Linux 3.9-rc8
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110         /* required last entry */
111         {0, }
112 };
113
114 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116 void igb_reset(struct igb_adapter *);
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                                  struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 static int igb_vlan_rx_add_vid(struct net_device *, u16);
160 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161 static void igb_restore_vlan(struct igb_adapter *);
162 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 static void igb_ping_all_vfs(struct igb_adapter *);
164 static void igb_msg_task(struct igb_adapter *);
165 static void igb_vmm_control(struct igb_adapter *);
166 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170                                int vf, u16 vlan, u8 qos);
171 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173                                  struct ifla_vf_info *ivi);
174 static void igb_check_vf_rate_limit(struct igb_adapter *);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179 #endif
180
181 #ifdef CONFIG_PM
182 #ifdef CONFIG_PM_SLEEP
183 static int igb_suspend(struct device *);
184 #endif
185 static int igb_resume(struct device *);
186 #ifdef CONFIG_PM_RUNTIME
187 static int igb_runtime_suspend(struct device *dev);
188 static int igb_runtime_resume(struct device *dev);
189 static int igb_runtime_idle(struct device *dev);
190 #endif
191 static const struct dev_pm_ops igb_pm_ops = {
192         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194                         igb_runtime_idle)
195 };
196 #endif
197 static void igb_shutdown(struct pci_dev *);
198 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199 #ifdef CONFIG_IGB_DCA
200 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201 static struct notifier_block dca_notifier = {
202         .notifier_call  = igb_notify_dca,
203         .next           = NULL,
204         .priority       = 0
205 };
206 #endif
207 #ifdef CONFIG_NET_POLL_CONTROLLER
208 /* for netdump / net console */
209 static void igb_netpoll(struct net_device *);
210 #endif
211 #ifdef CONFIG_PCI_IOV
212 static unsigned int max_vfs = 0;
213 module_param(max_vfs, uint, 0);
214 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                  "per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219                      pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224         .error_detected = igb_io_error_detected,
225         .slot_reset = igb_io_slot_reset,
226         .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232         .name     = igb_driver_name,
233         .id_table = igb_pci_tbl,
234         .probe    = igb_probe,
235         .remove   = igb_remove,
236 #ifdef CONFIG_PM
237         .driver.pm = &igb_pm_ops,
238 #endif
239         .shutdown = igb_shutdown,
240         .sriov_configure = igb_pci_sriov_configure,
241         .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255         u32 ofs;
256         char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261         /* General Registers */
262         {E1000_CTRL, "CTRL"},
263         {E1000_STATUS, "STATUS"},
264         {E1000_CTRL_EXT, "CTRL_EXT"},
265
266         /* Interrupt Registers */
267         {E1000_ICR, "ICR"},
268
269         /* RX Registers */
270         {E1000_RCTL, "RCTL"},
271         {E1000_RDLEN(0), "RDLEN"},
272         {E1000_RDH(0), "RDH"},
273         {E1000_RDT(0), "RDT"},
274         {E1000_RXDCTL(0), "RXDCTL"},
275         {E1000_RDBAL(0), "RDBAL"},
276         {E1000_RDBAH(0), "RDBAH"},
277
278         /* TX Registers */
279         {E1000_TCTL, "TCTL"},
280         {E1000_TDBAL(0), "TDBAL"},
281         {E1000_TDBAH(0), "TDBAH"},
282         {E1000_TDLEN(0), "TDLEN"},
283         {E1000_TDH(0), "TDH"},
284         {E1000_TDT(0), "TDT"},
285         {E1000_TXDCTL(0), "TXDCTL"},
286         {E1000_TDFH, "TDFH"},
287         {E1000_TDFT, "TDFT"},
288         {E1000_TDFHS, "TDFHS"},
289         {E1000_TDFPC, "TDFPC"},
290
291         /* List Terminator */
292         {}
293 };
294
295 /*
296  * igb_regdump - register printout routine
297  */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300         int n = 0;
301         char rname[16];
302         u32 regs[8];
303
304         switch (reginfo->ofs) {
305         case E1000_RDLEN(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RDLEN(n));
308                 break;
309         case E1000_RDH(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDH(n));
312                 break;
313         case E1000_RDT(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDT(n));
316                 break;
317         case E1000_RXDCTL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RXDCTL(n));
320                 break;
321         case E1000_RDBAL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDBAL(n));
324                 break;
325         case E1000_RDBAH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAH(n));
328                 break;
329         case E1000_TDBAL(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAL(n));
332                 break;
333         case E1000_TDBAH(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDBAH(n));
336                 break;
337         case E1000_TDLEN(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDLEN(n));
340                 break;
341         case E1000_TDH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDH(n));
344                 break;
345         case E1000_TDT(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDT(n));
348                 break;
349         case E1000_TXDCTL(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TXDCTL(n));
352                 break;
353         default:
354                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355                 return;
356         }
357
358         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360                 regs[2], regs[3]);
361 }
362
363 /*
364  * igb_dump - Print registers, tx-rings and rx-rings
365  */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368         struct net_device *netdev = adapter->netdev;
369         struct e1000_hw *hw = &adapter->hw;
370         struct igb_reg_info *reginfo;
371         struct igb_ring *tx_ring;
372         union e1000_adv_tx_desc *tx_desc;
373         struct my_u0 { u64 a; u64 b; } *u0;
374         struct igb_ring *rx_ring;
375         union e1000_adv_rx_desc *rx_desc;
376         u32 staterr;
377         u16 i, n;
378
379         if (!netif_msg_hw(adapter))
380                 return;
381
382         /* Print netdevice Info */
383         if (netdev) {
384                 dev_info(&adapter->pdev->dev, "Net device Info\n");
385                 pr_info("Device Name     state            trans_start      "
386                         "last_rx\n");
387                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388                         netdev->state, netdev->trans_start, netdev->last_rx);
389         }
390
391         /* Print Registers */
392         dev_info(&adapter->pdev->dev, "Register Dump\n");
393         pr_info(" Register Name   Value\n");
394         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395              reginfo->name; reginfo++) {
396                 igb_regdump(hw, reginfo);
397         }
398
399         /* Print TX Ring Summary */
400         if (!netdev || !netif_running(netdev))
401                 goto exit;
402
403         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405         for (n = 0; n < adapter->num_tx_queues; n++) {
406                 struct igb_tx_buffer *buffer_info;
407                 tx_ring = adapter->tx_ring[n];
408                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
411                         (u64)dma_unmap_addr(buffer_info, dma),
412                         dma_unmap_len(buffer_info, len),
413                         buffer_info->next_to_watch,
414                         (u64)buffer_info->time_stamp);
415         }
416
417         /* Print TX Rings */
418         if (!netif_msg_tx_done(adapter))
419                 goto rx_ring_summary;
420
421         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423         /* Transmit Descriptor Formats
424          *
425          * Advanced Transmit Descriptor
426          *   +--------------------------------------------------------------+
427          * 0 |         Buffer Address [63:0]                                |
428          *   +--------------------------------------------------------------+
429          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430          *   +--------------------------------------------------------------+
431          *   63      46 45    40 39 38 36 35 32 31   24             15       0
432          */
433
434         for (n = 0; n < adapter->num_tx_queues; n++) {
435                 tx_ring = adapter->tx_ring[n];
436                 pr_info("------------------------------------\n");
437                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438                 pr_info("------------------------------------\n");
439                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440                         "[bi->dma       ] leng  ntw timestamp        "
441                         "bi->skb\n");
442
443                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444                         const char *next_desc;
445                         struct igb_tx_buffer *buffer_info;
446                         tx_desc = IGB_TX_DESC(tx_ring, i);
447                         buffer_info = &tx_ring->tx_buffer_info[i];
448                         u0 = (struct my_u0 *)tx_desc;
449                         if (i == tx_ring->next_to_use &&
450                             i == tx_ring->next_to_clean)
451                                 next_desc = " NTC/U";
452                         else if (i == tx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == tx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
460                                 " %04X  %p %016llX %p%s\n", i,
461                                 le64_to_cpu(u0->a),
462                                 le64_to_cpu(u0->b),
463                                 (u64)dma_unmap_addr(buffer_info, dma),
464                                 dma_unmap_len(buffer_info, len),
465                                 buffer_info->next_to_watch,
466                                 (u64)buffer_info->time_stamp,
467                                 buffer_info->skb, next_desc);
468
469                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
470                                 print_hex_dump(KERN_INFO, "",
471                                         DUMP_PREFIX_ADDRESS,
472                                         16, 1, buffer_info->skb->data,
473                                         dma_unmap_len(buffer_info, len),
474                                         true);
475                 }
476         }
477
478         /* Print RX Rings Summary */
479 rx_ring_summary:
480         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481         pr_info("Queue [NTU] [NTC]\n");
482         for (n = 0; n < adapter->num_rx_queues; n++) {
483                 rx_ring = adapter->rx_ring[n];
484                 pr_info(" %5d %5X %5X\n",
485                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
486         }
487
488         /* Print RX Rings */
489         if (!netif_msg_rx_status(adapter))
490                 goto exit;
491
492         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494         /* Advanced Receive Descriptor (Read) Format
495          *    63                                           1        0
496          *    +-----------------------------------------------------+
497          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498          *    +----------------------------------------------+------+
