2187  * memory.
2188  **/
2189 static void __devexit igb_remove(struct pci_dev *pdev)
2190 {
2191         struct net_device *netdev = pci_get_drvdata(pdev);
2192         struct igb_adapter *adapter = netdev_priv(netdev);
2193         struct e1000_hw *hw = &adapter->hw;
2194
2195         pm_runtime_get_noresume(&pdev->dev);
2196         igb_ptp_stop(adapter);
2197
2198         /*
2199          * The watchdog timer may be rescheduled, so explicitly
2200          * disable watchdog from being rescheduled.
2201          */
2202         set_bit(__IGB_DOWN, &adapter->state);
2203         del_timer_sync(&adapter->watchdog_timer);
2204         del_timer_sync(&adapter->phy_info_timer);
2205
2206         cancel_work_sync(&adapter->reset_task);
2207         cancel_work_sync(&adapter->watchdog_task);
2208
2209 #ifdef CONFIG_IGB_DCA
2210         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2211                 dev_info(&pdev->dev, "DCA disabled\n");
2212                 dca_remove_requester(&pdev->dev);
2213                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2214                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2215         }
2216 #endif
2217
2218         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2219          * would have already happened in close and is redundant. */
2220         igb_release_hw_control(adapter);
2221
2222         unregister_netdev(netdev);
2223
2224         igb_clear_interrupt_scheme(adapter);
2225
2226 #ifdef CONFIG_PCI_IOV
2227         /* reclaim resources allocated to VFs */
2228         if (adapter->vf_data) {
2229                 /* disable iov and allow time for transactions to clear */
2230                 if (igb_vfs_are_assigned(adapter)) {
2231                         dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2232                 } else {
2233                         pci_disable_sriov(pdev);
2234                         msleep(500);
2235                 }
2236
2237                 kfree(adapter->vf_data);
2238                 adapter->vf_data = NULL;
2239                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2240                 wrfl();
2241                 msleep(100);
2242                 dev_info(&pdev->dev, "IOV Disabled\n");
2243         }
2244 #endif
2245
2246         iounmap(hw->hw_addr);
2247         if (hw->flash_address)
2248                 iounmap(hw->flash_address);
2249         pci_release_selected_regions(pdev,
2250                                      pci_select_bars(pdev, IORESOURCE_MEM));
2251
2252         kfree(adapter->shadow_vfta);
2253         free_netdev(netdev);
2254
2255         pci_disable_pcie_error_reporting(pdev);
2256
2257         pci_disable_device(pdev);
2258 }
2259
2260 /**
2261  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2262  * @adapter: board private structure to initialize
2263  *
2264  * This function initializes the vf specific data storage and then attempts to
2265  * allocate the VFs.  The reason for ordering it this way is because it is much
2266  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2267  * the memory for the VFs.
2268  **/
2269 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2270 {
2271 #ifdef CONFIG_PCI_IOV
2272         struct pci_dev *pdev = adapter->pdev;
2273         struct e1000_hw *hw = &adapter->hw;
2274         int old_vfs = pci_num_vf(adapter->pdev);
2275         int i;
2276
2277         /* Virtualization features not supported on i210 family. */
2278         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2279                 return;
2280
2281         if (old_vfs) {
2282                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2283                          "max_vfs setting of %d\n", old_vfs, max_vfs);
2284                 adapter->vfs_allocated_count = old_vfs;
2285         }
2286
2287         if (!adapter->vfs_allocated_count)
2288                 return;
2289
2290         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2291                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2292
2293         /* if allocation failed then we do not support SR-IOV */
2294         if (!adapter->vf_data) {
2295                 adapter->vfs_allocated_count = 0;
2296                 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2297                         "Data Storage\n");
2298                 goto out;
2299         }
2300
2301         if (!old_vfs) {
2302                 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2303                         goto err_out;
2304         }
2305         dev_info(&pdev->dev, "%d VFs allocated\n",
2306                  adapter->vfs_allocated_count);
2307         for (i = 0; i < adapter->vfs_allocated_count; i++)
2308                 igb_vf_configure(adapter, i);
2309
2310         /* DMA Coalescing is not supported in IOV mode. */
2311         adapter->flags &= ~IGB_FLAG_DMAC;
2312         goto out;
2313 err_out:
2314         kfree(adapter->vf_data);
2315         adapter->vf_data = NULL;
2316         adapter->vfs_allocated_count = 0;
2317 out:
2318         return;
2319 #endif /* CONFIG_PCI_IOV */
2320 }
2321
2322 /**
2323  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2324  * @adapter: board private structure to initialize
2325  *
2326  * igb_sw_init initializes the Adapter private data structure.
2327  * Fields are initialized based on PCI device information and
2328  * OS network device settings (MTU size).
2329  **/
2330 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2331 {
2332         struct e1000_hw *hw = &adapter->hw;
2333         struct net_device *netdev = adapter->netdev;
2334         struct pci_dev *pdev = adapter->pdev;
2335         u32 max_rss_queues;
2336
2337         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2338
2339         /* set default ring sizes */
2340         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2341         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2342
2343         /* set default ITR values */
2344         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2345         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2346
2347         /* set default work limits */
2348         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2349
2350         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2351                                   VLAN_HLEN;
2352         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2353
2354         spin_lock_init(&adapter->stats64_lock);
2355 #ifdef CONFIG_PCI_IOV
2356         switch (hw->mac.type) {
2357         case e1000_82576:
2358         case e1000_i350:
2359                 if (max_vfs > 7) {
2360                         dev_warn(&pdev->dev,
2361                                  "Maximum of 7 VFs per PF, using max\n");
2362                         adapter->vfs_allocated_count = 7;
2363                 } else
2364                         adapter->vfs_allocated_count = max_vfs;
2365                 break;
2366         default:
2367                 break;
2368         }
2369 #endif /* CONFIG_PCI_IOV */
2370
2371         /* Determine the maximum number of RSS queues supported. */
2372         switch (hw->mac.type) {
2373         case e1000_i211:
2374                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2375                 break;
2376         case e1000_82575:
2377         case e1000_i210:
2378                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2379                 break;
2380         case e1000_i350:
2381                 /* I350 cannot do RSS and SR-IOV at the same time */
2382                 if (!!adapter->vfs_allocated_count) {
2383                         max_rss_queues = 1;
2384                         break;
2385                 }
2386                 /* fall through */
2387         case e1000_82576:
2388                 if (!!adapter->vfs_allocated_count) {
2389                         max_rss_queues = 2;
2390                         break;
2391                 }
2392                 /* fall through */
2393         case e1000_82580:
2394         default:
2395                 max_rss_queues = IGB_MAX_RX_QUEUES;
2396                 break;
2397         }
2398
2399         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2400
2401         /* Determine if we need to pair queues. */
2402         switch (hw->mac.type) {
2403         case e1000_82575:
2404         case e1000_i211:
2405                 /* Device supports enough interrupts without queue pairing. */
2406                 break;
2407         case e1000_82576:
2408                 /*
2409                  * If VFs are going to be allocated with RSS queues then we
2410                  * should pair the queues in order to conserve interrupts due
2411                  * to limited supply.
2412                  */
2413                 if ((adapter->rss_queues > 1) &&
2414                     (adapter->vfs_allocated_count > 6))
2415                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2416                 /* fall through */
2417         case e1000_82580:
2418         case e1000_i350:
2419         case e1000_i210:
2420         default:
2421                 /*
2422                  * If rss_queues > half of max_rss_queues, pair the queues in
2423                  * order to conserve interrupts due to limited supply.
2424                  */
2425                 if (adapter->rss_queues > (max_rss_queues / 2))
2426                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2427                 break;
2428         }
2429
2430         /* Setup and initialize a copy of the hw vlan table array */
2431         adapter->shadow_vfta = kzalloc(sizeof(u32) *
2432                                 E1000_VLAN_FILTER_TBL_SIZE,
2433                                 GFP_ATOMIC);
2434
2435         /* This call may decrease the number of queues */
2436         if (igb_init_interrupt_scheme(adapter)) {
2437                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2438                 return -ENOMEM;
2439         }
2440
2441         igb_probe_vfs(adapter);
2442
2443         /* Explicitly disable IRQ since the NIC can be in any state. */
2444         igb_irq_disable(adapter);
2445
2446         if (hw->mac.type >= e1000_i350)
2447                 adapter->flags &= ~IGB_FLAG_DMAC;
2448
2449         set_bit(__IGB_DOWN, &adapter->state);
2450         return 0;
2451 }
2452
2453 /**
2454  * igb_open - Called when a network interface is made active
2455  * @netdev: network interface device structure
2456  *
2457  * Returns 0 on success, negative value on failure
2458  *
2459  * The open entry point is called when a network interface is made
2460  * active by the system (IFF_UP).  At this point all resources needed
2461  * for transmit and receive operations are allocated, the interrupt
2462  * handler is registered with the OS, the watchdog timer is started,
2463  * and the stack is notified that the interface is ready.
2464  **/
2465 static int __igb_open(struct net_device *netdev, bool resuming)
2466 {
2467         struct igb_adapter *adapter = netdev_priv(netdev);
2468         struct e1000_hw *hw = &adapter->hw;
2469         struct pci_dev *pdev = adapter->pdev;
2470         int err;
2471         int i;
2472
2473         /* disallow open during test */
2474         if (test_bit(__IGB_TESTING, &adapter->state)) {
2475                 WARN_ON(resuming);
2476                 return -EBUSY;
2477         }
2478
2479         if (!resuming)
2480                 pm_runtime_get_sync(&pdev->dev);
2481
2482         netif_carrier_off(netdev);
2483
2484         /* allocate transmit descriptors */
2485         err = igb_setup_all_tx_resources(adapter);
2486         if (err)
2487                 goto err_setup_tx;
2488
2489         /* allocate receive descriptors */
2490         err = igb_setup_all_rx_resources(adapter);
2491         if (err)
2492                 goto err_setup_rx;
2493
2494         igb_power_up_link(adapter);
2495
2496         /* before we allocate an interrupt, we must be ready to handle it.
2497          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2498          * as soon as we call pci_request_irq, so we have to setup our
2499          * clean_rx handler before we do so.  */
2500         igb_configure(adapter);
2501
2502         err = igb_request_irq(adapter);
2503         if (err)
2504                 goto err_req_irq;
2505
2506         /* Notify the stack of the actual queue counts. */
2507         err = netif_set_real_num_tx_queues(adapter->netdev,
2508                                            adapter->num_tx_queues);
2509         if (err)
2510                 goto err_set_queues;
2511
2512         err = netif_set_real_num_rx_queues(adapter->netdev,
2513                                            adapter->num_rx_queues);
2514         if (err)
2515                 goto err_set_queues;
2516
2517         /* From here on the code is the same as igb_up() */
2518         clear_bit(__IGB_DOWN, &adapter->state);
2519
2520         for (i = 0; i < adapter->num_q_vectors; i++)
2521                 napi_enable(&(adapter->q_vector[i]->napi));
2522
2523         /* Clear any pending interrupts. */
2524         rd32(E1000_ICR);
2525
2526         igb_irq_enable(adapter);
2527
2528         /* notify VFs that reset has been completed */
2529         if (adapter->vfs_allocated_count) {
2530                 u32 reg_data = rd32(E1000_CTRL_EXT);
2531                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2532                 wr32(E1000_CTRL_EXT, reg_data);
2533         }
2534
2535         netif_tx_start_all_queues(netdev);
2536
2537         if (!resuming)
2538                 pm_runtime_put(&pdev->dev);
2539
2540         /* start the watchdog. */
2541         hw->mac.get_link_status = 1;
2542         schedule_work(&adapter->watchdog_task);
2543
2544         return 0;
2545
2546 err_set_queues:
2547         igb_free_irq(adapter);
2548 err_req_irq:
2549         igb_release_hw_control(adapter);
2550         igb_power_down_link(adapter);
2551         igb_free_all_rx_resources(adapter);
2552 err_setup_rx:
2553         igb_free_all_tx_resources(adapter);
2554 err_setup_tx:
2555         igb_reset(adapter);
2556         if (!resuming)
2557                 pm_runtime_put(&pdev->dev);
2558
2559         return err;
2560 }
2561
2562 static int igb_open(struct net_device *netdev)
2563 {
2564         return __igb_open(netdev, false);
2565 }
2566
2567 /**
2568  * igb_close - Disables a network interface
2569  * @netdev: network interface device structure
2570  *
2571  * Returns 0, this is not allowed to fail
2572  *
2573  * The close entry point is called when an interface is de-activated
2574  * by the OS.  The hardware is still under the driver's control, but
2575  * needs to be disabled.  A global MAC reset is issued to stop the
2576  * hardware, and all transmit and receive resources are freed.
2577  **/
2578 static int __igb_close(struct net_device *netdev, bool suspending)
2579 {
2580         struct igb_adapter *adapter = netdev_priv(netdev);
2581         struct pci_dev *pdev = adapter->pdev;
2582
2583         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2584
2585         if (!suspending)
2586                 pm_runtime_get_sync(&pdev->dev);
2587
2588         igb_down(adapter);
2589         igb_free_irq(adapter);
2590
2591         igb_free_all_tx_resources(adapter);
2592         igb_free_all_rx_resources(adapter);
2593
2594         if (!suspending)
2595                 pm_runtime_put_sync(&pdev->dev);
2596         return 0;
2597 }
2598
2599 static int igb_close(struct net_device *netdev)
2600 {
2601         return __igb_close(netdev, false);
2602 }
2603
2604 /**
2605  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2606  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2607  *
2608  * Return 0 on success, negative on failure
2609  **/
2610 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2611 {
2612         struct device *dev = tx_ring->dev;
2613         int size;
2614
2615         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2616
2617         tx_ring->tx_buffer_info = vzalloc(size);
2618         if (!tx_ring->tx_buffer_info)
2619                 goto err;
2620
2621         /* round up to nearest 4K */
2622         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2623         tx_ring->size = ALIGN(tx_ring->size, 4096);
2624
2625         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2626                                            &tx_ring->dma, GFP_KERNEL);
2627         if (!tx_ring->desc)
2628                 goto err;
2629
2630         tx_ring->next_to_use = 0;
2631         tx_ring->next_to_clean = 0;
2632
2633         return 0;
2634
2635 err:
2636         vfree(tx_ring->tx_buffer_info);
2637         tx_ring->tx_buffer_info = NULL;
2638         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2639         return -ENOMEM;
2640 }
2641
2642 /**
2643  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2644  *                                (Descriptors) for all queues
2645  * @adapter: board private structure
2646  *
2647  * Return 0 on success, negative on failure
2648  **/
2649 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2650 {
2651         struct pci_dev *pdev = adapter->pdev;
2652         int i, err = 0;
2653
2654         for (i = 0; i < adapter->num_tx_queues; i++) {
2655                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2656                 if (err) {
2657                         dev_err(&pdev->dev,
2658                                 "Allocation for Tx Queue %u failed\n", i);
2659                         for (i--; i >= 0; i--)
2660                                 igb_free_tx_resources(adapter->tx_ring[i]);
2661                         break;
2662                 }
2663         }
2664
2665         return err;
2666 }
2667
2668 /**
2669  * igb_setup_tctl - configure the transmit control registers
2670  * @adapter: Board private structure
2671  **/
2672 void igb_setup_tctl(struct igb_adapter *adapter)
2673 {
2674         struct e1000_hw *hw = &adapter->hw;
2675         u32 tctl;
2676
2677         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2678         wr32(E1000_TXDCTL(0), 0);
2679
2680         /* Program the Transmit Control Register */
2681         tctl = rd32(E1000_TCTL);
2682         tctl &= ~E1000_TCTL_CT;
2683         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2684                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2685
2686         igb_config_collision_dist(hw);
2687
2688         /* Enable transmits */
2689         tctl |= E1000_TCTL_EN;
2690
2691         wr32(E1000_TCTL, tctl);
2692 }
2693
2694 /**
2695  * igb_configure_tx_ring - Configure transmit ring after Reset
2696  * @adapter: board private structure
2697  * @ring: tx ring to configure
2698  *
2699  * Configure a transmit ring after a reset.
2700  **/
2701 void igb_configure_tx_ring(struct igb_adapter *adapter,
2702                            struct igb_ring *ring)
2703 {
2704         struct e1000_hw *hw = &adapter->hw;
2705         u32 txdctl = 0;
2706         u64 tdba = ring->dma;
2707         int reg_idx = ring->reg_idx;
2708
2709         /* disable the queue */
2710         wr32(E1000_TXDCTL(reg_idx), 0);
2711         wrfl();
2712         mdelay(10);
2713
2714         wr32(E1000_TDLEN(reg_idx),
2715                         ring->count * sizeof(union e1000_adv_tx_desc));
2716         wr32(E1000_TDBAL(reg_idx),
2717                         tdba & 0x00000000ffffffffULL);
2718         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2719
2720         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2721         wr32(E1000_TDH(reg_idx), 0);
2722         writel(0, ring->tail);
2723
2724         txdctl |= IGB_TX_PTHRESH;
2725         txdctl |= IGB_TX_HTHRESH << 8;
2726         txdctl |= IGB_TX_WTHRESH << 16;
2727
2728         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2729         wr32(E1000_TXDCTL(reg_idx), txdctl);
2730 }
2731
2732 /**
2733  * igb_configure_tx - Configure transmit Unit after Reset
2734  * @adapter: board private structure
2735  *
2736  * Configure the Tx unit of the MAC after a reset.
2737  **/
2738 static void igb_configure_tx(struct igb_adapter *adapter)
2739 {
2740         int i;
2741
2742         for (i = 0; i < adapter->num_tx_queues; i++)
2743                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2744 }
2745
2746 /**
2747  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2748  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2749  *
2750  * Returns 0 on success, negative on failure
2751  **/
2752 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2753 {
2754         struct device *dev = rx_ring->dev;
2755         int size;
2756
2757         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2758
2759         rx_ring->rx_buffer_info = vzalloc(size);
2760         if (!rx_ring->rx_buffer_info)
2761                 goto err;
2762
2763         /* Round up to nearest 4K */
2764         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2765         rx_ring->size = ALIGN(rx_ring->size, 4096);
2766
2767         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2768                                            &rx_ring->dma, GFP_KERNEL);
2769         if (!rx_ring->desc)
2770                 goto err;
2771
2772         rx_ring->next_to_alloc = 0;
2773         rx_ring->next_to_clean = 0;
2774         rx_ring->next_to_use = 0;
2775
2776         return 0;
2777
2778 err:
2779         vfree(rx_ring->rx_buffer_info);
2780         rx_ring->rx_buffer_info = NULL;
2781         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2782         return -ENOMEM;
2783 }
2784
2785 /**
2786  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2787  *                                (Descriptors) for all queues
2788  * @adapter: board private structure
2789  *
2790  * Return 0 on success, negative on failure
2791  **/
2792 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2793 {
2794         struct pci_dev *pdev = adapter->pdev;
2795         int i, err = 0;
2796
2797         for (i = 0; i < adapter->num_rx_queues; i++) {
2798                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2799                 if (err) {
2800                         dev_err(&pdev->dev,
2801                                 "Allocation for Rx Queue %u failed\n", i);
2802                         for (i--; i >= 0; i--)
2803                                 igb_free_rx_resources(adapter->rx_ring[i]);
2804                         break;
2805                 }
2806         }
2807
2808         return err;
2809 }
2810
2811 /**
2812  * igb_setup_mrqc - configure the multiple receive queue control registers
2813  * @adapter: Board private structure
2814  **/
2815 static void igb_setup_mrqc(struct igb_adapter *adapter)
2816 {
2817         struct e1000_hw *hw = &adapter->hw;
2818         u32 mrqc, rxcsum;
2819         u32 j, num_rx_queues, shift = 0;
2820         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2821                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2822                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2823                                         0xFA01ACBE };
2824
2825         /* Fill out hash function seeds */
2826         for (j = 0; j < 10; j++)
2827                 wr32(E1000_RSSRK(j), rsskey[j]);
2828
2829         num_rx_queues = adapter->rss_queues;
2830
2831         switch (hw->mac.type) {
2832         case e1000_82575:
2833                 shift = 6;
2834                 break;
2835         case e1000_82576:
2836                 /* 82576 supports 2 RSS queues for SR-IOV */
2837                 if (adapter->vfs_allocated_count) {
2838                         shift = 3;
2839                         num_rx_queues = 2;
2840                 }
2841                 break;
2842         default:
2843                 break;
2844         }
2845
2846         /*
2847          * Populate the indirection table 4 entries at a time.  To do this
2848          * we are generating the results for n and n+2 and then interleaving
2849          * those with the results with n+1 and n+3.
