igb: Cleanups to fix incorrect indentation
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70                                 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72                                 "Copyright (c) 2007-2014 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75         [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114         /* required last entry */
115         {0, }
116 };
117
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144                                                  struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174                                int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177                                    bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179                                  struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200                         igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208         .notifier_call  = igb_notify_dca,
209         .next           = NULL,
210         .priority       = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224                      pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229         .error_detected = igb_io_error_detected,
230         .slot_reset = igb_io_slot_reset,
231         .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237         .name     = igb_driver_name,
238         .id_table = igb_pci_tbl,
239         .probe    = igb_probe,
240         .remove   = igb_remove,
241 #ifdef CONFIG_PM
242         .driver.pm = &igb_pm_ops,
243 #endif
244         .shutdown = igb_shutdown,
245         .sriov_configure = igb_pci_sriov_configure,
246         .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260         u32 ofs;
261         char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266         /* General Registers */
267         {E1000_CTRL, "CTRL"},
268         {E1000_STATUS, "STATUS"},
269         {E1000_CTRL_EXT, "CTRL_EXT"},
270
271         /* Interrupt Registers */
272         {E1000_ICR, "ICR"},
273
274         /* RX Registers */
275         {E1000_RCTL, "RCTL"},
276         {E1000_RDLEN(0), "RDLEN"},
277         {E1000_RDH(0), "RDH"},
278         {E1000_RDT(0), "RDT"},
279         {E1000_RXDCTL(0), "RXDCTL"},
280         {E1000_RDBAL(0), "RDBAL"},
281         {E1000_RDBAH(0), "RDBAH"},
282
283         /* TX Registers */
284         {E1000_TCTL, "TCTL"},
285         {E1000_TDBAL(0), "TDBAL"},
286         {E1000_TDBAH(0), "TDBAH"},
287         {E1000_TDLEN(0), "TDLEN"},
288         {E1000_TDH(0), "TDH"},
289         {E1000_TDT(0), "TDT"},
290         {E1000_TXDCTL(0), "TXDCTL"},
291         {E1000_TDFH, "TDFH"},
292         {E1000_TDFT, "TDFT"},
293         {E1000_TDFHS, "TDFHS"},
294         {E1000_TDFPC, "TDFPC"},
295
296         /* List Terminator */
297         {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303         int n = 0;
304         char rname[16];
305         u32 regs[8];
306
307         switch (reginfo->ofs) {
308         case E1000_RDLEN(0):
309                 for (n = 0; n < 4; n++)
310                         regs[n] = rd32(E1000_RDLEN(n));
311                 break;
312         case E1000_RDH(0):
313                 for (n = 0; n < 4; n++)
314                         regs[n] = rd32(E1000_RDH(n));
315                 break;
316         case E1000_RDT(0):
317                 for (n = 0; n < 4; n++)
318                         regs[n] = rd32(E1000_RDT(n));
319                 break;
320         case E1000_RXDCTL(0):
321                 for (n = 0; n < 4; n++)
322                         regs[n] = rd32(E1000_RXDCTL(n));
323                 break;
324         case E1000_RDBAL(0):
325                 for (n = 0; n < 4; n++)
326                         regs[n] = rd32(E1000_RDBAL(n));
327                 break;
328         case E1000_RDBAH(0):
329                 for (n = 0; n < 4; n++)
330                         regs[n] = rd32(E1000_RDBAH(n));
331                 break;
332         case E1000_TDBAL(0):
333                 for (n = 0; n < 4; n++)
334                         regs[n] = rd32(E1000_RDBAL(n));
335                 break;
336         case E1000_TDBAH(0):
337                 for (n = 0; n < 4; n++)
338                         regs[n] = rd32(E1000_TDBAH(n));
339                 break;
340         case E1000_TDLEN(0):
341                 for (n = 0; n < 4; n++)
342                         regs[n] = rd32(E1000_TDLEN(n));
343                 break;
344         case E1000_TDH(0):
345                 for (n = 0; n < 4; n++)
346                         regs[n] = rd32(E1000_TDH(n));
347                 break;
348         case E1000_TDT(0):
349                 for (n = 0; n < 4; n++)
350                         regs[n] = rd32(E1000_TDT(n));
351                 break;
352         case E1000_TXDCTL(0):
353                 for (n = 0; n < 4; n++)
354                         regs[n] = rd32(E1000_TXDCTL(n));
355                 break;
356         default:
357                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358                 return;
359         }
360
361         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363                 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369         struct net_device *netdev = adapter->netdev;
370         struct e1000_hw *hw = &adapter->hw;
371         struct igb_reg_info *reginfo;
372         struct igb_ring *tx_ring;
373         union e1000_adv_tx_desc *tx_desc;
374         struct my_u0 { u64 a; u64 b; } *u0;
375         struct igb_ring *rx_ring;
376         union e1000_adv_rx_desc *rx_desc;
377         u32 staterr;
378         u16 i, n;
379
380         if (!netif_msg_hw(adapter))
381                 return;
382
383         /* Print netdevice Info */
384         if (netdev) {
385                 dev_info(&adapter->pdev->dev, "Net device Info\n");
386                 pr_info("Device Name     state            trans_start      last_rx\n");
387                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388                         netdev->state, netdev->trans_start, netdev->last_rx);
389         }
390
391         /* Print Registers */
392         dev_info(&adapter->pdev->dev, "Register Dump\n");
393         pr_info(" Register Name   Value\n");
394         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395              reginfo->name; reginfo++) {
396                 igb_regdump(hw, reginfo);
397         }
398
399         /* Print TX Ring Summary */
400         if (!netdev || !netif_running(netdev))
401                 goto exit;
402
403         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405         for (n = 0; n < adapter->num_tx_queues; n++) {
406                 struct igb_tx_buffer *buffer_info;
407                 tx_ring = adapter->tx_ring[n];
408                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
411                         (u64)dma_unmap_addr(buffer_info, dma),
412                         dma_unmap_len(buffer_info, len),
413                         buffer_info->next_to_watch,
414                         (u64)buffer_info->time_stamp);
415         }
416
417         /* Print TX Rings */
418         if (!netif_msg_tx_done(adapter))
419                 goto rx_ring_summary;
420
421         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423         /* Transmit Descriptor Formats
424          *
425          * Advanced Transmit Descriptor
426          *   +--------------------------------------------------------------+
427          * 0 |         Buffer Address [63:0]                                |
428          *   +--------------------------------------------------------------+
429          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430          *   +--------------------------------------------------------------+
431          *   63      46 45    40 39 38 36 35 32 31   24             15       0
432          */
433
434         for (n = 0; n < adapter->num_tx_queues; n++) {
435                 tx_ring = adapter->tx_ring[n];
436                 pr_info("------------------------------------\n");
437                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438                 pr_info("------------------------------------\n");
439                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440
441                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442                         const char *next_desc;
443                         struct igb_tx_buffer *buffer_info;
444                         tx_desc = IGB_TX_DESC(tx_ring, i);
445                         buffer_info = &tx_ring->tx_buffer_info[i];
446                         u0 = (struct my_u0 *)tx_desc;
447                         if (i == tx_ring->next_to_use &&
448                             i == tx_ring->next_to_clean)
449                                 next_desc = " NTC/U";
450                         else if (i == tx_ring->next_to_use)
451                                 next_desc = " NTU";
452                         else if (i == tx_ring->next_to_clean)
453                                 next_desc = " NTC";
454                         else
455                                 next_desc = "";
456
457                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458                                 i, le64_to_cpu(u0->a),
459                                 le64_to_cpu(u0->b),
460                                 (u64)dma_unmap_addr(buffer_info, dma),
461                                 dma_unmap_len(buffer_info, len),
462                                 buffer_info->next_to_watch,
463                                 (u64)buffer_info->time_stamp,
464                                 buffer_info->skb, next_desc);
465
466                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
467                                 print_hex_dump(KERN_INFO, "",
468                                         DUMP_PREFIX_ADDRESS,
469                                         16, 1, buffer_info->skb->data,
470                                         dma_unmap_len(buffer_info, len),
471                                         true);
472                 }
473         }
474
475         /* Print RX Rings Summary */
476 rx_ring_summary:
477         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478         pr_info("Queue [NTU] [NTC]\n");
479         for (n = 0; n < adapter->num_rx_queues; n++) {
480                 rx_ring = adapter->rx_ring[n];
481                 pr_info(" %5d %5X %5X\n",
482                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
483         }
484
485         /* Print RX Rings */
486         if (!netif_msg_rx_status(adapter))
487                 goto exit;
488
489         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491         /* Advanced Receive Descriptor (Read) Format
492          *    63                                           1        0
493          *    +-----------------------------------------------------+
494          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495          *    +----------------------------------------------+------+
496          *  8 |       Header Buffer Address [63:1]           |  DD  |
497          *    +-----------------------------------------------------+
498          *
499          *
500          * Advanced Receive Descriptor (Write-Back) Format
501          *
502          *   63       48 47    32 31  30      21 20 17 16   4 3     0
503          *   +------------------------------------------------------+
504          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505          *   | Checksum   Ident  |   |           |    | Type | Type |
506          *   +------------------------------------------------------+
507          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508          *   +------------------------------------------------------+
509          *   63       48 47    32 31            20 19               0
510          */
511
512         for (n = 0; n < adapter->num_rx_queues; n++) {
513                 rx_ring = adapter->rx_ring[n];
514                 pr_info("------------------------------------\n");
515                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516                 pr_info("------------------------------------\n");
517                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520                 for (i = 0; i < rx_ring->count; i++) {
521                         const char *next_desc;
522                         struct igb_rx_buffer *buffer_info;
523                         buffer_info = &rx_ring->rx_buffer_info[i];
524                         rx_desc = IGB_RX_DESC(rx_ring, i);
525                         u0 = (struct my_u0 *)rx_desc;
526                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528                         if (i == rx_ring->next_to_use)
529                                 next_desc = " NTU";
530                         else if (i == rx_ring->next_to_clean)
531                                 next_desc = " NTC";
532                         else
533                                 next_desc = "";
534
535                         if (staterr & E1000_RXD_STAT_DD) {
536                                 /* Descriptor Done */
537                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538                                         "RWB", i,
539                                         le64_to_cpu(u0->a),
540                                         le64_to_cpu(u0->b),
541                                         next_desc);
542                         } else {
543                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544                                         "R  ", i,
545                                         le64_to_cpu(u0->a),
546                                         le64_to_cpu(u0->b),
547                                         (u64)buffer_info->dma,
548                                         next_desc);
549
550                                 if (netif_msg_pktdata(adapter) &&
551                                     buffer_info->dma && buffer_info->page) {
552                                         print_hex_dump(KERN_INFO, "",
553                                           DUMP_PREFIX_ADDRESS,
554                                           16, 1,
555                                           page_address(buffer_info->page) +
556                                                       buffer_info->page_offset,
557                                           IGB_RX_BUFSZ, true);
558                                 }
559                         }
560                 }
561         }
562
563 exit:
564         return;
565 }
566
567 /**
568  *  igb_get_i2c_data - Reads the I2C SDA data bit
569  *  @hw: pointer to hardware structure
570  *  @i2cctl: Current value of I2CCTL register
571  *
572  *  Returns the I2C data bit value
573  **/
574 static int igb_get_i2c_data(void *data)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
581 }
582
583 /**
584  *  igb_set_i2c_data - Sets the I2C data bit
585  *  @data: pointer to hardware structure
586  *  @state: I2C data value (0 or 1) to set
587  *
588  *  Sets the I2C data bit
589  **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592         struct igb_adapter *adapter = (struct igb_adapter *)data;
593         struct e1000_hw *hw = &adapter->hw;
594         s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596         if (state)
597                 i2cctl |= E1000_I2C_DATA_OUT;
598         else
599                 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601         i2cctl &= ~E1000_I2C_DATA_OE_N;
602         i2cctl |= E1000_I2C_CLK_OE_N;
603         wr32(E1000_I2CPARAMS, i2cctl);
604         wrfl();
605
606 }
607
608 /**
609  *  igb_set_i2c_clk - Sets the I2C SCL clock
610  *  @data: pointer to hardware structure
611  *  @state: state to set clock
612  *
613  *  Sets the I2C clock line to state
614  **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617         struct igb_adapter *adapter = (struct igb_adapter *)data;
618         struct e1000_hw *hw = &adapter->hw;
619         s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621         if (state) {
622                 i2cctl |= E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         } else {
625                 i2cctl &= ~E1000_I2C_CLK_OUT;
626                 i2cctl &= ~E1000_I2C_CLK_OE_N;
627         }
628         wr32(E1000_I2CPARAMS, i2cctl);
629         wrfl();
630 }
631
632 /**
633  *  igb_get_i2c_clk - Gets the I2C SCL clock state
634  *  @data: pointer to hardware structure
635  *
636  *  Gets the I2C clock state
637  **/
638 static int igb_get_i2c_clk(void *data)
639 {
640         struct igb_adapter *adapter = (struct igb_adapter *)data;
641         struct e1000_hw *hw = &adapter->hw;
642         s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648         .setsda         = igb_set_i2c_data,
649         .setscl         = igb_set_i2c_clk,
650         .getsda         = igb_get_i2c_data,
651         .getscl         = igb_get_i2c_clk,
652         .udelay         = 5,
653         .timeout        = 20,
654 };
655
656 /**
657  *  igb_get_hw_dev - return device
658  *  @hw: pointer to hardware structure
659  *
660  *  used by hardware layer to print debugging information
661  **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664         struct igb_adapter *adapter = hw->back;
665         return adapter->netdev;
666 }
667
668 /**
669  *  igb_init_module - Driver Registration Routine
670  *
671  *  igb_init_module is the first routine called when the driver is
672  *  loaded. All it does is register with the PCI subsystem.
673  **/
674 static int __init igb_init_module(void)
675 {
676         int ret;
677
678         pr_info("%s - version %s\n",
679                igb_driver_string, igb_driver_version);
680         pr_info("%s\n", igb_copyright);
681
682 #ifdef CONFIG_IGB_DCA
683         dca_register_notify(&dca_notifier);
684 #endif
685         ret = pci_register_driver(&igb_driver);
686         return ret;
687 }
688
689 module_init(igb_init_module);
690
691 /**
692  *  igb_exit_module - Driver Exit Cleanup Routine
693  *
694  *  igb_exit_module is called just before the driver is removed
695  *  from memory.
696  **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700         dca_unregister_notify(&dca_notifier);
701 #endif
702         pci_unregister_driver(&igb_driver);
703 }
704
705 module_exit(igb_exit_module);
706
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709  *  igb_cache_ring_register - Descriptor ring to register mapping
710  *  @adapter: board private structure to initialize
711  *
712  *  Once we know the feature-set enabled for the device, we'll cache
713  *  the register offset the descriptor ring is assigned to.
714  **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717         int i = 0, j = 0;
718         u32 rbase_offset = adapter->vfs_allocated_count;
719
720         switch (adapter->hw.mac.type) {
721         case e1000_82576:
722                 /* The queues are allocated for virtualization such that VF 0
723                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724                  * In order to avoid collision we start at the first free queue
725                  * and continue consuming queues in the same sequence
726                  */
727                 if (adapter->vfs_allocated_count) {
728                         for (; i < adapter->rss_queues; i++)
729                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
730                                                                Q_IDX_82576(i);
731                 }
732         case e1000_82575:
733         case e1000_82580:
734         case e1000_i350:
735         case e1000_i354:
736         case e1000_i210:
737         case e1000_i211:
738         default:
739                 for (; i < adapter->num_rx_queues; i++)
740                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741                 for (; j < adapter->num_tx_queues; j++)
742                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743                 break;
744         }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751         u32 value = 0;
752
753         if (E1000_REMOVED(hw_addr))
754                 return ~value;
755
756         value = readl(&hw_addr[reg]);
757
758         /* reads should not return all F's */
759         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760                 struct net_device *netdev = igb->netdev;
761                 hw->hw_addr = NULL;
762                 netif_device_detach(netdev);
763                 netdev_err(netdev, "PCIe link lost, device now detached\n");
764         }
765
766         return value;
767 }
768
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782                            int index, int offset)
783 {
784         u32 ivar = array_rd32(E1000_IVAR0, index);
785
786         /* clear any bits that are currently set */
787         ivar &= ~((u32)0xFF << offset);
788
789         /* write vector and valid bit */
790         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792         array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798         struct igb_adapter *adapter = q_vector->adapter;
799         struct e1000_hw *hw = &adapter->hw;
800         int rx_queue = IGB_N0_QUEUE;
801         int tx_queue = IGB_N0_QUEUE;
802         u32 msixbm = 0;
803
804         if (q_vector->rx.ring)
805                 rx_queue = q_vector->rx.ring->reg_idx;
806         if (q_vector->tx.ring)
807                 tx_queue = q_vector->tx.ring->reg_idx;
808
809         switch (hw->mac.type) {
810         case e1000_82575:
811                 /* The 82575 assigns vectors using a bitmask, which matches the
812                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813                  * or more queues to a vector, we write the appropriate bits
814                  * into the MSIXBM register for that vector.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818                 if (tx_queue > IGB_N0_QUEUE)
819                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821                         msixbm |= E1000_EIMS_OTHER;
822                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823                 q_vector->eims_value = msixbm;
824                 break;
825         case e1000_82576:
826                 /* 82576 uses a table that essentially consists of 2 columns
827                  * with 8 rows.  The ordering is column-major so we use the
828                  * lower 3 bits as the row index, and the 4th bit as the
829                  * column offset.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         igb_write_ivar(hw, msix_vector,
833                                        rx_queue & 0x7,
834                                        (rx_queue & 0x8) << 1);
835                 if (tx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        tx_queue & 0x7,
838                                        ((tx_queue & 0x8) << 1) + 8);
839                 q_vector->eims_value = 1 << msix_vector;
840                 break;
841         case e1000_82580:
842         case e1000_i350:
843         case e1000_i354:
844         case e1000_i210:
845         case e1000_i211:
846                 /* On 82580 and newer adapters the scheme is similar to 82576
847                  * however instead of ordering column-major we have things
848                  * ordered row-major.  So we traverse the table by using
849                  * bit 0 as the column offset, and the remaining bits as the
850                  * row index.
851                  */
852                 if (rx_queue > IGB_N0_QUEUE)
853                         igb_write_ivar(hw, msix_vector,
854                                        rx_queue >> 1,
855                                        (rx_queue & 0x1) << 4);
856                 if (tx_queue > IGB_N0_QUEUE)
857                         igb_write_ivar(hw, msix_vector,
858                                        tx_queue >> 1,
859                                        ((tx_queue & 0x1) << 4) + 8);
860                 q_vector->eims_value = 1 << msix_vector;
861                 break;
862         default:
863                 BUG();
864                 break;
865         }
866
867         /* add q_vector eims value to global eims_enable_mask */
868         adapter->eims_enable_mask |= q_vector->eims_value;
869
870         /* configure q_vector to set itr on first interrupt */
871         q_vector->set_itr = 1;
872 }
873
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904                 adapter->eims_other = E1000_EIMS_OTHER;
905
906                 break;
907
908         case e1000_82576:
909         case e1000_82580:
910         case e1000_i350:
911         case e1000_i354:
912         case e1000_i210:
913         case e1000_i211:
914                 /* Turn on MSI-X capability first, or our settings
915                  * won't stick.  And it will take days to debug.
916                  */
917                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
919                      E1000_GPIE_NSICR);
920
921                 /* enable msix_other interrupt */
922                 adapter->eims_other = 1 << vector;
923                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925                 wr32(E1000_IVAR_MISC, tmp);
926                 break;
927         default:
928                 /* do nothing, since nothing else supports MSI-X */
929                 break;
930         } /* switch (hw->mac.type) */
931
932         adapter->eims_enable_mask |= adapter->eims_other;
933
934         for (i = 0; i < adapter->num_q_vectors; i++)
935                 igb_assign_vector(adapter->q_vector[i], vector++);
936
937         wrfl();
938 }
939
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949         struct net_device *netdev = adapter->netdev;
950         struct e1000_hw *hw = &adapter->hw;
951         int i, err = 0, vector = 0, free_vector = 0;
952
953         err = request_irq(adapter->msix_entries[vector].vector,
954                           igb_msix_other, 0, netdev->name, adapter);
955         if (err)
956                 goto err_out;
957
958         for (i = 0; i < adapter->num_q_vectors; i++) {
959                 struct igb_q_vector *q_vector = adapter->q_vector[i];
960
961                 vector++;
962
963                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964
965                 if (q_vector->rx.ring && q_vector->tx.ring)
966                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
967                                 q_vector->rx.ring->queue_index);
968                 else if (q_vector->tx.ring)
969                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
970                                 q_vector->tx.ring->queue_index);
971                 else if (q_vector->rx.ring)
972                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
973                                 q_vector->rx.ring->queue_index);
974                 else
975                         sprintf(q_vector->name, "%s-unused", netdev->name);
976
977                 err = request_irq(adapter->msix_entries[vector].vector,
978                                   igb_msix_ring, 0, q_vector->name,
979                                   q_vector);
980                 if (err)
981                         goto err_free;
982         }
983
984         igb_configure_msix(adapter);
985         return 0;
986
987 err_free:
988         /* free already assigned IRQs */
989         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990
991         vector--;
992         for (i = 0; i < vector; i++) {
993                 free_irq(adapter->msix_entries[free_vector++].vector,
994                          adapter->q_vector[i]);
995         }
996 err_out:
997         return err;
998 }
999
1000 /**
1001  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1002  *  @adapter: board private structure to initialize
1003  *  @v_idx: Index of vector to be freed
1004  *
1005  *  This function frees the memory allocated to the q_vector.
1006  **/
1007 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008 {
1009         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010
1011         adapter->q_vector[v_idx] = NULL;
1012
1013         /* igb_get_stats64() might access the rings on this vector,
1014          * we must wait a grace period before freeing it.
1015          */
1016         kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector)
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi,
1217                        igb_poll, 64);
1218
1219         /* tie q_vector and adapter together */
1220         adapter->q_vector[v_idx] = q_vector;
1221         q_vector->adapter = adapter;
1222
1223         /* initialize work limits */
1224         q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226         /* initialize ITR configuration */
1227         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228         q_vector->itr_val = IGB_START_ITR;
1229
1230         /* initialize pointer to rings */
1231         ring = q_vector->ring;
1232
1233         /* intialize ITR */
1234         if (rxr_count) {
1235                 /* rx or rx/tx vector */
1236                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                         q_vector->itr_val = adapter->rx_itr_setting;
1238         } else {
1239                 /* tx only vector */
1240                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->tx_itr_setting;
1242         }
1243
1244         if (txr_count) {
1245                 /* assign generic ring traits */
1246                 ring->dev = &adapter->pdev->dev;
1247                 ring->netdev = adapter->netdev;
1248
1249                 /* configure backlink on ring */
1250                 ring->q_vector = q_vector;
1251
1252                 /* update q_vector Tx values */
1253                 igb_add_ring(ring, &q_vector->tx);
1254
1255                 /* For 82575, context index must be unique per ring. */
1256                 if (adapter->hw.mac.type == e1000_82575)
1257                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                 /* apply Tx specific ring traits */
1260                 ring->count = adapter->tx_ring_count;
1261                 ring->queue_index = txr_idx;
1262
1263                 u64_stats_init(&ring->tx_syncp);
1264                 u64_stats_init(&ring->tx_syncp2);
1265
1266                 /* assign ring to adapter */
1267                 adapter->tx_ring[txr_idx] = ring;
1268
1269                 /* push pointer to next ring */
1270                 ring++;
1271         }
1272
1273         if (rxr_count) {
1274                 /* assign generic ring traits */
1275                 ring->dev = &adapter->pdev->dev;
1276                 ring->netdev = adapter->netdev;
1277
1278                 /* configure backlink on ring */
1279                 ring->q_vector = q_vector;
1280
1281                 /* update q_vector Rx values */
1282                 igb_add_ring(ring, &q_vector->rx);
1283
1284                 /* set flag indicating ring supports SCTP checksum offload */
1285                 if (adapter->hw.mac.type >= e1000_82576)
1286                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288                 /*
1289                  * On i350, i354, i210, and i211, loopback VLAN packets
1290                  * have the tag byte-swapped.
1291                  */
1292                 if (adapter->hw.mac.type >= e1000_i350)
1293                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295                 /* apply Rx specific ring traits */
1296                 ring->count = adapter->rx_ring_count;
1297                 ring->queue_index = rxr_idx;
1298
1299                 u64_stats_init(&ring->rx_syncp);
1300
1301                 /* assign ring to adapter */
1302                 adapter->rx_ring[rxr_idx] = ring;
1303         }
1304
1305         return 0;
1306 }
1307
1308
1309 /**
1310  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311  *  @adapter: board private structure to initialize
1312  *
1313  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1314  *  return -ENOMEM.
1315  **/
1316 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317 {
1318         int q_vectors = adapter->num_q_vectors;
1319         int rxr_remaining = adapter->num_rx_queues;
1320         int txr_remaining = adapter->num_tx_queues;
1321         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322         int err;
1323
1324         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325                 for (; rxr_remaining; v_idx++) {
1326                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327                                                  0, 0, 1, rxr_idx);
1328
1329                         if (err)
1330                                 goto err_out;
1331
1332                         /* update counts and index */
1333                         rxr_remaining--;
1334                         rxr_idx++;
1335                 }
1336         }
1337
1338         for (; v_idx < q_vectors; v_idx++) {
1339                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341
1342                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1343                                          tqpv, txr_idx, rqpv, rxr_idx);
1344
1345                 if (err)
1346                         goto err_out;
1347
1348                 /* update counts and index */
1349                 rxr_remaining -= rqpv;
1350                 txr_remaining -= tqpv;
1351                 rxr_idx++;
1352                 txr_idx++;
1353         }
1354
1355         return 0;
1356
1357 err_out:
1358         adapter->num_tx_queues = 0;
1359         adapter->num_rx_queues = 0;
1360         adapter->num_q_vectors = 0;
1361
1362         while (v_idx--)
1363                 igb_free_q_vector(adapter, v_idx);
1364
1365         return -ENOMEM;
1366 }
1367
1368 /**
1369  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1370  *  @adapter: board private structure to initialize
1371  *  @msix: boolean value of MSIX capability
1372  *
1373  *  This function initializes the interrupts and allocates all of the queues.
1374  **/
1375 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1376 {
1377         struct pci_dev *pdev = adapter->pdev;
1378         int err;
1379
1380         igb_set_interrupt_capability(adapter, msix);
1381
1382         err = igb_alloc_q_vectors(adapter);
1383         if (err) {
1384                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1385                 goto err_alloc_q_vectors;
1386         }
1387
1388         igb_cache_ring_register(adapter);
1389
1390         return 0;
1391
1392 err_alloc_q_vectors:
1393         igb_reset_interrupt_capability(adapter);
1394         return err;
1395 }
1396
1397 /**
1398  *  igb_request_irq - initialize interrupts
1399  *  @adapter: board private structure to initialize
1400  *
1401  *  Attempts to configure interrupts using the best available
1402  *  capabilities of the hardware and kernel.
1403  **/
1404 static int igb_request_irq(struct igb_adapter *adapter)
1405 {
1406         struct net_device *netdev = adapter->netdev;
1407         struct pci_dev *pdev = adapter->pdev;
1408         int err = 0;
1409
1410         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411                 err = igb_request_msix(adapter);
1412                 if (!err)
1413                         goto request_done;
1414                 /* fall back to MSI */
1415                 igb_free_all_tx_resources(adapter);
1416                 igb_free_all_rx_resources(adapter);
1417
1418                 igb_clear_interrupt_scheme(adapter);
1419                 err = igb_init_interrupt_scheme(adapter, false);
1420                 if (err)
1421                         goto request_done;
1422
1423                 igb_setup_all_tx_resources(adapter);
1424                 igb_setup_all_rx_resources(adapter);
1425                 igb_configure(adapter);
1426         }
1427
1428         igb_assign_vector(adapter->q_vector[0], 0);
1429
1430         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1431                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1432                                   netdev->name, adapter);
1433                 if (!err)
1434                         goto request_done;
1435
1436                 /* fall back to legacy interrupts */
1437                 igb_reset_interrupt_capability(adapter);
1438                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1439         }
1440
1441         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1442                           netdev->name, adapter);
1443
1444         if (err)
1445                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1446                         err);
1447
1448 request_done:
1449         return err;
1450 }
1451
1452 static void igb_free_irq(struct igb_adapter *adapter)
1453 {
1454         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1455                 int vector = 0, i;
1456
1457                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1458
1459                 for (i = 0; i < adapter->num_q_vectors; i++)
1460                         free_irq(adapter->msix_entries[vector++].vector,
1461                                  adapter->q_vector[i]);
1462         } else {
1463                 free_irq(adapter->pdev->irq, adapter);
1464         }
1465 }
1466
1467 /**
1468  *  igb_irq_disable - Mask off interrupt generation on the NIC
1469  *  @adapter: board private structure
1470  **/
1471 static void igb_irq_disable(struct igb_adapter *adapter)
1472 {
1473         struct e1000_hw *hw = &adapter->hw;
1474
1475         /* we need to be careful when disabling interrupts.  The VFs are also
1476          * mapped into these registers and so clearing the bits can cause
1477          * issues on the VF drivers so we only need to clear what we set
1478          */
1479         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1480                 u32 regval = rd32(E1000_EIAM);
1481
1482                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1483                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1484                 regval = rd32(E1000_EIAC);
1485                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1486         }
1487
1488         wr32(E1000_IAM, 0);
1489         wr32(E1000_IMC, ~0);
1490         wrfl();
1491         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1492                 int i;
1493
1494                 for (i = 0; i < adapter->num_q_vectors; i++)
1495                         synchronize_irq(adapter->msix_entries[i].vector);
1496         } else {
1497                 synchronize_irq(adapter->pdev->irq);
1498         }
1499 }
1500
1501 /**
1502  *  igb_irq_enable - Enable default interrupt generation settings
1503  *  @adapter: board private structure
1504  **/
1505 static void igb_irq_enable(struct igb_adapter *adapter)
1506 {
1507         struct e1000_hw *hw = &adapter->hw;
1508
1509         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1511                 u32 regval = rd32(E1000_EIAC);
1512
1513                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1514                 regval = rd32(E1000_EIAM);
1515                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1516                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1517                 if (adapter->vfs_allocated_count) {
1518                         wr32(E1000_MBVFIMR, 0xFF);
1519                         ims |= E1000_IMS_VMMB;
1520                 }
1521                 wr32(E1000_IMS, ims);
1522         } else {
1523                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1524                                 E1000_IMS_DRSTA);
1525                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1526                                 E1000_IMS_DRSTA);
1527         }
1528 }
1529
1530 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1531 {
1532         struct e1000_hw *hw = &adapter->hw;
1533         u16 vid = adapter->hw.mng_cookie.vlan_id;
1534         u16 old_vid = adapter->mng_vlan_id;
1535
1536         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1537                 /* add VID to filter table */
1538                 igb_vfta_set(hw, vid, true);
1539                 adapter->mng_vlan_id = vid;
1540         } else {
1541                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1542         }
1543
1544         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1545             (vid != old_vid) &&
1546             !test_bit(old_vid, adapter->active_vlans)) {
1547                 /* remove VID from filter table */
1548                 igb_vfta_set(hw, old_vid, false);
1549         }
1550 }
1551
1552 /**
1553  *  igb_release_hw_control - release control of the h/w to f/w
1554  *  @adapter: address of board private structure
1555  *
1556  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1557  *  For ASF and Pass Through versions of f/w this means that the
1558  *  driver is no longer loaded.