499          *  8 |       Header Buffer Address [63:1]           |  DD  |
500          *    +-----------------------------------------------------+
501          *
502          *
503          * Advanced Receive Descriptor (Write-Back) Format
504          *
505          *   63       48 47    32 31  30      21 20 17 16   4 3     0
506          *   +------------------------------------------------------+
507          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508          *   | Checksum   Ident  |   |           |    | Type | Type |
509          *   +------------------------------------------------------+
510          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511          *   +------------------------------------------------------+
512          *   63       48 47    32 31            20 19               0
513          */
514
515         for (n = 0; n < adapter->num_rx_queues; n++) {
516                 rx_ring = adapter->rx_ring[n];
517                 pr_info("------------------------------------\n");
518                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519                 pr_info("------------------------------------\n");
520                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525                 for (i = 0; i < rx_ring->count; i++) {
526                         const char *next_desc;
527                         struct igb_rx_buffer *buffer_info;
528                         buffer_info = &rx_ring->rx_buffer_info[i];
529                         rx_desc = IGB_RX_DESC(rx_ring, i);
530                         u0 = (struct my_u0 *)rx_desc;
531                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533                         if (i == rx_ring->next_to_use)
534                                 next_desc = " NTU";
535                         else if (i == rx_ring->next_to_clean)
536                                 next_desc = " NTC";
537                         else
538                                 next_desc = "";
539
540                         if (staterr & E1000_RXD_STAT_DD) {
541                                 /* Descriptor Done */
542                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543                                         "RWB", i,
544                                         le64_to_cpu(u0->a),
545                                         le64_to_cpu(u0->b),
546                                         next_desc);
547                         } else {
548                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549                                         "R  ", i,
550                                         le64_to_cpu(u0->a),
551                                         le64_to_cpu(u0->b),
552                                         (u64)buffer_info->dma,
553                                         next_desc);
554
555                                 if (netif_msg_pktdata(adapter) &&
556                                     buffer_info->dma && buffer_info->page) {
557                                         print_hex_dump(KERN_INFO, "",
558                                           DUMP_PREFIX_ADDRESS,
559                                           16, 1,
560                                           page_address(buffer_info->page) +
561                                                       buffer_info->page_offset,
562                                           IGB_RX_BUFSZ, true);
563                                 }
564                         }
565                 }
566         }
567
568 exit:
569         return;
570 }
571
572 /*  igb_get_i2c_data - Reads the I2C SDA data bit
573  *  @hw: pointer to hardware structure
574  *  @i2cctl: Current value of I2CCTL register
575  *
576  *  Returns the I2C data bit value
577  */
578 static int igb_get_i2c_data(void *data)
579 {
580         struct igb_adapter *adapter = (struct igb_adapter *)data;
581         struct e1000_hw *hw = &adapter->hw;
582         s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585 }
586
587 /* igb_set_i2c_data - Sets the I2C data bit
588  *  @data: pointer to hardware structure
589  *  @state: I2C data value (0 or 1) to set
590  *
591  *  Sets the I2C data bit
592  */
593 static void igb_set_i2c_data(void *data, int state)
594 {
595         struct igb_adapter *adapter = (struct igb_adapter *)data;
596         struct e1000_hw *hw = &adapter->hw;
597         s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599         if (state)
600                 i2cctl |= E1000_I2C_DATA_OUT;
601         else
602                 i2cctl &= ~E1000_I2C_DATA_OUT;
603
604         i2cctl &= ~E1000_I2C_DATA_OE_N;
605         i2cctl |= E1000_I2C_CLK_OE_N;
606         wr32(E1000_I2CPARAMS, i2cctl);
607         wrfl();
608
609 }
610
611 /* igb_set_i2c_clk - Sets the I2C SCL clock
612  *  @data: pointer to hardware structure
613  *  @state: state to set clock
614  *
615  *  Sets the I2C clock line to state
616  */
617 static void igb_set_i2c_clk(void *data, int state)
618 {
619         struct igb_adapter *adapter = (struct igb_adapter *)data;
620         struct e1000_hw *hw = &adapter->hw;
621         s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623         if (state) {
624                 i2cctl |= E1000_I2C_CLK_OUT;
625                 i2cctl &= ~E1000_I2C_CLK_OE_N;
626         } else {
627                 i2cctl &= ~E1000_I2C_CLK_OUT;
628                 i2cctl &= ~E1000_I2C_CLK_OE_N;
629         }
630         wr32(E1000_I2CPARAMS, i2cctl);
631         wrfl();
632 }
633
634 /* igb_get_i2c_clk - Gets the I2C SCL clock state
635  *  @data: pointer to hardware structure
636  *
637  *  Gets the I2C clock state
638  */
639 static int igb_get_i2c_clk(void *data)
640 {
641         struct igb_adapter *adapter = (struct igb_adapter *)data;
642         struct e1000_hw *hw = &adapter->hw;
643         s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646 }
647
648 static const struct i2c_algo_bit_data igb_i2c_algo = {
649         .setsda         = igb_set_i2c_data,
650         .setscl         = igb_set_i2c_clk,
651         .getsda         = igb_get_i2c_data,
652         .getscl         = igb_get_i2c_clk,
653         .udelay         = 5,
654         .timeout        = 20,
655 };
656
657 /**
658  * igb_get_hw_dev - return device
659  * used by hardware layer to print debugging information
660  **/
661 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 {
663         struct igb_adapter *adapter = hw->back;
664         return adapter->netdev;
665 }
666
667 /**
668  * igb_init_module - Driver Registration Routine
669  *
670  * igb_init_module is the first routine called when the driver is
671  * loaded. All it does is register with the PCI subsystem.
672  **/
673 static int __init igb_init_module(void)
674 {
675         int ret;
676         pr_info("%s - version %s\n",
677                igb_driver_string, igb_driver_version);
678
679         pr_info("%s\n", igb_copyright);
680
681 #ifdef CONFIG_IGB_DCA
682         dca_register_notify(&dca_notifier);
683 #endif
684         ret = pci_register_driver(&igb_driver);
685         return ret;
686 }
687
688 module_init(igb_init_module);
689
690 /**
691  * igb_exit_module - Driver Exit Cleanup Routine
692  *
693  * igb_exit_module is called just before the driver is removed
694  * from memory.
695  **/
696 static void __exit igb_exit_module(void)
697 {
698 #ifdef CONFIG_IGB_DCA
699         dca_unregister_notify(&dca_notifier);
700 #endif
701         pci_unregister_driver(&igb_driver);
702 }
703
704 module_exit(igb_exit_module);
705
706 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707 /**
708  * igb_cache_ring_register - Descriptor ring to register mapping
709  * @adapter: board private structure to initialize
710  *
711  * Once we know the feature-set enabled for the device, we'll cache
712  * the register offset the descriptor ring is assigned to.
713  **/
714 static void igb_cache_ring_register(struct igb_adapter *adapter)
715 {
716         int i = 0, j = 0;
717         u32 rbase_offset = adapter->vfs_allocated_count;
718
719         switch (adapter->hw.mac.type) {
720         case e1000_82576:
721                 /* The queues are allocated for virtualization such that VF 0
722                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723                  * In order to avoid collision we start at the first free queue
724                  * and continue consuming queues in the same sequence
725                  */
726                 if (adapter->vfs_allocated_count) {
727                         for (; i < adapter->rss_queues; i++)
728                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
729                                                                Q_IDX_82576(i);
730                 }
731         case e1000_82575:
732         case e1000_82580:
733         case e1000_i350:
734         case e1000_i210:
735         case e1000_i211:
736         default:
737                 for (; i < adapter->num_rx_queues; i++)
738                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739                 for (; j < adapter->num_tx_queues; j++)
740                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741                 break;
742         }
743 }
744
745 /**
746  *  igb_write_ivar - configure ivar for given MSI-X vector
747  *  @hw: pointer to the HW structure
748  *  @msix_vector: vector number we are allocating to a given ring
749  *  @index: row index of IVAR register to write within IVAR table
750  *  @offset: column offset of in IVAR, should be multiple of 8
751  *
752  *  This function is intended to handle the writing of the IVAR register
753  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754  *  each containing an cause allocation for an Rx and Tx ring, and a
755  *  variable number of rows depending on the number of queues supported.
756  **/
757 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758                            int index, int offset)
759 {
760         u32 ivar = array_rd32(E1000_IVAR0, index);
761
762         /* clear any bits that are currently set */
763         ivar &= ~((u32)0xFF << offset);
764
765         /* write vector and valid bit */
766         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768         array_wr32(E1000_IVAR0, index, ivar);
769 }
770
771 #define IGB_N0_QUEUE -1
772 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773 {
774         struct igb_adapter *adapter = q_vector->adapter;
775         struct e1000_hw *hw = &adapter->hw;
776         int rx_queue = IGB_N0_QUEUE;
777         int tx_queue = IGB_N0_QUEUE;
778         u32 msixbm = 0;
779
780         if (q_vector->rx.ring)
781                 rx_queue = q_vector->rx.ring->reg_idx;
782         if (q_vector->tx.ring)
783                 tx_queue = q_vector->tx.ring->reg_idx;
784
785         switch (hw->mac.type) {
786         case e1000_82575:
787                 /* The 82575 assigns vectors using a bitmask, which matches the
788                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
789                    or more queues to a vector, we write the appropriate bits
790                    into the MSIXBM register for that vector. */
791                 if (rx_queue > IGB_N0_QUEUE)
792                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793                 if (tx_queue > IGB_N0_QUEUE)
794                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795                 if (!adapter->msix_entries && msix_vector == 0)
796                         msixbm |= E1000_EIMS_OTHER;
797                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798                 q_vector->eims_value = msixbm;
799                 break;
800         case e1000_82576:
801                 /*
802                  * 82576 uses a table that essentially consists of 2 columns
803                  * with 8 rows.  The ordering is column-major so we use the
804                  * lower 3 bits as the row index, and the 4th bit as the
805                  * column offset.