2850          */
2851         for (j = 0; j < 32; j++) {
2852                 /* first pass generates n and n+2 */
2853                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2854                 u32 reta = (base & 0x07800780) >> (7 - shift);
2855
2856                 /* second pass generates n+1 and n+3 */
2857                 base += 0x00010001 * num_rx_queues;
2858                 reta |= (base & 0x07800780) << (1 + shift);
2859
2860                 wr32(E1000_RETA(j), reta);
2861         }
2862
2863         /*
2864          * Disable raw packet checksumming so that RSS hash is placed in
2865          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2866          * offloads as they are enabled by default
2867          */
2868         rxcsum = rd32(E1000_RXCSUM);
2869         rxcsum |= E1000_RXCSUM_PCSD;
2870
2871         if (adapter->hw.mac.type >= e1000_82576)
2872                 /* Enable Receive Checksum Offload for SCTP */
2873                 rxcsum |= E1000_RXCSUM_CRCOFL;
2874
2875         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2876         wr32(E1000_RXCSUM, rxcsum);
2877         /*
2878          * Generate RSS hash based on TCP port numbers and/or
2879          * IPv4/v6 src and dst addresses since UDP cannot be
2880          * hashed reliably due to IP fragmentation
2881          */
2882
2883         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2884                E1000_MRQC_RSS_FIELD_IPV4_TCP |
2885                E1000_MRQC_RSS_FIELD_IPV6 |
2886                E1000_MRQC_RSS_FIELD_IPV6_TCP |
2887                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2888
2889         /* If VMDq is enabled then we set the appropriate mode for that, else
2890          * we default to RSS so that an RSS hash is calculated per packet even
2891          * if we are only using one queue */
2892         if (adapter->vfs_allocated_count) {
2893                 if (hw->mac.type > e1000_82575) {
2894                         /* Set the default pool for the PF's first queue */
2895                         u32 vtctl = rd32(E1000_VT_CTL);
2896                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2897                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2898                         vtctl |= adapter->vfs_allocated_count <<
2899                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2900                         wr32(E1000_VT_CTL, vtctl);
2901                 }
2902                 if (adapter->rss_queues > 1)
2903                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2904                 else
2905                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2906         } else {
2907                 if (hw->mac.type != e1000_i211)
2908                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2909         }
2910         igb_vmm_control(adapter);
2911
2912         wr32(E1000_MRQC, mrqc);
2913 }
2914
2915 /**
2916  * igb_setup_rctl - configure the receive control registers
2917  * @adapter: Board private structure
2918  **/
2919 void igb_setup_rctl(struct igb_adapter *adapter)
2920 {
2921         struct e1000_hw *hw = &adapter->hw;
2922         u32 rctl;
2923
2924         rctl = rd32(E1000_RCTL);
2925
2926         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2927         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2928
2929         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2930                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2931
2932         /*
2933          * enable stripping of CRC. It's unlikely this will break BMC
2934          * redirection as it did with e1000. Newer features require
2935          * that the HW strips the CRC.
2936          */
2937         rctl |= E1000_RCTL_SECRC;
2938
2939         /* disable store bad packets and clear size bits. */
2940         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2941
2942         /* enable LPE to prevent packets larger than max_frame_size */
2943         rctl |= E1000_RCTL_LPE;
2944
2945         /* disable queue 0 to prevent tail write w/o re-config */
2946         wr32(E1000_RXDCTL(0), 0);
2947
2948         /* Attention!!!  For SR-IOV PF driver operations you must enable
2949          * queue drop for all VF and PF queues to prevent head of line blocking
2950          * if an un-trusted VF does not provide descriptors to hardware.
2951          */
2952         if (adapter->vfs_allocated_count) {
2953                 /* set all queue drop enable bits */
2954                 wr32(E1000_QDE, ALL_QUEUES);
2955         }
2956
2957         /* This is useful for sniffing bad packets. */
2958         if (adapter->netdev->features & NETIF_F_RXALL) {
2959                 /* UPE and MPE will be handled by normal PROMISC logic
2960                  * in e1000e_set_rx_mode */
2961                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2962                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
2963                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2964
2965                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2966                           E1000_RCTL_DPF | /* Allow filtered pause */
2967                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2968                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2969                  * and that breaks VLANs.
2970                  */
2971         }
2972
2973         wr32(E1000_RCTL, rctl);
2974 }
2975
2976 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2977                                    int vfn)
2978 {
2979         struct e1000_hw *hw = &adapter->hw;
2980         u32 vmolr;
2981
2982         /* if it isn't the PF check to see if VFs are enabled and
2983          * increase the size to support vlan tags */
2984         if (vfn < adapter->vfs_allocated_count &&
2985             adapter->vf_data[vfn].vlans_enabled)
2986                 size += VLAN_TAG_SIZE;
2987
2988         vmolr = rd32(E1000_VMOLR(vfn));
2989         vmolr &= ~E1000_VMOLR_RLPML_MASK;
2990         vmolr |= size | E1000_VMOLR_LPE;
2991         wr32(E1000_VMOLR(vfn), vmolr);
2992
2993         return 0;
2994 }
2995
2996 /**
2997  * igb_rlpml_set - set maximum receive packet size
2998  * @adapter: board private structure
2999  *
3000  * Configure maximum receivable packet size.
3001  **/
3002 static void igb_rlpml_set(struct igb_adapter *adapter)
3003 {
3004         u32 max_frame_size = adapter->max_frame_size;
3005         struct e1000_hw *hw = &adapter->hw;
3006         u16 pf_id = adapter->vfs_allocated_count;
3007
3008         if (pf_id) {
3009                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3010                 /*
3011                  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3012                  * to our max jumbo frame size, in case we need to enable
3013                  * jumbo frames on one of the rings later.
3014                  * This will not pass over-length frames into the default
3015                  * queue because it's gated by the VMOLR.RLPML.
3016                  */
3017                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3018         }
3019
3020         wr32(E1000_RLPML, max_frame_size);
3021 }
3022
3023 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3024                                  int vfn, bool aupe)
3025 {
3026         struct e1000_hw *hw = &adapter->hw;
3027         u32 vmolr;
3028
3029         /*
3030          * This register exists only on 82576 and newer so if we are older then
3031          * we should exit and do nothing
3032          */
3033         if (hw->mac.type < e1000_82576)
3034                 return;
3035
3036         vmolr = rd32(E1000_VMOLR(vfn));
3037         vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3038         if (aupe)
3039                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3040         else
3041                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3042
3043         /* clear all bits that might not be set */
3044         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3045
3046         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3047                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3048         /*
3049          * for VMDq only allow the VFs and pool 0 to accept broadcast and
3050          * multicast packets
3051          */
3052         if (vfn <= adapter->vfs_allocated_count)
3053                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
3054
3055         wr32(E1000_VMOLR(vfn), vmolr);
3056 }
3057
3058 /**
3059  * igb_configure_rx_ring - Configure a receive ring after Reset
3060  * @adapter: board private structure
3061  * @ring: receive ring to be configured
3062  *
3063  * Configure the Rx unit of the MAC after a reset.
3064  **/
3065 void igb_configure_rx_ring(struct igb_adapter *adapter,
3066                            struct igb_ring *ring)
3067 {
3068         struct e1000_hw *hw = &adapter->hw;
3069         u64 rdba = ring->dma;
3070         int reg_idx = ring->reg_idx;
3071         u32 srrctl = 0, rxdctl = 0;
3072
3073         /* disable the queue */
3074         wr32(E1000_RXDCTL(reg_idx), 0);
3075
3076         /* Set DMA base address registers */
3077         wr32(E1000_RDBAL(reg_idx),
3078              rdba & 0x00000000ffffffffULL);
3079         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3080         wr32(E1000_RDLEN(reg_idx),
3081                        ring->count * sizeof(union e1000_adv_rx_desc));
3082
3083         /* initialize head and tail */
3084         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3085         wr32(E1000_RDH(reg_idx), 0);
3086         writel(0, ring->tail);
3087
3088         /* set descriptor configuration */
3089         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3090         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3091         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3092         if (hw->mac.type >= e1000_82580)
3093                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3094         /* Only set Drop Enable if we are supporting multiple queues */
3095         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3096                 srrctl |= E1000_SRRCTL_DROP_EN;
3097
3098         wr32(E1000_SRRCTL(reg_idx), srrctl);
3099
3100         /* set filtering for VMDQ pools */
3101         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3102
3103         rxdctl |= IGB_RX_PTHRESH;
3104         rxdctl |= IGB_RX_HTHRESH << 8;
3105         rxdctl |= IGB_RX_WTHRESH << 16;
3106
3107         /* enable receive descriptor fetching */
3108         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3109         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3110 }
3111
3112 /**
3113  * igb_configure_rx - Configure receive Unit after Reset
3114  * @adapter: board private structure
3115  *
3116  * Configure the Rx unit of the MAC after a reset.
3117  **/
3118 static void igb_configure_rx(struct igb_adapter *adapter)
3119 {
3120         int i;
3121
3122         /* set UTA to appropriate mode */
3123         igb_set_uta(adapter);
3124
3125         /* set the correct pool for the PF default MAC address in entry 0 */
3126         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3127                          adapter->vfs_allocated_count);
3128
3129         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3130          * the Base and Length of the Rx Descriptor Ring */
3131         for (i = 0; i < adapter->num_rx_queues; i++)
3132                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3133 }
3134
3135 /**
3136  * igb_free_tx_resources - Free Tx Resources per Queue
3137  * @tx_ring: Tx descriptor ring for a specific queue
3138  *
3139  * Free all transmit software resources
3140  **/
3141 void igb_free_tx_resources(struct igb_ring *tx_ring)
3142 {
3143         igb_clean_tx_ring(tx_ring);
3144
3145         vfree(tx_ring->tx_buffer_info);
3146         tx_ring->tx_buffer_info = NULL;
3147
3148         /* if not set, then don't free */
3149         if (!tx_ring->desc)
3150                 return;
3151
3152         dma_free_coherent(tx_ring->dev, tx_ring->size,
3153                           tx_ring->desc, tx_ring->dma);
3154
3155         tx_ring->desc = NULL;
3156 }
3157
3158 /**
3159  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3160  * @adapter: board private structure
3161  *
3162  * Free all transmit software resources
3163  **/
3164 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3165 {
3166         int i;
3167
3168         for (i = 0; i < adapter->num_tx_queues; i++)
3169                 igb_free_tx_resources(adapter->tx_ring[i]);
3170 }
3171
3172 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3173                                     struct igb_tx_buffer *tx_buffer)
3174 {
3175         if (tx_buffer->skb) {
3176                 dev_kfree_skb_any(tx_buffer->skb);
3177                 if (dma_unmap_len(tx_buffer, len))
3178                         dma_unmap_single(ring->dev,
3179                                          dma_unmap_addr(tx_buffer, dma),
3180                                          dma_unmap_len(tx_buffer, len),
3181                                          DMA_TO_DEVICE);
3182         } else if (dma_unmap_len(tx_buffer, len)) {
3183                 dma_unmap_page(ring->dev,
3184                                dma_unmap_addr(tx_buffer, dma),
3185                                dma_unmap_len(tx_buffer, len),
3186                                DMA_TO_DEVICE);
3187         }
3188         tx_buffer->next_to_watch = NULL;
3189         tx_buffer->skb = NULL;
3190         dma_unmap_len_set(tx_buffer, len, 0);
3191         /* buffer_info must be completely set up in the transmit path */
3192 }
3193
3194 /**
3195  * igb_clean_tx_ring - Free Tx Buffers
3196  * @tx_ring: ring to be cleaned
3197  **/
3198 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3199 {
3200         struct igb_tx_buffer *buffer_info;
3201         unsigned long size;
3202         u16 i;
3203
3204         if (!tx_ring->tx_buffer_info)
3205                 return;
3206         /* Free all the Tx ring sk_buffs */
3207
3208         for (i = 0; i < tx_ring->count; i++) {
3209                 buffer_info = &tx_ring->tx_buffer_info[i];
3210                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3211         }
3212
3213         netdev_tx_reset_queue(txring_txq(tx_ring));
3214
3215         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3216         memset(tx_ring->tx_buffer_info, 0, size);
3217
3218         /* Zero out the descriptor ring */
3219         memset(tx_ring->desc, 0, tx_ring->size);
3220
3221         tx_ring->next_to_use = 0;
3222         tx_ring->next_to_clean = 0;
3223 }
3224
3225 /**
3226  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3227  * @adapter: board private structure
3228  **/
3229 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3230 {
3231         int i;
3232
3233         for (i = 0; i < adapter->num_tx_queues; i++)
3234                 igb_clean_tx_ring(adapter->tx_ring[i]);
3235 }
3236
3237 /**
3238  * igb_free_rx_resources - Free Rx Resources
3239  * @rx_ring: ring to clean the resources from
3240  *
3241  * Free all receive software resources
3242  **/
3243 void igb_free_rx_resources(struct igb_ring *rx_ring)
3244 {
3245         igb_clean_rx_ring(rx_ring);
3246
3247         vfree(rx_ring->rx_buffer_info);
3248         rx_ring->rx_buffer_info = NULL;
3249
3250         /* if not set, then don't free */
3251         if (!rx_ring->desc)
3252                 return;
3253
3254         dma_free_coherent(rx_ring->dev, rx_ring->size,
3255                           rx_ring->desc, rx_ring->dma);
3256
3257         rx_ring->desc = NULL;
3258 }
3259
3260 /**
3261  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3262  * @adapter: board private structure
3263  *
3264  * Free all receive software resources
3265  **/
3266 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3267 {
3268         int i;
3269
3270         for (i = 0; i < adapter->num_rx_queues; i++)
3271                 igb_free_rx_resources(adapter->rx_ring[i]);
3272 }
3273
3274 /**
3275  * igb_clean_rx_ring - Free Rx Buffers per Queue
3276  * @rx_ring: ring to free buffers from
3277  **/
3278 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3279 {
3280         unsigned long size;
3281         u16 i;
3282
3283         if (rx_ring->skb)
3284                 dev_kfree_skb(rx_ring->skb);
3285         rx_ring->skb = NULL;
3286
3287         if (!rx_ring->rx_buffer_info)
3288                 return;
3289
3290         /* Free all the Rx ring sk_buffs */
3291         for (i = 0; i < rx_ring->count; i++) {
3292                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3293
3294                 if (!buffer_info->page)
3295                         continue;
3296
3297                 dma_unmap_page(rx_ring->dev,
3298                                buffer_info->dma,
3299                                PAGE_SIZE,
3300                                DMA_FROM_DEVICE);
3301                 __free_page(buffer_info->page);
3302
3303                 buffer_info->page = NULL;
3304         }
3305
3306         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307         memset(rx_ring->rx_buffer_info, 0, size);
3308
3309         /* Zero out the descriptor ring */
3310         memset(rx_ring->desc, 0, rx_ring->size);
3311
3312         rx_ring->next_to_alloc = 0;
3313         rx_ring->next_to_clean = 0;
3314         rx_ring->next_to_use = 0;
3315 }
3316
3317 /**
3318  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3319  * @adapter: board private structure
3320  **/
3321 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3322 {
3323         int i;
3324
3325         for (i = 0; i < adapter->num_rx_queues; i++)
3326                 igb_clean_rx_ring(adapter->rx_ring[i]);
3327 }
3328
3329 /**
3330  * igb_set_mac - Change the Ethernet Address of the NIC
3331  * @netdev: network interface device structure
3332  * @p: pointer to an address structure
3333  *
3334  * Returns 0 on success, negative on failure
3335  **/
3336 static int igb_set_mac(struct net_device *netdev, void *p)
3337 {
3338         struct igb_adapter *adapter = netdev_priv(netdev);
3339         struct e1000_hw *hw = &adapter->hw;
3340         struct sockaddr *addr = p;
3341
3342         if (!is_valid_ether_addr(addr->sa_data))
3343                 return -EADDRNOTAVAIL;
3344
3345         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3346         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3347
3348         /* set the correct pool for the new PF MAC address in entry 0 */
3349         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3350                          adapter->vfs_allocated_count);
3351
3352         return 0;
3353 }
3354
3355 /**
3356  * igb_write_mc_addr_list - write multicast addresses to MTA
3357  * @netdev: network interface device structure
3358  *
3359  * Writes multicast address list to the MTA hash table.
3360  * Returns: -ENOMEM on failure
3361  *                0 on no addresses written
3362  *                X on writing X addresses to MTA
3363  **/
3364 static int igb_write_mc_addr_list(struct net_device *netdev)
3365 {
3366         struct igb_adapter *adapter = netdev_priv(netdev);
3367         struct e1000_hw *hw = &adapter->hw;
3368         struct netdev_hw_addr *ha;
3369         u8  *mta_list;
3370         int i;
3371
3372         if (netdev_mc_empty(netdev)) {
3373                 /* nothing to program, so clear mc list */
3374                 igb_update_mc_addr_list(hw, NULL, 0);
3375                 igb_restore_vf_multicasts(adapter);
3376                 return 0;
3377         }
3378
3379         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3380         if (!mta_list)
3381                 return -ENOMEM;
3382
3383         /* The shared function expects a packed array of only addresses. */
3384         i = 0;
3385         netdev_for_each_mc_addr(ha, netdev)
3386                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3387
3388         igb_update_mc_addr_list(hw, mta_list, i);
3389         kfree(mta_list);
3390
3391         return netdev_mc_count(netdev);
3392 }
3393
3394 /**
3395  * igb_write_uc_addr_list - write unicast addresses to RAR table
3396  * @netdev: network interface device structure
3397  *
3398  * Writes unicast address list to the RAR table.
3399  * Returns: -ENOMEM on failure/insufficient address space
3400  *                0 on no addresses written
3401  *                X on writing X addresses to the RAR table
3402  **/
3403 static int igb_write_uc_addr_list(struct net_device *netdev)
3404 {
3405         struct igb_adapter *adapter = netdev_priv(netdev);
3406         struct e1000_hw *hw = &adapter->hw;
3407         unsigned int vfn = adapter->vfs_allocated_count;
3408         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3409         int count = 0;
3410
3411         /* return ENOMEM indicating insufficient memory for addresses */
3412         if (netdev_uc_count(netdev) > rar_entries)
3413                 return -ENOMEM;
3414
3415         if (!netdev_uc_empty(netdev) && rar_entries) {
3416                 struct netdev_hw_addr *ha;
3417
3418                 netdev_for_each_uc_addr(ha, netdev) {
3419                         if (!rar_entries)
3420                                 break;
3421                         igb_rar_set_qsel(adapter, ha->addr,
3422                                          rar_entries--,
3423                                          vfn);
3424                         count++;
3425                 }
3426         }
3427         /* write the addresses in reverse order to avoid write combining */
3428         for (; rar_entries > 0 ; rar_entries--) {
3429                 wr32(E1000_RAH(rar_entries), 0);
3430                 wr32(E1000_RAL(rar_entries), 0);
3431         }
3432         wrfl();
3433
3434         return count;
3435 }
3436
3437 /**
3438  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3439  * @netdev: network interface device structure
3440  *
3441  * The set_rx_mode entry point is called whenever the unicast or multicast
3442  * address lists or the network interface flags are updated.  This routine is
3443  * responsible for configuring the hardware for proper unicast, multicast,
3444  * promiscuous mode, and all-multi behavior.
