igb: Add support for i354 devices
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113         /* required last entry */
114         {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143                                                  struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173                                int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176                                    bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178                                  struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 #ifdef CONFIG_PM_RUNTIME
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 #endif
196 static const struct dev_pm_ops igb_pm_ops = {
197         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
198         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
199                         igb_runtime_idle)
200 };
201 #endif
202 static void igb_shutdown(struct pci_dev *);
203 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
204 #ifdef CONFIG_IGB_DCA
205 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
206 static struct notifier_block dca_notifier = {
207         .notifier_call  = igb_notify_dca,
208         .next           = NULL,
209         .priority       = 0
210 };
211 #endif
212 #ifdef CONFIG_NET_POLL_CONTROLLER
213 /* for netdump / net console */
214 static void igb_netpoll(struct net_device *);
215 #endif
216 #ifdef CONFIG_PCI_IOV
217 static unsigned int max_vfs = 0;
218 module_param(max_vfs, uint, 0);
219 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
220                  "per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224                      pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229         .error_detected = igb_io_error_detected,
230         .slot_reset = igb_io_slot_reset,
231         .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237         .name     = igb_driver_name,
238         .id_table = igb_pci_tbl,
239         .probe    = igb_probe,
240         .remove   = igb_remove,
241 #ifdef CONFIG_PM
242         .driver.pm = &igb_pm_ops,
243 #endif
244         .shutdown = igb_shutdown,
245         .sriov_configure = igb_pci_sriov_configure,
246         .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260         u32 ofs;
261         char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266         /* General Registers */
267         {E1000_CTRL, "CTRL"},
268         {E1000_STATUS, "STATUS"},
269         {E1000_CTRL_EXT, "CTRL_EXT"},
270
271         /* Interrupt Registers */
272         {E1000_ICR, "ICR"},
273
274         /* RX Registers */
275         {E1000_RCTL, "RCTL"},
276         {E1000_RDLEN(0), "RDLEN"},
277         {E1000_RDH(0), "RDH"},
278         {E1000_RDT(0), "RDT"},
279         {E1000_RXDCTL(0), "RXDCTL"},
280         {E1000_RDBAL(0), "RDBAL"},
281         {E1000_RDBAH(0), "RDBAH"},
282
283         /* TX Registers */
284         {E1000_TCTL, "TCTL"},
285         {E1000_TDBAL(0), "TDBAL"},
286         {E1000_TDBAH(0), "TDBAH"},
287         {E1000_TDLEN(0), "TDLEN"},
288         {E1000_TDH(0), "TDH"},
289         {E1000_TDT(0), "TDT"},
290         {E1000_TXDCTL(0), "TXDCTL"},
291         {E1000_TDFH, "TDFH"},
292         {E1000_TDFT, "TDFT"},
293         {E1000_TDFHS, "TDFHS"},
294         {E1000_TDFPC, "TDFPC"},
295
296         /* List Terminator */
297         {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303         int n = 0;
304         char rname[16];
305         u32 regs[8];
306
307         switch (reginfo->ofs) {
308         case E1000_RDLEN(0):
309                 for (n = 0; n < 4; n++)
310                         regs[n] = rd32(E1000_RDLEN(n));
311                 break;
312         case E1000_RDH(0):
313                 for (n = 0; n < 4; n++)
314                         regs[n] = rd32(E1000_RDH(n));
315                 break;
316         case E1000_RDT(0):
317                 for (n = 0; n < 4; n++)
318                         regs[n] = rd32(E1000_RDT(n));
319                 break;
320         case E1000_RXDCTL(0):
321                 for (n = 0; n < 4; n++)
322                         regs[n] = rd32(E1000_RXDCTL(n));
323                 break;
324         case E1000_RDBAL(0):
325                 for (n = 0; n < 4; n++)
326                         regs[n] = rd32(E1000_RDBAL(n));
327                 break;
328         case E1000_RDBAH(0):
329                 for (n = 0; n < 4; n++)
330                         regs[n] = rd32(E1000_RDBAH(n));
331                 break;
332         case E1000_TDBAL(0):
333                 for (n = 0; n < 4; n++)
334                         regs[n] = rd32(E1000_RDBAL(n));
335                 break;
336         case E1000_TDBAH(0):
337                 for (n = 0; n < 4; n++)
338                         regs[n] = rd32(E1000_TDBAH(n));
339                 break;
340         case E1000_TDLEN(0):
341                 for (n = 0; n < 4; n++)
342                         regs[n] = rd32(E1000_TDLEN(n));
343                 break;
344         case E1000_TDH(0):
345                 for (n = 0; n < 4; n++)
346                         regs[n] = rd32(E1000_TDH(n));
347                 break;
348         case E1000_TDT(0):
349                 for (n = 0; n < 4; n++)
350                         regs[n] = rd32(E1000_TDT(n));
351                 break;
352         case E1000_TXDCTL(0):
353                 for (n = 0; n < 4; n++)
354                         regs[n] = rd32(E1000_TXDCTL(n));
355                 break;
356         default:
357                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358                 return;
359         }
360
361         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363                 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369         struct net_device *netdev = adapter->netdev;
370         struct e1000_hw *hw = &adapter->hw;
371         struct igb_reg_info *reginfo;
372         struct igb_ring *tx_ring;
373         union e1000_adv_tx_desc *tx_desc;
374         struct my_u0 { u64 a; u64 b; } *u0;
375         struct igb_ring *rx_ring;
376         union e1000_adv_rx_desc *rx_desc;
377         u32 staterr;
378         u16 i, n;
379
380         if (!netif_msg_hw(adapter))
381                 return;
382
383         /* Print netdevice Info */
384         if (netdev) {
385                 dev_info(&adapter->pdev->dev, "Net device Info\n");
386                 pr_info("Device Name     state            trans_start      "
387                         "last_rx\n");
388                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
389                         netdev->state, netdev->trans_start, netdev->last_rx);
390         }
391
392         /* Print Registers */
393         dev_info(&adapter->pdev->dev, "Register Dump\n");
394         pr_info(" Register Name   Value\n");
395         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396              reginfo->name; reginfo++) {
397                 igb_regdump(hw, reginfo);
398         }
399
400         /* Print TX Ring Summary */
401         if (!netdev || !netif_running(netdev))
402                 goto exit;
403
404         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
405         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
406         for (n = 0; n < adapter->num_tx_queues; n++) {
407                 struct igb_tx_buffer *buffer_info;
408                 tx_ring = adapter->tx_ring[n];
409                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
410                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
412                         (u64)dma_unmap_addr(buffer_info, dma),
413                         dma_unmap_len(buffer_info, len),
414                         buffer_info->next_to_watch,
415                         (u64)buffer_info->time_stamp);
416         }
417
418         /* Print TX Rings */
419         if (!netif_msg_tx_done(adapter))
420                 goto rx_ring_summary;
421
422         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424         /* Transmit Descriptor Formats
425          *
426          * Advanced Transmit Descriptor
427          *   +--------------------------------------------------------------+
428          * 0 |         Buffer Address [63:0]                                |
429          *   +--------------------------------------------------------------+
430          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
431          *   +--------------------------------------------------------------+
432          *   63      46 45    40 39 38 36 35 32 31   24             15       0
433          */
434
435         for (n = 0; n < adapter->num_tx_queues; n++) {
436                 tx_ring = adapter->tx_ring[n];
437                 pr_info("------------------------------------\n");
438                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439                 pr_info("------------------------------------\n");
440                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
441                         "[bi->dma       ] leng  ntw timestamp        "
442                         "bi->skb\n");
443
444                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
445                         const char *next_desc;
446                         struct igb_tx_buffer *buffer_info;
447                         tx_desc = IGB_TX_DESC(tx_ring, i);
448                         buffer_info = &tx_ring->tx_buffer_info[i];
449                         u0 = (struct my_u0 *)tx_desc;
450                         if (i == tx_ring->next_to_use &&
451                             i == tx_ring->next_to_clean)
452                                 next_desc = " NTC/U";
453                         else if (i == tx_ring->next_to_use)
454                                 next_desc = " NTU";
455                         else if (i == tx_ring->next_to_clean)
456                                 next_desc = " NTC";
457                         else
458                                 next_desc = "";
459
460                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
461                                 " %04X  %p %016llX %p%s\n", i,
462                                 le64_to_cpu(u0->a),
463                                 le64_to_cpu(u0->b),
464                                 (u64)dma_unmap_addr(buffer_info, dma),
465                                 dma_unmap_len(buffer_info, len),
466                                 buffer_info->next_to_watch,
467                                 (u64)buffer_info->time_stamp,
468                                 buffer_info->skb, next_desc);
469
470                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
471                                 print_hex_dump(KERN_INFO, "",
472                                         DUMP_PREFIX_ADDRESS,
473                                         16, 1, buffer_info->skb->data,
474                                         dma_unmap_len(buffer_info, len),
475                                         true);
476                 }
477         }
478
479         /* Print RX Rings Summary */
480 rx_ring_summary:
481         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
482         pr_info("Queue [NTU] [NTC]\n");
483         for (n = 0; n < adapter->num_rx_queues; n++) {
484                 rx_ring = adapter->rx_ring[n];
485                 pr_info(" %5d %5X %5X\n",
486                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
487         }
488
489         /* Print RX Rings */
490         if (!netif_msg_rx_status(adapter))
491                 goto exit;
492
493         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
494
495         /* Advanced Receive Descriptor (Read) Format
496          *    63                                           1        0
497          *    +-----------------------------------------------------+
498          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
499          *    +----------------------------------------------+------+
500          *  8 |       Header Buffer Address [63:1]           |  DD  |
501          *    +-----------------------------------------------------+
502          *
503          *
504          * Advanced Receive Descriptor (Write-Back) Format
505          *
506          *   63       48 47    32 31  30      21 20 17 16   4 3     0
507          *   +------------------------------------------------------+
508          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
509          *   | Checksum   Ident  |   |           |    | Type | Type |
510          *   +------------------------------------------------------+
511          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
512          *   +------------------------------------------------------+
513          *   63       48 47    32 31            20 19               0
514          */
515
516         for (n = 0; n < adapter->num_rx_queues; n++) {
517                 rx_ring = adapter->rx_ring[n];
518                 pr_info("------------------------------------\n");
519                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
520                 pr_info("------------------------------------\n");
521                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
522                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
523                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
524                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
525
526                 for (i = 0; i < rx_ring->count; i++) {
527                         const char *next_desc;
528                         struct igb_rx_buffer *buffer_info;
529                         buffer_info = &rx_ring->rx_buffer_info[i];
530                         rx_desc = IGB_RX_DESC(rx_ring, i);
531                         u0 = (struct my_u0 *)rx_desc;
532                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
533
534                         if (i == rx_ring->next_to_use)
535                                 next_desc = " NTU";
536                         else if (i == rx_ring->next_to_clean)
537                                 next_desc = " NTC";
538                         else
539                                 next_desc = "";
540
541                         if (staterr & E1000_RXD_STAT_DD) {
542                                 /* Descriptor Done */
543                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
544                                         "RWB", i,
545                                         le64_to_cpu(u0->a),
546                                         le64_to_cpu(u0->b),
547                                         next_desc);
548                         } else {
549                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
550                                         "R  ", i,
551                                         le64_to_cpu(u0->a),
552                                         le64_to_cpu(u0->b),
553                                         (u64)buffer_info->dma,
554                                         next_desc);
555
556                                 if (netif_msg_pktdata(adapter) &&
557                                     buffer_info->dma && buffer_info->page) {
558                                         print_hex_dump(KERN_INFO, "",
559                                           DUMP_PREFIX_ADDRESS,
560                                           16, 1,
561                                           page_address(buffer_info->page) +
562                                                       buffer_info->page_offset,
563                                           IGB_RX_BUFSZ, true);
564                                 }
565                         }
566                 }
567         }
568
569 exit:
570         return;
571 }
572
573 /**
574  *  igb_get_i2c_data - Reads the I2C SDA data bit
575  *  @hw: pointer to hardware structure
576  *  @i2cctl: Current value of I2CCTL register
577  *
578  *  Returns the I2C data bit value
579  **/
580 static int igb_get_i2c_data(void *data)
581 {
582         struct igb_adapter *adapter = (struct igb_adapter *)data;
583         struct e1000_hw *hw = &adapter->hw;
584         s32 i2cctl = rd32(E1000_I2CPARAMS);
585
586         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
587 }
588
589 /**
590  *  igb_set_i2c_data - Sets the I2C data bit
591  *  @data: pointer to hardware structure
592  *  @state: I2C data value (0 or 1) to set
593  *
594  *  Sets the I2C data bit
595  **/
596 static void igb_set_i2c_data(void *data, int state)
597 {
598         struct igb_adapter *adapter = (struct igb_adapter *)data;
599         struct e1000_hw *hw = &adapter->hw;
600         s32 i2cctl = rd32(E1000_I2CPARAMS);
601
602         if (state)
603                 i2cctl |= E1000_I2C_DATA_OUT;
604         else
605                 i2cctl &= ~E1000_I2C_DATA_OUT;
606
607         i2cctl &= ~E1000_I2C_DATA_OE_N;
608         i2cctl |= E1000_I2C_CLK_OE_N;
609         wr32(E1000_I2CPARAMS, i2cctl);
610         wrfl();
611
612 }
613
614 /**
615  *  igb_set_i2c_clk - Sets the I2C SCL clock
616  *  @data: pointer to hardware structure
617  *  @state: state to set clock
618  *
619  *  Sets the I2C clock line to state
620  **/
621 static void igb_set_i2c_clk(void *data, int state)
622 {
623         struct igb_adapter *adapter = (struct igb_adapter *)data;
624         struct e1000_hw *hw = &adapter->hw;
625         s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627         if (state) {
628                 i2cctl |= E1000_I2C_CLK_OUT;
629                 i2cctl &= ~E1000_I2C_CLK_OE_N;
630         } else {
631                 i2cctl &= ~E1000_I2C_CLK_OUT;
632                 i2cctl &= ~E1000_I2C_CLK_OE_N;
633         }
634         wr32(E1000_I2CPARAMS, i2cctl);
635         wrfl();
636 }
637
638 /**
639  *  igb_get_i2c_clk - Gets the I2C SCL clock state
640  *  @data: pointer to hardware structure
641  *
642  *  Gets the I2C clock state
643  **/
644 static int igb_get_i2c_clk(void *data)
645 {
646         struct igb_adapter *adapter = (struct igb_adapter *)data;
647         struct e1000_hw *hw = &adapter->hw;
648         s32 i2cctl = rd32(E1000_I2CPARAMS);
649
650         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
651 }
652
653 static const struct i2c_algo_bit_data igb_i2c_algo = {
654         .setsda         = igb_set_i2c_data,
655         .setscl         = igb_set_i2c_clk,
656         .getsda         = igb_get_i2c_data,
657         .getscl         = igb_get_i2c_clk,
658         .udelay         = 5,
659         .timeout        = 20,
660 };
661
662 /**
663  *  igb_get_hw_dev - return device
664  *  @hw: pointer to hardware structure
665  *
666  *  used by hardware layer to print debugging information
667  **/
668 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
669 {
670         struct igb_adapter *adapter = hw->back;
671         return adapter->netdev;
672 }
673
674 /**
675  *  igb_init_module - Driver Registration Routine
676  *
677  *  igb_init_module is the first routine called when the driver is
678  *  loaded. All it does is register with the PCI subsystem.
679  **/
680 static int __init igb_init_module(void)
681 {
682         int ret;
683         pr_info("%s - version %s\n",
684                igb_driver_string, igb_driver_version);
685
686         pr_info("%s\n", igb_copyright);
687
688 #ifdef CONFIG_IGB_DCA
689         dca_register_notify(&dca_notifier);
690 #endif
691         ret = pci_register_driver(&igb_driver);
692         return ret;
693 }
694
695 module_init(igb_init_module);
696
697 /**
698  *  igb_exit_module - Driver Exit Cleanup Routine
699  *
700  *  igb_exit_module is called just before the driver is removed
701  *  from memory.
702  **/
703 static void __exit igb_exit_module(void)
704 {
705 #ifdef CONFIG_IGB_DCA
706         dca_unregister_notify(&dca_notifier);
707 #endif
708         pci_unregister_driver(&igb_driver);
709 }
710
711 module_exit(igb_exit_module);
712
713 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
714 /**
715  *  igb_cache_ring_register - Descriptor ring to register mapping
716  *  @adapter: board private structure to initialize
717  *
718  *  Once we know the feature-set enabled for the device, we'll cache
719  *  the register offset the descriptor ring is assigned to.
720  **/
721 static void igb_cache_ring_register(struct igb_adapter *adapter)
722 {
723         int i = 0, j = 0;
724         u32 rbase_offset = adapter->vfs_allocated_count;
725
726         switch (adapter->hw.mac.type) {
727         case e1000_82576:
728                 /* The queues are allocated for virtualization such that VF 0
729                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
730                  * In order to avoid collision we start at the first free queue
731                  * and continue consuming queues in the same sequence
732                  */
733                 if (adapter->vfs_allocated_count) {
734                         for (; i < adapter->rss_queues; i++)
735                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
736                                                                Q_IDX_82576(i);
737                 }
738         case e1000_82575:
739         case e1000_82580:
740         case e1000_i350:
741         case e1000_i354:
742         case e1000_i210:
743         case e1000_i211:
744         default:
745                 for (; i < adapter->num_rx_queues; i++)
746                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
747                 for (; j < adapter->num_tx_queues; j++)
748                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
749                 break;
750         }
751 }
752
753 /**
754  *  igb_write_ivar - configure ivar for given MSI-X vector
755  *  @hw: pointer to the HW structure
756  *  @msix_vector: vector number we are allocating to a given ring
757  *  @index: row index of IVAR register to write within IVAR table
758  *  @offset: column offset of in IVAR, should be multiple of 8
759  *
760  *  This function is intended to handle the writing of the IVAR register
761  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
762  *  each containing an cause allocation for an Rx and Tx ring, and a
763  *  variable number of rows depending on the number of queues supported.
764  **/
765 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766                            int index, int offset)
767 {
768         u32 ivar = array_rd32(E1000_IVAR0, index);
769
770         /* clear any bits that are currently set */
771         ivar &= ~((u32)0xFF << offset);
772
773         /* write vector and valid bit */
774         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775
776         array_wr32(E1000_IVAR0, index, ivar);
777 }
778
779 #define IGB_N0_QUEUE -1
780 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781 {
782         struct igb_adapter *adapter = q_vector->adapter;
783         struct e1000_hw *hw = &adapter->hw;
784         int rx_queue = IGB_N0_QUEUE;
785         int tx_queue = IGB_N0_QUEUE;
786         u32 msixbm = 0;
787
788         if (q_vector->rx.ring)
789                 rx_queue = q_vector->rx.ring->reg_idx;
790         if (q_vector->tx.ring)
791                 tx_queue = q_vector->tx.ring->reg_idx;
792
793         switch (hw->mac.type) {
794         case e1000_82575:
795                 /* The 82575 assigns vectors using a bitmask, which matches the
796                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
797                  * or more queues to a vector, we write the appropriate bits
798                  * into the MSIXBM register for that vector.
799                  */
800                 if (rx_queue > IGB_N0_QUEUE)
801                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
802                 if (tx_queue > IGB_N0_QUEUE)
803                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
804                 if (!adapter->msix_entries && msix_vector == 0)
805                         msixbm |= E1000_EIMS_OTHER;
806                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
807                 q_vector->eims_value = msixbm;
808                 break;
809         case e1000_82576:
810                 /* 82576 uses a table that essentially consists of 2 columns
811                  * with 8 rows.  The ordering is column-major so we use the
812                  * lower 3 bits as the row index, and the 4th bit as the
813                  * column offset.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         igb_write_ivar(hw, msix_vector,
817                                        rx_queue & 0x7,
818                                        (rx_queue & 0x8) << 1);
819                 if (tx_queue > IGB_N0_QUEUE)
820                         igb_write_ivar(hw, msix_vector,
821                                        tx_queue & 0x7,
822                                        ((tx_queue & 0x8) << 1) + 8);
823                 q_vector->eims_value = 1 << msix_vector;
824                 break;
825         case e1000_82580:
826         case e1000_i350:
827         case e1000_i354:
828         case e1000_i210:
829         case e1000_i211:
830                 /* On 82580 and newer adapters the scheme is similar to 82576
831                  * however instead of ordering column-major we have things
832                  * ordered row-major.  So we traverse the table by using
833                  * bit 0 as the column offset, and the remaining bits as the
834                  * row index.
835                  */
836                 if (rx_queue > IGB_N0_QUEUE)
837                         igb_write_ivar(hw, msix_vector,
838                                        rx_queue >> 1,
839                                        (rx_queue & 0x1) << 4);
840                 if (tx_queue > IGB_N0_QUEUE)
841                         igb_write_ivar(hw, msix_vector,
842                                        tx_queue >> 1,
843                                        ((tx_queue & 0x1) << 4) + 8);
844                 q_vector->eims_value = 1 << msix_vector;
845                 break;
846         default:
847                 BUG();
848                 break;
849         }
850
851         /* add q_vector eims value to global eims_enable_mask */
852         adapter->eims_enable_mask |= q_vector->eims_value;
853
854         /* configure q_vector to set itr on first interrupt */
855         q_vector->set_itr = 1;
856 }
857
858 /**
859  *  igb_configure_msix - Configure MSI-X hardware
860  *  @adapter: board private structure to initialize
861  *
862  *  igb_configure_msix sets up the hardware to properly
863  *  generate MSI-X interrupts.
864  **/
865 static void igb_configure_msix(struct igb_adapter *adapter)
866 {
867         u32 tmp;
868         int i, vector = 0;
869         struct e1000_hw *hw = &adapter->hw;
870
871         adapter->eims_enable_mask = 0;
872
873         /* set vector for other causes, i.e. link changes */
874         switch (hw->mac.type) {
875         case e1000_82575:
876                 tmp = rd32(E1000_CTRL_EXT);
877                 /* enable MSI-X PBA support*/
878                 tmp |= E1000_CTRL_EXT_PBA_CLR;
879
880                 /* Auto-Mask interrupts upon ICR read. */
881                 tmp |= E1000_CTRL_EXT_EIAME;
882                 tmp |= E1000_CTRL_EXT_IRCA;
883
884                 wr32(E1000_CTRL_EXT, tmp);
885
886                 /* enable msix_other interrupt */
887                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
888                 adapter->eims_other = E1000_EIMS_OTHER;
889
890                 break;
891
892         case e1000_82576:
893         case e1000_82580:
894         case e1000_i350:
895         case e1000_i354:
896         case e1000_i210:
897         case e1000_i211:
898                 /* Turn on MSI-X capability first, or our settings
899                  * won't stick.  And it will take days to debug.
900                  */
901                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
902                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
903                      E1000_GPIE_NSICR);
904
905                 /* enable msix_other interrupt */
906                 adapter->eims_other = 1 << vector;
907                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
908
909                 wr32(E1000_IVAR_MISC, tmp);
910                 break;
911         default:
912                 /* do nothing, since nothing else supports MSI-X */
913                 break;
914         } /* switch (hw->mac.type) */
915
916         adapter->eims_enable_mask |= adapter->eims_other;
917
918         for (i = 0; i < adapter->num_q_vectors; i++)
919                 igb_assign_vector(adapter->q_vector[i], vector++);
920
921         wrfl();
922 }
923
924 /**
925  *  igb_request_msix - Initialize MSI-X interrupts
926  *  @adapter: board private structure to initialize
927  *
928  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
929  *  kernel.
930  **/
931 static int igb_request_msix(struct igb_adapter *adapter)
932 {
933         struct net_device *netdev = adapter->netdev;
934         struct e1000_hw *hw = &adapter->hw;
935         int i, err = 0, vector = 0, free_vector = 0;
936
937         err = request_irq(adapter->msix_entries[vector].vector,
938                           igb_msix_other, 0, netdev->name, adapter);
939         if (err)
940                 goto err_out;
941
942         for (i = 0; i < adapter->num_q_vectors; i++) {
943                 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945                 vector++;
946
947                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
948
949                 if (q_vector->rx.ring && q_vector->tx.ring)
950                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951                                 q_vector->rx.ring->queue_index);
952                 else if (q_vector->tx.ring)
953                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954                                 q_vector->tx.ring->queue_index);
955                 else if (q_vector->rx.ring)
956                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957                                 q_vector->rx.ring->queue_index);
958                 else
959                         sprintf(q_vector->name, "%s-unused", netdev->name);
960
961                 err = request_irq(adapter->msix_entries[vector].vector,
962                                   igb_msix_ring, 0, q_vector->name,
963                                   q_vector);
964                 if (err)
965                         goto err_free;
966         }
967
968         igb_configure_msix(adapter);
969         return 0;
970
971 err_free:
972         /* free already assigned IRQs */
973         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975         vector--;
976         for (i = 0; i < vector; i++) {
977                 free_irq(adapter->msix_entries[free_vector++].vector,
978                          adapter->q_vector[i]);
979         }
980 err_out:
981         return err;
982 }
983
984 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
985 {
986         if (adapter->msix_entries) {
987                 pci_disable_msix(adapter->pdev);
988                 kfree(adapter->msix_entries);
989                 adapter->msix_entries = NULL;
990         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
991                 pci_disable_msi(adapter->pdev);
992         }
993 }
994
995 /**
996  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
997  *  @adapter: board private structure to initialize
998  *  @v_idx: Index of vector to be freed
999  *
1000  *  This function frees the memory allocated to the q_vector.  In addition if
1001  *  NAPI is enabled it will delete any references to the NAPI struct prior
1002  *  to freeing the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008         if (q_vector->tx.ring)
1009                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1010
1011         if (q_vector->rx.ring)
1012                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1013
1014         adapter->q_vector[v_idx] = NULL;
1015         netif_napi_del(&q_vector->napi);
1016
1017         /* ixgbe_get_stats64() might access the rings on this vector,
1018          * we must wait a grace period before freeing it.
1019          */
1020         kfree_rcu(q_vector, rcu);
1021 }
1022
1023 /**
1024  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1025  *  @adapter: board private structure to initialize
1026  *
1027  *  This function frees the memory allocated to the q_vectors.  In addition if
1028  *  NAPI is enabled it will delete any references to the NAPI struct prior
1029  *  to freeing the q_vector.
1030  **/
1031 static void igb_free_q_vectors(struct igb_adapter *adapter)
1032 {
1033         int v_idx = adapter->num_q_vectors;
1034
1035         adapter->num_tx_queues = 0;
1036         adapter->num_rx_queues = 0;
1037         adapter->num_q_vectors = 0;
1038
1039         while (v_idx--)
1040                 igb_free_q_vector(adapter, v_idx);
1041 }
1042
1043 /**
1044  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1045  *  @adapter: board private structure to initialize
1046  *
1047  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1048  *  MSI-X interrupts allocated.
1049  */
1050 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1051 {
1052         igb_free_q_vectors(adapter);
1053         igb_reset_interrupt_capability(adapter);
1054 }
1055
1056 /**
1057  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1058  *  @adapter: board private structure to initialize
1059  *  @msix: boolean value of MSIX capability
1060  *
1061  *  Attempt to configure interrupts using the best available
1062  *  capabilities of the hardware and kernel.
1063  **/
1064 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1065 {
1066         int err;
1067         int numvecs, i;
1068
1069         if (!msix)
1070                 goto msi_only;
1071
1072         /* Number of supported queues. */
1073         adapter->num_rx_queues = adapter->rss_queues;
1074         if (adapter->vfs_allocated_count)
1075                 adapter->num_tx_queues = 1;
1076         else
1077                 adapter->num_tx_queues = adapter->rss_queues;
1078
1079         /* start with one vector for every Rx queue */
1080         numvecs = adapter->num_rx_queues;
1081
1082         /* if Tx handler is separate add 1 for every Tx queue */
1083         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1084                 numvecs += adapter->num_tx_queues;
1085
1086         /* store the number of vectors reserved for queues */
1087         adapter->num_q_vectors = numvecs;
1088
1089         /* add 1 vector for link status interrupts */
1090         numvecs++;
1091         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1092                                         GFP_KERNEL);
1093
1094         if (!adapter->msix_entries)
1095                 goto msi_only;
1096
1097         for (i = 0; i < numvecs; i++)
1098                 adapter->msix_entries[i].entry = i;
1099
1100         err = pci_enable_msix(adapter->pdev,
1101                               adapter->msix_entries,
1102                               numvecs);
1103         if (err == 0)
1104                 return;
1105
1106         igb_reset_interrupt_capability(adapter);
1107
1108         /* If we can't do MSI-X, try MSI */
1109 msi_only:
1110 #ifdef CONFIG_PCI_IOV
1111         /* disable SR-IOV for non MSI-X configurations */
1112         if (adapter->vf_data) {
1113                 struct e1000_hw *hw = &adapter->hw;
1114                 /* disable iov and allow time for transactions to clear */
1115                 pci_disable_sriov(adapter->pdev);
1116                 msleep(500);
1117
1118                 kfree(adapter->vf_data);
1119                 adapter->vf_data = NULL;
1120                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1121                 wrfl();
1122                 msleep(100);
1123                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1124         }
1125 #endif
1126         adapter->vfs_allocated_count = 0;
1127         adapter->rss_queues = 1;
1128         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1129         adapter->num_rx_queues = 1;
1130         adapter->num_tx_queues = 1;
1131         adapter->num_q_vectors = 1;
1132         if (!pci_enable_msi(adapter->pdev))
1133                 adapter->flags |= IGB_FLAG_HAS_MSI;
1134 }
1135
1136 static void igb_add_ring(struct igb_ring *ring,
1137                          struct igb_ring_container *head)
1138 {
1139         head->ring = ring;
1140         head->count++;
1141 }
1142
1143 /**
1144  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1145  *  @adapter: board private structure to initialize
1146  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1147  *  @v_idx: index of vector in adapter struct
1148  *  @txr_count: total number of Tx rings to allocate
1149  *  @txr_idx: index of first Tx ring to allocate
1150  *  @rxr_count: total number of Rx rings to allocate
1151  *  @rxr_idx: index of first Rx ring to allocate
1152  *
1153  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1154  **/
1155 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1156                               int v_count, int v_idx,
1157                               int txr_count, int txr_idx,
1158                               int rxr_count, int rxr_idx)
1159 {
1160         struct igb_q_vector *q_vector;
1161         struct igb_ring *ring;
1162         int ring_count, size;
1163
1164         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1165         if (txr_count > 1 || rxr_count > 1)
1166                 return -ENOMEM;
1167
1168         ring_count = txr_count + rxr_count;
1169         size = sizeof(struct igb_q_vector) +
1170                (sizeof(struct igb_ring) * ring_count);
1171
1172         /* allocate q_vector and rings */
1173         q_vector = kzalloc(size, GFP_KERNEL);
1174         if (!q_vector)
1175                 return -ENOMEM;
1176
1177         /* initialize NAPI */
1178         netif_napi_add(adapter->netdev, &q_vector->napi,
1179                        igb_poll, 64);
1180
1181         /* tie q_vector and adapter together */
1182         adapter->q_vector[v_idx] = q_vector;
1183         q_vector->adapter = adapter;
1184
1185         /* initialize work limits */
1186         q_vector->tx.work_limit = adapter->tx_work_limit;
1187
1188         /* initialize ITR configuration */
1189         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1190         q_vector->itr_val = IGB_START_ITR;
1191
1192         /* initialize pointer to rings */
1193         ring = q_vector->ring;
1194
1195         /* intialize ITR */
1196         if (rxr_count) {
1197                 /* rx or rx/tx vector */
1198                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1199                         q_vector->itr_val = adapter->rx_itr_setting;
1200         } else {
1201                 /* tx only vector */
1202                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1203                         q_vector->itr_val = adapter->tx_itr_setting;
1204         }
1205
1206         if (txr_count) {
1207                 /* assign generic ring traits */
1208                 ring->dev = &adapter->pdev->dev;
1209                 ring->netdev = adapter->netdev;
1210
1211                 /* configure backlink on ring */
1212                 ring->q_vector = q_vector;
1213
1214                 /* update q_vector Tx values */
1215                 igb_add_ring(ring, &q_vector->tx);
1216
1217                 /* For 82575, context index must be unique per ring. */
1218                 if (adapter->hw.mac.type == e1000_82575)
1219                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1220
1221                 /* apply Tx specific ring traits */
1222                 ring->count = adapter->tx_ring_count;
1223                 ring->queue_index = txr_idx;
1224
1225                 /* assign ring to adapter */
1226                 adapter->tx_ring[txr_idx] = ring;
1227
1228                 /* push pointer to next ring */
1229                 ring++;
1230         }
1231
1232         if (rxr_count) {
1233                 /* assign generic ring traits */
1234                 ring->dev = &adapter->pdev->dev;
1235                 ring->netdev = adapter->netdev;
1236
1237                 /* configure backlink on ring */
1238                 ring->q_vector = q_vector;
1239
1240                 /* update q_vector Rx values */
1241                 igb_add_ring(ring, &q_vector->rx);
1242
1243                 /* set flag indicating ring supports SCTP checksum offload */
1244                 if (adapter->hw.mac.type >= e1000_82576)
1245                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1246
1247                 /*
1248                  * On i350, i354, i210, and i211, loopback VLAN packets
1249                  * have the tag byte-swapped.