806                  */
807                 if (rx_queue > IGB_N0_QUEUE)
808                         igb_write_ivar(hw, msix_vector,
809                                        rx_queue & 0x7,
810                                        (rx_queue & 0x8) << 1);
811                 if (tx_queue > IGB_N0_QUEUE)
812                         igb_write_ivar(hw, msix_vector,
813                                        tx_queue & 0x7,
814                                        ((tx_queue & 0x8) << 1) + 8);
815                 q_vector->eims_value = 1 << msix_vector;
816                 break;
817         case e1000_82580:
818         case e1000_i350:
819         case e1000_i210:
820         case e1000_i211:
821                 /*
822                  * On 82580 and newer adapters the scheme is similar to 82576
823                  * however instead of ordering column-major we have things
824                  * ordered row-major.  So we traverse the table by using
825                  * bit 0 as the column offset, and the remaining bits as the
826                  * row index.
827                  */
828                 if (rx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        rx_queue >> 1,
831                                        (rx_queue & 0x1) << 4);
832                 if (tx_queue > IGB_N0_QUEUE)
833                         igb_write_ivar(hw, msix_vector,
834                                        tx_queue >> 1,
835                                        ((tx_queue & 0x1) << 4) + 8);
836                 q_vector->eims_value = 1 << msix_vector;
837                 break;
838         default:
839                 BUG();
840                 break;
841         }
842
843         /* add q_vector eims value to global eims_enable_mask */
844         adapter->eims_enable_mask |= q_vector->eims_value;
845
846         /* configure q_vector to set itr on first interrupt */
847         q_vector->set_itr = 1;
848 }
849
850 /**
851  * igb_configure_msix - Configure MSI-X hardware
852  *
853  * igb_configure_msix sets up the hardware to properly
854  * generate MSI-X interrupts.
855  **/
856 static void igb_configure_msix(struct igb_adapter *adapter)
857 {
858         u32 tmp;
859         int i, vector = 0;
860         struct e1000_hw *hw = &adapter->hw;
861
862         adapter->eims_enable_mask = 0;
863
864         /* set vector for other causes, i.e. link changes */
865         switch (hw->mac.type) {
866         case e1000_82575:
867                 tmp = rd32(E1000_CTRL_EXT);
868                 /* enable MSI-X PBA support*/
869                 tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871                 /* Auto-Mask interrupts upon ICR read. */
872                 tmp |= E1000_CTRL_EXT_EIAME;
873                 tmp |= E1000_CTRL_EXT_IRCA;
874
875                 wr32(E1000_CTRL_EXT, tmp);
876
877                 /* enable msix_other interrupt */
878                 array_wr32(E1000_MSIXBM(0), vector++,
879                                       E1000_EIMS_OTHER);
880                 adapter->eims_other = E1000_EIMS_OTHER;
881
882                 break;
883
884         case e1000_82576:
885         case e1000_82580:
886         case e1000_i350:
887         case e1000_i210:
888         case e1000_i211:
889                 /* Turn on MSI-X capability first, or our settings
890                  * won't stick.  And it will take days to debug. */
891                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
893                                 E1000_GPIE_NSICR);
894
895                 /* enable msix_other interrupt */
896                 adapter->eims_other = 1 << vector;
897                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
898
899                 wr32(E1000_IVAR_MISC, tmp);
900                 break;
901         default:
902                 /* do nothing, since nothing else supports MSI-X */
903                 break;
904         } /* switch (hw->mac.type) */
905
906         adapter->eims_enable_mask |= adapter->eims_other;
907
908         for (i = 0; i < adapter->num_q_vectors; i++)
909                 igb_assign_vector(adapter->q_vector[i], vector++);
910
911         wrfl();
912 }
913
914 /**
915  * igb_request_msix - Initialize MSI-X interrupts
916  *
917  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918  * kernel.
919  **/
920 static int igb_request_msix(struct igb_adapter *adapter)
921 {
922         struct net_device *netdev = adapter->netdev;
923         struct e1000_hw *hw = &adapter->hw;
924         int i, err = 0, vector = 0, free_vector = 0;
925
926         err = request_irq(adapter->msix_entries[vector].vector,
927                           igb_msix_other, 0, netdev->name, adapter);
928         if (err)
929                 goto err_out;
930
931         for (i = 0; i < adapter->num_q_vectors; i++) {
932                 struct igb_q_vector *q_vector = adapter->q_vector[i];
933
934                 vector++;
935
936                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
938                 if (q_vector->rx.ring && q_vector->tx.ring)
939                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940                                 q_vector->rx.ring->queue_index);
941                 else if (q_vector->tx.ring)
942                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943                                 q_vector->tx.ring->queue_index);
944                 else if (q_vector->rx.ring)
945                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946                                 q_vector->rx.ring->queue_index);
947                 else
948                         sprintf(q_vector->name, "%s-unused", netdev->name);
949
950                 err = request_irq(adapter->msix_entries[vector].vector,
951                                   igb_msix_ring, 0, q_vector->name,
952                                   q_vector);
953                 if (err)
954                         goto err_free;
955         }
956
957         igb_configure_msix(adapter);
958         return 0;
959
960 err_free:
961         /* free already assigned IRQs */
962         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964         vector--;
965         for (i = 0; i < vector; i++) {
966                 free_irq(adapter->msix_entries[free_vector++].vector,
967                          adapter->q_vector[i]);
968         }
969 err_out:
970         return err;
971 }
972
973 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974 {
975         if (adapter->msix_entries) {
976                 pci_disable_msix(adapter->pdev);
977                 kfree(adapter->msix_entries);
978                 adapter->msix_entries = NULL;
979         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980                 pci_disable_msi(adapter->pdev);
981         }
982 }
983
984 /**
985  * igb_free_q_vector - Free memory allocated for specific interrupt vector
986  * @adapter: board private structure to initialize
987  * @v_idx: Index of vector to be freed
988  *
989  * This function frees the memory allocated to the q_vector.  In addition if
990  * NAPI is enabled it will delete any references to the NAPI struct prior
991  * to freeing the q_vector.
992  **/
993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994 {
995         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997         if (q_vector->tx.ring)
998                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000         if (q_vector->rx.ring)
1001                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003         adapter->q_vector[v_idx] = NULL;
1004         netif_napi_del(&q_vector->napi);
1005
1006         /*
1007          * ixgbe_get_stats64() might access the rings on this vector,
1008          * we must wait a grace period before freeing it.
1009          */
1010         kfree_rcu(q_vector, rcu);
1011 }
1012
1013 /**
1014  * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015  * @adapter: board private structure to initialize
1016  *
1017  * This function frees the memory allocated to the q_vectors.  In addition if
1018  * NAPI is enabled it will delete any references to the NAPI struct prior
1019  * to freeing the q_vector.
1020  **/
1021 static void igb_free_q_vectors(struct igb_adapter *adapter)
1022 {
1023         int v_idx = adapter->num_q_vectors;
1024
1025         adapter->num_tx_queues = 0;
1026         adapter->num_rx_queues = 0;
1027         adapter->num_q_vectors = 0;
1028
1029         while (v_idx--)
1030                 igb_free_q_vector(adapter, v_idx);
1031 }
1032
1033 /**
1034  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035  *
1036  * This function resets the device so that it has 0 rx queues, tx queues, and
1037  * MSI-X interrupts allocated.
1038  */
1039 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040 {
1041         igb_free_q_vectors(adapter);
1042         igb_reset_interrupt_capability(adapter);
1043 }
1044
1045 /**
1046  * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047  *
1048  * Attempt to configure interrupts using the best available
1049  * capabilities of the hardware and kernel.