3445  **/
3446 static void igb_set_rx_mode(struct net_device *netdev)
3447 {
3448         struct igb_adapter *adapter = netdev_priv(netdev);
3449         struct e1000_hw *hw = &adapter->hw;
3450         unsigned int vfn = adapter->vfs_allocated_count;
3451         u32 rctl, vmolr = 0;
3452         int count;
3453
3454         /* Check for Promiscuous and All Multicast modes */
3455         rctl = rd32(E1000_RCTL);
3456
3457         /* clear the effected bits */
3458         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3459
3460         if (netdev->flags & IFF_PROMISC) {
3461                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3462                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3463         } else {
3464                 if (netdev->flags & IFF_ALLMULTI) {
3465                         rctl |= E1000_RCTL_MPE;
3466                         vmolr |= E1000_VMOLR_MPME;
3467                 } else {
3468                         /*
3469                          * Write addresses to the MTA, if the attempt fails
3470                          * then we should just turn on promiscuous mode so
3471                          * that we can at least receive multicast traffic
3472                          */
3473                         count = igb_write_mc_addr_list(netdev);
3474                         if (count < 0) {
3475                                 rctl |= E1000_RCTL_MPE;
3476                                 vmolr |= E1000_VMOLR_MPME;
3477                         } else if (count) {
3478                                 vmolr |= E1000_VMOLR_ROMPE;
3479                         }
3480                 }
3481                 /*
3482                  * Write addresses to available RAR registers, if there is not
3483                  * sufficient space to store all the addresses then enable
3484                  * unicast promiscuous mode
3485                  */
3486                 count = igb_write_uc_addr_list(netdev);
3487                 if (count < 0) {
3488                         rctl |= E1000_RCTL_UPE;
3489                         vmolr |= E1000_VMOLR_ROPE;
3490                 }
3491                 rctl |= E1000_RCTL_VFE;
3492         }
3493         wr32(E1000_RCTL, rctl);
3494
3495         /*
3496          * In order to support SR-IOV and eventually VMDq it is necessary to set
3497          * the VMOLR to enable the appropriate modes.  Without this workaround
3498          * we will have issues with VLAN tag stripping not being done for frames
3499          * that are only arriving because we are the default pool
3500          */
3501         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3502                 return;
3503
3504         vmolr |= rd32(E1000_VMOLR(vfn)) &
3505                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3506         wr32(E1000_VMOLR(vfn), vmolr);
3507         igb_restore_vf_multicasts(adapter);
3508 }
3509
3510 static void igb_check_wvbr(struct igb_adapter *adapter)
3511 {
3512         struct e1000_hw *hw = &adapter->hw;
3513         u32 wvbr = 0;
3514
3515         switch (hw->mac.type) {
3516         case e1000_82576:
3517         case e1000_i350:
3518                 if (!(wvbr = rd32(E1000_WVBR)))
3519                         return;
3520                 break;
3521         default:
3522                 break;
3523         }
3524
3525         adapter->wvbr |= wvbr;
3526 }
3527
3528 #define IGB_STAGGERED_QUEUE_OFFSET 8
3529
3530 static void igb_spoof_check(struct igb_adapter *adapter)
3531 {
3532         int j;
3533
3534         if (!adapter->wvbr)
3535                 return;
3536
3537         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3538                 if (adapter->wvbr & (1 << j) ||
3539                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3540                         dev_warn(&adapter->pdev->dev,
3541                                 "Spoof event(s) detected on VF %d\n", j);
3542                         adapter->wvbr &=
3543                                 ~((1 << j) |
3544                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3545                 }
3546         }
3547 }
3548
3549 /* Need to wait a few seconds after link up to get diagnostic information from
3550  * the phy */
3551 static void igb_update_phy_info(unsigned long data)
3552 {
3553         struct igb_adapter *adapter = (struct igb_adapter *) data;
3554         igb_get_phy_info(&adapter->hw);
3555 }
3556
3557 /**
3558  * igb_has_link - check shared code for link and determine up/down
3559  * @adapter: pointer to driver private info
3560  **/
3561 bool igb_has_link(struct igb_adapter *adapter)
3562 {
3563         struct e1000_hw *hw = &adapter->hw;
3564         bool link_active = false;
3565         s32 ret_val = 0;
3566
3567         /* get_link_status is set on LSC (link status) interrupt or
3568          * rx sequence error interrupt.  get_link_status will stay
3569          * false until the e1000_check_for_link establishes link
3570          * for copper adapters ONLY
3571          */
3572         switch (hw->phy.media_type) {
3573         case e1000_media_type_copper:
3574                 if (hw->mac.get_link_status) {
3575                         ret_val = hw->mac.ops.check_for_link(hw);
3576                         link_active = !hw->mac.get_link_status;
3577                 } else {
3578                         link_active = true;
3579                 }
3580                 break;
3581         case e1000_media_type_internal_serdes:
3582                 ret_val = hw->mac.ops.check_for_link(hw);
3583                 link_active = hw->mac.serdes_has_link;
3584                 break;
3585         default:
3586         case e1000_media_type_unknown:
3587                 break;
3588         }
3589
3590         return link_active;
3591 }
3592
3593 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3594 {
3595         bool ret = false;
3596         u32 ctrl_ext, thstat;
3597
3598         /* check for thermal sensor event on i350 copper only */
3599         if (hw->mac.type == e1000_i350) {
3600                 thstat = rd32(E1000_THSTAT);
3601                 ctrl_ext = rd32(E1000_CTRL_EXT);
3602
3603                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3604                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3605                         ret = !!(thstat & event);
3606                 }
3607         }
3608
3609         return ret;
3610 }
3611
3612 /**
3613  * igb_watchdog - Timer Call-back
3614  * @data: pointer to adapter cast into an unsigned long
3615  **/
3616 static void igb_watchdog(unsigned long data)
3617 {
3618         struct igb_adapter *adapter = (struct igb_adapter *)data;
3619         /* Do the rest outside of interrupt context */
3620         schedule_work(&adapter->watchdog_task);
3621 }
3622
3623 static void igb_watchdog_task(struct work_struct *work)
3624 {
3625         struct igb_adapter *adapter = container_of(work,
3626                                                    struct igb_adapter,
3627                                                    watchdog_task);
3628         struct e1000_hw *hw = &adapter->hw;
3629         struct net_device *netdev = adapter->netdev;
3630         u32 link;
3631         int i;
3632
3633         link = igb_has_link(adapter);
3634         if (link) {
3635                 /* Cancel scheduled suspend requests. */
3636                 pm_runtime_resume(netdev->dev.parent);
3637
3638                 if (!netif_carrier_ok(netdev)) {
3639                         u32 ctrl;
3640                         hw->mac.ops.get_speed_and_duplex(hw,
3641                                                          &adapter->link_speed,
3642                                                          &adapter->link_duplex);
3643
3644                         ctrl = rd32(E1000_CTRL);
3645                         /* Links status message must follow this format */
3646                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3647                                "Duplex, Flow Control: %s\n",
3648                                netdev->name,
3649                                adapter->link_speed,
3650                                adapter->link_duplex == FULL_DUPLEX ?
3651                                "Full" : "Half",
3652                                (ctrl & E1000_CTRL_TFCE) &&
3653                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3654                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3655                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3656
3657                         /* check for thermal sensor event */
3658                         if (igb_thermal_sensor_event(hw,
3659                             E1000_THSTAT_LINK_THROTTLE)) {
3660                                 netdev_info(netdev, "The network adapter link "
3661                                             "speed was downshifted because it "
3662                                             "overheated\n");
3663                         }
3664
3665                         /* adjust timeout factor according to speed/duplex */
3666                         adapter->tx_timeout_factor = 1;
3667                         switch (adapter->link_speed) {
3668                         case SPEED_10:
3669                                 adapter->tx_timeout_factor = 14;
3670                                 break;
3671                         case SPEED_100:
3672                                 /* maybe add some timeout factor ? */
3673                                 break;
3674                         }
3675
3676                         netif_carrier_on(netdev);
3677
3678                         igb_ping_all_vfs(adapter);
3679                         igb_check_vf_rate_limit(adapter);
3680
3681                         /* link state has changed, schedule phy info update */
3682                         if (!test_bit(__IGB_DOWN, &adapter->state))
3683                                 mod_timer(&adapter->phy_info_timer,
3684                                           round_jiffies(jiffies + 2 * HZ));
3685                 }
3686         } else {
3687                 if (netif_carrier_ok(netdev)) {
3688                         adapter->link_speed = 0;
3689                         adapter->link_duplex = 0;
3690
3691                         /* check for thermal sensor event */
3692                         if (igb_thermal_sensor_event(hw,
3693                             E1000_THSTAT_PWR_DOWN)) {
3694                                 netdev_err(netdev, "The network adapter was "
3695                                            "stopped because it overheated\n");
3696                         }
3697
3698                         /* Links status message must follow this format */
3699                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3700                                netdev->name);
3701                         netif_carrier_off(netdev);
3702
3703                         igb_ping_all_vfs(adapter);
3704
3705                         /* link state has changed, schedule phy info update */
3706                         if (!test_bit(__IGB_DOWN, &adapter->state))
3707                                 mod_timer(&adapter->phy_info_timer,
3708                                           round_jiffies(jiffies + 2 * HZ));
3709
3710                         pm_schedule_suspend(netdev->dev.parent,
3711                                             MSEC_PER_SEC * 5);
3712                 }
3713         }
3714
3715         spin_lock(&adapter->stats64_lock);
3716         igb_update_stats(adapter, &adapter->stats64);
3717         spin_unlock(&adapter->stats64_lock);
3718
3719         for (i = 0; i < adapter->num_tx_queues; i++) {
3720                 struct igb_ring *tx_ring = adapter->tx_ring[i];
3721                 if (!netif_carrier_ok(netdev)) {
3722                         /* We've lost link, so the controller stops DMA,
3723                          * but we've got queued Tx work that's never going
3724                          * to get done, so reset controller to flush Tx.
3725                          * (Do the reset outside of interrupt context). */
3726                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3727                                 adapter->tx_timeout_count++;
3728                                 schedule_work(&adapter->reset_task);
3729                                 /* return immediately since reset is imminent */
3730                                 return;
3731                         }
3732                 }
3733
3734                 /* Force detection of hung controller every watchdog period */
3735                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3736         }
3737
3738         /* Cause software interrupt to ensure rx ring is cleaned */
3739         if (adapter->msix_entries) {
3740                 u32 eics = 0;
3741                 for (i = 0; i < adapter->num_q_vectors; i++)
3742                         eics |= adapter->q_vector[i]->eims_value;
3743                 wr32(E1000_EICS, eics);
3744         } else {
3745                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3746         }
3747
3748         igb_spoof_check(adapter);
3749
3750         /* Reset the timer */
3751         if (!test_bit(__IGB_DOWN, &adapter->state))
3752                 mod_timer(&adapter->watchdog_timer,
3753                           round_jiffies(jiffies + 2 * HZ));
3754 }
3755
3756 enum latency_range {
3757         lowest_latency = 0,
3758         low_latency = 1,
3759         bulk_latency = 2,
3760         latency_invalid = 255
3761 };
3762
3763 /**
3764  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3765  *
3766  *      Stores a new ITR value based on strictly on packet size.  This
3767  *      algorithm is less sophisticated than that used in igb_update_itr,
3768  *      due to the difficulty of synchronizing statistics across multiple
3769  *      receive rings.  The divisors and thresholds used by this function
3770  *      were determined based on theoretical maximum wire speed and testing
3771  *      data, in order to minimize response time while increasing bulk
3772  *      throughput.
3773  *      This functionality is controlled by the InterruptThrottleRate module
3774  *      parameter (see igb_param.c)
3775  *      NOTE:  This function is called only when operating in a multiqueue
3776  *             receive environment.
3777  * @q_vector: pointer to q_vector
3778  **/
3779 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3780 {
3781         int new_val = q_vector->itr_val;
3782         int avg_wire_size = 0;
3783         struct igb_adapter *adapter = q_vector->adapter;
3784         unsigned int packets;
3785
3786         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3787          * ints/sec - ITR timer value of 120 ticks.
3788          */
3789         if (adapter->link_speed != SPEED_1000) {
3790                 new_val = IGB_4K_ITR;
3791                 goto set_itr_val;
3792         }
3793
3794         packets = q_vector->rx.total_packets;
3795         if (packets)
3796                 avg_wire_size = q_vector->rx.total_bytes / packets;
3797
3798         packets = q_vector->tx.total_packets;
3799         if (packets)
3800                 avg_wire_size = max_t(u32, avg_wire_size,
3801                                       q_vector->tx.total_bytes / packets);
3802
3803         /* if avg_wire_size isn't set no work was done */
3804         if (!avg_wire_size)
3805                 goto clear_counts;
3806
3807         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3808         avg_wire_size += 24;
3809
3810         /* Don't starve jumbo frames */
3811         avg_wire_size = min(avg_wire_size, 3000);
3812
3813         /* Give a little boost to mid-size frames */
3814         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3815                 new_val = avg_wire_size / 3;
3816         else
3817                 new_val = avg_wire_size / 2;
3818
3819         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3820         if (new_val < IGB_20K_ITR &&
3821             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3822              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3823                 new_val = IGB_20K_ITR;
3824
3825 set_itr_val:
3826         if (new_val != q_vector->itr_val) {
3827                 q_vector->itr_val = new_val;
3828                 q_vector->set_itr = 1;
3829         }
3830 clear_counts:
3831         q_vector->rx.total_bytes = 0;
3832         q_vector->rx.total_packets = 0;
3833         q_vector->tx.total_bytes = 0;
3834         q_vector->tx.total_packets = 0;
3835 }
3836
3837 /**
3838  * igb_update_itr - update the dynamic ITR value based on statistics
3839  *      Stores a new ITR value based on packets and byte
3840  *      counts during the last interrupt.  The advantage of per interrupt
3841  *      computation is faster updates and more accurate ITR for the current
3842  *      traffic pattern.  Constants in this function were computed
3843  *      based on theoretical maximum wire speed and thresholds were set based
3844  *      on testing data as well as attempting to minimize response time
3845  *      while increasing bulk throughput.
3846  *      this functionality is controlled by the InterruptThrottleRate module
3847  *      parameter (see igb_param.c)
3848  *      NOTE:  These calculations are only valid when operating in a single-
3849  *             queue environment.
3850  * @q_vector: pointer to q_vector
3851  * @ring_container: ring info to update the itr for
3852  **/
3853 static void igb_update_itr(struct igb_q_vector *q_vector,
3854                            struct igb_ring_container *ring_container)
3855 {
3856         unsigned int packets = ring_container->total_packets;
3857         unsigned int bytes = ring_container->total_bytes;
3858         u8 itrval = ring_container->itr;
3859
3860         /* no packets, exit with status unchanged */
3861         if (packets == 0)
3862                 return;
3863
3864         switch (itrval) {
3865         case lowest_latency:
3866                 /* handle TSO and jumbo frames */
3867                 if (bytes/packets > 8000)
3868                         itrval = bulk_latency;
3869                 else if ((packets < 5) && (bytes > 512))
3870                         itrval = low_latency;
3871                 break;
3872         case low_latency:  /* 50 usec aka 20000 ints/s */
3873                 if (bytes > 10000) {
3874                         /* this if handles the TSO accounting */
3875                         if (bytes/packets > 8000) {
3876                                 itrval = bulk_latency;
3877                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3878                                 itrval = bulk_latency;
3879                         } else if ((packets > 35)) {
3880                                 itrval = lowest_latency;
3881                         }
3882                 } else if (bytes/packets > 2000) {
3883                         itrval = bulk_latency;
3884                 } else if (packets <= 2 && bytes < 512) {
3885                         itrval = lowest_latency;
3886                 }
3887                 break;
3888         case bulk_latency: /* 250 usec aka 4000 ints/s */
3889                 if (bytes > 25000) {
3890                         if (packets > 35)
3891                                 itrval = low_latency;
3892                 } else if (bytes < 1500) {
3893                         itrval = low_latency;
3894                 }
3895                 break;
3896         }
3897
3898         /* clear work counters since we have the values we need */
3899         ring_container->total_bytes = 0;
3900         ring_container->total_packets = 0;
3901
3902         /* write updated itr to ring container */
3903         ring_container->itr = itrval;
3904 }
3905
3906 static void igb_set_itr(struct igb_q_vector *q_vector)
3907 {
3908         struct igb_adapter *adapter = q_vector->adapter;
3909         u32 new_itr = q_vector->itr_val;
3910         u8 current_itr = 0;
3911
3912         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3913         if (adapter->link_speed != SPEED_1000) {
3914                 current_itr = 0;
3915                 new_itr = IGB_4K_ITR;
3916                 goto set_itr_now;
3917         }
3918
3919         igb_update_itr(q_vector, &q_vector->tx);
3920         igb_update_itr(q_vector, &q_vector->rx);
3921
3922         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3923
3924         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3925         if (current_itr == lowest_latency &&
3926             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3927              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3928                 current_itr = low_latency;
3929
3930         switch (current_itr) {
3931         /* counts and packets in update_itr are dependent on these numbers */
3932         case lowest_latency:
3933                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3934                 break;
3935         case low_latency:
3936                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3937                 break;
3938         case bulk_latency:
3939                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3940                 break;
3941         default:
3942                 break;
3943         }
3944
3945 set_itr_now:
3946         if (new_itr != q_vector->itr_val) {
3947                 /* this attempts to bias the interrupt rate towards Bulk
3948                  * by adding intermediate steps when interrupt rate is
3949                  * increasing */
3950                 new_itr = new_itr > q_vector->itr_val ?
3951                              max((new_itr * q_vector->itr_val) /
3952                                  (new_itr + (q_vector->itr_val >> 2)),
3953                                  new_itr) :
3954                              new_itr;
3955                 /* Don't write the value here; it resets the adapter's
3956                  * internal timer, and causes us to delay far longer than
3957                  * we should between interrupts.  Instead, we write the ITR
3958                  * value at the beginning of the next interrupt so the timing
3959                  * ends up being correct.
3960                  */
3961                 q_vector->itr_val = new_itr;
3962                 q_vector->set_itr = 1;
3963         }
3964 }
3965
3966 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3967                             u32 type_tucmd, u32 mss_l4len_idx)
3968 {
3969         struct e1000_adv_tx_context_desc *context_desc;
3970         u16 i = tx_ring->next_to_use;
3971
3972         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3973
3974         i++;
3975         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3976
3977         /* set bits to identify this as an advanced context descriptor */
3978         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3979
3980         /* For 82575, context index must be unique per ring. */
3981         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
3982                 mss_l4len_idx |= tx_ring->reg_idx << 4;
3983
3984         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3985         context_desc->seqnum_seed       = 0;
3986         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3987         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3988 }
3989
3990 static int igb_tso(struct igb_ring *tx_ring,
3991                    struct igb_tx_buffer *first,
3992                    u8 *hdr_len)
3993 {
3994         struct sk_buff *skb = first->skb;
3995         u32 vlan_macip_lens, type_tucmd;
3996         u32 mss_l4len_idx, l4len;
3997
3998         if (!skb_is_gso(skb))
3999                 return 0;
4000
4001         if (skb_header_cloned(skb)) {
4002                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4003                 if (err)
4004                         return err;
4005         }
4006
4007         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4008         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4009
4010         if (first->protocol == __constant_htons(ETH_P_IP)) {
4011                 struct iphdr *iph = ip_hdr(skb);
4012                 iph->tot_len = 0;
4013                 iph->check = 0;
4014                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4015                                                          iph->daddr, 0,
4016                                                          IPPROTO_TCP,
4017                                                          0);
4018                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4019                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4020                                    IGB_TX_FLAGS_CSUM |
4021                                    IGB_TX_FLAGS_IPV4;
4022         } else if (skb_is_gso_v6(skb)) {
4023                 ipv6_hdr(skb)->payload_len = 0;
4024                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4025                                                        &ipv6_hdr(skb)->daddr,
4026                                                        0, IPPROTO_TCP, 0);
4027                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4028                                    IGB_TX_FLAGS_CSUM;
4029         }
4030
4031         /* compute header lengths */
4032         l4len = tcp_hdrlen(skb);
4033         *hdr_len = skb_transport_offset(skb) + l4len;
4034
4035         /* update gso size and bytecount with header size */
4036         first->gso_segs = skb_shinfo(skb)->gso_segs;
4037         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4038
4039         /* MSS L4LEN IDX */
4040         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4041         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4042
4043         /* VLAN MACLEN IPLEN */
4044         vlan_macip_lens = skb_network_header_len(skb);
4045         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4046         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4047
4048         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4049
4050         return 1;
4051 }
4052
4053 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4054 {
4055         struct sk_buff *skb = first->skb;
4056         u32 vlan_macip_lens = 0;
4057         u32 mss_l4len_idx = 0;
4058         u32 type_tucmd = 0;
4059
4060         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4061                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4062                         return;
4063         } else {
4064                 u8 l4_hdr = 0;
4065                 switch (first->protocol) {
4066                 case __constant_htons(ETH_P_IP):
4067                         vlan_macip_lens |= skb_network_header_len(skb);
4068                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4069                         l4_hdr = ip_hdr(skb)->protocol;
4070                         break;
4071                 case __constant_htons(ETH_P_IPV6):
4072                         vlan_macip_lens |= skb_network_header_len(skb);
4073                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4074                         break;
4075                 default:
4076                         if (unlikely(net_ratelimit())) {
4077                                 dev_warn(tx_ring->dev,
4078                                  "partial checksum but proto=%x!\n",
4079                                  first->protocol);
4080                         }
4081                         break;
4082                 }
4083
4084                 switch (l4_hdr) {
4085                 case IPPROTO_TCP:
4086                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4087                         mss_l4len_idx = tcp_hdrlen(skb) <<
4088                                         E1000_ADVTXD_L4LEN_SHIFT;
4089                         break;
4090                 case IPPROTO_SCTP:
4091                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4092                         mss_l4len_idx = sizeof(struct sctphdr) <<
4093                                         E1000_ADVTXD_L4LEN_SHIFT;
4094                         break;
4095                 case IPPROTO_UDP:
4096                         mss_l4len_idx = sizeof(struct udphdr) <<
4097                                         E1000_ADVTXD_L4LEN_SHIFT;
4098                         break;
4099                 default:
4100                         if (unlikely(net_ratelimit())) {
4101                                 dev_warn(tx_ring->dev,
4102                                  "partial checksum but l4 proto=%x!\n",
4103                                  l4_hdr);
4104                         }
4105                         break;
4106                 }
4107
4108                 /* update TX checksum flag */
4109                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4110         }
4111
4112         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4113         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4114
4115         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4116 }
4117
4118 static __le32 igb_tx_cmd_type(u32 tx_flags)
4119 {
4120         /* set type for advanced descriptor with frame checksum insertion */
4121         __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4122                                       E1000_ADVTXD_DCMD_IFCS |
4123                                       E1000_ADVTXD_DCMD_DEXT);
4124
4125         /* set HW vlan bit if vlan is present */
4126         if (tx_flags & IGB_TX_FLAGS_VLAN)
4127                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4128
4129         /* set timestamp bit if present */
4130         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4131                 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4132
4133         /* set segmentation bits for TSO */
4134         if (tx_flags & IGB_TX_FLAGS_TSO)
4135                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4136
4137         return cmd_type;
4138 }
4139
4140 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4141                                  union e1000_adv_tx_desc *tx_desc,
4142                                  u32 tx_flags, unsigned int paylen)
4143 {
4144         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4145
4146         /* 82575 requires a unique index per ring if any offload is enabled */
4147         if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4148             test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4149                 olinfo_status |= tx_ring->reg_idx << 4;
4150
4151         /* insert L4 checksum */
4152         if (tx_flags & IGB_TX_FLAGS_CSUM) {
4153                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4154
4155                 /* insert IPv4 checksum */
4156                 if (tx_flags & IGB_TX_FLAGS_IPV4)
4157                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4158         }
4159
4160         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4161 }
4162
4163 /*
4164  * The largest size we can write to the descriptor is 65535.  In order to
4165  * maintain a power of two alignment we have to limit ourselves to 32K.