1250                  */
1251                 if (adapter->hw.mac.type >= e1000_i350)
1252                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1253
1254                 /* apply Rx specific ring traits */
1255                 ring->count = adapter->rx_ring_count;
1256                 ring->queue_index = rxr_idx;
1257
1258                 /* assign ring to adapter */
1259                 adapter->rx_ring[rxr_idx] = ring;
1260         }
1261
1262         return 0;
1263 }
1264
1265
1266 /**
1267  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1268  *  @adapter: board private structure to initialize
1269  *
1270  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1271  *  return -ENOMEM.
1272  **/
1273 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1274 {
1275         int q_vectors = adapter->num_q_vectors;
1276         int rxr_remaining = adapter->num_rx_queues;
1277         int txr_remaining = adapter->num_tx_queues;
1278         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1279         int err;
1280
1281         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1282                 for (; rxr_remaining; v_idx++) {
1283                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1284                                                  0, 0, 1, rxr_idx);
1285
1286                         if (err)
1287                                 goto err_out;
1288
1289                         /* update counts and index */
1290                         rxr_remaining--;
1291                         rxr_idx++;
1292                 }
1293         }
1294
1295         for (; v_idx < q_vectors; v_idx++) {
1296                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1297                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1298                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1299                                          tqpv, txr_idx, rqpv, rxr_idx);
1300
1301                 if (err)
1302                         goto err_out;
1303
1304                 /* update counts and index */
1305                 rxr_remaining -= rqpv;
1306                 txr_remaining -= tqpv;
1307                 rxr_idx++;
1308                 txr_idx++;
1309         }
1310
1311         return 0;
1312
1313 err_out:
1314         adapter->num_tx_queues = 0;
1315         adapter->num_rx_queues = 0;
1316         adapter->num_q_vectors = 0;
1317
1318         while (v_idx--)
1319                 igb_free_q_vector(adapter, v_idx);
1320
1321         return -ENOMEM;
1322 }
1323
1324 /**
1325  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1326  *  @adapter: board private structure to initialize
1327  *  @msix: boolean value of MSIX capability
1328  *
1329  *  This function initializes the interrupts and allocates all of the queues.
1330  **/
1331 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1332 {
1333         struct pci_dev *pdev = adapter->pdev;
1334         int err;
1335
1336         igb_set_interrupt_capability(adapter, msix);
1337
1338         err = igb_alloc_q_vectors(adapter);
1339         if (err) {
1340                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1341                 goto err_alloc_q_vectors;
1342         }
1343
1344         igb_cache_ring_register(adapter);
1345
1346         return 0;
1347
1348 err_alloc_q_vectors:
1349         igb_reset_interrupt_capability(adapter);
1350         return err;
1351 }
1352
1353 /**
1354  *  igb_request_irq - initialize interrupts
1355  *  @adapter: board private structure to initialize
1356  *
1357  *  Attempts to configure interrupts using the best available
1358  *  capabilities of the hardware and kernel.
1359  **/
1360 static int igb_request_irq(struct igb_adapter *adapter)
1361 {
1362         struct net_device *netdev = adapter->netdev;
1363         struct pci_dev *pdev = adapter->pdev;
1364         int err = 0;
1365
1366         if (adapter->msix_entries) {
1367                 err = igb_request_msix(adapter);
1368                 if (!err)
1369                         goto request_done;
1370                 /* fall back to MSI */
1371                 igb_free_all_tx_resources(adapter);
1372                 igb_free_all_rx_resources(adapter);
1373
1374                 igb_clear_interrupt_scheme(adapter);
1375                 err = igb_init_interrupt_scheme(adapter, false);
1376                 if (err)
1377                         goto request_done;
1378
1379                 igb_setup_all_tx_resources(adapter);
1380                 igb_setup_all_rx_resources(adapter);
1381                 igb_configure(adapter);
1382         }
1383
1384         igb_assign_vector(adapter->q_vector[0], 0);
1385
1386         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1387                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1388                                   netdev->name, adapter);
1389                 if (!err)
1390                         goto request_done;
1391
1392                 /* fall back to legacy interrupts */
1393                 igb_reset_interrupt_capability(adapter);
1394                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1395         }
1396
1397         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1398                           netdev->name, adapter);
1399
1400         if (err)
1401                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1402                         err);
1403
1404 request_done:
1405         return err;
1406 }
1407
1408 static void igb_free_irq(struct igb_adapter *adapter)
1409 {
1410         if (adapter->msix_entries) {
1411                 int vector = 0, i;
1412
1413                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1414
1415                 for (i = 0; i < adapter->num_q_vectors; i++)
1416                         free_irq(adapter->msix_entries[vector++].vector,
1417                                  adapter->q_vector[i]);
1418         } else {
1419                 free_irq(adapter->pdev->irq, adapter);
1420         }
1421 }
1422
1423 /**
1424  *  igb_irq_disable - Mask off interrupt generation on the NIC
1425  *  @adapter: board private structure
1426  **/
1427 static void igb_irq_disable(struct igb_adapter *adapter)
1428 {
1429         struct e1000_hw *hw = &adapter->hw;
1430
1431         /* we need to be careful when disabling interrupts.  The VFs are also
1432          * mapped into these registers and so clearing the bits can cause
1433          * issues on the VF drivers so we only need to clear what we set
1434          */
1435         if (adapter->msix_entries) {
1436                 u32 regval = rd32(E1000_EIAM);
1437                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1438                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1439                 regval = rd32(E1000_EIAC);
1440                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1441         }
1442
1443         wr32(E1000_IAM, 0);
1444         wr32(E1000_IMC, ~0);
1445         wrfl();
1446         if (adapter->msix_entries) {
1447                 int i;
1448                 for (i = 0; i < adapter->num_q_vectors; i++)
1449                         synchronize_irq(adapter->msix_entries[i].vector);
1450         } else {
1451                 synchronize_irq(adapter->pdev->irq);
1452         }
1453 }
1454
1455 /**
1456  *  igb_irq_enable - Enable default interrupt generation settings
1457  *  @adapter: board private structure
1458  **/
1459 static void igb_irq_enable(struct igb_adapter *adapter)
1460 {
1461         struct e1000_hw *hw = &adapter->hw;
1462
1463         if (adapter->msix_entries) {
1464                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1465                 u32 regval = rd32(E1000_EIAC);
1466                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1467                 regval = rd32(E1000_EIAM);
1468                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1469                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1470                 if (adapter->vfs_allocated_count) {
1471                         wr32(E1000_MBVFIMR, 0xFF);
1472                         ims |= E1000_IMS_VMMB;
1473                 }
1474                 wr32(E1000_IMS, ims);
1475         } else {
1476                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1477                                 E1000_IMS_DRSTA);
1478                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1479                                 E1000_IMS_DRSTA);
1480         }
1481 }
1482
1483 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1484 {
1485         struct e1000_hw *hw = &adapter->hw;
1486         u16 vid = adapter->hw.mng_cookie.vlan_id;
1487         u16 old_vid = adapter->mng_vlan_id;
1488
1489         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1490                 /* add VID to filter table */
1491                 igb_vfta_set(hw, vid, true);
1492                 adapter->mng_vlan_id = vid;
1493         } else {
1494                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1495         }
1496
1497         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1498             (vid != old_vid) &&
1499             !test_bit(old_vid, adapter->active_vlans)) {
1500                 /* remove VID from filter table */
1501                 igb_vfta_set(hw, old_vid, false);
1502         }
1503 }
1504
1505 /**
1506  *  igb_release_hw_control - release control of the h/w to f/w
1507  *  @adapter: address of board private structure
1508  *
1509  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1510  *  For ASF and Pass Through versions of f/w this means that the
1511  *  driver is no longer loaded.
1512  **/
1513 static void igb_release_hw_control(struct igb_adapter *adapter)
1514 {
1515         struct e1000_hw *hw = &adapter->hw;
1516         u32 ctrl_ext;
1517
1518         /* Let firmware take over control of h/w */
1519         ctrl_ext = rd32(E1000_CTRL_EXT);
1520         wr32(E1000_CTRL_EXT,
1521                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1522 }
1523
1524 /**
1525  *  igb_get_hw_control - get control of the h/w from f/w
1526  *  @adapter: address of board private structure
1527  *
1528  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1529  *  For ASF and Pass Through versions of f/w this means that
1530  *  the driver is loaded.
1531  **/
1532 static void igb_get_hw_control(struct igb_adapter *adapter)
1533 {
1534         struct e1000_hw *hw = &adapter->hw;
1535         u32 ctrl_ext;
1536
1537         /* Let firmware know the driver has taken over */
1538         ctrl_ext = rd32(E1000_CTRL_EXT);
1539         wr32(E1000_CTRL_EXT,
1540                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1541 }
1542
1543 /**
1544  *  igb_configure - configure the hardware for RX and TX
1545  *  @adapter: private board structure
1546  **/
1547 static void igb_configure(struct igb_adapter *adapter)
1548 {
1549         struct net_device *netdev = adapter->netdev;
1550         int i;
1551
1552         igb_get_hw_control(adapter);
1553         igb_set_rx_mode(netdev);
1554
1555         igb_restore_vlan(adapter);
1556
1557         igb_setup_tctl(adapter);
1558         igb_setup_mrqc(adapter);
1559         igb_setup_rctl(adapter);
1560
1561         igb_configure_tx(adapter);
1562         igb_configure_rx(adapter);
1563
1564         igb_rx_fifo_flush_82575(&adapter->hw);
1565
1566         /* call igb_desc_unused which always leaves
1567          * at least 1 descriptor unused to make sure
1568          * next_to_use != next_to_clean
1569          */
1570         for (i = 0; i < adapter->num_rx_queues; i++) {
1571                 struct igb_ring *ring = adapter->rx_ring[i];
1572                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1573         }
1574 }
1575
1576 /**
1577  *  igb_power_up_link - Power up the phy/serdes link
1578  *  @adapter: address of board private structure
1579  **/
1580 void igb_power_up_link(struct igb_adapter *adapter)
1581 {
1582         igb_reset_phy(&adapter->hw);
1583
1584         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1585                 igb_power_up_phy_copper(&adapter->hw);
1586         else
1587                 igb_power_up_serdes_link_82575(&adapter->hw);
1588 }
1589
1590 /**
1591  *  igb_power_down_link - Power down the phy/serdes link
1592  *  @adapter: address of board private structure
1593  */
1594 static void igb_power_down_link(struct igb_adapter *adapter)
1595 {
1596         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1597                 igb_power_down_phy_copper_82575(&adapter->hw);
1598         else
1599                 igb_shutdown_serdes_link_82575(&adapter->hw);
1600 }
1601
1602 /**
1603  *  igb_up - Open the interface and prepare it to handle traffic
1604  *  @adapter: board private structure
1605  **/
1606 int igb_up(struct igb_adapter *adapter)
1607 {
1608         struct e1000_hw *hw = &adapter->hw;
1609         int i;
1610
1611         /* hardware has been reset, we need to reload some things */
1612         igb_configure(adapter);
1613
1614         clear_bit(__IGB_DOWN, &adapter->state);
1615
1616         for (i = 0; i < adapter->num_q_vectors; i++)
1617                 napi_enable(&(adapter->q_vector[i]->napi));
1618
1619         if (adapter->msix_entries)
1620                 igb_configure_msix(adapter);
1621         else
1622                 igb_assign_vector(adapter->q_vector[0], 0);
1623
1624         /* Clear any pending interrupts. */
1625         rd32(E1000_ICR);
1626         igb_irq_enable(adapter);
1627
1628         /* notify VFs that reset has been completed */
1629         if (adapter->vfs_allocated_count) {
1630                 u32 reg_data = rd32(E1000_CTRL_EXT);
1631                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1632                 wr32(E1000_CTRL_EXT, reg_data);
1633         }
1634
1635         netif_tx_start_all_queues(adapter->netdev);
1636
1637         /* start the watchdog. */
1638         hw->mac.get_link_status = 1;
1639         schedule_work(&adapter->watchdog_task);
1640
1641         return 0;
1642 }
1643
1644 void igb_down(struct igb_adapter *adapter)
1645 {
1646         struct net_device *netdev = adapter->netdev;
1647         struct e1000_hw *hw = &adapter->hw;
1648         u32 tctl, rctl;
1649         int i;
1650
1651         /* signal that we're down so the interrupt handler does not
1652          * reschedule our watchdog timer
1653          */
1654         set_bit(__IGB_DOWN, &adapter->state);
1655
1656         /* disable receives in the hardware */
1657         rctl = rd32(E1000_RCTL);
1658         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1659         /* flush and sleep below */
1660
1661         netif_tx_stop_all_queues(netdev);
1662
1663         /* disable transmits in the hardware */
1664         tctl = rd32(E1000_TCTL);
1665         tctl &= ~E1000_TCTL_EN;
1666         wr32(E1000_TCTL, tctl);
1667         /* flush both disables and wait for them to finish */
1668         wrfl();
1669         msleep(10);
1670
1671         for (i = 0; i < adapter->num_q_vectors; i++)
1672                 napi_disable(&(adapter->q_vector[i]->napi));
1673
1674         igb_irq_disable(adapter);
1675
1676         del_timer_sync(&adapter->watchdog_timer);
1677         del_timer_sync(&adapter->phy_info_timer);
1678
1679         netif_carrier_off(netdev);
1680
1681         /* record the stats before reset*/
1682         spin_lock(&adapter->stats64_lock);
1683         igb_update_stats(adapter, &adapter->stats64);
1684         spin_unlock(&adapter->stats64_lock);
1685
1686         adapter->link_speed = 0;
1687         adapter->link_duplex = 0;
1688
1689         if (!pci_channel_offline(adapter->pdev))
1690                 igb_reset(adapter);
1691         igb_clean_all_tx_rings(adapter);
1692         igb_clean_all_rx_rings(adapter);
1693 #ifdef CONFIG_IGB_DCA
1694
1695         /* since we reset the hardware DCA settings were cleared */
1696         igb_setup_dca(adapter);
1697 #endif
1698 }
1699
1700 void igb_reinit_locked(struct igb_adapter *adapter)
1701 {
1702         WARN_ON(in_interrupt());
1703         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1704                 msleep(1);
1705         igb_down(adapter);
1706         igb_up(adapter);
1707         clear_bit(__IGB_RESETTING, &adapter->state);
1708 }
1709
1710 void igb_reset(struct igb_adapter *adapter)
1711 {
1712         struct pci_dev *pdev = adapter->pdev;
1713         struct e1000_hw *hw = &adapter->hw;
1714         struct e1000_mac_info *mac = &hw->mac;
1715         struct e1000_fc_info *fc = &hw->fc;
1716         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1717
1718         /* Repartition Pba for greater than 9k mtu
1719          * To take effect CTRL.RST is required.
1720          */
1721         switch (mac->type) {
1722         case e1000_i350:
1723         case e1000_i354:
1724         case e1000_82580:
1725                 pba = rd32(E1000_RXPBS);
1726                 pba = igb_rxpbs_adjust_82580(pba);
1727                 break;
1728         case e1000_82576:
1729                 pba = rd32(E1000_RXPBS);
1730                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1731                 break;
1732         case e1000_82575:
1733         case e1000_i210:
1734         case e1000_i211:
1735         default:
1736                 pba = E1000_PBA_34K;
1737                 break;
1738         }
1739
1740         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1741             (mac->type < e1000_82576)) {
1742                 /* adjust PBA for jumbo frames */
1743                 wr32(E1000_PBA, pba);
1744
1745                 /* To maintain wire speed transmits, the Tx FIFO should be
1746                  * large enough to accommodate two full transmit packets,
1747                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1748                  * the Rx FIFO should be large enough to accommodate at least
1749                  * one full receive packet and is similarly rounded up and
1750                  * expressed in KB.
1751                  */
1752                 pba = rd32(E1000_PBA);
1753                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1754                 tx_space = pba >> 16;
1755                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1756                 pba &= 0xffff;
1757                 /* the Tx fifo also stores 16 bytes of information about the Tx
1758                  * but don't include ethernet FCS because hardware appends it
1759                  */
1760                 min_tx_space = (adapter->max_frame_size +
1761                                 sizeof(union e1000_adv_tx_desc) -
1762                                 ETH_FCS_LEN) * 2;
1763                 min_tx_space = ALIGN(min_tx_space, 1024);
1764                 min_tx_space >>= 10;
1765                 /* software strips receive CRC, so leave room for it */
1766                 min_rx_space = adapter->max_frame_size;
1767                 min_rx_space = ALIGN(min_rx_space, 1024);
1768                 min_rx_space >>= 10;
1769
1770                 /* If current Tx allocation is less than the min Tx FIFO size,
1771                  * and the min Tx FIFO size is less than the current Rx FIFO
1772                  * allocation, take space away from current Rx allocation
1773                  */
1774                 if (tx_space < min_tx_space &&
1775                     ((min_tx_space - tx_space) < pba)) {
1776                         pba = pba - (min_tx_space - tx_space);
1777
1778                         /* if short on Rx space, Rx wins and must trump Tx
1779                          * adjustment
1780                          */
1781                         if (pba < min_rx_space)
1782                                 pba = min_rx_space;
1783                 }
1784                 wr32(E1000_PBA, pba);
1785         }
1786
1787         /* flow control settings */
1788         /* The high water mark must be low enough to fit one full frame
1789          * (or the size used for early receive) above it in the Rx FIFO.
1790          * Set it to the lower of:
1791          * - 90% of the Rx FIFO size, or
1792          * - the full Rx FIFO size minus one full frame
1793          */
1794         hwm = min(((pba << 10) * 9 / 10),
1795                         ((pba << 10) - 2 * adapter->max_frame_size));
1796
1797         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1798         fc->low_water = fc->high_water - 16;
1799         fc->pause_time = 0xFFFF;
1800         fc->send_xon = 1;
1801         fc->current_mode = fc->requested_mode;
1802
1803         /* disable receive for all VFs and wait one second */
1804         if (adapter->vfs_allocated_count) {
1805                 int i;
1806                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1807                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1808
1809                 /* ping all the active vfs to let them know we are going down */
1810                 igb_ping_all_vfs(adapter);
1811
1812                 /* disable transmits and receives */
1813                 wr32(E1000_VFRE, 0);
1814                 wr32(E1000_VFTE, 0);
1815         }
1816
1817         /* Allow time for pending master requests to run */
1818         hw->mac.ops.reset_hw(hw);
1819         wr32(E1000_WUC, 0);
1820
1821         if (hw->mac.ops.init_hw(hw))
1822                 dev_err(&pdev->dev, "Hardware Error\n");
1823
1824         /* Flow control settings reset on hardware reset, so guarantee flow
1825          * control is off when forcing speed.
1826          */
1827         if (!hw->mac.autoneg)
1828                 igb_force_mac_fc(hw);
1829
1830         igb_init_dmac(adapter, pba);
1831 #ifdef CONFIG_IGB_HWMON
1832         /* Re-initialize the thermal sensor on i350 devices. */
1833         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1834                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1835                         /* If present, re-initialize the external thermal sensor
1836                          * interface.
1837                          */
1838                         if (adapter->ets)
1839                                 mac->ops.init_thermal_sensor_thresh(hw);
1840                 }
1841         }
1842 #endif
1843         if (!netif_running(adapter->netdev))
1844                 igb_power_down_link(adapter);
1845
1846         igb_update_mng_vlan(adapter);
1847
1848         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1849         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1850
1851         /* Re-enable PTP, where applicable. */
1852         igb_ptp_reset(adapter);
1853
1854         igb_get_phy_info(hw);
1855 }
1856
1857 static netdev_features_t igb_fix_features(struct net_device *netdev,
1858         netdev_features_t features)
1859 {
1860         /* Since there is no support for separate Rx/Tx vlan accel
1861          * enable/disable make sure Tx flag is always in same state as Rx.
1862          */
1863         if (features & NETIF_F_HW_VLAN_RX)
1864                 features |= NETIF_F_HW_VLAN_TX;
1865         else
1866                 features &= ~NETIF_F_HW_VLAN_TX;
1867
1868         return features;
1869 }
1870
1871 static int igb_set_features(struct net_device *netdev,
1872         netdev_features_t features)
1873 {
1874         netdev_features_t changed = netdev->features ^ features;
1875         struct igb_adapter *adapter = netdev_priv(netdev);
1876
1877         if (changed & NETIF_F_HW_VLAN_RX)
1878                 igb_vlan_mode(netdev, features);
1879
1880         if (!(changed & NETIF_F_RXALL))
1881                 return 0;
1882
1883         netdev->features = features;
1884
1885         if (netif_running(netdev))
1886                 igb_reinit_locked(adapter);
1887         else
1888                 igb_reset(adapter);
1889
1890         return 0;
1891 }
1892
1893 static const struct net_device_ops igb_netdev_ops = {
1894         .ndo_open               = igb_open,
1895         .ndo_stop               = igb_close,
1896         .ndo_start_xmit         = igb_xmit_frame,
1897         .ndo_get_stats64        = igb_get_stats64,
1898         .ndo_set_rx_mode        = igb_set_rx_mode,
1899         .ndo_set_mac_address    = igb_set_mac,
1900         .ndo_change_mtu         = igb_change_mtu,
1901         .ndo_do_ioctl           = igb_ioctl,
1902         .ndo_tx_timeout         = igb_tx_timeout,
1903         .ndo_validate_addr      = eth_validate_addr,
1904         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1905         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1906         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1907         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1908         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1909         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
1910         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1911 #ifdef CONFIG_NET_POLL_CONTROLLER
1912         .ndo_poll_controller    = igb_netpoll,
1913 #endif
1914         .ndo_fix_features       = igb_fix_features,
1915         .ndo_set_features       = igb_set_features,
1916 };
1917
1918 /**
1919  * igb_set_fw_version - Configure version string for ethtool
1920  * @adapter: adapter struct
1921  **/
1922 void igb_set_fw_version(struct igb_adapter *adapter)
1923 {
1924         struct e1000_hw *hw = &adapter->hw;
1925         struct e1000_fw_version fw;
1926
1927         igb_get_fw_version(hw, &fw);
1928
1929         switch (hw->mac.type) {
1930         case e1000_i211:
1931                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1932                          "%2d.%2d-%d",
1933                          fw.invm_major, fw.invm_minor, fw.invm_img_type);
1934                 break;
1935
1936         default:
1937                 /* if option is rom valid, display its version too */
1938                 if (fw.or_valid) {
1939                         snprintf(adapter->fw_version,
1940                                  sizeof(adapter->fw_version),
1941                                  "%d.%d, 0x%08x, %d.%d.%d",
1942                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1943                                  fw.or_major, fw.or_build, fw.or_patch);
1944                 /* no option rom */
1945                 } else {
1946                         snprintf(adapter->fw_version,
1947                                  sizeof(adapter->fw_version),
1948                                  "%d.%d, 0x%08x",
1949                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
1950                 }
1951                 break;
1952         }
1953         return;
1954 }
1955
1956 /**
1957  *  igb_init_i2c - Init I2C interface
1958  *  @adapter: pointer to adapter structure
1959  **/
1960 static s32 igb_init_i2c(struct igb_adapter *adapter)
1961 {
1962         s32 status = E1000_SUCCESS;
1963
1964         /* I2C interface supported on i350 devices */
1965         if (adapter->hw.mac.type != e1000_i350)
1966                 return E1000_SUCCESS;
1967
1968         /* Initialize the i2c bus which is controlled by the registers.
1969          * This bus will use the i2c_algo_bit structue that implements
1970          * the protocol through toggling of the 4 bits in the register.
1971          */
1972         adapter->i2c_adap.owner = THIS_MODULE;
1973         adapter->i2c_algo = igb_i2c_algo;
1974         adapter->i2c_algo.data = adapter;
1975         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1976         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1977         strlcpy(adapter->i2c_adap.name, "igb BB",
1978                 sizeof(adapter->i2c_adap.name));
1979         status = i2c_bit_add_bus(&adapter->i2c_adap);
1980         return status;
1981 }
1982
1983 /**
1984  *  igb_probe - Device Initialization Routine
1985  *  @pdev: PCI device information struct
1986  *  @ent: entry in igb_pci_tbl
1987  *
1988  *  Returns 0 on success, negative on failure
1989  *
1990  *  igb_probe initializes an adapter identified by a pci_dev structure.
1991  *  The OS initialization, configuring of the adapter private structure,
1992  *  and a hardware reset occur.
1993  **/
1994 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1995 {
1996         struct net_device *netdev;
1997         struct igb_adapter *adapter;
1998         struct e1000_hw *hw;
1999         u16 eeprom_data = 0;
2000         s32 ret_val;
2001         static int global_quad_port_a; /* global quad port a indication */
2002         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2003         unsigned long mmio_start, mmio_len;
2004         int err, pci_using_dac;
2005         u8 part_str[E1000_PBANUM_LENGTH];
2006
2007         /* Catch broken hardware that put the wrong VF device ID in
2008          * the PCIe SR-IOV capability.
2009          */
2010         if (pdev->is_virtfn) {
2011                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2012                         pci_name(pdev), pdev->vendor, pdev->device);
2013                 return -EINVAL;
2014         }
2015
2016         err = pci_enable_device_mem(pdev);
2017         if (err)
2018                 return err;
2019
2020         pci_using_dac = 0;
2021         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2022         if (!err) {
2023                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2024                 if (!err)
2025                         pci_using_dac = 1;
2026         } else {
2027                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2028                 if (err) {
2029                         err = dma_set_coherent_mask(&pdev->dev,
2030                                                     DMA_BIT_MASK(32));
2031                         if (err) {
2032                                 dev_err(&pdev->dev,
2033                                         "No usable DMA configuration, aborting\n");
2034                                 goto err_dma;
2035                         }
2036                 }
2037         }
2038
2039         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2040                                            IORESOURCE_MEM),
2041                                            igb_driver_name);
2042         if (err)
2043                 goto err_pci_reg;
2044
2045         pci_enable_pcie_error_reporting(pdev);
2046
2047         pci_set_master(pdev);
2048         pci_save_state(pdev);
2049
2050         err = -ENOMEM;
2051         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2052                                    IGB_MAX_TX_QUEUES);
2053         if (!netdev)
2054                 goto err_alloc_etherdev;
2055
2056         SET_NETDEV_DEV(netdev, &pdev->dev);
2057
2058         pci_set_drvdata(pdev, netdev);
2059         adapter = netdev_priv(netdev);
2060         adapter->netdev = netdev;
2061         adapter->pdev = pdev;
2062         hw = &adapter->hw;
2063         hw->back = adapter;
2064         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2065
2066         mmio_start = pci_resource_start(pdev, 0);
2067         mmio_len = pci_resource_len(pdev, 0);
2068
2069         err = -EIO;
2070         hw->hw_addr = ioremap(mmio_start, mmio_len);
2071         if (!hw->hw_addr)
2072                 goto err_ioremap;
2073
2074         netdev->netdev_ops = &igb_netdev_ops;
2075         igb_set_ethtool_ops(netdev);
2076         netdev->watchdog_timeo = 5 * HZ;
2077
2078         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2079
2080         netdev->mem_start = mmio_start;
2081         netdev->mem_end = mmio_start + mmio_len;
2082
2083         /* PCI config space info */
2084         hw->vendor_id = pdev->vendor;
2085         hw->device_id = pdev->device;
2086         hw->revision_id = pdev->revision;
2087         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2088         hw->subsystem_device_id = pdev->subsystem_device;
2089
2090         /* Copy the default MAC, PHY and NVM function pointers */
2091         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2092         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2093         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2094         /* Initialize skew-specific constants */
2095         err = ei->get_invariants(hw);
2096         if (err)
2097                 goto err_sw_init;
2098
2099         /* setup the private structure */
2100         err = igb_sw_init(adapter);
2101         if (err)
2102                 goto err_sw_init;
2103
2104         igb_get_bus_info_pcie(hw);
2105
2106         hw->phy.autoneg_wait_to_complete = false;
2107
2108         /* Copper options */
2109         if (hw->phy.media_type == e1000_media_type_copper) {
2110                 hw->phy.mdix = AUTO_ALL_MODES;
2111                 hw->phy.disable_polarity_correction = false;
2112                 hw->phy.ms_type = e1000_ms_hw_default;
2113         }
2114
2115         if (igb_check_reset_block(hw))
2116                 dev_info(&pdev->dev,
2117                         "PHY reset is blocked due to SOL/IDER session.\n");
2118
2119         /* features is initialized to 0 in allocation, it might have bits
2120          * set by igb_sw_init so we should use an or instead of an
2121          * assignment.