1050  **/
1051 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 {
1053         int err;
1054         int numvecs, i;
1055
1056         if (!msix)
1057                 goto msi_only;
1058
1059         /* Number of supported queues. */
1060         adapter->num_rx_queues = adapter->rss_queues;
1061         if (adapter->vfs_allocated_count)
1062                 adapter->num_tx_queues = 1;
1063         else
1064                 adapter->num_tx_queues = adapter->rss_queues;
1065
1066         /* start with one vector for every rx queue */
1067         numvecs = adapter->num_rx_queues;
1068
1069         /* if tx handler is separate add 1 for every tx queue */
1070         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071                 numvecs += adapter->num_tx_queues;
1072
1073         /* store the number of vectors reserved for queues */
1074         adapter->num_q_vectors = numvecs;
1075
1076         /* add 1 vector for link status interrupts */
1077         numvecs++;
1078         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079                                         GFP_KERNEL);
1080
1081         if (!adapter->msix_entries)
1082                 goto msi_only;
1083
1084         for (i = 0; i < numvecs; i++)
1085                 adapter->msix_entries[i].entry = i;
1086
1087         err = pci_enable_msix(adapter->pdev,
1088                               adapter->msix_entries,
1089                               numvecs);
1090         if (err == 0)
1091                 return;
1092
1093         igb_reset_interrupt_capability(adapter);
1094
1095         /* If we can't do MSI-X, try MSI */
1096 msi_only:
1097 #ifdef CONFIG_PCI_IOV
1098         /* disable SR-IOV for non MSI-X configurations */
1099         if (adapter->vf_data) {
1100                 struct e1000_hw *hw = &adapter->hw;
1101                 /* disable iov and allow time for transactions to clear */
1102                 pci_disable_sriov(adapter->pdev);
1103                 msleep(500);
1104
1105                 kfree(adapter->vf_data);
1106                 adapter->vf_data = NULL;
1107                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108                 wrfl();
1109                 msleep(100);
1110                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111         }
1112 #endif
1113         adapter->vfs_allocated_count = 0;
1114         adapter->rss_queues = 1;
1115         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116         adapter->num_rx_queues = 1;
1117         adapter->num_tx_queues = 1;
1118         adapter->num_q_vectors = 1;
1119         if (!pci_enable_msi(adapter->pdev))
1120                 adapter->flags |= IGB_FLAG_HAS_MSI;
1121 }
1122
1123 static void igb_add_ring(struct igb_ring *ring,
1124                          struct igb_ring_container *head)
1125 {
1126         head->ring = ring;
1127         head->count++;
1128 }
1129
1130 /**
1131  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132  * @adapter: board private structure to initialize
1133  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134  * @v_idx: index of vector in adapter struct
1135  * @txr_count: total number of Tx rings to allocate
1136  * @txr_idx: index of first Tx ring to allocate
1137  * @rxr_count: total number of Rx rings to allocate
1138  * @rxr_idx: index of first Rx ring to allocate
1139  *
1140  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141  **/
1142 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143                               int v_count, int v_idx,
1144                               int txr_count, int txr_idx,
1145                               int rxr_count, int rxr_idx)
1146 {
1147         struct igb_q_vector *q_vector;
1148         struct igb_ring *ring;
1149         int ring_count, size;
1150
1151         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152         if (txr_count > 1 || rxr_count > 1)
1153                 return -ENOMEM;
1154
1155         ring_count = txr_count + rxr_count;
1156         size = sizeof(struct igb_q_vector) +
1157                (sizeof(struct igb_ring) * ring_count);
1158
1159         /* allocate q_vector and rings */
1160         q_vector = kzalloc(size, GFP_KERNEL);
1161         if (!q_vector)
1162                 return -ENOMEM;
1163
1164         /* initialize NAPI */
1165         netif_napi_add(adapter->netdev, &q_vector->napi,
1166                        igb_poll, 64);
1167
1168         /* tie q_vector and adapter together */
1169         adapter->q_vector[v_idx] = q_vector;
1170         q_vector->adapter = adapter;
1171
1172         /* initialize work limits */
1173         q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175         /* initialize ITR configuration */
1176         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177         q_vector->itr_val = IGB_START_ITR;
1178
1179         /* initialize pointer to rings */
1180         ring = q_vector->ring;
1181
1182         if (txr_count) {
1183                 /* assign generic ring traits */
1184                 ring->dev = &adapter->pdev->dev;
1185                 ring->netdev = adapter->netdev;
1186
1187                 /* configure backlink on ring */
1188                 ring->q_vector = q_vector;
1189
1190                 /* update q_vector Tx values */
1191                 igb_add_ring(ring, &q_vector->tx);
1192
1193                 /* For 82575, context index must be unique per ring. */
1194                 if (adapter->hw.mac.type == e1000_82575)
1195                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197                 /* apply Tx specific ring traits */
1198                 ring->count = adapter->tx_ring_count;
1199                 ring->queue_index = txr_idx;
1200
1201                 /* assign ring to adapter */
1202                 adapter->tx_ring[txr_idx] = ring;
1203
1204                 /* push pointer to next ring */
1205                 ring++;
1206         }
1207
1208         if (rxr_count) {
1209                 /* assign generic ring traits */
1210                 ring->dev = &adapter->pdev->dev;
1211                 ring->netdev = adapter->netdev;
1212
1213                 /* configure backlink on ring */
1214                 ring->q_vector = q_vector;
1215
1216                 /* update q_vector Rx values */
1217                 igb_add_ring(ring, &q_vector->rx);
1218
1219                 /* set flag indicating ring supports SCTP checksum offload */
1220                 if (adapter->hw.mac.type >= e1000_82576)
1221                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222
1223                 /*
1224                  * On i350, i210, and i211, loopback VLAN packets
1225                  * have the tag byte-swapped.
1226                  * */
1227                 if (adapter->hw.mac.type >= e1000_i350)
1228                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229
1230                 /* apply Rx specific ring traits */
1231                 ring->count = adapter->rx_ring_count;
1232                 ring->queue_index = rxr_idx;
1233
1234                 /* assign ring to adapter */
1235                 adapter->rx_ring[rxr_idx] = ring;
1236         }
1237
1238         return 0;
1239 }
1240
1241
1242 /**
1243  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244  * @adapter: board private structure to initialize
1245  *
1246  * We allocate one q_vector per queue interrupt.  If allocation fails we
1247  * return -ENOMEM.
1248  **/
1249 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250 {
1251         int q_vectors = adapter->num_q_vectors;
1252         int rxr_remaining = adapter->num_rx_queues;
1253         int txr_remaining = adapter->num_tx_queues;
1254         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255         int err;
1256
1257         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258                 for (; rxr_remaining; v_idx++) {
1259                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260                                                  0, 0, 1, rxr_idx);
1261
1262                         if (err)
1263                                 goto err_out;
1264
1265                         /* update counts and index */
1266                         rxr_remaining--;
1267                         rxr_idx++;
1268                 }
1269         }
1270
1271         for (; v_idx < q_vectors; v_idx++) {
1272                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275                                          tqpv, txr_idx, rqpv, rxr_idx);
1276
1277                 if (err)
1278                         goto err_out;
1279
1280                 /* update counts and index */
1281                 rxr_remaining -= rqpv;
1282                 txr_remaining -= tqpv;
1283                 rxr_idx++;
1284                 txr_idx++;
1285         }
1286
1287         return 0;
1288
1289 err_out:
1290         adapter->num_tx_queues = 0;
1291         adapter->num_rx_queues = 0;
1292         adapter->num_q_vectors = 0;
1293
1294         while (v_idx--)
1295                 igb_free_q_vector(adapter, v_idx);
1296
1297         return -ENOMEM;
1298 }
1299
1300 /**
1301  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302  *
1303  * This function initializes the interrupts and allocates all of the queues.
1304  **/
1305 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 {
1307         struct pci_dev *pdev = adapter->pdev;
1308         int err;
1309
1310         igb_set_interrupt_capability(adapter, msix);
1311
1312         err = igb_alloc_q_vectors(adapter);
1313         if (err) {
1314                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315                 goto err_alloc_q_vectors;
1316         }
1317
1318         igb_cache_ring_register(adapter);
1319
1320         return 0;
1321
1322 err_alloc_q_vectors:
1323         igb_reset_interrupt_capability(adapter);
1324         return err;
1325 }
1326
1327 /**
1328  * igb_request_irq - initialize interrupts
1329  *
1330  * Attempts to configure interrupts using the best available
1331  * capabilities of the hardware and kernel.