4166  */
4167 #define IGB_MAX_TXD_PWR 15
4168 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
4169
4170 static void igb_tx_map(struct igb_ring *tx_ring,
4171                        struct igb_tx_buffer *first,
4172                        const u8 hdr_len)
4173 {
4174         struct sk_buff *skb = first->skb;
4175         struct igb_tx_buffer *tx_buffer;
4176         union e1000_adv_tx_desc *tx_desc;
4177         dma_addr_t dma;
4178         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4179         unsigned int data_len = skb->data_len;
4180         unsigned int size = skb_headlen(skb);
4181         unsigned int paylen = skb->len - hdr_len;
4182         __le32 cmd_type;
4183         u32 tx_flags = first->tx_flags;
4184         u16 i = tx_ring->next_to_use;
4185
4186         tx_desc = IGB_TX_DESC(tx_ring, i);
4187
4188         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4189         cmd_type = igb_tx_cmd_type(tx_flags);
4190
4191         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4192         if (dma_mapping_error(tx_ring->dev, dma))
4193                 goto dma_error;
4194
4195         /* record length, and DMA address */
4196         dma_unmap_len_set(first, len, size);
4197         dma_unmap_addr_set(first, dma, dma);
4198         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4199
4200         for (;;) {
4201                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4202                         tx_desc->read.cmd_type_len =
4203                                 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4204
4205                         i++;
4206                         tx_desc++;
4207                         if (i == tx_ring->count) {
4208                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4209                                 i = 0;
4210                         }
4211
4212                         dma += IGB_MAX_DATA_PER_TXD;
4213                         size -= IGB_MAX_DATA_PER_TXD;
4214
4215                         tx_desc->read.olinfo_status = 0;
4216                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4217                 }
4218
4219                 if (likely(!data_len))
4220                         break;
4221
4222                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4223
4224                 i++;
4225                 tx_desc++;
4226                 if (i == tx_ring->count) {
4227                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4228                         i = 0;
4229                 }
4230
4231                 size = skb_frag_size(frag);
4232                 data_len -= size;
4233
4234                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4235                                    size, DMA_TO_DEVICE);
4236                 if (dma_mapping_error(tx_ring->dev, dma))
4237                         goto dma_error;
4238
4239                 tx_buffer = &tx_ring->tx_buffer_info[i];
4240                 dma_unmap_len_set(tx_buffer, len, size);
4241                 dma_unmap_addr_set(tx_buffer, dma, dma);
4242
4243                 tx_desc->read.olinfo_status = 0;
4244                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4245
4246                 frag++;
4247         }
4248
4249         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4250
4251         /* write last descriptor with RS and EOP bits */
4252         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4253         if (unlikely(skb->no_fcs))
4254                 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4255         tx_desc->read.cmd_type_len = cmd_type;
4256
4257         /* set the timestamp */
4258         first->time_stamp = jiffies;
4259
4260         /*
4261          * Force memory writes to complete before letting h/w know there
4262          * are new descriptors to fetch.  (Only applicable for weak-ordered
4263          * memory model archs, such as IA-64).
4264          *
4265          * We also need this memory barrier to make certain all of the
4266          * status bits have been updated before next_to_watch is written.
4267          */
4268         wmb();
4269
4270         /* set next_to_watch value indicating a packet is present */
4271         first->next_to_watch = tx_desc;
4272
4273         i++;
4274         if (i == tx_ring->count)
4275                 i = 0;
4276
4277         tx_ring->next_to_use = i;
4278
4279         writel(i, tx_ring->tail);
4280
4281         /* we need this if more than one processor can write to our tail
4282          * at a time, it syncronizes IO on IA64/Altix systems */
4283         mmiowb();
4284
4285         return;
4286
4287 dma_error:
4288         dev_err(tx_ring->dev, "TX DMA map failed\n");
4289
4290         /* clear dma mappings for failed tx_buffer_info map */
4291         for (;;) {
4292                 tx_buffer = &tx_ring->tx_buffer_info[i];
4293                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4294                 if (tx_buffer == first)
4295                         break;
4296                 if (i == 0)
4297                         i = tx_ring->count;
4298                 i--;
4299         }
4300
4301         tx_ring->next_to_use = i;
4302 }
4303
4304 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4305 {
4306         struct net_device *netdev = tx_ring->netdev;
4307
4308         netif_stop_subqueue(netdev, tx_ring->queue_index);
4309
4310         /* Herbert's original patch had:
4311          *  smp_mb__after_netif_stop_queue();
4312          * but since that doesn't exist yet, just open code it. */
4313         smp_mb();
4314
4315         /* We need to check again in a case another CPU has just
4316          * made room available. */
4317         if (igb_desc_unused(tx_ring) < size)
4318                 return -EBUSY;
4319
4320         /* A reprieve! */
4321         netif_wake_subqueue(netdev, tx_ring->queue_index);
4322
4323         u64_stats_update_begin(&tx_ring->tx_syncp2);
4324         tx_ring->tx_stats.restart_queue2++;
4325         u64_stats_update_end(&tx_ring->tx_syncp2);
4326
4327         return 0;
4328 }
4329
4330 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4331 {
4332         if (igb_desc_unused(tx_ring) >= size)
4333                 return 0;
4334         return __igb_maybe_stop_tx(tx_ring, size);
4335 }
4336
4337 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4338                                 struct igb_ring *tx_ring)
4339 {
4340         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4341         struct igb_tx_buffer *first;
4342         int tso;
4343         u32 tx_flags = 0;
4344         __be16 protocol = vlan_get_protocol(skb);
4345         u8 hdr_len = 0;
4346
4347         /* need: 1 descriptor per page,
4348          *       + 2 desc gap to keep tail from touching head,
4349          *       + 1 desc for skb->data,
4350          *       + 1 desc for context descriptor,
4351          * otherwise try next time */
4352         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4353                 /* this is a hard error */
4354                 return NETDEV_TX_BUSY;
4355         }
4356
4357         /* record the location of the first descriptor for this packet */
4358         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4359         first->skb = skb;
4360         first->bytecount = skb->len;
4361         first->gso_segs = 1;
4362
4363         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4364                      !(adapter->ptp_tx_skb))) {
4365                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4366                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4367
4368                 adapter->ptp_tx_skb = skb_get(skb);
4369                 if (adapter->hw.mac.type == e1000_82576)
4370                         schedule_work(&adapter->ptp_tx_work);
4371         }
4372
4373         if (vlan_tx_tag_present(skb)) {
4374                 tx_flags |= IGB_TX_FLAGS_VLAN;
4375                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4376         }
4377
4378         /* record initial flags and protocol */
4379         first->tx_flags = tx_flags;
4380         first->protocol = protocol;
4381
4382         tso = igb_tso(tx_ring, first, &hdr_len);
4383         if (tso < 0)
4384                 goto out_drop;
4385         else if (!tso)
4386                 igb_tx_csum(tx_ring, first);
4387
4388         igb_tx_map(tx_ring, first, hdr_len);
4389
4390         /* Make sure there is space in the ring for the next send. */
4391         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4392
4393         return NETDEV_TX_OK;
4394
4395 out_drop:
4396         igb_unmap_and_free_tx_resource(tx_ring, first);
4397
4398         return NETDEV_TX_OK;
4399 }
4400
4401 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4402                                                     struct sk_buff *skb)
4403 {
4404         unsigned int r_idx = skb->queue_mapping;
4405
4406         if (r_idx >= adapter->num_tx_queues)
4407                 r_idx = r_idx % adapter->num_tx_queues;
4408
4409         return adapter->tx_ring[r_idx];
4410 }
4411
4412 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4413                                   struct net_device *netdev)
4414 {
4415         struct igb_adapter *adapter = netdev_priv(netdev);
4416
4417         if (test_bit(__IGB_DOWN, &adapter->state)) {
4418                 dev_kfree_skb_any(skb);
4419                 return NETDEV_TX_OK;
4420         }
4421
4422         if (skb->len <= 0) {
4423                 dev_kfree_skb_any(skb);
4424                 return NETDEV_TX_OK;
4425         }
4426
4427         /*
4428          * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4429          * in order to meet this minimum size requirement.
4430          */
4431         if (unlikely(skb->len < 17)) {
4432                 if (skb_pad(skb, 17 - skb->len))
4433                         return NETDEV_TX_OK;
4434                 skb->len = 17;
4435                 skb_set_tail_pointer(skb, 17);
4436         }
4437
4438         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4439 }
4440
4441 /**
4442  * igb_tx_timeout - Respond to a Tx Hang
4443  * @netdev: network interface device structure
4444  **/
4445 static void igb_tx_timeout(struct net_device *netdev)
4446 {
4447         struct igb_adapter *adapter = netdev_priv(netdev);
4448         struct e1000_hw *hw = &adapter->hw;
4449
4450         /* Do the reset outside of interrupt context */
4451         adapter->tx_timeout_count++;
4452
4453         if (hw->mac.type >= e1000_82580)
4454                 hw->dev_spec._82575.global_device_reset = true;
4455
4456         schedule_work(&adapter->reset_task);
4457         wr32(E1000_EICS,
4458              (adapter->eims_enable_mask & ~adapter->eims_other));
4459 }
4460
4461 static void igb_reset_task(struct work_struct *work)
4462 {
4463         struct igb_adapter *adapter;
4464         adapter = container_of(work, struct igb_adapter, reset_task);
4465
4466         igb_dump(adapter);
4467         netdev_err(adapter->netdev, "Reset adapter\n");
4468         igb_reinit_locked(adapter);
4469 }
4470
4471 /**
4472  * igb_get_stats64 - Get System Network Statistics
4473  * @netdev: network interface device structure
4474  * @stats: rtnl_link_stats64 pointer
4475  *
4476  **/
4477 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4478                                                  struct rtnl_link_stats64 *stats)
4479 {
4480         struct igb_adapter *adapter = netdev_priv(netdev);
4481
4482         spin_lock(&adapter->stats64_lock);
4483         igb_update_stats(adapter, &adapter->stats64);
4484         memcpy(stats, &adapter->stats64, sizeof(*stats));
4485         spin_unlock(&adapter->stats64_lock);
4486
4487         return stats;
4488 }
4489
4490 /**
4491  * igb_change_mtu - Change the Maximum Transfer Unit
4492  * @netdev: network interface device structure
4493  * @new_mtu: new value for maximum frame size
4494  *
4495  * Returns 0 on success, negative on failure
4496  **/
4497 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4498 {
4499         struct igb_adapter *adapter = netdev_priv(netdev);
4500         struct pci_dev *pdev = adapter->pdev;
4501         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4502
4503         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4504                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4505                 return -EINVAL;
4506         }
4507
4508 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4509         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4510                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4511                 return -EINVAL;
4512         }
4513
4514         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4515                 msleep(1);
4516
4517         /* igb_down has a dependency on max_frame_size */
4518         adapter->max_frame_size = max_frame;
4519
4520         if (netif_running(netdev))
4521                 igb_down(adapter);
4522
4523         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4524                  netdev->mtu, new_mtu);
4525         netdev->mtu = new_mtu;
4526
4527         if (netif_running(netdev))
4528                 igb_up(adapter);
4529         else
4530                 igb_reset(adapter);
4531
4532         clear_bit(__IGB_RESETTING, &adapter->state);
4533
4534         return 0;
4535 }
4536
4537 /**
4538  * igb_update_stats - Update the board statistics counters
4539  * @adapter: board private structure
4540  **/
4541
4542 void igb_update_stats(struct igb_adapter *adapter,
4543                       struct rtnl_link_stats64 *net_stats)
4544 {
4545         struct e1000_hw *hw = &adapter->hw;
4546         struct pci_dev *pdev = adapter->pdev;
4547         u32 reg, mpc;
4548         u16 phy_tmp;
4549         int i;
4550         u64 bytes, packets;
4551         unsigned int start;
4552         u64 _bytes, _packets;
4553
4554 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4555
4556         /*
4557          * Prevent stats update while adapter is being reset, or if the pci
4558          * connection is down.
4559          */
4560         if (adapter->link_speed == 0)
4561                 return;
4562         if (pci_channel_offline(pdev))
4563                 return;
4564
4565         bytes = 0;
4566         packets = 0;
4567         for (i = 0; i < adapter->num_rx_queues; i++) {
4568                 u32 rqdpc = rd32(E1000_RQDPC(i));
4569                 struct igb_ring *ring = adapter->rx_ring[i];
4570
4571                 if (rqdpc) {
4572                         ring->rx_stats.drops += rqdpc;
4573                         net_stats->rx_fifo_errors += rqdpc;
4574                 }
4575
4576                 do {
4577                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4578                         _bytes = ring->rx_stats.bytes;
4579                         _packets = ring->rx_stats.packets;
4580                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4581                 bytes += _bytes;
4582                 packets += _packets;
4583         }
4584
4585         net_stats->rx_bytes = bytes;
4586         net_stats->rx_packets = packets;
4587
4588         bytes = 0;
4589         packets = 0;
4590         for (i = 0; i < adapter->num_tx_queues; i++) {
4591                 struct igb_ring *ring = adapter->tx_ring[i];
4592                 do {
4593                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4594                         _bytes = ring->tx_stats.bytes;
4595                         _packets = ring->tx_stats.packets;
4596                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4597                 bytes += _bytes;
4598                 packets += _packets;
4599         }
4600         net_stats->tx_bytes = bytes;
4601         net_stats->tx_packets = packets;
4602
4603         /* read stats registers */
4604         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4605         adapter->stats.gprc += rd32(E1000_GPRC);
4606         adapter->stats.gorc += rd32(E1000_GORCL);
4607         rd32(E1000_GORCH); /* clear GORCL */
4608         adapter->stats.bprc += rd32(E1000_BPRC);
4609         adapter->stats.mprc += rd32(E1000_MPRC);
4610         adapter->stats.roc += rd32(E1000_ROC);
4611
4612         adapter->stats.prc64 += rd32(E1000_PRC64);
4613         adapter->stats.prc127 += rd32(E1000_PRC127);
4614         adapter->stats.prc255 += rd32(E1000_PRC255);
4615         adapter->stats.prc511 += rd32(E1000_PRC511);
4616         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4617         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4618         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4619         adapter->stats.sec += rd32(E1000_SEC);
4620
4621         mpc = rd32(E1000_MPC);
4622         adapter->stats.mpc += mpc;
4623         net_stats->rx_fifo_errors += mpc;
4624         adapter->stats.scc += rd32(E1000_SCC);
4625         adapter->stats.ecol += rd32(E1000_ECOL);
4626         adapter->stats.mcc += rd32(E1000_MCC);
4627         adapter->stats.latecol += rd32(E1000_LATECOL);
4628         adapter->stats.dc += rd32(E1000_DC);
4629         adapter->stats.rlec += rd32(E1000_RLEC);
4630         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4631         adapter->stats.xontxc += rd32(E1000_XONTXC);
4632         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4633         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4634         adapter->stats.fcruc += rd32(E1000_FCRUC);
4635         adapter->stats.gptc += rd32(E1000_GPTC);
4636         adapter->stats.gotc += rd32(E1000_GOTCL);
4637         rd32(E1000_GOTCH); /* clear GOTCL */
4638         adapter->stats.rnbc += rd32(E1000_RNBC);
4639         adapter->stats.ruc += rd32(E1000_RUC);
4640         adapter->stats.rfc += rd32(E1000_RFC);
4641         adapter->stats.rjc += rd32(E1000_RJC);
4642         adapter->stats.tor += rd32(E1000_TORH);
4643         adapter->stats.tot += rd32(E1000_TOTH);
4644         adapter->stats.tpr += rd32(E1000_TPR);
4645
4646         adapter->stats.ptc64 += rd32(E1000_PTC64);
4647         adapter->stats.ptc127 += rd32(E1000_PTC127);
4648         adapter->stats.ptc255 += rd32(E1000_PTC255);
4649         adapter->stats.ptc511 += rd32(E1000_PTC511);
4650         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4651         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4652
4653         adapter->stats.mptc += rd32(E1000_MPTC);
4654         adapter->stats.bptc += rd32(E1000_BPTC);
4655
4656         adapter->stats.tpt += rd32(E1000_TPT);
4657         adapter->stats.colc += rd32(E1000_COLC);
4658
4659         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4660         /* read internal phy specific stats */
4661         reg = rd32(E1000_CTRL_EXT);
4662         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4663                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4664
4665                 /* this stat has invalid values on i210/i211 */
4666                 if ((hw->mac.type != e1000_i210) &&
4667                     (hw->mac.type != e1000_i211))
4668                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4669         }
4670
4671         adapter->stats.tsctc += rd32(E1000_TSCTC);
4672         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4673
4674         adapter->stats.iac += rd32(E1000_IAC);
4675         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4676         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4677         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4678         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4679         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4680         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4681         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4682         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4683
4684         /* Fill out the OS statistics structure */
4685         net_stats->multicast = adapter->stats.mprc;
4686         net_stats->collisions = adapter->stats.colc;
4687
4688         /* Rx Errors */
4689
4690         /* RLEC on some newer hardware can be incorrect so build
4691          * our own version based on RUC and ROC */
4692         net_stats->rx_errors = adapter->stats.rxerrc +
4693                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4694                 adapter->stats.ruc + adapter->stats.roc +
4695                 adapter->stats.cexterr;
4696         net_stats->rx_length_errors = adapter->stats.ruc +
4697                                       adapter->stats.roc;
4698         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4699         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4700         net_stats->rx_missed_errors = adapter->stats.mpc;
4701
4702         /* Tx Errors */
4703         net_stats->tx_errors = adapter->stats.ecol +
4704                                adapter->stats.latecol;
4705         net_stats->tx_aborted_errors = adapter->stats.ecol;
4706         net_stats->tx_window_errors = adapter->stats.latecol;
4707         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4708
4709         /* Tx Dropped needs to be maintained elsewhere */
4710
4711         /* Phy Stats */
4712         if (hw->phy.media_type == e1000_media_type_copper) {
4713                 if ((adapter->link_speed == SPEED_1000) &&
4714                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4715                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4716                         adapter->phy_stats.idle_errors += phy_tmp;
4717                 }
4718         }
4719
4720         /* Management Stats */
4721         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4722         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4723         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4724
4725         /* OS2BMC Stats */
4726         reg = rd32(E1000_MANC);
4727         if (reg & E1000_MANC_EN_BMC2OS) {
4728                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4729                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4730                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4731                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4732         }
4733 }
4734
4735 static irqreturn_t igb_msix_other(int irq, void *data)
4736 {
4737         struct igb_adapter *adapter = data;
4738         struct e1000_hw *hw = &adapter->hw;
4739         u32 icr = rd32(E1000_ICR);
4740         /* reading ICR causes bit 31 of EICR to be cleared */
4741
4742         if (icr & E1000_ICR_DRSTA)
4743                 schedule_work(&adapter->reset_task);
4744
4745         if (icr & E1000_ICR_DOUTSYNC) {
4746                 /* HW is reporting DMA is out of sync */
4747                 adapter->stats.doosync++;
4748                 /* The DMA Out of Sync is also indication of a spoof event
4749                  * in IOV mode. Check the Wrong VM Behavior register to
4750                  * see if it is really a spoof event. */
4751                 igb_check_wvbr(adapter);
4752         }
4753
4754         /* Check for a mailbox event */
4755         if (icr & E1000_ICR_VMMB)
4756                 igb_msg_task(adapter);
4757
4758         if (icr & E1000_ICR_LSC) {
4759                 hw->mac.get_link_status = 1;
4760                 /* guard against interrupt when we're going down */
4761                 if (!test_bit(__IGB_DOWN, &adapter->state))
4762                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4763         }
4764
4765         if (icr & E1000_ICR_TS) {
4766                 u32 tsicr = rd32(E1000_TSICR);
4767
4768                 if (tsicr & E1000_TSICR_TXTS) {
4769                         /* acknowledge the interrupt */
4770                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
4771                         /* retrieve hardware timestamp */
4772                         schedule_work(&adapter->ptp_tx_work);
4773                 }
4774         }
4775
4776         wr32(E1000_EIMS, adapter->eims_other);
4777
4778         return IRQ_HANDLED;
4779 }
4780
4781 static void igb_write_itr(struct igb_q_vector *q_vector)
4782 {
4783         struct igb_adapter *adapter = q_vector->adapter;
4784         u32 itr_val = q_vector->itr_val & 0x7FFC;
4785
4786         if (!q_vector->set_itr)
4787                 return;
4788
4789         if (!itr_val)
4790                 itr_val = 0x4;
4791
4792         if (adapter->hw.mac.type == e1000_82575)
4793                 itr_val |= itr_val << 16;
4794         else
4795                 itr_val |= E1000_EITR_CNT_IGNR;
4796
4797         writel(itr_val, q_vector->itr_register);
4798         q_vector->set_itr = 0;
4799 }
4800
4801 static irqreturn_t igb_msix_ring(int irq, void *data)
4802 {
4803         struct igb_q_vector *q_vector = data;
4804
4805         /* Write the ITR value calculated from the previous interrupt. */
4806         igb_write_itr(q_vector);
4807
4808         napi_schedule(&q_vector->napi);
4809
4810         return IRQ_HANDLED;
4811 }
4812
4813 #ifdef CONFIG_IGB_DCA
4814 static void igb_update_tx_dca(struct igb_adapter *adapter,
4815                               struct igb_ring *tx_ring,
4816                               int cpu)
4817 {
4818         struct e1000_hw *hw = &adapter->hw;
4819         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4820
4821         if (hw->mac.type != e1000_82575)
4822                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4823
4824         /*
4825          * We can enable relaxed ordering for reads, but not writes when
4826          * DCA is enabled.  This is due to a known issue in some chipsets
4827          * which will cause the DCA tag to be cleared.