1559  **/
1560 static void igb_release_hw_control(struct igb_adapter *adapter)
1561 {
1562         struct e1000_hw *hw = &adapter->hw;
1563         u32 ctrl_ext;
1564
1565         /* Let firmware take over control of h/w */
1566         ctrl_ext = rd32(E1000_CTRL_EXT);
1567         wr32(E1000_CTRL_EXT,
1568                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1569 }
1570
1571 /**
1572  *  igb_get_hw_control - get control of the h/w from f/w
1573  *  @adapter: address of board private structure
1574  *
1575  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1576  *  For ASF and Pass Through versions of f/w this means that
1577  *  the driver is loaded.
1578  **/
1579 static void igb_get_hw_control(struct igb_adapter *adapter)
1580 {
1581         struct e1000_hw *hw = &adapter->hw;
1582         u32 ctrl_ext;
1583
1584         /* Let firmware know the driver has taken over */
1585         ctrl_ext = rd32(E1000_CTRL_EXT);
1586         wr32(E1000_CTRL_EXT,
1587                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1588 }
1589
1590 /**
1591  *  igb_configure - configure the hardware for RX and TX
1592  *  @adapter: private board structure
1593  **/
1594 static void igb_configure(struct igb_adapter *adapter)
1595 {
1596         struct net_device *netdev = adapter->netdev;
1597         int i;
1598
1599         igb_get_hw_control(adapter);
1600         igb_set_rx_mode(netdev);
1601
1602         igb_restore_vlan(adapter);
1603
1604         igb_setup_tctl(adapter);
1605         igb_setup_mrqc(adapter);
1606         igb_setup_rctl(adapter);
1607
1608         igb_configure_tx(adapter);
1609         igb_configure_rx(adapter);
1610
1611         igb_rx_fifo_flush_82575(&adapter->hw);
1612
1613         /* call igb_desc_unused which always leaves
1614          * at least 1 descriptor unused to make sure
1615          * next_to_use != next_to_clean
1616          */
1617         for (i = 0; i < adapter->num_rx_queues; i++) {
1618                 struct igb_ring *ring = adapter->rx_ring[i];
1619                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1620         }
1621 }
1622
1623 /**
1624  *  igb_power_up_link - Power up the phy/serdes link
1625  *  @adapter: address of board private structure
1626  **/
1627 void igb_power_up_link(struct igb_adapter *adapter)
1628 {
1629         igb_reset_phy(&adapter->hw);
1630
1631         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1632                 igb_power_up_phy_copper(&adapter->hw);
1633         else
1634                 igb_power_up_serdes_link_82575(&adapter->hw);
1635 }
1636
1637 /**
1638  *  igb_power_down_link - Power down the phy/serdes link
1639  *  @adapter: address of board private structure
1640  */
1641 static void igb_power_down_link(struct igb_adapter *adapter)
1642 {
1643         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1644                 igb_power_down_phy_copper_82575(&adapter->hw);
1645         else
1646                 igb_shutdown_serdes_link_82575(&adapter->hw);
1647 }
1648
1649 /**
1650  * Detect and switch function for Media Auto Sense
1651  * @adapter: address of the board private structure
1652  **/
1653 static void igb_check_swap_media(struct igb_adapter *adapter)
1654 {
1655         struct e1000_hw *hw = &adapter->hw;
1656         u32 ctrl_ext, connsw;
1657         bool swap_now = false;
1658
1659         ctrl_ext = rd32(E1000_CTRL_EXT);
1660         connsw = rd32(E1000_CONNSW);
1661
1662         /* need to live swap if current media is copper and we have fiber/serdes
1663          * to go to.
1664          */
1665
1666         if ((hw->phy.media_type == e1000_media_type_copper) &&
1667             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1668                 swap_now = true;
1669         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1670                 /* copper signal takes time to appear */
1671                 if (adapter->copper_tries < 4) {
1672                         adapter->copper_tries++;
1673                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1674                         wr32(E1000_CONNSW, connsw);
1675                         return;
1676                 } else {
1677                         adapter->copper_tries = 0;
1678                         if ((connsw & E1000_CONNSW_PHYSD) &&
1679                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1680                                 swap_now = true;
1681                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1682                                 wr32(E1000_CONNSW, connsw);
1683                         }
1684                 }
1685         }
1686
1687         if (!swap_now)
1688                 return;
1689
1690         switch (hw->phy.media_type) {
1691         case e1000_media_type_copper:
1692                 netdev_info(adapter->netdev,
1693                         "MAS: changing media to fiber/serdes\n");
1694                 ctrl_ext |=
1695                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1696                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1697                 adapter->copper_tries = 0;
1698                 break;
1699         case e1000_media_type_internal_serdes:
1700         case e1000_media_type_fiber:
1701                 netdev_info(adapter->netdev,
1702                         "MAS: changing media to copper\n");
1703                 ctrl_ext &=
1704                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1705                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1706                 break;
1707         default:
1708                 /* shouldn't get here during regular operation */
1709                 netdev_err(adapter->netdev,
1710                         "AMS: Invalid media type found, returning\n");
1711                 break;
1712         }
1713         wr32(E1000_CTRL_EXT, ctrl_ext);
1714 }
1715
1716 /**
1717  *  igb_up - Open the interface and prepare it to handle traffic
1718  *  @adapter: board private structure
1719  **/
1720 int igb_up(struct igb_adapter *adapter)
1721 {
1722         struct e1000_hw *hw = &adapter->hw;
1723         int i;
1724
1725         /* hardware has been reset, we need to reload some things */
1726         igb_configure(adapter);
1727
1728         clear_bit(__IGB_DOWN, &adapter->state);
1729
1730         for (i = 0; i < adapter->num_q_vectors; i++)
1731                 napi_enable(&(adapter->q_vector[i]->napi));
1732
1733         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1734                 igb_configure_msix(adapter);
1735         else
1736                 igb_assign_vector(adapter->q_vector[0], 0);
1737
1738         /* Clear any pending interrupts. */
1739         rd32(E1000_ICR);
1740         igb_irq_enable(adapter);
1741
1742         /* notify VFs that reset has been completed */
1743         if (adapter->vfs_allocated_count) {
1744                 u32 reg_data = rd32(E1000_CTRL_EXT);
1745
1746                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1747                 wr32(E1000_CTRL_EXT, reg_data);
1748         }
1749
1750         netif_tx_start_all_queues(adapter->netdev);
1751
1752         /* start the watchdog. */
1753         hw->mac.get_link_status = 1;
1754         schedule_work(&adapter->watchdog_task);
1755
1756         if ((adapter->flags & IGB_FLAG_EEE) &&
1757             (!hw->dev_spec._82575.eee_disable))
1758                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1759
1760         return 0;
1761 }
1762
1763 void igb_down(struct igb_adapter *adapter)
1764 {
1765         struct net_device *netdev = adapter->netdev;
1766         struct e1000_hw *hw = &adapter->hw;
1767         u32 tctl, rctl;
1768         int i;
1769
1770         /* signal that we're down so the interrupt handler does not
1771          * reschedule our watchdog timer
1772          */
1773         set_bit(__IGB_DOWN, &adapter->state);
1774
1775         /* disable receives in the hardware */
1776         rctl = rd32(E1000_RCTL);
1777         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1778         /* flush and sleep below */
1779
1780         netif_tx_stop_all_queues(netdev);
1781
1782         /* disable transmits in the hardware */
1783         tctl = rd32(E1000_TCTL);
1784         tctl &= ~E1000_TCTL_EN;
1785         wr32(E1000_TCTL, tctl);
1786         /* flush both disables and wait for them to finish */
1787         wrfl();
1788         msleep(10);
1789
1790         igb_irq_disable(adapter);
1791
1792         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1793
1794         for (i = 0; i < adapter->num_q_vectors; i++) {
1795                 napi_synchronize(&(adapter->q_vector[i]->napi));
1796                 napi_disable(&(adapter->q_vector[i]->napi));
1797         }
1798
1799
1800         del_timer_sync(&adapter->watchdog_timer);
1801         del_timer_sync(&adapter->phy_info_timer);
1802
1803         netif_carrier_off(netdev);
1804
1805         /* record the stats before reset*/
1806         spin_lock(&adapter->stats64_lock);
1807         igb_update_stats(adapter, &adapter->stats64);
1808         spin_unlock(&adapter->stats64_lock);
1809
1810         adapter->link_speed = 0;
1811         adapter->link_duplex = 0;
1812
1813         if (!pci_channel_offline(adapter->pdev))
1814                 igb_reset(adapter);
1815         igb_clean_all_tx_rings(adapter);
1816         igb_clean_all_rx_rings(adapter);
1817 #ifdef CONFIG_IGB_DCA
1818
1819         /* since we reset the hardware DCA settings were cleared */
1820         igb_setup_dca(adapter);
1821 #endif
1822 }
1823
1824 void igb_reinit_locked(struct igb_adapter *adapter)
1825 {
1826         WARN_ON(in_interrupt());
1827         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1828                 msleep(1);
1829         igb_down(adapter);
1830         igb_up(adapter);
1831         clear_bit(__IGB_RESETTING, &adapter->state);
1832 }
1833
1834 /** igb_enable_mas - Media Autosense re-enable after swap
1835  *
1836  * @adapter: adapter struct
1837  **/
1838 static s32 igb_enable_mas(struct igb_adapter *adapter)
1839 {
1840         struct e1000_hw *hw = &adapter->hw;
1841         u32 connsw;
1842         s32 ret_val = 0;
1843
1844         connsw = rd32(E1000_CONNSW);
1845         if (!(hw->phy.media_type == e1000_media_type_copper))
1846                 return ret_val;
1847
1848         /* configure for SerDes media detect */
1849         if (!(connsw & E1000_CONNSW_SERDESD)) {
1850                 connsw |= E1000_CONNSW_ENRGSRC;
1851                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1852                 wr32(E1000_CONNSW, connsw);
1853                 wrfl();
1854         } else if (connsw & E1000_CONNSW_SERDESD) {
1855                 /* already SerDes, no need to enable anything */
1856                 return ret_val;
1857         } else {
1858                 netdev_info(adapter->netdev,
1859                         "MAS: Unable to configure feature, disabling..\n");
1860                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1861         }
1862         return ret_val;
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867         struct pci_dev *pdev = adapter->pdev;
1868         struct e1000_hw *hw = &adapter->hw;
1869         struct e1000_mac_info *mac = &hw->mac;
1870         struct e1000_fc_info *fc = &hw->fc;
1871         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1872
1873         /* Repartition Pba for greater than 9k mtu
1874          * To take effect CTRL.RST is required.
1875          */
1876         switch (mac->type) {
1877         case e1000_i350:
1878         case e1000_i354:
1879         case e1000_82580:
1880                 pba = rd32(E1000_RXPBS);
1881                 pba = igb_rxpbs_adjust_82580(pba);
1882                 break;
1883         case e1000_82576:
1884                 pba = rd32(E1000_RXPBS);
1885                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886                 break;
1887         case e1000_82575:
1888         case e1000_i210:
1889         case e1000_i211:
1890         default:
1891                 pba = E1000_PBA_34K;
1892                 break;
1893         }
1894
1895         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1896             (mac->type < e1000_82576)) {
1897                 /* adjust PBA for jumbo frames */
1898                 wr32(E1000_PBA, pba);
1899
1900                 /* To maintain wire speed transmits, the Tx FIFO should be
1901                  * large enough to accommodate two full transmit packets,
1902                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1903                  * the Rx FIFO should be large enough to accommodate at least
1904                  * one full receive packet and is similarly rounded up and
1905                  * expressed in KB.
1906                  */
1907                 pba = rd32(E1000_PBA);
1908                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1909                 tx_space = pba >> 16;
1910                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1911                 pba &= 0xffff;
1912                 /* the Tx fifo also stores 16 bytes of information about the Tx
1913                  * but don't include ethernet FCS because hardware appends it
1914                  */
1915                 min_tx_space = (adapter->max_frame_size +
1916                                 sizeof(union e1000_adv_tx_desc) -
1917                                 ETH_FCS_LEN) * 2;
1918                 min_tx_space = ALIGN(min_tx_space, 1024);
1919                 min_tx_space >>= 10;
1920                 /* software strips receive CRC, so leave room for it */
1921                 min_rx_space = adapter->max_frame_size;
1922                 min_rx_space = ALIGN(min_rx_space, 1024);
1923                 min_rx_space >>= 10;
1924
1925                 /* If current Tx allocation is less than the min Tx FIFO size,
1926                  * and the min Tx FIFO size is less than the current Rx FIFO
1927                  * allocation, take space away from current Rx allocation
1928                  */
1929                 if (tx_space < min_tx_space &&
1930                     ((min_tx_space - tx_space) < pba)) {
1931                         pba = pba - (min_tx_space - tx_space);
1932
1933                         /* if short on Rx space, Rx wins and must trump Tx
1934                          * adjustment
1935                          */
1936                         if (pba < min_rx_space)
1937                                 pba = min_rx_space;
1938                 }
1939                 wr32(E1000_PBA, pba);
1940         }
1941
1942         /* flow control settings */
1943         /* The high water mark must be low enough to fit one full frame
1944          * (or the size used for early receive) above it in the Rx FIFO.
1945          * Set it to the lower of:
1946          * - 90% of the Rx FIFO size, or
1947          * - the full Rx FIFO size minus one full frame
1948          */
1949         hwm = min(((pba << 10) * 9 / 10),
1950                         ((pba << 10) - 2 * adapter->max_frame_size));
1951
1952         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1953         fc->low_water = fc->high_water - 16;
1954         fc->pause_time = 0xFFFF;
1955         fc->send_xon = 1;
1956         fc->current_mode = fc->requested_mode;
1957
1958         /* disable receive for all VFs and wait one second */
1959         if (adapter->vfs_allocated_count) {
1960                 int i;
1961
1962                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1963                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1964
1965                 /* ping all the active vfs to let them know we are going down */
1966                 igb_ping_all_vfs(adapter);
1967
1968                 /* disable transmits and receives */
1969                 wr32(E1000_VFRE, 0);
1970                 wr32(E1000_VFTE, 0);
1971         }
1972
1973         /* Allow time for pending master requests to run */
1974         hw->mac.ops.reset_hw(hw);
1975         wr32(E1000_WUC, 0);
1976
1977         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1978                 /* need to resetup here after media swap */
1979                 adapter->ei.get_invariants(hw);
1980                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1981         }
1982         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1983                 if (igb_enable_mas(adapter))
1984                         dev_err(&pdev->dev,
1985                                 "Error enabling Media Auto Sense\n");
1986         }
1987         if (hw->mac.ops.init_hw(hw))
1988                 dev_err(&pdev->dev, "Hardware Error\n");
1989
1990         /* Flow control settings reset on hardware reset, so guarantee flow
1991          * control is off when forcing speed.
1992          */
1993         if (!hw->mac.autoneg)
1994                 igb_force_mac_fc(hw);
1995
1996         igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998         /* Re-initialize the thermal sensor on i350 devices. */
1999         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001                         /* If present, re-initialize the external thermal sensor
2002                          * interface.
2003                          */
2004                         if (adapter->ets)
2005                                 mac->ops.init_thermal_sensor_thresh(hw);
2006                 }
2007         }
2008 #endif
2009         /* Re-establish EEE setting */
2010         if (hw->phy.media_type == e1000_media_type_copper) {
2011                 switch (mac->type) {
2012                 case e1000_i350:
2013                 case e1000_i210:
2014                 case e1000_i211:
2015                         igb_set_eee_i350(hw);
2016                         break;
2017                 case e1000_i354:
2018                         igb_set_eee_i354(hw);
2019                         break;
2020                 default:
2021                         break;
2022                 }
2023         }
2024         if (!netif_running(adapter->netdev))
2025                 igb_power_down_link(adapter);
2026
2027         igb_update_mng_vlan(adapter);
2028
2029         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032         /* Re-enable PTP, where applicable. */
2033         igb_ptp_reset(adapter);
2034
2035         igb_get_phy_info(hw);
2036 }
2037
2038 static netdev_features_t igb_fix_features(struct net_device *netdev,
2039         netdev_features_t features)
2040 {
2041         /* Since there is no support for separate Rx/Tx vlan accel
2042          * enable/disable make sure Tx flag is always in same state as Rx.
2043          */
2044         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2045                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2046         else
2047                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2048
2049         return features;
2050 }
2051
2052 static int igb_set_features(struct net_device *netdev,
2053         netdev_features_t features)
2054 {
2055         netdev_features_t changed = netdev->features ^ features;
2056         struct igb_adapter *adapter = netdev_priv(netdev);
2057
2058         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2059                 igb_vlan_mode(netdev, features);
2060
2061         if (!(changed & NETIF_F_RXALL))
2062                 return 0;
2063
2064         netdev->features = features;
2065
2066         if (netif_running(netdev))
2067                 igb_reinit_locked(adapter);
2068         else
2069                 igb_reset(adapter);
2070
2071         return 0;
2072 }
2073
2074 static const struct net_device_ops igb_netdev_ops = {
2075         .ndo_open               = igb_open,
2076         .ndo_stop               = igb_close,
2077         .ndo_start_xmit         = igb_xmit_frame,
2078         .ndo_get_stats64        = igb_get_stats64,
2079         .ndo_set_rx_mode        = igb_set_rx_mode,
2080         .ndo_set_mac_address    = igb_set_mac,
2081         .ndo_change_mtu         = igb_change_mtu,
2082         .ndo_do_ioctl           = igb_ioctl,
2083         .ndo_tx_timeout         = igb_tx_timeout,
2084         .ndo_validate_addr      = eth_validate_addr,
2085         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2086         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2087         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2088         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2089         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
2090         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2091         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2092 #ifdef CONFIG_NET_POLL_CONTROLLER
2093         .ndo_poll_controller    = igb_netpoll,
2094 #endif
2095         .ndo_fix_features       = igb_fix_features,
2096         .ndo_set_features       = igb_set_features,
2097 };
2098
2099 /**
2100  * igb_set_fw_version - Configure version string for ethtool
2101  * @adapter: adapter struct
2102  **/
2103 void igb_set_fw_version(struct igb_adapter *adapter)
2104 {
2105         struct e1000_hw *hw = &adapter->hw;
2106         struct e1000_fw_version fw;
2107
2108         igb_get_fw_version(hw, &fw);
2109
2110         switch (hw->mac.type) {
2111         case e1000_i210:
2112         case e1000_i211:
2113                 if (!(igb_get_flash_presence_i210(hw))) {
2114                         snprintf(adapter->fw_version,
2115                                  sizeof(adapter->fw_version),
2116                                  "%2d.%2d-%d",
2117                                  fw.invm_major, fw.invm_minor,
2118                                  fw.invm_img_type);
2119                         break;
2120                 }
2121                 /* fall through */
2122         default:
2123                 /* if option is rom valid, display its version too */
2124                 if (fw.or_valid) {
2125                         snprintf(adapter->fw_version,
2126                                  sizeof(adapter->fw_version),
2127                                  "%d.%d, 0x%08x, %d.%d.%d",
2128                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2129                                  fw.or_major, fw.or_build, fw.or_patch);
2130                 /* no option rom */
2131                 } else if (fw.etrack_id != 0X0000) {
2132                         snprintf(adapter->fw_version,
2133                             sizeof(adapter->fw_version),
2134                             "%d.%d, 0x%08x",
2135                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2136                 } else {
2137                 snprintf(adapter->fw_version,
2138                     sizeof(adapter->fw_version),
2139                     "%d.%d.%d",
2140                     fw.eep_major, fw.eep_minor, fw.eep_build);
2141                 }
2142                 break;
2143         }
2144         return;
2145 }
2146
2147 /**
2148  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2149  *
2150  * @adapter: adapter struct
2151  **/
2152 static void igb_init_mas(struct igb_adapter *adapter)
2153 {
2154         struct e1000_hw *hw = &adapter->hw;
2155         u16 eeprom_data;
2156
2157         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2158         switch (hw->bus.func) {
2159         case E1000_FUNC_0:
2160                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2161                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2162                         netdev_info(adapter->netdev,
2163                                 "MAS: Enabling Media Autosense for port %d\n",
2164                                 hw->bus.func);
2165                 }
2166                 break;
2167         case E1000_FUNC_1:
2168                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2169                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2170                         netdev_info(adapter->netdev,
2171                                 "MAS: Enabling Media Autosense for port %d\n",
2172                                 hw->bus.func);
2173                 }
2174                 break;
2175         case E1000_FUNC_2:
2176                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2177                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178                         netdev_info(adapter->netdev,
2179                                 "MAS: Enabling Media Autosense for port %d\n",
2180                                 hw->bus.func);
2181                 }
2182                 break;
2183         case E1000_FUNC_3:
2184                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2185                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186                         netdev_info(adapter->netdev,
2187                                 "MAS: Enabling Media Autosense for port %d\n",
2188                                 hw->bus.func);
2189                 }
2190                 break;
2191         default:
2192                 /* Shouldn't get here */
2193                 netdev_err(adapter->netdev,
2194                         "MAS: Invalid port configuration, returning\n");
2195                 break;
2196         }
2197 }
2198
2199 /**
2200  *  igb_init_i2c - Init I2C interface
2201  *  @adapter: pointer to adapter structure
2202  **/
2203 static s32 igb_init_i2c(struct igb_adapter *adapter)
2204 {
2205         s32 status = E1000_SUCCESS;
2206
2207         /* I2C interface supported on i350 devices */
2208         if (adapter->hw.mac.type != e1000_i350)
2209                 return E1000_SUCCESS;
2210
2211         /* Initialize the i2c bus which is controlled by the registers.
2212          * This bus will use the i2c_algo_bit structue that implements
2213          * the protocol through toggling of the 4 bits in the register.
2214          */
2215         adapter->i2c_adap.owner = THIS_MODULE;
2216         adapter->i2c_algo = igb_i2c_algo;
2217         adapter->i2c_algo.data = adapter;
2218         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2219         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2220         strlcpy(adapter->i2c_adap.name, "igb BB",
2221                 sizeof(adapter->i2c_adap.name));
2222         status = i2c_bit_add_bus(&adapter->i2c_adap);
2223         return status;
2224 }
2225
2226 /**
2227  *  igb_probe - Device Initialization Routine
2228  *  @pdev: PCI device information struct
2229  *  @ent: entry in igb_pci_tbl
2230  *
2231  *  Returns 0 on success, negative on failure
2232  *
2233  *  igb_probe initializes an adapter identified by a pci_dev structure.
2234  *  The OS initialization, configuring of the adapter private structure,
2235  *  and a hardware reset occur.
2236  **/
2237 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2238 {
2239         struct net_device *netdev;
2240         struct igb_adapter *adapter;
2241         struct e1000_hw *hw;
2242         u16 eeprom_data = 0;
2243         s32 ret_val;
2244         static int global_quad_port_a; /* global quad port a indication */
2245         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2246         int err, pci_using_dac;
2247         u8 part_str[E1000_PBANUM_LENGTH];
2248
2249         /* Catch broken hardware that put the wrong VF device ID in
2250          * the PCIe SR-IOV capability.
2251          */
2252         if (pdev->is_virtfn) {
2253                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2254                         pci_name(pdev), pdev->vendor, pdev->device);
2255                 return -EINVAL;
2256         }
2257
2258         err = pci_enable_device_mem(pdev);
2259         if (err)
2260                 return err;
2261
2262         pci_using_dac = 0;
2263         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2264         if (!err) {
2265                 pci_using_dac = 1;
2266         } else {
2267                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2268                 if (err) {
2269                         dev_err(&pdev->dev,
2270                                 "No usable DMA configuration, aborting\n");
2271                         goto err_dma;
2272                 }
2273         }
2274
2275         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2276                                            IORESOURCE_MEM),
2277                                            igb_driver_name);
2278         if (err)
2279                 goto err_pci_reg;
2280
2281         pci_enable_pcie_error_reporting(pdev);
2282
2283         pci_set_master(pdev);
2284         pci_save_state(pdev);
2285
2286         err = -ENOMEM;
2287         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2288                                    IGB_MAX_TX_QUEUES);
2289         if (!netdev)
2290                 goto err_alloc_etherdev;
2291
2292         SET_NETDEV_DEV(netdev, &pdev->dev);
2293
2294         pci_set_drvdata(pdev, netdev);
2295         adapter = netdev_priv(netdev);
2296         adapter->netdev = netdev;
2297         adapter->pdev = pdev;
2298         hw = &adapter->hw;
2299         hw->back = adapter;
2300         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2301
2302         err = -EIO;
2303         hw->hw_addr = pci_iomap(pdev, 0, 0);
2304         if (!hw->hw_addr)
2305                 goto err_ioremap;
2306
2307         netdev->netdev_ops = &igb_netdev_ops;
2308         igb_set_ethtool_ops(netdev);
2309         netdev->watchdog_timeo = 5 * HZ;
2310
2311         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2312
2313         netdev->mem_start = pci_resource_start(pdev, 0);
2314         netdev->mem_end = pci_resource_end(pdev, 0);
2315
2316         /* PCI config space info */
2317         hw->vendor_id = pdev->vendor;
2318         hw->device_id = pdev->device;
2319         hw->revision_id = pdev->revision;
2320         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2321         hw->subsystem_device_id = pdev->subsystem_device;
2322
2323         /* Copy the default MAC, PHY and NVM function pointers */
2324         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2325         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2326         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2327         /* Initialize skew-specific constants */
2328         err = ei->get_invariants(hw);
2329         if (err)
2330                 goto err_sw_init;
2331
2332         /* setup the private structure */
2333         err = igb_sw_init(adapter);
2334         if (err)
2335                 goto err_sw_init;
2336
2337         igb_get_bus_info_pcie(hw);
2338
2339         hw->phy.autoneg_wait_to_complete = false;
2340
2341         /* Copper options */
2342         if (hw->phy.media_type == e1000_media_type_copper) {
2343                 hw->phy.mdix = AUTO_ALL_MODES;
2344                 hw->phy.disable_polarity_correction = false;
2345                 hw->phy.ms_type = e1000_ms_hw_default;
2346         }
2347
2348         if (igb_check_reset_block(hw))
2349                 dev_info(&pdev->dev,
2350                         "PHY reset is blocked due to SOL/IDER session.\n");
2351
2352         /* features is initialized to 0 in allocation, it might have bits
2353          * set by igb_sw_init so we should use an or instead of an
2354          * assignment.