1332  **/
1333 static int igb_request_irq(struct igb_adapter *adapter)
1334 {
1335         struct net_device *netdev = adapter->netdev;
1336         struct pci_dev *pdev = adapter->pdev;
1337         int err = 0;
1338
1339         if (adapter->msix_entries) {
1340                 err = igb_request_msix(adapter);
1341                 if (!err)
1342                         goto request_done;
1343                 /* fall back to MSI */
1344                 igb_free_all_tx_resources(adapter);
1345                 igb_free_all_rx_resources(adapter);
1346
1347                 igb_clear_interrupt_scheme(adapter);
1348                 err = igb_init_interrupt_scheme(adapter, false);
1349                 if (err)
1350                         goto request_done;
1351
1352                 igb_setup_all_tx_resources(adapter);
1353                 igb_setup_all_rx_resources(adapter);
1354                 igb_configure(adapter);
1355         }
1356
1357         igb_assign_vector(adapter->q_vector[0], 0);
1358
1359         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1361                                   netdev->name, adapter);
1362                 if (!err)
1363                         goto request_done;
1364
1365                 /* fall back to legacy interrupts */
1366                 igb_reset_interrupt_capability(adapter);
1367                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368         }
1369
1370         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371                           netdev->name, adapter);
1372
1373         if (err)
1374                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375                         err);
1376
1377 request_done:
1378         return err;
1379 }
1380
1381 static void igb_free_irq(struct igb_adapter *adapter)
1382 {
1383         if (adapter->msix_entries) {
1384                 int vector = 0, i;
1385
1386                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1387
1388                 for (i = 0; i < adapter->num_q_vectors; i++)
1389                         free_irq(adapter->msix_entries[vector++].vector,
1390                                  adapter->q_vector[i]);
1391         } else {
1392                 free_irq(adapter->pdev->irq, adapter);
1393         }
1394 }
1395
1396 /**
1397  * igb_irq_disable - Mask off interrupt generation on the NIC
1398  * @adapter: board private structure
1399  **/
1400 static void igb_irq_disable(struct igb_adapter *adapter)
1401 {
1402         struct e1000_hw *hw = &adapter->hw;
1403
1404         /*
1405          * we need to be careful when disabling interrupts.  The VFs are also
1406          * mapped into these registers and so clearing the bits can cause
1407          * issues on the VF drivers so we only need to clear what we set
1408          */
1409         if (adapter->msix_entries) {
1410                 u32 regval = rd32(E1000_EIAM);
1411                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1413                 regval = rd32(E1000_EIAC);
1414                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415         }
1416
1417         wr32(E1000_IAM, 0);
1418         wr32(E1000_IMC, ~0);
1419         wrfl();
1420         if (adapter->msix_entries) {
1421                 int i;
1422                 for (i = 0; i < adapter->num_q_vectors; i++)
1423                         synchronize_irq(adapter->msix_entries[i].vector);
1424         } else {
1425                 synchronize_irq(adapter->pdev->irq);
1426         }
1427 }
1428
1429 /**
1430  * igb_irq_enable - Enable default interrupt generation settings
1431  * @adapter: board private structure
1432  **/
1433 static void igb_irq_enable(struct igb_adapter *adapter)
1434 {
1435         struct e1000_hw *hw = &adapter->hw;
1436
1437         if (adapter->msix_entries) {
1438                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439                 u32 regval = rd32(E1000_EIAC);
1440                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441                 regval = rd32(E1000_EIAM);
1442                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1444                 if (adapter->vfs_allocated_count) {
1445                         wr32(E1000_MBVFIMR, 0xFF);
1446                         ims |= E1000_IMS_VMMB;
1447                 }
1448                 wr32(E1000_IMS, ims);
1449         } else {
1450                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1451                                 E1000_IMS_DRSTA);
1452                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1453                                 E1000_IMS_DRSTA);
1454         }
1455 }
1456
1457 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458 {
1459         struct e1000_hw *hw = &adapter->hw;
1460         u16 vid = adapter->hw.mng_cookie.vlan_id;
1461         u16 old_vid = adapter->mng_vlan_id;
1462
1463         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464                 /* add VID to filter table */
1465                 igb_vfta_set(hw, vid, true);
1466                 adapter->mng_vlan_id = vid;
1467         } else {
1468                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469         }
1470
1471         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472             (vid != old_vid) &&
1473             !test_bit(old_vid, adapter->active_vlans)) {
1474                 /* remove VID from filter table */
1475                 igb_vfta_set(hw, old_vid, false);
1476         }
1477 }
1478
1479 /**
1480  * igb_release_hw_control - release control of the h/w to f/w
1481  * @adapter: address of board private structure
1482  *
1483  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484  * For ASF and Pass Through versions of f/w this means that the
1485  * driver is no longer loaded.
1486  *
1487  **/
1488 static void igb_release_hw_control(struct igb_adapter *adapter)
1489 {
1490         struct e1000_hw *hw = &adapter->hw;
1491         u32 ctrl_ext;
1492
1493         /* Let firmware take over control of h/w */
1494         ctrl_ext = rd32(E1000_CTRL_EXT);
1495         wr32(E1000_CTRL_EXT,
1496                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497 }
1498
1499 /**
1500  * igb_get_hw_control - get control of the h/w from f/w
1501  * @adapter: address of board private structure
1502  *
1503  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504  * For ASF and Pass Through versions of f/w this means that
1505  * the driver is loaded.
1506  *
1507  **/
1508 static void igb_get_hw_control(struct igb_adapter *adapter)
1509 {
1510         struct e1000_hw *hw = &adapter->hw;
1511         u32 ctrl_ext;
1512
1513         /* Let firmware know the driver has taken over */
1514         ctrl_ext = rd32(E1000_CTRL_EXT);
1515         wr32(E1000_CTRL_EXT,
1516                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517 }
1518
1519 /**
1520  * igb_configure - configure the hardware for RX and TX
1521  * @adapter: private board structure
1522  **/
1523 static void igb_configure(struct igb_adapter *adapter)
1524 {
1525         struct net_device *netdev = adapter->netdev;
1526         int i;
1527
1528         igb_get_hw_control(adapter);
1529         igb_set_rx_mode(netdev);
1530
1531         igb_restore_vlan(adapter);
1532
1533         igb_setup_tctl(adapter);
1534         igb_setup_mrqc(adapter);
1535         igb_setup_rctl(adapter);
1536
1537         igb_configure_tx(adapter);
1538         igb_configure_rx(adapter);
1539
1540         igb_rx_fifo_flush_82575(&adapter->hw);
1541
1542         /* call igb_desc_unused which always leaves
1543          * at least 1 descriptor unused to make sure
1544          * next_to_use != next_to_clean */
1545         for (i = 0; i < adapter->num_rx_queues; i++) {
1546                 struct igb_ring *ring = adapter->rx_ring[i];
1547                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548         }
1549 }
1550
1551 /**
1552  * igb_power_up_link - Power up the phy/serdes link
1553  * @adapter: address of board private structure
1554  **/
1555 void igb_power_up_link(struct igb_adapter *adapter)
1556 {
1557         igb_reset_phy(&adapter->hw);
1558
1559         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560                 igb_power_up_phy_copper(&adapter->hw);
1561         else
1562                 igb_power_up_serdes_link_82575(&adapter->hw);
1563 }
1564
1565 /**
1566  * igb_power_down_link - Power down the phy/serdes link
1567  * @adapter: address of board private structure
1568  */
1569 static void igb_power_down_link(struct igb_adapter *adapter)
1570 {
1571         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572                 igb_power_down_phy_copper_82575(&adapter->hw);
1573         else
1574                 igb_shutdown_serdes_link_82575(&adapter->hw);
1575 }
1576
1577 /**
1578  * igb_up - Open the interface and prepare it to handle traffic
1579  * @adapter: board private structure
1580  **/
1581 int igb_up(struct igb_adapter *adapter)
1582 {
1583         struct e1000_hw *hw = &adapter->hw;
1584         int i;
1585
1586         /* hardware has been reset, we need to reload some things */
1587         igb_configure(adapter);
1588
1589         clear_bit(__IGB_DOWN, &adapter->state);
1590
1591         for (i = 0; i < adapter->num_q_vectors; i++)
1592                 napi_enable(&(adapter->q_vector[i]->napi));
1593
1594         if (adapter->msix_entries)
1595                 igb_configure_msix(adapter);
1596         else
1597                 igb_assign_vector(adapter->q_vector[0], 0);
1598
1599         /* Clear any pending interrupts. */
1600         rd32(E1000_ICR);
1601         igb_irq_enable(adapter);
1602
1603         /* notify VFs that reset has been completed */
1604         if (adapter->vfs_allocated_count) {
1605                 u32 reg_data = rd32(E1000_CTRL_EXT);
1606                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1607                 wr32(E1000_CTRL_EXT, reg_data);
1608         }
1609
1610         netif_tx_start_all_queues(adapter->netdev);
1611
1612         /* start the watchdog. */
1613         hw->mac.get_link_status = 1;
1614         schedule_work(&adapter->watchdog_task);
1615
1616         return 0;
1617 }
1618
1619 void igb_down(struct igb_adapter *adapter)
1620 {
1621         struct net_device *netdev = adapter->netdev;
1622         struct e1000_hw *hw = &adapter->hw;
1623         u32 tctl, rctl;
1624         int i;
1625
1626         /* signal that we're down so the interrupt handler does not
1627          * reschedule our watchdog timer */
1628         set_bit(__IGB_DOWN, &adapter->state);
1629
1630         /* disable receives in the hardware */
1631         rctl = rd32(E1000_RCTL);
1632         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633         /* flush and sleep below */
1634
1635         netif_tx_stop_all_queues(netdev);
1636
1637         /* disable transmits in the hardware */
1638         tctl = rd32(E1000_TCTL);
1639         tctl &= ~E1000_TCTL_EN;
1640         wr32(E1000_TCTL, tctl);
1641         /* flush both disables and wait for them to finish */
1642         wrfl();
1643         msleep(10);
1644
1645         for (i = 0; i < adapter->num_q_vectors; i++)
1646                 napi_disable(&(adapter->q_vector[i]->napi));
1647
1648         igb_irq_disable(adapter);
1649
1650         del_timer_sync(&adapter->watchdog_timer);
1651         del_timer_sync(&adapter->phy_info_timer);
1652
1653         netif_carrier_off(netdev);
1654
1655         /* record the stats before reset*/
1656         spin_lock(&adapter->stats64_lock);
1657         igb_update_stats(adapter, &adapter->stats64);
1658         spin_unlock(&adapter->stats64_lock);
1659
1660         adapter->link_speed = 0;
1661         adapter->link_duplex = 0;
1662
1663         if (!pci_channel_offline(adapter->pdev))
1664                 igb_reset(adapter);
1665         igb_clean_all_tx_rings(adapter);
1666         igb_clean_all_rx_rings(adapter);
1667 #ifdef CONFIG_IGB_DCA
1668
1669         /* since we reset the hardware DCA settings were cleared */
1670         igb_setup_dca(adapter);
1671 #endif
1672 }
1673
1674 void igb_reinit_locked(struct igb_adapter *adapter)
1675 {
1676         WARN_ON(in_interrupt());
1677         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678                 msleep(1);
1679         igb_down(adapter);
1680         igb_up(adapter);
1681         clear_bit(__IGB_RESETTING, &adapter->state);
1682 }
1683
1684 void igb_reset(struct igb_adapter *adapter)
1685 {
1686         struct pci_dev *pdev = adapter->pdev;
1687         struct e1000_hw *hw = &adapter->hw;
1688         struct e1000_mac_info *mac = &hw->mac;
1689         struct e1000_fc_info *fc = &hw->fc;
1690         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691
1692         /* Repartition Pba for greater than 9k mtu
1693          * To take effect CTRL.RST is required.