4828          */
4829         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4830                   E1000_DCA_TXCTRL_DATA_RRO_EN |
4831                   E1000_DCA_TXCTRL_DESC_DCA_EN;
4832
4833         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4834 }
4835
4836 static void igb_update_rx_dca(struct igb_adapter *adapter,
4837                               struct igb_ring *rx_ring,
4838                               int cpu)
4839 {
4840         struct e1000_hw *hw = &adapter->hw;
4841         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4842
4843         if (hw->mac.type != e1000_82575)
4844                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4845
4846         /*
4847          * We can enable relaxed ordering for reads, but not writes when
4848          * DCA is enabled.  This is due to a known issue in some chipsets
4849          * which will cause the DCA tag to be cleared.
4850          */
4851         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4852                   E1000_DCA_RXCTRL_DESC_DCA_EN;
4853
4854         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4855 }
4856
4857 static void igb_update_dca(struct igb_q_vector *q_vector)
4858 {
4859         struct igb_adapter *adapter = q_vector->adapter;
4860         int cpu = get_cpu();
4861
4862         if (q_vector->cpu == cpu)
4863                 goto out_no_update;
4864
4865         if (q_vector->tx.ring)
4866                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4867
4868         if (q_vector->rx.ring)
4869                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4870
4871         q_vector->cpu = cpu;
4872 out_no_update:
4873         put_cpu();
4874 }
4875
4876 static void igb_setup_dca(struct igb_adapter *adapter)
4877 {
4878         struct e1000_hw *hw = &adapter->hw;
4879         int i;
4880
4881         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4882                 return;
4883
4884         /* Always use CB2 mode, difference is masked in the CB driver. */
4885         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4886
4887         for (i = 0; i < adapter->num_q_vectors; i++) {
4888                 adapter->q_vector[i]->cpu = -1;
4889                 igb_update_dca(adapter->q_vector[i]);
4890         }
4891 }
4892
4893 static int __igb_notify_dca(struct device *dev, void *data)
4894 {
4895         struct net_device *netdev = dev_get_drvdata(dev);
4896         struct igb_adapter *adapter = netdev_priv(netdev);
4897         struct pci_dev *pdev = adapter->pdev;
4898         struct e1000_hw *hw = &adapter->hw;
4899         unsigned long event = *(unsigned long *)data;
4900
4901         switch (event) {
4902         case DCA_PROVIDER_ADD:
4903                 /* if already enabled, don't do it again */
4904                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4905                         break;
4906                 if (dca_add_requester(dev) == 0) {
4907                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4908                         dev_info(&pdev->dev, "DCA enabled\n");
4909                         igb_setup_dca(adapter);
4910                         break;
4911                 }
4912                 /* Fall Through since DCA is disabled. */
4913         case DCA_PROVIDER_REMOVE:
4914                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4915                         /* without this a class_device is left
4916                          * hanging around in the sysfs model */
4917                         dca_remove_requester(dev);
4918                         dev_info(&pdev->dev, "DCA disabled\n");
4919                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4920                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4921                 }
4922                 break;
4923         }
4924
4925         return 0;
4926 }
4927
4928 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4929                           void *p)
4930 {
4931         int ret_val;
4932
4933         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4934                                          __igb_notify_dca);
4935
4936         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4937 }
4938 #endif /* CONFIG_IGB_DCA */
4939
4940 #ifdef CONFIG_PCI_IOV
4941 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4942 {
4943         unsigned char mac_addr[ETH_ALEN];
4944
4945         eth_random_addr(mac_addr);
4946         igb_set_vf_mac(adapter, vf, mac_addr);
4947
4948         return 0;
4949 }
4950
4951 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4952 {
4953         struct pci_dev *pdev = adapter->pdev;
4954         struct pci_dev *vfdev;
4955         int dev_id;
4956
4957         switch (adapter->hw.mac.type) {
4958         case e1000_82576:
4959                 dev_id = IGB_82576_VF_DEV_ID;
4960                 break;
4961         case e1000_i350:
4962                 dev_id = IGB_I350_VF_DEV_ID;
4963                 break;
4964         default:
4965                 return false;
4966         }
4967
4968         /* loop through all the VFs to see if we own any that are assigned */
4969         vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4970         while (vfdev) {
4971                 /* if we don't own it we don't care */
4972                 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4973                         /* if it is assigned we cannot release it */
4974                         if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4975                                 return true;
4976                 }
4977
4978                 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
4979         }
4980
4981         return false;
4982 }
4983
4984 #endif
4985 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4986 {
4987         struct e1000_hw *hw = &adapter->hw;
4988         u32 ping;
4989         int i;
4990
4991         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4992                 ping = E1000_PF_CONTROL_MSG;
4993                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4994                         ping |= E1000_VT_MSGTYPE_CTS;
4995                 igb_write_mbx(hw, &ping, 1, i);
4996         }
4997 }
4998
4999 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5000 {
5001         struct e1000_hw *hw = &adapter->hw;
5002         u32 vmolr = rd32(E1000_VMOLR(vf));
5003         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5004
5005         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5006                             IGB_VF_FLAG_MULTI_PROMISC);
5007         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5008
5009         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5010                 vmolr |= E1000_VMOLR_MPME;
5011                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5012                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5013         } else {
5014                 /*
5015                  * if we have hashes and we are clearing a multicast promisc
5016                  * flag we need to write the hashes to the MTA as this step
5017                  * was previously skipped
5018                  */
5019                 if (vf_data->num_vf_mc_hashes > 30) {
5020                         vmolr |= E1000_VMOLR_MPME;
5021                 } else if (vf_data->num_vf_mc_hashes) {
5022                         int j;
5023                         vmolr |= E1000_VMOLR_ROMPE;
5024                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5025                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5026                 }
5027         }
5028
5029         wr32(E1000_VMOLR(vf), vmolr);
5030
5031         /* there are flags left unprocessed, likely not supported */
5032         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5033                 return -EINVAL;
5034
5035         return 0;
5036
5037 }
5038
5039 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5040                                   u32 *msgbuf, u32 vf)
5041 {
5042         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5043         u16 *hash_list = (u16 *)&msgbuf[1];
5044         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5045         int i;
5046
5047         /* salt away the number of multicast addresses assigned
5048          * to this VF for later use to restore when the PF multi cast
5049          * list changes
5050          */
5051         vf_data->num_vf_mc_hashes = n;
5052
5053         /* only up to 30 hash values supported */
5054         if (n > 30)
5055                 n = 30;
5056
5057         /* store the hashes for later use */
5058         for (i = 0; i < n; i++)
5059                 vf_data->vf_mc_hashes[i] = hash_list[i];
5060
5061         /* Flush and reset the mta with the new values */
5062         igb_set_rx_mode(adapter->netdev);
5063
5064         return 0;
5065 }
5066
5067 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5068 {
5069         struct e1000_hw *hw = &adapter->hw;
5070         struct vf_data_storage *vf_data;
5071         int i, j;
5072
5073         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5074                 u32 vmolr = rd32(E1000_VMOLR(i));
5075                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5076
5077                 vf_data = &adapter->vf_data[i];
5078
5079                 if ((vf_data->num_vf_mc_hashes > 30) ||
5080                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5081                         vmolr |= E1000_VMOLR_MPME;
5082                 } else if (vf_data->num_vf_mc_hashes) {
5083                         vmolr |= E1000_VMOLR_ROMPE;
5084                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5085                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5086                 }
5087                 wr32(E1000_VMOLR(i), vmolr);
5088         }
5089 }
5090
5091 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5092 {
5093         struct e1000_hw *hw = &adapter->hw;
5094         u32 pool_mask, reg, vid;
5095         int i;
5096
5097         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5098
5099         /* Find the vlan filter for this id */
5100         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5101                 reg = rd32(E1000_VLVF(i));
5102
5103                 /* remove the vf from the pool */
5104                 reg &= ~pool_mask;
5105
5106                 /* if pool is empty then remove entry from vfta */
5107                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5108                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5109                         reg = 0;
5110                         vid = reg & E1000_VLVF_VLANID_MASK;
5111                         igb_vfta_set(hw, vid, false);
5112                 }
5113
5114                 wr32(E1000_VLVF(i), reg);
5115         }
5116
5117         adapter->vf_data[vf].vlans_enabled = 0;
5118 }
5119
5120 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5121 {
5122         struct e1000_hw *hw = &adapter->hw;
5123         u32 reg, i;
5124
5125         /* The vlvf table only exists on 82576 hardware and newer */
5126         if (hw->mac.type < e1000_82576)
5127                 return -1;
5128
5129         /* we only need to do this if VMDq is enabled */
5130         if (!adapter->vfs_allocated_count)
5131                 return -1;
5132
5133         /* Find the vlan filter for this id */
5134         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5135                 reg = rd32(E1000_VLVF(i));
5136                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5137                     vid == (reg & E1000_VLVF_VLANID_MASK))
5138                         break;
5139         }
5140
5141         if (add) {
5142                 if (i == E1000_VLVF_ARRAY_SIZE) {
5143                         /* Did not find a matching VLAN ID entry that was
5144                          * enabled.  Search for a free filter entry, i.e.
5145                          * one without the enable bit set
5146                          */
5147                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5148                                 reg = rd32(E1000_VLVF(i));
5149                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5150                                         break;
5151                         }
5152                 }
5153                 if (i < E1000_VLVF_ARRAY_SIZE) {
5154                         /* Found an enabled/available entry */
5155                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5156
5157                         /* if !enabled we need to set this up in vfta */
5158                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5159                                 /* add VID to filter table */
5160                                 igb_vfta_set(hw, vid, true);
5161                                 reg |= E1000_VLVF_VLANID_ENABLE;
5162                         }
5163                         reg &= ~E1000_VLVF_VLANID_MASK;
5164                         reg |= vid;
5165                         wr32(E1000_VLVF(i), reg);
5166
5167                         /* do not modify RLPML for PF devices */
5168                         if (vf >= adapter->vfs_allocated_count)
5169                                 return 0;
5170
5171                         if (!adapter->vf_data[vf].vlans_enabled) {
5172                                 u32 size;
5173                                 reg = rd32(E1000_VMOLR(vf));
5174                                 size = reg & E1000_VMOLR_RLPML_MASK;
5175                                 size += 4;
5176                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5177                                 reg |= size;
5178                                 wr32(E1000_VMOLR(vf), reg);
5179                         }
5180
5181                         adapter->vf_data[vf].vlans_enabled++;
5182                 }
5183         } else {
5184                 if (i < E1000_VLVF_ARRAY_SIZE) {
5185                         /* remove vf from the pool */
5186                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5187                         /* if pool is empty then remove entry from vfta */
5188                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5189                                 reg = 0;
5190                                 igb_vfta_set(hw, vid, false);
5191                         }
5192                         wr32(E1000_VLVF(i), reg);
5193
5194                         /* do not modify RLPML for PF devices */
5195                         if (vf >= adapter->vfs_allocated_count)
5196                                 return 0;
5197
5198                         adapter->vf_data[vf].vlans_enabled--;
5199                         if (!adapter->vf_data[vf].vlans_enabled) {
5200                                 u32 size;
5201                                 reg = rd32(E1000_VMOLR(vf));
5202                                 size = reg & E1000_VMOLR_RLPML_MASK;
5203                                 size -= 4;
5204                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5205                                 reg |= size;
5206                                 wr32(E1000_VMOLR(vf), reg);
5207                         }
5208                 }
5209         }
5210         return 0;
5211 }
5212
5213 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5214 {
5215         struct e1000_hw *hw = &adapter->hw;
5216
5217         if (vid)
5218                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5219         else
5220                 wr32(E1000_VMVIR(vf), 0);
5221 }
5222
5223 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5224                                int vf, u16 vlan, u8 qos)
5225 {
5226         int err = 0;
5227         struct igb_adapter *adapter = netdev_priv(netdev);
5228
5229         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5230                 return -EINVAL;
5231         if (vlan || qos) {
5232                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5233                 if (err)
5234                         goto out;
5235                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5236                 igb_set_vmolr(adapter, vf, !vlan);
5237                 adapter->vf_data[vf].pf_vlan = vlan;
5238                 adapter->vf_data[vf].pf_qos = qos;
5239                 dev_info(&adapter->pdev->dev,
5240                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5241                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5242                         dev_warn(&adapter->pdev->dev,
5243                                  "The VF VLAN has been set,"
5244                                  " but the PF device is not up.\n");
5245                         dev_warn(&adapter->pdev->dev,
5246                                  "Bring the PF device up before"
5247                                  " attempting to use the VF device.\n");
5248                 }
5249         } else {
5250                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5251                                    false, vf);
5252                 igb_set_vmvir(adapter, vlan, vf);
5253                 igb_set_vmolr(adapter, vf, true);
5254                 adapter->vf_data[vf].pf_vlan = 0;
5255                 adapter->vf_data[vf].pf_qos = 0;
5256        }
5257 out:
5258        return err;
5259 }
5260
5261 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5262 {
5263         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5264         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5265
5266         return igb_vlvf_set(adapter, vid, add, vf);
5267 }
5268
5269 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5270 {
5271         /* clear flags - except flag that indicates PF has set the MAC */
5272         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5273         adapter->vf_data[vf].last_nack = jiffies;
5274
5275         /* reset offloads to defaults */
5276         igb_set_vmolr(adapter, vf, true);
5277
5278         /* reset vlans for device */
5279         igb_clear_vf_vfta(adapter, vf);
5280         if (adapter->vf_data[vf].pf_vlan)
5281                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5282                                     adapter->vf_data[vf].pf_vlan,
5283                                     adapter->vf_data[vf].pf_qos);
5284         else
5285                 igb_clear_vf_vfta(adapter, vf);
5286
5287         /* reset multicast table array for vf */
5288         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5289
5290         /* Flush and reset the mta with the new values */
5291         igb_set_rx_mode(adapter->netdev);
5292 }
5293
5294 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5295 {
5296         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5297
5298         /* generate a new mac address as we were hotplug removed/added */
5299         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5300                 eth_random_addr(vf_mac);
5301
5302         /* process remaining reset events */
5303         igb_vf_reset(adapter, vf);
5304 }
5305
5306 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5307 {
5308         struct e1000_hw *hw = &adapter->hw;
5309         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5310         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5311         u32 reg, msgbuf[3];
5312         u8 *addr = (u8 *)(&msgbuf[1]);
5313
5314         /* process all the same items cleared in a function level reset */
5315         igb_vf_reset(adapter, vf);
5316
5317         /* set vf mac address */
5318         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5319
5320         /* enable transmit and receive for vf */
5321         reg = rd32(E1000_VFTE);
5322         wr32(E1000_VFTE, reg | (1 << vf));
5323         reg = rd32(E1000_VFRE);
5324         wr32(E1000_VFRE, reg | (1 << vf));
5325
5326         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5327
5328         /* reply to reset with ack and vf mac address */
5329         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5330         memcpy(addr, vf_mac, 6);
5331         igb_write_mbx(hw, msgbuf, 3, vf);
5332 }
5333
5334 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5335 {
5336         /*
5337          * The VF MAC Address is stored in a packed array of bytes
5338          * starting at the second 32 bit word of the msg array
5339          */
5340         unsigned char *addr = (char *)&msg[1];
5341         int err = -1;
5342
5343         if (is_valid_ether_addr(addr))
5344                 err = igb_set_vf_mac(adapter, vf, addr);
5345
5346         return err;
5347 }
5348
5349 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5350 {
5351         struct e1000_hw *hw = &adapter->hw;
5352         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5353         u32 msg = E1000_VT_MSGTYPE_NACK;
5354
5355         /* if device isn't clear to send it shouldn't be reading either */
5356         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5357             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5358                 igb_write_mbx(hw, &msg, 1, vf);
5359                 vf_data->last_nack = jiffies;
5360         }
5361 }
5362
5363 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5364 {
5365         struct pci_dev *pdev = adapter->pdev;
5366         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5367         struct e1000_hw *hw = &adapter->hw;
5368         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5369         s32 retval;
5370
5371         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5372
5373         if (retval) {
5374                 /* if receive failed revoke VF CTS stats and restart init */
5375                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5376                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5377                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5378                         return;
5379                 goto out;
5380         }
5381
5382         /* this is a message we already processed, do nothing */
5383         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5384                 return;
5385
5386         /*
5387          * until the vf completes a reset it should not be
5388          * allowed to start any configuration.