2355          */
2356         netdev->features |= NETIF_F_SG |
2357                             NETIF_F_IP_CSUM |
2358                             NETIF_F_IPV6_CSUM |
2359                             NETIF_F_TSO |
2360                             NETIF_F_TSO6 |
2361                             NETIF_F_RXHASH |
2362                             NETIF_F_RXCSUM |
2363                             NETIF_F_HW_VLAN_CTAG_RX |
2364                             NETIF_F_HW_VLAN_CTAG_TX;
2365
2366         /* copy netdev features into list of user selectable features */
2367         netdev->hw_features |= netdev->features;
2368         netdev->hw_features |= NETIF_F_RXALL;
2369
2370         /* set this bit last since it cannot be part of hw_features */
2371         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2372
2373         netdev->vlan_features |= NETIF_F_TSO |
2374                                  NETIF_F_TSO6 |
2375                                  NETIF_F_IP_CSUM |
2376                                  NETIF_F_IPV6_CSUM |
2377                                  NETIF_F_SG;
2378
2379         netdev->priv_flags |= IFF_SUPP_NOFCS;
2380
2381         if (pci_using_dac) {
2382                 netdev->features |= NETIF_F_HIGHDMA;
2383                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2384         }
2385
2386         if (hw->mac.type >= e1000_82576) {
2387                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2388                 netdev->features |= NETIF_F_SCTP_CSUM;
2389         }
2390
2391         netdev->priv_flags |= IFF_UNICAST_FLT;
2392
2393         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2394
2395         /* before reading the NVM, reset the controller to put the device in a
2396          * known good starting state
2397          */
2398         hw->mac.ops.reset_hw(hw);
2399
2400         /* make sure the NVM is good , i211/i210 parts can have special NVM
2401          * that doesn't contain a checksum
2402          */
2403         switch (hw->mac.type) {
2404         case e1000_i210:
2405         case e1000_i211:
2406                 if (igb_get_flash_presence_i210(hw)) {
2407                         if (hw->nvm.ops.validate(hw) < 0) {
2408                                 dev_err(&pdev->dev,
2409                                         "The NVM Checksum Is Not Valid\n");
2410                                 err = -EIO;
2411                                 goto err_eeprom;
2412                         }
2413                 }
2414                 break;
2415         default:
2416                 if (hw->nvm.ops.validate(hw) < 0) {
2417                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2418                         err = -EIO;
2419                         goto err_eeprom;
2420                 }
2421                 break;
2422         }
2423
2424         /* copy the MAC address out of the NVM */
2425         if (hw->mac.ops.read_mac_addr(hw))
2426                 dev_err(&pdev->dev, "NVM Read Error\n");
2427
2428         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2429
2430         if (!is_valid_ether_addr(netdev->dev_addr)) {
2431                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2432                 err = -EIO;
2433                 goto err_eeprom;
2434         }
2435
2436         /* get firmware version for ethtool -i */
2437         igb_set_fw_version(adapter);
2438
2439         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2440                     (unsigned long) adapter);
2441         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2442                     (unsigned long) adapter);
2443
2444         INIT_WORK(&adapter->reset_task, igb_reset_task);
2445         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2446
2447         /* Initialize link properties that are user-changeable */
2448         adapter->fc_autoneg = true;
2449         hw->mac.autoneg = true;
2450         hw->phy.autoneg_advertised = 0x2f;
2451
2452         hw->fc.requested_mode = e1000_fc_default;
2453         hw->fc.current_mode = e1000_fc_default;
2454
2455         igb_validate_mdi_setting(hw);
2456
2457         /* By default, support wake on port A */
2458         if (hw->bus.func == 0)
2459                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2460
2461         /* Check the NVM for wake support on non-port A ports */
2462         if (hw->mac.type >= e1000_82580)
2463                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2464                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2465                                  &eeprom_data);
2466         else if (hw->bus.func == 1)
2467                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2468
2469         if (eeprom_data & IGB_EEPROM_APME)
2470                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472         /* now that we have the eeprom settings, apply the special cases where
2473          * the eeprom may be wrong or the board simply won't support wake on
2474          * lan on a particular port
2475          */
2476         switch (pdev->device) {
2477         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2478                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2479                 break;
2480         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2481         case E1000_DEV_ID_82576_FIBER:
2482         case E1000_DEV_ID_82576_SERDES:
2483                 /* Wake events only supported on port A for dual fiber
2484                  * regardless of eeprom setting
2485                  */
2486                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2487                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488                 break;
2489         case E1000_DEV_ID_82576_QUAD_COPPER:
2490         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2491                 /* if quad port adapter, disable WoL on all but port A */
2492                 if (global_quad_port_a != 0)
2493                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494                 else
2495                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2496                 /* Reset for multiple quad port adapters */
2497                 if (++global_quad_port_a == 4)
2498                         global_quad_port_a = 0;
2499                 break;
2500         default:
2501                 /* If the device can't wake, don't set software support */
2502                 if (!device_can_wakeup(&adapter->pdev->dev))
2503                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2504         }
2505
2506         /* initialize the wol settings based on the eeprom settings */
2507         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2508                 adapter->wol |= E1000_WUFC_MAG;
2509
2510         /* Some vendors want WoL disabled by default, but still supported */
2511         if ((hw->mac.type == e1000_i350) &&
2512             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2513                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2514                 adapter->wol = 0;
2515         }
2516
2517         device_set_wakeup_enable(&adapter->pdev->dev,
2518                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2519
2520         /* reset the hardware with the new settings */
2521         igb_reset(adapter);
2522
2523         /* Init the I2C interface */
2524         err = igb_init_i2c(adapter);
2525         if (err) {
2526                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2527                 goto err_eeprom;
2528         }
2529
2530         /* let the f/w know that the h/w is now under the control of the
2531          * driver. */
2532         igb_get_hw_control(adapter);
2533
2534         strcpy(netdev->name, "eth%d");
2535         err = register_netdev(netdev);
2536         if (err)
2537                 goto err_register;
2538
2539         /* carrier off reporting is important to ethtool even BEFORE open */
2540         netif_carrier_off(netdev);
2541
2542 #ifdef CONFIG_IGB_DCA
2543         if (dca_add_requester(&pdev->dev) == 0) {
2544                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2545                 dev_info(&pdev->dev, "DCA enabled\n");
2546                 igb_setup_dca(adapter);
2547         }
2548
2549 #endif
2550 #ifdef CONFIG_IGB_HWMON
2551         /* Initialize the thermal sensor on i350 devices. */
2552         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2553                 u16 ets_word;
2554
2555                 /* Read the NVM to determine if this i350 device supports an
2556                  * external thermal sensor.
2557                  */
2558                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2559                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2560                         adapter->ets = true;
2561                 else
2562                         adapter->ets = false;
2563                 if (igb_sysfs_init(adapter))
2564                         dev_err(&pdev->dev,
2565                                 "failed to allocate sysfs resources\n");
2566         } else {
2567                 adapter->ets = false;
2568         }
2569 #endif
2570         /* Check if Media Autosense is enabled */
2571         adapter->ei = *ei;
2572         if (hw->dev_spec._82575.mas_capable)
2573                 igb_init_mas(adapter);
2574
2575         /* do hw tstamp init after resetting */
2576         igb_ptp_init(adapter);
2577
2578         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2579         /* print bus type/speed/width info, not applicable to i354 */
2580         if (hw->mac.type != e1000_i354) {
2581                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2582                          netdev->name,
2583                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2584                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2585                            "unknown"),
2586                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2587                           "Width x4" :
2588                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2589                           "Width x2" :
2590                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2591                           "Width x1" : "unknown"), netdev->dev_addr);
2592         }
2593
2594         if ((hw->mac.type >= e1000_i210 ||
2595              igb_get_flash_presence_i210(hw))) {
2596                 ret_val = igb_read_part_string(hw, part_str,
2597                                                E1000_PBANUM_LENGTH);
2598         } else {
2599                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2600         }
2601
2602         if (ret_val)
2603                 strcpy(part_str, "Unknown");
2604         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2605         dev_info(&pdev->dev,
2606                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2607                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2608                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2609                 adapter->num_rx_queues, adapter->num_tx_queues);
2610         if (hw->phy.media_type == e1000_media_type_copper) {
2611                 switch (hw->mac.type) {
2612                 case e1000_i350:
2613                 case e1000_i210:
2614                 case e1000_i211:
2615                         /* Enable EEE for internal copper PHY devices */
2616                         err = igb_set_eee_i350(hw);
2617                         if ((!err) &&
2618                             (!hw->dev_spec._82575.eee_disable)) {
2619                                 adapter->eee_advert =
2620                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2621                                 adapter->flags |= IGB_FLAG_EEE;
2622                         }
2623                         break;
2624                 case e1000_i354:
2625                         if ((rd32(E1000_CTRL_EXT) &
2626                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2627                                 err = igb_set_eee_i354(hw);
2628                                 if ((!err) &&
2629                                         (!hw->dev_spec._82575.eee_disable)) {
2630                                         adapter->eee_advert =
2631                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2632                                         adapter->flags |= IGB_FLAG_EEE;
2633                                 }
2634                         }
2635                         break;
2636                 default:
2637                         break;
2638                 }
2639         }
2640         pm_runtime_put_noidle(&pdev->dev);
2641         return 0;
2642
2643 err_register:
2644         igb_release_hw_control(adapter);
2645         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2646 err_eeprom:
2647         if (!igb_check_reset_block(hw))
2648                 igb_reset_phy(hw);
2649
2650         if (hw->flash_address)
2651                 iounmap(hw->flash_address);
2652 err_sw_init:
2653         igb_clear_interrupt_scheme(adapter);
2654         pci_iounmap(pdev, hw->hw_addr);
2655 err_ioremap:
2656         free_netdev(netdev);
2657 err_alloc_etherdev:
2658         pci_release_selected_regions(pdev,
2659                                      pci_select_bars(pdev, IORESOURCE_MEM));
2660 err_pci_reg:
2661 err_dma:
2662         pci_disable_device(pdev);
2663         return err;
2664 }
2665
2666 #ifdef CONFIG_PCI_IOV
2667 static int igb_disable_sriov(struct pci_dev *pdev)
2668 {
2669         struct net_device *netdev = pci_get_drvdata(pdev);
2670         struct igb_adapter *adapter = netdev_priv(netdev);
2671         struct e1000_hw *hw = &adapter->hw;
2672
2673         /* reclaim resources allocated to VFs */
2674         if (adapter->vf_data) {
2675                 /* disable iov and allow time for transactions to clear */
2676                 if (pci_vfs_assigned(pdev)) {
2677                         dev_warn(&pdev->dev,
2678                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2679                         return -EPERM;
2680                 } else {
2681                         pci_disable_sriov(pdev);
2682                         msleep(500);
2683                 }
2684
2685                 kfree(adapter->vf_data);
2686                 adapter->vf_data = NULL;
2687                 adapter->vfs_allocated_count = 0;
2688                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2689                 wrfl();
2690                 msleep(100);
2691                 dev_info(&pdev->dev, "IOV Disabled\n");
2692
2693                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2694                 adapter->flags |= IGB_FLAG_DMAC;
2695         }
2696
2697         return 0;
2698 }
2699
2700 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2701 {
2702         struct net_device *netdev = pci_get_drvdata(pdev);
2703         struct igb_adapter *adapter = netdev_priv(netdev);
2704         int old_vfs = pci_num_vf(pdev);
2705         int err = 0;
2706         int i;
2707
2708         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2709                 err = -EPERM;
2710                 goto out;
2711         }
2712         if (!num_vfs)
2713                 goto out;
2714
2715         if (old_vfs) {
2716                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2717                          old_vfs, max_vfs);
2718                 adapter->vfs_allocated_count = old_vfs;
2719         } else
2720                 adapter->vfs_allocated_count = num_vfs;
2721
2722         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2723                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2724
2725         /* if allocation failed then we do not support SR-IOV */
2726         if (!adapter->vf_data) {
2727                 adapter->vfs_allocated_count = 0;
2728                 dev_err(&pdev->dev,
2729                         "Unable to allocate memory for VF Data Storage\n");
2730                 err = -ENOMEM;
2731                 goto out;
2732         }
2733
2734         /* only call pci_enable_sriov() if no VFs are allocated already */
2735         if (!old_vfs) {
2736                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2737                 if (err)
2738                         goto err_out;
2739         }
2740         dev_info(&pdev->dev, "%d VFs allocated\n",
2741                  adapter->vfs_allocated_count);
2742         for (i = 0; i < adapter->vfs_allocated_count; i++)
2743                 igb_vf_configure(adapter, i);
2744
2745         /* DMA Coalescing is not supported in IOV mode. */
2746         adapter->flags &= ~IGB_FLAG_DMAC;
2747         goto out;
2748
2749 err_out:
2750         kfree(adapter->vf_data);
2751         adapter->vf_data = NULL;
2752         adapter->vfs_allocated_count = 0;
2753 out:
2754         return err;
2755 }
2756
2757 #endif
2758 /**
2759  *  igb_remove_i2c - Cleanup  I2C interface
2760  *  @adapter: pointer to adapter structure
2761  **/
2762 static void igb_remove_i2c(struct igb_adapter *adapter)
2763 {
2764         /* free the adapter bus structure */
2765         i2c_del_adapter(&adapter->i2c_adap);
2766 }
2767
2768 /**
2769  *  igb_remove - Device Removal Routine
2770  *  @pdev: PCI device information struct
2771  *
2772  *  igb_remove is called by the PCI subsystem to alert the driver
2773  *  that it should release a PCI device.  The could be caused by a
2774  *  Hot-Plug event, or because the driver is going to be removed from
2775  *  memory.
2776  **/
2777 static void igb_remove(struct pci_dev *pdev)
2778 {
2779         struct net_device *netdev = pci_get_drvdata(pdev);
2780         struct igb_adapter *adapter = netdev_priv(netdev);
2781         struct e1000_hw *hw = &adapter->hw;
2782
2783         pm_runtime_get_noresume(&pdev->dev);
2784 #ifdef CONFIG_IGB_HWMON
2785         igb_sysfs_exit(adapter);
2786 #endif
2787         igb_remove_i2c(adapter);
2788         igb_ptp_stop(adapter);
2789         /* The watchdog timer may be rescheduled, so explicitly
2790          * disable watchdog from being rescheduled.
2791          */
2792         set_bit(__IGB_DOWN, &adapter->state);
2793         del_timer_sync(&adapter->watchdog_timer);
2794         del_timer_sync(&adapter->phy_info_timer);
2795
2796         cancel_work_sync(&adapter->reset_task);
2797         cancel_work_sync(&adapter->watchdog_task);
2798
2799 #ifdef CONFIG_IGB_DCA
2800         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2801                 dev_info(&pdev->dev, "DCA disabled\n");
2802                 dca_remove_requester(&pdev->dev);
2803                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2804                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2805         }
2806 #endif
2807
2808         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2809          * would have already happened in close and is redundant.
2810          */
2811         igb_release_hw_control(adapter);
2812
2813         unregister_netdev(netdev);
2814
2815         igb_clear_interrupt_scheme(adapter);
2816
2817 #ifdef CONFIG_PCI_IOV
2818         igb_disable_sriov(pdev);
2819 #endif
2820
2821         pci_iounmap(pdev, hw->hw_addr);
2822         if (hw->flash_address)
2823                 iounmap(hw->flash_address);
2824         pci_release_selected_regions(pdev,
2825                                      pci_select_bars(pdev, IORESOURCE_MEM));
2826
2827         kfree(adapter->shadow_vfta);
2828         free_netdev(netdev);
2829
2830         pci_disable_pcie_error_reporting(pdev);
2831
2832         pci_disable_device(pdev);
2833 }
2834
2835 /**
2836  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2837  *  @adapter: board private structure to initialize
2838  *
2839  *  This function initializes the vf specific data storage and then attempts to
2840  *  allocate the VFs.  The reason for ordering it this way is because it is much
2841  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2842  *  the memory for the VFs.
2843  **/
2844 static void igb_probe_vfs(struct igb_adapter *adapter)
2845 {
2846 #ifdef CONFIG_PCI_IOV
2847         struct pci_dev *pdev = adapter->pdev;
2848         struct e1000_hw *hw = &adapter->hw;
2849
2850         /* Virtualization features not supported on i210 family. */
2851         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2852                 return;
2853
2854         pci_sriov_set_totalvfs(pdev, 7);
2855         igb_pci_enable_sriov(pdev, max_vfs);
2856
2857 #endif /* CONFIG_PCI_IOV */
2858 }
2859
2860 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2861 {
2862         struct e1000_hw *hw = &adapter->hw;
2863         u32 max_rss_queues;
2864
2865         /* Determine the maximum number of RSS queues supported. */
2866         switch (hw->mac.type) {
2867         case e1000_i211:
2868                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2869                 break;
2870         case e1000_82575:
2871         case e1000_i210:
2872                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2873                 break;
2874         case e1000_i350:
2875                 /* I350 cannot do RSS and SR-IOV at the same time */
2876                 if (!!adapter->vfs_allocated_count) {
2877                         max_rss_queues = 1;
2878                         break;
2879                 }
2880                 /* fall through */
2881         case e1000_82576:
2882                 if (!!adapter->vfs_allocated_count) {
2883                         max_rss_queues = 2;
2884                         break;
2885                 }
2886                 /* fall through */
2887         case e1000_82580:
2888         case e1000_i354:
2889         default:
2890                 max_rss_queues = IGB_MAX_RX_QUEUES;
2891                 break;
2892         }
2893
2894         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2895
2896         /* Determine if we need to pair queues. */
2897         switch (hw->mac.type) {
2898         case e1000_82575:
2899         case e1000_i211:
2900                 /* Device supports enough interrupts without queue pairing. */
2901                 break;
2902         case e1000_82576:
2903                 /* If VFs are going to be allocated with RSS queues then we
2904                  * should pair the queues in order to conserve interrupts due
2905                  * to limited supply.
2906                  */
2907                 if ((adapter->rss_queues > 1) &&
2908                     (adapter->vfs_allocated_count > 6))
2909                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2910                 /* fall through */
2911         case e1000_82580:
2912         case e1000_i350:
2913         case e1000_i354:
2914         case e1000_i210:
2915         default:
2916                 /* If rss_queues > half of max_rss_queues, pair the queues in
2917                  * order to conserve interrupts due to limited supply.
2918                  */
2919                 if (adapter->rss_queues > (max_rss_queues / 2))
2920                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2921                 break;
2922         }
2923 }
2924
2925 /**
2926  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2927  *  @adapter: board private structure to initialize
2928  *
2929  *  igb_sw_init initializes the Adapter private data structure.
2930  *  Fields are initialized based on PCI device information and
2931  *  OS network device settings (MTU size).
2932  **/
2933 static int igb_sw_init(struct igb_adapter *adapter)
2934 {
2935         struct e1000_hw *hw = &adapter->hw;
2936         struct net_device *netdev = adapter->netdev;
2937         struct pci_dev *pdev = adapter->pdev;
2938
2939         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2940
2941         /* set default ring sizes */
2942         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2943         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2944
2945         /* set default ITR values */
2946         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2947         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2948
2949         /* set default work limits */
2950         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2951
2952         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2953                                   VLAN_HLEN;
2954         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2955
2956         spin_lock_init(&adapter->stats64_lock);
2957 #ifdef CONFIG_PCI_IOV
2958         switch (hw->mac.type) {
2959         case e1000_82576:
2960         case e1000_i350:
2961                 if (max_vfs > 7) {
2962                         dev_warn(&pdev->dev,
2963                                  "Maximum of 7 VFs per PF, using max\n");
2964                         max_vfs = adapter->vfs_allocated_count = 7;
2965                 } else
2966                         adapter->vfs_allocated_count = max_vfs;
2967                 if (adapter->vfs_allocated_count)
2968                         dev_warn(&pdev->dev,
2969                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2970                 break;
2971         default:
2972                 break;
2973         }
2974 #endif /* CONFIG_PCI_IOV */
2975
2976         igb_init_queue_configuration(adapter);
2977
2978         /* Setup and initialize a copy of the hw vlan table array */
2979         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2980                                        GFP_ATOMIC);
2981
2982         /* This call may decrease the number of queues */
2983         if (igb_init_interrupt_scheme(adapter, true)) {
2984                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2985                 return -ENOMEM;
2986         }
2987
2988         igb_probe_vfs(adapter);
2989
2990         /* Explicitly disable IRQ since the NIC can be in any state. */
2991         igb_irq_disable(adapter);
2992
2993         if (hw->mac.type >= e1000_i350)
2994                 adapter->flags &= ~IGB_FLAG_DMAC;
2995
2996         set_bit(__IGB_DOWN, &adapter->state);
2997         return 0;
2998 }
2999
3000 /**
3001  *  igb_open - Called when a network interface is made active
3002  *  @netdev: network interface device structure
3003  *
3004  *  Returns 0 on success, negative value on failure
3005  *
3006  *  The open entry point is called when a network interface is made
3007  *  active by the system (IFF_UP).  At this point all resources needed
3008  *  for transmit and receive operations are allocated, the interrupt
3009  *  handler is registered with the OS, the watchdog timer is started,
3010  *  and the stack is notified that the interface is ready.
3011  **/
3012 static int __igb_open(struct net_device *netdev, bool resuming)
3013 {
3014         struct igb_adapter *adapter = netdev_priv(netdev);
3015         struct e1000_hw *hw = &adapter->hw;
3016         struct pci_dev *pdev = adapter->pdev;
3017         int err;
3018         int i;
3019
3020         /* disallow open during test */
3021         if (test_bit(__IGB_TESTING, &adapter->state)) {
3022                 WARN_ON(resuming);
3023                 return -EBUSY;
3024         }
3025
3026         if (!resuming)
3027                 pm_runtime_get_sync(&pdev->dev);
3028
3029         netif_carrier_off(netdev);
3030
3031         /* allocate transmit descriptors */
3032         err = igb_setup_all_tx_resources(adapter);
3033         if (err)
3034                 goto err_setup_tx;
3035
3036         /* allocate receive descriptors */
3037         err = igb_setup_all_rx_resources(adapter);
3038         if (err)
3039                 goto err_setup_rx;
3040
3041         igb_power_up_link(adapter);
3042
3043         /* before we allocate an interrupt, we must be ready to handle it.
3044          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3045          * as soon as we call pci_request_irq, so we have to setup our
3046          * clean_rx handler before we do so.
3047          */
3048         igb_configure(adapter);
3049
3050         err = igb_request_irq(adapter);
3051         if (err)
3052                 goto err_req_irq;
3053
3054         /* Notify the stack of the actual queue counts. */
3055         err = netif_set_real_num_tx_queues(adapter->netdev,
3056                                            adapter->num_tx_queues);
3057         if (err)
3058                 goto err_set_queues;
3059
3060         err = netif_set_real_num_rx_queues(adapter->netdev,
3061                                            adapter->num_rx_queues);
3062         if (err)
3063                 goto err_set_queues;
3064
3065         /* From here on the code is the same as igb_up() */
3066         clear_bit(__IGB_DOWN, &adapter->state);
3067
3068         for (i = 0; i < adapter->num_q_vectors; i++)
3069                 napi_enable(&(adapter->q_vector[i]->napi));
3070
3071         /* Clear any pending interrupts. */
3072         rd32(E1000_ICR);
3073
3074         igb_irq_enable(adapter);
3075
3076         /* notify VFs that reset has been completed */
3077         if (adapter->vfs_allocated_count) {
3078                 u32 reg_data = rd32(E1000_CTRL_EXT);
3079
3080                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3081                 wr32(E1000_CTRL_EXT, reg_data);
3082         }
3083
3084         netif_tx_start_all_queues(netdev);
3085
3086         if (!resuming)
3087                 pm_runtime_put(&pdev->dev);
3088
3089         /* start the watchdog. */
3090         hw->mac.get_link_status = 1;
3091         schedule_work(&adapter->watchdog_task);
3092
3093         return 0;
3094
3095 err_set_queues:
3096         igb_free_irq(adapter);
3097 err_req_irq:
3098         igb_release_hw_control(adapter);
3099         igb_power_down_link(adapter);
3100         igb_free_all_rx_resources(adapter);
3101 err_setup_rx:
3102         igb_free_all_tx_resources(adapter);
3103 err_setup_tx:
3104         igb_reset(adapter);
3105         if (!resuming)
3106                 pm_runtime_put(&pdev->dev);
3107
3108         return err;
3109 }
3110
3111 static int igb_open(struct net_device *netdev)
3112 {
3113         return __igb_open(netdev, false);
3114 }
3115
3116 /**
3117  *  igb_close - Disables a network interface
3118  *  @netdev: network interface device structure
3119  *
3120  *  Returns 0, this is not allowed to fail
3121  *
3122  *  The close entry point is called when an interface is de-activated
3123  *  by the OS.  The hardware is still under the driver's control, but
3124  *  needs to be disabled.  A global MAC reset is issued to stop the
3125  *  hardware, and all transmit and receive resources are freed.
3126  **/
3127 static int __igb_close(struct net_device *netdev, bool suspending)
3128 {
3129         struct igb_adapter *adapter = netdev_priv(netdev);
3130         struct pci_dev *pdev = adapter->pdev;
3131
3132         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134         if (!suspending)
3135                 pm_runtime_get_sync(&pdev->dev);
3136
3137         igb_down(adapter);
3138         igb_free_irq(adapter);
3139
3140         igb_free_all_tx_resources(adapter);
3141         igb_free_all_rx_resources(adapter);
3142
3143         if (!suspending)
3144                 pm_runtime_put_sync(&pdev->dev);
3145         return 0;
3146 }
3147
3148 static int igb_close(struct net_device *netdev)
3149 {
3150         return __igb_close(netdev, false);
3151 }
3152
3153 /**
3154  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3156  *
3157  *  Return 0 on success, negative on failure
3158  **/
3159 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160 {
3161         struct device *dev = tx_ring->dev;
3162         int size;
3163
3164         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166         tx_ring->tx_buffer_info = vzalloc(size);
3167         if (!tx_ring->tx_buffer_info)
3168                 goto err;
3169
3170         /* round up to nearest 4K */
3171         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172         tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175                                            &tx_ring->dma, GFP_KERNEL);
3176         if (!tx_ring->desc)
3177                 goto err;
3178
3179         tx_ring->next_to_use = 0;
3180         tx_ring->next_to_clean = 0;
3181
3182         return 0;
3183
3184 err:
3185         vfree(tx_ring->tx_buffer_info);
3186         tx_ring->tx_buffer_info = NULL;
3187         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188         return -ENOMEM;
3189 }
3190
3191 /**
3192  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193  *                               (Descriptors) for all queues
3194  *  @adapter: board private structure
3195  *
3196  *  Return 0 on success, negative on failure
3197  **/
3198 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199 {
3200         struct pci_dev *pdev = adapter->pdev;
3201         int i, err = 0;
3202
3203         for (i = 0; i < adapter->num_tx_queues; i++) {
3204                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205                 if (err) {
3206                         dev_err(&pdev->dev,
3207                                 "Allocation for Tx Queue %u failed\n", i);
3208                         for (i--; i >= 0; i--)
3209                                 igb_free_tx_resources(adapter->tx_ring[i]);
3210                         break;
3211                 }
3212         }
3213
3214         return err;
3215 }
3216
3217 /**
3218  *  igb_setup_tctl - configure the transmit control registers
3219  *  @adapter: Board private structure
3220  **/
3221 void igb_setup_tctl(struct igb_adapter *adapter)
3222 {
3223         struct e1000_hw *hw = &adapter->hw;
3224         u32 tctl;
3225
3226         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3227         wr32(E1000_TXDCTL(0), 0);
3228
3229         /* Program the Transmit Control Register */
3230         tctl = rd32(E1000_TCTL);
3231         tctl &= ~E1000_TCTL_CT;
3232         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235         igb_config_collision_dist(hw);
3236
3237         /* Enable transmits */
3238         tctl |= E1000_TCTL_EN;
3239
3240         wr32(E1000_TCTL, tctl);
3241 }
3242
3243 /**
3244  *  igb_configure_tx_ring - Configure transmit ring after Reset
3245  *  @adapter: board private structure
3246  *  @ring: tx ring to configure
3247  *
3248  *  Configure a transmit ring after a reset.
3249  **/
3250 void igb_configure_tx_ring(struct igb_adapter *adapter,
3251                            struct igb_ring *ring)
3252 {
3253         struct e1000_hw *hw = &adapter->hw;
3254         u32 txdctl = 0;
3255         u64 tdba = ring->dma;
3256         int reg_idx = ring->reg_idx;
3257
3258         /* disable the queue */
3259         wr32(E1000_TXDCTL(reg_idx), 0);
3260         wrfl();
3261         mdelay(10);
3262
3263         wr32(E1000_TDLEN(reg_idx),
3264              ring->count * sizeof(union e1000_adv_tx_desc));
3265         wr32(E1000_TDBAL(reg_idx),
3266              tdba & 0x00000000ffffffffULL);
3267         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270         wr32(E1000_TDH(reg_idx), 0);
3271         writel(0, ring->tail);
3272
3273         txdctl |= IGB_TX_PTHRESH;
3274         txdctl |= IGB_TX_HTHRESH << 8;
3275         txdctl |= IGB_TX_WTHRESH << 16;
3276
3277         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278         wr32(E1000_TXDCTL(reg_idx), txdctl);
3279 }
3280
3281 /**
3282  *  igb_configure_tx - Configure transmit Unit after Reset
3283  *  @adapter: board private structure
3284  *
3285  *  Configure the Tx unit of the MAC after a reset.