1694          */
1695         switch (mac->type) {
1696         case e1000_i350:
1697         case e1000_82580:
1698                 pba = rd32(E1000_RXPBS);
1699                 pba = igb_rxpbs_adjust_82580(pba);
1700                 break;
1701         case e1000_82576:
1702                 pba = rd32(E1000_RXPBS);
1703                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1704                 break;
1705         case e1000_82575:
1706         case e1000_i210:
1707         case e1000_i211:
1708         default:
1709                 pba = E1000_PBA_34K;
1710                 break;
1711         }
1712
1713         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714             (mac->type < e1000_82576)) {
1715                 /* adjust PBA for jumbo frames */
1716                 wr32(E1000_PBA, pba);
1717
1718                 /* To maintain wire speed transmits, the Tx FIFO should be
1719                  * large enough to accommodate two full transmit packets,
1720                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1721                  * the Rx FIFO should be large enough to accommodate at least
1722                  * one full receive packet and is similarly rounded up and
1723                  * expressed in KB. */
1724                 pba = rd32(E1000_PBA);
1725                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1726                 tx_space = pba >> 16;
1727                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1728                 pba &= 0xffff;
1729                 /* the tx fifo also stores 16 bytes of information about the tx
1730                  * but don't include ethernet FCS because hardware appends it */
1731                 min_tx_space = (adapter->max_frame_size +
1732                                 sizeof(union e1000_adv_tx_desc) -
1733                                 ETH_FCS_LEN) * 2;
1734                 min_tx_space = ALIGN(min_tx_space, 1024);
1735                 min_tx_space >>= 10;
1736                 /* software strips receive CRC, so leave room for it */
1737                 min_rx_space = adapter->max_frame_size;
1738                 min_rx_space = ALIGN(min_rx_space, 1024);
1739                 min_rx_space >>= 10;
1740
1741                 /* If current Tx allocation is less than the min Tx FIFO size,
1742                  * and the min Tx FIFO size is less than the current Rx FIFO
1743                  * allocation, take space away from current Rx allocation */
1744                 if (tx_space < min_tx_space &&
1745                     ((min_tx_space - tx_space) < pba)) {
1746                         pba = pba - (min_tx_space - tx_space);
1747
1748                         /* if short on rx space, rx wins and must trump tx
1749                          * adjustment */
1750                         if (pba < min_rx_space)
1751                                 pba = min_rx_space;
1752                 }
1753                 wr32(E1000_PBA, pba);
1754         }
1755
1756         /* flow control settings */
1757         /* The high water mark must be low enough to fit one full frame
1758          * (or the size used for early receive) above it in the Rx FIFO.
1759          * Set it to the lower of:
1760          * - 90% of the Rx FIFO size, or
1761          * - the full Rx FIFO size minus one full frame */
1762         hwm = min(((pba << 10) * 9 / 10),
1763                         ((pba << 10) - 2 * adapter->max_frame_size));
1764
1765         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1766         fc->low_water = fc->high_water - 16;
1767         fc->pause_time = 0xFFFF;
1768         fc->send_xon = 1;
1769         fc->current_mode = fc->requested_mode;
1770
1771         /* disable receive for all VFs and wait one second */
1772         if (adapter->vfs_allocated_count) {
1773                 int i;
1774                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776
1777                 /* ping all the active vfs to let them know we are going down */
1778                 igb_ping_all_vfs(adapter);
1779
1780                 /* disable transmits and receives */
1781                 wr32(E1000_VFRE, 0);
1782                 wr32(E1000_VFTE, 0);
1783         }
1784
1785         /* Allow time for pending master requests to run */
1786         hw->mac.ops.reset_hw(hw);
1787         wr32(E1000_WUC, 0);
1788
1789         if (hw->mac.ops.init_hw(hw))
1790                 dev_err(&pdev->dev, "Hardware Error\n");
1791
1792         /*
1793          * Flow control settings reset on hardware reset, so guarantee flow
1794          * control is off when forcing speed.
1795          */
1796         if (!hw->mac.autoneg)
1797                 igb_force_mac_fc(hw);
1798
1799         igb_init_dmac(adapter, pba);
1800 #ifdef CONFIG_IGB_HWMON
1801         /* Re-initialize the thermal sensor on i350 devices. */
1802         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804                         /* If present, re-initialize the external thermal sensor
1805                          * interface.
1806                          */
1807                         if (adapter->ets)
1808                                 mac->ops.init_thermal_sensor_thresh(hw);
1809                 }
1810         }
1811 #endif
1812         if (!netif_running(adapter->netdev))
1813                 igb_power_down_link(adapter);
1814
1815         igb_update_mng_vlan(adapter);
1816
1817         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1820         /* Re-enable PTP, where applicable. */
1821         igb_ptp_reset(adapter);
1822
1823         igb_get_phy_info(hw);
1824 }
1825
1826 static netdev_features_t igb_fix_features(struct net_device *netdev,
1827         netdev_features_t features)
1828 {
1829         /*
1830          * Since there is no support for separate rx/tx vlan accel
1831          * enable/disable make sure tx flag is always in same state as rx.
1832          */
1833         if (features & NETIF_F_HW_VLAN_RX)
1834                 features |= NETIF_F_HW_VLAN_TX;
1835         else
1836                 features &= ~NETIF_F_HW_VLAN_TX;
1837
1838         return features;
1839 }
1840
1841 static int igb_set_features(struct net_device *netdev,
1842         netdev_features_t features)
1843 {
1844         netdev_features_t changed = netdev->features ^ features;
1845         struct igb_adapter *adapter = netdev_priv(netdev);
1846
1847         if (changed & NETIF_F_HW_VLAN_RX)
1848                 igb_vlan_mode(netdev, features);
1849
1850         if (!(changed & NETIF_F_RXALL))
1851                 return 0;
1852
1853         netdev->features = features;
1854
1855         if (netif_running(netdev))
1856                 igb_reinit_locked(adapter);
1857         else
1858                 igb_reset(adapter);
1859
1860         return 0;
1861 }
1862
1863 static const struct net_device_ops igb_netdev_ops = {
1864         .ndo_open               = igb_open,
1865         .ndo_stop               = igb_close,
1866         .ndo_start_xmit         = igb_xmit_frame,
1867         .ndo_get_stats64        = igb_get_stats64,
1868         .ndo_set_rx_mode        = igb_set_rx_mode,
1869         .ndo_set_mac_address    = igb_set_mac,
1870         .ndo_change_mtu         = igb_change_mtu,
1871         .ndo_do_ioctl           = igb_ioctl,
1872         .ndo_tx_timeout         = igb_tx_timeout,
1873         .ndo_validate_addr      = eth_validate_addr,
1874         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1875         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1876         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1877         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1878         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1879         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1880 #ifdef CONFIG_NET_POLL_CONTROLLER
1881         .ndo_poll_controller    = igb_netpoll,
1882 #endif
1883         .ndo_fix_features       = igb_fix_features,
1884         .ndo_set_features       = igb_set_features,
1885 };
1886
1887 /**
1888  * igb_set_fw_version - Configure version string for ethtool
1889  * @adapter: adapter struct
1890  *
1891  **/
1892 void igb_set_fw_version(struct igb_adapter *adapter)
1893 {
1894         struct e1000_hw *hw = &adapter->hw;
1895         struct e1000_fw_version fw;
1896
1897         igb_get_fw_version(hw, &fw);
1898
1899         switch (hw->mac.type) {
1900         case e1000_i211:
1901                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902                          "%2d.%2d-%d",
1903                          fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904                 break;
1905
1906         default:
1907                 /* if option is rom valid, display its version too */
1908                 if (fw.or_valid) {
1909                         snprintf(adapter->fw_version,
1910                                  sizeof(adapter->fw_version),
1911                                  "%d.%d, 0x%08x, %d.%d.%d",
1912                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1913                                  fw.or_major, fw.or_build, fw.or_patch);
1914                 /* no option rom */
1915                 } else {
1916                         snprintf(adapter->fw_version,
1917                                  sizeof(adapter->fw_version),
1918                                  "%d.%d, 0x%08x",
1919                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
1920                 }
1921                 break;
1922         }
1923         return;
1924 }
1925
1926 /*  igb_init_i2c - Init I2C interface
1927  *  @adapter: pointer to adapter structure
1928  *
1929  */
1930 static s32 igb_init_i2c(struct igb_adapter *adapter)
1931 {
1932         s32 status = E1000_SUCCESS;
1933
1934         /* I2C interface supported on i350 devices */
1935         if (adapter->hw.mac.type != e1000_i350)
1936                 return E1000_SUCCESS;
1937
1938         /* Initialize the i2c bus which is controlled by the registers.