5389          */
5390
5391         if (msgbuf[0] == E1000_VF_RESET) {
5392                 igb_vf_reset_msg(adapter, vf);
5393                 return;
5394         }
5395
5396         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5397                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5398                         return;
5399                 retval = -1;
5400                 goto out;
5401         }
5402
5403         switch ((msgbuf[0] & 0xFFFF)) {
5404         case E1000_VF_SET_MAC_ADDR:
5405                 retval = -EINVAL;
5406                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5407                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5408                 else
5409                         dev_warn(&pdev->dev,
5410                                  "VF %d attempted to override administratively "
5411                                  "set MAC address\nReload the VF driver to "
5412                                  "resume operations\n", vf);
5413                 break;
5414         case E1000_VF_SET_PROMISC:
5415                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5416                 break;
5417         case E1000_VF_SET_MULTICAST:
5418                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5419                 break;
5420         case E1000_VF_SET_LPE:
5421                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5422                 break;
5423         case E1000_VF_SET_VLAN:
5424                 retval = -1;
5425                 if (vf_data->pf_vlan)
5426                         dev_warn(&pdev->dev,
5427                                  "VF %d attempted to override administratively "
5428                                  "set VLAN tag\nReload the VF driver to "
5429                                  "resume operations\n", vf);
5430                 else
5431                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5432                 break;
5433         default:
5434                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5435                 retval = -1;
5436                 break;
5437         }
5438
5439         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5440 out:
5441         /* notify the VF of the results of what it sent us */
5442         if (retval)
5443                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5444         else
5445                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5446
5447         igb_write_mbx(hw, msgbuf, 1, vf);
5448 }
5449
5450 static void igb_msg_task(struct igb_adapter *adapter)
5451 {
5452         struct e1000_hw *hw = &adapter->hw;
5453         u32 vf;
5454
5455         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5456                 /* process any reset requests */
5457                 if (!igb_check_for_rst(hw, vf))
5458                         igb_vf_reset_event(adapter, vf);
5459
5460                 /* process any messages pending */
5461                 if (!igb_check_for_msg(hw, vf))
5462                         igb_rcv_msg_from_vf(adapter, vf);
5463
5464                 /* process any acks */
5465                 if (!igb_check_for_ack(hw, vf))
5466                         igb_rcv_ack_from_vf(adapter, vf);
5467         }
5468 }
5469
5470 /**
5471  *  igb_set_uta - Set unicast filter table address
5472  *  @adapter: board private structure
5473  *
5474  *  The unicast table address is a register array of 32-bit registers.
5475  *  The table is meant to be used in a way similar to how the MTA is used
5476  *  however due to certain limitations in the hardware it is necessary to
5477  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5478  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5479  **/
5480 static void igb_set_uta(struct igb_adapter *adapter)
5481 {
5482         struct e1000_hw *hw = &adapter->hw;
5483         int i;
5484
5485         /* The UTA table only exists on 82576 hardware and newer */
5486         if (hw->mac.type < e1000_82576)
5487                 return;
5488
5489         /* we only need to do this if VMDq is enabled */
5490         if (!adapter->vfs_allocated_count)
5491                 return;
5492
5493         for (i = 0; i < hw->mac.uta_reg_count; i++)
5494                 array_wr32(E1000_UTA, i, ~0);
5495 }
5496
5497 /**
5498  * igb_intr_msi - Interrupt Handler
5499  * @irq: interrupt number
5500  * @data: pointer to a network interface device structure
5501  **/
5502 static irqreturn_t igb_intr_msi(int irq, void *data)
5503 {
5504         struct igb_adapter *adapter = data;
5505         struct igb_q_vector *q_vector = adapter->q_vector[0];
5506         struct e1000_hw *hw = &adapter->hw;
5507         /* read ICR disables interrupts using IAM */
5508         u32 icr = rd32(E1000_ICR);
5509
5510         igb_write_itr(q_vector);
5511
5512         if (icr & E1000_ICR_DRSTA)
5513                 schedule_work(&adapter->reset_task);
5514
5515         if (icr & E1000_ICR_DOUTSYNC) {
5516                 /* HW is reporting DMA is out of sync */
5517                 adapter->stats.doosync++;
5518         }
5519
5520         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5521                 hw->mac.get_link_status = 1;
5522                 if (!test_bit(__IGB_DOWN, &adapter->state))
5523                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5524         }
5525
5526         if (icr & E1000_ICR_TS) {
5527                 u32 tsicr = rd32(E1000_TSICR);
5528
5529                 if (tsicr & E1000_TSICR_TXTS) {
5530                         /* acknowledge the interrupt */
5531                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5532                         /* retrieve hardware timestamp */
5533                         schedule_work(&adapter->ptp_tx_work);
5534                 }
5535         }
5536
5537         napi_schedule(&q_vector->napi);
5538
5539         return IRQ_HANDLED;
5540 }
5541
5542 /**
5543  * igb_intr - Legacy Interrupt Handler
5544  * @irq: interrupt number
5545  * @data: pointer to a network interface device structure
5546  **/
5547 static irqreturn_t igb_intr(int irq, void *data)
5548 {
5549         struct igb_adapter *adapter = data;
5550         struct igb_q_vector *q_vector = adapter->q_vector[0];
5551         struct e1000_hw *hw = &adapter->hw;
5552         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5553          * need for the IMC write */
5554         u32 icr = rd32(E1000_ICR);
5555
5556         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5557          * not set, then the adapter didn't send an interrupt */
5558         if (!(icr & E1000_ICR_INT_ASSERTED))
5559                 return IRQ_NONE;
5560
5561         igb_write_itr(q_vector);
5562
5563         if (icr & E1000_ICR_DRSTA)
5564                 schedule_work(&adapter->reset_task);
5565
5566         if (icr & E1000_ICR_DOUTSYNC) {
5567                 /* HW is reporting DMA is out of sync */
5568                 adapter->stats.doosync++;
5569         }
5570
5571         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5572                 hw->mac.get_link_status = 1;
5573                 /* guard against interrupt when we're going down */
5574                 if (!test_bit(__IGB_DOWN, &adapter->state))
5575                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5576         }
5577
5578         if (icr & E1000_ICR_TS) {
5579                 u32 tsicr = rd32(E1000_TSICR);
5580
5581                 if (tsicr & E1000_TSICR_TXTS) {
5582                         /* acknowledge the interrupt */
5583                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5584                         /* retrieve hardware timestamp */
5585                         schedule_work(&adapter->ptp_tx_work);
5586                 }
5587         }
5588
5589         napi_schedule(&q_vector->napi);
5590
5591         return IRQ_HANDLED;
5592 }
5593
5594 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5595 {
5596         struct igb_adapter *adapter = q_vector->adapter;
5597         struct e1000_hw *hw = &adapter->hw;
5598
5599         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5600             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5601                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5602                         igb_set_itr(q_vector);
5603                 else
5604                         igb_update_ring_itr(q_vector);
5605         }
5606
5607         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5608                 if (adapter->msix_entries)
5609                         wr32(E1000_EIMS, q_vector->eims_value);
5610                 else
5611                         igb_irq_enable(adapter);
5612         }
5613 }
5614
5615 /**
5616  * igb_poll - NAPI Rx polling callback
5617  * @napi: napi polling structure
5618  * @budget: count of how many packets we should handle
5619  **/
5620 static int igb_poll(struct napi_struct *napi, int budget)
5621 {
5622         struct igb_q_vector *q_vector = container_of(napi,
5623                                                      struct igb_q_vector,
5624                                                      napi);
5625         bool clean_complete = true;
5626
5627 #ifdef CONFIG_IGB_DCA
5628         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5629                 igb_update_dca(q_vector);
5630 #endif
5631         if (q_vector->tx.ring)
5632                 clean_complete = igb_clean_tx_irq(q_vector);
5633
5634         if (q_vector->rx.ring)
5635                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5636
5637         /* If all work not completed, return budget and keep polling */
5638         if (!clean_complete)
5639                 return budget;
5640
5641         /* If not enough Rx work done, exit the polling mode */
5642         napi_complete(napi);
5643         igb_ring_irq_enable(q_vector);
5644
5645         return 0;
5646 }
5647
5648 /**
5649  * igb_clean_tx_irq - Reclaim resources after transmit completes
5650  * @q_vector: pointer to q_vector containing needed info
5651  *
5652  * returns true if ring is completely cleaned
5653  **/
5654 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5655 {
5656         struct igb_adapter *adapter = q_vector->adapter;
5657         struct igb_ring *tx_ring = q_vector->tx.ring;
5658         struct igb_tx_buffer *tx_buffer;
5659         union e1000_adv_tx_desc *tx_desc;
5660         unsigned int total_bytes = 0, total_packets = 0;
5661         unsigned int budget = q_vector->tx.work_limit;
5662         unsigned int i = tx_ring->next_to_clean;
5663
5664         if (test_bit(__IGB_DOWN, &adapter->state))
5665                 return true;
5666
5667         tx_buffer = &tx_ring->tx_buffer_info[i];
5668         tx_desc = IGB_TX_DESC(tx_ring, i);
5669         i -= tx_ring->count;
5670
5671         do {
5672                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5673
5674                 /* if next_to_watch is not set then there is no work pending */
5675                 if (!eop_desc)
5676                         break;
5677
5678                 /* prevent any other reads prior to eop_desc */
5679                 rmb();
5680
5681                 /* if DD is not set pending work has not been completed */
5682                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5683                         break;
5684
5685                 /* clear next_to_watch to prevent false hangs */
5686                 tx_buffer->next_to_watch = NULL;
5687
5688                 /* update the statistics for this packet */
5689                 total_bytes += tx_buffer->bytecount;
5690                 total_packets += tx_buffer->gso_segs;
5691
5692                 /* free the skb */
5693                 dev_kfree_skb_any(tx_buffer->skb);
5694
5695                 /* unmap skb header data */
5696                 dma_unmap_single(tx_ring->dev,
5697                                  dma_unmap_addr(tx_buffer, dma),
5698                                  dma_unmap_len(tx_buffer, len),
5699                                  DMA_TO_DEVICE);
5700
5701                 /* clear tx_buffer data */
5702                 tx_buffer->skb = NULL;
5703                 dma_unmap_len_set(tx_buffer, len, 0);
5704
5705                 /* clear last DMA location and unmap remaining buffers */
5706                 while (tx_desc != eop_desc) {
5707                         tx_buffer++;
5708                         tx_desc++;
5709                         i++;
5710                         if (unlikely(!i)) {
5711                                 i -= tx_ring->count;
5712                                 tx_buffer = tx_ring->tx_buffer_info;
5713                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5714                         }
5715
5716                         /* unmap any remaining paged data */
5717                         if (dma_unmap_len(tx_buffer, len)) {
5718                                 dma_unmap_page(tx_ring->dev,
5719                                                dma_unmap_addr(tx_buffer, dma),
5720                                                dma_unmap_len(tx_buffer, len),
5721                                                DMA_TO_DEVICE);
5722                                 dma_unmap_len_set(tx_buffer, len, 0);
5723                         }
5724                 }
5725
5726                 /* move us one more past the eop_desc for start of next pkt */
5727                 tx_buffer++;
5728                 tx_desc++;
5729                 i++;
5730                 if (unlikely(!i)) {
5731                         i -= tx_ring->count;
5732                         tx_buffer = tx_ring->tx_buffer_info;
5733                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5734                 }
5735
5736                 /* issue prefetch for next Tx descriptor */
5737                 prefetch(tx_desc);
5738
5739                 /* update budget accounting */
5740                 budget--;
5741         } while (likely(budget));
5742
5743         netdev_tx_completed_queue(txring_txq(tx_ring),
5744                                   total_packets, total_bytes);
5745         i += tx_ring->count;
5746         tx_ring->next_to_clean = i;
5747         u64_stats_update_begin(&tx_ring->tx_syncp);
5748         tx_ring->tx_stats.bytes += total_bytes;
5749         tx_ring->tx_stats.packets += total_packets;
5750         u64_stats_update_end(&tx_ring->tx_syncp);
5751         q_vector->tx.total_bytes += total_bytes;
5752         q_vector->tx.total_packets += total_packets;
5753
5754         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5755                 struct e1000_hw *hw = &adapter->hw;
5756
5757                 /* Detect a transmit hang in hardware, this serializes the
5758                  * check with the clearing of time_stamp and movement of i */
5759                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5760                 if (tx_buffer->next_to_watch &&
5761                     time_after(jiffies, tx_buffer->time_stamp +
5762                                (adapter->tx_timeout_factor * HZ)) &&
5763                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5764
5765                         /* detected Tx unit hang */
5766                         dev_err(tx_ring->dev,
5767                                 "Detected Tx Unit Hang\n"
5768                                 "  Tx Queue             <%d>\n"
5769                                 "  TDH                  <%x>\n"
5770                                 "  TDT                  <%x>\n"
5771                                 "  next_to_use          <%x>\n"
5772                                 "  next_to_clean        <%x>\n"
5773                                 "buffer_info[next_to_clean]\n"
5774                                 "  time_stamp           <%lx>\n"
5775                                 "  next_to_watch        <%p>\n"
5776                                 "  jiffies              <%lx>\n"
5777                                 "  desc.status          <%x>\n",
5778                                 tx_ring->queue_index,
5779                                 rd32(E1000_TDH(tx_ring->reg_idx)),
5780                                 readl(tx_ring->tail),
5781                                 tx_ring->next_to_use,
5782                                 tx_ring->next_to_clean,
5783                                 tx_buffer->time_stamp,
5784                                 tx_buffer->next_to_watch,
5785                                 jiffies,
5786                                 tx_buffer->next_to_watch->wb.status);
5787                         netif_stop_subqueue(tx_ring->netdev,
5788                                             tx_ring->queue_index);
5789
5790                         /* we are about to reset, no point in enabling stuff */
5791                         return true;
5792                 }
5793         }
5794
5795         if (unlikely(total_packets &&
5796                      netif_carrier_ok(tx_ring->netdev) &&
5797                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5798                 /* Make sure that anybody stopping the queue after this
5799                  * sees the new next_to_clean.
5800                  */
5801                 smp_mb();
5802                 if (__netif_subqueue_stopped(tx_ring->netdev,
5803                                              tx_ring->queue_index) &&
5804                     !(test_bit(__IGB_DOWN, &adapter->state))) {
5805                         netif_wake_subqueue(tx_ring->netdev,
5806                                             tx_ring->queue_index);
5807
5808                         u64_stats_update_begin(&tx_ring->tx_syncp);
5809                         tx_ring->tx_stats.restart_queue++;
5810                         u64_stats_update_end(&tx_ring->tx_syncp);
5811                 }
5812         }
5813
5814         return !!budget;
5815 }
5816
5817 /**
5818  * igb_reuse_rx_page - page flip buffer and store it back on the ring
5819  * @rx_ring: rx descriptor ring to store buffers on
5820  * @old_buff: donor buffer to have page reused
5821  *
5822  * Synchronizes page for reuse by the adapter
5823  **/
5824 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5825                               struct igb_rx_buffer *old_buff)
5826 {
5827         struct igb_rx_buffer *new_buff;
5828         u16 nta = rx_ring->next_to_alloc;
5829
5830         new_buff = &rx_ring->rx_buffer_info[nta];
5831
5832         /* update, and store next to alloc */
5833         nta++;
5834         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5835
5836         /* transfer page from old buffer to new buffer */
5837         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5838
5839         /* sync the buffer for use by the device */
5840         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5841                                          old_buff->page_offset,
5842                                          IGB_RX_BUFSZ,
5843                                          DMA_FROM_DEVICE);
5844 }
5845
5846 /**
5847  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5848  * @rx_ring: rx descriptor ring to transact packets on
5849  * @rx_buffer: buffer containing page to add
5850  * @rx_desc: descriptor containing length of buffer written by hardware
5851  * @skb: sk_buff to place the data into
5852  *
5853  * This function will add the data contained in rx_buffer->page to the skb.
5854  * This is done either through a direct copy if the data in the buffer is
5855  * less than the skb header size, otherwise it will just attach the page as
5856  * a frag to the skb.
5857  *
5858  * The function will then update the page offset if necessary and return
5859  * true if the buffer can be reused by the adapter.
5860  **/
5861 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5862                             struct igb_rx_buffer *rx_buffer,
5863                             union e1000_adv_rx_desc *rx_desc,
5864                             struct sk_buff *skb)
5865 {
5866         struct page *page = rx_buffer->page;
5867         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5868
5869         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5870                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
5871
5872                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5873                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5874                         va += IGB_TS_HDR_LEN;
5875                         size -= IGB_TS_HDR_LEN;
5876                 }
5877
5878                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5879
5880                 /* we can reuse buffer as-is, just make sure it is local */
5881                 if (likely(page_to_nid(page) == numa_node_id()))
5882                         return true;
5883
5884                 /* this page cannot be reused so discard it */
5885                 put_page(page);
5886                 return false;
5887         }
5888
5889         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5890                         rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5891
5892         /* avoid re-using remote pages */
5893         if (unlikely(page_to_nid(page) != numa_node_id()))
5894                 return false;
5895
5896 #if (PAGE_SIZE < 8192)
5897         /* if we are only owner of page we can reuse it */
5898         if (unlikely(page_count(page) != 1))
5899                 return false;
5900
5901         /* flip page offset to other buffer */
5902         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5903
5904         /*
5905          * since we are the only owner of the page and we need to
5906          * increment it, just set the value to 2 in order to avoid
5907          * an unnecessary locked operation
5908          */
5909         atomic_set(&page->_count, 2);
5910 #else
5911         /* move offset up to the next cache line */
5912         rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5913
5914         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5915                 return false;
5916
5917         /* bump ref count on page before it is given to the stack */
5918         get_page(page);
5919 #endif
5920
5921         return true;
5922 }
5923
5924 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5925                                            union e1000_adv_rx_desc *rx_desc,
5926                                            struct sk_buff *skb)
5927 {
5928         struct igb_rx_buffer *rx_buffer;
5929         struct page *page;
5930
5931         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5932
5933         /*
5934          * This memory barrier is needed to keep us from reading
5935          * any other fields out of the rx_desc until we know the
5936          * RXD_STAT_DD bit is set
5937          */
5938         rmb();
5939
5940         page = rx_buffer->page;
5941         prefetchw(page);
5942
5943         if (likely(!skb)) {
5944                 void *page_addr = page_address(page) +
5945                                   rx_buffer->page_offset;
5946
5947                 /* prefetch first cache line of first page */
5948                 prefetch(page_addr);
5949 #if L1_CACHE_BYTES < 128
5950                 prefetch(page_addr + L1_CACHE_BYTES);
5951 #endif
5952
5953                 /* allocate a skb to store the frags */
5954                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5955                                                 IGB_RX_HDR_LEN);
5956                 if (unlikely(!skb)) {
5957                         rx_ring->rx_stats.alloc_failed++;
5958                         return NULL;
5959                 }
5960
5961                 /*
5962                  * we will be copying header into skb->data in
5963                  * pskb_may_pull so it is in our interest to prefetch
5964                  * it now to avoid a possible cache miss
5965                  */
5966                 prefetchw(skb->data);
5967         }
5968
5969         /* we are reusing so sync this buffer for CPU use */
5970         dma_sync_single_range_for_cpu(rx_ring->dev,
5971                                       rx_buffer->dma,
5972                                       rx_buffer->page_offset,
5973                                       IGB_RX_BUFSZ,
5974                                       DMA_FROM_DEVICE);
5975
5976         /* pull page into skb */
5977         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
5978                 /* hand second half of page back to the ring */
5979                 igb_reuse_rx_page(rx_ring, rx_buffer);
5980         } else {
5981                 /* we are not reusing the buffer so unmap it */
5982                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
5983                                PAGE_SIZE, DMA_FROM_DEVICE);
5984         }
5985
5986         /* clear contents of rx_buffer */
5987         rx_buffer->page = NULL;
5988
5989         return skb;
5990 }
5991
5992 static inline void igb_rx_checksum(struct igb_ring *ring,
5993                                    union e1000_adv_rx_desc *rx_desc,
5994                                    struct sk_buff *skb)
5995 {
5996         skb_checksum_none_assert(skb);
5997
5998         /* Ignore Checksum bit is set */
5999         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6000                 return;
6001
6002         /* Rx checksum disabled via ethtool */
6003         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6004                 return;
6005
6006         /* TCP/UDP checksum error bit is set */
6007         if (igb_test_staterr(rx_desc,
6008                              E1000_RXDEXT_STATERR_TCPE |
6009                              E1000_RXDEXT_STATERR_IPE)) {
6010                 /*
6011                  * work around errata with sctp packets where the TCPE aka
6012                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6013                  * packets, (aka let the stack check the crc32c)
6014                  */
6015                 if (!((skb->len == 60) &&
6016                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6017                         u64_stats_update_begin(&ring->rx_syncp);
6018                         ring->rx_stats.csum_err++;
6019                         u64_stats_update_end(&ring->rx_syncp);
6020                 }
6021                 /* let the stack verify checksum errors */
6022                 return;
6023         }
6024         /* It must be a TCP or UDP packet with a valid checksum */
6025         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6026                                       E1000_RXD_STAT_UDPCS))
6027                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6028
6029         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6030                 le32_to_cpu(rx_desc->wb.upper.status_error));
6031 }
6032
6033 static inline void igb_rx_hash(struct igb_ring *ring,
6034                                union e1000_adv_rx_desc *rx_desc,
6035                                struct sk_buff *skb)
6036 {
6037         if (ring->netdev->features & NETIF_F_RXHASH)
6038                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6039 }
6040
6041 /**
6042  * igb_is_non_eop - process handling of non-EOP buffers
6043  * @rx_ring: Rx ring being processed
6044  * @rx_desc: Rx descriptor for current buffer
6045  * @skb: current socket buffer containing buffer in progress
6046  *
6047  * This function updates next to clean.  If the buffer is an EOP buffer
6048  * this function exits returning false, otherwise it will place the
6049  * sk_buff in the next buffer to be chained and return true indicating
6050  * that this is in fact a non-EOP buffer.