3286  **/
3287 static void igb_configure_tx(struct igb_adapter *adapter)
3288 {
3289         int i;
3290
3291         for (i = 0; i < adapter->num_tx_queues; i++)
3292                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293 }
3294
3295 /**
3296  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298  *
3299  *  Returns 0 on success, negative on failure
3300  **/
3301 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302 {
3303         struct device *dev = rx_ring->dev;
3304         int size;
3305
3306         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308         rx_ring->rx_buffer_info = vzalloc(size);
3309         if (!rx_ring->rx_buffer_info)
3310                 goto err;
3311
3312         /* Round up to nearest 4K */
3313         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314         rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317                                            &rx_ring->dma, GFP_KERNEL);
3318         if (!rx_ring->desc)
3319                 goto err;
3320
3321         rx_ring->next_to_alloc = 0;
3322         rx_ring->next_to_clean = 0;
3323         rx_ring->next_to_use = 0;
3324
3325         return 0;
3326
3327 err:
3328         vfree(rx_ring->rx_buffer_info);
3329         rx_ring->rx_buffer_info = NULL;
3330         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331         return -ENOMEM;
3332 }
3333
3334 /**
3335  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336  *                               (Descriptors) for all queues
3337  *  @adapter: board private structure
3338  *
3339  *  Return 0 on success, negative on failure
3340  **/
3341 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342 {
3343         struct pci_dev *pdev = adapter->pdev;
3344         int i, err = 0;
3345
3346         for (i = 0; i < adapter->num_rx_queues; i++) {
3347                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348                 if (err) {
3349                         dev_err(&pdev->dev,
3350                                 "Allocation for Rx Queue %u failed\n", i);
3351                         for (i--; i >= 0; i--)
3352                                 igb_free_rx_resources(adapter->rx_ring[i]);
3353                         break;
3354                 }
3355         }
3356
3357         return err;
3358 }
3359
3360 /**
3361  *  igb_setup_mrqc - configure the multiple receive queue control registers
3362  *  @adapter: Board private structure
3363  **/
3364 static void igb_setup_mrqc(struct igb_adapter *adapter)
3365 {
3366         struct e1000_hw *hw = &adapter->hw;
3367         u32 mrqc, rxcsum;
3368         u32 j, num_rx_queues;
3369         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372                                         0xFA01ACBE };
3373
3374         /* Fill out hash function seeds */
3375         for (j = 0; j < 10; j++)
3376                 wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378         num_rx_queues = adapter->rss_queues;
3379
3380         switch (hw->mac.type) {
3381         case e1000_82576:
3382                 /* 82576 supports 2 RSS queues for SR-IOV */
3383                 if (adapter->vfs_allocated_count)
3384                         num_rx_queues = 2;
3385                 break;
3386         default:
3387                 break;
3388         }
3389
3390         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391                 for (j = 0; j < IGB_RETA_SIZE; j++)
3392                         adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393                 adapter->rss_indir_tbl_init = num_rx_queues;
3394         }
3395         igb_write_rss_indir_tbl(adapter);
3396
3397         /* Disable raw packet checksumming so that RSS hash is placed in
3398          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399          * offloads as they are enabled by default
3400          */
3401         rxcsum = rd32(E1000_RXCSUM);
3402         rxcsum |= E1000_RXCSUM_PCSD;
3403
3404         if (adapter->hw.mac.type >= e1000_82576)
3405                 /* Enable Receive Checksum Offload for SCTP */
3406                 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409         wr32(E1000_RXCSUM, rxcsum);
3410
3411         /* Generate RSS hash based on packet types, TCP/UDP
3412          * port numbers and/or IPv4/v6 src and dst addresses
3413          */
3414         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416                E1000_MRQC_RSS_FIELD_IPV6 |
3417                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425         /* If VMDq is enabled then we set the appropriate mode for that, else
3426          * we default to RSS so that an RSS hash is calculated per packet even
3427          * if we are only using one queue
3428          */
3429         if (adapter->vfs_allocated_count) {
3430                 if (hw->mac.type > e1000_82575) {
3431                         /* Set the default pool for the PF's first queue */
3432                         u32 vtctl = rd32(E1000_VT_CTL);
3433
3434                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3435                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3436                         vtctl |= adapter->vfs_allocated_count <<
3437                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3438                         wr32(E1000_VT_CTL, vtctl);
3439                 }
3440                 if (adapter->rss_queues > 1)
3441                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3442                 else
3443                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3444         } else {
3445                 if (hw->mac.type != e1000_i211)
3446                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3447         }
3448         igb_vmm_control(adapter);
3449
3450         wr32(E1000_MRQC, mrqc);
3451 }
3452
3453 /**
3454  *  igb_setup_rctl - configure the receive control registers
3455  *  @adapter: Board private structure
3456  **/
3457 void igb_setup_rctl(struct igb_adapter *adapter)
3458 {
3459         struct e1000_hw *hw = &adapter->hw;
3460         u32 rctl;
3461
3462         rctl = rd32(E1000_RCTL);
3463
3464         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3465         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3466
3467         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3468                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3469
3470         /* enable stripping of CRC. It's unlikely this will break BMC
3471          * redirection as it did with e1000. Newer features require
3472          * that the HW strips the CRC.
3473          */
3474         rctl |= E1000_RCTL_SECRC;
3475
3476         /* disable store bad packets and clear size bits. */
3477         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3478
3479         /* enable LPE to prevent packets larger than max_frame_size */
3480         rctl |= E1000_RCTL_LPE;
3481
3482         /* disable queue 0 to prevent tail write w/o re-config */
3483         wr32(E1000_RXDCTL(0), 0);
3484
3485         /* Attention!!!  For SR-IOV PF driver operations you must enable
3486          * queue drop for all VF and PF queues to prevent head of line blocking
3487          * if an un-trusted VF does not provide descriptors to hardware.
3488          */
3489         if (adapter->vfs_allocated_count) {
3490                 /* set all queue drop enable bits */
3491                 wr32(E1000_QDE, ALL_QUEUES);
3492         }
3493
3494         /* This is useful for sniffing bad packets. */
3495         if (adapter->netdev->features & NETIF_F_RXALL) {
3496                 /* UPE and MPE will be handled by normal PROMISC logic
3497                  * in e1000e_set_rx_mode
3498                  */
3499                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3500                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3501                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3502
3503                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3504                           E1000_RCTL_DPF | /* Allow filtered pause */
3505                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3506                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3507                  * and that breaks VLANs.
3508                  */
3509         }
3510
3511         wr32(E1000_RCTL, rctl);
3512 }
3513
3514 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3515                                    int vfn)
3516 {
3517         struct e1000_hw *hw = &adapter->hw;
3518         u32 vmolr;
3519
3520         /* if it isn't the PF check to see if VFs are enabled and
3521          * increase the size to support vlan tags
3522          */
3523         if (vfn < adapter->vfs_allocated_count &&
3524             adapter->vf_data[vfn].vlans_enabled)
3525                 size += VLAN_TAG_SIZE;
3526
3527         vmolr = rd32(E1000_VMOLR(vfn));
3528         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3529         vmolr |= size | E1000_VMOLR_LPE;
3530         wr32(E1000_VMOLR(vfn), vmolr);
3531
3532         return 0;
3533 }
3534
3535 /**
3536  *  igb_rlpml_set - set maximum receive packet size
3537  *  @adapter: board private structure
3538  *
3539  *  Configure maximum receivable packet size.
3540  **/
3541 static void igb_rlpml_set(struct igb_adapter *adapter)
3542 {
3543         u32 max_frame_size = adapter->max_frame_size;
3544         struct e1000_hw *hw = &adapter->hw;
3545         u16 pf_id = adapter->vfs_allocated_count;
3546
3547         if (pf_id) {
3548                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3549                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3550                  * to our max jumbo frame size, in case we need to enable
3551                  * jumbo frames on one of the rings later.
3552                  * This will not pass over-length frames into the default
3553                  * queue because it's gated by the VMOLR.RLPML.
3554                  */
3555                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3556         }
3557
3558         wr32(E1000_RLPML, max_frame_size);
3559 }
3560
3561 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3562                                  int vfn, bool aupe)
3563 {
3564         struct e1000_hw *hw = &adapter->hw;
3565         u32 vmolr;
3566
3567         /* This register exists only on 82576 and newer so if we are older then
3568          * we should exit and do nothing
3569          */
3570         if (hw->mac.type < e1000_82576)
3571                 return;
3572
3573         vmolr = rd32(E1000_VMOLR(vfn));
3574         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3575         if (hw->mac.type == e1000_i350) {
3576                 u32 dvmolr;
3577
3578                 dvmolr = rd32(E1000_DVMOLR(vfn));
3579                 dvmolr |= E1000_DVMOLR_STRVLAN;
3580                 wr32(E1000_DVMOLR(vfn), dvmolr);
3581         }
3582         if (aupe)
3583                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3584         else
3585                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3586
3587         /* clear all bits that might not be set */
3588         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3589
3590         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3591                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3592         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3593          * multicast packets
3594          */
3595         if (vfn <= adapter->vfs_allocated_count)
3596                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3597
3598         wr32(E1000_VMOLR(vfn), vmolr);
3599 }
3600
3601 /**
3602  *  igb_configure_rx_ring - Configure a receive ring after Reset
3603  *  @adapter: board private structure
3604  *  @ring: receive ring to be configured
3605  *
3606  *  Configure the Rx unit of the MAC after a reset.
3607  **/
3608 void igb_configure_rx_ring(struct igb_adapter *adapter,
3609                            struct igb_ring *ring)
3610 {
3611         struct e1000_hw *hw = &adapter->hw;
3612         u64 rdba = ring->dma;
3613         int reg_idx = ring->reg_idx;
3614         u32 srrctl = 0, rxdctl = 0;
3615
3616         /* disable the queue */
3617         wr32(E1000_RXDCTL(reg_idx), 0);
3618
3619         /* Set DMA base address registers */
3620         wr32(E1000_RDBAL(reg_idx),
3621              rdba & 0x00000000ffffffffULL);
3622         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3623         wr32(E1000_RDLEN(reg_idx),
3624              ring->count * sizeof(union e1000_adv_rx_desc));
3625
3626         /* initialize head and tail */
3627         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3628         wr32(E1000_RDH(reg_idx), 0);
3629         writel(0, ring->tail);
3630
3631         /* set descriptor configuration */
3632         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3633         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3634         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3635         if (hw->mac.type >= e1000_82580)
3636                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3637         /* Only set Drop Enable if we are supporting multiple queues */
3638         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3639                 srrctl |= E1000_SRRCTL_DROP_EN;
3640
3641         wr32(E1000_SRRCTL(reg_idx), srrctl);
3642
3643         /* set filtering for VMDQ pools */
3644         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3645
3646         rxdctl |= IGB_RX_PTHRESH;
3647         rxdctl |= IGB_RX_HTHRESH << 8;
3648         rxdctl |= IGB_RX_WTHRESH << 16;
3649
3650         /* enable receive descriptor fetching */
3651         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3652         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3653 }
3654
3655 /**
3656  *  igb_configure_rx - Configure receive Unit after Reset
3657  *  @adapter: board private structure
3658  *
3659  *  Configure the Rx unit of the MAC after a reset.
3660  **/
3661 static void igb_configure_rx(struct igb_adapter *adapter)
3662 {
3663         int i;
3664
3665         /* set UTA to appropriate mode */
3666         igb_set_uta(adapter);
3667
3668         /* set the correct pool for the PF default MAC address in entry 0 */
3669         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3670                          adapter->vfs_allocated_count);
3671
3672         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3673          * the Base and Length of the Rx Descriptor Ring
3674          */
3675         for (i = 0; i < adapter->num_rx_queues; i++)
3676                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3677 }
3678
3679 /**
3680  *  igb_free_tx_resources - Free Tx Resources per Queue
3681  *  @tx_ring: Tx descriptor ring for a specific queue
3682  *
3683  *  Free all transmit software resources
3684  **/
3685 void igb_free_tx_resources(struct igb_ring *tx_ring)
3686 {
3687         igb_clean_tx_ring(tx_ring);
3688
3689         vfree(tx_ring->tx_buffer_info);
3690         tx_ring->tx_buffer_info = NULL;
3691
3692         /* if not set, then don't free */
3693         if (!tx_ring->desc)
3694                 return;
3695
3696         dma_free_coherent(tx_ring->dev, tx_ring->size,
3697                           tx_ring->desc, tx_ring->dma);
3698
3699         tx_ring->desc = NULL;
3700 }
3701
3702 /**
3703  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3704  *  @adapter: board private structure
3705  *
3706  *  Free all transmit software resources
3707  **/
3708 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3709 {
3710         int i;
3711
3712         for (i = 0; i < adapter->num_tx_queues; i++)
3713                 igb_free_tx_resources(adapter->tx_ring[i]);
3714 }
3715
3716 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3717                                     struct igb_tx_buffer *tx_buffer)
3718 {
3719         if (tx_buffer->skb) {
3720                 dev_kfree_skb_any(tx_buffer->skb);
3721                 if (dma_unmap_len(tx_buffer, len))
3722                         dma_unmap_single(ring->dev,
3723                                          dma_unmap_addr(tx_buffer, dma),
3724                                          dma_unmap_len(tx_buffer, len),
3725                                          DMA_TO_DEVICE);
3726         } else if (dma_unmap_len(tx_buffer, len)) {
3727                 dma_unmap_page(ring->dev,
3728                                dma_unmap_addr(tx_buffer, dma),
3729                                dma_unmap_len(tx_buffer, len),
3730                                DMA_TO_DEVICE);
3731         }
3732         tx_buffer->next_to_watch = NULL;
3733         tx_buffer->skb = NULL;
3734         dma_unmap_len_set(tx_buffer, len, 0);
3735         /* buffer_info must be completely set up in the transmit path */
3736 }
3737
3738 /**
3739  *  igb_clean_tx_ring - Free Tx Buffers
3740  *  @tx_ring: ring to be cleaned
3741  **/
3742 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3743 {
3744         struct igb_tx_buffer *buffer_info;
3745         unsigned long size;
3746         u16 i;
3747
3748         if (!tx_ring->tx_buffer_info)
3749                 return;
3750         /* Free all the Tx ring sk_buffs */
3751
3752         for (i = 0; i < tx_ring->count; i++) {
3753                 buffer_info = &tx_ring->tx_buffer_info[i];
3754                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3755         }
3756
3757         netdev_tx_reset_queue(txring_txq(tx_ring));
3758
3759         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3760         memset(tx_ring->tx_buffer_info, 0, size);
3761
3762         /* Zero out the descriptor ring */
3763         memset(tx_ring->desc, 0, tx_ring->size);
3764
3765         tx_ring->next_to_use = 0;
3766         tx_ring->next_to_clean = 0;
3767 }
3768
3769 /**
3770  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3771  *  @adapter: board private structure
3772  **/
3773 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3774 {
3775         int i;
3776
3777         for (i = 0; i < adapter->num_tx_queues; i++)
3778                 igb_clean_tx_ring(adapter->tx_ring[i]);
3779 }
3780
3781 /**
3782  *  igb_free_rx_resources - Free Rx Resources
3783  *  @rx_ring: ring to clean the resources from
3784  *
3785  *  Free all receive software resources
3786  **/
3787 void igb_free_rx_resources(struct igb_ring *rx_ring)
3788 {
3789         igb_clean_rx_ring(rx_ring);
3790
3791         vfree(rx_ring->rx_buffer_info);
3792         rx_ring->rx_buffer_info = NULL;
3793
3794         /* if not set, then don't free */
3795         if (!rx_ring->desc)
3796                 return;
3797
3798         dma_free_coherent(rx_ring->dev, rx_ring->size,
3799                           rx_ring->desc, rx_ring->dma);
3800
3801         rx_ring->desc = NULL;
3802 }
3803
3804 /**
3805  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3806  *  @adapter: board private structure
3807  *
3808  *  Free all receive software resources
3809  **/
3810 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3811 {
3812         int i;
3813
3814         for (i = 0; i < adapter->num_rx_queues; i++)
3815                 igb_free_rx_resources(adapter->rx_ring[i]);
3816 }
3817
3818 /**
3819  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3820  *  @rx_ring: ring to free buffers from
3821  **/
3822 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3823 {
3824         unsigned long size;
3825         u16 i;
3826
3827         if (rx_ring->skb)
3828                 dev_kfree_skb(rx_ring->skb);
3829         rx_ring->skb = NULL;
3830
3831         if (!rx_ring->rx_buffer_info)
3832                 return;
3833
3834         /* Free all the Rx ring sk_buffs */
3835         for (i = 0; i < rx_ring->count; i++) {
3836                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3837
3838                 if (!buffer_info->page)
3839                         continue;
3840
3841                 dma_unmap_page(rx_ring->dev,
3842                                buffer_info->dma,
3843                                PAGE_SIZE,
3844                                DMA_FROM_DEVICE);
3845                 __free_page(buffer_info->page);
3846
3847                 buffer_info->page = NULL;
3848         }
3849
3850         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3851         memset(rx_ring->rx_buffer_info, 0, size);
3852
3853         /* Zero out the descriptor ring */
3854         memset(rx_ring->desc, 0, rx_ring->size);
3855
3856         rx_ring->next_to_alloc = 0;
3857         rx_ring->next_to_clean = 0;
3858         rx_ring->next_to_use = 0;
3859 }
3860
3861 /**
3862  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3863  *  @adapter: board private structure
3864  **/
3865 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3866 {
3867         int i;
3868
3869         for (i = 0; i < adapter->num_rx_queues; i++)
3870                 igb_clean_rx_ring(adapter->rx_ring[i]);
3871 }
3872
3873 /**
3874  *  igb_set_mac - Change the Ethernet Address of the NIC
3875  *  @netdev: network interface device structure
3876  *  @p: pointer to an address structure
3877  *
3878  *  Returns 0 on success, negative on failure
3879  **/
3880 static int igb_set_mac(struct net_device *netdev, void *p)
3881 {
3882         struct igb_adapter *adapter = netdev_priv(netdev);
3883         struct e1000_hw *hw = &adapter->hw;
3884         struct sockaddr *addr = p;
3885
3886         if (!is_valid_ether_addr(addr->sa_data))
3887                 return -EADDRNOTAVAIL;
3888
3889         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3890         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3891
3892         /* set the correct pool for the new PF MAC address in entry 0 */
3893         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3894                          adapter->vfs_allocated_count);
3895
3896         return 0;
3897 }
3898
3899 /**
3900  *  igb_write_mc_addr_list - write multicast addresses to MTA
3901  *  @netdev: network interface device structure
3902  *
3903  *  Writes multicast address list to the MTA hash table.
3904  *  Returns: -ENOMEM on failure
3905  *           0 on no addresses written
3906  *           X on writing X addresses to MTA
3907  **/
3908 static int igb_write_mc_addr_list(struct net_device *netdev)
3909 {
3910         struct igb_adapter *adapter = netdev_priv(netdev);
3911         struct e1000_hw *hw = &adapter->hw;
3912         struct netdev_hw_addr *ha;
3913         u8  *mta_list;
3914         int i;
3915
3916         if (netdev_mc_empty(netdev)) {
3917                 /* nothing to program, so clear mc list */
3918                 igb_update_mc_addr_list(hw, NULL, 0);
3919                 igb_restore_vf_multicasts(adapter);
3920                 return 0;
3921         }
3922
3923         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3924         if (!mta_list)
3925                 return -ENOMEM;
3926
3927         /* The shared function expects a packed array of only addresses. */
3928         i = 0;
3929         netdev_for_each_mc_addr(ha, netdev)
3930                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3931
3932         igb_update_mc_addr_list(hw, mta_list, i);
3933         kfree(mta_list);
3934
3935         return netdev_mc_count(netdev);
3936 }
3937
3938 /**
3939  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3940  *  @netdev: network interface device structure
3941  *
3942  *  Writes unicast address list to the RAR table.
3943  *  Returns: -ENOMEM on failure/insufficient address space
3944  *           0 on no addresses written
3945  *           X on writing X addresses to the RAR table
3946  **/
3947 static int igb_write_uc_addr_list(struct net_device *netdev)
3948 {
3949         struct igb_adapter *adapter = netdev_priv(netdev);
3950         struct e1000_hw *hw = &adapter->hw;
3951         unsigned int vfn = adapter->vfs_allocated_count;
3952         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3953         int count = 0;
3954
3955         /* return ENOMEM indicating insufficient memory for addresses */
3956         if (netdev_uc_count(netdev) > rar_entries)
3957                 return -ENOMEM;
3958
3959         if (!netdev_uc_empty(netdev) && rar_entries) {
3960                 struct netdev_hw_addr *ha;
3961
3962                 netdev_for_each_uc_addr(ha, netdev) {
3963                         if (!rar_entries)
3964                                 break;
3965                         igb_rar_set_qsel(adapter, ha->addr,
3966                                          rar_entries--,
3967                                          vfn);
3968                         count++;
3969                 }
3970         }
3971         /* write the addresses in reverse order to avoid write combining */
3972         for (; rar_entries > 0 ; rar_entries--) {
3973                 wr32(E1000_RAH(rar_entries), 0);
3974                 wr32(E1000_RAL(rar_entries), 0);
3975         }
3976         wrfl();
3977
3978         return count;
3979 }
3980
3981 /**
3982  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3983  *  @netdev: network interface device structure
3984  *
3985  *  The set_rx_mode entry point is called whenever the unicast or multicast
3986  *  address lists or the network interface flags are updated.  This routine is
3987  *  responsible for configuring the hardware for proper unicast, multicast,
3988  *  promiscuous mode, and all-multi behavior.
3989  **/
3990 static void igb_set_rx_mode(struct net_device *netdev)
3991 {
3992         struct igb_adapter *adapter = netdev_priv(netdev);
3993         struct e1000_hw *hw = &adapter->hw;
3994         unsigned int vfn = adapter->vfs_allocated_count;
3995         u32 rctl, vmolr = 0;
3996         int count;
3997
3998         /* Check for Promiscuous and All Multicast modes */
3999         rctl = rd32(E1000_RCTL);
4000
4001         /* clear the effected bits */
4002         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4003
4004         if (netdev->flags & IFF_PROMISC) {
4005                 /* retain VLAN HW filtering if in VT mode */
4006                 if (adapter->vfs_allocated_count)
4007                         rctl |= E1000_RCTL_VFE;
4008                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4009                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4010         } else {
4011                 if (netdev->flags & IFF_ALLMULTI) {
4012                         rctl |= E1000_RCTL_MPE;
4013                         vmolr |= E1000_VMOLR_MPME;
4014                 } else {
4015                         /* Write addresses to the MTA, if the attempt fails
4016                          * then we should just turn on promiscuous mode so
4017                          * that we can at least receive multicast traffic
4018                          */
4019                         count = igb_write_mc_addr_list(netdev);
4020                         if (count < 0) {
4021                                 rctl |= E1000_RCTL_MPE;
4022                                 vmolr |= E1000_VMOLR_MPME;
4023                         } else if (count) {
4024                                 vmolr |= E1000_VMOLR_ROMPE;
4025                         }
4026                 }
4027                 /* Write addresses to available RAR registers, if there is not
4028                  * sufficient space to store all the addresses then enable
4029                  * unicast promiscuous mode
4030                  */
4031                 count = igb_write_uc_addr_list(netdev);
4032                 if (count < 0) {
4033                         rctl |= E1000_RCTL_UPE;
4034                         vmolr |= E1000_VMOLR_ROPE;
4035                 }
4036                 rctl |= E1000_RCTL_VFE;
4037         }
4038         wr32(E1000_RCTL, rctl);
4039
4040         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4041          * the VMOLR to enable the appropriate modes.  Without this workaround
4042          * we will have issues with VLAN tag stripping not being done for frames
4043          * that are only arriving because we are the default pool
4044          */
4045         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4046                 return;
4047
4048         vmolr |= rd32(E1000_VMOLR(vfn)) &
4049                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4050         wr32(E1000_VMOLR(vfn), vmolr);
4051         igb_restore_vf_multicasts(adapter);
4052 }
4053
4054 static void igb_check_wvbr(struct igb_adapter *adapter)
4055 {
4056         struct e1000_hw *hw = &adapter->hw;
4057         u32 wvbr = 0;
4058
4059         switch (hw->mac.type) {
4060         case e1000_82576:
4061         case e1000_i350:
4062                 if (!(wvbr = rd32(E1000_WVBR)))
4063                         return;
4064                 break;
4065         default:
4066                 break;
4067         }
4068
4069         adapter->wvbr |= wvbr;
4070 }
4071
4072 #define IGB_STAGGERED_QUEUE_OFFSET 8
4073
4074 static void igb_spoof_check(struct igb_adapter *adapter)
4075 {
4076         int j;
4077
4078         if (!adapter->wvbr)
4079                 return;
4080
4081         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4082                 if (adapter->wvbr & (1 << j) ||
4083                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4084                         dev_warn(&adapter->pdev->dev,
4085                                 "Spoof event(s) detected on VF %d\n", j);
4086                         adapter->wvbr &=
4087                                 ~((1 << j) |
4088                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4089                 }
4090         }
4091 }
4092
4093 /* Need to wait a few seconds after link up to get diagnostic information from
4094  * the phy
4095  */
4096 static void igb_update_phy_info(unsigned long data)
4097 {
4098         struct igb_adapter *adapter = (struct igb_adapter *) data;
4099         igb_get_phy_info(&adapter->hw);
4100 }
4101
4102 /**
4103  *  igb_has_link - check shared code for link and determine up/down
4104  *  @adapter: pointer to driver private info
4105  **/
4106 bool igb_has_link(struct igb_adapter *adapter)
4107 {
4108         struct e1000_hw *hw = &adapter->hw;
4109         bool link_active = false;
4110
4111         /* get_link_status is set on LSC (link status) interrupt or
4112          * rx sequence error interrupt.  get_link_status will stay
4113          * false until the e1000_check_for_link establishes link
4114          * for copper adapters ONLY
4115          */
4116         switch (hw->phy.media_type) {
4117         case e1000_media_type_copper:
4118                 if (!hw->mac.get_link_status)
4119                         return true;
4120         case e1000_media_type_internal_serdes:
4121                 hw->mac.ops.check_for_link(hw);
4122                 link_active = !hw->mac.get_link_status;
4123                 break;
4124         default:
4125         case e1000_media_type_unknown:
4126                 break;
4127         }
4128
4129         if (((hw->mac.type == e1000_i210) ||
4130              (hw->mac.type == e1000_i211)) &&
4131              (hw->phy.id == I210_I_PHY_ID)) {
4132                 if (!netif_carrier_ok(adapter->netdev)) {
4133                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4134                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4135                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4136                         adapter->link_check_timeout = jiffies;
4137                 }
4138         }
4139
4140         return link_active;
4141 }
4142
4143 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4144 {
4145         bool ret = false;
4146         u32 ctrl_ext, thstat;
4147
4148         /* check for thermal sensor event on i350 copper only */
4149         if (hw->mac.type == e1000_i350) {
4150                 thstat = rd32(E1000_THSTAT);
4151                 ctrl_ext = rd32(E1000_CTRL_EXT);
4152
4153                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4154                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4155                         ret = !!(thstat & event);
4156         }
4157
4158         return ret;
4159 }
4160
4161 /**
4162  *  igb_watchdog - Timer Call-back
4163  *  @data: pointer to adapter cast into an unsigned long
4164  **/
4165 static void igb_watchdog(unsigned long data)
4166 {
4167         struct igb_adapter *adapter = (struct igb_adapter *)data;
4168         /* Do the rest outside of interrupt context */
4169         schedule_work(&adapter->watchdog_task);
4170 }
4171
4172 static void igb_watchdog_task(struct work_struct *work)
4173 {
4174         struct igb_adapter *adapter = container_of(work,
4175                                                    struct igb_adapter,
4176                                                    watchdog_task);
4177         struct e1000_hw *hw = &adapter->hw;
4178         struct e1000_phy_info *phy = &hw->phy;
4179         struct net_device *netdev = adapter->netdev;
4180         u32 link;
4181         int i;
4182         u32 connsw;
4183
4184         link = igb_has_link(adapter);
4185
4186         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4187                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4188                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4189                 else
4190                         link = false;
4191         }
4192
4193         /* Force link down if we have fiber to swap to */
4194         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4195                 if (hw->phy.media_type == e1000_media_type_copper) {
4196                         connsw = rd32(E1000_CONNSW);
4197                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4198                                 link = 0;
4199                 }
4200         }
4201         if (link) {
4202                 /* Perform a reset if the media type changed. */
4203                 if (hw->dev_spec._82575.media_changed) {
4204                         hw->dev_spec._82575.media_changed = false;
4205                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4206                         igb_reset(adapter);
4207                 }
4208                 /* Cancel scheduled suspend requests. */
4209                 pm_runtime_resume(netdev->dev.parent);
4210
4211                 if (!netif_carrier_ok(netdev)) {
4212                         u32 ctrl;
4213
4214                         hw->mac.ops.get_speed_and_duplex(hw,
4215                                                          &adapter->link_speed,
4216                                                          &adapter->link_duplex);
4217
4218                         ctrl = rd32(E1000_CTRL);
4219                         /* Links status message must follow this format */
4220                         netdev_info(netdev,
4221                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4222                                netdev->name,
4223                                adapter->link_speed,
4224                                adapter->link_duplex == FULL_DUPLEX ?
4225                                "Full" : "Half",
4226                                (ctrl & E1000_CTRL_TFCE) &&
4227                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4228                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4229                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4230
4231                         /* disable EEE if enabled */
4232                         if ((adapter->flags & IGB_FLAG_EEE) &&
4233                                 (adapter->link_duplex == HALF_DUPLEX)) {
4234                                 dev_info(&adapter->pdev->dev,
4235                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4236                                 adapter->hw.dev_spec._82575.eee_disable = true;
4237                                 adapter->flags &= ~IGB_FLAG_EEE;
4238                         }
4239
4240                         /* check if SmartSpeed worked */
4241                         igb_check_downshift(hw);
4242                         if (phy->speed_downgraded)
4243                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4244
4245                         /* check for thermal sensor event */
4246                         if (igb_thermal_sensor_event(hw,
4247                             E1000_THSTAT_LINK_THROTTLE))
4248                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4249
4250                         /* adjust timeout factor according to speed/duplex */
4251                         adapter->tx_timeout_factor = 1;
4252                         switch (adapter->link_speed) {
4253                         case SPEED_10:
4254                                 adapter->tx_timeout_factor = 14;
4255                                 break;
4256                         case SPEED_100:
4257                                 /* maybe add some timeout factor ? */
4258                                 break;
4259                         }
4260
4261                         netif_carrier_on(netdev);
4262
4263                         igb_ping_all_vfs(adapter);
4264                         igb_check_vf_rate_limit(adapter);
4265
4266                         /* link state has changed, schedule phy info update */
4267                         if (!test_bit(__IGB_DOWN, &adapter->state))
4268                                 mod_timer(&adapter->phy_info_timer,
4269                                           round_jiffies(jiffies + 2 * HZ));
4270                 }
4271         } else {
4272                 if (netif_carrier_ok(netdev)) {
4273                         adapter->link_speed = 0;
4274                         adapter->link_duplex = 0;
4275
4276                         /* check for thermal sensor event */
4277                         if (igb_thermal_sensor_event(hw,
4278                             E1000_THSTAT_PWR_DOWN)) {
4279                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4280                         }
4281
4282                         /* Links status message must follow this format */
4283                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4284                                netdev->name);
4285                         netif_carrier_off(netdev);
4286
4287                         igb_ping_all_vfs(adapter);
4288
4289                         /* link state has changed, schedule phy info update */
4290                         if (!test_bit(__IGB_DOWN, &adapter->state))
4291                                 mod_timer(&adapter->phy_info_timer,
4292                                           round_jiffies(jiffies + 2 * HZ));
4293
4294                         /* link is down, time to check for alternate media */
4295                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4296                                 igb_check_swap_media(adapter);
4297                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4298                                         schedule_work(&adapter->reset_task);
4299                                         /* return immediately */
4300                                         return;
4301                                 }
4302                         }
4303                         pm_schedule_suspend(netdev->dev.parent,
4304                                             MSEC_PER_SEC * 5);
4305
4306                 /* also check for alternate media here */
4307                 } else if (!netif_carrier_ok(netdev) &&
4308                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4309                         igb_check_swap_media(adapter);
4310                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4311                                 schedule_work(&adapter->reset_task);
4312                                 /* return immediately */
4313                                 return;
4314                         }
4315                 }
4316         }
4317
4318         spin_lock(&adapter->stats64_lock);
4319         igb_update_stats(adapter, &adapter->stats64);
4320         spin_unlock(&adapter->stats64_lock);
4321
4322         for (i = 0; i < adapter->num_tx_queues; i++) {
4323                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4324                 if (!netif_carrier_ok(netdev)) {
4325                         /* We've lost link, so the controller stops DMA,
4326                          * but we've got queued Tx work that's never going
4327                          * to get done, so reset controller to flush Tx.