1939          * This bus will use the i2c_algo_bit structue that implements
1940          * the protocol through toggling of the 4 bits in the register.
1941          */
1942         adapter->i2c_adap.owner = THIS_MODULE;
1943         adapter->i2c_algo = igb_i2c_algo;
1944         adapter->i2c_algo.data = adapter;
1945         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1946         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1947         strlcpy(adapter->i2c_adap.name, "igb BB",
1948                 sizeof(adapter->i2c_adap.name));
1949         status = i2c_bit_add_bus(&adapter->i2c_adap);
1950         return status;
1951 }
1952
1953 /**
1954  * igb_probe - Device Initialization Routine
1955  * @pdev: PCI device information struct
1956  * @ent: entry in igb_pci_tbl
1957  *
1958  * Returns 0 on success, negative on failure
1959  *
1960  * igb_probe initializes an adapter identified by a pci_dev structure.
1961  * The OS initialization, configuring of the adapter private structure,
1962  * and a hardware reset occur.
1963  **/
1964 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1965 {
1966         struct net_device *netdev;
1967         struct igb_adapter *adapter;
1968         struct e1000_hw *hw;
1969         u16 eeprom_data = 0;
1970         s32 ret_val;
1971         static int global_quad_port_a; /* global quad port a indication */
1972         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1973         unsigned long mmio_start, mmio_len;
1974         int err, pci_using_dac;
1975         u8 part_str[E1000_PBANUM_LENGTH];
1976
1977         /* Catch broken hardware that put the wrong VF device ID in
1978          * the PCIe SR-IOV capability.
1979          */
1980         if (pdev->is_virtfn) {
1981                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1982                         pci_name(pdev), pdev->vendor, pdev->device);
1983                 return -EINVAL;
1984         }
1985
1986         err = pci_enable_device_mem(pdev);
1987         if (err)
1988                 return err;
1989
1990         pci_using_dac = 0;
1991         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1992         if (!err) {
1993                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1994                 if (!err)
1995                         pci_using_dac = 1;
1996         } else {
1997                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1998                 if (err) {
1999                         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2000                         if (err) {
2001                                 dev_err(&pdev->dev, "No usable DMA "
2002                                         "configuration, aborting\n");
2003                                 goto err_dma;
2004                         }
2005                 }
2006         }
2007
2008         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2009                                            IORESOURCE_MEM),
2010                                            igb_driver_name);
2011         if (err)
2012                 goto err_pci_reg;
2013
2014         pci_enable_pcie_error_reporting(pdev);
2015
2016         pci_set_master(pdev);
2017         pci_save_state(pdev);
2018
2019         err = -ENOMEM;
2020         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2021                                    IGB_MAX_TX_QUEUES);
2022         if (!netdev)
2023                 goto err_alloc_etherdev;
2024
2025         SET_NETDEV_DEV(netdev, &pdev->dev);
2026
2027         pci_set_drvdata(pdev, netdev);
2028         adapter = netdev_priv(netdev);
2029         adapter->netdev = netdev;
2030         adapter->pdev = pdev;
2031         hw = &adapter->hw;
2032         hw->back = adapter;
2033         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2034
2035         mmio_start = pci_resource_start(pdev, 0);
2036         mmio_len = pci_resource_len(pdev, 0);
2037
2038         err = -EIO;
2039         hw->hw_addr = ioremap(mmio_start, mmio_len);
2040         if (!hw->hw_addr)
2041                 goto err_ioremap;
2042
2043         netdev->netdev_ops = &igb_netdev_ops;
2044         igb_set_ethtool_ops(netdev);
2045         netdev->watchdog_timeo = 5 * HZ;
2046
2047         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2048
2049         netdev->mem_start = mmio_start;
2050         netdev->mem_end = mmio_start + mmio_len;
2051
2052         /* PCI config space info */
2053         hw->vendor_id = pdev->vendor;
2054         hw->device_id = pdev->device;
2055         hw->revision_id = pdev->revision;
2056         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2057         hw->subsystem_device_id = pdev->subsystem_device;
2058
2059         /* Copy the default MAC, PHY and NVM function pointers */
2060         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2061         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2062         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2063         /* Initialize skew-specific constants */
2064         err = ei->get_invariants(hw);
2065         if (err)
2066                 goto err_sw_init;
2067
2068         /* setup the private structure */
2069         err = igb_sw_init(adapter);
2070         if (err)
2071                 goto err_sw_init;
2072
2073         igb_get_bus_info_pcie(hw);
2074
2075         hw->phy.autoneg_wait_to_complete = false;
2076
2077         /* Copper options */
2078         if (hw->phy.media_type == e1000_media_type_copper) {
2079                 hw->phy.mdix = AUTO_ALL_MODES;
2080                 hw->phy.disable_polarity_correction = false;
2081                 hw->phy.ms_type = e1000_ms_hw_default;
2082         }
2083
2084         if (igb_check_reset_block(hw))
2085                 dev_info(&pdev->dev,
2086                         "PHY reset is blocked due to SOL/IDER session.\n");
2087
2088         /*
2089          * features is initialized to 0 in allocation, it might have bits
2090          * set by igb_sw_init so we should use an or instead of an
2091          * assignment.
2092          */
2093         netdev->features |= NETIF_F_SG |
2094                             NETIF_F_IP_CSUM |
2095                             NETIF_F_IPV6_CSUM |
2096                             NETIF_F_TSO |
2097                             NETIF_F_TSO6 |
2098                             NETIF_F_RXHASH |
2099                             NETIF_F_RXCSUM |
2100                             NETIF_F_HW_VLAN_RX |
2101                             NETIF_F_HW_VLAN_TX;
2102
2103         /* copy netdev features into list of user selectable features */
2104         netdev->hw_features |= netdev->features;
2105         netdev->hw_features |= NETIF_F_RXALL;
2106
2107         /* set this bit last since it cannot be part of hw_features */
2108         netdev->features |= NETIF_F_HW_VLAN_FILTER;
2109
2110         netdev->vlan_features |= NETIF_F_TSO |
2111                                  NETIF_F_TSO6 |
2112                                  NETIF_F_IP_CSUM |
2113                                  NETIF_F_IPV6_CSUM |
2114                                  NETIF_F_SG;
2115
2116         netdev->priv_flags |= IFF_SUPP_NOFCS;
2117
2118         if (pci_using_dac) {
2119                 netdev->features |= NETIF_F_HIGHDMA;
2120                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2121         }
2122
2123         if (hw->mac.type >= e1000_82576) {
2124                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2125                 netdev->features |= NETIF_F_SCTP_CSUM;
2126         }
2127
2128         netdev->priv_flags |= IFF_UNICAST_FLT;
2129
2130         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2131
2132         /* before reading the NVM, reset the controller to put the device in a
2133          * known good starting state */
2134         hw->mac.ops.reset_hw(hw);
2135
2136         /*
2137          * make sure the NVM is good , i211 parts have special NVM that
2138          * doesn't contain a checksum
2139          */
2140         if (hw->mac.type != e1000_i211) {
2141                 if (hw->nvm.ops.validate(hw) < 0) {
2142                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2143                         err = -EIO;
2144                         goto err_eeprom;
2145                 }
2146         }
2147
2148         /* copy the MAC address out of the NVM */
2149         if (hw->mac.ops.read_mac_addr(hw))
2150                 dev_err(&pdev->dev, "NVM Read Error\n");
2151
2152         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2153
2154         if (!is_valid_ether_addr(netdev->dev_addr)) {
2155                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2156                 err = -EIO;
2157                 goto err_eeprom;
2158         }
2159
2160         /* get firmware version for ethtool -i */
2161         igb_set_fw_version(adapter);
2162
2163         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2164                     (unsigned long) adapter);
2165         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2166                     (unsigned long) adapter);
2167
2168         INIT_WORK(&adapter->reset_task, igb_reset_task);
2169         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2170
2171         /* Initialize link properties that are user-changeable */
2172         adapter->fc_autoneg = true;
2173         hw->mac.autoneg = true;
2174         hw->phy.autoneg_advertised = 0x2f;
2175
2176         hw->fc.requested_mode = e1000_fc_default;
2177         hw->fc.current_mode = e1000_fc_default;
2178
2179         igb_validate_mdi_setting(hw);
2180
2181         /* By default, support wake on port A */
2182         if (hw->bus.func == 0)
2183                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2184
2185         /* Check the NVM for wake support on non-port A ports */
2186         if (hw->mac.type >= e1000_82580)
2187                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189                                  &eeprom_data);
2190         else if (hw->bus.func == 1)
2191                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2192
2193         if (eeprom_data & IGB_EEPROM_APME)
2194                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2195
2196         /* now that we have the eeprom settings, apply the special cases where
2197          * the eeprom may be wrong or the board simply won't support wake on
2198          * lan on a particular port */
2199         switch (pdev->device) {
2200         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2201                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2202                 break;
2203         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2204         case E1000_DEV_ID_82576_FIBER:
2205         case E1000_DEV_ID_82576_SERDES:
2206                 /* Wake events only supported on port A for dual fiber
2207                  * regardless of eeprom setting */
2208                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2209                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2210                 break;
2211         case E1000_DEV_ID_82576_QUAD_COPPER:
2212         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2213                 /* if quad port adapter, disable WoL on all but port A */
2214                 if (global_quad_port_a != 0)
2215                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2216                 else
2217                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2218                 /* Reset for multiple quad port adapters */
2219                 if (++global_quad_port_a == 4)
2220                         global_quad_port_a = 0;
2221                 break;
2222         default:
2223                 /* If the device can't wake, don't set software support */
2224                 if (!device_can_wakeup(&adapter->pdev->dev))
2225                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2226         }
2227
2228         /* initialize the wol settings based on the eeprom settings */
2229         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2230                 adapter->wol |= E1000_WUFC_MAG;
2231
2232         /* Some vendors want WoL disabled by default, but still supported */
2233         if ((hw->mac.type == e1000_i350) &&
2234             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2235                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2236                 adapter->wol = 0;
2237         }
2238
2239         device_set_wakeup_enable(&adapter->pdev->dev,
2240                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2241
2242         /* reset the hardware with the new settings */
2243         igb_reset(adapter);
2244
2245         /* Init the I2C interface */
2246         err = igb_init_i2c(adapter);
2247         if (err) {
2248                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2249                 goto err_eeprom;
2250         }
2251
2252         /* let the f/w know that the h/w is now under the control of the
2253          * driver. */
2254         igb_get_hw_control(adapter);
2255
2256         strcpy(netdev->name, "eth%d");
2257         err = register_netdev(netdev);
2258         if (err)
2259                 goto err_register;
2260
2261         /* carrier off reporting is important to ethtool even BEFORE open */
2262         netif_carrier_off(netdev);
2263
2264 #ifdef CONFIG_IGB_DCA
2265         if (dca_add_requester(&pdev->dev) == 0) {
2266                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2267                 dev_info(&pdev->dev, "DCA enabled\n");
2268                 igb_setup_dca(adapter);
2269         }
2270
2271 #endif
2272 #ifdef CONFIG_IGB_HWMON
2273         /* Initialize the thermal sensor on i350 devices. */
2274         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2275                 u16 ets_word;
2276
2277                 /*
2278                  * Read the NVM to determine if this i350 device supports an
2279                  * external thermal sensor.