6051  **/
6052 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6053                            union e1000_adv_rx_desc *rx_desc)
6054 {
6055         u32 ntc = rx_ring->next_to_clean + 1;
6056
6057         /* fetch, update, and store next to clean */
6058         ntc = (ntc < rx_ring->count) ? ntc : 0;
6059         rx_ring->next_to_clean = ntc;
6060
6061         prefetch(IGB_RX_DESC(rx_ring, ntc));
6062
6063         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6064                 return false;
6065
6066         return true;
6067 }
6068
6069 /**
6070  * igb_get_headlen - determine size of header for LRO/GRO
6071  * @data: pointer to the start of the headers
6072  * @max_len: total length of section to find headers in
6073  *
6074  * This function is meant to determine the length of headers that will
6075  * be recognized by hardware for LRO, and GRO offloads.  The main
6076  * motivation of doing this is to only perform one pull for IPv4 TCP
6077  * packets so that we can do basic things like calculating the gso_size
6078  * based on the average data per packet.
6079  **/
6080 static unsigned int igb_get_headlen(unsigned char *data,
6081                                     unsigned int max_len)
6082 {
6083         union {
6084                 unsigned char *network;
6085                 /* l2 headers */
6086                 struct ethhdr *eth;
6087                 struct vlan_hdr *vlan;
6088                 /* l3 headers */
6089                 struct iphdr *ipv4;
6090                 struct ipv6hdr *ipv6;
6091         } hdr;
6092         __be16 protocol;
6093         u8 nexthdr = 0; /* default to not TCP */
6094         u8 hlen;
6095
6096         /* this should never happen, but better safe than sorry */
6097         if (max_len < ETH_HLEN)
6098                 return max_len;
6099
6100         /* initialize network frame pointer */
6101         hdr.network = data;
6102
6103         /* set first protocol and move network header forward */
6104         protocol = hdr.eth->h_proto;
6105         hdr.network += ETH_HLEN;
6106
6107         /* handle any vlan tag if present */
6108         if (protocol == __constant_htons(ETH_P_8021Q)) {
6109                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6110                         return max_len;
6111
6112                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6113                 hdr.network += VLAN_HLEN;
6114         }
6115
6116         /* handle L3 protocols */
6117         if (protocol == __constant_htons(ETH_P_IP)) {
6118                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6119                         return max_len;
6120
6121                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6122                 hlen = (hdr.network[0] & 0x0F) << 2;
6123
6124                 /* verify hlen meets minimum size requirements */
6125                 if (hlen < sizeof(struct iphdr))
6126                         return hdr.network - data;
6127
6128                 /* record next protocol */
6129                 nexthdr = hdr.ipv4->protocol;
6130                 hdr.network += hlen;
6131         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6132                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6133                         return max_len;
6134
6135                 /* record next protocol */
6136                 nexthdr = hdr.ipv6->nexthdr;
6137                 hdr.network += sizeof(struct ipv6hdr);
6138         } else {
6139                 return hdr.network - data;
6140         }
6141
6142         /* finally sort out TCP */
6143         if (nexthdr == IPPROTO_TCP) {
6144                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6145                         return max_len;
6146
6147                 /* access doff as a u8 to avoid unaligned access on ia64 */
6148                 hlen = (hdr.network[12] & 0xF0) >> 2;
6149
6150                 /* verify hlen meets minimum size requirements */
6151                 if (hlen < sizeof(struct tcphdr))
6152                         return hdr.network - data;
6153
6154                 hdr.network += hlen;
6155         } else if (nexthdr == IPPROTO_UDP) {
6156                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6157                         return max_len;
6158
6159                 hdr.network += sizeof(struct udphdr);
6160         }
6161
6162         /*
6163          * If everything has gone correctly hdr.network should be the
6164          * data section of the packet and will be the end of the header.
6165          * If not then it probably represents the end of the last recognized
6166          * header.
6167          */
6168         if ((hdr.network - data) < max_len)
6169                 return hdr.network - data;
6170         else
6171                 return max_len;
6172 }
6173
6174 /**
6175  * igb_pull_tail - igb specific version of skb_pull_tail
6176  * @rx_ring: rx descriptor ring packet is being transacted on
6177  * @rx_desc: pointer to the EOP Rx descriptor
6178  * @skb: pointer to current skb being adjusted
6179  *
6180  * This function is an igb specific version of __pskb_pull_tail.  The
6181  * main difference between this version and the original function is that
6182  * this function can make several assumptions about the state of things
6183  * that allow for significant optimizations versus the standard function.
6184  * As a result we can do things like drop a frag and maintain an accurate
6185  * truesize for the skb.
6186  */
6187 static void igb_pull_tail(struct igb_ring *rx_ring,
6188                           union e1000_adv_rx_desc *rx_desc,
6189                           struct sk_buff *skb)
6190 {
6191         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6192         unsigned char *va;
6193         unsigned int pull_len;
6194
6195         /*
6196          * it is valid to use page_address instead of kmap since we are
6197          * working with pages allocated out of the lomem pool per
6198          * alloc_page(GFP_ATOMIC)
6199          */
6200         va = skb_frag_address(frag);
6201
6202         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6203                 /* retrieve timestamp from buffer */
6204                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6205
6206                 /* update pointers to remove timestamp header */
6207                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6208                 frag->page_offset += IGB_TS_HDR_LEN;
6209                 skb->data_len -= IGB_TS_HDR_LEN;
6210                 skb->len -= IGB_TS_HDR_LEN;
6211
6212                 /* move va to start of packet data */
6213                 va += IGB_TS_HDR_LEN;
6214         }
6215
6216         /*
6217          * we need the header to contain the greater of either ETH_HLEN or
6218          * 60 bytes if the skb->len is less than 60 for skb_pad.
6219          */
6220         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6221
6222         /* align pull length to size of long to optimize memcpy performance */
6223         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6224
6225         /* update all of the pointers */
6226         skb_frag_size_sub(frag, pull_len);
6227         frag->page_offset += pull_len;
6228         skb->data_len -= pull_len;
6229         skb->tail += pull_len;
6230 }
6231
6232 /**
6233  * igb_cleanup_headers - Correct corrupted or empty headers
6234  * @rx_ring: rx descriptor ring packet is being transacted on
6235  * @rx_desc: pointer to the EOP Rx descriptor
6236  * @skb: pointer to current skb being fixed
6237  *
6238  * Address the case where we are pulling data in on pages only
6239  * and as such no data is present in the skb header.
6240  *
6241  * In addition if skb is not at least 60 bytes we need to pad it so that
6242  * it is large enough to qualify as a valid Ethernet frame.
6243  *
6244  * Returns true if an error was encountered and skb was freed.
6245  **/
6246 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6247                                 union e1000_adv_rx_desc *rx_desc,
6248                                 struct sk_buff *skb)
6249 {
6250
6251         if (unlikely((igb_test_staterr(rx_desc,
6252                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6253                 struct net_device *netdev = rx_ring->netdev;
6254                 if (!(netdev->features & NETIF_F_RXALL)) {
6255                         dev_kfree_skb_any(skb);
6256                         return true;
6257                 }
6258         }
6259
6260         /* place header in linear portion of buffer */
6261         if (skb_is_nonlinear(skb))
6262                 igb_pull_tail(rx_ring, rx_desc, skb);
6263
6264         /* if skb_pad returns an error the skb was freed */
6265         if (unlikely(skb->len < 60)) {
6266                 int pad_len = 60 - skb->len;
6267
6268                 if (skb_pad(skb, pad_len))
6269                         return true;
6270                 __skb_put(skb, pad_len);
6271         }
6272
6273         return false;
6274 }
6275
6276 /**
6277  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6278  * @rx_ring: rx descriptor ring packet is being transacted on
6279  * @rx_desc: pointer to the EOP Rx descriptor
6280  * @skb: pointer to current skb being populated
6281  *
6282  * This function checks the ring, descriptor, and packet information in
6283  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6284  * other fields within the skb.
6285  **/
6286 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6287                                    union e1000_adv_rx_desc *rx_desc,
6288                                    struct sk_buff *skb)
6289 {
6290         struct net_device *dev = rx_ring->netdev;
6291
6292         igb_rx_hash(rx_ring, rx_desc, skb);
6293
6294         igb_rx_checksum(rx_ring, rx_desc, skb);
6295
6296         igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6297
6298         if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6299             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6300                 u16 vid;
6301                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6302                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6303                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6304                 else
6305                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6306
6307                 __vlan_hwaccel_put_tag(skb, vid);
6308         }
6309
6310         skb_record_rx_queue(skb, rx_ring->queue_index);
6311
6312         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6313 }
6314
6315 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6316 {
6317         struct igb_ring *rx_ring = q_vector->rx.ring;
6318         struct sk_buff *skb = rx_ring->skb;
6319         unsigned int total_bytes = 0, total_packets = 0;
6320         u16 cleaned_count = igb_desc_unused(rx_ring);
6321
6322         do {
6323                 union e1000_adv_rx_desc *rx_desc;
6324
6325                 /* return some buffers to hardware, one at a time is too slow */
6326                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6327                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6328                         cleaned_count = 0;
6329                 }
6330
6331                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6332
6333                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6334                         break;
6335
6336                 /* retrieve a buffer from the ring */
6337                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6338
6339                 /* exit if we failed to retrieve a buffer */
6340                 if (!skb)
6341                         break;
6342
6343                 cleaned_count++;
6344
6345                 /* fetch next buffer in frame if non-eop */
6346                 if (igb_is_non_eop(rx_ring, rx_desc))
6347                         continue;
6348
6349                 /* verify the packet layout is correct */
6350                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6351                         skb = NULL;
6352                         continue;
6353                 }
6354
6355                 /* probably a little skewed due to removing CRC */
6356                 total_bytes += skb->len;
6357
6358                 /* populate checksum, timestamp, VLAN, and protocol */
6359                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6360
6361                 napi_gro_receive(&q_vector->napi, skb);
6362
6363                 /* reset skb pointer */
6364                 skb = NULL;
6365
6366                 /* update budget accounting */
6367                 total_packets++;
6368         } while (likely(total_packets < budget));
6369
6370         /* place incomplete frames back on ring for completion */
6371         rx_ring->skb = skb;
6372
6373         u64_stats_update_begin(&rx_ring->rx_syncp);
6374         rx_ring->rx_stats.packets += total_packets;
6375         rx_ring->rx_stats.bytes += total_bytes;
6376         u64_stats_update_end(&rx_ring->rx_syncp);
6377         q_vector->rx.total_packets += total_packets;
6378         q_vector->rx.total_bytes += total_bytes;
6379
6380         if (cleaned_count)
6381                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6382
6383         return (total_packets < budget);
6384 }
6385
6386 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6387                                   struct igb_rx_buffer *bi)
6388 {
6389         struct page *page = bi->page;
6390         dma_addr_t dma;
6391
6392         /* since we are recycling buffers we should seldom need to alloc */
6393         if (likely(page))
6394                 return true;
6395
6396         /* alloc new page for storage */
6397         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6398         if (unlikely(!page)) {
6399                 rx_ring->rx_stats.alloc_failed++;
6400                 return false;
6401         }
6402
6403         /* map page for use */
6404         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6405
6406         /*
6407          * if mapping failed free memory back to system since
6408          * there isn't much point in holding memory we can't use
6409          */
6410         if (dma_mapping_error(rx_ring->dev, dma)) {
6411                 __free_page(page);
6412
6413                 rx_ring->rx_stats.alloc_failed++;
6414                 return false;
6415         }
6416
6417         bi->dma = dma;
6418         bi->page = page;
6419         bi->page_offset = 0;
6420
6421         return true;
6422 }
6423
6424 /**
6425  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6426  * @adapter: address of board private structure
6427  **/
6428 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6429 {
6430         union e1000_adv_rx_desc *rx_desc;
6431         struct igb_rx_buffer *bi;
6432         u16 i = rx_ring->next_to_use;
6433
6434         /* nothing to do */
6435         if (!cleaned_count)
6436                 return;
6437
6438         rx_desc = IGB_RX_DESC(rx_ring, i);
6439         bi = &rx_ring->rx_buffer_info[i];
6440         i -= rx_ring->count;
6441
6442         do {
6443                 if (!igb_alloc_mapped_page(rx_ring, bi))
6444                         break;
6445
6446                 /*
6447                  * Refresh the desc even if buffer_addrs didn't change
6448                  * because each write-back erases this info.
6449                  */
6450                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6451
6452                 rx_desc++;
6453                 bi++;
6454                 i++;
6455                 if (unlikely(!i)) {
6456                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6457                         bi = rx_ring->rx_buffer_info;
6458                         i -= rx_ring->count;
6459                 }
6460
6461                 /* clear the hdr_addr for the next_to_use descriptor */
6462                 rx_desc->read.hdr_addr = 0;
6463
6464                 cleaned_count--;
6465         } while (cleaned_count);
6466
6467         i += rx_ring->count;
6468
6469         if (rx_ring->next_to_use != i) {
6470                 /* record the next descriptor to use */
6471                 rx_ring->next_to_use = i;
6472
6473                 /* update next to alloc since we have filled the ring */
6474                 rx_ring->next_to_alloc = i;
6475
6476                 /*
6477                  * Force memory writes to complete before letting h/w
6478                  * know there are new descriptors to fetch.  (Only
6479                  * applicable for weak-ordered memory model archs,
6480                  * such as IA-64).