4328                          * (Do the reset outside of interrupt context).
4329                          */
4330                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4331                                 adapter->tx_timeout_count++;
4332                                 schedule_work(&adapter->reset_task);
4333                                 /* return immediately since reset is imminent */
4334                                 return;
4335                         }
4336                 }
4337
4338                 /* Force detection of hung controller every watchdog period */
4339                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4340         }
4341
4342         /* Cause software interrupt to ensure Rx ring is cleaned */
4343         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4344                 u32 eics = 0;
4345
4346                 for (i = 0; i < adapter->num_q_vectors; i++)
4347                         eics |= adapter->q_vector[i]->eims_value;
4348                 wr32(E1000_EICS, eics);
4349         } else {
4350                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4351         }
4352
4353         igb_spoof_check(adapter);
4354         igb_ptp_rx_hang(adapter);
4355
4356         /* Reset the timer */
4357         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4358                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4359                         mod_timer(&adapter->watchdog_timer,
4360                                   round_jiffies(jiffies +  HZ));
4361                 else
4362                         mod_timer(&adapter->watchdog_timer,
4363                                   round_jiffies(jiffies + 2 * HZ));
4364         }
4365 }
4366
4367 enum latency_range {
4368         lowest_latency = 0,
4369         low_latency = 1,
4370         bulk_latency = 2,
4371         latency_invalid = 255
4372 };
4373
4374 /**
4375  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4376  *  @q_vector: pointer to q_vector
4377  *
4378  *  Stores a new ITR value based on strictly on packet size.  This
4379  *  algorithm is less sophisticated than that used in igb_update_itr,
4380  *  due to the difficulty of synchronizing statistics across multiple
4381  *  receive rings.  The divisors and thresholds used by this function
4382  *  were determined based on theoretical maximum wire speed and testing
4383  *  data, in order to minimize response time while increasing bulk
4384  *  throughput.
4385  *  This functionality is controlled by ethtool's coalescing settings.
4386  *  NOTE:  This function is called only when operating in a multiqueue
4387  *         receive environment.
4388  **/
4389 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4390 {
4391         int new_val = q_vector->itr_val;
4392         int avg_wire_size = 0;
4393         struct igb_adapter *adapter = q_vector->adapter;
4394         unsigned int packets;
4395
4396         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4397          * ints/sec - ITR timer value of 120 ticks.
4398          */
4399         if (adapter->link_speed != SPEED_1000) {
4400                 new_val = IGB_4K_ITR;
4401                 goto set_itr_val;
4402         }
4403
4404         packets = q_vector->rx.total_packets;
4405         if (packets)
4406                 avg_wire_size = q_vector->rx.total_bytes / packets;
4407
4408         packets = q_vector->tx.total_packets;
4409         if (packets)
4410                 avg_wire_size = max_t(u32, avg_wire_size,
4411                                       q_vector->tx.total_bytes / packets);
4412
4413         /* if avg_wire_size isn't set no work was done */
4414         if (!avg_wire_size)
4415                 goto clear_counts;
4416
4417         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4418         avg_wire_size += 24;
4419
4420         /* Don't starve jumbo frames */
4421         avg_wire_size = min(avg_wire_size, 3000);
4422
4423         /* Give a little boost to mid-size frames */
4424         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4425                 new_val = avg_wire_size / 3;
4426         else
4427                 new_val = avg_wire_size / 2;
4428
4429         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4430         if (new_val < IGB_20K_ITR &&
4431             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4432              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4433                 new_val = IGB_20K_ITR;
4434
4435 set_itr_val:
4436         if (new_val != q_vector->itr_val) {
4437                 q_vector->itr_val = new_val;
4438                 q_vector->set_itr = 1;
4439         }
4440 clear_counts:
4441         q_vector->rx.total_bytes = 0;
4442         q_vector->rx.total_packets = 0;
4443         q_vector->tx.total_bytes = 0;
4444         q_vector->tx.total_packets = 0;
4445 }
4446
4447 /**
4448  *  igb_update_itr - update the dynamic ITR value based on statistics
4449  *  @q_vector: pointer to q_vector
4450  *  @ring_container: ring info to update the itr for
4451  *
4452  *  Stores a new ITR value based on packets and byte
4453  *  counts during the last interrupt.  The advantage of per interrupt
4454  *  computation is faster updates and more accurate ITR for the current
4455  *  traffic pattern.  Constants in this function were computed
4456  *  based on theoretical maximum wire speed and thresholds were set based
4457  *  on testing data as well as attempting to minimize response time
4458  *  while increasing bulk throughput.
4459  *  This functionality is controlled by ethtool's coalescing settings.
4460  *  NOTE:  These calculations are only valid when operating in a single-
4461  *         queue environment.
4462  **/
4463 static void igb_update_itr(struct igb_q_vector *q_vector,
4464                            struct igb_ring_container *ring_container)
4465 {
4466         unsigned int packets = ring_container->total_packets;
4467         unsigned int bytes = ring_container->total_bytes;
4468         u8 itrval = ring_container->itr;
4469
4470         /* no packets, exit with status unchanged */
4471         if (packets == 0)
4472                 return;
4473
4474         switch (itrval) {
4475         case lowest_latency:
4476                 /* handle TSO and jumbo frames */
4477                 if (bytes/packets > 8000)
4478                         itrval = bulk_latency;
4479                 else if ((packets < 5) && (bytes > 512))
4480                         itrval = low_latency;
4481                 break;
4482         case low_latency:  /* 50 usec aka 20000 ints/s */
4483                 if (bytes > 10000) {
4484                         /* this if handles the TSO accounting */
4485                         if (bytes/packets > 8000)
4486                                 itrval = bulk_latency;
4487                         else if ((packets < 10) || ((bytes/packets) > 1200))
4488                                 itrval = bulk_latency;
4489                         else if ((packets > 35))
4490                                 itrval = lowest_latency;
4491                 } else if (bytes/packets > 2000) {
4492                         itrval = bulk_latency;
4493                 } else if (packets <= 2 && bytes < 512) {
4494                         itrval = lowest_latency;
4495                 }
4496                 break;
4497         case bulk_latency: /* 250 usec aka 4000 ints/s */
4498                 if (bytes > 25000) {
4499                         if (packets > 35)
4500                                 itrval = low_latency;
4501                 } else if (bytes < 1500) {
4502                         itrval = low_latency;
4503                 }
4504                 break;
4505         }
4506
4507         /* clear work counters since we have the values we need */
4508         ring_container->total_bytes = 0;
4509         ring_container->total_packets = 0;
4510
4511         /* write updated itr to ring container */
4512         ring_container->itr = itrval;
4513 }
4514
4515 static void igb_set_itr(struct igb_q_vector *q_vector)
4516 {
4517         struct igb_adapter *adapter = q_vector->adapter;
4518         u32 new_itr = q_vector->itr_val;
4519         u8 current_itr = 0;
4520
4521         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4522         if (adapter->link_speed != SPEED_1000) {
4523                 current_itr = 0;
4524                 new_itr = IGB_4K_ITR;
4525                 goto set_itr_now;
4526         }
4527
4528         igb_update_itr(q_vector, &q_vector->tx);
4529         igb_update_itr(q_vector, &q_vector->rx);
4530
4531         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4532
4533         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4534         if (current_itr == lowest_latency &&
4535             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4536              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4537                 current_itr = low_latency;
4538
4539         switch (current_itr) {
4540         /* counts and packets in update_itr are dependent on these numbers */
4541         case lowest_latency:
4542                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4543                 break;
4544         case low_latency:
4545                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4546                 break;
4547         case bulk_latency:
4548                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4549                 break;
4550         default:
4551                 break;
4552         }
4553
4554 set_itr_now:
4555         if (new_itr != q_vector->itr_val) {
4556                 /* this attempts to bias the interrupt rate towards Bulk
4557                  * by adding intermediate steps when interrupt rate is
4558                  * increasing
4559                  */
4560                 new_itr = new_itr > q_vector->itr_val ?
4561                           max((new_itr * q_vector->itr_val) /
4562                           (new_itr + (q_vector->itr_val >> 2)),
4563                           new_itr) : new_itr;
4564                 /* Don't write the value here; it resets the adapter's
4565                  * internal timer, and causes us to delay far longer than
4566                  * we should between interrupts.  Instead, we write the ITR
4567                  * value at the beginning of the next interrupt so the timing
4568                  * ends up being correct.
4569                  */
4570                 q_vector->itr_val = new_itr;
4571                 q_vector->set_itr = 1;
4572         }
4573 }
4574
4575 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4576                             u32 type_tucmd, u32 mss_l4len_idx)
4577 {
4578         struct e1000_adv_tx_context_desc *context_desc;
4579         u16 i = tx_ring->next_to_use;
4580
4581         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4582
4583         i++;
4584         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4585
4586         /* set bits to identify this as an advanced context descriptor */
4587         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4588
4589         /* For 82575, context index must be unique per ring. */
4590         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4591                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4592
4593         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4594         context_desc->seqnum_seed       = 0;
4595         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4596         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4597 }
4598
4599 static int igb_tso(struct igb_ring *tx_ring,
4600                    struct igb_tx_buffer *first,
4601                    u8 *hdr_len)
4602 {
4603         struct sk_buff *skb = first->skb;
4604         u32 vlan_macip_lens, type_tucmd;
4605         u32 mss_l4len_idx, l4len;
4606         int err;
4607
4608         if (skb->ip_summed != CHECKSUM_PARTIAL)
4609                 return 0;
4610
4611         if (!skb_is_gso(skb))
4612                 return 0;
4613
4614         err = skb_cow_head(skb, 0);
4615         if (err < 0)
4616                 return err;
4617
4618         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4619         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4620
4621         if (first->protocol == htons(ETH_P_IP)) {
4622                 struct iphdr *iph = ip_hdr(skb);
4623                 iph->tot_len = 0;
4624                 iph->check = 0;
4625                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4626                                                          iph->daddr, 0,
4627                                                          IPPROTO_TCP,
4628                                                          0);
4629                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4630                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4631                                    IGB_TX_FLAGS_CSUM |
4632                                    IGB_TX_FLAGS_IPV4;
4633         } else if (skb_is_gso_v6(skb)) {
4634                 ipv6_hdr(skb)->payload_len = 0;
4635                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4636                                                        &ipv6_hdr(skb)->daddr,
4637                                                        0, IPPROTO_TCP, 0);
4638                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4639                                    IGB_TX_FLAGS_CSUM;
4640         }
4641
4642         /* compute header lengths */
4643         l4len = tcp_hdrlen(skb);
4644         *hdr_len = skb_transport_offset(skb) + l4len;
4645
4646         /* update gso size and bytecount with header size */
4647         first->gso_segs = skb_shinfo(skb)->gso_segs;
4648         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4649
4650         /* MSS L4LEN IDX */
4651         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4652         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4653
4654         /* VLAN MACLEN IPLEN */
4655         vlan_macip_lens = skb_network_header_len(skb);
4656         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4657         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4658
4659         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4660
4661         return 1;
4662 }
4663
4664 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4665 {
4666         struct sk_buff *skb = first->skb;
4667         u32 vlan_macip_lens = 0;
4668         u32 mss_l4len_idx = 0;
4669         u32 type_tucmd = 0;
4670
4671         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4672                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4673                         return;
4674         } else {
4675                 u8 l4_hdr = 0;
4676
4677                 switch (first->protocol) {
4678                 case htons(ETH_P_IP):
4679                         vlan_macip_lens |= skb_network_header_len(skb);
4680                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4681                         l4_hdr = ip_hdr(skb)->protocol;
4682                         break;
4683                 case htons(ETH_P_IPV6):
4684                         vlan_macip_lens |= skb_network_header_len(skb);
4685                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4686                         break;
4687                 default:
4688                         if (unlikely(net_ratelimit())) {
4689                                 dev_warn(tx_ring->dev,
4690                                          "partial checksum but proto=%x!\n",
4691                                          first->protocol);
4692                         }
4693                         break;
4694                 }
4695
4696                 switch (l4_hdr) {
4697                 case IPPROTO_TCP:
4698                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4699                         mss_l4len_idx = tcp_hdrlen(skb) <<
4700                                         E1000_ADVTXD_L4LEN_SHIFT;
4701                         break;
4702                 case IPPROTO_SCTP:
4703                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4704                         mss_l4len_idx = sizeof(struct sctphdr) <<
4705                                         E1000_ADVTXD_L4LEN_SHIFT;
4706                         break;
4707                 case IPPROTO_UDP:
4708                         mss_l4len_idx = sizeof(struct udphdr) <<
4709                                         E1000_ADVTXD_L4LEN_SHIFT;
4710                         break;
4711                 default:
4712                         if (unlikely(net_ratelimit())) {
4713                                 dev_warn(tx_ring->dev,
4714                                          "partial checksum but l4 proto=%x!\n",
4715                                          l4_hdr);
4716                         }
4717                         break;
4718                 }
4719
4720                 /* update TX checksum flag */
4721                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4722         }
4723
4724         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4725         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4726
4727         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4728 }
4729
4730 #define IGB_SET_FLAG(_input, _flag, _result) \
4731         ((_flag <= _result) ? \
4732          ((u32)(_input & _flag) * (_result / _flag)) : \
4733          ((u32)(_input & _flag) / (_flag / _result)))
4734
4735 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4736 {
4737         /* set type for advanced descriptor with frame checksum insertion */
4738         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4739                        E1000_ADVTXD_DCMD_DEXT |
4740                        E1000_ADVTXD_DCMD_IFCS;
4741
4742         /* set HW vlan bit if vlan is present */
4743         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4744                                  (E1000_ADVTXD_DCMD_VLE));
4745
4746         /* set segmentation bits for TSO */
4747         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4748                                  (E1000_ADVTXD_DCMD_TSE));
4749
4750         /* set timestamp bit if present */
4751         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4752                                  (E1000_ADVTXD_MAC_TSTAMP));
4753
4754         /* insert frame checksum */
4755         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4756
4757         return cmd_type;
4758 }
4759
4760 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4761                                  union e1000_adv_tx_desc *tx_desc,
4762                                  u32 tx_flags, unsigned int paylen)
4763 {
4764         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4765
4766         /* 82575 requires a unique index per ring */
4767         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4768                 olinfo_status |= tx_ring->reg_idx << 4;
4769
4770         /* insert L4 checksum */
4771         olinfo_status |= IGB_SET_FLAG(tx_flags,
4772                                       IGB_TX_FLAGS_CSUM,
4773                                       (E1000_TXD_POPTS_TXSM << 8));
4774
4775         /* insert IPv4 checksum */
4776         olinfo_status |= IGB_SET_FLAG(tx_flags,
4777                                       IGB_TX_FLAGS_IPV4,
4778                                       (E1000_TXD_POPTS_IXSM << 8));
4779
4780         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4781 }
4782
4783 static void igb_tx_map(struct igb_ring *tx_ring,
4784                        struct igb_tx_buffer *first,
4785                        const u8 hdr_len)
4786 {
4787         struct sk_buff *skb = first->skb;
4788         struct igb_tx_buffer *tx_buffer;
4789         union e1000_adv_tx_desc *tx_desc;
4790         struct skb_frag_struct *frag;
4791         dma_addr_t dma;
4792         unsigned int data_len, size;
4793         u32 tx_flags = first->tx_flags;
4794         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4795         u16 i = tx_ring->next_to_use;
4796
4797         tx_desc = IGB_TX_DESC(tx_ring, i);
4798
4799         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4800
4801         size = skb_headlen(skb);
4802         data_len = skb->data_len;
4803
4804         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4805
4806         tx_buffer = first;
4807
4808         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4809                 if (dma_mapping_error(tx_ring->dev, dma))
4810                         goto dma_error;
4811
4812                 /* record length, and DMA address */
4813                 dma_unmap_len_set(tx_buffer, len, size);
4814                 dma_unmap_addr_set(tx_buffer, dma, dma);
4815
4816                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4817
4818                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4819                         tx_desc->read.cmd_type_len =
4820                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4821
4822                         i++;
4823                         tx_desc++;
4824                         if (i == tx_ring->count) {
4825                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4826                                 i = 0;
4827                         }
4828                         tx_desc->read.olinfo_status = 0;
4829
4830                         dma += IGB_MAX_DATA_PER_TXD;
4831                         size -= IGB_MAX_DATA_PER_TXD;
4832
4833                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4834                 }
4835
4836                 if (likely(!data_len))
4837                         break;
4838
4839                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4840
4841                 i++;
4842                 tx_desc++;
4843                 if (i == tx_ring->count) {
4844                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4845                         i = 0;
4846                 }
4847                 tx_desc->read.olinfo_status = 0;
4848
4849                 size = skb_frag_size(frag);
4850                 data_len -= size;
4851
4852                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4853                                        size, DMA_TO_DEVICE);
4854
4855                 tx_buffer = &tx_ring->tx_buffer_info[i];
4856         }
4857
4858         /* write last descriptor with RS and EOP bits */
4859         cmd_type |= size | IGB_TXD_DCMD;
4860         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4861
4862         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4863
4864         /* set the timestamp */
4865         first->time_stamp = jiffies;
4866
4867         /* Force memory writes to complete before letting h/w know there
4868          * are new descriptors to fetch.  (Only applicable for weak-ordered
4869          * memory model archs, such as IA-64).
4870          *
4871          * We also need this memory barrier to make certain all of the
4872          * status bits have been updated before next_to_watch is written.
4873          */
4874         wmb();
4875
4876         /* set next_to_watch value indicating a packet is present */
4877         first->next_to_watch = tx_desc;
4878
4879         i++;
4880         if (i == tx_ring->count)
4881                 i = 0;
4882
4883         tx_ring->next_to_use = i;
4884
4885         writel(i, tx_ring->tail);
4886
4887         /* we need this if more than one processor can write to our tail
4888          * at a time, it synchronizes IO on IA64/Altix systems
4889          */
4890         mmiowb();
4891
4892         return;
4893
4894 dma_error:
4895         dev_err(tx_ring->dev, "TX DMA map failed\n");
4896
4897         /* clear dma mappings for failed tx_buffer_info map */
4898         for (;;) {
4899                 tx_buffer = &tx_ring->tx_buffer_info[i];
4900                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4901                 if (tx_buffer == first)
4902                         break;
4903                 if (i == 0)
4904                         i = tx_ring->count;
4905                 i--;
4906         }
4907
4908         tx_ring->next_to_use = i;
4909 }
4910
4911 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4912 {
4913         struct net_device *netdev = tx_ring->netdev;
4914
4915         netif_stop_subqueue(netdev, tx_ring->queue_index);
4916
4917         /* Herbert's original patch had:
4918          *  smp_mb__after_netif_stop_queue();
4919          * but since that doesn't exist yet, just open code it.
4920          */
4921         smp_mb();
4922
4923         /* We need to check again in a case another CPU has just
4924          * made room available.
4925          */
4926         if (igb_desc_unused(tx_ring) < size)
4927                 return -EBUSY;
4928
4929         /* A reprieve! */
4930         netif_wake_subqueue(netdev, tx_ring->queue_index);
4931
4932         u64_stats_update_begin(&tx_ring->tx_syncp2);
4933         tx_ring->tx_stats.restart_queue2++;
4934         u64_stats_update_end(&tx_ring->tx_syncp2);
4935
4936         return 0;
4937 }
4938
4939 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4940 {
4941         if (igb_desc_unused(tx_ring) >= size)
4942                 return 0;
4943         return __igb_maybe_stop_tx(tx_ring, size);
4944 }
4945
4946 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4947                                 struct igb_ring *tx_ring)
4948 {
4949         struct igb_tx_buffer *first;
4950         int tso;
4951         u32 tx_flags = 0;
4952         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4953         __be16 protocol = vlan_get_protocol(skb);
4954         u8 hdr_len = 0;
4955
4956         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4957          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4958          *       + 2 desc gap to keep tail from touching head,
4959          *       + 1 desc for context descriptor,
4960          * otherwise try next time
4961          */
4962         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4963                 unsigned short f;
4964
4965                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967         } else {
4968                 count += skb_shinfo(skb)->nr_frags;
4969         }
4970
4971         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972                 /* this is a hard error */
4973                 return NETDEV_TX_BUSY;
4974         }
4975
4976         /* record the location of the first descriptor for this packet */
4977         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978         first->skb = skb;
4979         first->bytecount = skb->len;
4980         first->gso_segs = 1;
4981
4982         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984
4985                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986                                            &adapter->state)) {
4987                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990                         adapter->ptp_tx_skb = skb_get(skb);
4991                         adapter->ptp_tx_start = jiffies;
4992                         if (adapter->hw.mac.type == e1000_82576)
4993                                 schedule_work(&adapter->ptp_tx_work);
4994                 }
4995         }
4996
4997         skb_tx_timestamp(skb);
4998
4999         if (vlan_tx_tag_present(skb)) {
5000                 tx_flags |= IGB_TX_FLAGS_VLAN;
5001                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002         }
5003
5004         /* record initial flags and protocol */
5005         first->tx_flags = tx_flags;
5006         first->protocol = protocol;
5007
5008         tso = igb_tso(tx_ring, first, &hdr_len);
5009         if (tso < 0)
5010                 goto out_drop;
5011         else if (!tso)
5012                 igb_tx_csum(tx_ring, first);
5013
5014         igb_tx_map(tx_ring, first, hdr_len);
5015
5016         /* Make sure there is space in the ring for the next send. */
5017         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019         return NETDEV_TX_OK;
5020
5021 out_drop:
5022         igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024         return NETDEV_TX_OK;
5025 }
5026
5027 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028                                                     struct sk_buff *skb)
5029 {
5030         unsigned int r_idx = skb->queue_mapping;
5031
5032         if (r_idx >= adapter->num_tx_queues)
5033                 r_idx = r_idx % adapter->num_tx_queues;
5034
5035         return adapter->tx_ring[r_idx];
5036 }
5037
5038 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039                                   struct net_device *netdev)
5040 {
5041         struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043         if (test_bit(__IGB_DOWN, &adapter->state)) {
5044                 dev_kfree_skb_any(skb);
5045                 return NETDEV_TX_OK;
5046         }
5047
5048         if (skb->len <= 0) {
5049                 dev_kfree_skb_any(skb);
5050                 return NETDEV_TX_OK;
5051         }
5052
5053         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054          * in order to meet this minimum size requirement.
5055          */
5056         if (unlikely(skb->len < 17)) {
5057                 if (skb_pad(skb, 17 - skb->len))
5058                         return NETDEV_TX_OK;
5059                 skb->len = 17;
5060                 skb_set_tail_pointer(skb, 17);
5061         }
5062
5063         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064 }
5065
5066 /**
5067  *  igb_tx_timeout - Respond to a Tx Hang
5068  *  @netdev: network interface device structure
5069  **/
5070 static void igb_tx_timeout(struct net_device *netdev)
5071 {
5072         struct igb_adapter *adapter = netdev_priv(netdev);
5073         struct e1000_hw *hw = &adapter->hw;
5074
5075         /* Do the reset outside of interrupt context */
5076         adapter->tx_timeout_count++;
5077
5078         if (hw->mac.type >= e1000_82580)
5079                 hw->dev_spec._82575.global_device_reset = true;
5080
5081         schedule_work(&adapter->reset_task);
5082         wr32(E1000_EICS,
5083              (adapter->eims_enable_mask & ~adapter->eims_other));
5084 }
5085
5086 static void igb_reset_task(struct work_struct *work)
5087 {
5088         struct igb_adapter *adapter;
5089         adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091         igb_dump(adapter);
5092         netdev_err(adapter->netdev, "Reset adapter\n");
5093         igb_reinit_locked(adapter);
5094 }
5095
5096 /**
5097  *  igb_get_stats64 - Get System Network Statistics
5098  *  @netdev: network interface device structure
5099  *  @stats: rtnl_link_stats64 pointer
5100  **/
5101 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102                                                 struct rtnl_link_stats64 *stats)
5103 {
5104         struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106         spin_lock(&adapter->stats64_lock);
5107         igb_update_stats(adapter, &adapter->stats64);
5108         memcpy(stats, &adapter->stats64, sizeof(*stats));
5109         spin_unlock(&adapter->stats64_lock);
5110
5111         return stats;
5112 }
5113
5114 /**
5115  *  igb_change_mtu - Change the Maximum Transfer Unit
5116  *  @netdev: network interface device structure
5117  *  @new_mtu: new value for maximum frame size
5118  *
5119  *  Returns 0 on success, negative on failure
5120  **/
5121 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122 {
5123         struct igb_adapter *adapter = netdev_priv(netdev);
5124         struct pci_dev *pdev = adapter->pdev;
5125         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5129                 return -EINVAL;
5130         }
5131
5132 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5133         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135                 return -EINVAL;
5136         }
5137
5138         /* adjust max frame to be at least the size of a standard frame */
5139         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143                 msleep(1);
5144
5145         /* igb_down has a dependency on max_frame_size */
5146         adapter->max_frame_size = max_frame;
5147
5148         if (netif_running(netdev))
5149                 igb_down(adapter);
5150
5151         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152                  netdev->mtu, new_mtu);
5153         netdev->mtu = new_mtu;
5154
5155         if (netif_running(netdev))
5156                 igb_up(adapter);
5157         else
5158                 igb_reset(adapter);
5159
5160         clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162         return 0;
5163 }
5164
5165 /**
5166  *  igb_update_stats - Update the board statistics counters
5167  *  @adapter: board private structure
5168  **/
5169 void igb_update_stats(struct igb_adapter *adapter,
5170                       struct rtnl_link_stats64 *net_stats)
5171 {
5172         struct e1000_hw *hw = &adapter->hw;
5173         struct pci_dev *pdev = adapter->pdev;
5174         u32 reg, mpc;
5175         u16 phy_tmp;
5176         int i;
5177         u64 bytes, packets;
5178         unsigned int start;
5179         u64 _bytes, _packets;
5180
5181 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183         /* Prevent stats update while adapter is being reset, or if the pci
5184          * connection is down.