2122          */
2123         netdev->features |= NETIF_F_SG |
2124                             NETIF_F_IP_CSUM |
2125                             NETIF_F_IPV6_CSUM |
2126                             NETIF_F_TSO |
2127                             NETIF_F_TSO6 |
2128                             NETIF_F_RXHASH |
2129                             NETIF_F_RXCSUM |
2130                             NETIF_F_HW_VLAN_RX |
2131                             NETIF_F_HW_VLAN_TX;
2132
2133         /* copy netdev features into list of user selectable features */
2134         netdev->hw_features |= netdev->features;
2135         netdev->hw_features |= NETIF_F_RXALL;
2136
2137         /* set this bit last since it cannot be part of hw_features */
2138         netdev->features |= NETIF_F_HW_VLAN_FILTER;
2139
2140         netdev->vlan_features |= NETIF_F_TSO |
2141                                  NETIF_F_TSO6 |
2142                                  NETIF_F_IP_CSUM |
2143                                  NETIF_F_IPV6_CSUM |
2144                                  NETIF_F_SG;
2145
2146         netdev->priv_flags |= IFF_SUPP_NOFCS;
2147
2148         if (pci_using_dac) {
2149                 netdev->features |= NETIF_F_HIGHDMA;
2150                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2151         }
2152
2153         if (hw->mac.type >= e1000_82576) {
2154                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2155                 netdev->features |= NETIF_F_SCTP_CSUM;
2156         }
2157
2158         netdev->priv_flags |= IFF_UNICAST_FLT;
2159
2160         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2161
2162         /* before reading the NVM, reset the controller to put the device in a
2163          * known good starting state
2164          */
2165         hw->mac.ops.reset_hw(hw);
2166
2167         /* make sure the NVM is good , i211 parts have special NVM that
2168          * doesn't contain a checksum
2169          */
2170         if (hw->mac.type != e1000_i211) {
2171                 if (hw->nvm.ops.validate(hw) < 0) {
2172                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2173                         err = -EIO;
2174                         goto err_eeprom;
2175                 }
2176         }
2177
2178         /* copy the MAC address out of the NVM */
2179         if (hw->mac.ops.read_mac_addr(hw))
2180                 dev_err(&pdev->dev, "NVM Read Error\n");
2181
2182         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2183
2184         if (!is_valid_ether_addr(netdev->dev_addr)) {
2185                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2186                 err = -EIO;
2187                 goto err_eeprom;
2188         }
2189
2190         /* get firmware version for ethtool -i */
2191         igb_set_fw_version(adapter);
2192
2193         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2194                     (unsigned long) adapter);
2195         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2196                     (unsigned long) adapter);
2197
2198         INIT_WORK(&adapter->reset_task, igb_reset_task);
2199         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2200
2201         /* Initialize link properties that are user-changeable */
2202         adapter->fc_autoneg = true;
2203         hw->mac.autoneg = true;
2204         hw->phy.autoneg_advertised = 0x2f;
2205
2206         hw->fc.requested_mode = e1000_fc_default;
2207         hw->fc.current_mode = e1000_fc_default;
2208
2209         igb_validate_mdi_setting(hw);
2210
2211         /* By default, support wake on port A */
2212         if (hw->bus.func == 0)
2213                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2214
2215         /* Check the NVM for wake support on non-port A ports */
2216         if (hw->mac.type >= e1000_82580)
2217                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2218                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2219                                  &eeprom_data);
2220         else if (hw->bus.func == 1)
2221                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2222
2223         if (eeprom_data & IGB_EEPROM_APME)
2224                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2225
2226         /* now that we have the eeprom settings, apply the special cases where
2227          * the eeprom may be wrong or the board simply won't support wake on
2228          * lan on a particular port
2229          */
2230         switch (pdev->device) {
2231         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2232                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2233                 break;
2234         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2235         case E1000_DEV_ID_82576_FIBER:
2236         case E1000_DEV_ID_82576_SERDES:
2237                 /* Wake events only supported on port A for dual fiber
2238                  * regardless of eeprom setting
2239                  */
2240                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2241                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2242                 break;
2243         case E1000_DEV_ID_82576_QUAD_COPPER:
2244         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2245                 /* if quad port adapter, disable WoL on all but port A */
2246                 if (global_quad_port_a != 0)
2247                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2248                 else
2249                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2250                 /* Reset for multiple quad port adapters */
2251                 if (++global_quad_port_a == 4)
2252                         global_quad_port_a = 0;
2253                 break;
2254         default:
2255                 /* If the device can't wake, don't set software support */
2256                 if (!device_can_wakeup(&adapter->pdev->dev))
2257                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2258         }
2259
2260         /* initialize the wol settings based on the eeprom settings */
2261         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2262                 adapter->wol |= E1000_WUFC_MAG;
2263
2264         /* Some vendors want WoL disabled by default, but still supported */
2265         if ((hw->mac.type == e1000_i350) &&
2266             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2267                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2268                 adapter->wol = 0;
2269         }
2270
2271         device_set_wakeup_enable(&adapter->pdev->dev,
2272                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2273
2274         /* reset the hardware with the new settings */
2275         igb_reset(adapter);
2276
2277         /* Init the I2C interface */
2278         err = igb_init_i2c(adapter);
2279         if (err) {
2280                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2281                 goto err_eeprom;
2282         }
2283
2284         /* let the f/w know that the h/w is now under the control of the
2285          * driver. */
2286         igb_get_hw_control(adapter);
2287
2288         strcpy(netdev->name, "eth%d");
2289         err = register_netdev(netdev);
2290         if (err)
2291                 goto err_register;
2292
2293         /* carrier off reporting is important to ethtool even BEFORE open */
2294         netif_carrier_off(netdev);
2295
2296 #ifdef CONFIG_IGB_DCA
2297         if (dca_add_requester(&pdev->dev) == 0) {
2298                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2299                 dev_info(&pdev->dev, "DCA enabled\n");
2300                 igb_setup_dca(adapter);
2301         }
2302
2303 #endif
2304 #ifdef CONFIG_IGB_HWMON
2305         /* Initialize the thermal sensor on i350 devices. */
2306         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2307                 u16 ets_word;
2308
2309                 /* Read the NVM to determine if this i350 device supports an
2310                  * external thermal sensor.
2311                  */
2312                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2313                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2314                         adapter->ets = true;
2315                 else
2316                         adapter->ets = false;
2317                 if (igb_sysfs_init(adapter))
2318                         dev_err(&pdev->dev,
2319                                 "failed to allocate sysfs resources\n");
2320         } else {
2321                 adapter->ets = false;
2322         }
2323 #endif
2324         /* do hw tstamp init after resetting */
2325         igb_ptp_init(adapter);
2326
2327         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2328         /* print bus type/speed/width info, not applicable to i354 */
2329         if (hw->mac.type != e1000_i354) {
2330                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2331                          netdev->name,
2332                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2333                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2334                            "unknown"),
2335                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2336                           "Width x4" :
2337                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2338                           "Width x2" :
2339                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2340                           "Width x1" : "unknown"), netdev->dev_addr);
2341         }
2342
2343         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2344         if (ret_val)
2345                 strcpy(part_str, "Unknown");
2346         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2347         dev_info(&pdev->dev,
2348                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2349                 adapter->msix_entries ? "MSI-X" :
2350                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2351                 adapter->num_rx_queues, adapter->num_tx_queues);
2352         switch (hw->mac.type) {
2353         case e1000_i350:
2354         case e1000_i210:
2355         case e1000_i211:
2356                 igb_set_eee_i350(hw);
2357                 break;
2358         case e1000_i354:
2359                 if (hw->phy.media_type == e1000_media_type_copper) {
2360                         if ((rd32(E1000_CTRL_EXT) &
2361                             E1000_CTRL_EXT_LINK_MODE_SGMII))
2362                                 igb_set_eee_i354(hw);
2363                 }
2364                 break;
2365         default:
2366                 break;
2367         }
2368
2369         pm_runtime_put_noidle(&pdev->dev);
2370         return 0;
2371
2372 err_register:
2373         igb_release_hw_control(adapter);
2374         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2375 err_eeprom:
2376         if (!igb_check_reset_block(hw))
2377                 igb_reset_phy(hw);
2378
2379         if (hw->flash_address)
2380                 iounmap(hw->flash_address);
2381 err_sw_init:
2382         igb_clear_interrupt_scheme(adapter);
2383         iounmap(hw->hw_addr);
2384 err_ioremap:
2385         free_netdev(netdev);
2386 err_alloc_etherdev:
2387         pci_release_selected_regions(pdev,
2388                                      pci_select_bars(pdev, IORESOURCE_MEM));
2389 err_pci_reg:
2390 err_dma:
2391         pci_disable_device(pdev);
2392         return err;
2393 }
2394
2395 #ifdef CONFIG_PCI_IOV
2396 static int  igb_disable_sriov(struct pci_dev *pdev)
2397 {
2398         struct net_device *netdev = pci_get_drvdata(pdev);
2399         struct igb_adapter *adapter = netdev_priv(netdev);
2400         struct e1000_hw *hw = &adapter->hw;
2401
2402         /* reclaim resources allocated to VFs */
2403         if (adapter->vf_data) {
2404                 /* disable iov and allow time for transactions to clear */
2405                 if (igb_vfs_are_assigned(adapter)) {
2406                         dev_warn(&pdev->dev,
2407                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2408                         return -EPERM;
2409                 } else {
2410                         pci_disable_sriov(pdev);
2411                         msleep(500);
2412                 }
2413
2414                 kfree(adapter->vf_data);
2415                 adapter->vf_data = NULL;
2416                 adapter->vfs_allocated_count = 0;
2417                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2418                 wrfl();
2419                 msleep(100);
2420                 dev_info(&pdev->dev, "IOV Disabled\n");
2421
2422                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2423                 adapter->flags |= IGB_FLAG_DMAC;
2424         }
2425
2426         return 0;
2427 }
2428
2429 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2430 {
2431         struct net_device *netdev = pci_get_drvdata(pdev);
2432         struct igb_adapter *adapter = netdev_priv(netdev);
2433         int old_vfs = pci_num_vf(pdev);
2434         int err = 0;
2435         int i;
2436
2437         if (!num_vfs)
2438                 goto out;
2439         else if (old_vfs && old_vfs == num_vfs)
2440                 goto out;
2441         else if (old_vfs && old_vfs != num_vfs)
2442                 err = igb_disable_sriov(pdev);
2443
2444         if (err)
2445                 goto out;
2446
2447         if (num_vfs > 7) {
2448                 err = -EPERM;
2449                 goto out;
2450         }
2451
2452         adapter->vfs_allocated_count = num_vfs;
2453
2454         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2455                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2456
2457         /* if allocation failed then we do not support SR-IOV */
2458         if (!adapter->vf_data) {
2459                 adapter->vfs_allocated_count = 0;
2460                 dev_err(&pdev->dev,
2461                         "Unable to allocate memory for VF Data Storage\n");
2462                 err = -ENOMEM;
2463                 goto out;
2464         }
2465
2466         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2467         if (err)
2468                 goto err_out;
2469
2470         dev_info(&pdev->dev, "%d VFs allocated\n",
2471                  adapter->vfs_allocated_count);
2472         for (i = 0; i < adapter->vfs_allocated_count; i++)
2473                 igb_vf_configure(adapter, i);
2474
2475         /* DMA Coalescing is not supported in IOV mode. */
2476         adapter->flags &= ~IGB_FLAG_DMAC;
2477         goto out;
2478
2479 err_out:
2480         kfree(adapter->vf_data);
2481         adapter->vf_data = NULL;
2482         adapter->vfs_allocated_count = 0;
2483 out:
2484         return err;
2485 }
2486
2487 #endif
2488 /**
2489  *  igb_remove_i2c - Cleanup  I2C interface
2490  *  @adapter: pointer to adapter structure
2491  **/
2492 static void igb_remove_i2c(struct igb_adapter *adapter)
2493 {
2494         /* free the adapter bus structure */
2495         i2c_del_adapter(&adapter->i2c_adap);
2496 }
2497
2498 /**
2499  *  igb_remove - Device Removal Routine
2500  *  @pdev: PCI device information struct
2501  *
2502  *  igb_remove is called by the PCI subsystem to alert the driver
2503  *  that it should release a PCI device.  The could be caused by a
2504  *  Hot-Plug event, or because the driver is going to be removed from
2505  *  memory.
2506  **/
2507 static void igb_remove(struct pci_dev *pdev)
2508 {
2509         struct net_device *netdev = pci_get_drvdata(pdev);
2510         struct igb_adapter *adapter = netdev_priv(netdev);
2511         struct e1000_hw *hw = &adapter->hw;
2512
2513         pm_runtime_get_noresume(&pdev->dev);
2514 #ifdef CONFIG_IGB_HWMON
2515         igb_sysfs_exit(adapter);
2516 #endif
2517         igb_remove_i2c(adapter);
2518         igb_ptp_stop(adapter);
2519         /* The watchdog timer may be rescheduled, so explicitly
2520          * disable watchdog from being rescheduled.
2521          */
2522         set_bit(__IGB_DOWN, &adapter->state);
2523         del_timer_sync(&adapter->watchdog_timer);
2524         del_timer_sync(&adapter->phy_info_timer);
2525
2526         cancel_work_sync(&adapter->reset_task);
2527         cancel_work_sync(&adapter->watchdog_task);
2528
2529 #ifdef CONFIG_IGB_DCA
2530         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2531                 dev_info(&pdev->dev, "DCA disabled\n");
2532                 dca_remove_requester(&pdev->dev);
2533                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2534                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2535         }
2536 #endif
2537
2538         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2539          * would have already happened in close and is redundant.
2540          */
2541         igb_release_hw_control(adapter);
2542
2543         unregister_netdev(netdev);
2544
2545         igb_clear_interrupt_scheme(adapter);
2546
2547 #ifdef CONFIG_PCI_IOV
2548         igb_disable_sriov(pdev);
2549 #endif
2550
2551         iounmap(hw->hw_addr);
2552         if (hw->flash_address)
2553                 iounmap(hw->flash_address);
2554         pci_release_selected_regions(pdev,
2555                                      pci_select_bars(pdev, IORESOURCE_MEM));
2556
2557         kfree(adapter->shadow_vfta);
2558         free_netdev(netdev);
2559
2560         pci_disable_pcie_error_reporting(pdev);
2561
2562         pci_disable_device(pdev);
2563 }
2564
2565 /**
2566  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2567  *  @adapter: board private structure to initialize
2568  *
2569  *  This function initializes the vf specific data storage and then attempts to
2570  *  allocate the VFs.  The reason for ordering it this way is because it is much
2571  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2572  *  the memory for the VFs.
2573  **/
2574 static void igb_probe_vfs(struct igb_adapter *adapter)
2575 {
2576 #ifdef CONFIG_PCI_IOV
2577         struct pci_dev *pdev = adapter->pdev;
2578         struct e1000_hw *hw = &adapter->hw;
2579
2580         /* Virtualization features not supported on i210 family. */
2581         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2582                 return;
2583
2584         pci_sriov_set_totalvfs(pdev, 7);
2585         igb_enable_sriov(pdev, max_vfs);
2586
2587 #endif /* CONFIG_PCI_IOV */
2588 }
2589
2590 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2591 {
2592         struct e1000_hw *hw = &adapter->hw;
2593         u32 max_rss_queues;
2594
2595         /* Determine the maximum number of RSS queues supported. */
2596         switch (hw->mac.type) {
2597         case e1000_i211:
2598                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2599                 break;
2600         case e1000_82575:
2601         case e1000_i210:
2602                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2603                 break;
2604         case e1000_i350:
2605                 /* I350 cannot do RSS and SR-IOV at the same time */
2606                 if (!!adapter->vfs_allocated_count) {
2607                         max_rss_queues = 1;
2608                         break;
2609                 }
2610                 /* fall through */
2611         case e1000_82576:
2612                 if (!!adapter->vfs_allocated_count) {
2613                         max_rss_queues = 2;
2614                         break;
2615                 }
2616                 /* fall through */
2617         case e1000_82580:
2618         case e1000_i354:
2619         default:
2620                 max_rss_queues = IGB_MAX_RX_QUEUES;
2621                 break;
2622         }
2623
2624         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2625
2626         /* Determine if we need to pair queues. */
2627         switch (hw->mac.type) {
2628         case e1000_82575:
2629         case e1000_i211:
2630                 /* Device supports enough interrupts without queue pairing. */
2631                 break;
2632         case e1000_82576:
2633                 /* If VFs are going to be allocated with RSS queues then we
2634                  * should pair the queues in order to conserve interrupts due
2635                  * to limited supply.
2636                  */
2637                 if ((adapter->rss_queues > 1) &&
2638                     (adapter->vfs_allocated_count > 6))
2639                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2640                 /* fall through */
2641         case e1000_82580:
2642         case e1000_i350:
2643         case e1000_i354:
2644         case e1000_i210:
2645         default:
2646                 /* If rss_queues > half of max_rss_queues, pair the queues in
2647                  * order to conserve interrupts due to limited supply.
2648                  */
2649                 if (adapter->rss_queues > (max_rss_queues / 2))
2650                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2651                 break;
2652         }
2653 }
2654
2655 /**
2656  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2657  *  @adapter: board private structure to initialize
2658  *
2659  *  igb_sw_init initializes the Adapter private data structure.
2660  *  Fields are initialized based on PCI device information and
2661  *  OS network device settings (MTU size).
2662  **/
2663 static int igb_sw_init(struct igb_adapter *adapter)
2664 {
2665         struct e1000_hw *hw = &adapter->hw;
2666         struct net_device *netdev = adapter->netdev;
2667         struct pci_dev *pdev = adapter->pdev;
2668
2669         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2670
2671         /* set default ring sizes */
2672         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2673         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2674
2675         /* set default ITR values */
2676         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2677         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2678
2679         /* set default work limits */
2680         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2681
2682         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2683                                   VLAN_HLEN;
2684         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2685
2686         spin_lock_init(&adapter->stats64_lock);
2687 #ifdef CONFIG_PCI_IOV
2688         switch (hw->mac.type) {
2689         case e1000_82576:
2690         case e1000_i350:
2691                 if (max_vfs > 7) {
2692                         dev_warn(&pdev->dev,
2693                                  "Maximum of 7 VFs per PF, using max\n");
2694                         max_vfs = adapter->vfs_allocated_count = 7;
2695                 } else
2696                         adapter->vfs_allocated_count = max_vfs;
2697                 if (adapter->vfs_allocated_count)
2698                         dev_warn(&pdev->dev,
2699                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2700                 break;
2701         default:
2702                 break;
2703         }
2704 #endif /* CONFIG_PCI_IOV */
2705
2706         igb_init_queue_configuration(adapter);
2707
2708         /* Setup and initialize a copy of the hw vlan table array */
2709         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2710                                        GFP_ATOMIC);
2711
2712         /* This call may decrease the number of queues */
2713         if (igb_init_interrupt_scheme(adapter, true)) {
2714                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2715                 return -ENOMEM;
2716         }
2717
2718         igb_probe_vfs(adapter);
2719
2720         /* Explicitly disable IRQ since the NIC can be in any state. */
2721         igb_irq_disable(adapter);
2722
2723         if (hw->mac.type >= e1000_i350)
2724                 adapter->flags &= ~IGB_FLAG_DMAC;
2725
2726         set_bit(__IGB_DOWN, &adapter->state);
2727         return 0;
2728 }
2729
2730 /**
2731  *  igb_open - Called when a network interface is made active
2732  *  @netdev: network interface device structure
2733  *
2734  *  Returns 0 on success, negative value on failure
2735  *
2736  *  The open entry point is called when a network interface is made
2737  *  active by the system (IFF_UP).  At this point all resources needed
2738  *  for transmit and receive operations are allocated, the interrupt
2739  *  handler is registered with the OS, the watchdog timer is started,
2740  *  and the stack is notified that the interface is ready.
2741  **/
2742 static int __igb_open(struct net_device *netdev, bool resuming)
2743 {
2744         struct igb_adapter *adapter = netdev_priv(netdev);
2745         struct e1000_hw *hw = &adapter->hw;
2746         struct pci_dev *pdev = adapter->pdev;
2747         int err;
2748         int i;
2749
2750         /* disallow open during test */
2751         if (test_bit(__IGB_TESTING, &adapter->state)) {
2752                 WARN_ON(resuming);
2753                 return -EBUSY;
2754         }
2755
2756         if (!resuming)
2757                 pm_runtime_get_sync(&pdev->dev);
2758
2759         netif_carrier_off(netdev);
2760
2761         /* allocate transmit descriptors */
2762         err = igb_setup_all_tx_resources(adapter);
2763         if (err)
2764                 goto err_setup_tx;
2765
2766         /* allocate receive descriptors */
2767         err = igb_setup_all_rx_resources(adapter);
2768         if (err)
2769                 goto err_setup_rx;
2770
2771         igb_power_up_link(adapter);
2772
2773         /* before we allocate an interrupt, we must be ready to handle it.
2774          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2775          * as soon as we call pci_request_irq, so we have to setup our
2776          * clean_rx handler before we do so.
2777          */
2778         igb_configure(adapter);
2779
2780         err = igb_request_irq(adapter);
2781         if (err)
2782                 goto err_req_irq;
2783
2784         /* Notify the stack of the actual queue counts. */
2785         err = netif_set_real_num_tx_queues(adapter->netdev,
2786                                            adapter->num_tx_queues);
2787         if (err)
2788                 goto err_set_queues;
2789
2790         err = netif_set_real_num_rx_queues(adapter->netdev,
2791                                            adapter->num_rx_queues);
2792         if (err)
2793                 goto err_set_queues;
2794
2795         /* From here on the code is the same as igb_up() */
2796         clear_bit(__IGB_DOWN, &adapter->state);
2797
2798         for (i = 0; i < adapter->num_q_vectors; i++)
2799                 napi_enable(&(adapter->q_vector[i]->napi));
2800
2801         /* Clear any pending interrupts. */
2802         rd32(E1000_ICR);
2803
2804         igb_irq_enable(adapter);
2805
2806         /* notify VFs that reset has been completed */
2807         if (adapter->vfs_allocated_count) {
2808                 u32 reg_data = rd32(E1000_CTRL_EXT);
2809                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2810                 wr32(E1000_CTRL_EXT, reg_data);
2811         }
2812
2813         netif_tx_start_all_queues(netdev);
2814
2815         if (!resuming)
2816                 pm_runtime_put(&pdev->dev);
2817
2818         /* start the watchdog. */
2819         hw->mac.get_link_status = 1;
2820         schedule_work(&adapter->watchdog_task);
2821
2822         return 0;
2823
2824 err_set_queues:
2825         igb_free_irq(adapter);
2826 err_req_irq:
2827         igb_release_hw_control(adapter);
2828         igb_power_down_link(adapter);
2829         igb_free_all_rx_resources(adapter);
2830 err_setup_rx:
2831         igb_free_all_tx_resources(adapter);
2832 err_setup_tx:
2833         igb_reset(adapter);
2834         if (!resuming)
2835                 pm_runtime_put(&pdev->dev);
2836
2837         return err;
2838 }
2839
2840 static int igb_open(struct net_device *netdev)
2841 {
2842         return __igb_open(netdev, false);
2843 }
2844
2845 /**
2846  *  igb_close - Disables a network interface
2847  *  @netdev: network interface device structure
2848  *
2849  *  Returns 0, this is not allowed to fail
2850  *
2851  *  The close entry point is called when an interface is de-activated
2852  *  by the OS.  The hardware is still under the driver's control, but
2853  *  needs to be disabled.  A global MAC reset is issued to stop the
2854  *  hardware, and all transmit and receive resources are freed.
2855  **/
2856 static int __igb_close(struct net_device *netdev, bool suspending)
2857 {
2858         struct igb_adapter *adapter = netdev_priv(netdev);
2859         struct pci_dev *pdev = adapter->pdev;
2860
2861         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2862
2863         if (!suspending)
2864                 pm_runtime_get_sync(&pdev->dev);
2865
2866         igb_down(adapter);
2867         igb_free_irq(adapter);
2868
2869         igb_free_all_tx_resources(adapter);
2870         igb_free_all_rx_resources(adapter);
2871
2872         if (!suspending)
2873                 pm_runtime_put_sync(&pdev->dev);
2874         return 0;
2875 }
2876
2877 static int igb_close(struct net_device *netdev)
2878 {
2879         return __igb_close(netdev, false);
2880 }
2881
2882 /**
2883  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2884  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2885  *
2886  *  Return 0 on success, negative on failure
2887  **/
2888 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2889 {
2890         struct device *dev = tx_ring->dev;
2891         int size;
2892
2893         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2894
2895         tx_ring->tx_buffer_info = vzalloc(size);
2896         if (!tx_ring->tx_buffer_info)
2897                 goto err;
2898
2899         /* round up to nearest 4K */
2900         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2901         tx_ring->size = ALIGN(tx_ring->size, 4096);
2902
2903         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2904                                            &tx_ring->dma, GFP_KERNEL);
2905         if (!tx_ring->desc)
2906                 goto err;
2907
2908         tx_ring->next_to_use = 0;
2909         tx_ring->next_to_clean = 0;
2910
2911         return 0;
2912
2913 err:
2914         vfree(tx_ring->tx_buffer_info);
2915         tx_ring->tx_buffer_info = NULL;
2916         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2917         return -ENOMEM;
2918 }
2919
2920 /**
2921  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2922  *                               (Descriptors) for all queues
2923  *  @adapter: board private structure
2924  *
2925  *  Return 0 on success, negative on failure
2926  **/
2927 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2928 {
2929         struct pci_dev *pdev = adapter->pdev;
2930         int i, err = 0;
2931
2932         for (i = 0; i < adapter->num_tx_queues; i++) {
2933                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2934                 if (err) {
2935                         dev_err(&pdev->dev,
2936                                 "Allocation for Tx Queue %u failed\n", i);
2937                         for (i--; i >= 0; i--)
2938                                 igb_free_tx_resources(adapter->tx_ring[i]);
2939                         break;
2940                 }
2941         }
2942
2943         return err;
2944 }
2945
2946 /**
2947  *  igb_setup_tctl - configure the transmit control registers
2948  *  @adapter: Board private structure
2949  **/
2950 void igb_setup_tctl(struct igb_adapter *adapter)
2951 {
2952         struct e1000_hw *hw = &adapter->hw;
2953         u32 tctl;
2954
2955         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2956         wr32(E1000_TXDCTL(0), 0);
2957
2958         /* Program the Transmit Control Register */
2959         tctl = rd32(E1000_TCTL);
2960         tctl &= ~E1000_TCTL_CT;
2961         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2962                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2963
2964         igb_config_collision_dist(hw);
2965
2966         /* Enable transmits */
2967         tctl |= E1000_TCTL_EN;
2968
2969         wr32(E1000_TCTL, tctl);
2970 }
2971
2972 /**
2973  *  igb_configure_tx_ring - Configure transmit ring after Reset
2974  *  @adapter: board private structure
2975  *  @ring: tx ring to configure
2976  *
2977  *  Configure a transmit ring after a reset.
2978  **/
2979 void igb_configure_tx_ring(struct igb_adapter *adapter,
2980                            struct igb_ring *ring)
2981 {
2982         struct e1000_hw *hw = &adapter->hw;
2983         u32 txdctl = 0;
2984         u64 tdba = ring->dma;
2985         int reg_idx = ring->reg_idx;
2986
2987         /* disable the queue */
2988         wr32(E1000_TXDCTL(reg_idx), 0);
2989         wrfl();
2990         mdelay(10);
2991
2992         wr32(E1000_TDLEN(reg_idx),
2993              ring->count * sizeof(union e1000_adv_tx_desc));
2994         wr32(E1000_TDBAL(reg_idx),
2995              tdba & 0x00000000ffffffffULL);
2996         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2997
2998         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2999         wr32(E1000_TDH(reg_idx), 0);
3000         writel(0, ring->tail);
3001
3002         txdctl |= IGB_TX_PTHRESH;
3003         txdctl |= IGB_TX_HTHRESH << 8;
3004         txdctl |= IGB_TX_WTHRESH << 16;
3005
3006         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3007         wr32(E1000_TXDCTL(reg_idx), txdctl);
3008 }
3009
3010 /**
3011  *  igb_configure_tx - Configure transmit Unit after Reset
3012  *  @adapter: board private structure
3013  *
3014  *  Configure the Tx unit of the MAC after a reset.