6481                  */
6482                 wmb();
6483                 writel(i, rx_ring->tail);
6484         }
6485 }
6486
6487 /**
6488  * igb_mii_ioctl -
6489  * @netdev:
6490  * @ifreq:
6491  * @cmd:
6492  **/
6493 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6494 {
6495         struct igb_adapter *adapter = netdev_priv(netdev);
6496         struct mii_ioctl_data *data = if_mii(ifr);
6497
6498         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6499                 return -EOPNOTSUPP;
6500
6501         switch (cmd) {
6502         case SIOCGMIIPHY:
6503                 data->phy_id = adapter->hw.phy.addr;
6504                 break;
6505         case SIOCGMIIREG:
6506                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6507                                      &data->val_out))
6508                         return -EIO;
6509                 break;
6510         case SIOCSMIIREG:
6511         default:
6512                 return -EOPNOTSUPP;
6513         }
6514         return 0;
6515 }
6516
6517 /**
6518  * igb_ioctl -
6519  * @netdev:
6520  * @ifreq:
6521  * @cmd:
6522  **/
6523 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6524 {
6525         switch (cmd) {
6526         case SIOCGMIIPHY:
6527         case SIOCGMIIREG:
6528         case SIOCSMIIREG:
6529                 return igb_mii_ioctl(netdev, ifr, cmd);
6530         case SIOCSHWTSTAMP:
6531                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6532         default:
6533                 return -EOPNOTSUPP;
6534         }
6535 }
6536
6537 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6538 {
6539         struct igb_adapter *adapter = hw->back;
6540
6541         if (pcie_capability_read_word(adapter->pdev, reg, value))
6542                 return -E1000_ERR_CONFIG;
6543
6544         return 0;
6545 }
6546
6547 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6548 {
6549         struct igb_adapter *adapter = hw->back;
6550
6551         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6552                 return -E1000_ERR_CONFIG;
6553
6554         return 0;
6555 }
6556
6557 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6558 {
6559         struct igb_adapter *adapter = netdev_priv(netdev);
6560         struct e1000_hw *hw = &adapter->hw;
6561         u32 ctrl, rctl;
6562         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6563
6564         if (enable) {
6565                 /* enable VLAN tag insert/strip */
6566                 ctrl = rd32(E1000_CTRL);
6567                 ctrl |= E1000_CTRL_VME;
6568                 wr32(E1000_CTRL, ctrl);
6569
6570                 /* Disable CFI check */
6571                 rctl = rd32(E1000_RCTL);
6572                 rctl &= ~E1000_RCTL_CFIEN;
6573                 wr32(E1000_RCTL, rctl);
6574         } else {
6575                 /* disable VLAN tag insert/strip */
6576                 ctrl = rd32(E1000_CTRL);
6577                 ctrl &= ~E1000_CTRL_VME;
6578                 wr32(E1000_CTRL, ctrl);
6579         }
6580
6581         igb_rlpml_set(adapter);
6582 }
6583
6584 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6585 {
6586         struct igb_adapter *adapter = netdev_priv(netdev);
6587         struct e1000_hw *hw = &adapter->hw;
6588         int pf_id = adapter->vfs_allocated_count;
6589
6590         /* attempt to add filter to vlvf array */
6591         igb_vlvf_set(adapter, vid, true, pf_id);
6592
6593         /* add the filter since PF can receive vlans w/o entry in vlvf */
6594         igb_vfta_set(hw, vid, true);
6595
6596         set_bit(vid, adapter->active_vlans);
6597
6598         return 0;
6599 }
6600
6601 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6602 {
6603         struct igb_adapter *adapter = netdev_priv(netdev);
6604         struct e1000_hw *hw = &adapter->hw;
6605         int pf_id = adapter->vfs_allocated_count;
6606         s32 err;
6607
6608         /* remove vlan from VLVF table array */
6609         err = igb_vlvf_set(adapter, vid, false, pf_id);
6610
6611         /* if vid was not present in VLVF just remove it from table */
6612         if (err)
6613                 igb_vfta_set(hw, vid, false);
6614
6615         clear_bit(vid, adapter->active_vlans);
6616
6617         return 0;
6618 }
6619
6620 static void igb_restore_vlan(struct igb_adapter *adapter)
6621 {
6622         u16 vid;
6623
6624         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6625
6626         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6627                 igb_vlan_rx_add_vid(adapter->netdev, vid);
6628 }
6629
6630 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6631 {
6632         struct pci_dev *pdev = adapter->pdev;
6633         struct e1000_mac_info *mac = &adapter->hw.mac;
6634
6635         mac->autoneg = 0;
6636
6637         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6638          * for the switch() below to work */
6639         if ((spd & 1) || (dplx & ~1))
6640                 goto err_inval;
6641
6642         /* Fiber NIC's only allow 1000 Gbps Full duplex */
6643         if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6644             spd != SPEED_1000 &&
6645             dplx != DUPLEX_FULL)
6646                 goto err_inval;
6647
6648         switch (spd + dplx) {
6649         case SPEED_10 + DUPLEX_HALF:
6650                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6651                 break;
6652         case SPEED_10 + DUPLEX_FULL:
6653                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6654                 break;
6655         case SPEED_100 + DUPLEX_HALF:
6656                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6657                 break;
6658         case SPEED_100 + DUPLEX_FULL:
6659                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6660                 break;
6661         case SPEED_1000 + DUPLEX_FULL:
6662                 mac->autoneg = 1;
6663                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6664                 break;
6665         case SPEED_1000 + DUPLEX_HALF: /* not supported */
6666         default:
6667                 goto err_inval;
6668         }
6669
6670         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6671         adapter->hw.phy.mdix = AUTO_ALL_MODES;
6672
6673         return 0;
6674
6675 err_inval:
6676         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6677         return -EINVAL;
6678 }
6679
6680 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6681                           bool runtime)
6682 {
6683         struct net_device *netdev = pci_get_drvdata(pdev);
6684         struct igb_adapter *adapter = netdev_priv(netdev);
6685         struct e1000_hw *hw = &adapter->hw;
6686         u32 ctrl, rctl, status;
6687         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6688 #ifdef CONFIG_PM
6689         int retval = 0;
6690 #endif
6691
6692         netif_device_detach(netdev);
6693
6694         if (netif_running(netdev))
6695                 __igb_close(netdev, true);
6696
6697         igb_clear_interrupt_scheme(adapter);
6698
6699 #ifdef CONFIG_PM
6700         retval = pci_save_state(pdev);
6701         if (retval)
6702                 return retval;
6703 #endif
6704
6705         status = rd32(E1000_STATUS);
6706         if (status & E1000_STATUS_LU)
6707                 wufc &= ~E1000_WUFC_LNKC;
6708
6709         if (wufc) {
6710                 igb_setup_rctl(adapter);
6711                 igb_set_rx_mode(netdev);
6712
6713                 /* turn on all-multi mode if wake on multicast is enabled */
6714                 if (wufc & E1000_WUFC_MC) {
6715                         rctl = rd32(E1000_RCTL);
6716                         rctl |= E1000_RCTL_MPE;
6717                         wr32(E1000_RCTL, rctl);
6718                 }
6719
6720                 ctrl = rd32(E1000_CTRL);
6721                 /* advertise wake from D3Cold */
6722                 #define E1000_CTRL_ADVD3WUC 0x00100000
6723                 /* phy power management enable */
6724                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6725                 ctrl |= E1000_CTRL_ADVD3WUC;
6726                 wr32(E1000_CTRL, ctrl);
6727
6728                 /* Allow time for pending master requests to run */
6729                 igb_disable_pcie_master(hw);
6730
6731                 wr32(E1000_WUC, E1000_WUC_PME_EN);
6732                 wr32(E1000_WUFC, wufc);
6733         } else {
6734                 wr32(E1000_WUC, 0);
6735                 wr32(E1000_WUFC, 0);
6736         }
6737
6738         *enable_wake = wufc || adapter->en_mng_pt;
6739         if (!*enable_wake)
6740                 igb_power_down_link(adapter);
6741         else
6742                 igb_power_up_link(adapter);
6743
6744         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6745          * would have already happened in close and is redundant. */
6746         igb_release_hw_control(adapter);
6747
6748         pci_disable_device(pdev);
6749
6750         return 0;
6751 }
6752
6753 #ifdef CONFIG_PM
6754 #ifdef CONFIG_PM_SLEEP
6755 static int igb_suspend(struct device *dev)
6756 {
6757         int retval;
6758         bool wake;
6759         struct pci_dev *pdev = to_pci_dev(dev);
6760
6761         retval = __igb_shutdown(pdev, &wake, 0);
6762         if (retval)
6763                 return retval;
6764
6765         if (wake) {
6766                 pci_prepare_to_sleep(pdev);
6767         } else {
6768                 pci_wake_from_d3(pdev, false);
6769                 pci_set_power_state(pdev, PCI_D3hot);
6770         }
6771
6772         return 0;
6773 }
6774 #endif /* CONFIG_PM_SLEEP */
6775
6776 static int igb_resume(struct device *dev)
6777 {
6778         struct pci_dev *pdev = to_pci_dev(dev);
6779         struct net_device *netdev = pci_get_drvdata(pdev);
6780         struct igb_adapter *adapter = netdev_priv(netdev);
6781         struct e1000_hw *hw = &adapter->hw;
6782         u32 err;
6783
6784         pci_set_power_state(pdev, PCI_D0);
6785         pci_restore_state(pdev);
6786         pci_save_state(pdev);
6787
6788         err = pci_enable_device_mem(pdev);
6789         if (err) {
6790                 dev_err(&pdev->dev,
6791                         "igb: Cannot enable PCI device from suspend\n");
6792                 return err;
6793         }
6794         pci_set_master(pdev);
6795
6796         pci_enable_wake(pdev, PCI_D3hot, 0);
6797         pci_enable_wake(pdev, PCI_D3cold, 0);
6798
6799         if (igb_init_interrupt_scheme(adapter)) {
6800                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6801                 return -ENOMEM;
6802         }
6803
6804         igb_reset(adapter);
6805
6806         /* let the f/w know that the h/w is now under the control of the
6807          * driver. */
6808         igb_get_hw_control(adapter);
6809
6810         wr32(E1000_WUS, ~0);
6811
6812         if (netdev->flags & IFF_UP) {
6813                 rtnl_lock();
6814                 err = __igb_open(netdev, true);
6815                 rtnl_unlock();
6816                 if (err)
6817                         return err;
6818         }
6819
6820         netif_device_attach(netdev);
6821         return 0;
6822 }
6823
6824 #ifdef CONFIG_PM_RUNTIME
6825 static int igb_runtime_idle(struct device *dev)
6826 {
6827         struct pci_dev *pdev = to_pci_dev(dev);
6828         struct net_device *netdev = pci_get_drvdata(pdev);
6829         struct igb_adapter *adapter = netdev_priv(netdev);
6830
6831         if (!igb_has_link(adapter))
6832                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6833
6834         return -EBUSY;
6835 }
6836
6837 static int igb_runtime_suspend(struct device *dev)
6838 {
6839         struct pci_dev *pdev = to_pci_dev(dev);
6840         int retval;
6841         bool wake;
6842
6843         retval = __igb_shutdown(pdev, &wake, 1);
6844         if (retval)
6845                 return retval;
6846
6847         if (wake) {
6848                 pci_prepare_to_sleep(pdev);
6849         } else {
6850                 pci_wake_from_d3(pdev, false);
6851                 pci_set_power_state(pdev, PCI_D3hot);
6852         }
6853
6854         return 0;
6855 }
6856
6857 static int igb_runtime_resume(struct device *dev)
6858 {
6859         return igb_resume(dev);
6860 }
6861 #endif /* CONFIG_PM_RUNTIME */
6862 #endif
6863
6864 static void igb_shutdown(struct pci_dev *pdev)
6865 {
6866         bool wake;
6867
6868         __igb_shutdown(pdev, &wake, 0);
6869
6870         if (system_state == SYSTEM_POWER_OFF) {
6871                 pci_wake_from_d3(pdev, wake);
6872                 pci_set_power_state(pdev, PCI_D3hot);
6873         }
6874 }
6875
6876 #ifdef CONFIG_NET_POLL_CONTROLLER
6877 /*
6878  * Polling 'interrupt' - used by things like netconsole to send skbs
6879  * without having to re-enable interrupts. It's not called while
6880  * the interrupt routine is executing.
6881  */
6882 static void igb_netpoll(struct net_device *netdev)
6883 {
6884         struct igb_adapter *adapter = netdev_priv(netdev);
6885         struct e1000_hw *hw = &adapter->hw;
6886         struct igb_q_vector *q_vector;
6887         int i;
6888
6889         for (i = 0; i < adapter->num_q_vectors; i++) {
6890                 q_vector = adapter->q_vector[i];
6891                 if (adapter->msix_entries)
6892                         wr32(E1000_EIMC, q_vector->eims_value);
6893                 else
6894                         igb_irq_disable(adapter);
6895                 napi_schedule(&q_vector->napi);
6896         }
6897 }
6898 #endif /* CONFIG_NET_POLL_CONTROLLER */
6899
6900 /**
6901  * igb_io_error_detected - called when PCI error is detected
6902  * @pdev: Pointer to PCI device
6903  * @state: The current pci connection state
6904  *
6905  * This function is called after a PCI bus error affecting
6906  * this device has been detected.
6907  */
6908 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6909                                               pci_channel_state_t state)
6910 {
6911         struct net_device *netdev = pci_get_drvdata(pdev);
6912         struct igb_adapter *adapter = netdev_priv(netdev);
6913
6914         netif_device_detach(netdev);
6915
6916         if (state == pci_channel_io_perm_failure)
6917                 return PCI_ERS_RESULT_DISCONNECT;
6918
6919         if (netif_running(netdev))
6920                 igb_down(adapter);
6921         pci_disable_device(pdev);
6922
6923         /* Request a slot slot reset. */
6924         return PCI_ERS_RESULT_NEED_RESET;
6925 }
6926
6927 /**
6928  * igb_io_slot_reset - called after the pci bus has been reset.
6929  * @pdev: Pointer to PCI device
6930  *
6931  * Restart the card from scratch, as if from a cold-boot. Implementation
6932  * resembles the first-half of the igb_resume routine.
6933  */
6934 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6935 {
6936         struct net_device *netdev = pci_get_drvdata(pdev);
6937         struct igb_adapter *adapter = netdev_priv(netdev);
6938         struct e1000_hw *hw = &adapter->hw;
6939         pci_ers_result_t result;
6940         int err;
6941
6942         if (pci_enable_device_mem(pdev)) {
6943                 dev_err(&pdev->dev,
6944                         "Cannot re-enable PCI device after reset.\n");
6945                 result = PCI_ERS_RESULT_DISCONNECT;
6946         } else {
6947                 pci_set_master(pdev);
6948                 pci_restore_state(pdev);
6949                 pci_save_state(pdev);
6950
6951                 pci_enable_wake(pdev, PCI_D3hot, 0);
6952                 pci_enable_wake(pdev, PCI_D3cold, 0);
6953
6954                 igb_reset(adapter);
6955                 wr32(E1000_WUS, ~0);
6956                 result = PCI_ERS_RESULT_RECOVERED;
6957         }
6958
6959         err = pci_cleanup_aer_uncorrect_error_status(pdev);
6960         if (err) {
6961                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6962                         "failed 0x%0x\n", err);
6963                 /* non-fatal, continue */
6964         }
6965
6966         return result;
6967 }
6968
6969 /**
6970  * igb_io_resume - called when traffic can start flowing again.
6971  * @pdev: Pointer to PCI device
6972  *
6973  * This callback is called when the error recovery driver tells us that
6974  * its OK to resume normal operation. Implementation resembles the
6975  * second-half of the igb_resume routine.
6976  */
6977 static void igb_io_resume(struct pci_dev *pdev)
6978 {
6979         struct net_device *netdev = pci_get_drvdata(pdev);
6980         struct igb_adapter *adapter = netdev_priv(netdev);
6981
6982         if (netif_running(netdev)) {
6983                 if (igb_up(adapter)) {
6984                         dev_err(&pdev->dev, "igb_up failed after reset\n");
6985                         return;
6986                 }
6987         }
6988
6989         netif_device_attach(netdev);
6990
6991         /* let the f/w know that the h/w is now under the control of the
6992          * driver. */
6993         igb_get_hw_control(adapter);
6994 }
6995
6996 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6997                              u8 qsel)
6998 {
6999         u32 rar_low, rar_high;
7000         struct e1000_hw *hw = &adapter->hw;
7001
7002         /* HW expects these in little endian so we reverse the byte order
7003          * from network order (big endian) to little endian
7004          */
7005         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7006                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7007         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7008
7009         /* Indicate to hardware the Address is Valid. */
7010         rar_high |= E1000_RAH_AV;
7011
7012         if (hw->mac.type == e1000_82575)
7013                 rar_high |= E1000_RAH_POOL_1 * qsel;
7014         else
7015                 rar_high |= E1000_RAH_POOL_1 << qsel;
7016
7017         wr32(E1000_RAL(index), rar_low);
7018         wrfl();
7019         wr32(E1000_RAH(index), rar_high);
7020         wrfl();
7021 }
7022
7023 static int igb_set_vf_mac(struct igb_adapter *adapter,
7024                           int vf, unsigned char *mac_addr)
7025 {
7026         struct e1000_hw *hw = &adapter->hw;
7027         /* VF MAC addresses start at end of receive addresses and moves
7028          * torwards the first, as a result a collision should not be possible */
7029         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7030
7031         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7032
7033         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7034
7035         return 0;
7036 }
7037
7038 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7039 {
7040         struct igb_adapter *adapter = netdev_priv(netdev);
7041         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7042                 return -EINVAL;
7043         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7044         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7045         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7046                                       " change effective.");
7047         if (test_bit(__IGB_DOWN, &adapter->state)) {
7048                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7049                          " but the PF device is not up.\n");
7050                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7051                          " attempting to use the VF device.\n");
7052         }
7053         return igb_set_vf_mac(adapter, vf, mac);
7054 }
7055
7056 static int igb_link_mbps(int internal_link_speed)
7057 {
7058         switch (internal_link_speed) {
7059         case SPEED_100:
7060                 return 100;
7061         case SPEED_1000:
7062                 return 1000;
7063         default:
7064                 return 0;
7065         }
7066 }
7067
7068 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7069                                   int link_speed)
7070 {
7071         int rf_dec, rf_int;
7072         u32 bcnrc_val;
7073
7074         if (tx_rate != 0) {
7075                 /* Calculate the rate factor values to set */
7076                 rf_int = link_speed / tx_rate;
7077                 rf_dec = (link_speed - (rf_int * tx_rate));
7078                 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7079
7080                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7081                 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7082                                E1000_RTTBCNRC_RF_INT_MASK);
7083                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7084         } else {
7085                 bcnrc_val = 0;
7086         }
7087
7088         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7089         /*
7090          * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7091          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7092          */
7093         wr32(E1000_RTTBCNRM, 0x14);
7094         wr32(E1000_RTTBCNRC, bcnrc_val);
7095 }
7096
7097 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7098 {
7099         int actual_link_speed, i;
7100         bool reset_rate = false;
7101
7102         /* VF TX rate limit was not set or not supported */
7103         if ((adapter->vf_rate_link_speed == 0) ||
7104             (adapter->hw.mac.type != e1000_82576))
7105                 return;
7106
7107         actual_link_speed = igb_link_mbps(adapter->link_speed);
7108         if (actual_link_speed != adapter->vf_rate_link_speed) {
7109                 reset_rate = true;
7110                 adapter->vf_rate_link_speed = 0;
7111                 dev_info(&adapter->pdev->dev,
7112                          "Link speed has been changed. VF Transmit "
7113                          "rate is disabled\n");
7114         }
7115
7116         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7117                 if (reset_rate)
7118                         adapter->vf_data[i].tx_rate = 0;
7119
7120                 igb_set_vf_rate_limit(&adapter->hw, i,
7121                                       adapter->vf_data[i].tx_rate,
7122                                       actual_link_speed);
7123         }
7124 }
7125
7126 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7127 {
7128         struct igb_adapter *adapter = netdev_priv(netdev);
7129         struct e1000_hw *hw = &adapter->hw;
7130         int actual_link_speed;
7131
7132         if (hw->mac.type != e1000_82576)
7133                 return -EOPNOTSUPP;
7134
7135         actual_link_speed = igb_link_mbps(adapter->link_speed);
7136         if ((vf >= adapter->vfs_allocated_count) ||
7137             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7138             (tx_rate < 0) || (tx_rate > actual_link_speed))
7139                 return -EINVAL;
7140
7141         adapter->vf_rate_link_speed = actual_link_speed;
7142         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7143         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7144
7145         return 0;
7146 }
7147
7148 static int igb_ndo_get_vf_config(struct net_device *netdev,
7149                                  int vf, struct ifla_vf_info *ivi)
7150 {
7151         struct igb_adapter *adapter = netdev_priv(netdev);
7152         if (vf >= adapter->vfs_allocated_count)
7153                 return -EINVAL;
7154         ivi->vf = vf;
7155         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7156         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7157         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7158         ivi->qos = adapter->vf_data[vf].pf_qos;
7159         return 0;
7160 }
7161
7162 static void igb_vmm_control(struct igb_adapter *adapter)
7163 {
7164         struct e1000_hw *hw = &adapter->hw;
7165         u32 reg;
7166
7167         switch (hw->mac.type) {
7168         case e1000_82575:
7169         case e1000_i210:
7170         case e1000_i211:
7171         default:
7172                 /* replication is not supported for 82575 */
7173                 return;
7174         case e1000_82576:
7175                 /* notify HW that the MAC is adding vlan tags */
7176                 reg = rd32(E1000_DTXCTL);
7177                 reg |= E1000_DTXCTL_VLAN_ADDED;
7178                 wr32(E1000_DTXCTL, reg);
7179         case e1000_82580:
7180                 /* enable replication vlan tag stripping */
7181                 reg = rd32(E1000_RPLOLR);
7182                 reg |= E1000_RPLOLR_STRVLAN;
7183                 wr32(E1000_RPLOLR, reg);
7184         case e1000_i350:
7185                 /* none of the above registers are supported by i350 */
7186                 break;
7187         }
7188
7189         if (adapter->vfs_allocated_count) {
7190                 igb_vmdq_set_loopback_pf(hw, true);
7191                 igb_vmdq_set_replication_pf(hw, true);
7192                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7193                                                 adapter->vfs_allocated_count);
7194         } else {
7195                 igb_vmdq_set_loopback_pf(hw, false);
7196                 igb_vmdq_set_replication_pf(hw, false);
7197         }
7198 }
7199
7200 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7201 {
7202         struct e1000_hw *hw = &adapter->hw;
7203         u32 dmac_thr;
7204         u16 hwm;
7205
7206         if (hw->mac.type > e1000_82580) {
7207                 if (adapter->flags & IGB_FLAG_DMAC) {
7208                         u32 reg;
7209
7210                         /* force threshold to 0. */
7211                         wr32(E1000_DMCTXTH, 0);
7212
7213                         /*
7214                          * DMA Coalescing high water mark needs to be greater
7215                          * than the Rx threshold. Set hwm to PBA - max frame
7216                          * size in 16B units, capping it at PBA - 6KB.
7217                          */
7218                         hwm = 64 * pba - adapter->max_frame_size / 16;
7219                         if (hwm < 64 * (pba - 6))
7220                                 hwm = 64 * (pba - 6);
7221                         reg = rd32(E1000_FCRTC);
7222                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7223                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7224                                 & E1000_FCRTC_RTH_COAL_MASK);
7225                         wr32(E1000_FCRTC, reg);
7226
7227                         /*
7228                          * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7229                          * frame size, capping it at PBA - 10KB.
7230                          */
7231                         dmac_thr = pba - adapter->max_frame_size / 512;
7232                         if (dmac_thr < pba - 10)
7233                                 dmac_thr = pba - 10;
7234                         reg = rd32(E1000_DMACR);
7235                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7236                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7237                                 & E1000_DMACR_DMACTHR_MASK);
7238
7239                         /* transition to L0x or L1 if available..*/
7240                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7241
7242                         /* watchdog timer= +-1000 usec in 32usec intervals */
7243                         reg |= (1000 >> 5);
7244
7245                         /* Disable BMC-to-OS Watchdog Enable */
7246                         reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7247                         wr32(E1000_DMACR, reg);
7248
7249                         /*
7250                          * no lower threshold to disable
7251                          * coalescing(smart fifb)-UTRESH=0
7252                          */
7253                         wr32(E1000_DMCRTRH, 0);
7254
7255                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7256
7257                         wr32(E1000_DMCTLX, reg);
7258
7259                         /*
7260                          * free space in tx packet buffer to wake from
7261                          * DMA coal
7262                          */
7263                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7264                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7265
7266                         /*
7267                          * make low power state decision controlled
7268                          * by DMA coal
7269                          */
7270                         reg = rd32(E1000_PCIEMISC);
7271                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7272                         wr32(E1000_PCIEMISC, reg);
7273                 } /* endif adapter->dmac is not disabled */
7274         } else if (hw->mac.type == e1000_82580) {
7275                 u32 reg = rd32(E1000_PCIEMISC);
7276                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7277                 wr32(E1000_DMACR, 0);
7278         }
7279 }
7280
7281 /* igb_main.c */