5185          */
5186         if (adapter->link_speed == 0)
5187                 return;
5188         if (pci_channel_offline(pdev))
5189                 return;
5190
5191         bytes = 0;
5192         packets = 0;
5193
5194         rcu_read_lock();
5195         for (i = 0; i < adapter->num_rx_queues; i++) {
5196                 u32 rqdpc = rd32(E1000_RQDPC(i));
5197                 struct igb_ring *ring = adapter->rx_ring[i];
5198
5199                 if (rqdpc) {
5200                         ring->rx_stats.drops += rqdpc;
5201                         net_stats->rx_fifo_errors += rqdpc;
5202                 }
5203
5204                 do {
5205                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206                         _bytes = ring->rx_stats.bytes;
5207                         _packets = ring->rx_stats.packets;
5208                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209                 bytes += _bytes;
5210                 packets += _packets;
5211         }
5212
5213         net_stats->rx_bytes = bytes;
5214         net_stats->rx_packets = packets;
5215
5216         bytes = 0;
5217         packets = 0;
5218         for (i = 0; i < adapter->num_tx_queues; i++) {
5219                 struct igb_ring *ring = adapter->tx_ring[i];
5220                 do {
5221                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222                         _bytes = ring->tx_stats.bytes;
5223                         _packets = ring->tx_stats.packets;
5224                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225                 bytes += _bytes;
5226                 packets += _packets;
5227         }
5228         net_stats->tx_bytes = bytes;
5229         net_stats->tx_packets = packets;
5230         rcu_read_unlock();
5231
5232         /* read stats registers */
5233         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234         adapter->stats.gprc += rd32(E1000_GPRC);
5235         adapter->stats.gorc += rd32(E1000_GORCL);
5236         rd32(E1000_GORCH); /* clear GORCL */
5237         adapter->stats.bprc += rd32(E1000_BPRC);
5238         adapter->stats.mprc += rd32(E1000_MPRC);
5239         adapter->stats.roc += rd32(E1000_ROC);
5240
5241         adapter->stats.prc64 += rd32(E1000_PRC64);
5242         adapter->stats.prc127 += rd32(E1000_PRC127);
5243         adapter->stats.prc255 += rd32(E1000_PRC255);
5244         adapter->stats.prc511 += rd32(E1000_PRC511);
5245         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248         adapter->stats.sec += rd32(E1000_SEC);
5249
5250         mpc = rd32(E1000_MPC);
5251         adapter->stats.mpc += mpc;
5252         net_stats->rx_fifo_errors += mpc;
5253         adapter->stats.scc += rd32(E1000_SCC);
5254         adapter->stats.ecol += rd32(E1000_ECOL);
5255         adapter->stats.mcc += rd32(E1000_MCC);
5256         adapter->stats.latecol += rd32(E1000_LATECOL);
5257         adapter->stats.dc += rd32(E1000_DC);
5258         adapter->stats.rlec += rd32(E1000_RLEC);
5259         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260         adapter->stats.xontxc += rd32(E1000_XONTXC);
5261         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263         adapter->stats.fcruc += rd32(E1000_FCRUC);
5264         adapter->stats.gptc += rd32(E1000_GPTC);
5265         adapter->stats.gotc += rd32(E1000_GOTCL);
5266         rd32(E1000_GOTCH); /* clear GOTCL */
5267         adapter->stats.rnbc += rd32(E1000_RNBC);
5268         adapter->stats.ruc += rd32(E1000_RUC);
5269         adapter->stats.rfc += rd32(E1000_RFC);
5270         adapter->stats.rjc += rd32(E1000_RJC);
5271         adapter->stats.tor += rd32(E1000_TORH);
5272         adapter->stats.tot += rd32(E1000_TOTH);
5273         adapter->stats.tpr += rd32(E1000_TPR);
5274
5275         adapter->stats.ptc64 += rd32(E1000_PTC64);
5276         adapter->stats.ptc127 += rd32(E1000_PTC127);
5277         adapter->stats.ptc255 += rd32(E1000_PTC255);
5278         adapter->stats.ptc511 += rd32(E1000_PTC511);
5279         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281
5282         adapter->stats.mptc += rd32(E1000_MPTC);
5283         adapter->stats.bptc += rd32(E1000_BPTC);
5284
5285         adapter->stats.tpt += rd32(E1000_TPT);
5286         adapter->stats.colc += rd32(E1000_COLC);
5287
5288         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289         /* read internal phy specific stats */
5290         reg = rd32(E1000_CTRL_EXT);
5291         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293
5294                 /* this stat has invalid values on i210/i211 */
5295                 if ((hw->mac.type != e1000_i210) &&
5296                     (hw->mac.type != e1000_i211))
5297                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5298         }
5299
5300         adapter->stats.tsctc += rd32(E1000_TSCTC);
5301         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302
5303         adapter->stats.iac += rd32(E1000_IAC);
5304         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312
5313         /* Fill out the OS statistics structure */
5314         net_stats->multicast = adapter->stats.mprc;
5315         net_stats->collisions = adapter->stats.colc;
5316
5317         /* Rx Errors */
5318
5319         /* RLEC on some newer hardware can be incorrect so build
5320          * our own version based on RUC and ROC
5321          */
5322         net_stats->rx_errors = adapter->stats.rxerrc +
5323                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5324                 adapter->stats.ruc + adapter->stats.roc +
5325                 adapter->stats.cexterr;
5326         net_stats->rx_length_errors = adapter->stats.ruc +
5327                                       adapter->stats.roc;
5328         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330         net_stats->rx_missed_errors = adapter->stats.mpc;
5331
5332         /* Tx Errors */
5333         net_stats->tx_errors = adapter->stats.ecol +
5334                                adapter->stats.latecol;
5335         net_stats->tx_aborted_errors = adapter->stats.ecol;
5336         net_stats->tx_window_errors = adapter->stats.latecol;
5337         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338
5339         /* Tx Dropped needs to be maintained elsewhere */
5340
5341         /* Phy Stats */
5342         if (hw->phy.media_type == e1000_media_type_copper) {
5343                 if ((adapter->link_speed == SPEED_1000) &&
5344                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346                         adapter->phy_stats.idle_errors += phy_tmp;
5347                 }
5348         }
5349
5350         /* Management Stats */
5351         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354
5355         /* OS2BMC Stats */
5356         reg = rd32(E1000_MANC);
5357         if (reg & E1000_MANC_EN_BMC2OS) {
5358                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362         }
5363 }
5364
5365 static irqreturn_t igb_msix_other(int irq, void *data)
5366 {
5367         struct igb_adapter *adapter = data;
5368         struct e1000_hw *hw = &adapter->hw;
5369         u32 icr = rd32(E1000_ICR);
5370         /* reading ICR causes bit 31 of EICR to be cleared */
5371
5372         if (icr & E1000_ICR_DRSTA)
5373                 schedule_work(&adapter->reset_task);
5374
5375         if (icr & E1000_ICR_DOUTSYNC) {
5376                 /* HW is reporting DMA is out of sync */
5377                 adapter->stats.doosync++;
5378                 /* The DMA Out of Sync is also indication of a spoof event
5379                  * in IOV mode. Check the Wrong VM Behavior register to
5380                  * see if it is really a spoof event.
5381                  */
5382                 igb_check_wvbr(adapter);
5383         }
5384
5385         /* Check for a mailbox event */
5386         if (icr & E1000_ICR_VMMB)
5387                 igb_msg_task(adapter);
5388
5389         if (icr & E1000_ICR_LSC) {
5390                 hw->mac.get_link_status = 1;
5391                 /* guard against interrupt when we're going down */
5392                 if (!test_bit(__IGB_DOWN, &adapter->state))
5393                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394         }
5395
5396         if (icr & E1000_ICR_TS) {
5397                 u32 tsicr = rd32(E1000_TSICR);
5398
5399                 if (tsicr & E1000_TSICR_TXTS) {
5400                         /* acknowledge the interrupt */
5401                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402                         /* retrieve hardware timestamp */
5403                         schedule_work(&adapter->ptp_tx_work);
5404                 }
5405         }
5406
5407         wr32(E1000_EIMS, adapter->eims_other);
5408
5409         return IRQ_HANDLED;
5410 }
5411
5412 static void igb_write_itr(struct igb_q_vector *q_vector)
5413 {
5414         struct igb_adapter *adapter = q_vector->adapter;
5415         u32 itr_val = q_vector->itr_val & 0x7FFC;
5416
5417         if (!q_vector->set_itr)
5418                 return;
5419
5420         if (!itr_val)
5421                 itr_val = 0x4;
5422
5423         if (adapter->hw.mac.type == e1000_82575)
5424                 itr_val |= itr_val << 16;
5425         else
5426                 itr_val |= E1000_EITR_CNT_IGNR;
5427
5428         writel(itr_val, q_vector->itr_register);
5429         q_vector->set_itr = 0;
5430 }
5431
5432 static irqreturn_t igb_msix_ring(int irq, void *data)
5433 {
5434         struct igb_q_vector *q_vector = data;
5435
5436         /* Write the ITR value calculated from the previous interrupt. */
5437         igb_write_itr(q_vector);
5438
5439         napi_schedule(&q_vector->napi);
5440
5441         return IRQ_HANDLED;
5442 }
5443
5444 #ifdef CONFIG_IGB_DCA
5445 static void igb_update_tx_dca(struct igb_adapter *adapter,
5446                               struct igb_ring *tx_ring,
5447                               int cpu)
5448 {
5449         struct e1000_hw *hw = &adapter->hw;
5450         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451
5452         if (hw->mac.type != e1000_82575)
5453                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454
5455         /* We can enable relaxed ordering for reads, but not writes when
5456          * DCA is enabled.  This is due to a known issue in some chipsets
5457          * which will cause the DCA tag to be cleared.
5458          */
5459         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5461                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5462
5463         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464 }
5465
5466 static void igb_update_rx_dca(struct igb_adapter *adapter,
5467                               struct igb_ring *rx_ring,
5468                               int cpu)
5469 {
5470         struct e1000_hw *hw = &adapter->hw;
5471         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472
5473         if (hw->mac.type != e1000_82575)
5474                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475
5476         /* We can enable relaxed ordering for reads, but not writes when
5477          * DCA is enabled.  This is due to a known issue in some chipsets
5478          * which will cause the DCA tag to be cleared.
5479          */
5480         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5482
5483         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484 }
5485
5486 static void igb_update_dca(struct igb_q_vector *q_vector)
5487 {
5488         struct igb_adapter *adapter = q_vector->adapter;
5489         int cpu = get_cpu();
5490
5491         if (q_vector->cpu == cpu)
5492                 goto out_no_update;
5493
5494         if (q_vector->tx.ring)
5495                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496
5497         if (q_vector->rx.ring)
5498                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499
5500         q_vector->cpu = cpu;
5501 out_no_update:
5502         put_cpu();
5503 }
5504
5505 static void igb_setup_dca(struct igb_adapter *adapter)
5506 {
5507         struct e1000_hw *hw = &adapter->hw;
5508         int i;
5509
5510         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511                 return;
5512
5513         /* Always use CB2 mode, difference is masked in the CB driver. */
5514         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515
5516         for (i = 0; i < adapter->num_q_vectors; i++) {
5517                 adapter->q_vector[i]->cpu = -1;
5518                 igb_update_dca(adapter->q_vector[i]);
5519         }
5520 }
5521
5522 static int __igb_notify_dca(struct device *dev, void *data)
5523 {
5524         struct net_device *netdev = dev_get_drvdata(dev);
5525         struct igb_adapter *adapter = netdev_priv(netdev);
5526         struct pci_dev *pdev = adapter->pdev;
5527         struct e1000_hw *hw = &adapter->hw;
5528         unsigned long event = *(unsigned long *)data;
5529
5530         switch (event) {
5531         case DCA_PROVIDER_ADD:
5532                 /* if already enabled, don't do it again */
5533                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534                         break;
5535                 if (dca_add_requester(dev) == 0) {
5536                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537                         dev_info(&pdev->dev, "DCA enabled\n");
5538                         igb_setup_dca(adapter);
5539                         break;
5540                 }
5541                 /* Fall Through since DCA is disabled. */
5542         case DCA_PROVIDER_REMOVE:
5543                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544                         /* without this a class_device is left
5545                          * hanging around in the sysfs model
5546                          */
5547                         dca_remove_requester(dev);
5548                         dev_info(&pdev->dev, "DCA disabled\n");
5549                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551                 }
5552                 break;
5553         }
5554
5555         return 0;
5556 }
5557
5558 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559                           void *p)
5560 {
5561         int ret_val;
5562
5563         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564                                          __igb_notify_dca);
5565
5566         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567 }
5568 #endif /* CONFIG_IGB_DCA */
5569
5570 #ifdef CONFIG_PCI_IOV
5571 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572 {
5573         unsigned char mac_addr[ETH_ALEN];
5574
5575         eth_zero_addr(mac_addr);
5576         igb_set_vf_mac(adapter, vf, mac_addr);
5577
5578         /* By default spoof check is enabled for all VFs */
5579         adapter->vf_data[vf].spoofchk_enabled = true;
5580
5581         return 0;
5582 }
5583
5584 #endif
5585 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586 {
5587         struct e1000_hw *hw = &adapter->hw;
5588         u32 ping;
5589         int i;
5590
5591         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592                 ping = E1000_PF_CONTROL_MSG;
5593                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594                         ping |= E1000_VT_MSGTYPE_CTS;
5595                 igb_write_mbx(hw, &ping, 1, i);
5596         }
5597 }
5598
5599 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601         struct e1000_hw *hw = &adapter->hw;
5602         u32 vmolr = rd32(E1000_VMOLR(vf));
5603         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604
5605         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606                             IGB_VF_FLAG_MULTI_PROMISC);
5607         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608
5609         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610                 vmolr |= E1000_VMOLR_MPME;
5611                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613         } else {
5614                 /* if we have hashes and we are clearing a multicast promisc
5615                  * flag we need to write the hashes to the MTA as this step
5616                  * was previously skipped
5617                  */
5618                 if (vf_data->num_vf_mc_hashes > 30) {
5619                         vmolr |= E1000_VMOLR_MPME;
5620                 } else if (vf_data->num_vf_mc_hashes) {
5621                         int j;
5622
5623                         vmolr |= E1000_VMOLR_ROMPE;
5624                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626                 }
5627         }
5628
5629         wr32(E1000_VMOLR(vf), vmolr);
5630
5631         /* there are flags left unprocessed, likely not supported */
5632         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633                 return -EINVAL;
5634
5635         return 0;
5636 }
5637
5638 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639                                   u32 *msgbuf, u32 vf)
5640 {
5641         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642         u16 *hash_list = (u16 *)&msgbuf[1];
5643         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644         int i;
5645
5646         /* salt away the number of multicast addresses assigned
5647          * to this VF for later use to restore when the PF multi cast
5648          * list changes
5649          */
5650         vf_data->num_vf_mc_hashes = n;
5651
5652         /* only up to 30 hash values supported */
5653         if (n > 30)
5654                 n = 30;
5655
5656         /* store the hashes for later use */
5657         for (i = 0; i < n; i++)
5658                 vf_data->vf_mc_hashes[i] = hash_list[i];
5659
5660         /* Flush and reset the mta with the new values */
5661         igb_set_rx_mode(adapter->netdev);
5662
5663         return 0;
5664 }
5665
5666 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667 {
5668         struct e1000_hw *hw = &adapter->hw;
5669         struct vf_data_storage *vf_data;
5670         int i, j;
5671
5672         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5673                 u32 vmolr = rd32(E1000_VMOLR(i));
5674
5675                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5676
5677                 vf_data = &adapter->vf_data[i];
5678
5679                 if ((vf_data->num_vf_mc_hashes > 30) ||
5680                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5681                         vmolr |= E1000_VMOLR_MPME;
5682                 } else if (vf_data->num_vf_mc_hashes) {
5683                         vmolr |= E1000_VMOLR_ROMPE;
5684                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5685                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5686                 }
5687                 wr32(E1000_VMOLR(i), vmolr);
5688         }
5689 }
5690
5691 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5692 {
5693         struct e1000_hw *hw = &adapter->hw;
5694         u32 pool_mask, reg, vid;
5695         int i;
5696
5697         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5698
5699         /* Find the vlan filter for this id */
5700         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5701                 reg = rd32(E1000_VLVF(i));
5702
5703                 /* remove the vf from the pool */
5704                 reg &= ~pool_mask;
5705
5706                 /* if pool is empty then remove entry from vfta */
5707                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5708                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5709                         reg = 0;
5710                         vid = reg & E1000_VLVF_VLANID_MASK;
5711                         igb_vfta_set(hw, vid, false);
5712                 }
5713
5714                 wr32(E1000_VLVF(i), reg);
5715         }
5716
5717         adapter->vf_data[vf].vlans_enabled = 0;
5718 }
5719
5720 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5721 {
5722         struct e1000_hw *hw = &adapter->hw;
5723         u32 reg, i;
5724
5725         /* The vlvf table only exists on 82576 hardware and newer */
5726         if (hw->mac.type < e1000_82576)
5727                 return -1;
5728
5729         /* we only need to do this if VMDq is enabled */
5730         if (!adapter->vfs_allocated_count)
5731                 return -1;
5732
5733         /* Find the vlan filter for this id */
5734         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5735                 reg = rd32(E1000_VLVF(i));
5736                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5737                     vid == (reg & E1000_VLVF_VLANID_MASK))
5738                         break;
5739         }
5740
5741         if (add) {
5742                 if (i == E1000_VLVF_ARRAY_SIZE) {
5743                         /* Did not find a matching VLAN ID entry that was
5744                          * enabled.  Search for a free filter entry, i.e.
5745                          * one without the enable bit set
5746                          */
5747                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5748                                 reg = rd32(E1000_VLVF(i));
5749                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5750                                         break;
5751                         }
5752                 }
5753                 if (i < E1000_VLVF_ARRAY_SIZE) {
5754                         /* Found an enabled/available entry */
5755                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5756
5757                         /* if !enabled we need to set this up in vfta */
5758                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5759                                 /* add VID to filter table */
5760                                 igb_vfta_set(hw, vid, true);
5761                                 reg |= E1000_VLVF_VLANID_ENABLE;
5762                         }
5763                         reg &= ~E1000_VLVF_VLANID_MASK;
5764                         reg |= vid;
5765                         wr32(E1000_VLVF(i), reg);
5766
5767                         /* do not modify RLPML for PF devices */
5768                         if (vf >= adapter->vfs_allocated_count)
5769                                 return 0;
5770
5771                         if (!adapter->vf_data[vf].vlans_enabled) {
5772                                 u32 size;
5773
5774                                 reg = rd32(E1000_VMOLR(vf));
5775                                 size = reg & E1000_VMOLR_RLPML_MASK;
5776                                 size += 4;
5777                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5778                                 reg |= size;
5779                                 wr32(E1000_VMOLR(vf), reg);
5780                         }
5781
5782                         adapter->vf_data[vf].vlans_enabled++;
5783                 }
5784         } else {
5785                 if (i < E1000_VLVF_ARRAY_SIZE) {
5786                         /* remove vf from the pool */
5787                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5788                         /* if pool is empty then remove entry from vfta */
5789                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5790                                 reg = 0;
5791                                 igb_vfta_set(hw, vid, false);
5792                         }
5793                         wr32(E1000_VLVF(i), reg);
5794
5795                         /* do not modify RLPML for PF devices */
5796                         if (vf >= adapter->vfs_allocated_count)
5797                                 return 0;
5798
5799                         adapter->vf_data[vf].vlans_enabled--;
5800                         if (!adapter->vf_data[vf].vlans_enabled) {
5801                                 u32 size;
5802
5803                                 reg = rd32(E1000_VMOLR(vf));
5804                                 size = reg & E1000_VMOLR_RLPML_MASK;
5805                                 size -= 4;
5806                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5807                                 reg |= size;
5808                                 wr32(E1000_VMOLR(vf), reg);
5809                         }
5810                 }
5811         }
5812         return 0;
5813 }
5814
5815 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5816 {
5817         struct e1000_hw *hw = &adapter->hw;
5818
5819         if (vid)
5820                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5821         else
5822                 wr32(E1000_VMVIR(vf), 0);
5823 }
5824
5825 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5826                                int vf, u16 vlan, u8 qos)
5827 {
5828         int err = 0;
5829         struct igb_adapter *adapter = netdev_priv(netdev);
5830
5831         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5832                 return -EINVAL;
5833         if (vlan || qos) {
5834                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5835                 if (err)
5836                         goto out;
5837                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5838                 igb_set_vmolr(adapter, vf, !vlan);
5839                 adapter->vf_data[vf].pf_vlan = vlan;
5840                 adapter->vf_data[vf].pf_qos = qos;
5841                 dev_info(&adapter->pdev->dev,
5842                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5843                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5844                         dev_warn(&adapter->pdev->dev,
5845                                  "The VF VLAN has been set, but the PF device is not up.\n");
5846                         dev_warn(&adapter->pdev->dev,
5847                                  "Bring the PF device up before attempting to use the VF device.\n");
5848                 }
5849         } else {
5850                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5851                              false, vf);
5852                 igb_set_vmvir(adapter, vlan, vf);
5853                 igb_set_vmolr(adapter, vf, true);
5854                 adapter->vf_data[vf].pf_vlan = 0;
5855                 adapter->vf_data[vf].pf_qos = 0;
5856         }
5857 out:
5858         return err;
5859 }
5860
5861 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5862 {
5863         struct e1000_hw *hw = &adapter->hw;
5864         int i;
5865         u32 reg;
5866
5867         /* Find the vlan filter for this id */
5868         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5869                 reg = rd32(E1000_VLVF(i));
5870                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5871                     vid == (reg & E1000_VLVF_VLANID_MASK))
5872                         break;
5873         }
5874
5875         if (i >= E1000_VLVF_ARRAY_SIZE)
5876                 i = -1;
5877
5878         return i;
5879 }
5880
5881 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5882 {
5883         struct e1000_hw *hw = &adapter->hw;
5884         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5885         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5886         int err = 0;
5887
5888         /* If in promiscuous mode we need to make sure the PF also has
5889          * the VLAN filter set.
5890          */
5891         if (add && (adapter->netdev->flags & IFF_PROMISC))
5892                 err = igb_vlvf_set(adapter, vid, add,
5893                                    adapter->vfs_allocated_count);
5894         if (err)
5895                 goto out;
5896
5897         err = igb_vlvf_set(adapter, vid, add, vf);
5898
5899         if (err)
5900                 goto out;
5901
5902         /* Go through all the checks to see if the VLAN filter should
5903          * be wiped completely.
5904          */
5905         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5906                 u32 vlvf, bits;
5907                 int regndx = igb_find_vlvf_entry(adapter, vid);
5908
5909                 if (regndx < 0)
5910                         goto out;
5911                 /* See if any other pools are set for this VLAN filter
5912                  * entry other than the PF.
5913                  */
5914                 vlvf = bits = rd32(E1000_VLVF(regndx));
5915                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5916                               adapter->vfs_allocated_count);
5917                 /* If the filter was removed then ensure PF pool bit
5918                  * is cleared if the PF only added itself to the pool
5919                  * because the PF is in promiscuous mode.
5920                  */
5921                 if ((vlvf & VLAN_VID_MASK) == vid &&
5922                     !test_bit(vid, adapter->active_vlans) &&
5923                     !bits)
5924                         igb_vlvf_set(adapter, vid, add,
5925                                      adapter->vfs_allocated_count);
5926         }
5927
5928 out:
5929         return err;
5930 }
5931
5932 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5933 {
5934         /* clear flags - except flag that indicates PF has set the MAC */
5935         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5936         adapter->vf_data[vf].last_nack = jiffies;
5937
5938         /* reset offloads to defaults */
5939         igb_set_vmolr(adapter, vf, true);
5940
5941         /* reset vlans for device */
5942         igb_clear_vf_vfta(adapter, vf);
5943         if (adapter->vf_data[vf].pf_vlan)
5944                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5945                                     adapter->vf_data[vf].pf_vlan,
5946                                     adapter->vf_data[vf].pf_qos);
5947         else
5948                 igb_clear_vf_vfta(adapter, vf);
5949
5950         /* reset multicast table array for vf */
5951         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5952
5953         /* Flush and reset the mta with the new values */
5954         igb_set_rx_mode(adapter->netdev);
5955 }
5956
5957 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5958 {
5959         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5960
5961         /* clear mac address as we were hotplug removed/added */
5962         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5963                 eth_zero_addr(vf_mac);
5964
5965         /* process remaining reset events */
5966         igb_vf_reset(adapter, vf);
5967 }
5968
5969 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5970 {
5971         struct e1000_hw *hw = &adapter->hw;
5972         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5973         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5974         u32 reg, msgbuf[3];
5975         u8 *addr = (u8 *)(&msgbuf[1]);
5976
5977         /* process all the same items cleared in a function level reset */
5978         igb_vf_reset(adapter, vf);
5979
5980         /* set vf mac address */
5981         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5982
5983         /* enable transmit and receive for vf */
5984         reg = rd32(E1000_VFTE);
5985         wr32(E1000_VFTE, reg | (1 << vf));
5986         reg = rd32(E1000_VFRE);
5987         wr32(E1000_VFRE, reg | (1 << vf));
5988
5989         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5990
5991         /* reply to reset with ack and vf mac address */
5992         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5993         memcpy(addr, vf_mac, ETH_ALEN);
5994         igb_write_mbx(hw, msgbuf, 3, vf);
5995 }
5996
5997 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5998 {
5999         /* The VF MAC Address is stored in a packed array of bytes
6000          * starting at the second 32 bit word of the msg array
6001          */
6002         unsigned char *addr = (char *)&msg[1];
6003         int err = -1;
6004
6005         if (is_valid_ether_addr(addr))
6006                 err = igb_set_vf_mac(adapter, vf, addr);
6007
6008         return err;
6009 }
6010
6011 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6012 {
6013         struct e1000_hw *hw = &adapter->hw;
6014         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6015         u32 msg = E1000_VT_MSGTYPE_NACK;
6016
6017         /* if device isn't clear to send it shouldn't be reading either */
6018         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6019             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6020                 igb_write_mbx(hw, &msg, 1, vf);
6021                 vf_data->last_nack = jiffies;
6022         }
6023 }
6024
6025 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6026 {
6027         struct pci_dev *pdev = adapter->pdev;
6028         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6029         struct e1000_hw *hw = &adapter->hw;
6030         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6031         s32 retval;
6032
6033         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6034
6035         if (retval) {
6036                 /* if receive failed revoke VF CTS stats and restart init */
6037                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6038                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6039                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6040                         return;
6041                 goto out;
6042         }
6043
6044         /* this is a message we already processed, do nothing */
6045         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6046                 return;
6047
6048         /* until the vf completes a reset it should not be
6049          * allowed to start any configuration.
6050          */
6051         if (msgbuf[0] == E1000_VF_RESET) {
6052                 igb_vf_reset_msg(adapter, vf);
6053                 return;
6054         }
6055
6056         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6057                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6058                         return;
6059                 retval = -1;
6060                 goto out;
6061         }
6062
6063         switch ((msgbuf[0] & 0xFFFF)) {
6064         case E1000_VF_SET_MAC_ADDR:
6065                 retval = -EINVAL;
6066                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6067                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6068                 else
6069                         dev_warn(&pdev->dev,
6070                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6071                                  vf);
6072                 break;
6073         case E1000_VF_SET_PROMISC:
6074                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6075                 break;
6076         case E1000_VF_SET_MULTICAST:
6077                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6078                 break;
6079         case E1000_VF_SET_LPE:
6080                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6081                 break;
6082         case E1000_VF_SET_VLAN:
6083                 retval = -1;
6084                 if (vf_data->pf_vlan)
6085                         dev_warn(&pdev->dev,
6086                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6087                                  vf);
6088                 else
6089                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6090                 break;
6091         default:
6092                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6093                 retval = -1;
6094                 break;
6095         }
6096
6097         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6098 out:
6099         /* notify the VF of the results of what it sent us */
6100         if (retval)
6101                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6102         else
6103                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6104
6105         igb_write_mbx(hw, msgbuf, 1, vf);
6106 }
6107
6108 static void igb_msg_task(struct igb_adapter *adapter)
6109 {
6110         struct e1000_hw *hw = &adapter->hw;
6111         u32 vf;
6112
6113         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6114                 /* process any reset requests */
6115                 if (!igb_check_for_rst(hw, vf))
6116                         igb_vf_reset_event(adapter, vf);
6117
6118                 /* process any messages pending */
6119                 if (!igb_check_for_msg(hw, vf))
6120                         igb_rcv_msg_from_vf(adapter, vf);
6121
6122                 /* process any acks */
6123                 if (!igb_check_for_ack(hw, vf))
6124                         igb_rcv_ack_from_vf(adapter, vf);
6125         }
6126 }
6127
6128 /**
6129  *  igb_set_uta - Set unicast filter table address
6130  *  @adapter: board private structure
6131  *
6132  *  The unicast table address is a register array of 32-bit registers.