3015  **/
3016 static void igb_configure_tx(struct igb_adapter *adapter)
3017 {
3018         int i;
3019
3020         for (i = 0; i < adapter->num_tx_queues; i++)
3021                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3022 }
3023
3024 /**
3025  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3026  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3027  *
3028  *  Returns 0 on success, negative on failure
3029  **/
3030 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3031 {
3032         struct device *dev = rx_ring->dev;
3033         int size;
3034
3035         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3036
3037         rx_ring->rx_buffer_info = vzalloc(size);
3038         if (!rx_ring->rx_buffer_info)
3039                 goto err;
3040
3041         /* Round up to nearest 4K */
3042         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3043         rx_ring->size = ALIGN(rx_ring->size, 4096);
3044
3045         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3046                                            &rx_ring->dma, GFP_KERNEL);
3047         if (!rx_ring->desc)
3048                 goto err;
3049
3050         rx_ring->next_to_alloc = 0;
3051         rx_ring->next_to_clean = 0;
3052         rx_ring->next_to_use = 0;
3053
3054         return 0;
3055
3056 err:
3057         vfree(rx_ring->rx_buffer_info);
3058         rx_ring->rx_buffer_info = NULL;
3059         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3060         return -ENOMEM;
3061 }
3062
3063 /**
3064  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3065  *                               (Descriptors) for all queues
3066  *  @adapter: board private structure
3067  *
3068  *  Return 0 on success, negative on failure
3069  **/
3070 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3071 {
3072         struct pci_dev *pdev = adapter->pdev;
3073         int i, err = 0;
3074
3075         for (i = 0; i < adapter->num_rx_queues; i++) {
3076                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3077                 if (err) {
3078                         dev_err(&pdev->dev,
3079                                 "Allocation for Rx Queue %u failed\n", i);
3080                         for (i--; i >= 0; i--)
3081                                 igb_free_rx_resources(adapter->rx_ring[i]);
3082                         break;
3083                 }
3084         }
3085
3086         return err;
3087 }
3088
3089 /**
3090  *  igb_setup_mrqc - configure the multiple receive queue control registers
3091  *  @adapter: Board private structure
3092  **/
3093 static void igb_setup_mrqc(struct igb_adapter *adapter)
3094 {
3095         struct e1000_hw *hw = &adapter->hw;
3096         u32 mrqc, rxcsum;
3097         u32 j, num_rx_queues, shift = 0;
3098         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3099                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3100                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3101                                         0xFA01ACBE };
3102
3103         /* Fill out hash function seeds */
3104         for (j = 0; j < 10; j++)
3105                 wr32(E1000_RSSRK(j), rsskey[j]);
3106
3107         num_rx_queues = adapter->rss_queues;
3108
3109         switch (hw->mac.type) {
3110         case e1000_82575:
3111                 shift = 6;
3112                 break;
3113         case e1000_82576:
3114                 /* 82576 supports 2 RSS queues for SR-IOV */
3115                 if (adapter->vfs_allocated_count) {
3116                         shift = 3;
3117                         num_rx_queues = 2;
3118                 }
3119                 break;
3120         default:
3121                 break;
3122         }
3123
3124         /* Populate the indirection table 4 entries at a time.  To do this
3125          * we are generating the results for n and n+2 and then interleaving
3126          * those with the results with n+1 and n+3.
3127          */
3128         for (j = 0; j < 32; j++) {
3129                 /* first pass generates n and n+2 */
3130                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3131                 u32 reta = (base & 0x07800780) >> (7 - shift);
3132
3133                 /* second pass generates n+1 and n+3 */
3134                 base += 0x00010001 * num_rx_queues;
3135                 reta |= (base & 0x07800780) << (1 + shift);
3136
3137                 wr32(E1000_RETA(j), reta);
3138         }
3139
3140         /* Disable raw packet checksumming so that RSS hash is placed in
3141          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3142          * offloads as they are enabled by default
3143          */
3144         rxcsum = rd32(E1000_RXCSUM);
3145         rxcsum |= E1000_RXCSUM_PCSD;
3146
3147         if (adapter->hw.mac.type >= e1000_82576)
3148                 /* Enable Receive Checksum Offload for SCTP */
3149                 rxcsum |= E1000_RXCSUM_CRCOFL;
3150
3151         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3152         wr32(E1000_RXCSUM, rxcsum);
3153
3154         /* Generate RSS hash based on packet types, TCP/UDP
3155          * port numbers and/or IPv4/v6 src and dst addresses
3156          */
3157         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3158                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3159                E1000_MRQC_RSS_FIELD_IPV6 |
3160                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3161                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3162
3163         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3164                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3165         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3166                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3167
3168         /* If VMDq is enabled then we set the appropriate mode for that, else
3169          * we default to RSS so that an RSS hash is calculated per packet even
3170          * if we are only using one queue
3171          */
3172         if (adapter->vfs_allocated_count) {
3173                 if (hw->mac.type > e1000_82575) {
3174                         /* Set the default pool for the PF's first queue */
3175                         u32 vtctl = rd32(E1000_VT_CTL);
3176                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3177                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3178                         vtctl |= adapter->vfs_allocated_count <<
3179                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3180                         wr32(E1000_VT_CTL, vtctl);
3181                 }
3182                 if (adapter->rss_queues > 1)
3183                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3184                 else
3185                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3186         } else {
3187                 if (hw->mac.type != e1000_i211)
3188                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3189         }
3190         igb_vmm_control(adapter);
3191
3192         wr32(E1000_MRQC, mrqc);
3193 }
3194
3195 /**
3196  *  igb_setup_rctl - configure the receive control registers
3197  *  @adapter: Board private structure
3198  **/
3199 void igb_setup_rctl(struct igb_adapter *adapter)
3200 {
3201         struct e1000_hw *hw = &adapter->hw;
3202         u32 rctl;
3203
3204         rctl = rd32(E1000_RCTL);
3205
3206         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3207         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3208
3209         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3210                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3211
3212         /* enable stripping of CRC. It's unlikely this will break BMC
3213          * redirection as it did with e1000. Newer features require
3214          * that the HW strips the CRC.
3215          */
3216         rctl |= E1000_RCTL_SECRC;
3217
3218         /* disable store bad packets and clear size bits. */
3219         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3220
3221         /* enable LPE to prevent packets larger than max_frame_size */
3222         rctl |= E1000_RCTL_LPE;
3223
3224         /* disable queue 0 to prevent tail write w/o re-config */
3225         wr32(E1000_RXDCTL(0), 0);
3226
3227         /* Attention!!!  For SR-IOV PF driver operations you must enable
3228          * queue drop for all VF and PF queues to prevent head of line blocking
3229          * if an un-trusted VF does not provide descriptors to hardware.
3230          */
3231         if (adapter->vfs_allocated_count) {
3232                 /* set all queue drop enable bits */
3233                 wr32(E1000_QDE, ALL_QUEUES);
3234         }
3235
3236         /* This is useful for sniffing bad packets. */
3237         if (adapter->netdev->features & NETIF_F_RXALL) {
3238                 /* UPE and MPE will be handled by normal PROMISC logic
3239                  * in e1000e_set_rx_mode
3240                  */
3241                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3242                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3243                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3244
3245                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3246                           E1000_RCTL_DPF | /* Allow filtered pause */
3247                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3248                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3249                  * and that breaks VLANs.
3250                  */
3251         }
3252
3253         wr32(E1000_RCTL, rctl);
3254 }
3255
3256 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3257                                    int vfn)
3258 {
3259         struct e1000_hw *hw = &adapter->hw;
3260         u32 vmolr;
3261
3262         /* if it isn't the PF check to see if VFs are enabled and
3263          * increase the size to support vlan tags
3264          */
3265         if (vfn < adapter->vfs_allocated_count &&
3266             adapter->vf_data[vfn].vlans_enabled)
3267                 size += VLAN_TAG_SIZE;
3268
3269         vmolr = rd32(E1000_VMOLR(vfn));
3270         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3271         vmolr |= size | E1000_VMOLR_LPE;
3272         wr32(E1000_VMOLR(vfn), vmolr);
3273
3274         return 0;
3275 }
3276
3277 /**
3278  *  igb_rlpml_set - set maximum receive packet size
3279  *  @adapter: board private structure
3280  *
3281  *  Configure maximum receivable packet size.
3282  **/
3283 static void igb_rlpml_set(struct igb_adapter *adapter)
3284 {
3285         u32 max_frame_size = adapter->max_frame_size;
3286         struct e1000_hw *hw = &adapter->hw;
3287         u16 pf_id = adapter->vfs_allocated_count;
3288
3289         if (pf_id) {
3290                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3291                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3292                  * to our max jumbo frame size, in case we need to enable
3293                  * jumbo frames on one of the rings later.
3294                  * This will not pass over-length frames into the default
3295                  * queue because it's gated by the VMOLR.RLPML.
3296                  */
3297                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3298         }
3299
3300         wr32(E1000_RLPML, max_frame_size);
3301 }
3302
3303 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3304                                  int vfn, bool aupe)
3305 {
3306         struct e1000_hw *hw = &adapter->hw;
3307         u32 vmolr;
3308
3309         /* This register exists only on 82576 and newer so if we are older then
3310          * we should exit and do nothing
3311          */
3312         if (hw->mac.type < e1000_82576)
3313                 return;
3314
3315         vmolr = rd32(E1000_VMOLR(vfn));
3316         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3317         if (aupe)
3318                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3319         else
3320                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3321
3322         /* clear all bits that might not be set */
3323         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3324
3325         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3326                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3327         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3328          * multicast packets
3329          */
3330         if (vfn <= adapter->vfs_allocated_count)
3331                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3332
3333         wr32(E1000_VMOLR(vfn), vmolr);
3334 }
3335
3336 /**
3337  *  igb_configure_rx_ring - Configure a receive ring after Reset
3338  *  @adapter: board private structure
3339  *  @ring: receive ring to be configured
3340  *
3341  *  Configure the Rx unit of the MAC after a reset.
3342  **/
3343 void igb_configure_rx_ring(struct igb_adapter *adapter,
3344                            struct igb_ring *ring)
3345 {
3346         struct e1000_hw *hw = &adapter->hw;
3347         u64 rdba = ring->dma;
3348         int reg_idx = ring->reg_idx;
3349         u32 srrctl = 0, rxdctl = 0;
3350
3351         /* disable the queue */
3352         wr32(E1000_RXDCTL(reg_idx), 0);
3353
3354         /* Set DMA base address registers */
3355         wr32(E1000_RDBAL(reg_idx),
3356              rdba & 0x00000000ffffffffULL);
3357         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3358         wr32(E1000_RDLEN(reg_idx),
3359              ring->count * sizeof(union e1000_adv_rx_desc));
3360
3361         /* initialize head and tail */
3362         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3363         wr32(E1000_RDH(reg_idx), 0);
3364         writel(0, ring->tail);
3365
3366         /* set descriptor configuration */
3367         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3368         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3369         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3370         if (hw->mac.type >= e1000_82580)
3371                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3372         /* Only set Drop Enable if we are supporting multiple queues */
3373         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3374                 srrctl |= E1000_SRRCTL_DROP_EN;
3375
3376         wr32(E1000_SRRCTL(reg_idx), srrctl);
3377
3378         /* set filtering for VMDQ pools */
3379         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3380
3381         rxdctl |= IGB_RX_PTHRESH;
3382         rxdctl |= IGB_RX_HTHRESH << 8;
3383         rxdctl |= IGB_RX_WTHRESH << 16;
3384
3385         /* enable receive descriptor fetching */
3386         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3387         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3388 }
3389
3390 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3391                                   struct igb_ring *rx_ring)
3392 {
3393 #define IGB_MAX_BUILD_SKB_SIZE \
3394         (SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3395          (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3396
3397         /* set build_skb flag */
3398         if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3399                 set_ring_build_skb_enabled(rx_ring);
3400         else
3401                 clear_ring_build_skb_enabled(rx_ring);
3402 }
3403
3404 /**
3405  *  igb_configure_rx - Configure receive Unit after Reset
3406  *  @adapter: board private structure
3407  *
3408  *  Configure the Rx unit of the MAC after a reset.
3409  **/
3410 static void igb_configure_rx(struct igb_adapter *adapter)
3411 {
3412         int i;
3413
3414         /* set UTA to appropriate mode */
3415         igb_set_uta(adapter);
3416
3417         /* set the correct pool for the PF default MAC address in entry 0 */
3418         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3419                          adapter->vfs_allocated_count);
3420
3421         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3422          * the Base and Length of the Rx Descriptor Ring
3423          */
3424         for (i = 0; i < adapter->num_rx_queues; i++) {
3425                 struct igb_ring *rx_ring = adapter->rx_ring[i];
3426                 igb_set_rx_buffer_len(adapter, rx_ring);
3427                 igb_configure_rx_ring(adapter, rx_ring);
3428         }
3429 }
3430
3431 /**
3432  *  igb_free_tx_resources - Free Tx Resources per Queue
3433  *  @tx_ring: Tx descriptor ring for a specific queue
3434  *
3435  *  Free all transmit software resources
3436  **/
3437 void igb_free_tx_resources(struct igb_ring *tx_ring)
3438 {
3439         igb_clean_tx_ring(tx_ring);
3440
3441         vfree(tx_ring->tx_buffer_info);
3442         tx_ring->tx_buffer_info = NULL;
3443
3444         /* if not set, then don't free */
3445         if (!tx_ring->desc)
3446                 return;
3447
3448         dma_free_coherent(tx_ring->dev, tx_ring->size,
3449                           tx_ring->desc, tx_ring->dma);
3450
3451         tx_ring->desc = NULL;
3452 }
3453
3454 /**
3455  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3456  *  @adapter: board private structure
3457  *
3458  *  Free all transmit software resources
3459  **/
3460 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3461 {
3462         int i;
3463
3464         for (i = 0; i < adapter->num_tx_queues; i++)
3465                 igb_free_tx_resources(adapter->tx_ring[i]);
3466 }
3467
3468 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3469                                     struct igb_tx_buffer *tx_buffer)
3470 {
3471         if (tx_buffer->skb) {
3472                 dev_kfree_skb_any(tx_buffer->skb);
3473                 if (dma_unmap_len(tx_buffer, len))
3474                         dma_unmap_single(ring->dev,
3475                                          dma_unmap_addr(tx_buffer, dma),
3476                                          dma_unmap_len(tx_buffer, len),
3477                                          DMA_TO_DEVICE);
3478         } else if (dma_unmap_len(tx_buffer, len)) {
3479                 dma_unmap_page(ring->dev,
3480                                dma_unmap_addr(tx_buffer, dma),
3481                                dma_unmap_len(tx_buffer, len),
3482                                DMA_TO_DEVICE);
3483         }
3484         tx_buffer->next_to_watch = NULL;
3485         tx_buffer->skb = NULL;
3486         dma_unmap_len_set(tx_buffer, len, 0);
3487         /* buffer_info must be completely set up in the transmit path */
3488 }
3489
3490 /**
3491  *  igb_clean_tx_ring - Free Tx Buffers
3492  *  @tx_ring: ring to be cleaned
3493  **/
3494 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3495 {
3496         struct igb_tx_buffer *buffer_info;
3497         unsigned long size;
3498         u16 i;
3499
3500         if (!tx_ring->tx_buffer_info)
3501                 return;
3502         /* Free all the Tx ring sk_buffs */
3503
3504         for (i = 0; i < tx_ring->count; i++) {
3505                 buffer_info = &tx_ring->tx_buffer_info[i];
3506                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3507         }
3508
3509         netdev_tx_reset_queue(txring_txq(tx_ring));
3510
3511         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3512         memset(tx_ring->tx_buffer_info, 0, size);
3513
3514         /* Zero out the descriptor ring */
3515         memset(tx_ring->desc, 0, tx_ring->size);
3516
3517         tx_ring->next_to_use = 0;
3518         tx_ring->next_to_clean = 0;
3519 }
3520
3521 /**
3522  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3523  *  @adapter: board private structure
3524  **/
3525 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3526 {
3527         int i;
3528
3529         for (i = 0; i < adapter->num_tx_queues; i++)
3530                 igb_clean_tx_ring(adapter->tx_ring[i]);
3531 }
3532
3533 /**
3534  *  igb_free_rx_resources - Free Rx Resources
3535  *  @rx_ring: ring to clean the resources from
3536  *
3537  *  Free all receive software resources
3538  **/
3539 void igb_free_rx_resources(struct igb_ring *rx_ring)
3540 {
3541         igb_clean_rx_ring(rx_ring);
3542
3543         vfree(rx_ring->rx_buffer_info);
3544         rx_ring->rx_buffer_info = NULL;
3545
3546         /* if not set, then don't free */
3547         if (!rx_ring->desc)
3548                 return;
3549
3550         dma_free_coherent(rx_ring->dev, rx_ring->size,
3551                           rx_ring->desc, rx_ring->dma);
3552
3553         rx_ring->desc = NULL;
3554 }
3555
3556 /**
3557  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3558  *  @adapter: board private structure
3559  *
3560  *  Free all receive software resources
3561  **/
3562 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3563 {
3564         int i;
3565
3566         for (i = 0; i < adapter->num_rx_queues; i++)
3567                 igb_free_rx_resources(adapter->rx_ring[i]);
3568 }
3569
3570 /**
3571  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3572  *  @rx_ring: ring to free buffers from
3573  **/
3574 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3575 {
3576         unsigned long size;
3577         u16 i;
3578
3579         if (rx_ring->skb)
3580                 dev_kfree_skb(rx_ring->skb);
3581         rx_ring->skb = NULL;
3582
3583         if (!rx_ring->rx_buffer_info)
3584                 return;
3585
3586         /* Free all the Rx ring sk_buffs */
3587         for (i = 0; i < rx_ring->count; i++) {
3588                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3589
3590                 if (!buffer_info->page)
3591                         continue;
3592
3593                 dma_unmap_page(rx_ring->dev,
3594                                buffer_info->dma,
3595                                PAGE_SIZE,
3596                                DMA_FROM_DEVICE);
3597                 __free_page(buffer_info->page);
3598
3599                 buffer_info->page = NULL;
3600         }
3601
3602         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3603         memset(rx_ring->rx_buffer_info, 0, size);
3604
3605         /* Zero out the descriptor ring */
3606         memset(rx_ring->desc, 0, rx_ring->size);
3607
3608         rx_ring->next_to_alloc = 0;
3609         rx_ring->next_to_clean = 0;
3610         rx_ring->next_to_use = 0;
3611 }
3612
3613 /**
3614  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3615  *  @adapter: board private structure
3616  **/
3617 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3618 {
3619         int i;
3620
3621         for (i = 0; i < adapter->num_rx_queues; i++)
3622                 igb_clean_rx_ring(adapter->rx_ring[i]);
3623 }
3624
3625 /**
3626  *  igb_set_mac - Change the Ethernet Address of the NIC
3627  *  @netdev: network interface device structure
3628  *  @p: pointer to an address structure
3629  *
3630  *  Returns 0 on success, negative on failure
3631  **/
3632 static int igb_set_mac(struct net_device *netdev, void *p)
3633 {
3634         struct igb_adapter *adapter = netdev_priv(netdev);
3635         struct e1000_hw *hw = &adapter->hw;
3636         struct sockaddr *addr = p;
3637
3638         if (!is_valid_ether_addr(addr->sa_data))
3639                 return -EADDRNOTAVAIL;
3640
3641         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3642         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3643
3644         /* set the correct pool for the new PF MAC address in entry 0 */
3645         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3646                          adapter->vfs_allocated_count);
3647
3648         return 0;
3649 }
3650
3651 /**
3652  *  igb_write_mc_addr_list - write multicast addresses to MTA
3653  *  @netdev: network interface device structure
3654  *
3655  *  Writes multicast address list to the MTA hash table.
3656  *  Returns: -ENOMEM on failure
3657  *           0 on no addresses written
3658  *           X on writing X addresses to MTA
3659  **/
3660 static int igb_write_mc_addr_list(struct net_device *netdev)
3661 {
3662         struct igb_adapter *adapter = netdev_priv(netdev);
3663         struct e1000_hw *hw = &adapter->hw;
3664         struct netdev_hw_addr *ha;
3665         u8  *mta_list;
3666         int i;
3667
3668         if (netdev_mc_empty(netdev)) {
3669                 /* nothing to program, so clear mc list */
3670                 igb_update_mc_addr_list(hw, NULL, 0);
3671                 igb_restore_vf_multicasts(adapter);
3672                 return 0;
3673         }
3674
3675         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3676         if (!mta_list)
3677                 return -ENOMEM;
3678
3679         /* The shared function expects a packed array of only addresses. */
3680         i = 0;
3681         netdev_for_each_mc_addr(ha, netdev)
3682                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3683
3684         igb_update_mc_addr_list(hw, mta_list, i);
3685         kfree(mta_list);
3686
3687         return netdev_mc_count(netdev);
3688 }
3689
3690 /**
3691  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3692  *  @netdev: network interface device structure
3693  *
3694  *  Writes unicast address list to the RAR table.
3695  *  Returns: -ENOMEM on failure/insufficient address space
3696  *           0 on no addresses written
3697  *           X on writing X addresses to the RAR table
3698  **/
3699 static int igb_write_uc_addr_list(struct net_device *netdev)
3700 {
3701         struct igb_adapter *adapter = netdev_priv(netdev);
3702         struct e1000_hw *hw = &adapter->hw;
3703         unsigned int vfn = adapter->vfs_allocated_count;
3704         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3705         int count = 0;
3706
3707         /* return ENOMEM indicating insufficient memory for addresses */
3708         if (netdev_uc_count(netdev) > rar_entries)
3709                 return -ENOMEM;
3710
3711         if (!netdev_uc_empty(netdev) && rar_entries) {
3712                 struct netdev_hw_addr *ha;
3713
3714                 netdev_for_each_uc_addr(ha, netdev) {
3715                         if (!rar_entries)
3716                                 break;
3717                         igb_rar_set_qsel(adapter, ha->addr,
3718                                          rar_entries--,
3719                                          vfn);
3720                         count++;
3721                 }
3722         }
3723         /* write the addresses in reverse order to avoid write combining */
3724         for (; rar_entries > 0 ; rar_entries--) {
3725                 wr32(E1000_RAH(rar_entries), 0);
3726                 wr32(E1000_RAL(rar_entries), 0);
3727         }
3728         wrfl();
3729
3730         return count;
3731 }
3732
3733 /**
3734  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3735  *  @netdev: network interface device structure
3736  *
3737  *  The set_rx_mode entry point is called whenever the unicast or multicast
3738  *  address lists or the network interface flags are updated.  This routine is
3739  *  responsible for configuring the hardware for proper unicast, multicast,
3740  *  promiscuous mode, and all-multi behavior.
3741  **/
3742 static void igb_set_rx_mode(struct net_device *netdev)
3743 {
3744         struct igb_adapter *adapter = netdev_priv(netdev);
3745         struct e1000_hw *hw = &adapter->hw;
3746         unsigned int vfn = adapter->vfs_allocated_count;
3747         u32 rctl, vmolr = 0;
3748         int count;
3749
3750         /* Check for Promiscuous and All Multicast modes */
3751         rctl = rd32(E1000_RCTL);
3752
3753         /* clear the effected bits */
3754         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3755
3756         if (netdev->flags & IFF_PROMISC) {
3757                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3758                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3759         } else {
3760                 if (netdev->flags & IFF_ALLMULTI) {
3761                         rctl |= E1000_RCTL_MPE;
3762                         vmolr |= E1000_VMOLR_MPME;
3763                 } else {
3764                         /* Write addresses to the MTA, if the attempt fails
3765                          * then we should just turn on promiscuous mode so
3766                          * that we can at least receive multicast traffic
3767                          */
3768                         count = igb_write_mc_addr_list(netdev);
3769                         if (count < 0) {
3770                                 rctl |= E1000_RCTL_MPE;
3771                                 vmolr |= E1000_VMOLR_MPME;
3772                         } else if (count) {
3773                                 vmolr |= E1000_VMOLR_ROMPE;
3774                         }
3775                 }
3776                 /* Write addresses to available RAR registers, if there is not
3777                  * sufficient space to store all the addresses then enable
3778                  * unicast promiscuous mode
3779                  */
3780                 count = igb_write_uc_addr_list(netdev);
3781                 if (count < 0) {
3782                         rctl |= E1000_RCTL_UPE;
3783                         vmolr |= E1000_VMOLR_ROPE;
3784                 }
3785                 rctl |= E1000_RCTL_VFE;
3786         }
3787         wr32(E1000_RCTL, rctl);
3788
3789         /* In order to support SR-IOV and eventually VMDq it is necessary to set
3790          * the VMOLR to enable the appropriate modes.  Without this workaround
3791          * we will have issues with VLAN tag stripping not being done for frames
3792          * that are only arriving because we are the default pool
3793          */
3794         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3795                 return;
3796
3797         vmolr |= rd32(E1000_VMOLR(vfn)) &
3798                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3799         wr32(E1000_VMOLR(vfn), vmolr);
3800         igb_restore_vf_multicasts(adapter);
3801 }
3802
3803 static void igb_check_wvbr(struct igb_adapter *adapter)
3804 {
3805         struct e1000_hw *hw = &adapter->hw;
3806         u32 wvbr = 0;
3807
3808         switch (hw->mac.type) {
3809         case e1000_82576:
3810         case e1000_i350:
3811                 if (!(wvbr = rd32(E1000_WVBR)))
3812                         return;
3813                 break;
3814         default:
3815                 break;
3816         }
3817
3818         adapter->wvbr |= wvbr;
3819 }
3820
3821 #define IGB_STAGGERED_QUEUE_OFFSET 8
3822
3823 static void igb_spoof_check(struct igb_adapter *adapter)
3824 {
3825         int j;
3826
3827         if (!adapter->wvbr)
3828                 return;
3829
3830         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3831                 if (adapter->wvbr & (1 << j) ||
3832                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3833                         dev_warn(&adapter->pdev->dev,
3834                                 "Spoof event(s) detected on VF %d\n", j);
3835                         adapter->wvbr &=
3836                                 ~((1 << j) |
3837                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3838                 }
3839         }
3840 }
3841
3842 /* Need to wait a few seconds after link up to get diagnostic information from
3843  * the phy
3844  */
3845 static void igb_update_phy_info(unsigned long data)
3846 {
3847         struct igb_adapter *adapter = (struct igb_adapter *) data;
3848         igb_get_phy_info(&adapter->hw);
3849 }
3850
3851 /**
3852  *  igb_has_link - check shared code for link and determine up/down
3853  *  @adapter: pointer to driver private info
3854  **/
3855 bool igb_has_link(struct igb_adapter *adapter)
3856 {
3857         struct e1000_hw *hw = &adapter->hw;
3858         bool link_active = false;
3859         s32 ret_val = 0;
3860
3861         /* get_link_status is set on LSC (link status) interrupt or
3862          * rx sequence error interrupt.  get_link_status will stay
3863          * false until the e1000_check_for_link establishes link
3864          * for copper adapters ONLY
3865          */
3866         switch (hw->phy.media_type) {
3867         case e1000_media_type_copper:
3868                 if (hw->mac.get_link_status) {
3869                         ret_val = hw->mac.ops.check_for_link(hw);
3870                         link_active = !hw->mac.get_link_status;
3871                 } else {
3872                         link_active = true;
3873                 }
3874                 break;
3875         case e1000_media_type_internal_serdes:
3876                 ret_val = hw->mac.ops.check_for_link(hw);
3877                 link_active = hw->mac.serdes_has_link;
3878                 break;
3879         default:
3880         case e1000_media_type_unknown:
3881                 break;
3882         }
3883
3884         return link_active;
3885 }
3886
3887 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3888 {
3889         bool ret = false;
3890         u32 ctrl_ext, thstat;
3891
3892         /* check for thermal sensor event on i350 copper only */
3893         if (hw->mac.type == e1000_i350) {
3894                 thstat = rd32(E1000_THSTAT);
3895                 ctrl_ext = rd32(E1000_CTRL_EXT);
3896
3897                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3898                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3899                         ret = !!(thstat & event);
3900         }
3901
3902         return ret;
3903 }
3904
3905 /**
3906  *  igb_watchdog - Timer Call-back
3907  *  @data: pointer to adapter cast into an unsigned long
3908  **/
3909 static void igb_watchdog(unsigned long data)
3910 {
3911         struct igb_adapter *adapter = (struct igb_adapter *)data;
3912         /* Do the rest outside of interrupt context */
3913         schedule_work(&adapter->watchdog_task);
3914 }
3915
3916 static void igb_watchdog_task(struct work_struct *work)
3917 {
3918         struct igb_adapter *adapter = container_of(work,
3919                                                    struct igb_adapter,
3920                                                    watchdog_task);
3921         struct e1000_hw *hw = &adapter->hw;
3922         struct net_device *netdev = adapter->netdev;
3923         u32 link;
3924         int i;
3925
3926         link = igb_has_link(adapter);
3927         if (link) {
3928                 /* Cancel scheduled suspend requests. */
3929                 pm_runtime_resume(netdev->dev.parent);
3930
3931                 if (!netif_carrier_ok(netdev)) {
3932                         u32 ctrl;
3933                         hw->mac.ops.get_speed_and_duplex(hw,
3934                                                          &adapter->link_speed,
3935                                                          &adapter->link_duplex);
3936
3937                         ctrl = rd32(E1000_CTRL);
3938                         /* Links status message must follow this format */
3939                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3940                                "Duplex, Flow Control: %s\n",
3941                                netdev->name,
3942                                adapter->link_speed,
3943                                adapter->link_duplex == FULL_DUPLEX ?
3944                                "Full" : "Half",
3945                                (ctrl & E1000_CTRL_TFCE) &&
3946                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3947                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3948                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3949
3950                         /* check for thermal sensor event */
3951                         if (igb_thermal_sensor_event(hw,
3952                             E1000_THSTAT_LINK_THROTTLE)) {
3953                                 netdev_info(netdev, "The network adapter link "
3954                                             "speed was downshifted because it "
3955                                             "overheated\n");
3956                         }
3957
3958                         /* adjust timeout factor according to speed/duplex */
3959                         adapter->tx_timeout_factor = 1;
3960                         switch (adapter->link_speed) {
3961                         case SPEED_10:
3962                                 adapter->tx_timeout_factor = 14;
3963                                 break;
3964                         case SPEED_100:
3965                                 /* maybe add some timeout factor ? */
3966                                 break;
3967                         }
3968
3969                         netif_carrier_on(netdev);
3970
3971                         igb_ping_all_vfs(adapter);
3972                         igb_check_vf_rate_limit(adapter);
3973
3974                         /* link state has changed, schedule phy info update */
3975                         if (!test_bit(__IGB_DOWN, &adapter->state))
3976                                 mod_timer(&adapter->phy_info_timer,
3977                                           round_jiffies(jiffies + 2 * HZ));
3978                 }
3979         } else {
3980                 if (netif_carrier_ok(netdev)) {
3981                         adapter->link_speed = 0;
3982                         adapter->link_duplex = 0;
3983
3984                         /* check for thermal sensor event */
3985                         if (igb_thermal_sensor_event(hw,
3986                             E1000_THSTAT_PWR_DOWN)) {
3987                                 netdev_err(netdev, "The network adapter was "
3988                                            "stopped because it overheated\n");
3989                         }
3990
3991                         /* Links status message must follow this format */
3992                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3993                                netdev->name);
3994                         netif_carrier_off(netdev);
3995
3996                         igb_ping_all_vfs(adapter);
3997
3998                         /* link state has changed, schedule phy info update */
3999                         if (!test_bit(__IGB_DOWN, &adapter->state))
4000                                 mod_timer(&adapter->phy_info_timer,
4001                                           round_jiffies(jiffies + 2 * HZ));
4002
4003                         pm_schedule_suspend(netdev->dev.parent,
4004                                             MSEC_PER_SEC * 5);
4005                 }
4006         }
4007
4008         spin_lock(&adapter->stats64_lock);
4009         igb_update_stats(adapter, &adapter->stats64);
4010         spin_unlock(&adapter->stats64_lock);
4011
4012         for (i = 0; i < adapter->num_tx_queues; i++) {
4013                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4014                 if (!netif_carrier_ok(netdev)) {
4015                         /* We've lost link, so the controller stops DMA,
4016                          * but we've got queued Tx work that's never going
4017                          * to get done, so reset controller to flush Tx.
4018                          * (Do the reset outside of interrupt context).
4019                          */
4020                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4021                                 adapter->tx_timeout_count++;
4022                                 schedule_work(&adapter->reset_task);
4023                                 /* return immediately since reset is imminent */
4024                                 return;
4025                         }
4026                 }
4027
4028                 /* Force detection of hung controller every watchdog period */
4029                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4030         }
4031
4032         /* Cause software interrupt to ensure Rx ring is cleaned */
4033         if (adapter->msix_entries) {
4034                 u32 eics = 0;
4035                 for (i = 0; i < adapter->num_q_vectors; i++)
4036                         eics |= adapter->q_vector[i]->eims_value;
4037                 wr32(E1000_EICS, eics);
4038         } else {
4039                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4040         }
4041
4042         igb_spoof_check(adapter);
4043         igb_ptp_rx_hang(adapter);
4044
4045         /* Reset the timer */
4046         if (!test_bit(__IGB_DOWN, &adapter->state))
4047                 mod_timer(&adapter->watchdog_timer,
4048                           round_jiffies(jiffies + 2 * HZ));
4049 }
4050
4051 enum latency_range {
4052         lowest_latency = 0,
4053         low_latency = 1,
4054         bulk_latency = 2,
4055         latency_invalid = 255
4056 };
4057
4058 /**
4059  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4060  *  @q_vector: pointer to q_vector
4061  *
4062  *  Stores a new ITR value based on strictly on packet size.  This
4063  *  algorithm is less sophisticated than that used in igb_update_itr,
4064  *  due to the difficulty of synchronizing statistics across multiple
4065  *  receive rings.  The divisors and thresholds used by this function
4066  *  were determined based on theoretical maximum wire speed and testing
4067  *  data, in order to minimize response time while increasing bulk
4068  *  throughput.
4069  *  This functionality is controlled by the InterruptThrottleRate module
4070  *  parameter (see igb_param.c)
4071  *  NOTE:  This function is called only when operating in a multiqueue
4072  *         receive environment.
4073  **/
4074 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4075 {
4076         int new_val = q_vector->itr_val;
4077         int avg_wire_size = 0;
4078         struct igb_adapter *adapter = q_vector->adapter;
4079         unsigned int packets;
4080
4081         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4082          * ints/sec - ITR timer value of 120 ticks.
4083          */
4084         if (adapter->link_speed != SPEED_1000) {
4085                 new_val = IGB_4K_ITR;
4086                 goto set_itr_val;
4087         }
4088
4089         packets = q_vector->rx.total_packets;
4090         if (packets)
4091                 avg_wire_size = q_vector->rx.total_bytes / packets;
4092
4093         packets = q_vector->tx.total_packets;
4094         if (packets)
4095                 avg_wire_size = max_t(u32, avg_wire_size,
4096                                       q_vector->tx.total_bytes / packets);
4097
4098         /* if avg_wire_size isn't set no work was done */
4099         if (!avg_wire_size)
4100                 goto clear_counts;
4101
4102         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4103         avg_wire_size += 24;
4104
4105         /* Don't starve jumbo frames */
4106         avg_wire_size = min(avg_wire_size, 3000);
4107
4108         /* Give a little boost to mid-size frames */
4109         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4110                 new_val = avg_wire_size / 3;
4111         else
4112                 new_val = avg_wire_size / 2;
4113
4114         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4115         if (new_val < IGB_20K_ITR &&
4116             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4117              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4118                 new_val = IGB_20K_ITR;
4119
4120 set_itr_val:
4121         if (new_val != q_vector->itr_val) {
4122                 q_vector->itr_val = new_val;
4123                 q_vector->set_itr = 1;
4124         }
4125 clear_counts:
4126         q_vector->rx.total_bytes = 0;
4127         q_vector->rx.total_packets = 0;
4128         q_vector->tx.total_bytes = 0;
4129         q_vector->tx.total_packets = 0;
4130 }
4131
4132 /**
4133  *  igb_update_itr - update the dynamic ITR value based on statistics
4134  *  @q_vector: pointer to q_vector
4135  *  @ring_container: ring info to update the itr for
4136  *
4137  *  Stores a new ITR value based on packets and byte
4138  *  counts during the last interrupt.  The advantage of per interrupt
4139  *  computation is faster updates and more accurate ITR for the current
4140  *  traffic pattern.  Constants in this function were computed
4141  *  based on theoretical maximum wire speed and thresholds were set based
4142  *  on testing data as well as attempting to minimize response time
4143  *  while increasing bulk throughput.
4144  *  this functionality is controlled by the InterruptThrottleRate module
4145  *  parameter (see igb_param.c)
4146  *  NOTE:  These calculations are only valid when operating in a single-
4147  *         queue environment.
4148  **/
4149 static void igb_update_itr(struct igb_q_vector *q_vector,
4150                            struct igb_ring_container *ring_container)
4151 {
4152         unsigned int packets = ring_container->total_packets;
4153         unsigned int bytes = ring_container->total_bytes;
4154         u8 itrval = ring_container->itr;
4155
4156         /* no packets, exit with status unchanged */
4157         if (packets == 0)
4158                 return;
4159
4160         switch (itrval) {
4161         case lowest_latency:
4162                 /* handle TSO and jumbo frames */
4163                 if (bytes/packets > 8000)
4164                         itrval = bulk_latency;
4165                 else if ((packets < 5) && (bytes > 512))
4166                         itrval = low_latency;
4167                 break;
4168         case low_latency:  /* 50 usec aka 20000 ints/s */
4169                 if (bytes > 10000) {
4170                         /* this if handles the TSO accounting */
4171                         if (bytes/packets > 8000) {
4172                                 itrval = bulk_latency;
4173                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4174                                 itrval = bulk_latency;
4175                         } else if ((packets > 35)) {
4176                                 itrval = lowest_latency;
4177                         }
4178                 } else if (bytes/packets > 2000) {
4179                         itrval = bulk_latency;
4180                 } else if (packets <= 2 && bytes < 512) {
4181                         itrval = lowest_latency;
4182                 }
4183                 break;
4184         case bulk_latency: /* 250 usec aka 4000 ints/s */
4185                 if (bytes > 25000) {
4186                         if (packets > 35)
4187                                 itrval = low_latency;
4188                 } else if (bytes < 1500) {
4189                         itrval = low_latency;
4190                 }
4191                 break;
4192         }
4193
4194         /* clear work counters since we have the values we need */
4195         ring_container->total_bytes = 0;
4196         ring_container->total_packets = 0;
4197
4198         /* write updated itr to ring container */
4199         ring_container->itr = itrval;
4200 }
4201
4202 static void igb_set_itr(struct igb_q_vector *q_vector)
4203 {
4204         struct igb_adapter *adapter = q_vector->adapter;
4205         u32 new_itr = q_vector->itr_val;
4206         u8 current_itr = 0;
4207
4208         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4209         if (adapter->link_speed != SPEED_1000) {
4210                 current_itr = 0;
4211                 new_itr = IGB_4K_ITR;
4212                 goto set_itr_now;
4213         }
4214
4215         igb_update_itr(q_vector, &q_vector->tx);
4216         igb_update_itr(q_vector, &q_vector->rx);
4217
4218         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4219
4220         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4221         if (current_itr == lowest_latency &&
4222             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4223              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4224                 current_itr = low_latency;
4225
4226         switch (current_itr) {
4227         /* counts and packets in update_itr are dependent on these numbers */
4228         case lowest_latency:
4229                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4230                 break;
4231         case low_latency:
4232                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4233                 break;
4234         case bulk_latency:
4235                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4236                 break;
4237         default:
4238                 break;
4239         }
4240
4241 set_itr_now:
4242         if (new_itr != q_vector->itr_val) {
4243                 /* this attempts to bias the interrupt rate towards Bulk
4244                  * by adding intermediate steps when interrupt rate is
4245                  * increasing
4246                  */
4247                 new_itr = new_itr > q_vector->itr_val ?
4248                           max((new_itr * q_vector->itr_val) /
4249                           (new_itr + (q_vector->itr_val >> 2)),
4250                           new_itr) : new_itr;
4251                 /* Don't write the value here; it resets the adapter's
4252                  * internal timer, and causes us to delay far longer than
4253                  * we should between interrupts.  Instead, we write the ITR
4254                  * value at the beginning of the next interrupt so the timing
4255                  * ends up being correct.
4256                  */
4257                 q_vector->itr_val = new_itr;
4258                 q_vector->set_itr = 1;
4259         }
4260 }
4261
4262 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4263                             u32 type_tucmd, u32 mss_l4len_idx)
4264 {
4265         struct e1000_adv_tx_context_desc *context_desc;
4266         u16 i = tx_ring->next_to_use;
4267
4268         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4269
4270         i++;
4271         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4272
4273         /* set bits to identify this as an advanced context descriptor */
4274         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4275
4276         /* For 82575, context index must be unique per ring. */
4277         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4278                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4279
4280         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4281         context_desc->seqnum_seed       = 0;
4282         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4283         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4284 }
4285
4286 static int igb_tso(struct igb_ring *tx_ring,
4287                    struct igb_tx_buffer *first,
4288                    u8 *hdr_len)
4289 {
4290         struct sk_buff *skb = first->skb;
4291         u32 vlan_macip_lens, type_tucmd;
4292         u32 mss_l4len_idx, l4len;
4293
4294         if (skb->ip_summed != CHECKSUM_PARTIAL)
4295                 return 0;
4296
4297         if (!skb_is_gso(skb))
4298                 return 0;
4299
4300         if (skb_header_cloned(skb)) {
4301                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4302                 if (err)
4303                         return err;
4304         }
4305
4306         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4307         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4308
4309         if (first->protocol == __constant_htons(ETH_P_IP)) {
4310                 struct iphdr *iph = ip_hdr(skb);
4311                 iph->tot_len = 0;
4312                 iph->check = 0;
4313                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4314                                                          iph->daddr, 0,
4315                                                          IPPROTO_TCP,
4316                                                          0);
4317                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4318                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4319                                    IGB_TX_FLAGS_CSUM |
4320                                    IGB_TX_FLAGS_IPV4;
4321         } else if (skb_is_gso_v6(skb)) {
4322                 ipv6_hdr(skb)->payload_len = 0;
4323                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4324                                                        &ipv6_hdr(skb)->daddr,
4325                                                        0, IPPROTO_TCP, 0);
4326                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4327                                    IGB_TX_FLAGS_CSUM;
4328         }
4329
4330         /* compute header lengths */
4331         l4len = tcp_hdrlen(skb);
4332         *hdr_len = skb_transport_offset(skb) + l4len;
4333
4334         /* update gso size and bytecount with header size */
4335         first->gso_segs = skb_shinfo(skb)->gso_segs;
4336         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4337
4338         /* MSS L4LEN IDX */
4339         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4340         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4341
4342         /* VLAN MACLEN IPLEN */
4343         vlan_macip_lens = skb_network_header_len(skb);
4344         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4345         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4346
4347         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4348
4349         return 1;
4350 }
4351
4352 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4353 {
4354         struct sk_buff *skb = first->skb;
4355         u32 vlan_macip_lens = 0;
4356         u32 mss_l4len_idx = 0;
4357         u32 type_tucmd = 0;
4358
4359         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4360                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4361                         return;
4362         } else {
4363                 u8 l4_hdr = 0;
4364                 switch (first->protocol) {
4365                 case __constant_htons(ETH_P_IP):
4366                         vlan_macip_lens |= skb_network_header_len(skb);
4367                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4368                         l4_hdr = ip_hdr(skb)->protocol;
4369                         break;
4370                 case __constant_htons(ETH_P_IPV6):
4371                         vlan_macip_lens |= skb_network_header_len(skb);
4372                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4373                         break;
4374                 default:
4375                         if (unlikely(net_ratelimit())) {
4376                                 dev_warn(tx_ring->dev,
4377                                          "partial checksum but proto=%x!\n",
4378                                          first->protocol);
4379                         }
4380                         break;
4381                 }
4382
4383                 switch (l4_hdr) {
4384                 case IPPROTO_TCP:
4385                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4386                         mss_l4len_idx = tcp_hdrlen(skb) <<
4387                                         E1000_ADVTXD_L4LEN_SHIFT;
4388                         break;
4389                 case IPPROTO_SCTP:
4390                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4391                         mss_l4len_idx = sizeof(struct sctphdr) <<
4392                                         E1000_ADVTXD_L4LEN_SHIFT;
4393                         break;
4394                 case IPPROTO_UDP:
4395                         mss_l4len_idx = sizeof(struct udphdr) <<
4396                                         E1000_ADVTXD_L4LEN_SHIFT;
4397                         break;
4398                 default:
4399                         if (unlikely(net_ratelimit())) {
4400                                 dev_warn(tx_ring->dev,
4401                                          "partial checksum but l4 proto=%x!\n",
4402                                          l4_hdr);
4403                         }
4404                         break;
4405                 }
4406
4407                 /* update TX checksum flag */
4408                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4409         }
4410
4411         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4412         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4413
4414         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4415 }
4416
4417 #define IGB_SET_FLAG(_input, _flag, _result) \
4418         ((_flag <= _result) ? \
4419          ((u32)(_input & _flag) * (_result / _flag)) : \
4420          ((u32)(_input & _flag) / (_flag / _result)))
4421
4422 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4423 {
4424         /* set type for advanced descriptor with frame checksum insertion */
4425         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4426                        E1000_ADVTXD_DCMD_DEXT |
4427                        E1000_ADVTXD_DCMD_IFCS;
4428
4429         /* set HW vlan bit if vlan is present */
4430         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4431                                  (E1000_ADVTXD_DCMD_VLE));
4432
4433         /* set segmentation bits for TSO */
4434         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4435                                  (E1000_ADVTXD_DCMD_TSE));
4436
4437         /* set timestamp bit if present */
4438         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4439                                  (E1000_ADVTXD_MAC_TSTAMP));
4440
4441         /* insert frame checksum */
4442         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4443
4444         return cmd_type;
4445 }
4446
4447 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4448                                  union e1000_adv_tx_desc *tx_desc,
4449                                  u32 tx_flags, unsigned int paylen)
4450 {
4451         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4452
4453         /* 82575 requires a unique index per ring */
4454         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4455                 olinfo_status |= tx_ring->reg_idx << 4;
4456
4457         /* insert L4 checksum */
4458         olinfo_status |= IGB_SET_FLAG(tx_flags,
4459                                       IGB_TX_FLAGS_CSUM,
4460                                       (E1000_TXD_POPTS_TXSM << 8));
4461
4462         /* insert IPv4 checksum */
4463         olinfo_status |= IGB_SET_FLAG(tx_flags,
4464                                       IGB_TX_FLAGS_IPV4,
4465                                       (E1000_TXD_POPTS_IXSM << 8));
4466
4467         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4468 }
4469
4470 static void igb_tx_map(struct igb_ring *tx_ring,
4471                        struct igb_tx_buffer *first,
4472                        const u8 hdr_len)
4473 {
4474         struct sk_buff *skb = first->skb;
4475         struct igb_tx_buffer *tx_buffer;
4476         union e1000_adv_tx_desc *tx_desc;
4477         struct skb_frag_struct *frag;
4478         dma_addr_t dma;
4479         unsigned int data_len, size;
4480         u32 tx_flags = first->tx_flags;
4481         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4482         u16 i = tx_ring->next_to_use;
4483
4484         tx_desc = IGB_TX_DESC(tx_ring, i);
4485
4486         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4487
4488         size = skb_headlen(skb);
4489         data_len = skb->data_len;
4490
4491         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4492
4493         tx_buffer = first;
4494
4495         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4496                 if (dma_mapping_error(tx_ring->dev, dma))
4497                         goto dma_error;
4498
4499                 /* record length, and DMA address */
4500                 dma_unmap_len_set(tx_buffer, len, size);
4501                 dma_unmap_addr_set(tx_buffer, dma, dma);
4502
4503                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4504
4505                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4506                         tx_desc->read.cmd_type_len =
4507                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4508
4509                         i++;
4510                         tx_desc++;
4511                         if (i == tx_ring->count) {
4512                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4513                                 i = 0;
4514                         }
4515                         tx_desc->read.olinfo_status = 0;
4516
4517                         dma += IGB_MAX_DATA_PER_TXD;
4518                         size -= IGB_MAX_DATA_PER_TXD;
4519
4520                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4521                 }
4522
4523                 if (likely(!data_len))
4524                         break;
4525
4526                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4527
4528                 i++;
4529                 tx_desc++;
4530                 if (i == tx_ring->count) {
4531                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4532                         i = 0;
4533                 }
4534                 tx_desc->read.olinfo_status = 0;
4535
4536                 size = skb_frag_size(frag);
4537                 data_len -= size;
4538
4539                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4540                                        size, DMA_TO_DEVICE);
4541
4542                 tx_buffer = &tx_ring->tx_buffer_info[i];
4543         }
4544
4545         /* write last descriptor with RS and EOP bits */
4546         cmd_type |= size | IGB_TXD_DCMD;
4547         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4548
4549         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4550
4551         /* set the timestamp */
4552         first->time_stamp = jiffies;
4553
4554         /* Force memory writes to complete before letting h/w know there
4555          * are new descriptors to fetch.  (Only applicable for weak-ordered
4556          * memory model archs, such as IA-64).
4557          *
4558          * We also need this memory barrier to make certain all of the
4559          * status bits have been updated before next_to_watch is written.
4560          */
4561         wmb();
4562
4563         /* set next_to_watch value indicating a packet is present */
4564         first->next_to_watch = tx_desc;
4565
4566         i++;
4567         if (i == tx_ring->count)
4568                 i = 0;
4569
4570         tx_ring->next_to_use = i;
4571
4572         writel(i, tx_ring->tail);
4573
4574         /* we need this if more than one processor can write to our tail
4575          * at a time, it synchronizes IO on IA64/Altix systems
4576          */
4577         mmiowb();
4578
4579         return;
4580
4581 dma_error:
4582         dev_err(tx_ring->dev, "TX DMA map failed\n");
4583
4584         /* clear dma mappings for failed tx_buffer_info map */
4585         for (;;) {
4586                 tx_buffer = &tx_ring->tx_buffer_info[i];
4587                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4588                 if (tx_buffer == first)
4589                         break;
4590                 if (i == 0)
4591                         i = tx_ring->count;
4592                 i--;
4593         }
4594
4595         tx_ring->next_to_use = i;
4596 }
4597
4598 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4599 {
4600         struct net_device *netdev = tx_ring->netdev;
4601
4602         netif_stop_subqueue(netdev, tx_ring->queue_index);
4603
4604         /* Herbert's original patch had:
4605          *  smp_mb__after_netif_stop_queue();
4606          * but since that doesn't exist yet, just open code it.
4607          */
4608         smp_mb();
4609
4610         /* We need to check again in a case another CPU has just
4611          * made room available.
4612          */
4613         if (igb_desc_unused(tx_ring) < size)
4614                 return -EBUSY;
4615
4616         /* A reprieve! */
4617         netif_wake_subqueue(netdev, tx_ring->queue_index);
4618
4619         u64_stats_update_begin(&tx_ring->tx_syncp2);
4620         tx_ring->tx_stats.restart_queue2++;
4621         u64_stats_update_end(&tx_ring->tx_syncp2);
4622
4623         return 0;
4624 }
4625
4626 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4627 {
4628         if (igb_desc_unused(tx_ring) >= size)
4629                 return 0;
4630         return __igb_maybe_stop_tx(tx_ring, size);
4631 }
4632
4633 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4634                                 struct igb_ring *tx_ring)
4635 {
4636         struct igb_tx_buffer *first;
4637         int tso;
4638         u32 tx_flags = 0;
4639         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4640         __be16 protocol = vlan_get_protocol(skb);
4641         u8 hdr_len = 0;
4642
4643         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4644          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4645          *       + 2 desc gap to keep tail from touching head,
4646          *       + 1 desc for context descriptor,
4647          * otherwise try next time
4648          */
4649         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4650                 unsigned short f;
4651                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4652                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4653         } else {
4654                 count += skb_shinfo(skb)->nr_frags;
4655         }
4656
4657         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4658                 /* this is a hard error */
4659                 return NETDEV_TX_BUSY;
4660         }
4661
4662         /* record the location of the first descriptor for this packet */
4663         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4664         first->skb = skb;
4665         first->bytecount = skb->len;
4666         first->gso_segs = 1;
4667
4668         skb_tx_timestamp(skb);
4669
4670         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4671                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4672
4673                 if (!(adapter->ptp_tx_skb)) {
4674                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4675                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4676
4677                         adapter->ptp_tx_skb = skb_get(skb);
4678                         adapter->ptp_tx_start = jiffies;
4679                         if (adapter->hw.mac.type == e1000_82576)
4680                                 schedule_work(&adapter->ptp_tx_work);
4681                 }
4682         }
4683
4684         if (vlan_tx_tag_present(skb)) {
4685                 tx_flags |= IGB_TX_FLAGS_VLAN;
4686                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4687         }
4688
4689         /* record initial flags and protocol */
4690         first->tx_flags = tx_flags;
4691         first->protocol = protocol;
4692
4693         tso = igb_tso(tx_ring, first, &hdr_len);
4694         if (tso < 0)
4695                 goto out_drop;
4696         else if (!tso)
4697                 igb_tx_csum(tx_ring, first);
4698
4699         igb_tx_map(tx_ring, first, hdr_len);
4700
4701         /* Make sure there is space in the ring for the next send. */
4702         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4703
4704         return NETDEV_TX_OK;
4705
4706 out_drop:
4707         igb_unmap_and_free_tx_resource(tx_ring, first);
4708
4709         return NETDEV_TX_OK;
4710 }
4711
4712 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4713                                                     struct sk_buff *skb)
4714 {
4715         unsigned int r_idx = skb->queue_mapping;
4716
4717         if (r_idx >= adapter->num_tx_queues)
4718                 r_idx = r_idx % adapter->num_tx_queues;
4719
4720         return adapter->tx_ring[r_idx];
4721 }
4722
4723 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4724                                   struct net_device *netdev)
4725 {
4726         struct igb_adapter *adapter = netdev_priv(netdev);
4727
4728         if (test_bit(__IGB_DOWN, &adapter->state)) {
4729                 dev_kfree_skb_any(skb);
4730                 return NETDEV_TX_OK;
4731         }
4732
4733         if (skb->len <= 0) {
4734                 dev_kfree_skb_any(skb);
4735                 return NETDEV_TX_OK;
4736         }
4737
4738         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4739          * in order to meet this minimum size requirement.
4740          */
4741         if (unlikely(skb->len < 17)) {
4742                 if (skb_pad(skb, 17 - skb->len))
4743                         return NETDEV_TX_OK;
4744                 skb->len = 17;
4745                 skb_set_tail_pointer(skb, 17);
4746         }
4747
4748         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4749 }
4750
4751 /**
4752  *  igb_tx_timeout - Respond to a Tx Hang
4753  *  @netdev: network interface device structure
4754  **/
4755 static void igb_tx_timeout(struct net_device *netdev)
4756 {
4757         struct igb_adapter *adapter = netdev_priv(netdev);
4758         struct e1000_hw *hw = &adapter->hw;
4759
4760         /* Do the reset outside of interrupt context */
4761         adapter->tx_timeout_count++;
4762
4763         if (hw->mac.type >= e1000_82580)
4764                 hw->dev_spec._82575.global_device_reset = true;
4765
4766         schedule_work(&adapter->reset_task);
4767         wr32(E1000_EICS,
4768              (adapter->eims_enable_mask & ~adapter->eims_other));
4769 }
4770
4771 static void igb_reset_task(struct work_struct *work)
4772 {
4773         struct igb_adapter *adapter;
4774         adapter = container_of(work, struct igb_adapter, reset_task);
4775
4776         igb_dump(adapter);
4777         netdev_err(adapter->netdev, "Reset adapter\n");
4778         igb_reinit_locked(adapter);
4779 }
4780
4781 /**
4782  *  igb_get_stats64 - Get System Network Statistics
4783  *  @netdev: network interface device structure
4784  *  @stats: rtnl_link_stats64 pointer
4785  **/
4786 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4787                                                 struct rtnl_link_stats64 *stats)
4788 {
4789         struct igb_adapter *adapter = netdev_priv(netdev);
4790
4791         spin_lock(&adapter->stats64_lock);
4792         igb_update_stats(adapter, &adapter->stats64);
4793         memcpy(stats, &adapter->stats64, sizeof(*stats));
4794         spin_unlock(&adapter->stats64_lock);
4795
4796         return stats;
4797 }
4798
4799 /**
4800  *  igb_change_mtu - Change the Maximum Transfer Unit
4801  *  @netdev: network interface device structure
4802  *  @new_mtu: new value for maximum frame size
4803  *
4804  *  Returns 0 on success, negative on failure
4805  **/
4806 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4807 {
4808         struct igb_adapter *adapter = netdev_priv(netdev);
4809         struct pci_dev *pdev = adapter->pdev;
4810         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4811
4812         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4813                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4814                 return -EINVAL;
4815         }
4816
4817 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4818         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4819                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4820                 return -EINVAL;
4821         }
4822
4823         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4824                 msleep(1);
4825
4826         /* igb_down has a dependency on max_frame_size */
4827         adapter->max_frame_size = max_frame;
4828
4829         if (netif_running(netdev))
4830                 igb_down(adapter);
4831
4832         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4833                  netdev->mtu, new_mtu);
4834         netdev->mtu = new_mtu;
4835
4836         if (netif_running(netdev))
4837                 igb_up(adapter);
4838         else
4839                 igb_reset(adapter);
4840
4841         clear_bit(__IGB_RESETTING, &adapter->state);
4842
4843         return 0;
4844 }
4845
4846 /**
4847  *  igb_update_stats - Update the board statistics counters
4848  *  @adapter: board private structure
4849  **/
4850 void igb_update_stats(struct igb_adapter *adapter,
4851                       struct rtnl_link_stats64 *net_stats)
4852 {
4853         struct e1000_hw *hw = &adapter->hw;
4854         struct pci_dev *pdev = adapter->pdev;
4855         u32 reg, mpc;
4856         u16 phy_tmp;
4857         int i;
4858         u64 bytes, packets;
4859         unsigned int start;
4860         u64 _bytes, _packets;
4861
4862 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4863
4864         /* Prevent stats update while adapter is being reset, or if the pci
4865          * connection is down.