6133  *  The table is meant to be used in a way similar to how the MTA is used
6134  *  however due to certain limitations in the hardware it is necessary to
6135  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6136  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6137  **/
6138 static void igb_set_uta(struct igb_adapter *adapter)
6139 {
6140         struct e1000_hw *hw = &adapter->hw;
6141         int i;
6142
6143         /* The UTA table only exists on 82576 hardware and newer */
6144         if (hw->mac.type < e1000_82576)
6145                 return;
6146
6147         /* we only need to do this if VMDq is enabled */
6148         if (!adapter->vfs_allocated_count)
6149                 return;
6150
6151         for (i = 0; i < hw->mac.uta_reg_count; i++)
6152                 array_wr32(E1000_UTA, i, ~0);
6153 }
6154
6155 /**
6156  *  igb_intr_msi - Interrupt Handler
6157  *  @irq: interrupt number
6158  *  @data: pointer to a network interface device structure
6159  **/
6160 static irqreturn_t igb_intr_msi(int irq, void *data)
6161 {
6162         struct igb_adapter *adapter = data;
6163         struct igb_q_vector *q_vector = adapter->q_vector[0];
6164         struct e1000_hw *hw = &adapter->hw;
6165         /* read ICR disables interrupts using IAM */
6166         u32 icr = rd32(E1000_ICR);
6167
6168         igb_write_itr(q_vector);
6169
6170         if (icr & E1000_ICR_DRSTA)
6171                 schedule_work(&adapter->reset_task);
6172
6173         if (icr & E1000_ICR_DOUTSYNC) {
6174                 /* HW is reporting DMA is out of sync */
6175                 adapter->stats.doosync++;
6176         }
6177
6178         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6179                 hw->mac.get_link_status = 1;
6180                 if (!test_bit(__IGB_DOWN, &adapter->state))
6181                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6182         }
6183
6184         if (icr & E1000_ICR_TS) {
6185                 u32 tsicr = rd32(E1000_TSICR);
6186
6187                 if (tsicr & E1000_TSICR_TXTS) {
6188                         /* acknowledge the interrupt */
6189                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6190                         /* retrieve hardware timestamp */
6191                         schedule_work(&adapter->ptp_tx_work);
6192                 }
6193         }
6194
6195         napi_schedule(&q_vector->napi);
6196
6197         return IRQ_HANDLED;
6198 }
6199
6200 /**
6201  *  igb_intr - Legacy Interrupt Handler
6202  *  @irq: interrupt number
6203  *  @data: pointer to a network interface device structure
6204  **/
6205 static irqreturn_t igb_intr(int irq, void *data)
6206 {
6207         struct igb_adapter *adapter = data;
6208         struct igb_q_vector *q_vector = adapter->q_vector[0];
6209         struct e1000_hw *hw = &adapter->hw;
6210         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6211          * need for the IMC write
6212          */
6213         u32 icr = rd32(E1000_ICR);
6214
6215         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6216          * not set, then the adapter didn't send an interrupt
6217          */
6218         if (!(icr & E1000_ICR_INT_ASSERTED))
6219                 return IRQ_NONE;
6220
6221         igb_write_itr(q_vector);
6222
6223         if (icr & E1000_ICR_DRSTA)
6224                 schedule_work(&adapter->reset_task);
6225
6226         if (icr & E1000_ICR_DOUTSYNC) {
6227                 /* HW is reporting DMA is out of sync */
6228                 adapter->stats.doosync++;
6229         }
6230
6231         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6232                 hw->mac.get_link_status = 1;
6233                 /* guard against interrupt when we're going down */
6234                 if (!test_bit(__IGB_DOWN, &adapter->state))
6235                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6236         }
6237
6238         if (icr & E1000_ICR_TS) {
6239                 u32 tsicr = rd32(E1000_TSICR);
6240
6241                 if (tsicr & E1000_TSICR_TXTS) {
6242                         /* acknowledge the interrupt */
6243                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6244                         /* retrieve hardware timestamp */
6245                         schedule_work(&adapter->ptp_tx_work);
6246                 }
6247         }
6248
6249         napi_schedule(&q_vector->napi);
6250
6251         return IRQ_HANDLED;
6252 }
6253
6254 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6255 {
6256         struct igb_adapter *adapter = q_vector->adapter;
6257         struct e1000_hw *hw = &adapter->hw;
6258
6259         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6260             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6261                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6262                         igb_set_itr(q_vector);
6263                 else
6264                         igb_update_ring_itr(q_vector);
6265         }
6266
6267         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6268                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6269                         wr32(E1000_EIMS, q_vector->eims_value);
6270                 else
6271                         igb_irq_enable(adapter);
6272         }
6273 }
6274
6275 /**
6276  *  igb_poll - NAPI Rx polling callback
6277  *  @napi: napi polling structure
6278  *  @budget: count of how many packets we should handle
6279  **/
6280 static int igb_poll(struct napi_struct *napi, int budget)
6281 {
6282         struct igb_q_vector *q_vector = container_of(napi,
6283                                                      struct igb_q_vector,
6284                                                      napi);
6285         bool clean_complete = true;
6286
6287 #ifdef CONFIG_IGB_DCA
6288         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6289                 igb_update_dca(q_vector);
6290 #endif
6291         if (q_vector->tx.ring)
6292                 clean_complete = igb_clean_tx_irq(q_vector);
6293
6294         if (q_vector->rx.ring)
6295                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6296
6297         /* If all work not completed, return budget and keep polling */
6298         if (!clean_complete)
6299                 return budget;
6300
6301         /* If not enough Rx work done, exit the polling mode */
6302         napi_complete(napi);
6303         igb_ring_irq_enable(q_vector);
6304
6305         return 0;
6306 }
6307
6308 /**
6309  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6310  *  @q_vector: pointer to q_vector containing needed info
6311  *
6312  *  returns true if ring is completely cleaned
6313  **/
6314 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6315 {
6316         struct igb_adapter *adapter = q_vector->adapter;
6317         struct igb_ring *tx_ring = q_vector->tx.ring;
6318         struct igb_tx_buffer *tx_buffer;
6319         union e1000_adv_tx_desc *tx_desc;
6320         unsigned int total_bytes = 0, total_packets = 0;
6321         unsigned int budget = q_vector->tx.work_limit;
6322         unsigned int i = tx_ring->next_to_clean;
6323
6324         if (test_bit(__IGB_DOWN, &adapter->state))
6325                 return true;
6326
6327         tx_buffer = &tx_ring->tx_buffer_info[i];
6328         tx_desc = IGB_TX_DESC(tx_ring, i);
6329         i -= tx_ring->count;
6330
6331         do {
6332                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6333
6334                 /* if next_to_watch is not set then there is no work pending */
6335                 if (!eop_desc)
6336                         break;
6337
6338                 /* prevent any other reads prior to eop_desc */
6339                 read_barrier_depends();
6340
6341                 /* if DD is not set pending work has not been completed */
6342                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6343                         break;
6344
6345                 /* clear next_to_watch to prevent false hangs */
6346                 tx_buffer->next_to_watch = NULL;
6347
6348                 /* update the statistics for this packet */
6349                 total_bytes += tx_buffer->bytecount;
6350                 total_packets += tx_buffer->gso_segs;
6351
6352                 /* free the skb */
6353                 dev_kfree_skb_any(tx_buffer->skb);
6354
6355                 /* unmap skb header data */
6356                 dma_unmap_single(tx_ring->dev,
6357                                  dma_unmap_addr(tx_buffer, dma),
6358                                  dma_unmap_len(tx_buffer, len),
6359                                  DMA_TO_DEVICE);
6360
6361                 /* clear tx_buffer data */
6362                 tx_buffer->skb = NULL;
6363                 dma_unmap_len_set(tx_buffer, len, 0);
6364
6365                 /* clear last DMA location and unmap remaining buffers */
6366                 while (tx_desc != eop_desc) {
6367                         tx_buffer++;
6368                         tx_desc++;
6369                         i++;
6370                         if (unlikely(!i)) {
6371                                 i -= tx_ring->count;
6372                                 tx_buffer = tx_ring->tx_buffer_info;
6373                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6374                         }
6375
6376                         /* unmap any remaining paged data */
6377                         if (dma_unmap_len(tx_buffer, len)) {
6378                                 dma_unmap_page(tx_ring->dev,
6379                                                dma_unmap_addr(tx_buffer, dma),
6380                                                dma_unmap_len(tx_buffer, len),
6381                                                DMA_TO_DEVICE);
6382                                 dma_unmap_len_set(tx_buffer, len, 0);
6383                         }
6384                 }
6385
6386                 /* move us one more past the eop_desc for start of next pkt */
6387                 tx_buffer++;
6388                 tx_desc++;
6389                 i++;
6390                 if (unlikely(!i)) {
6391                         i -= tx_ring->count;
6392                         tx_buffer = tx_ring->tx_buffer_info;
6393                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6394                 }
6395
6396                 /* issue prefetch for next Tx descriptor */
6397                 prefetch(tx_desc);
6398
6399                 /* update budget accounting */
6400                 budget--;
6401         } while (likely(budget));
6402
6403         netdev_tx_completed_queue(txring_txq(tx_ring),
6404                                   total_packets, total_bytes);
6405         i += tx_ring->count;
6406         tx_ring->next_to_clean = i;
6407         u64_stats_update_begin(&tx_ring->tx_syncp);
6408         tx_ring->tx_stats.bytes += total_bytes;
6409         tx_ring->tx_stats.packets += total_packets;
6410         u64_stats_update_end(&tx_ring->tx_syncp);
6411         q_vector->tx.total_bytes += total_bytes;
6412         q_vector->tx.total_packets += total_packets;
6413
6414         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6415                 struct e1000_hw *hw = &adapter->hw;
6416
6417                 /* Detect a transmit hang in hardware, this serializes the
6418                  * check with the clearing of time_stamp and movement of i
6419                  */
6420                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6421                 if (tx_buffer->next_to_watch &&
6422                     time_after(jiffies, tx_buffer->time_stamp +
6423                                (adapter->tx_timeout_factor * HZ)) &&
6424                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6425
6426                         /* detected Tx unit hang */
6427                         dev_err(tx_ring->dev,
6428                                 "Detected Tx Unit Hang\n"
6429                                 "  Tx Queue             <%d>\n"
6430                                 "  TDH                  <%x>\n"
6431                                 "  TDT                  <%x>\n"
6432                                 "  next_to_use          <%x>\n"
6433                                 "  next_to_clean        <%x>\n"
6434                                 "buffer_info[next_to_clean]\n"
6435                                 "  time_stamp           <%lx>\n"
6436                                 "  next_to_watch        <%p>\n"
6437                                 "  jiffies              <%lx>\n"
6438                                 "  desc.status          <%x>\n",
6439                                 tx_ring->queue_index,
6440                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6441                                 readl(tx_ring->tail),
6442                                 tx_ring->next_to_use,
6443                                 tx_ring->next_to_clean,
6444                                 tx_buffer->time_stamp,
6445                                 tx_buffer->next_to_watch,
6446                                 jiffies,
6447                                 tx_buffer->next_to_watch->wb.status);
6448                         netif_stop_subqueue(tx_ring->netdev,
6449                                             tx_ring->queue_index);
6450
6451                         /* we are about to reset, no point in enabling stuff */
6452                         return true;
6453                 }
6454         }
6455
6456 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6457         if (unlikely(total_packets &&
6458             netif_carrier_ok(tx_ring->netdev) &&
6459             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6460                 /* Make sure that anybody stopping the queue after this
6461                  * sees the new next_to_clean.
6462                  */
6463                 smp_mb();
6464                 if (__netif_subqueue_stopped(tx_ring->netdev,
6465                                              tx_ring->queue_index) &&
6466                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6467                         netif_wake_subqueue(tx_ring->netdev,
6468                                             tx_ring->queue_index);
6469
6470                         u64_stats_update_begin(&tx_ring->tx_syncp);
6471                         tx_ring->tx_stats.restart_queue++;
6472                         u64_stats_update_end(&tx_ring->tx_syncp);
6473                 }
6474         }
6475
6476         return !!budget;
6477 }
6478
6479 /**
6480  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6481  *  @rx_ring: rx descriptor ring to store buffers on
6482  *  @old_buff: donor buffer to have page reused
6483  *
6484  *  Synchronizes page for reuse by the adapter
6485  **/
6486 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6487                               struct igb_rx_buffer *old_buff)
6488 {
6489         struct igb_rx_buffer *new_buff;
6490         u16 nta = rx_ring->next_to_alloc;
6491
6492         new_buff = &rx_ring->rx_buffer_info[nta];
6493
6494         /* update, and store next to alloc */
6495         nta++;
6496         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6497
6498         /* transfer page from old buffer to new buffer */
6499         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6500
6501         /* sync the buffer for use by the device */
6502         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6503                                          old_buff->page_offset,
6504                                          IGB_RX_BUFSZ,
6505                                          DMA_FROM_DEVICE);
6506 }
6507
6508 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6509                                   struct page *page,
6510                                   unsigned int truesize)
6511 {
6512         /* avoid re-using remote pages */
6513         if (unlikely(page_to_nid(page) != numa_node_id()))
6514                 return false;
6515
6516 #if (PAGE_SIZE < 8192)
6517         /* if we are only owner of page we can reuse it */
6518         if (unlikely(page_count(page) != 1))
6519                 return false;
6520
6521         /* flip page offset to other buffer */
6522         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6523
6524         /* since we are the only owner of the page and we need to
6525          * increment it, just set the value to 2 in order to avoid
6526          * an unnecessary locked operation
6527          */
6528         atomic_set(&page->_count, 2);
6529 #else
6530         /* move offset up to the next cache line */
6531         rx_buffer->page_offset += truesize;
6532
6533         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6534                 return false;
6535
6536         /* bump ref count on page before it is given to the stack */
6537         get_page(page);
6538 #endif
6539
6540         return true;
6541 }
6542
6543 /**
6544  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6545  *  @rx_ring: rx descriptor ring to transact packets on
6546  *  @rx_buffer: buffer containing page to add
6547  *  @rx_desc: descriptor containing length of buffer written by hardware
6548  *  @skb: sk_buff to place the data into
6549  *
6550  *  This function will add the data contained in rx_buffer->page to the skb.
6551  *  This is done either through a direct copy if the data in the buffer is
6552  *  less than the skb header size, otherwise it will just attach the page as
6553  *  a frag to the skb.
6554  *
6555  *  The function will then update the page offset if necessary and return
6556  *  true if the buffer can be reused by the adapter.
6557  **/
6558 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6559                             struct igb_rx_buffer *rx_buffer,
6560                             union e1000_adv_rx_desc *rx_desc,
6561                             struct sk_buff *skb)
6562 {
6563         struct page *page = rx_buffer->page;
6564         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6565 #if (PAGE_SIZE < 8192)
6566         unsigned int truesize = IGB_RX_BUFSZ;
6567 #else
6568         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6569 #endif
6570
6571         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6572                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6573
6574                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6575                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6576                         va += IGB_TS_HDR_LEN;
6577                         size -= IGB_TS_HDR_LEN;
6578                 }
6579
6580                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6581
6582                 /* we can reuse buffer as-is, just make sure it is local */
6583                 if (likely(page_to_nid(page) == numa_node_id()))
6584                         return true;
6585
6586                 /* this page cannot be reused so discard it */
6587                 put_page(page);
6588                 return false;
6589         }
6590
6591         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6592                         rx_buffer->page_offset, size, truesize);
6593
6594         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6595 }
6596
6597 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6598                                            union e1000_adv_rx_desc *rx_desc,
6599                                            struct sk_buff *skb)
6600 {
6601         struct igb_rx_buffer *rx_buffer;
6602         struct page *page;
6603
6604         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6605
6606         page = rx_buffer->page;
6607         prefetchw(page);
6608
6609         if (likely(!skb)) {
6610                 void *page_addr = page_address(page) +
6611                                   rx_buffer->page_offset;
6612
6613                 /* prefetch first cache line of first page */
6614                 prefetch(page_addr);
6615 #if L1_CACHE_BYTES < 128
6616                 prefetch(page_addr + L1_CACHE_BYTES);
6617 #endif
6618
6619                 /* allocate a skb to store the frags */
6620                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6621                                                 IGB_RX_HDR_LEN);
6622                 if (unlikely(!skb)) {
6623                         rx_ring->rx_stats.alloc_failed++;
6624                         return NULL;
6625                 }
6626
6627                 /* we will be copying header into skb->data in
6628                  * pskb_may_pull so it is in our interest to prefetch
6629                  * it now to avoid a possible cache miss
6630                  */
6631                 prefetchw(skb->data);
6632         }
6633
6634         /* we are reusing so sync this buffer for CPU use */
6635         dma_sync_single_range_for_cpu(rx_ring->dev,
6636                                       rx_buffer->dma,
6637                                       rx_buffer->page_offset,
6638                                       IGB_RX_BUFSZ,
6639                                       DMA_FROM_DEVICE);
6640
6641         /* pull page into skb */
6642         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6643                 /* hand second half of page back to the ring */
6644                 igb_reuse_rx_page(rx_ring, rx_buffer);
6645         } else {
6646                 /* we are not reusing the buffer so unmap it */
6647                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6648                                PAGE_SIZE, DMA_FROM_DEVICE);
6649         }
6650
6651         /* clear contents of rx_buffer */
6652         rx_buffer->page = NULL;
6653
6654         return skb;
6655 }
6656
6657 static inline void igb_rx_checksum(struct igb_ring *ring,
6658                                    union e1000_adv_rx_desc *rx_desc,
6659                                    struct sk_buff *skb)
6660 {
6661         skb_checksum_none_assert(skb);
6662
6663         /* Ignore Checksum bit is set */
6664         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6665                 return;
6666
6667         /* Rx checksum disabled via ethtool */
6668         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6669                 return;
6670
6671         /* TCP/UDP checksum error bit is set */
6672         if (igb_test_staterr(rx_desc,
6673                              E1000_RXDEXT_STATERR_TCPE |
6674                              E1000_RXDEXT_STATERR_IPE)) {
6675                 /* work around errata with sctp packets where the TCPE aka
6676                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6677                  * packets, (aka let the stack check the crc32c)
6678                  */
6679                 if (!((skb->len == 60) &&
6680                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6681                         u64_stats_update_begin(&ring->rx_syncp);
6682                         ring->rx_stats.csum_err++;
6683                         u64_stats_update_end(&ring->rx_syncp);
6684                 }
6685                 /* let the stack verify checksum errors */
6686                 return;
6687         }
6688         /* It must be a TCP or UDP packet with a valid checksum */
6689         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6690                                       E1000_RXD_STAT_UDPCS))
6691                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6692
6693         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6694                 le32_to_cpu(rx_desc->wb.upper.status_error));
6695 }
6696
6697 static inline void igb_rx_hash(struct igb_ring *ring,
6698                                union e1000_adv_rx_desc *rx_desc,
6699                                struct sk_buff *skb)
6700 {
6701         if (ring->netdev->features & NETIF_F_RXHASH)
6702                 skb_set_hash(skb,
6703                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6704                              PKT_HASH_TYPE_L3);
6705 }
6706
6707 /**
6708  *  igb_is_non_eop - process handling of non-EOP buffers
6709  *  @rx_ring: Rx ring being processed
6710  *  @rx_desc: Rx descriptor for current buffer
6711  *  @skb: current socket buffer containing buffer in progress
6712  *
6713  *  This function updates next to clean.  If the buffer is an EOP buffer
6714  *  this function exits returning false, otherwise it will place the
6715  *  sk_buff in the next buffer to be chained and return true indicating
6716  *  that this is in fact a non-EOP buffer.
6717  **/
6718 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6719                            union e1000_adv_rx_desc *rx_desc)
6720 {
6721         u32 ntc = rx_ring->next_to_clean + 1;
6722
6723         /* fetch, update, and store next to clean */
6724         ntc = (ntc < rx_ring->count) ? ntc : 0;
6725         rx_ring->next_to_clean = ntc;
6726
6727         prefetch(IGB_RX_DESC(rx_ring, ntc));
6728
6729         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6730                 return false;
6731
6732         return true;
6733 }
6734
6735 /**
6736  *  igb_get_headlen - determine size of header for LRO/GRO
6737  *  @data: pointer to the start of the headers
6738  *  @max_len: total length of section to find headers in
6739  *
6740  *  This function is meant to determine the length of headers that will
6741  *  be recognized by hardware for LRO, and GRO offloads.  The main
6742  *  motivation of doing this is to only perform one pull for IPv4 TCP
6743  *  packets so that we can do basic things like calculating the gso_size
6744  *  based on the average data per packet.
6745  **/
6746 static unsigned int igb_get_headlen(unsigned char *data,
6747                                     unsigned int max_len)
6748 {
6749         union {
6750                 unsigned char *network;
6751                 /* l2 headers */
6752                 struct ethhdr *eth;
6753                 struct vlan_hdr *vlan;
6754                 /* l3 headers */
6755                 struct iphdr *ipv4;
6756                 struct ipv6hdr *ipv6;
6757         } hdr;
6758         __be16 protocol;
6759         u8 nexthdr = 0; /* default to not TCP */
6760         u8 hlen;
6761
6762         /* this should never happen, but better safe than sorry */
6763         if (max_len < ETH_HLEN)
6764                 return max_len;
6765
6766         /* initialize network frame pointer */
6767         hdr.network = data;
6768
6769         /* set first protocol and move network header forward */
6770         protocol = hdr.eth->h_proto;
6771         hdr.network += ETH_HLEN;
6772
6773         /* handle any vlan tag if present */
6774         if (protocol == htons(ETH_P_8021Q)) {
6775                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6776                         return max_len;
6777
6778                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6779                 hdr.network += VLAN_HLEN;
6780         }
6781
6782         /* handle L3 protocols */
6783         if (protocol == htons(ETH_P_IP)) {
6784                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6785                         return max_len;
6786
6787                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6788                 hlen = (hdr.network[0] & 0x0F) << 2;
6789
6790                 /* verify hlen meets minimum size requirements */
6791                 if (hlen < sizeof(struct iphdr))
6792                         return hdr.network - data;
6793
6794                 /* record next protocol if header is present */
6795                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6796                         nexthdr = hdr.ipv4->protocol;
6797         } else if (protocol == htons(ETH_P_IPV6)) {
6798                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6799                         return max_len;
6800
6801                 /* record next protocol */
6802                 nexthdr = hdr.ipv6->nexthdr;
6803                 hlen = sizeof(struct ipv6hdr);
6804         } else {
6805                 return hdr.network - data;
6806         }
6807
6808         /* relocate pointer to start of L4 header */
6809         hdr.network += hlen;
6810
6811         /* finally sort out TCP */
6812         if (nexthdr == IPPROTO_TCP) {
6813                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6814                         return max_len;
6815
6816                 /* access doff as a u8 to avoid unaligned access on ia64 */
6817                 hlen = (hdr.network[12] & 0xF0) >> 2;
6818
6819                 /* verify hlen meets minimum size requirements */
6820                 if (hlen < sizeof(struct tcphdr))
6821                         return hdr.network - data;
6822
6823                 hdr.network += hlen;
6824         } else if (nexthdr == IPPROTO_UDP) {
6825                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6826                         return max_len;
6827
6828                 hdr.network += sizeof(struct udphdr);
6829         }
6830
6831         /* If everything has gone correctly hdr.network should be the
6832          * data section of the packet and will be the end of the header.
6833          * If not then it probably represents the end of the last recognized
6834          * header.
6835          */
6836         if ((hdr.network - data) < max_len)
6837                 return hdr.network - data;
6838         else
6839                 return max_len;
6840 }
6841
6842 /**
6843  *  igb_pull_tail - igb specific version of skb_pull_tail
6844  *  @rx_ring: rx descriptor ring packet is being transacted on
6845  *  @rx_desc: pointer to the EOP Rx descriptor
6846  *  @skb: pointer to current skb being adjusted
6847  *
6848  *  This function is an igb specific version of __pskb_pull_tail.  The
6849  *  main difference between this version and the original function is that
6850  *  this function can make several assumptions about the state of things
6851  *  that allow for significant optimizations versus the standard function.
6852  *  As a result we can do things like drop a frag and maintain an accurate
6853  *  truesize for the skb.
6854  */
6855 static void igb_pull_tail(struct igb_ring *rx_ring,
6856                           union e1000_adv_rx_desc *rx_desc,
6857                           struct sk_buff *skb)
6858 {
6859         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6860         unsigned char *va;
6861         unsigned int pull_len;
6862
6863         /* it is valid to use page_address instead of kmap since we are
6864          * working with pages allocated out of the lomem pool per
6865          * alloc_page(GFP_ATOMIC)
6866          */
6867         va = skb_frag_address(frag);
6868
6869         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6870                 /* retrieve timestamp from buffer */
6871                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6872
6873                 /* update pointers to remove timestamp header */
6874                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6875                 frag->page_offset += IGB_TS_HDR_LEN;
6876                 skb->data_len -= IGB_TS_HDR_LEN;
6877                 skb->len -= IGB_TS_HDR_LEN;
6878
6879                 /* move va to start of packet data */
6880                 va += IGB_TS_HDR_LEN;
6881         }
6882
6883         /* we need the header to contain the greater of either ETH_HLEN or
6884          * 60 bytes if the skb->len is less than 60 for skb_pad.
6885          */
6886         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6887
6888         /* align pull length to size of long to optimize memcpy performance */
6889         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6890
6891         /* update all of the pointers */
6892         skb_frag_size_sub(frag, pull_len);
6893         frag->page_offset += pull_len;
6894         skb->data_len -= pull_len;
6895         skb->tail += pull_len;
6896 }
6897
6898 /**
6899  *  igb_cleanup_headers - Correct corrupted or empty headers
6900  *  @rx_ring: rx descriptor ring packet is being transacted on
6901  *  @rx_desc: pointer to the EOP Rx descriptor
6902  *  @skb: pointer to current skb being fixed
6903  *
6904  *  Address the case where we are pulling data in on pages only
6905  *  and as such no data is present in the skb header.
6906  *
6907  *  In addition if skb is not at least 60 bytes we need to pad it so that
6908  *  it is large enough to qualify as a valid Ethernet frame.
6909  *
6910  *  Returns true if an error was encountered and skb was freed.
6911  **/
6912 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6913                                 union e1000_adv_rx_desc *rx_desc,
6914                                 struct sk_buff *skb)
6915 {
6916         if (unlikely((igb_test_staterr(rx_desc,
6917                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6918                 struct net_device *netdev = rx_ring->netdev;
6919                 if (!(netdev->features & NETIF_F_RXALL)) {
6920                         dev_kfree_skb_any(skb);
6921                         return true;
6922                 }
6923         }
6924
6925         /* place header in linear portion of buffer */
6926         if (skb_is_nonlinear(skb))
6927                 igb_pull_tail(rx_ring, rx_desc, skb);
6928
6929         /* if skb_pad returns an error the skb was freed */
6930         if (unlikely(skb->len < 60)) {
6931                 int pad_len = 60 - skb->len;
6932
6933                 if (skb_pad(skb, pad_len))
6934                         return true;
6935                 __skb_put(skb, pad_len);
6936         }
6937
6938         return false;
6939 }
6940
6941 /**
6942  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6943  *  @rx_ring: rx descriptor ring packet is being transacted on
6944  *  @rx_desc: pointer to the EOP Rx descriptor
6945  *  @skb: pointer to current skb being populated
6946  *
6947  *  This function checks the ring, descriptor, and packet information in
6948  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6949  *  other fields within the skb.
6950  **/
6951 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6952                                    union e1000_adv_rx_desc *rx_desc,
6953                                    struct sk_buff *skb)
6954 {
6955         struct net_device *dev = rx_ring->netdev;
6956
6957         igb_rx_hash(rx_ring, rx_desc, skb);
6958
6959         igb_rx_checksum(rx_ring, rx_desc, skb);
6960
6961         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6962             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6963                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6964
6965         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6966             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6967                 u16 vid;
6968
6969                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6970                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6971                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6972                 else
6973                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6974
6975                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6976         }
6977
6978         skb_record_rx_queue(skb, rx_ring->queue_index);
6979
6980         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6981 }
6982
6983 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6984 {
6985         struct igb_ring *rx_ring = q_vector->rx.ring;
6986         struct sk_buff *skb = rx_ring->skb;
6987         unsigned int total_bytes = 0, total_packets = 0;
6988         u16 cleaned_count = igb_desc_unused(rx_ring);
6989
6990         while (likely(total_packets < budget)) {
6991                 union e1000_adv_rx_desc *rx_desc;
6992
6993                 /* return some buffers to hardware, one at a time is too slow */
6994                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6995                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6996                         cleaned_count = 0;
6997                 }
6998
6999                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7000
7001                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7002                         break;
7003
7004                 /* This memory barrier is needed to keep us from reading
7005                  * any other fields out of the rx_desc until we know the
7006                  * RXD_STAT_DD bit is set
7007                  */
7008                 rmb();
7009
7010                 /* retrieve a buffer from the ring */
7011                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7012
7013                 /* exit if we failed to retrieve a buffer */
7014                 if (!skb)
7015                         break;
7016
7017                 cleaned_count++;
7018
7019                 /* fetch next buffer in frame if non-eop */
7020                 if (igb_is_non_eop(rx_ring, rx_desc))
7021                         continue;
7022
7023                 /* verify the packet layout is correct */
7024                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7025                         skb = NULL;
7026                         continue;
7027                 }
7028
7029                 /* probably a little skewed due to removing CRC */
7030                 total_bytes += skb->len;
7031
7032                 /* populate checksum, timestamp, VLAN, and protocol */
7033                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7034
7035                 napi_gro_receive(&q_vector->napi, skb);
7036
7037                 /* reset skb pointer */
7038                 skb = NULL;
7039
7040                 /* update budget accounting */
7041                 total_packets++;
7042         }
7043
7044         /* place incomplete frames back on ring for completion */
7045         rx_ring->skb = skb;
7046
7047         u64_stats_update_begin(&rx_ring->rx_syncp);
7048         rx_ring->rx_stats.packets += total_packets;
7049         rx_ring->rx_stats.bytes += total_bytes;
7050         u64_stats_update_end(&rx_ring->rx_syncp);
7051         q_vector->rx.total_packets += total_packets;
7052         q_vector->rx.total_bytes += total_bytes;
7053
7054         if (cleaned_count)
7055                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7056
7057         return (total_packets < budget);
7058 }
7059
7060 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7061                                   struct igb_rx_buffer *bi)
7062 {
7063         struct page *page = bi->page;
7064         dma_addr_t dma;
7065
7066         /* since we are recycling buffers we should seldom need to alloc */
7067         if (likely(page))
7068                 return true;
7069
7070         /* alloc new page for storage */
7071         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7072         if (unlikely(!page)) {
7073                 rx_ring->rx_stats.alloc_failed++;
7074                 return false;
7075         }
7076
7077         /* map page for use */
7078         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7079
7080         /* if mapping failed free memory back to system since
7081          * there isn't much point in holding memory we can't use
7082          */
7083         if (dma_mapping_error(rx_ring->dev, dma)) {
7084                 __free_page(page);
7085
7086                 rx_ring->rx_stats.alloc_failed++;
7087                 return false;
7088         }
7089
7090         bi->dma = dma;
7091         bi->page = page;
7092         bi->page_offset = 0;
7093
7094         return true;
7095 }
7096
7097 /**
7098  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7099  *  @adapter: address of board private structure
7100  **/
7101 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7102 {
7103         union e1000_adv_rx_desc *rx_desc;
7104         struct igb_rx_buffer *bi;
7105         u16 i = rx_ring->next_to_use;
7106
7107         /* nothing to do */
7108         if (!cleaned_count)
7109                 return;
7110
7111         rx_desc = IGB_RX_DESC(rx_ring, i);
7112         bi = &rx_ring->rx_buffer_info[i];
7113         i -= rx_ring->count;
7114
7115         do {
7116                 if (!igb_alloc_mapped_page(rx_ring, bi))
7117                         break;
7118
7119                 /* Refresh the desc even if buffer_addrs didn't change
7120                  * because each write-back erases this info.
7121                  */
7122                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7123
7124                 rx_desc++;
7125                 bi++;
7126                 i++;
7127                 if (unlikely(!i)) {
7128                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7129                         bi = rx_ring->rx_buffer_info;
7130                         i -= rx_ring->count;
7131                 }
7132
7133                 /* clear the hdr_addr for the next_to_use descriptor */
7134                 rx_desc->read.hdr_addr = 0;
7135
7136                 cleaned_count--;
7137         } while (cleaned_count);
7138
7139         i += rx_ring->count;
7140
7141         if (rx_ring->next_to_use != i) {
7142                 /* record the next descriptor to use */
7143                 rx_ring->next_to_use = i;
7144
7145                 /* update next to alloc since we have filled the ring */
7146                 rx_ring->next_to_alloc = i;
7147
7148                 /* Force memory writes to complete before letting h/w
7149                  * know there are new descriptors to fetch.  (Only
7150                  * applicable for weak-ordered memory model archs,
7151                  * such as IA-64).