4866          */
4867         if (adapter->link_speed == 0)
4868                 return;
4869         if (pci_channel_offline(pdev))
4870                 return;
4871
4872         bytes = 0;
4873         packets = 0;
4874         for (i = 0; i < adapter->num_rx_queues; i++) {
4875                 u32 rqdpc = rd32(E1000_RQDPC(i));
4876                 struct igb_ring *ring = adapter->rx_ring[i];
4877
4878                 if (rqdpc) {
4879                         ring->rx_stats.drops += rqdpc;
4880                         net_stats->rx_fifo_errors += rqdpc;
4881                 }
4882
4883                 do {
4884                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4885                         _bytes = ring->rx_stats.bytes;
4886                         _packets = ring->rx_stats.packets;
4887                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4888                 bytes += _bytes;
4889                 packets += _packets;
4890         }
4891
4892         net_stats->rx_bytes = bytes;
4893         net_stats->rx_packets = packets;
4894
4895         bytes = 0;
4896         packets = 0;
4897         for (i = 0; i < adapter->num_tx_queues; i++) {
4898                 struct igb_ring *ring = adapter->tx_ring[i];
4899                 do {
4900                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4901                         _bytes = ring->tx_stats.bytes;
4902                         _packets = ring->tx_stats.packets;
4903                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4904                 bytes += _bytes;
4905                 packets += _packets;
4906         }
4907         net_stats->tx_bytes = bytes;
4908         net_stats->tx_packets = packets;
4909
4910         /* read stats registers */
4911         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4912         adapter->stats.gprc += rd32(E1000_GPRC);
4913         adapter->stats.gorc += rd32(E1000_GORCL);
4914         rd32(E1000_GORCH); /* clear GORCL */
4915         adapter->stats.bprc += rd32(E1000_BPRC);
4916         adapter->stats.mprc += rd32(E1000_MPRC);
4917         adapter->stats.roc += rd32(E1000_ROC);
4918
4919         adapter->stats.prc64 += rd32(E1000_PRC64);
4920         adapter->stats.prc127 += rd32(E1000_PRC127);
4921         adapter->stats.prc255 += rd32(E1000_PRC255);
4922         adapter->stats.prc511 += rd32(E1000_PRC511);
4923         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4924         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4925         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4926         adapter->stats.sec += rd32(E1000_SEC);
4927
4928         mpc = rd32(E1000_MPC);
4929         adapter->stats.mpc += mpc;
4930         net_stats->rx_fifo_errors += mpc;
4931         adapter->stats.scc += rd32(E1000_SCC);
4932         adapter->stats.ecol += rd32(E1000_ECOL);
4933         adapter->stats.mcc += rd32(E1000_MCC);
4934         adapter->stats.latecol += rd32(E1000_LATECOL);
4935         adapter->stats.dc += rd32(E1000_DC);
4936         adapter->stats.rlec += rd32(E1000_RLEC);
4937         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4938         adapter->stats.xontxc += rd32(E1000_XONTXC);
4939         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4940         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4941         adapter->stats.fcruc += rd32(E1000_FCRUC);
4942         adapter->stats.gptc += rd32(E1000_GPTC);
4943         adapter->stats.gotc += rd32(E1000_GOTCL);
4944         rd32(E1000_GOTCH); /* clear GOTCL */
4945         adapter->stats.rnbc += rd32(E1000_RNBC);
4946         adapter->stats.ruc += rd32(E1000_RUC);
4947         adapter->stats.rfc += rd32(E1000_RFC);
4948         adapter->stats.rjc += rd32(E1000_RJC);
4949         adapter->stats.tor += rd32(E1000_TORH);
4950         adapter->stats.tot += rd32(E1000_TOTH);
4951         adapter->stats.tpr += rd32(E1000_TPR);
4952
4953         adapter->stats.ptc64 += rd32(E1000_PTC64);
4954         adapter->stats.ptc127 += rd32(E1000_PTC127);
4955         adapter->stats.ptc255 += rd32(E1000_PTC255);
4956         adapter->stats.ptc511 += rd32(E1000_PTC511);
4957         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4958         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4959
4960         adapter->stats.mptc += rd32(E1000_MPTC);
4961         adapter->stats.bptc += rd32(E1000_BPTC);
4962
4963         adapter->stats.tpt += rd32(E1000_TPT);
4964         adapter->stats.colc += rd32(E1000_COLC);
4965
4966         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4967         /* read internal phy specific stats */
4968         reg = rd32(E1000_CTRL_EXT);
4969         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4970                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4971
4972                 /* this stat has invalid values on i210/i211 */
4973                 if ((hw->mac.type != e1000_i210) &&
4974                     (hw->mac.type != e1000_i211))
4975                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4976         }
4977
4978         adapter->stats.tsctc += rd32(E1000_TSCTC);
4979         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4980
4981         adapter->stats.iac += rd32(E1000_IAC);
4982         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4983         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4984         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4985         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4986         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4987         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4988         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4989         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4990
4991         /* Fill out the OS statistics structure */
4992         net_stats->multicast = adapter->stats.mprc;
4993         net_stats->collisions = adapter->stats.colc;
4994
4995         /* Rx Errors */
4996
4997         /* RLEC on some newer hardware can be incorrect so build
4998          * our own version based on RUC and ROC
4999          */
5000         net_stats->rx_errors = adapter->stats.rxerrc +
5001                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5002                 adapter->stats.ruc + adapter->stats.roc +
5003                 adapter->stats.cexterr;
5004         net_stats->rx_length_errors = adapter->stats.ruc +
5005                                       adapter->stats.roc;
5006         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5007         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5008         net_stats->rx_missed_errors = adapter->stats.mpc;
5009
5010         /* Tx Errors */
5011         net_stats->tx_errors = adapter->stats.ecol +
5012                                adapter->stats.latecol;
5013         net_stats->tx_aborted_errors = adapter->stats.ecol;
5014         net_stats->tx_window_errors = adapter->stats.latecol;
5015         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5016
5017         /* Tx Dropped needs to be maintained elsewhere */
5018
5019         /* Phy Stats */
5020         if (hw->phy.media_type == e1000_media_type_copper) {
5021                 if ((adapter->link_speed == SPEED_1000) &&
5022                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5023                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5024                         adapter->phy_stats.idle_errors += phy_tmp;
5025                 }
5026         }
5027
5028         /* Management Stats */
5029         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5030         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5031         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5032
5033         /* OS2BMC Stats */
5034         reg = rd32(E1000_MANC);
5035         if (reg & E1000_MANC_EN_BMC2OS) {
5036                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5037                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5038                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5039                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5040         }
5041 }
5042
5043 static irqreturn_t igb_msix_other(int irq, void *data)
5044 {
5045         struct igb_adapter *adapter = data;
5046         struct e1000_hw *hw = &adapter->hw;
5047         u32 icr = rd32(E1000_ICR);
5048         /* reading ICR causes bit 31 of EICR to be cleared */
5049
5050         if (icr & E1000_ICR_DRSTA)
5051                 schedule_work(&adapter->reset_task);
5052
5053         if (icr & E1000_ICR_DOUTSYNC) {
5054                 /* HW is reporting DMA is out of sync */
5055                 adapter->stats.doosync++;
5056                 /* The DMA Out of Sync is also indication of a spoof event
5057                  * in IOV mode. Check the Wrong VM Behavior register to
5058                  * see if it is really a spoof event.
5059                  */
5060                 igb_check_wvbr(adapter);
5061         }
5062
5063         /* Check for a mailbox event */
5064         if (icr & E1000_ICR_VMMB)
5065                 igb_msg_task(adapter);
5066
5067         if (icr & E1000_ICR_LSC) {
5068                 hw->mac.get_link_status = 1;
5069                 /* guard against interrupt when we're going down */
5070                 if (!test_bit(__IGB_DOWN, &adapter->state))
5071                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5072         }
5073
5074         if (icr & E1000_ICR_TS) {
5075                 u32 tsicr = rd32(E1000_TSICR);
5076
5077                 if (tsicr & E1000_TSICR_TXTS) {
5078                         /* acknowledge the interrupt */
5079                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5080                         /* retrieve hardware timestamp */
5081                         schedule_work(&adapter->ptp_tx_work);
5082                 }
5083         }
5084
5085         wr32(E1000_EIMS, adapter->eims_other);
5086
5087         return IRQ_HANDLED;
5088 }
5089
5090 static void igb_write_itr(struct igb_q_vector *q_vector)
5091 {
5092         struct igb_adapter *adapter = q_vector->adapter;
5093         u32 itr_val = q_vector->itr_val & 0x7FFC;
5094
5095         if (!q_vector->set_itr)
5096                 return;
5097
5098         if (!itr_val)
5099                 itr_val = 0x4;
5100
5101         if (adapter->hw.mac.type == e1000_82575)
5102                 itr_val |= itr_val << 16;
5103         else
5104                 itr_val |= E1000_EITR_CNT_IGNR;
5105
5106         writel(itr_val, q_vector->itr_register);
5107         q_vector->set_itr = 0;
5108 }
5109
5110 static irqreturn_t igb_msix_ring(int irq, void *data)
5111 {
5112         struct igb_q_vector *q_vector = data;
5113
5114         /* Write the ITR value calculated from the previous interrupt. */
5115         igb_write_itr(q_vector);
5116
5117         napi_schedule(&q_vector->napi);
5118
5119         return IRQ_HANDLED;
5120 }
5121
5122 #ifdef CONFIG_IGB_DCA
5123 static void igb_update_tx_dca(struct igb_adapter *adapter,
5124                               struct igb_ring *tx_ring,
5125                               int cpu)
5126 {
5127         struct e1000_hw *hw = &adapter->hw;
5128         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5129
5130         if (hw->mac.type != e1000_82575)
5131                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5132
5133         /* We can enable relaxed ordering for reads, but not writes when
5134          * DCA is enabled.  This is due to a known issue in some chipsets
5135          * which will cause the DCA tag to be cleared.
5136          */
5137         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5138                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5139                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5140
5141         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5142 }
5143
5144 static void igb_update_rx_dca(struct igb_adapter *adapter,
5145                               struct igb_ring *rx_ring,
5146                               int cpu)
5147 {
5148         struct e1000_hw *hw = &adapter->hw;
5149         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5150
5151         if (hw->mac.type != e1000_82575)
5152                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5153
5154         /* We can enable relaxed ordering for reads, but not writes when
5155          * DCA is enabled.  This is due to a known issue in some chipsets
5156          * which will cause the DCA tag to be cleared.
5157          */
5158         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5159                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5160
5161         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5162 }
5163
5164 static void igb_update_dca(struct igb_q_vector *q_vector)
5165 {
5166         struct igb_adapter *adapter = q_vector->adapter;
5167         int cpu = get_cpu();
5168
5169         if (q_vector->cpu == cpu)
5170                 goto out_no_update;
5171
5172         if (q_vector->tx.ring)
5173                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5174
5175         if (q_vector->rx.ring)
5176                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5177
5178         q_vector->cpu = cpu;
5179 out_no_update:
5180         put_cpu();
5181 }
5182
5183 static void igb_setup_dca(struct igb_adapter *adapter)
5184 {
5185         struct e1000_hw *hw = &adapter->hw;
5186         int i;
5187
5188         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5189                 return;
5190
5191         /* Always use CB2 mode, difference is masked in the CB driver. */
5192         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5193
5194         for (i = 0; i < adapter->num_q_vectors; i++) {
5195                 adapter->q_vector[i]->cpu = -1;
5196                 igb_update_dca(adapter->q_vector[i]);
5197         }
5198 }
5199
5200 static int __igb_notify_dca(struct device *dev, void *data)
5201 {
5202         struct net_device *netdev = dev_get_drvdata(dev);
5203         struct igb_adapter *adapter = netdev_priv(netdev);
5204         struct pci_dev *pdev = adapter->pdev;
5205         struct e1000_hw *hw = &adapter->hw;
5206         unsigned long event = *(unsigned long *)data;
5207
5208         switch (event) {
5209         case DCA_PROVIDER_ADD:
5210                 /* if already enabled, don't do it again */
5211                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5212                         break;
5213                 if (dca_add_requester(dev) == 0) {
5214                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5215                         dev_info(&pdev->dev, "DCA enabled\n");
5216                         igb_setup_dca(adapter);
5217                         break;
5218                 }
5219                 /* Fall Through since DCA is disabled. */
5220         case DCA_PROVIDER_REMOVE:
5221                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5222                         /* without this a class_device is left
5223                          * hanging around in the sysfs model
5224                          */
5225                         dca_remove_requester(dev);
5226                         dev_info(&pdev->dev, "DCA disabled\n");
5227                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5228                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5229                 }
5230                 break;
5231         }
5232
5233         return 0;
5234 }
5235
5236 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5237                           void *p)
5238 {
5239         int ret_val;
5240
5241         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5242                                          __igb_notify_dca);
5243
5244         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5245 }
5246 #endif /* CONFIG_IGB_DCA */
5247
5248 #ifdef CONFIG_PCI_IOV
5249 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5250 {
5251         unsigned char mac_addr[ETH_ALEN];
5252
5253         eth_zero_addr(mac_addr);
5254         igb_set_vf_mac(adapter, vf, mac_addr);
5255
5256         /* By default spoof check is enabled for all VFs */
5257         adapter->vf_data[vf].spoofchk_enabled = true;
5258
5259         return 0;
5260 }
5261
5262 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5263 {
5264         struct pci_dev *pdev = adapter->pdev;
5265         struct pci_dev *vfdev;
5266         int dev_id;
5267
5268         switch (adapter->hw.mac.type) {
5269         case e1000_82576:
5270                 dev_id = IGB_82576_VF_DEV_ID;
5271                 break;
5272         case e1000_i350:
5273                 dev_id = IGB_I350_VF_DEV_ID;
5274                 break;
5275         default:
5276                 return false;
5277         }
5278
5279         /* loop through all the VFs to see if we own any that are assigned */
5280         vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5281         while (vfdev) {
5282                 /* if we don't own it we don't care */
5283                 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5284                         /* if it is assigned we cannot release it */
5285                         if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5286                                 return true;
5287                 }
5288
5289                 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5290         }
5291
5292         return false;
5293 }
5294
5295 #endif
5296 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5297 {
5298         struct e1000_hw *hw = &adapter->hw;
5299         u32 ping;
5300         int i;
5301
5302         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5303                 ping = E1000_PF_CONTROL_MSG;
5304                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5305                         ping |= E1000_VT_MSGTYPE_CTS;
5306                 igb_write_mbx(hw, &ping, 1, i);
5307         }
5308 }
5309
5310 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5311 {
5312         struct e1000_hw *hw = &adapter->hw;
5313         u32 vmolr = rd32(E1000_VMOLR(vf));
5314         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315
5316         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5317                             IGB_VF_FLAG_MULTI_PROMISC);
5318         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5319
5320         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5321                 vmolr |= E1000_VMOLR_MPME;
5322                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5323                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5324         } else {
5325                 /* if we have hashes and we are clearing a multicast promisc
5326                  * flag we need to write the hashes to the MTA as this step
5327                  * was previously skipped
5328                  */
5329                 if (vf_data->num_vf_mc_hashes > 30) {
5330                         vmolr |= E1000_VMOLR_MPME;
5331                 } else if (vf_data->num_vf_mc_hashes) {
5332                         int j;
5333                         vmolr |= E1000_VMOLR_ROMPE;
5334                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5335                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5336                 }
5337         }
5338
5339         wr32(E1000_VMOLR(vf), vmolr);
5340
5341         /* there are flags left unprocessed, likely not supported */
5342         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5343                 return -EINVAL;
5344
5345         return 0;
5346 }
5347
5348 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5349                                   u32 *msgbuf, u32 vf)
5350 {
5351         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5352         u16 *hash_list = (u16 *)&msgbuf[1];
5353         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5354         int i;
5355
5356         /* salt away the number of multicast addresses assigned
5357          * to this VF for later use to restore when the PF multi cast
5358          * list changes
5359          */
5360         vf_data->num_vf_mc_hashes = n;
5361
5362         /* only up to 30 hash values supported */
5363         if (n > 30)
5364                 n = 30;
5365
5366         /* store the hashes for later use */
5367         for (i = 0; i < n; i++)
5368                 vf_data->vf_mc_hashes[i] = hash_list[i];
5369
5370         /* Flush and reset the mta with the new values */
5371         igb_set_rx_mode(adapter->netdev);
5372
5373         return 0;
5374 }
5375
5376 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5377 {
5378         struct e1000_hw *hw = &adapter->hw;
5379         struct vf_data_storage *vf_data;
5380         int i, j;
5381
5382         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5383                 u32 vmolr = rd32(E1000_VMOLR(i));
5384                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5385
5386                 vf_data = &adapter->vf_data[i];
5387
5388                 if ((vf_data->num_vf_mc_hashes > 30) ||
5389                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5390                         vmolr |= E1000_VMOLR_MPME;
5391                 } else if (vf_data->num_vf_mc_hashes) {
5392                         vmolr |= E1000_VMOLR_ROMPE;
5393                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5394                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5395                 }
5396                 wr32(E1000_VMOLR(i), vmolr);
5397         }
5398 }
5399
5400 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5401 {
5402         struct e1000_hw *hw = &adapter->hw;
5403         u32 pool_mask, reg, vid;
5404         int i;
5405
5406         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5407
5408         /* Find the vlan filter for this id */
5409         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5410                 reg = rd32(E1000_VLVF(i));
5411
5412                 /* remove the vf from the pool */
5413                 reg &= ~pool_mask;
5414
5415                 /* if pool is empty then remove entry from vfta */
5416                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5417                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5418                         reg = 0;
5419                         vid = reg & E1000_VLVF_VLANID_MASK;
5420                         igb_vfta_set(hw, vid, false);
5421                 }
5422
5423                 wr32(E1000_VLVF(i), reg);
5424         }
5425
5426         adapter->vf_data[vf].vlans_enabled = 0;
5427 }
5428
5429 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5430 {
5431         struct e1000_hw *hw = &adapter->hw;
5432         u32 reg, i;
5433
5434         /* The vlvf table only exists on 82576 hardware and newer */
5435         if (hw->mac.type < e1000_82576)
5436                 return -1;
5437
5438         /* we only need to do this if VMDq is enabled */
5439         if (!adapter->vfs_allocated_count)
5440                 return -1;
5441
5442         /* Find the vlan filter for this id */
5443         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5444                 reg = rd32(E1000_VLVF(i));
5445                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5446                     vid == (reg & E1000_VLVF_VLANID_MASK))
5447                         break;
5448         }
5449
5450         if (add) {
5451                 if (i == E1000_VLVF_ARRAY_SIZE) {
5452                         /* Did not find a matching VLAN ID entry that was
5453                          * enabled.  Search for a free filter entry, i.e.
5454                          * one without the enable bit set
5455                          */
5456                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5457                                 reg = rd32(E1000_VLVF(i));
5458                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5459                                         break;
5460                         }
5461                 }
5462                 if (i < E1000_VLVF_ARRAY_SIZE) {
5463                         /* Found an enabled/available entry */
5464                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5465
5466                         /* if !enabled we need to set this up in vfta */
5467                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5468                                 /* add VID to filter table */
5469                                 igb_vfta_set(hw, vid, true);
5470                                 reg |= E1000_VLVF_VLANID_ENABLE;
5471                         }
5472                         reg &= ~E1000_VLVF_VLANID_MASK;
5473                         reg |= vid;
5474                         wr32(E1000_VLVF(i), reg);
5475
5476                         /* do not modify RLPML for PF devices */
5477                         if (vf >= adapter->vfs_allocated_count)
5478                                 return 0;
5479
5480                         if (!adapter->vf_data[vf].vlans_enabled) {
5481                                 u32 size;
5482                                 reg = rd32(E1000_VMOLR(vf));
5483                                 size = reg & E1000_VMOLR_RLPML_MASK;
5484                                 size += 4;
5485                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5486                                 reg |= size;
5487                                 wr32(E1000_VMOLR(vf), reg);
5488                         }
5489
5490                         adapter->vf_data[vf].vlans_enabled++;
5491                 }
5492         } else {
5493                 if (i < E1000_VLVF_ARRAY_SIZE) {
5494                         /* remove vf from the pool */
5495                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5496                         /* if pool is empty then remove entry from vfta */
5497                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5498                                 reg = 0;
5499                                 igb_vfta_set(hw, vid, false);
5500                         }
5501                         wr32(E1000_VLVF(i), reg);
5502
5503                         /* do not modify RLPML for PF devices */
5504                         if (vf >= adapter->vfs_allocated_count)
5505                                 return 0;
5506
5507                         adapter->vf_data[vf].vlans_enabled--;
5508                         if (!adapter->vf_data[vf].vlans_enabled) {
5509                                 u32 size;
5510                                 reg = rd32(E1000_VMOLR(vf));
5511                                 size = reg & E1000_VMOLR_RLPML_MASK;
5512                                 size -= 4;
5513                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5514                                 reg |= size;
5515                                 wr32(E1000_VMOLR(vf), reg);
5516                         }
5517                 }
5518         }
5519         return 0;
5520 }
5521
5522 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5523 {
5524         struct e1000_hw *hw = &adapter->hw;
5525
5526         if (vid)
5527                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5528         else
5529                 wr32(E1000_VMVIR(vf), 0);
5530 }
5531
5532 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5533                                int vf, u16 vlan, u8 qos)
5534 {
5535         int err = 0;
5536         struct igb_adapter *adapter = netdev_priv(netdev);
5537
5538         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5539                 return -EINVAL;
5540         if (vlan || qos) {
5541                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5542                 if (err)
5543                         goto out;
5544                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5545                 igb_set_vmolr(adapter, vf, !vlan);
5546                 adapter->vf_data[vf].pf_vlan = vlan;
5547                 adapter->vf_data[vf].pf_qos = qos;
5548                 dev_info(&adapter->pdev->dev,
5549                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5550                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5551                         dev_warn(&adapter->pdev->dev,
5552                                  "The VF VLAN has been set, but the PF device is not up.\n");
5553                         dev_warn(&adapter->pdev->dev,
5554                                  "Bring the PF device up before attempting to use the VF device.\n");
5555                 }
5556         } else {
5557                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5558                              false, vf);
5559                 igb_set_vmvir(adapter, vlan, vf);
5560                 igb_set_vmolr(adapter, vf, true);
5561                 adapter->vf_data[vf].pf_vlan = 0;
5562                 adapter->vf_data[vf].pf_qos = 0;
5563         }
5564 out:
5565         return err;
5566 }
5567
5568 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5569 {
5570         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5571         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5572
5573         return igb_vlvf_set(adapter, vid, add, vf);
5574 }
5575
5576 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5577 {
5578         /* clear flags - except flag that indicates PF has set the MAC */
5579         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5580         adapter->vf_data[vf].last_nack = jiffies;
5581
5582         /* reset offloads to defaults */
5583         igb_set_vmolr(adapter, vf, true);
5584
5585         /* reset vlans for device */
5586         igb_clear_vf_vfta(adapter, vf);
5587         if (adapter->vf_data[vf].pf_vlan)
5588                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5589                                     adapter->vf_data[vf].pf_vlan,
5590                                     adapter->vf_data[vf].pf_qos);
5591         else
5592                 igb_clear_vf_vfta(adapter, vf);
5593
5594         /* reset multicast table array for vf */
5595         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5596
5597         /* Flush and reset the mta with the new values */
5598         igb_set_rx_mode(adapter->netdev);
5599 }
5600
5601 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5602 {
5603         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5604
5605         /* clear mac address as we were hotplug removed/added */
5606         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5607                 eth_zero_addr(vf_mac);
5608
5609         /* process remaining reset events */
5610         igb_vf_reset(adapter, vf);
5611 }
5612
5613 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5614 {
5615         struct e1000_hw *hw = &adapter->hw;
5616         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5617         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5618         u32 reg, msgbuf[3];
5619         u8 *addr = (u8 *)(&msgbuf[1]);
5620
5621         /* process all the same items cleared in a function level reset */
5622         igb_vf_reset(adapter, vf);
5623
5624         /* set vf mac address */
5625         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5626
5627         /* enable transmit and receive for vf */
5628         reg = rd32(E1000_VFTE);
5629         wr32(E1000_VFTE, reg | (1 << vf));
5630         reg = rd32(E1000_VFRE);
5631         wr32(E1000_VFRE, reg | (1 << vf));
5632
5633         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5634
5635         /* reply to reset with ack and vf mac address */
5636         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5637         memcpy(addr, vf_mac, 6);
5638         igb_write_mbx(hw, msgbuf, 3, vf);
5639 }
5640
5641 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5642 {
5643         /* The VF MAC Address is stored in a packed array of bytes
5644          * starting at the second 32 bit word of the msg array
5645          */
5646         unsigned char *addr = (char *)&msg[1];
5647         int err = -1;
5648
5649         if (is_valid_ether_addr(addr))
5650                 err = igb_set_vf_mac(adapter, vf, addr);
5651
5652         return err;
5653 }
5654
5655 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5656 {
5657         struct e1000_hw *hw = &adapter->hw;
5658         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5659         u32 msg = E1000_VT_MSGTYPE_NACK;
5660
5661         /* if device isn't clear to send it shouldn't be reading either */
5662         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5663             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5664                 igb_write_mbx(hw, &msg, 1, vf);
5665                 vf_data->last_nack = jiffies;
5666         }
5667 }
5668
5669 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5670 {
5671         struct pci_dev *pdev = adapter->pdev;
5672         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5673         struct e1000_hw *hw = &adapter->hw;
5674         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675         s32 retval;
5676
5677         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5678
5679         if (retval) {
5680                 /* if receive failed revoke VF CTS stats and restart init */
5681                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5682                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5683                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5684                         return;
5685                 goto out;
5686         }
5687
5688         /* this is a message we already processed, do nothing */
5689         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5690                 return;
5691
5692         /* until the vf completes a reset it should not be
5693          * allowed to start any configuration.
5694          */
5695         if (msgbuf[0] == E1000_VF_RESET) {
5696                 igb_vf_reset_msg(adapter, vf);
5697                 return;
5698         }
5699
5700         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5701                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5702                         return;
5703                 retval = -1;
5704                 goto out;
5705         }
5706
5707         switch ((msgbuf[0] & 0xFFFF)) {
5708         case E1000_VF_SET_MAC_ADDR:
5709                 retval = -EINVAL;
5710                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5711                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5712                 else
5713                         dev_warn(&pdev->dev,
5714                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5715                                  vf);
5716                 break;
5717         case E1000_VF_SET_PROMISC:
5718                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5719                 break;
5720         case E1000_VF_SET_MULTICAST:
5721                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5722                 break;
5723         case E1000_VF_SET_LPE:
5724                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5725                 break;
5726         case E1000_VF_SET_VLAN:
5727                 retval = -1;
5728                 if (vf_data->pf_vlan)
5729                         dev_warn(&pdev->dev,
5730                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5731                                  vf);
5732                 else
5733                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5734                 break;
5735         default:
5736                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5737                 retval = -1;
5738                 break;
5739         }
5740
5741         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5742 out:
5743         /* notify the VF of the results of what it sent us */
5744         if (retval)
5745                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5746         else
5747                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5748
5749         igb_write_mbx(hw, msgbuf, 1, vf);
5750 }
5751
5752 static void igb_msg_task(struct igb_adapter *adapter)
5753 {
5754         struct e1000_hw *hw = &adapter->hw;
5755         u32 vf;
5756
5757         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5758                 /* process any reset requests */
5759                 if (!igb_check_for_rst(hw, vf))
5760                         igb_vf_reset_event(adapter, vf);
5761
5762                 /* process any messages pending */
5763                 if (!igb_check_for_msg(hw, vf))
5764                         igb_rcv_msg_from_vf(adapter, vf);
5765
5766                 /* process any acks */
5767                 if (!igb_check_for_ack(hw, vf))
5768                         igb_rcv_ack_from_vf(adapter, vf);
5769         }
5770 }
5771
5772 /**
5773  *  igb_set_uta - Set unicast filter table address
5774  *  @adapter: board private structure
5775  *
5776  *  The unicast table address is a register array of 32-bit registers.
5777  *  The table is meant to be used in a way similar to how the MTA is used
5778  *  however due to certain limitations in the hardware it is necessary to
5779  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5780  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5781  **/
5782 static void igb_set_uta(struct igb_adapter *adapter)
5783 {
5784         struct e1000_hw *hw = &adapter->hw;
5785         int i;
5786
5787         /* The UTA table only exists on 82576 hardware and newer */
5788         if (hw->mac.type < e1000_82576)
5789                 return;
5790
5791         /* we only need to do this if VMDq is enabled */
5792         if (!adapter->vfs_allocated_count)
5793                 return;
5794
5795         for (i = 0; i < hw->mac.uta_reg_count; i++)
5796                 array_wr32(E1000_UTA, i, ~0);
5797 }
5798
5799 /**
5800  *  igb_intr_msi - Interrupt Handler
5801  *  @irq: interrupt number
5802  *  @data: pointer to a network interface device structure
5803  **/
5804 static irqreturn_t igb_intr_msi(int irq, void *data)
5805 {
5806         struct igb_adapter *adapter = data;
5807         struct igb_q_vector *q_vector = adapter->q_vector[0];
5808         struct e1000_hw *hw = &adapter->hw;
5809         /* read ICR disables interrupts using IAM */
5810         u32 icr = rd32(E1000_ICR);
5811
5812         igb_write_itr(q_vector);
5813
5814         if (icr & E1000_ICR_DRSTA)
5815                 schedule_work(&adapter->reset_task);
5816
5817         if (icr & E1000_ICR_DOUTSYNC) {
5818                 /* HW is reporting DMA is out of sync */
5819                 adapter->stats.doosync++;
5820         }
5821
5822         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5823                 hw->mac.get_link_status = 1;
5824                 if (!test_bit(__IGB_DOWN, &adapter->state))
5825                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5826         }
5827
5828         if (icr & E1000_ICR_TS) {
5829                 u32 tsicr = rd32(E1000_TSICR);
5830
5831                 if (tsicr & E1000_TSICR_TXTS) {
5832                         /* acknowledge the interrupt */
5833                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5834                         /* retrieve hardware timestamp */
5835                         schedule_work(&adapter->ptp_tx_work);
5836                 }
5837         }
5838
5839         napi_schedule(&q_vector->napi);
5840
5841         return IRQ_HANDLED;
5842 }
5843
5844 /**
5845  *  igb_intr - Legacy Interrupt Handler
5846  *  @irq: interrupt number
5847  *  @data: pointer to a network interface device structure
5848  **/
5849 static irqreturn_t igb_intr(int irq, void *data)
5850 {
5851         struct igb_adapter *adapter = data;
5852         struct igb_q_vector *q_vector = adapter->q_vector[0];
5853         struct e1000_hw *hw = &adapter->hw;
5854         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5855          * need for the IMC write
5856          */
5857         u32 icr = rd32(E1000_ICR);
5858
5859         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5860          * not set, then the adapter didn't send an interrupt
5861          */
5862         if (!(icr & E1000_ICR_INT_ASSERTED))
5863                 return IRQ_NONE;
5864
5865         igb_write_itr(q_vector);
5866
5867         if (icr & E1000_ICR_DRSTA)
5868                 schedule_work(&adapter->reset_task);
5869
5870         if (icr & E1000_ICR_DOUTSYNC) {
5871                 /* HW is reporting DMA is out of sync */
5872                 adapter->stats.doosync++;
5873         }
5874
5875         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5876                 hw->mac.get_link_status = 1;
5877                 /* guard against interrupt when we're going down */
5878                 if (!test_bit(__IGB_DOWN, &adapter->state))
5879                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5880         }
5881
5882         if (icr & E1000_ICR_TS) {
5883                 u32 tsicr = rd32(E1000_TSICR);
5884
5885                 if (tsicr & E1000_TSICR_TXTS) {
5886                         /* acknowledge the interrupt */
5887                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5888                         /* retrieve hardware timestamp */
5889                         schedule_work(&adapter->ptp_tx_work);
5890                 }
5891         }
5892
5893         napi_schedule(&q_vector->napi);
5894
5895         return IRQ_HANDLED;
5896 }
5897
5898 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5899 {
5900         struct igb_adapter *adapter = q_vector->adapter;
5901         struct e1000_hw *hw = &adapter->hw;
5902
5903         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5904             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5905                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5906                         igb_set_itr(q_vector);
5907                 else
5908                         igb_update_ring_itr(q_vector);
5909         }
5910
5911         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5912                 if (adapter->msix_entries)
5913                         wr32(E1000_EIMS, q_vector->eims_value);
5914                 else
5915                         igb_irq_enable(adapter);
5916         }
5917 }
5918
5919 /**
5920  *  igb_poll - NAPI Rx polling callback
5921  *  @napi: napi polling structure
5922  *  @budget: count of how many packets we should handle
5923  **/
5924 static int igb_poll(struct napi_struct *napi, int budget)
5925 {
5926         struct igb_q_vector *q_vector = container_of(napi,
5927                                                      struct igb_q_vector,
5928                                                      napi);
5929         bool clean_complete = true;
5930
5931 #ifdef CONFIG_IGB_DCA
5932         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5933                 igb_update_dca(q_vector);
5934 #endif
5935         if (q_vector->tx.ring)
5936                 clean_complete = igb_clean_tx_irq(q_vector);
5937
5938         if (q_vector->rx.ring)
5939                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5940
5941         /* If all work not completed, return budget and keep polling */
5942         if (!clean_complete)
5943                 return budget;
5944
5945         /* If not enough Rx work done, exit the polling mode */
5946         napi_complete(napi);
5947         igb_ring_irq_enable(q_vector);
5948
5949         return 0;
5950 }
5951
5952 /**
5953  *  igb_clean_tx_irq - Reclaim resources after transmit completes
5954  *  @q_vector: pointer to q_vector containing needed info
5955  *
5956  *  returns true if ring is completely cleaned
5957  **/
5958 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5959 {
5960         struct igb_adapter *adapter = q_vector->adapter;
5961         struct igb_ring *tx_ring = q_vector->tx.ring;
5962         struct igb_tx_buffer *tx_buffer;
5963         union e1000_adv_tx_desc *tx_desc;
5964         unsigned int total_bytes = 0, total_packets = 0;
5965         unsigned int budget = q_vector->tx.work_limit;
5966         unsigned int i = tx_ring->next_to_clean;
5967
5968         if (test_bit(__IGB_DOWN, &adapter->state))
5969                 return true;
5970
5971         tx_buffer = &tx_ring->tx_buffer_info[i];
5972         tx_desc = IGB_TX_DESC(tx_ring, i);
5973         i -= tx_ring->count;
5974
5975         do {
5976                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5977
5978                 /* if next_to_watch is not set then there is no work pending */
5979                 if (!eop_desc)
5980                         break;
5981
5982                 /* prevent any other reads prior to eop_desc */
5983                 read_barrier_depends();
5984
5985                 /* if DD is not set pending work has not been completed */
5986                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5987                         break;
5988
5989                 /* clear next_to_watch to prevent false hangs */
5990                 tx_buffer->next_to_watch = NULL;
5991
5992                 /* update the statistics for this packet */
5993                 total_bytes += tx_buffer->bytecount;
5994                 total_packets += tx_buffer->gso_segs;
5995
5996                 /* free the skb */
5997                 dev_kfree_skb_any(tx_buffer->skb);
5998
5999                 /* unmap skb header data */
6000                 dma_unmap_single(tx_ring->dev,
6001                                  dma_unmap_addr(tx_buffer, dma),
6002                                  dma_unmap_len(tx_buffer, len),
6003                                  DMA_TO_DEVICE);
6004
6005                 /* clear tx_buffer data */
6006                 tx_buffer->skb = NULL;
6007                 dma_unmap_len_set(tx_buffer, len, 0);
6008
6009                 /* clear last DMA location and unmap remaining buffers */
6010                 while (tx_desc != eop_desc) {
6011                         tx_buffer++;
6012                         tx_desc++;
6013                         i++;
6014                         if (unlikely(!i)) {
6015                                 i -= tx_ring->count;
6016                                 tx_buffer = tx_ring->tx_buffer_info;
6017                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6018                         }
6019
6020                         /* unmap any remaining paged data */
6021                         if (dma_unmap_len(tx_buffer, len)) {
6022                                 dma_unmap_page(tx_ring->dev,
6023                                                dma_unmap_addr(tx_buffer, dma),
6024                                                dma_unmap_len(tx_buffer, len),
6025                                                DMA_TO_DEVICE);
6026                                 dma_unmap_len_set(tx_buffer, len, 0);
6027                         }
6028                 }
6029
6030                 /* move us one more past the eop_desc for start of next pkt */
6031                 tx_buffer++;
6032                 tx_desc++;
6033                 i++;
6034                 if (unlikely(!i)) {
6035                         i -= tx_ring->count;
6036                         tx_buffer = tx_ring->tx_buffer_info;
6037                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6038                 }
6039
6040                 /* issue prefetch for next Tx descriptor */
6041                 prefetch(tx_desc);
6042
6043                 /* update budget accounting */
6044                 budget--;
6045         } while (likely(budget));
6046
6047         netdev_tx_completed_queue(txring_txq(tx_ring),
6048                                   total_packets, total_bytes);
6049         i += tx_ring->count;
6050         tx_ring->next_to_clean = i;
6051         u64_stats_update_begin(&tx_ring->tx_syncp);
6052         tx_ring->tx_stats.bytes += total_bytes;
6053         tx_ring->tx_stats.packets += total_packets;
6054         u64_stats_update_end(&tx_ring->tx_syncp);
6055         q_vector->tx.total_bytes += total_bytes;
6056         q_vector->tx.total_packets += total_packets;
6057
6058         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6059                 struct e1000_hw *hw = &adapter->hw;
6060
6061                 /* Detect a transmit hang in hardware, this serializes the
6062                  * check with the clearing of time_stamp and movement of i
6063                  */
6064                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6065                 if (tx_buffer->next_to_watch &&
6066                     time_after(jiffies, tx_buffer->time_stamp +
6067                                (adapter->tx_timeout_factor * HZ)) &&
6068                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6069
6070                         /* detected Tx unit hang */
6071                         dev_err(tx_ring->dev,
6072                                 "Detected Tx Unit Hang\n"
6073                                 "  Tx Queue             <%d>\n"
6074                                 "  TDH                  <%x>\n"
6075                                 "  TDT                  <%x>\n"
6076                                 "  next_to_use          <%x>\n"
6077                                 "  next_to_clean        <%x>\n"
6078                                 "buffer_info[next_to_clean]\n"
6079                                 "  time_stamp           <%lx>\n"
6080                                 "  next_to_watch        <%p>\n"
6081                                 "  jiffies              <%lx>\n"
6082                                 "  desc.status          <%x>\n",
6083                                 tx_ring->queue_index,
6084                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6085                                 readl(tx_ring->tail),
6086                                 tx_ring->next_to_use,
6087                                 tx_ring->next_to_clean,
6088                                 tx_buffer->time_stamp,
6089                                 tx_buffer->next_to_watch,
6090                                 jiffies,
6091                                 tx_buffer->next_to_watch->wb.status);
6092                         netif_stop_subqueue(tx_ring->netdev,
6093                                             tx_ring->queue_index);
6094
6095                         /* we are about to reset, no point in enabling stuff */
6096                         return true;
6097                 }
6098         }
6099
6100 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6101         if (unlikely(total_packets &&
6102             netif_carrier_ok(tx_ring->netdev) &&
6103             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6104                 /* Make sure that anybody stopping the queue after this
6105                  * sees the new next_to_clean.
6106                  */
6107                 smp_mb();
6108                 if (__netif_subqueue_stopped(tx_ring->netdev,
6109                                              tx_ring->queue_index) &&
6110                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6111                         netif_wake_subqueue(tx_ring->netdev,
6112                                             tx_ring->queue_index);
6113
6114                         u64_stats_update_begin(&tx_ring->tx_syncp);
6115                         tx_ring->tx_stats.restart_queue++;
6116                         u64_stats_update_end(&tx_ring->tx_syncp);
6117                 }
6118         }
6119
6120         return !!budget;
6121 }
6122
6123 /**
6124  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6125  *  @rx_ring: rx descriptor ring to store buffers on
6126  *  @old_buff: donor buffer to have page reused
6127  *
6128  *  Synchronizes page for reuse by the adapter
6129  **/
6130 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6131                               struct igb_rx_buffer *old_buff)
6132 {
6133         struct igb_rx_buffer *new_buff;
6134         u16 nta = rx_ring->next_to_alloc;
6135
6136         new_buff = &rx_ring->rx_buffer_info[nta];
6137
6138         /* update, and store next to alloc */
6139         nta++;
6140         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6141
6142         /* transfer page from old buffer to new buffer */
6143         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6144
6145         /* sync the buffer for use by the device */
6146         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6147                                          old_buff->page_offset,
6148                                          IGB_RX_BUFSZ,
6149                                          DMA_FROM_DEVICE);
6150 }
6151
6152 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6153                                   struct page *page,
6154                                   unsigned int truesize)
6155 {
6156         /* avoid re-using remote pages */
6157         if (unlikely(page_to_nid(page) != numa_node_id()))
6158                 return false;
6159
6160 #if (PAGE_SIZE < 8192)
6161         /* if we are only owner of page we can reuse it */
6162         if (unlikely(page_count(page) != 1))
6163                 return false;
6164
6165         /* flip page offset to other buffer */
6166         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6167
6168         /* since we are the only owner of the page and we need to
6169          * increment it, just set the value to 2 in order to avoid
6170          * an unnecessary locked operation
6171          */
6172         atomic_set(&page->_count, 2);
6173 #else
6174         /* move offset up to the next cache line */
6175         rx_buffer->page_offset += truesize;
6176
6177         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6178                 return false;
6179
6180         /* bump ref count on page before it is given to the stack */
6181         get_page(page);
6182 #endif
6183
6184         return true;
6185 }
6186
6187 /**
6188  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6189  *  @rx_ring: rx descriptor ring to transact packets on
6190  *  @rx_buffer: buffer containing page to add
6191  *  @rx_desc: descriptor containing length of buffer written by hardware
6192  *  @skb: sk_buff to place the data into
6193  *
6194  *  This function will add the data contained in rx_buffer->page to the skb.
6195  *  This is done either through a direct copy if the data in the buffer is
6196  *  less than the skb header size, otherwise it will just attach the page as
6197  *  a frag to the skb.
6198  *
6199  *  The function will then update the page offset if necessary and return
6200  *  true if the buffer can be reused by the adapter.
6201  **/
6202 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6203                             struct igb_rx_buffer *rx_buffer,
6204                             union e1000_adv_rx_desc *rx_desc,
6205                             struct sk_buff *skb)
6206 {
6207         struct page *page = rx_buffer->page;
6208         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6209 #if (PAGE_SIZE < 8192)
6210         unsigned int truesize = IGB_RX_BUFSZ;
6211 #else
6212         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6213 #endif
6214
6215         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6216                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6217
6218                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6219                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6220                         va += IGB_TS_HDR_LEN;
6221                         size -= IGB_TS_HDR_LEN;
6222                 }
6223
6224                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6225
6226                 /* we can reuse buffer as-is, just make sure it is local */
6227                 if (likely(page_to_nid(page) == numa_node_id()))
6228                         return true;
6229
6230                 /* this page cannot be reused so discard it */
6231                 put_page(page);
6232                 return false;
6233         }
6234
6235         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6236                         rx_buffer->page_offset, size, truesize);
6237
6238         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6239 }
6240
6241 static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6242                                            union e1000_adv_rx_desc *rx_desc)
6243 {
6244         struct igb_rx_buffer *rx_buffer;
6245         struct sk_buff *skb;
6246         struct page *page;
6247         void *page_addr;
6248         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6249 #if (PAGE_SIZE < 8192)
6250         unsigned int truesize = IGB_RX_BUFSZ;
6251 #else
6252         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6253                                 SKB_DATA_ALIGN(NET_SKB_PAD +
6254                                                NET_IP_ALIGN +
6255                                                size);
6256 #endif
6257
6258         /* If we spanned a buffer we have a huge mess so test for it */
6259         BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6260
6261         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6262         page = rx_buffer->page;
6263         prefetchw(page);
6264
6265         page_addr = page_address(page) + rx_buffer->page_offset;
6266
6267         /* prefetch first cache line of first page */
6268         prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6269 #if L1_CACHE_BYTES < 128
6270         prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6271 #endif
6272
6273         /* build an skb to around the page buffer */
6274         skb = build_skb(page_addr, truesize);
6275         if (unlikely(!skb)) {
6276                 rx_ring->rx_stats.alloc_failed++;
6277                 return NULL;
6278         }
6279
6280         /* we are reusing so sync this buffer for CPU use */
6281         dma_sync_single_range_for_cpu(rx_ring->dev,
6282                                       rx_buffer->dma,
6283                                       rx_buffer->page_offset,
6284                                       IGB_RX_BUFSZ,
6285                                       DMA_FROM_DEVICE);
6286
6287         /* update pointers within the skb to store the data */
6288         skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6289         __skb_put(skb, size);
6290
6291         /* pull timestamp out of packet data */
6292         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6294                 __skb_pull(skb, IGB_TS_HDR_LEN);
6295         }
6296
6297         if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6298                 /* hand second half of page back to the ring */
6299                 igb_reuse_rx_page(rx_ring, rx_buffer);
6300         } else {
6301                 /* we are not reusing the buffer so unmap it */
6302                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6303                                PAGE_SIZE, DMA_FROM_DEVICE);
6304         }
6305
6306         /* clear contents of buffer_info */
6307         rx_buffer->dma = 0;
6308         rx_buffer->page = NULL;
6309
6310         return skb;
6311 }
6312
6313 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6314                                            union e1000_adv_rx_desc *rx_desc,
6315                                            struct sk_buff *skb)
6316 {
6317         struct igb_rx_buffer *rx_buffer;
6318         struct page *page;
6319
6320         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6321
6322         page = rx_buffer->page;
6323         prefetchw(page);
6324
6325         if (likely(!skb)) {
6326                 void *page_addr = page_address(page) +
6327                                   rx_buffer->page_offset;
6328
6329                 /* prefetch first cache line of first page */
6330                 prefetch(page_addr);
6331 #if L1_CACHE_BYTES < 128
6332                 prefetch(page_addr + L1_CACHE_BYTES);
6333 #endif
6334
6335                 /* allocate a skb to store the frags */
6336                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6337                                                 IGB_RX_HDR_LEN);
6338                 if (unlikely(!skb)) {
6339                         rx_ring->rx_stats.alloc_failed++;
6340                         return NULL;
6341                 }
6342
6343                 /* we will be copying header into skb->data in
6344                  * pskb_may_pull so it is in our interest to prefetch
6345                  * it now to avoid a possible cache miss
6346                  */
6347                 prefetchw(skb->data);
6348         }
6349
6350         /* we are reusing so sync this buffer for CPU use */
6351         dma_sync_single_range_for_cpu(rx_ring->dev,
6352                                       rx_buffer->dma,
6353                                       rx_buffer->page_offset,
6354                                       IGB_RX_BUFSZ,
6355                                       DMA_FROM_DEVICE);
6356
6357         /* pull page into skb */
6358         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6359                 /* hand second half of page back to the ring */
6360                 igb_reuse_rx_page(rx_ring, rx_buffer);
6361         } else {
6362                 /* we are not reusing the buffer so unmap it */
6363                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6364                                PAGE_SIZE, DMA_FROM_DEVICE);
6365         }
6366
6367         /* clear contents of rx_buffer */
6368         rx_buffer->page = NULL;
6369
6370         return skb;
6371 }
6372
6373 static inline void igb_rx_checksum(struct igb_ring *ring,
6374                                    union e1000_adv_rx_desc *rx_desc,
6375                                    struct sk_buff *skb)
6376 {
6377         skb_checksum_none_assert(skb);
6378
6379         /* Ignore Checksum bit is set */
6380         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6381                 return;
6382
6383         /* Rx checksum disabled via ethtool */
6384         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6385                 return;
6386
6387         /* TCP/UDP checksum error bit is set */
6388         if (igb_test_staterr(rx_desc,
6389                              E1000_RXDEXT_STATERR_TCPE |
6390                              E1000_RXDEXT_STATERR_IPE)) {
6391                 /* work around errata with sctp packets where the TCPE aka
6392                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6393                  * packets, (aka let the stack check the crc32c)
6394                  */
6395                 if (!((skb->len == 60) &&
6396                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6397                         u64_stats_update_begin(&ring->rx_syncp);
6398                         ring->rx_stats.csum_err++;
6399                         u64_stats_update_end(&ring->rx_syncp);
6400                 }
6401                 /* let the stack verify checksum errors */
6402                 return;
6403         }
6404         /* It must be a TCP or UDP packet with a valid checksum */
6405         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6406                                       E1000_RXD_STAT_UDPCS))
6407                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6408
6409         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6410                 le32_to_cpu(rx_desc->wb.upper.status_error));
6411 }
6412
6413 static inline void igb_rx_hash(struct igb_ring *ring,
6414                                union e1000_adv_rx_desc *rx_desc,
6415                                struct sk_buff *skb)
6416 {
6417         if (ring->netdev->features & NETIF_F_RXHASH)
6418                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6419 }
6420
6421 /**
6422  *  igb_is_non_eop - process handling of non-EOP buffers
6423  *  @rx_ring: Rx ring being processed
6424  *  @rx_desc: Rx descriptor for current buffer
6425  *  @skb: current socket buffer containing buffer in progress
6426  *
6427  *  This function updates next to clean.  If the buffer is an EOP buffer
6428  *  this function exits returning false, otherwise it will place the
6429  *  sk_buff in the next buffer to be chained and return true indicating
6430  *  that this is in fact a non-EOP buffer.
6431  **/
6432 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6433                            union e1000_adv_rx_desc *rx_desc)
6434 {
6435         u32 ntc = rx_ring->next_to_clean + 1;
6436
6437         /* fetch, update, and store next to clean */
6438         ntc = (ntc < rx_ring->count) ? ntc : 0;
6439         rx_ring->next_to_clean = ntc;
6440
6441         prefetch(IGB_RX_DESC(rx_ring, ntc));
6442
6443         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6444                 return false;
6445
6446         return true;
6447 }
6448
6449 /**
6450  *  igb_get_headlen - determine size of header for LRO/GRO
6451  *  @data: pointer to the start of the headers
6452  *  @max_len: total length of section to find headers in
6453  *
6454  *  This function is meant to determine the length of headers that will
6455  *  be recognized by hardware for LRO, and GRO offloads.  The main
6456  *  motivation of doing this is to only perform one pull for IPv4 TCP
6457  *  packets so that we can do basic things like calculating the gso_size
6458  *  based on the average data per packet.
6459  **/
6460 static unsigned int igb_get_headlen(unsigned char *data,
6461                                     unsigned int max_len)
6462 {
6463         union {
6464                 unsigned char *network;
6465                 /* l2 headers */
6466                 struct ethhdr *eth;
6467                 struct vlan_hdr *vlan;
6468                 /* l3 headers */
6469                 struct iphdr *ipv4;
6470                 struct ipv6hdr *ipv6;
6471         } hdr;
6472         __be16 protocol;
6473         u8 nexthdr = 0; /* default to not TCP */
6474         u8 hlen;
6475
6476         /* this should never happen, but better safe than sorry */
6477         if (max_len < ETH_HLEN)
6478                 return max_len;
6479
6480         /* initialize network frame pointer */
6481         hdr.network = data;
6482
6483         /* set first protocol and move network header forward */
6484         protocol = hdr.eth->h_proto;
6485         hdr.network += ETH_HLEN;
6486
6487         /* handle any vlan tag if present */
6488         if (protocol == __constant_htons(ETH_P_8021Q)) {
6489                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6490                         return max_len;
6491
6492                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6493                 hdr.network += VLAN_HLEN;
6494         }
6495
6496         /* handle L3 protocols */
6497         if (protocol == __constant_htons(ETH_P_IP)) {
6498                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6499                         return max_len;
6500
6501                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6502                 hlen = (hdr.network[0] & 0x0F) << 2;
6503
6504                 /* verify hlen meets minimum size requirements */
6505                 if (hlen < sizeof(struct iphdr))
6506                         return hdr.network - data;
6507
6508                 /* record next protocol if header is present */
6509                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6510                         nexthdr = hdr.ipv4->protocol;
6511         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6512                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6513                         return max_len;
6514
6515                 /* record next protocol */
6516                 nexthdr = hdr.ipv6->nexthdr;
6517                 hlen = sizeof(struct ipv6hdr);
6518         } else {
6519                 return hdr.network - data;
6520         }
6521
6522         /* relocate pointer to start of L4 header */
6523         hdr.network += hlen;
6524
6525         /* finally sort out TCP */
6526         if (nexthdr == IPPROTO_TCP) {
6527                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6528                         return max_len;
6529
6530                 /* access doff as a u8 to avoid unaligned access on ia64 */
6531                 hlen = (hdr.network[12] & 0xF0) >> 2;
6532
6533                 /* verify hlen meets minimum size requirements */
6534                 if (hlen < sizeof(struct tcphdr))
6535                         return hdr.network - data;
6536
6537                 hdr.network += hlen;
6538         } else if (nexthdr == IPPROTO_UDP) {
6539                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6540                         return max_len;
6541
6542                 hdr.network += sizeof(struct udphdr);
6543         }
6544
6545         /* If everything has gone correctly hdr.network should be the
6546          * data section of the packet and will be the end of the header.
6547          * If not then it probably represents the end of the last recognized
6548          * header.
6549          */
6550         if ((hdr.network - data) < max_len)
6551                 return hdr.network - data;
6552         else
6553                 return max_len;
6554 }
6555
6556 /**
6557  *  igb_pull_tail - igb specific version of skb_pull_tail
6558  *  @rx_ring: rx descriptor ring packet is being transacted on
6559  *  @rx_desc: pointer to the EOP Rx descriptor
6560  *  @skb: pointer to current skb being adjusted
6561  *
6562  *  This function is an igb specific version of __pskb_pull_tail.  The
6563  *  main difference between this version and the original function is that
6564  *  this function can make several assumptions about the state of things
6565  *  that allow for significant optimizations versus the standard function.
6566  *  As a result we can do things like drop a frag and maintain an accurate
6567  *  truesize for the skb.
6568  */
6569 static void igb_pull_tail(struct igb_ring *rx_ring,
6570                           union e1000_adv_rx_desc *rx_desc,
6571                           struct sk_buff *skb)
6572 {
6573         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6574         unsigned char *va;
6575         unsigned int pull_len;
6576
6577         /* it is valid to use page_address instead of kmap since we are
6578          * working with pages allocated out of the lomem pool per
6579          * alloc_page(GFP_ATOMIC)
6580          */
6581         va = skb_frag_address(frag);
6582
6583         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6584                 /* retrieve timestamp from buffer */
6585                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6586
6587                 /* update pointers to remove timestamp header */
6588                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6589                 frag->page_offset += IGB_TS_HDR_LEN;
6590                 skb->data_len -= IGB_TS_HDR_LEN;
6591                 skb->len -= IGB_TS_HDR_LEN;
6592
6593                 /* move va to start of packet data */
6594                 va += IGB_TS_HDR_LEN;
6595         }
6596
6597         /* we need the header to contain the greater of either ETH_HLEN or
6598          * 60 bytes if the skb->len is less than 60 for skb_pad.
6599          */
6600         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6601
6602         /* align pull length to size of long to optimize memcpy performance */
6603         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6604
6605         /* update all of the pointers */
6606         skb_frag_size_sub(frag, pull_len);
6607         frag->page_offset += pull_len;
6608         skb->data_len -= pull_len;
6609         skb->tail += pull_len;
6610 }
6611
6612 /**
6613  *  igb_cleanup_headers - Correct corrupted or empty headers
6614  *  @rx_ring: rx descriptor ring packet is being transacted on
6615  *  @rx_desc: pointer to the EOP Rx descriptor
6616  *  @skb: pointer to current skb being fixed
6617  *
6618  *  Address the case where we are pulling data in on pages only
6619  *  and as such no data is present in the skb header.
6620  *
6621  *  In addition if skb is not at least 60 bytes we need to pad it so that
6622  *  it is large enough to qualify as a valid Ethernet frame.
6623  *
6624  *  Returns true if an error was encountered and skb was freed.
6625  **/
6626 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6627                                 union e1000_adv_rx_desc *rx_desc,
6628                                 struct sk_buff *skb)
6629 {
6630         if (unlikely((igb_test_staterr(rx_desc,
6631                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6632                 struct net_device *netdev = rx_ring->netdev;
6633                 if (!(netdev->features & NETIF_F_RXALL)) {
6634                         dev_kfree_skb_any(skb);
6635                         return true;
6636                 }
6637         }
6638
6639         /* place header in linear portion of buffer */
6640         if (skb_is_nonlinear(skb))
6641                 igb_pull_tail(rx_ring, rx_desc, skb);
6642
6643         /* if skb_pad returns an error the skb was freed */
6644         if (unlikely(skb->len < 60)) {
6645                 int pad_len = 60 - skb->len;
6646
6647                 if (skb_pad(skb, pad_len))
6648                         return true;
6649                 __skb_put(skb, pad_len);
6650         }
6651
6652         return false;
6653 }
6654
6655 /**
6656  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6657  *  @rx_ring: rx descriptor ring packet is being transacted on
6658  *  @rx_desc: pointer to the EOP Rx descriptor
6659  *  @skb: pointer to current skb being populated
6660  *
6661  *  This function checks the ring, descriptor, and packet information in
6662  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6663  *  other fields within the skb.
6664  **/
6665 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6666                                    union e1000_adv_rx_desc *rx_desc,
6667                                    struct sk_buff *skb)
6668 {
6669         struct net_device *dev = rx_ring->netdev;
6670
6671         igb_rx_hash(rx_ring, rx_desc, skb);
6672
6673         igb_rx_checksum(rx_ring, rx_desc, skb);
6674
6675         igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6676
6677         if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6678             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6679                 u16 vid;
6680                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6681                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6682                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6683                 else
6684                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6685
6686                 __vlan_hwaccel_put_tag(skb, vid);
6687         }
6688
6689         skb_record_rx_queue(skb, rx_ring->queue_index);
6690
6691         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6692 }
6693
6694 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6695 {
6696         struct igb_ring *rx_ring = q_vector->rx.ring;
6697         struct sk_buff *skb = rx_ring->skb;
6698         unsigned int total_bytes = 0, total_packets = 0;
6699         u16 cleaned_count = igb_desc_unused(rx_ring);
6700
6701         do {
6702                 union e1000_adv_rx_desc *rx_desc;
6703
6704                 /* return some buffers to hardware, one at a time is too slow */
6705                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6706                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6707                         cleaned_count = 0;
6708                 }
6709
6710                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6711
6712                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6713                         break;
6714
6715                 /* This memory barrier is needed to keep us from reading
6716                  * any other fields out of the rx_desc until we know the
6717                  * RXD_STAT_DD bit is set
6718                  */
6719                 rmb();
6720
6721                 /* retrieve a buffer from the ring */
6722                 if (ring_uses_build_skb(rx_ring))
6723                         skb = igb_build_rx_buffer(rx_ring, rx_desc);
6724                 else
6725                         skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6726
6727                 /* exit if we failed to retrieve a buffer */
6728                 if (!skb)
6729                         break;
6730
6731                 cleaned_count++;
6732
6733                 /* fetch next buffer in frame if non-eop */
6734                 if (igb_is_non_eop(rx_ring, rx_desc))
6735                         continue;
6736
6737                 /* verify the packet layout is correct */
6738                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6739                         skb = NULL;
6740                         continue;
6741                 }
6742
6743                 /* probably a little skewed due to removing CRC */
6744                 total_bytes += skb->len;
6745
6746                 /* populate checksum, timestamp, VLAN, and protocol */
6747                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6748
6749                 napi_gro_receive(&q_vector->napi, skb);
6750
6751                 /* reset skb pointer */
6752                 skb = NULL;
6753
6754                 /* update budget accounting */
6755                 total_packets++;
6756         } while (likely(total_packets < budget));
6757
6758         /* place incomplete frames back on ring for completion */
6759         rx_ring->skb = skb;
6760
6761         u64_stats_update_begin(&rx_ring->rx_syncp);
6762         rx_ring->rx_stats.packets += total_packets;
6763         rx_ring->rx_stats.bytes += total_bytes;
6764         u64_stats_update_end(&rx_ring->rx_syncp);
6765         q_vector->rx.total_packets += total_packets;
6766         q_vector->rx.total_bytes += total_bytes;
6767
6768         if (cleaned_count)
6769                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6770
6771         return (total_packets < budget);
6772 }
6773
6774 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6775                                   struct igb_rx_buffer *bi)
6776 {
6777         struct page *page = bi->page;
6778         dma_addr_t dma;
6779
6780         /* since we are recycling buffers we should seldom need to alloc */
6781         if (likely(page))
6782                 return true;
6783
6784         /* alloc new page for storage */
6785         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6786         if (unlikely(!page)) {
6787                 rx_ring->rx_stats.alloc_failed++;
6788                 return false;
6789         }
6790
6791         /* map page for use */
6792         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6793
6794         /* if mapping failed free memory back to system since
6795          * there isn't much point in holding memory we can't use
6796          */
6797         if (dma_mapping_error(rx_ring->dev, dma)) {
6798                 __free_page(page);
6799
6800                 rx_ring->rx_stats.alloc_failed++;
6801                 return false;
6802         }
6803
6804         bi->dma = dma;
6805         bi->page = page;
6806         bi->page_offset = 0;
6807
6808         return true;
6809 }
6810
6811 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6812 {
6813         if (ring_uses_build_skb(rx_ring))
6814                 return NET_SKB_PAD + NET_IP_ALIGN;
6815         else
6816                 return 0;
6817 }
6818
6819 /**
6820  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6821  *  @adapter: address of board private structure
6822  **/
6823 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6824 {
6825         union e1000_adv_rx_desc *rx_desc;
6826         struct igb_rx_buffer *bi;
6827         u16 i = rx_ring->next_to_use;
6828
6829         /* nothing to do */
6830         if (!cleaned_count)
6831                 return;
6832
6833         rx_desc = IGB_RX_DESC(rx_ring, i);
6834         bi = &rx_ring->rx_buffer_info[i];
6835         i -= rx_ring->count;
6836
6837         do {
6838                 if (!igb_alloc_mapped_page(rx_ring, bi))
6839                         break;
6840
6841                 /* Refresh the desc even if buffer_addrs didn't change
6842                  * because each write-back erases this info.
6843                  */
6844                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6845                                                      bi->page_offset +
6846                                                      igb_rx_offset(rx_ring));
6847
6848                 rx_desc++;
6849                 bi++;
6850                 i++;
6851                 if (unlikely(!i)) {
6852                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6853                         bi = rx_ring->rx_buffer_info;
6854                         i -= rx_ring->count;
6855                 }
6856
6857                 /* clear the hdr_addr for the next_to_use descriptor */
6858                 rx_desc->read.hdr_addr = 0;
6859
6860                 cleaned_count--;
6861         } while (cleaned_count);
6862
6863         i += rx_ring->count;
6864
6865         if (rx_ring->next_to_use != i) {
6866                 /* record the next descriptor to use */
6867                 rx_ring->next_to_use = i;
6868
6869                 /* update next to alloc since we have filled the ring */
6870                 rx_ring->next_to_alloc = i;
6871
6872                 /* Force memory writes to complete before letting h/w
6873                  * know there are new descriptors to fetch.  (Only
6874                  * applicable for weak-ordered memory model archs,
6875                  * such as IA-64).