7152                  */
7153                 wmb();
7154                 writel(i, rx_ring->tail);
7155         }
7156 }
7157
7158 /**
7159  * igb_mii_ioctl -
7160  * @netdev:
7161  * @ifreq:
7162  * @cmd:
7163  **/
7164 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7165 {
7166         struct igb_adapter *adapter = netdev_priv(netdev);
7167         struct mii_ioctl_data *data = if_mii(ifr);
7168
7169         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7170                 return -EOPNOTSUPP;
7171
7172         switch (cmd) {
7173         case SIOCGMIIPHY:
7174                 data->phy_id = adapter->hw.phy.addr;
7175                 break;
7176         case SIOCGMIIREG:
7177                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7178                                      &data->val_out))
7179                         return -EIO;
7180                 break;
7181         case SIOCSMIIREG:
7182         default:
7183                 return -EOPNOTSUPP;
7184         }
7185         return 0;
7186 }
7187
7188 /**
7189  * igb_ioctl -
7190  * @netdev:
7191  * @ifreq:
7192  * @cmd:
7193  **/
7194 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7195 {
7196         switch (cmd) {
7197         case SIOCGMIIPHY:
7198         case SIOCGMIIREG:
7199         case SIOCSMIIREG:
7200                 return igb_mii_ioctl(netdev, ifr, cmd);
7201         case SIOCGHWTSTAMP:
7202                 return igb_ptp_get_ts_config(netdev, ifr);
7203         case SIOCSHWTSTAMP:
7204                 return igb_ptp_set_ts_config(netdev, ifr);
7205         default:
7206                 return -EOPNOTSUPP;
7207         }
7208 }
7209
7210 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7211 {
7212         struct igb_adapter *adapter = hw->back;
7213
7214         if (pcie_capability_read_word(adapter->pdev, reg, value))
7215                 return -E1000_ERR_CONFIG;
7216
7217         return 0;
7218 }
7219
7220 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7221 {
7222         struct igb_adapter *adapter = hw->back;
7223
7224         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7225                 return -E1000_ERR_CONFIG;
7226
7227         return 0;
7228 }
7229
7230 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7231 {
7232         struct igb_adapter *adapter = netdev_priv(netdev);
7233         struct e1000_hw *hw = &adapter->hw;
7234         u32 ctrl, rctl;
7235         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7236
7237         if (enable) {
7238                 /* enable VLAN tag insert/strip */
7239                 ctrl = rd32(E1000_CTRL);
7240                 ctrl |= E1000_CTRL_VME;
7241                 wr32(E1000_CTRL, ctrl);
7242
7243                 /* Disable CFI check */
7244                 rctl = rd32(E1000_RCTL);
7245                 rctl &= ~E1000_RCTL_CFIEN;
7246                 wr32(E1000_RCTL, rctl);
7247         } else {
7248                 /* disable VLAN tag insert/strip */
7249                 ctrl = rd32(E1000_CTRL);
7250                 ctrl &= ~E1000_CTRL_VME;
7251                 wr32(E1000_CTRL, ctrl);
7252         }
7253
7254         igb_rlpml_set(adapter);
7255 }
7256
7257 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7258                                __be16 proto, u16 vid)
7259 {
7260         struct igb_adapter *adapter = netdev_priv(netdev);
7261         struct e1000_hw *hw = &adapter->hw;
7262         int pf_id = adapter->vfs_allocated_count;
7263
7264         /* attempt to add filter to vlvf array */
7265         igb_vlvf_set(adapter, vid, true, pf_id);
7266
7267         /* add the filter since PF can receive vlans w/o entry in vlvf */
7268         igb_vfta_set(hw, vid, true);
7269
7270         set_bit(vid, adapter->active_vlans);
7271
7272         return 0;
7273 }
7274
7275 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7276                                 __be16 proto, u16 vid)
7277 {
7278         struct igb_adapter *adapter = netdev_priv(netdev);
7279         struct e1000_hw *hw = &adapter->hw;
7280         int pf_id = adapter->vfs_allocated_count;
7281         s32 err;
7282
7283         /* remove vlan from VLVF table array */
7284         err = igb_vlvf_set(adapter, vid, false, pf_id);
7285
7286         /* if vid was not present in VLVF just remove it from table */
7287         if (err)
7288                 igb_vfta_set(hw, vid, false);
7289
7290         clear_bit(vid, adapter->active_vlans);
7291
7292         return 0;
7293 }
7294
7295 static void igb_restore_vlan(struct igb_adapter *adapter)
7296 {
7297         u16 vid;
7298
7299         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7300
7301         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7302                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7303 }
7304
7305 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7306 {
7307         struct pci_dev *pdev = adapter->pdev;
7308         struct e1000_mac_info *mac = &adapter->hw.mac;
7309
7310         mac->autoneg = 0;
7311
7312         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7313          * for the switch() below to work
7314          */
7315         if ((spd & 1) || (dplx & ~1))
7316                 goto err_inval;
7317
7318         /* Fiber NIC's only allow 1000 gbps Full duplex
7319          * and 100Mbps Full duplex for 100baseFx sfp
7320          */
7321         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7322                 switch (spd + dplx) {
7323                 case SPEED_10 + DUPLEX_HALF:
7324                 case SPEED_10 + DUPLEX_FULL:
7325                 case SPEED_100 + DUPLEX_HALF:
7326                         goto err_inval;
7327                 default:
7328                         break;
7329                 }
7330         }
7331
7332         switch (spd + dplx) {
7333         case SPEED_10 + DUPLEX_HALF:
7334                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7335                 break;
7336         case SPEED_10 + DUPLEX_FULL:
7337                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7338                 break;
7339         case SPEED_100 + DUPLEX_HALF:
7340                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7341                 break;
7342         case SPEED_100 + DUPLEX_FULL:
7343                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7344                 break;
7345         case SPEED_1000 + DUPLEX_FULL:
7346                 mac->autoneg = 1;
7347                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7348                 break;
7349         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7350         default:
7351                 goto err_inval;
7352         }
7353
7354         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7355         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7356
7357         return 0;
7358
7359 err_inval:
7360         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7361         return -EINVAL;
7362 }
7363
7364 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7365                           bool runtime)
7366 {
7367         struct net_device *netdev = pci_get_drvdata(pdev);
7368         struct igb_adapter *adapter = netdev_priv(netdev);
7369         struct e1000_hw *hw = &adapter->hw;
7370         u32 ctrl, rctl, status;
7371         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7372 #ifdef CONFIG_PM
7373         int retval = 0;
7374 #endif
7375
7376         netif_device_detach(netdev);
7377
7378         if (netif_running(netdev))
7379                 __igb_close(netdev, true);
7380
7381         igb_clear_interrupt_scheme(adapter);
7382
7383 #ifdef CONFIG_PM
7384         retval = pci_save_state(pdev);
7385         if (retval)
7386                 return retval;
7387 #endif
7388
7389         status = rd32(E1000_STATUS);
7390         if (status & E1000_STATUS_LU)
7391                 wufc &= ~E1000_WUFC_LNKC;
7392
7393         if (wufc) {
7394                 igb_setup_rctl(adapter);
7395                 igb_set_rx_mode(netdev);
7396
7397                 /* turn on all-multi mode if wake on multicast is enabled */
7398                 if (wufc & E1000_WUFC_MC) {
7399                         rctl = rd32(E1000_RCTL);
7400                         rctl |= E1000_RCTL_MPE;
7401                         wr32(E1000_RCTL, rctl);
7402                 }
7403
7404                 ctrl = rd32(E1000_CTRL);
7405                 /* advertise wake from D3Cold */
7406                 #define E1000_CTRL_ADVD3WUC 0x00100000
7407                 /* phy power management enable */
7408                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7409                 ctrl |= E1000_CTRL_ADVD3WUC;
7410                 wr32(E1000_CTRL, ctrl);
7411
7412                 /* Allow time for pending master requests to run */
7413                 igb_disable_pcie_master(hw);
7414
7415                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7416                 wr32(E1000_WUFC, wufc);
7417         } else {
7418                 wr32(E1000_WUC, 0);
7419                 wr32(E1000_WUFC, 0);
7420         }
7421
7422         *enable_wake = wufc || adapter->en_mng_pt;
7423         if (!*enable_wake)
7424                 igb_power_down_link(adapter);
7425         else
7426                 igb_power_up_link(adapter);
7427
7428         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7429          * would have already happened in close and is redundant.
7430          */
7431         igb_release_hw_control(adapter);
7432
7433         pci_disable_device(pdev);
7434
7435         return 0;
7436 }
7437
7438 #ifdef CONFIG_PM
7439 #ifdef CONFIG_PM_SLEEP
7440 static int igb_suspend(struct device *dev)
7441 {
7442         int retval;
7443         bool wake;
7444         struct pci_dev *pdev = to_pci_dev(dev);
7445
7446         retval = __igb_shutdown(pdev, &wake, 0);
7447         if (retval)
7448                 return retval;
7449
7450         if (wake) {
7451                 pci_prepare_to_sleep(pdev);
7452         } else {
7453                 pci_wake_from_d3(pdev, false);
7454                 pci_set_power_state(pdev, PCI_D3hot);
7455         }
7456
7457         return 0;
7458 }
7459 #endif /* CONFIG_PM_SLEEP */
7460
7461 static int igb_resume(struct device *dev)
7462 {
7463         struct pci_dev *pdev = to_pci_dev(dev);
7464         struct net_device *netdev = pci_get_drvdata(pdev);
7465         struct igb_adapter *adapter = netdev_priv(netdev);
7466         struct e1000_hw *hw = &adapter->hw;
7467         u32 err;
7468
7469         pci_set_power_state(pdev, PCI_D0);
7470         pci_restore_state(pdev);
7471         pci_save_state(pdev);
7472
7473         err = pci_enable_device_mem(pdev);
7474         if (err) {
7475                 dev_err(&pdev->dev,
7476                         "igb: Cannot enable PCI device from suspend\n");
7477                 return err;
7478         }
7479         pci_set_master(pdev);
7480
7481         pci_enable_wake(pdev, PCI_D3hot, 0);
7482         pci_enable_wake(pdev, PCI_D3cold, 0);
7483
7484         if (igb_init_interrupt_scheme(adapter, true)) {
7485                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7486                 return -ENOMEM;
7487         }
7488
7489         igb_reset(adapter);
7490
7491         /* let the f/w know that the h/w is now under the control of the
7492          * driver.
7493          */
7494         igb_get_hw_control(adapter);
7495
7496         wr32(E1000_WUS, ~0);
7497
7498         if (netdev->flags & IFF_UP) {
7499                 rtnl_lock();
7500                 err = __igb_open(netdev, true);
7501                 rtnl_unlock();
7502                 if (err)
7503                         return err;
7504         }
7505
7506         netif_device_attach(netdev);
7507         return 0;
7508 }
7509
7510 #ifdef CONFIG_PM_RUNTIME
7511 static int igb_runtime_idle(struct device *dev)
7512 {
7513         struct pci_dev *pdev = to_pci_dev(dev);
7514         struct net_device *netdev = pci_get_drvdata(pdev);
7515         struct igb_adapter *adapter = netdev_priv(netdev);
7516
7517         if (!igb_has_link(adapter))
7518                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7519
7520         return -EBUSY;
7521 }
7522
7523 static int igb_runtime_suspend(struct device *dev)
7524 {
7525         struct pci_dev *pdev = to_pci_dev(dev);
7526         int retval;
7527         bool wake;
7528
7529         retval = __igb_shutdown(pdev, &wake, 1);
7530         if (retval)
7531                 return retval;
7532
7533         if (wake) {
7534                 pci_prepare_to_sleep(pdev);
7535         } else {
7536                 pci_wake_from_d3(pdev, false);
7537                 pci_set_power_state(pdev, PCI_D3hot);
7538         }
7539
7540         return 0;
7541 }
7542
7543 static int igb_runtime_resume(struct device *dev)
7544 {
7545         return igb_resume(dev);
7546 }
7547 #endif /* CONFIG_PM_RUNTIME */
7548 #endif
7549
7550 static void igb_shutdown(struct pci_dev *pdev)
7551 {
7552         bool wake;
7553
7554         __igb_shutdown(pdev, &wake, 0);
7555
7556         if (system_state == SYSTEM_POWER_OFF) {
7557                 pci_wake_from_d3(pdev, wake);
7558                 pci_set_power_state(pdev, PCI_D3hot);
7559         }
7560 }
7561
7562 #ifdef CONFIG_PCI_IOV
7563 static int igb_sriov_reinit(struct pci_dev *dev)
7564 {
7565         struct net_device *netdev = pci_get_drvdata(dev);
7566         struct igb_adapter *adapter = netdev_priv(netdev);
7567         struct pci_dev *pdev = adapter->pdev;
7568
7569         rtnl_lock();
7570
7571         if (netif_running(netdev))
7572                 igb_close(netdev);
7573
7574         igb_clear_interrupt_scheme(adapter);
7575
7576         igb_init_queue_configuration(adapter);
7577
7578         if (igb_init_interrupt_scheme(adapter, true)) {
7579                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7580                 return -ENOMEM;
7581         }
7582
7583         if (netif_running(netdev))
7584                 igb_open(netdev);
7585
7586         rtnl_unlock();
7587
7588         return 0;
7589 }
7590
7591 static int igb_pci_disable_sriov(struct pci_dev *dev)
7592 {
7593         int err = igb_disable_sriov(dev);
7594
7595         if (!err)
7596                 err = igb_sriov_reinit(dev);
7597
7598         return err;
7599 }
7600
7601 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7602 {
7603         int err = igb_enable_sriov(dev, num_vfs);
7604
7605         if (err)
7606                 goto out;
7607
7608         err = igb_sriov_reinit(dev);
7609         if (!err)
7610                 return num_vfs;
7611
7612 out:
7613         return err;
7614 }
7615
7616 #endif
7617 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7618 {
7619 #ifdef CONFIG_PCI_IOV
7620         if (num_vfs == 0)
7621                 return igb_pci_disable_sriov(dev);
7622         else
7623                 return igb_pci_enable_sriov(dev, num_vfs);
7624 #endif
7625         return 0;
7626 }
7627
7628 #ifdef CONFIG_NET_POLL_CONTROLLER
7629 /* Polling 'interrupt' - used by things like netconsole to send skbs
7630  * without having to re-enable interrupts. It's not called while
7631  * the interrupt routine is executing.
7632  */
7633 static void igb_netpoll(struct net_device *netdev)
7634 {
7635         struct igb_adapter *adapter = netdev_priv(netdev);
7636         struct e1000_hw *hw = &adapter->hw;
7637         struct igb_q_vector *q_vector;
7638         int i;
7639
7640         for (i = 0; i < adapter->num_q_vectors; i++) {
7641                 q_vector = adapter->q_vector[i];
7642                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7643                         wr32(E1000_EIMC, q_vector->eims_value);
7644                 else
7645                         igb_irq_disable(adapter);
7646                 napi_schedule(&q_vector->napi);
7647         }
7648 }
7649 #endif /* CONFIG_NET_POLL_CONTROLLER */
7650
7651 /**
7652  *  igb_io_error_detected - called when PCI error is detected
7653  *  @pdev: Pointer to PCI device
7654  *  @state: The current pci connection state
7655  *
7656  *  This function is called after a PCI bus error affecting
7657  *  this device has been detected.
7658  **/
7659 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7660                                               pci_channel_state_t state)
7661 {
7662         struct net_device *netdev = pci_get_drvdata(pdev);
7663         struct igb_adapter *adapter = netdev_priv(netdev);
7664
7665         netif_device_detach(netdev);
7666
7667         if (state == pci_channel_io_perm_failure)
7668                 return PCI_ERS_RESULT_DISCONNECT;
7669
7670         if (netif_running(netdev))
7671                 igb_down(adapter);
7672         pci_disable_device(pdev);
7673
7674         /* Request a slot slot reset. */
7675         return PCI_ERS_RESULT_NEED_RESET;
7676 }
7677
7678 /**
7679  *  igb_io_slot_reset - called after the pci bus has been reset.
7680  *  @pdev: Pointer to PCI device
7681  *
7682  *  Restart the card from scratch, as if from a cold-boot. Implementation
7683  *  resembles the first-half of the igb_resume routine.
7684  **/
7685 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7686 {
7687         struct net_device *netdev = pci_get_drvdata(pdev);
7688         struct igb_adapter *adapter = netdev_priv(netdev);
7689         struct e1000_hw *hw = &adapter->hw;
7690         pci_ers_result_t result;
7691         int err;
7692
7693         if (pci_enable_device_mem(pdev)) {
7694                 dev_err(&pdev->dev,
7695                         "Cannot re-enable PCI device after reset.\n");
7696                 result = PCI_ERS_RESULT_DISCONNECT;
7697         } else {
7698                 pci_set_master(pdev);
7699                 pci_restore_state(pdev);
7700                 pci_save_state(pdev);
7701
7702                 pci_enable_wake(pdev, PCI_D3hot, 0);
7703                 pci_enable_wake(pdev, PCI_D3cold, 0);
7704
7705                 igb_reset(adapter);
7706                 wr32(E1000_WUS, ~0);
7707                 result = PCI_ERS_RESULT_RECOVERED;
7708         }
7709
7710         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7711         if (err) {
7712                 dev_err(&pdev->dev,
7713                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7714                         err);
7715                 /* non-fatal, continue */
7716         }
7717
7718         return result;
7719 }
7720
7721 /**
7722  *  igb_io_resume - called when traffic can start flowing again.
7723  *  @pdev: Pointer to PCI device
7724  *
7725  *  This callback is called when the error recovery driver tells us that
7726  *  its OK to resume normal operation. Implementation resembles the
7727  *  second-half of the igb_resume routine.
7728  */
7729 static void igb_io_resume(struct pci_dev *pdev)
7730 {
7731         struct net_device *netdev = pci_get_drvdata(pdev);
7732         struct igb_adapter *adapter = netdev_priv(netdev);
7733
7734         if (netif_running(netdev)) {
7735                 if (igb_up(adapter)) {
7736                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7737                         return;
7738                 }
7739         }
7740
7741         netif_device_attach(netdev);
7742
7743         /* let the f/w know that the h/w is now under the control of the
7744          * driver.
7745          */
7746         igb_get_hw_control(adapter);
7747 }
7748
7749 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7750                              u8 qsel)
7751 {
7752         u32 rar_low, rar_high;
7753         struct e1000_hw *hw = &adapter->hw;
7754
7755         /* HW expects these in little endian so we reverse the byte order
7756          * from network order (big endian) to little endian
7757          */
7758         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7759                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7760         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7761
7762         /* Indicate to hardware the Address is Valid. */
7763         rar_high |= E1000_RAH_AV;
7764
7765         if (hw->mac.type == e1000_82575)
7766                 rar_high |= E1000_RAH_POOL_1 * qsel;
7767         else
7768                 rar_high |= E1000_RAH_POOL_1 << qsel;
7769
7770         wr32(E1000_RAL(index), rar_low);
7771         wrfl();
7772         wr32(E1000_RAH(index), rar_high);
7773         wrfl();
7774 }
7775
7776 static int igb_set_vf_mac(struct igb_adapter *adapter,
7777                           int vf, unsigned char *mac_addr)
7778 {
7779         struct e1000_hw *hw = &adapter->hw;
7780         /* VF MAC addresses start at end of receive addresses and moves
7781          * towards the first, as a result a collision should not be possible
7782          */
7783         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7784
7785         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7786
7787         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7788
7789         return 0;
7790 }
7791
7792 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7793 {
7794         struct igb_adapter *adapter = netdev_priv(netdev);
7795         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7796                 return -EINVAL;
7797         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7798         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7799         dev_info(&adapter->pdev->dev,
7800                  "Reload the VF driver to make this change effective.");
7801         if (test_bit(__IGB_DOWN, &adapter->state)) {
7802                 dev_warn(&adapter->pdev->dev,
7803                          "The VF MAC address has been set, but the PF device is not up.\n");
7804                 dev_warn(&adapter->pdev->dev,
7805                          "Bring the PF device up before attempting to use the VF device.\n");
7806         }
7807         return igb_set_vf_mac(adapter, vf, mac);
7808 }
7809
7810 static int igb_link_mbps(int internal_link_speed)
7811 {
7812         switch (internal_link_speed) {
7813         case SPEED_100:
7814                 return 100;
7815         case SPEED_1000:
7816                 return 1000;
7817         default:
7818                 return 0;
7819         }
7820 }
7821
7822 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7823                                   int link_speed)
7824 {
7825         int rf_dec, rf_int;
7826         u32 bcnrc_val;
7827
7828         if (tx_rate != 0) {
7829                 /* Calculate the rate factor values to set */
7830                 rf_int = link_speed / tx_rate;
7831                 rf_dec = (link_speed - (rf_int * tx_rate));
7832                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7833                          tx_rate;
7834
7835                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7836                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7837                               E1000_RTTBCNRC_RF_INT_MASK);
7838                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7839         } else {
7840                 bcnrc_val = 0;
7841         }
7842
7843         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7844         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7845          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7846          */
7847         wr32(E1000_RTTBCNRM, 0x14);
7848         wr32(E1000_RTTBCNRC, bcnrc_val);
7849 }
7850
7851 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7852 {
7853         int actual_link_speed, i;
7854         bool reset_rate = false;
7855
7856         /* VF TX rate limit was not set or not supported */
7857         if ((adapter->vf_rate_link_speed == 0) ||
7858             (adapter->hw.mac.type != e1000_82576))
7859                 return;
7860
7861         actual_link_speed = igb_link_mbps(adapter->link_speed);
7862         if (actual_link_speed != adapter->vf_rate_link_speed) {
7863                 reset_rate = true;
7864                 adapter->vf_rate_link_speed = 0;
7865                 dev_info(&adapter->pdev->dev,
7866                          "Link speed has been changed. VF Transmit rate is disabled\n");
7867         }
7868
7869         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7870                 if (reset_rate)
7871                         adapter->vf_data[i].tx_rate = 0;
7872
7873                 igb_set_vf_rate_limit(&adapter->hw, i,
7874                                       adapter->vf_data[i].tx_rate,
7875                                       actual_link_speed);
7876         }
7877 }
7878
7879 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7880 {
7881         struct igb_adapter *adapter = netdev_priv(netdev);
7882         struct e1000_hw *hw = &adapter->hw;
7883         int actual_link_speed;
7884
7885         if (hw->mac.type != e1000_82576)
7886                 return -EOPNOTSUPP;
7887
7888         actual_link_speed = igb_link_mbps(adapter->link_speed);
7889         if ((vf >= adapter->vfs_allocated_count) ||
7890             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7891             (tx_rate < 0) || (tx_rate > actual_link_speed))
7892                 return -EINVAL;
7893
7894         adapter->vf_rate_link_speed = actual_link_speed;
7895         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7896         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7897
7898         return 0;
7899 }
7900
7901 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7902                                    bool setting)
7903 {
7904         struct igb_adapter *adapter = netdev_priv(netdev);
7905         struct e1000_hw *hw = &adapter->hw;
7906         u32 reg_val, reg_offset;
7907
7908         if (!adapter->vfs_allocated_count)
7909                 return -EOPNOTSUPP;
7910
7911         if (vf >= adapter->vfs_allocated_count)
7912                 return -EINVAL;
7913
7914         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7915         reg_val = rd32(reg_offset);
7916         if (setting)
7917                 reg_val |= ((1 << vf) |
7918                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919         else
7920                 reg_val &= ~((1 << vf) |
7921                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922         wr32(reg_offset, reg_val);
7923
7924         adapter->vf_data[vf].spoofchk_enabled = setting;
7925         return E1000_SUCCESS;
7926 }
7927
7928 static int igb_ndo_get_vf_config(struct net_device *netdev,
7929                                  int vf, struct ifla_vf_info *ivi)
7930 {
7931         struct igb_adapter *adapter = netdev_priv(netdev);
7932         if (vf >= adapter->vfs_allocated_count)
7933                 return -EINVAL;
7934         ivi->vf = vf;
7935         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7936         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7937         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7938         ivi->qos = adapter->vf_data[vf].pf_qos;
7939         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7940         return 0;
7941 }
7942
7943 static void igb_vmm_control(struct igb_adapter *adapter)
7944 {
7945         struct e1000_hw *hw = &adapter->hw;
7946         u32 reg;
7947
7948         switch (hw->mac.type) {
7949         case e1000_82575:
7950         case e1000_i210:
7951         case e1000_i211:
7952         case e1000_i354:
7953         default:
7954                 /* replication is not supported for 82575 */
7955                 return;
7956         case e1000_82576:
7957                 /* notify HW that the MAC is adding vlan tags */
7958                 reg = rd32(E1000_DTXCTL);
7959                 reg |= E1000_DTXCTL_VLAN_ADDED;
7960                 wr32(E1000_DTXCTL, reg);
7961         case e1000_82580:
7962                 /* enable replication vlan tag stripping */
7963                 reg = rd32(E1000_RPLOLR);
7964                 reg |= E1000_RPLOLR_STRVLAN;
7965                 wr32(E1000_RPLOLR, reg);
7966         case e1000_i350:
7967                 /* none of the above registers are supported by i350 */
7968                 break;
7969         }
7970
7971         if (adapter->vfs_allocated_count) {
7972                 igb_vmdq_set_loopback_pf(hw, true);
7973                 igb_vmdq_set_replication_pf(hw, true);
7974                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7975                                               adapter->vfs_allocated_count);
7976         } else {
7977                 igb_vmdq_set_loopback_pf(hw, false);
7978                 igb_vmdq_set_replication_pf(hw, false);
7979         }
7980 }
7981
7982 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7983 {
7984         struct e1000_hw *hw = &adapter->hw;
7985         u32 dmac_thr;
7986         u16 hwm;
7987
7988         if (hw->mac.type > e1000_82580) {
7989                 if (adapter->flags & IGB_FLAG_DMAC) {
7990                         u32 reg;
7991
7992                         /* force threshold to 0. */
7993                         wr32(E1000_DMCTXTH, 0);
7994
7995                         /* DMA Coalescing high water mark needs to be greater
7996                          * than the Rx threshold. Set hwm to PBA - max frame
7997                          * size in 16B units, capping it at PBA - 6KB.
7998                          */
7999                         hwm = 64 * pba - adapter->max_frame_size / 16;
8000                         if (hwm < 64 * (pba - 6))
8001                                 hwm = 64 * (pba - 6);
8002                         reg = rd32(E1000_FCRTC);
8003                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8004                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8005                                 & E1000_FCRTC_RTH_COAL_MASK);
8006                         wr32(E1000_FCRTC, reg);
8007
8008                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8009                          * frame size, capping it at PBA - 10KB.
8010                          */
8011                         dmac_thr = pba - adapter->max_frame_size / 512;
8012                         if (dmac_thr < pba - 10)
8013                                 dmac_thr = pba - 10;
8014                         reg = rd32(E1000_DMACR);
8015                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8016                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8017                                 & E1000_DMACR_DMACTHR_MASK);
8018
8019                         /* transition to L0x or L1 if available..*/
8020                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8021
8022                         /* watchdog timer= +-1000 usec in 32usec intervals */
8023                         reg |= (1000 >> 5);
8024
8025                         /* Disable BMC-to-OS Watchdog Enable */
8026                         if (hw->mac.type != e1000_i354)
8027                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8028
8029                         wr32(E1000_DMACR, reg);
8030
8031                         /* no lower threshold to disable
8032                          * coalescing(smart fifb)-UTRESH=0
8033                          */
8034                         wr32(E1000_DMCRTRH, 0);
8035
8036                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8037
8038                         wr32(E1000_DMCTLX, reg);
8039
8040                         /* free space in tx packet buffer to wake from
8041                          * DMA coal
8042                          */
8043                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8044                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8045
8046                         /* make low power state decision controlled
8047                          * by DMA coal
8048                          */
8049                         reg = rd32(E1000_PCIEMISC);
8050                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8051                         wr32(E1000_PCIEMISC, reg);
8052                 } /* endif adapter->dmac is not disabled */
8053         } else if (hw->mac.type == e1000_82580) {
8054                 u32 reg = rd32(E1000_PCIEMISC);
8055
8056                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8057                 wr32(E1000_DMACR, 0);
8058         }
8059 }
8060
8061 /**
8062  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8063  *  @hw: pointer to hardware structure
8064  *  @byte_offset: byte offset to read
8065  *  @dev_addr: device address
8066  *  @data: value read
8067  *
8068  *  Performs byte read operation over I2C interface at
8069  *  a specified device address.
8070  **/
8071 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072                       u8 dev_addr, u8 *data)
8073 {
8074         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075         struct i2c_client *this_client = adapter->i2c_client;
8076         s32 status;
8077         u16 swfw_mask = 0;
8078
8079         if (!this_client)
8080                 return E1000_ERR_I2C;
8081
8082         swfw_mask = E1000_SWFW_PHY0_SM;
8083
8084         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8085             != E1000_SUCCESS)
8086                 return E1000_ERR_SWFW_SYNC;
8087
8088         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8089         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8090
8091         if (status < 0)
8092                 return E1000_ERR_I2C;
8093         else {
8094                 *data = status;
8095                 return E1000_SUCCESS;
8096         }
8097 }
8098
8099 /**
8100  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8101  *  @hw: pointer to hardware structure
8102  *  @byte_offset: byte offset to write
8103  *  @dev_addr: device address
8104  *  @data: value to write
8105  *
8106  *  Performs byte write operation over I2C interface at
8107  *  a specified device address.
8108  **/
8109 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8110                        u8 dev_addr, u8 data)
8111 {
8112         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8113         struct i2c_client *this_client = adapter->i2c_client;
8114         s32 status;
8115         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8116
8117         if (!this_client)
8118                 return E1000_ERR_I2C;
8119
8120         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8121                 return E1000_ERR_SWFW_SYNC;
8122         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8123         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8124
8125         if (status)
8126                 return E1000_ERR_I2C;
8127         else
8128                 return E1000_SUCCESS;
8129
8130 }
8131
8132 int igb_reinit_queues(struct igb_adapter *adapter)
8133 {
8134         struct net_device *netdev = adapter->netdev;
8135         struct pci_dev *pdev = adapter->pdev;
8136         int err = 0;
8137
8138         if (netif_running(netdev))
8139                 igb_close(netdev);
8140
8141         igb_reset_interrupt_capability(adapter);
8142
8143         if (igb_init_interrupt_scheme(adapter, true)) {
8144                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8145                 return -ENOMEM;
8146         }
8147
8148         if (netif_running(netdev))
8149                 err = igb_open(netdev);
8150
8151         return err;
8152 }
8153 /* igb_main.c */