6876                  */
6877                 wmb();
6878                 writel(i, rx_ring->tail);
6879         }
6880 }
6881
6882 /**
6883  * igb_mii_ioctl -
6884  * @netdev:
6885  * @ifreq:
6886  * @cmd:
6887  **/
6888 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6889 {
6890         struct igb_adapter *adapter = netdev_priv(netdev);
6891         struct mii_ioctl_data *data = if_mii(ifr);
6892
6893         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6894                 return -EOPNOTSUPP;
6895
6896         switch (cmd) {
6897         case SIOCGMIIPHY:
6898                 data->phy_id = adapter->hw.phy.addr;
6899                 break;
6900         case SIOCGMIIREG:
6901                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6902                                      &data->val_out))
6903                         return -EIO;
6904                 break;
6905         case SIOCSMIIREG:
6906         default:
6907                 return -EOPNOTSUPP;
6908         }
6909         return 0;
6910 }
6911
6912 /**
6913  * igb_ioctl -
6914  * @netdev:
6915  * @ifreq:
6916  * @cmd:
6917  **/
6918 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6919 {
6920         switch (cmd) {
6921         case SIOCGMIIPHY:
6922         case SIOCGMIIREG:
6923         case SIOCSMIIREG:
6924                 return igb_mii_ioctl(netdev, ifr, cmd);
6925         case SIOCSHWTSTAMP:
6926                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6927         default:
6928                 return -EOPNOTSUPP;
6929         }
6930 }
6931
6932 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6933 {
6934         struct igb_adapter *adapter = hw->back;
6935
6936         if (pcie_capability_read_word(adapter->pdev, reg, value))
6937                 return -E1000_ERR_CONFIG;
6938
6939         return 0;
6940 }
6941
6942 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6943 {
6944         struct igb_adapter *adapter = hw->back;
6945
6946         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6947                 return -E1000_ERR_CONFIG;
6948
6949         return 0;
6950 }
6951
6952 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6953 {
6954         struct igb_adapter *adapter = netdev_priv(netdev);
6955         struct e1000_hw *hw = &adapter->hw;
6956         u32 ctrl, rctl;
6957         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6958
6959         if (enable) {
6960                 /* enable VLAN tag insert/strip */
6961                 ctrl = rd32(E1000_CTRL);
6962                 ctrl |= E1000_CTRL_VME;
6963                 wr32(E1000_CTRL, ctrl);
6964
6965                 /* Disable CFI check */
6966                 rctl = rd32(E1000_RCTL);
6967                 rctl &= ~E1000_RCTL_CFIEN;
6968                 wr32(E1000_RCTL, rctl);
6969         } else {
6970                 /* disable VLAN tag insert/strip */
6971                 ctrl = rd32(E1000_CTRL);
6972                 ctrl &= ~E1000_CTRL_VME;
6973                 wr32(E1000_CTRL, ctrl);
6974         }
6975
6976         igb_rlpml_set(adapter);
6977 }
6978
6979 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6980 {
6981         struct igb_adapter *adapter = netdev_priv(netdev);
6982         struct e1000_hw *hw = &adapter->hw;
6983         int pf_id = adapter->vfs_allocated_count;
6984
6985         /* attempt to add filter to vlvf array */
6986         igb_vlvf_set(adapter, vid, true, pf_id);
6987
6988         /* add the filter since PF can receive vlans w/o entry in vlvf */
6989         igb_vfta_set(hw, vid, true);
6990
6991         set_bit(vid, adapter->active_vlans);
6992
6993         return 0;
6994 }
6995
6996 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6997 {
6998         struct igb_adapter *adapter = netdev_priv(netdev);
6999         struct e1000_hw *hw = &adapter->hw;
7000         int pf_id = adapter->vfs_allocated_count;
7001         s32 err;
7002
7003         /* remove vlan from VLVF table array */
7004         err = igb_vlvf_set(adapter, vid, false, pf_id);
7005
7006         /* if vid was not present in VLVF just remove it from table */
7007         if (err)
7008                 igb_vfta_set(hw, vid, false);
7009
7010         clear_bit(vid, adapter->active_vlans);
7011
7012         return 0;
7013 }
7014
7015 static void igb_restore_vlan(struct igb_adapter *adapter)
7016 {
7017         u16 vid;
7018
7019         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7020
7021         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7022                 igb_vlan_rx_add_vid(adapter->netdev, vid);
7023 }
7024
7025 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7026 {
7027         struct pci_dev *pdev = adapter->pdev;
7028         struct e1000_mac_info *mac = &adapter->hw.mac;
7029
7030         mac->autoneg = 0;
7031
7032         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7033          * for the switch() below to work
7034          */
7035         if ((spd & 1) || (dplx & ~1))
7036                 goto err_inval;
7037
7038         /* Fiber NIC's only allow 1000 gbps Full duplex
7039          * and 100Mbps Full duplex for 100baseFx sfp
7040          */
7041         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7042                 switch (spd + dplx) {
7043                 case SPEED_10 + DUPLEX_HALF:
7044                 case SPEED_10 + DUPLEX_FULL:
7045                 case SPEED_100 + DUPLEX_HALF:
7046                         goto err_inval;
7047                 default:
7048                         break;
7049                 }
7050         }
7051
7052         switch (spd + dplx) {
7053         case SPEED_10 + DUPLEX_HALF:
7054                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7055                 break;
7056         case SPEED_10 + DUPLEX_FULL:
7057                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7058                 break;
7059         case SPEED_100 + DUPLEX_HALF:
7060                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7061                 break;
7062         case SPEED_100 + DUPLEX_FULL:
7063                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7064                 break;
7065         case SPEED_1000 + DUPLEX_FULL:
7066                 mac->autoneg = 1;
7067                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7068                 break;
7069         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7070         default:
7071                 goto err_inval;
7072         }
7073
7074         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7075         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7076
7077         return 0;
7078
7079 err_inval:
7080         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7081         return -EINVAL;
7082 }
7083
7084 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7085                           bool runtime)
7086 {
7087         struct net_device *netdev = pci_get_drvdata(pdev);
7088         struct igb_adapter *adapter = netdev_priv(netdev);
7089         struct e1000_hw *hw = &adapter->hw;
7090         u32 ctrl, rctl, status;
7091         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7092 #ifdef CONFIG_PM
7093         int retval = 0;
7094 #endif
7095
7096         netif_device_detach(netdev);
7097
7098         if (netif_running(netdev))
7099                 __igb_close(netdev, true);
7100
7101         igb_clear_interrupt_scheme(adapter);
7102
7103 #ifdef CONFIG_PM
7104         retval = pci_save_state(pdev);
7105         if (retval)
7106                 return retval;
7107 #endif
7108
7109         status = rd32(E1000_STATUS);
7110         if (status & E1000_STATUS_LU)
7111                 wufc &= ~E1000_WUFC_LNKC;
7112
7113         if (wufc) {
7114                 igb_setup_rctl(adapter);
7115                 igb_set_rx_mode(netdev);
7116
7117                 /* turn on all-multi mode if wake on multicast is enabled */
7118                 if (wufc & E1000_WUFC_MC) {
7119                         rctl = rd32(E1000_RCTL);
7120                         rctl |= E1000_RCTL_MPE;
7121                         wr32(E1000_RCTL, rctl);
7122                 }
7123
7124                 ctrl = rd32(E1000_CTRL);
7125                 /* advertise wake from D3Cold */
7126                 #define E1000_CTRL_ADVD3WUC 0x00100000
7127                 /* phy power management enable */
7128                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7129                 ctrl |= E1000_CTRL_ADVD3WUC;
7130                 wr32(E1000_CTRL, ctrl);
7131
7132                 /* Allow time for pending master requests to run */
7133                 igb_disable_pcie_master(hw);
7134
7135                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7136                 wr32(E1000_WUFC, wufc);
7137         } else {
7138                 wr32(E1000_WUC, 0);
7139                 wr32(E1000_WUFC, 0);
7140         }
7141
7142         *enable_wake = wufc || adapter->en_mng_pt;
7143         if (!*enable_wake)
7144                 igb_power_down_link(adapter);
7145         else
7146                 igb_power_up_link(adapter);
7147
7148         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7149          * would have already happened in close and is redundant.
7150          */
7151         igb_release_hw_control(adapter);
7152
7153         pci_disable_device(pdev);
7154
7155         return 0;
7156 }
7157
7158 #ifdef CONFIG_PM
7159 #ifdef CONFIG_PM_SLEEP
7160 static int igb_suspend(struct device *dev)
7161 {
7162         int retval;
7163         bool wake;
7164         struct pci_dev *pdev = to_pci_dev(dev);
7165
7166         retval = __igb_shutdown(pdev, &wake, 0);
7167         if (retval)
7168                 return retval;
7169
7170         if (wake) {
7171                 pci_prepare_to_sleep(pdev);
7172         } else {
7173                 pci_wake_from_d3(pdev, false);
7174                 pci_set_power_state(pdev, PCI_D3hot);
7175         }
7176
7177         return 0;
7178 }
7179 #endif /* CONFIG_PM_SLEEP */
7180
7181 static int igb_resume(struct device *dev)
7182 {
7183         struct pci_dev *pdev = to_pci_dev(dev);
7184         struct net_device *netdev = pci_get_drvdata(pdev);
7185         struct igb_adapter *adapter = netdev_priv(netdev);
7186         struct e1000_hw *hw = &adapter->hw;
7187         u32 err;
7188
7189         pci_set_power_state(pdev, PCI_D0);
7190         pci_restore_state(pdev);
7191         pci_save_state(pdev);
7192
7193         err = pci_enable_device_mem(pdev);
7194         if (err) {
7195                 dev_err(&pdev->dev,
7196                         "igb: Cannot enable PCI device from suspend\n");
7197                 return err;
7198         }
7199         pci_set_master(pdev);
7200
7201         pci_enable_wake(pdev, PCI_D3hot, 0);
7202         pci_enable_wake(pdev, PCI_D3cold, 0);
7203
7204         if (igb_init_interrupt_scheme(adapter, true)) {
7205                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7206                 return -ENOMEM;
7207         }
7208
7209         igb_reset(adapter);
7210
7211         /* let the f/w know that the h/w is now under the control of the
7212          * driver.
7213          */
7214         igb_get_hw_control(adapter);
7215
7216         wr32(E1000_WUS, ~0);
7217
7218         if (netdev->flags & IFF_UP) {
7219                 rtnl_lock();
7220                 err = __igb_open(netdev, true);
7221                 rtnl_unlock();
7222                 if (err)
7223                         return err;
7224         }
7225
7226         netif_device_attach(netdev);
7227         return 0;
7228 }
7229
7230 #ifdef CONFIG_PM_RUNTIME
7231 static int igb_runtime_idle(struct device *dev)
7232 {
7233         struct pci_dev *pdev = to_pci_dev(dev);
7234         struct net_device *netdev = pci_get_drvdata(pdev);
7235         struct igb_adapter *adapter = netdev_priv(netdev);
7236
7237         if (!igb_has_link(adapter))
7238                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7239
7240         return -EBUSY;
7241 }
7242
7243 static int igb_runtime_suspend(struct device *dev)
7244 {
7245         struct pci_dev *pdev = to_pci_dev(dev);
7246         int retval;
7247         bool wake;
7248
7249         retval = __igb_shutdown(pdev, &wake, 1);
7250         if (retval)
7251                 return retval;
7252
7253         if (wake) {
7254                 pci_prepare_to_sleep(pdev);
7255         } else {
7256                 pci_wake_from_d3(pdev, false);
7257                 pci_set_power_state(pdev, PCI_D3hot);
7258         }
7259
7260         return 0;
7261 }
7262
7263 static int igb_runtime_resume(struct device *dev)
7264 {
7265         return igb_resume(dev);
7266 }
7267 #endif /* CONFIG_PM_RUNTIME */
7268 #endif
7269
7270 static void igb_shutdown(struct pci_dev *pdev)
7271 {
7272         bool wake;
7273
7274         __igb_shutdown(pdev, &wake, 0);
7275
7276         if (system_state == SYSTEM_POWER_OFF) {
7277                 pci_wake_from_d3(pdev, wake);
7278                 pci_set_power_state(pdev, PCI_D3hot);
7279         }
7280 }
7281
7282 #ifdef CONFIG_PCI_IOV
7283 static int igb_sriov_reinit(struct pci_dev *dev)
7284 {
7285         struct net_device *netdev = pci_get_drvdata(dev);
7286         struct igb_adapter *adapter = netdev_priv(netdev);
7287         struct pci_dev *pdev = adapter->pdev;
7288
7289         rtnl_lock();
7290
7291         if (netif_running(netdev))
7292                 igb_close(netdev);
7293
7294         igb_clear_interrupt_scheme(adapter);
7295
7296         igb_init_queue_configuration(adapter);
7297
7298         if (igb_init_interrupt_scheme(adapter, true)) {
7299                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7300                 return -ENOMEM;
7301         }
7302
7303         if (netif_running(netdev))
7304                 igb_open(netdev);
7305
7306         rtnl_unlock();
7307
7308         return 0;
7309 }
7310
7311 static int igb_pci_disable_sriov(struct pci_dev *dev)
7312 {
7313         int err = igb_disable_sriov(dev);
7314
7315         if (!err)
7316                 err = igb_sriov_reinit(dev);
7317
7318         return err;
7319 }
7320
7321 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7322 {
7323         int err = igb_enable_sriov(dev, num_vfs);
7324
7325         if (err)
7326                 goto out;
7327
7328         err = igb_sriov_reinit(dev);
7329         if (!err)
7330                 return num_vfs;
7331
7332 out:
7333         return err;
7334 }
7335
7336 #endif
7337 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7338 {
7339 #ifdef CONFIG_PCI_IOV
7340         if (num_vfs == 0)
7341                 return igb_pci_disable_sriov(dev);
7342         else
7343                 return igb_pci_enable_sriov(dev, num_vfs);
7344 #endif
7345         return 0;
7346 }
7347
7348 #ifdef CONFIG_NET_POLL_CONTROLLER
7349 /* Polling 'interrupt' - used by things like netconsole to send skbs
7350  * without having to re-enable interrupts. It's not called while
7351  * the interrupt routine is executing.
7352  */
7353 static void igb_netpoll(struct net_device *netdev)
7354 {
7355         struct igb_adapter *adapter = netdev_priv(netdev);
7356         struct e1000_hw *hw = &adapter->hw;
7357         struct igb_q_vector *q_vector;
7358         int i;
7359
7360         for (i = 0; i < adapter->num_q_vectors; i++) {
7361                 q_vector = adapter->q_vector[i];
7362                 if (adapter->msix_entries)
7363                         wr32(E1000_EIMC, q_vector->eims_value);
7364                 else
7365                         igb_irq_disable(adapter);
7366                 napi_schedule(&q_vector->napi);
7367         }
7368 }
7369 #endif /* CONFIG_NET_POLL_CONTROLLER */
7370
7371 /**
7372  *  igb_io_error_detected - called when PCI error is detected
7373  *  @pdev: Pointer to PCI device
7374  *  @state: The current pci connection state
7375  *
7376  *  This function is called after a PCI bus error affecting
7377  *  this device has been detected.
7378  **/
7379 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7380                                               pci_channel_state_t state)
7381 {
7382         struct net_device *netdev = pci_get_drvdata(pdev);
7383         struct igb_adapter *adapter = netdev_priv(netdev);
7384
7385         netif_device_detach(netdev);
7386
7387         if (state == pci_channel_io_perm_failure)
7388                 return PCI_ERS_RESULT_DISCONNECT;
7389
7390         if (netif_running(netdev))
7391                 igb_down(adapter);
7392         pci_disable_device(pdev);
7393
7394         /* Request a slot slot reset. */
7395         return PCI_ERS_RESULT_NEED_RESET;
7396 }
7397
7398 /**
7399  *  igb_io_slot_reset - called after the pci bus has been reset.
7400  *  @pdev: Pointer to PCI device
7401  *
7402  *  Restart the card from scratch, as if from a cold-boot. Implementation
7403  *  resembles the first-half of the igb_resume routine.
7404  **/
7405 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7406 {
7407         struct net_device *netdev = pci_get_drvdata(pdev);
7408         struct igb_adapter *adapter = netdev_priv(netdev);
7409         struct e1000_hw *hw = &adapter->hw;
7410         pci_ers_result_t result;
7411         int err;
7412
7413         if (pci_enable_device_mem(pdev)) {
7414                 dev_err(&pdev->dev,
7415                         "Cannot re-enable PCI device after reset.\n");
7416                 result = PCI_ERS_RESULT_DISCONNECT;
7417         } else {
7418                 pci_set_master(pdev);
7419                 pci_restore_state(pdev);
7420                 pci_save_state(pdev);
7421
7422                 pci_enable_wake(pdev, PCI_D3hot, 0);
7423                 pci_enable_wake(pdev, PCI_D3cold, 0);
7424
7425                 igb_reset(adapter);
7426                 wr32(E1000_WUS, ~0);
7427                 result = PCI_ERS_RESULT_RECOVERED;
7428         }
7429
7430         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7431         if (err) {
7432                 dev_err(&pdev->dev,
7433                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7434                         err);
7435                 /* non-fatal, continue */
7436         }
7437
7438         return result;
7439 }
7440
7441 /**
7442  *  igb_io_resume - called when traffic can start flowing again.
7443  *  @pdev: Pointer to PCI device
7444  *
7445  *  This callback is called when the error recovery driver tells us that
7446  *  its OK to resume normal operation. Implementation resembles the
7447  *  second-half of the igb_resume routine.
7448  */
7449 static void igb_io_resume(struct pci_dev *pdev)
7450 {
7451         struct net_device *netdev = pci_get_drvdata(pdev);
7452         struct igb_adapter *adapter = netdev_priv(netdev);
7453
7454         if (netif_running(netdev)) {
7455                 if (igb_up(adapter)) {
7456                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7457                         return;
7458                 }
7459         }
7460
7461         netif_device_attach(netdev);
7462
7463         /* let the f/w know that the h/w is now under the control of the
7464          * driver.
7465          */
7466         igb_get_hw_control(adapter);
7467 }
7468
7469 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7470                              u8 qsel)
7471 {
7472         u32 rar_low, rar_high;
7473         struct e1000_hw *hw = &adapter->hw;
7474
7475         /* HW expects these in little endian so we reverse the byte order
7476          * from network order (big endian) to little endian
7477          */
7478         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7479                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7480         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7481
7482         /* Indicate to hardware the Address is Valid. */
7483         rar_high |= E1000_RAH_AV;
7484
7485         if (hw->mac.type == e1000_82575)
7486                 rar_high |= E1000_RAH_POOL_1 * qsel;
7487         else
7488                 rar_high |= E1000_RAH_POOL_1 << qsel;
7489
7490         wr32(E1000_RAL(index), rar_low);
7491         wrfl();
7492         wr32(E1000_RAH(index), rar_high);
7493         wrfl();
7494 }
7495
7496 static int igb_set_vf_mac(struct igb_adapter *adapter,
7497                           int vf, unsigned char *mac_addr)
7498 {
7499         struct e1000_hw *hw = &adapter->hw;
7500         /* VF MAC addresses start at end of receive addresses and moves
7501          * towards the first, as a result a collision should not be possible
7502          */
7503         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7504
7505         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7506
7507         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7508
7509         return 0;
7510 }
7511
7512 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7513 {
7514         struct igb_adapter *adapter = netdev_priv(netdev);
7515         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7516                 return -EINVAL;
7517         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7518         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7519         dev_info(&adapter->pdev->dev,
7520                  "Reload the VF driver to make this change effective.");
7521         if (test_bit(__IGB_DOWN, &adapter->state)) {
7522                 dev_warn(&adapter->pdev->dev,
7523                          "The VF MAC address has been set, but the PF device is not up.\n");
7524                 dev_warn(&adapter->pdev->dev,
7525                          "Bring the PF device up before attempting to use the VF device.\n");
7526         }
7527         return igb_set_vf_mac(adapter, vf, mac);
7528 }
7529
7530 static int igb_link_mbps(int internal_link_speed)
7531 {
7532         switch (internal_link_speed) {
7533         case SPEED_100:
7534                 return 100;
7535         case SPEED_1000:
7536                 return 1000;
7537         default:
7538                 return 0;
7539         }
7540 }
7541
7542 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7543                                   int link_speed)
7544 {
7545         int rf_dec, rf_int;
7546         u32 bcnrc_val;
7547
7548         if (tx_rate != 0) {
7549                 /* Calculate the rate factor values to set */
7550                 rf_int = link_speed / tx_rate;
7551                 rf_dec = (link_speed - (rf_int * tx_rate));
7552                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7553                          tx_rate;
7554
7555                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7556                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7557                               E1000_RTTBCNRC_RF_INT_MASK);
7558                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7559         } else {
7560                 bcnrc_val = 0;
7561         }
7562
7563         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7564         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7565          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7566          */
7567         wr32(E1000_RTTBCNRM, 0x14);
7568         wr32(E1000_RTTBCNRC, bcnrc_val);
7569 }
7570
7571 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7572 {
7573         int actual_link_speed, i;
7574         bool reset_rate = false;
7575
7576         /* VF TX rate limit was not set or not supported */
7577         if ((adapter->vf_rate_link_speed == 0) ||
7578             (adapter->hw.mac.type != e1000_82576))
7579                 return;
7580
7581         actual_link_speed = igb_link_mbps(adapter->link_speed);
7582         if (actual_link_speed != adapter->vf_rate_link_speed) {
7583                 reset_rate = true;
7584                 adapter->vf_rate_link_speed = 0;
7585                 dev_info(&adapter->pdev->dev,
7586                          "Link speed has been changed. VF Transmit rate is disabled\n");
7587         }
7588
7589         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7590                 if (reset_rate)
7591                         adapter->vf_data[i].tx_rate = 0;
7592
7593                 igb_set_vf_rate_limit(&adapter->hw, i,
7594                                       adapter->vf_data[i].tx_rate,
7595                                       actual_link_speed);
7596         }
7597 }
7598
7599 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7600 {
7601         struct igb_adapter *adapter = netdev_priv(netdev);
7602         struct e1000_hw *hw = &adapter->hw;
7603         int actual_link_speed;
7604
7605         if (hw->mac.type != e1000_82576)
7606                 return -EOPNOTSUPP;
7607
7608         actual_link_speed = igb_link_mbps(adapter->link_speed);
7609         if ((vf >= adapter->vfs_allocated_count) ||
7610             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7611             (tx_rate < 0) || (tx_rate > actual_link_speed))
7612                 return -EINVAL;
7613
7614         adapter->vf_rate_link_speed = actual_link_speed;
7615         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7616         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7617
7618         return 0;
7619 }
7620
7621 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7622                                    bool setting)
7623 {
7624         struct igb_adapter *adapter = netdev_priv(netdev);
7625         struct e1000_hw *hw = &adapter->hw;
7626         u32 reg_val, reg_offset;
7627
7628         if (!adapter->vfs_allocated_count)
7629                 return -EOPNOTSUPP;
7630
7631         if (vf >= adapter->vfs_allocated_count)
7632                 return -EINVAL;
7633
7634         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7635         reg_val = rd32(reg_offset);
7636         if (setting)
7637                 reg_val |= ((1 << vf) |
7638                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7639         else
7640                 reg_val &= ~((1 << vf) |
7641                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7642         wr32(reg_offset, reg_val);
7643
7644         adapter->vf_data[vf].spoofchk_enabled = setting;
7645         return E1000_SUCCESS;
7646 }
7647
7648 static int igb_ndo_get_vf_config(struct net_device *netdev,
7649                                  int vf, struct ifla_vf_info *ivi)
7650 {
7651         struct igb_adapter *adapter = netdev_priv(netdev);
7652         if (vf >= adapter->vfs_allocated_count)
7653                 return -EINVAL;
7654         ivi->vf = vf;
7655         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7656         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7657         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7658         ivi->qos = adapter->vf_data[vf].pf_qos;
7659         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7660         return 0;
7661 }
7662
7663 static void igb_vmm_control(struct igb_adapter *adapter)
7664 {
7665         struct e1000_hw *hw = &adapter->hw;
7666         u32 reg;
7667
7668         switch (hw->mac.type) {
7669         case e1000_82575:
7670         case e1000_i210:
7671         case e1000_i211:
7672         case e1000_i354:
7673         default:
7674                 /* replication is not supported for 82575 */
7675                 return;
7676         case e1000_82576:
7677                 /* notify HW that the MAC is adding vlan tags */
7678                 reg = rd32(E1000_DTXCTL);
7679                 reg |= E1000_DTXCTL_VLAN_ADDED;
7680                 wr32(E1000_DTXCTL, reg);
7681         case e1000_82580:
7682                 /* enable replication vlan tag stripping */
7683                 reg = rd32(E1000_RPLOLR);
7684                 reg |= E1000_RPLOLR_STRVLAN;
7685                 wr32(E1000_RPLOLR, reg);
7686         case e1000_i350:
7687                 /* none of the above registers are supported by i350 */
7688                 break;
7689         }
7690
7691         if (adapter->vfs_allocated_count) {
7692                 igb_vmdq_set_loopback_pf(hw, true);
7693                 igb_vmdq_set_replication_pf(hw, true);
7694                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7695                                               adapter->vfs_allocated_count);
7696         } else {
7697                 igb_vmdq_set_loopback_pf(hw, false);
7698                 igb_vmdq_set_replication_pf(hw, false);
7699         }
7700 }
7701
7702 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7703 {
7704         struct e1000_hw *hw = &adapter->hw;
7705         u32 dmac_thr;
7706         u16 hwm;
7707
7708         if (hw->mac.type > e1000_82580) {
7709                 if (adapter->flags & IGB_FLAG_DMAC) {
7710                         u32 reg;
7711
7712                         /* force threshold to 0. */
7713                         wr32(E1000_DMCTXTH, 0);
7714
7715                         /* DMA Coalescing high water mark needs to be greater
7716                          * than the Rx threshold. Set hwm to PBA - max frame
7717                          * size in 16B units, capping it at PBA - 6KB.
7718                          */
7719                         hwm = 64 * pba - adapter->max_frame_size / 16;
7720                         if (hwm < 64 * (pba - 6))
7721                                 hwm = 64 * (pba - 6);
7722                         reg = rd32(E1000_FCRTC);
7723                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7724                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7725                                 & E1000_FCRTC_RTH_COAL_MASK);
7726                         wr32(E1000_FCRTC, reg);
7727
7728                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7729                          * frame size, capping it at PBA - 10KB.
7730                          */
7731                         dmac_thr = pba - adapter->max_frame_size / 512;
7732                         if (dmac_thr < pba - 10)
7733                                 dmac_thr = pba - 10;
7734                         reg = rd32(E1000_DMACR);
7735                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7736                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7737                                 & E1000_DMACR_DMACTHR_MASK);
7738
7739                         /* transition to L0x or L1 if available..*/
7740                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7741
7742                         /* watchdog timer= +-1000 usec in 32usec intervals */
7743                         reg |= (1000 >> 5);
7744
7745                         /* Disable BMC-to-OS Watchdog Enable */
7746                         if (hw->mac.type != e1000_i354)
7747                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7748
7749                         wr32(E1000_DMACR, reg);
7750
7751                         /* no lower threshold to disable
7752                          * coalescing(smart fifb)-UTRESH=0
7753                          */
7754                         wr32(E1000_DMCRTRH, 0);
7755
7756                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7757
7758                         wr32(E1000_DMCTLX, reg);
7759
7760                         /* free space in tx packet buffer to wake from
7761                          * DMA coal
7762                          */
7763                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7764                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7765
7766                         /* make low power state decision controlled
7767                          * by DMA coal
7768                          */
7769                         reg = rd32(E1000_PCIEMISC);
7770                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7771                         wr32(E1000_PCIEMISC, reg);
7772                 } /* endif adapter->dmac is not disabled */
7773         } else if (hw->mac.type == e1000_82580) {
7774                 u32 reg = rd32(E1000_PCIEMISC);
7775                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7776                 wr32(E1000_DMACR, 0);
7777         }
7778 }
7779
7780 /**
7781  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7782  *  @hw: pointer to hardware structure
7783  *  @byte_offset: byte offset to read
7784  *  @dev_addr: device address
7785  *  @data: value read
7786  *
7787  *  Performs byte read operation over I2C interface at
7788  *  a specified device address.
7789  **/
7790 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7791                       u8 dev_addr, u8 *data)
7792 {
7793         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7794         struct i2c_client *this_client = adapter->i2c_client;
7795         s32 status;
7796         u16 swfw_mask = 0;
7797
7798         if (!this_client)
7799                 return E1000_ERR_I2C;
7800
7801         swfw_mask = E1000_SWFW_PHY0_SM;
7802
7803         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7804             != E1000_SUCCESS)
7805                 return E1000_ERR_SWFW_SYNC;
7806
7807         status = i2c_smbus_read_byte_data(this_client, byte_offset);
7808         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7809
7810         if (status < 0)
7811                 return E1000_ERR_I2C;
7812         else {
7813                 *data = status;
7814                 return E1000_SUCCESS;
7815         }
7816 }
7817
7818 /**
7819  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7820  *  @hw: pointer to hardware structure
7821  *  @byte_offset: byte offset to write
7822  *  @dev_addr: device address
7823  *  @data: value to write
7824  *
7825  *  Performs byte write operation over I2C interface at
7826  *  a specified device address.
7827  **/
7828 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7829                        u8 dev_addr, u8 data)
7830 {
7831         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7832         struct i2c_client *this_client = adapter->i2c_client;
7833         s32 status;
7834         u16 swfw_mask = E1000_SWFW_PHY0_SM;
7835
7836         if (!this_client)
7837                 return E1000_ERR_I2C;
7838
7839         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7840                 return E1000_ERR_SWFW_SYNC;
7841         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7842         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7843
7844         if (status)
7845                 return E1000_ERR_I2C;
7846         else
7847                 return E1000_SUCCESS;
7848
7849 }
7850 /* igb_main.c */