2280                  */
2281                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2282                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2283                         adapter->ets = true;
2284                 else
2285                         adapter->ets = false;
2286                 if (igb_sysfs_init(adapter))
2287                         dev_err(&pdev->dev,
2288                                 "failed to allocate sysfs resources\n");
2289         } else {
2290                 adapter->ets = false;
2291         }
2292 #endif
2293         /* do hw tstamp init after resetting */
2294         igb_ptp_init(adapter);
2295
2296         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2297         /* print bus type/speed/width info */
2298         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2299                  netdev->name,
2300                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2301                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2302                                                             "unknown"),
2303                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2304                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2305                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2306                    "unknown"),
2307                  netdev->dev_addr);
2308
2309         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2310         if (ret_val)
2311                 strcpy(part_str, "Unknown");
2312         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2313         dev_info(&pdev->dev,
2314                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2315                 adapter->msix_entries ? "MSI-X" :
2316                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2317                 adapter->num_rx_queues, adapter->num_tx_queues);
2318         switch (hw->mac.type) {
2319         case e1000_i350:
2320         case e1000_i210:
2321         case e1000_i211:
2322                 igb_set_eee_i350(hw);
2323                 break;
2324         default:
2325                 break;
2326         }
2327
2328         pm_runtime_put_noidle(&pdev->dev);
2329         return 0;
2330
2331 err_register:
2332         igb_release_hw_control(adapter);
2333         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2334 err_eeprom:
2335         if (!igb_check_reset_block(hw))
2336                 igb_reset_phy(hw);
2337
2338         if (hw->flash_address)
2339                 iounmap(hw->flash_address);
2340 err_sw_init:
2341         igb_clear_interrupt_scheme(adapter);
2342         iounmap(hw->hw_addr);
2343 err_ioremap:
2344         free_netdev(netdev);
2345 err_alloc_etherdev:
2346         pci_release_selected_regions(pdev,
2347                                      pci_select_bars(pdev, IORESOURCE_MEM));
2348 err_pci_reg:
2349 err_dma:
2350         pci_disable_device(pdev);
2351         return err;
2352 }
2353
2354 #ifdef CONFIG_PCI_IOV
2355 static int  igb_disable_sriov(struct pci_dev *pdev)
2356 {
2357         struct net_device *netdev = pci_get_drvdata(pdev);
2358         struct igb_adapter *adapter = netdev_priv(netdev);
2359         struct e1000_hw *hw = &adapter->hw;
2360
2361         /* reclaim resources allocated to VFs */
2362         if (adapter->vf_data) {
2363                 /* disable iov and allow time for transactions to clear */
2364                 if (igb_vfs_are_assigned(adapter)) {
2365                         dev_warn(&pdev->dev,
2366                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2367                         return -EPERM;
2368                 } else {
2369                         pci_disable_sriov(pdev);
2370                         msleep(500);
2371                 }
2372
2373                 kfree(adapter->vf_data);
2374                 adapter->vf_data = NULL;
2375                 adapter->vfs_allocated_count = 0;
2376                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2377                 wrfl();
2378                 msleep(100);
2379                 dev_info(&pdev->dev, "IOV Disabled\n");
2380
2381                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2382                 adapter->flags |= IGB_FLAG_DMAC;
2383         }
2384
2385         return 0;
2386 }
2387
2388 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2389 {
2390         struct net_device *netdev = pci_get_drvdata(pdev);
2391         struct igb_adapter *adapter = netdev_priv(netdev);
2392         int old_vfs = pci_num_vf(pdev);
2393         int err = 0;
2394         int i;
2395
2396         if (!num_vfs)
2397                 goto out;
2398         else if (old_vfs && old_vfs == num_vfs)
2399                 goto out;
2400         else if (old_vfs && old_vfs != num_vfs)
2401                 err = igb_disable_sriov(pdev);
2402
2403         if (err)
2404                 goto out;
2405
2406         if (num_vfs > 7) {
2407                 err = -EPERM;
2408                 goto out;
2409         }
2410
2411         adapter->vfs_allocated_count = num_vfs;
2412
2413         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2414                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2415
2416         /* if allocation failed then we do not support SR-IOV */
2417         if (!adapter->vf_data) {
2418                 adapter->vfs_allocated_count = 0;
2419                 dev_err(&pdev->dev,
2420                         "Unable to allocate memory for VF Data Storage\n");
2421                 err = -ENOMEM;
2422                 goto out;
2423         }
2424
2425         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2426         if (err)
2427                 goto err_out;
2428
2429         dev_info(&pdev->dev, "%d VFs allocated\n",
2430                  adapter->vfs_allocated_count);
2431         for (i = 0; i < adapter->vfs_allocated_count; i++)
2432                 igb_vf_configure(adapter, i);
2433
2434         /* DMA Coalescing is not supported in IOV mode. */
2435         adapter->flags &= ~IGB_FLAG_DMAC;
2436         goto out;
2437
2438 err_out:
2439         kfree(adapter->vf_data);
2440         adapter->vf_data = NULL;
2441         adapter->vfs_allocated_count = 0;
2442 out:
2443         return err;
2444 }
2445
2446 #endif
2447 /*
2448  *  igb_remove_i2c - Cleanup  I2C interface
2449  *  @adapter: pointer to adapter structure
2450  *
2451  */
2452 static void igb_remove_i2c(struct igb_adapter *adapter)
2453 {
2454
2455         /* free the adapter bus structure */
2456         i2c_del_adapter(&adapter->i2c_adap);
2457 }
2458
2459 /**
2460  * igb_remove - Device Removal Routine
2461  * @pdev: PCI device information struct
2462  *
2463  * igb_remove is called by the PCI subsystem to alert the driver
2464  * that it should release a PCI device.  The could be caused by a
2465  * Hot-Plug event, or because the driver is going to be removed from
2466  * memory.
2467  **/
2468 static void igb_remove(struct pci_dev *pdev)
2469 {
2470         struct net_device *netdev = pci_get_drvdata(pdev);
2471         struct igb_adapter *adapter = netdev_priv(netdev);
2472         struct e1000_hw *hw = &adapter->hw;
2473
2474         pm_runtime_get_noresume(&pdev->dev);
2475 #ifdef CONFIG_IGB_HWMON
2476         igb_sysfs_exit(adapter);
2477 #endif
2478         igb_remove_i2c(adapter);
2479         igb_ptp_stop(adapter);
2480         /*
2481          * The watchdog timer may be rescheduled, so explicitly
2482          * disable watchdog from being rescheduled.
2483          */
2484         set_bit(__IGB_DOWN, &adapter->state);
2485         del_timer_sync(&adapter->watchdog_timer);
2486         del_timer_sync(&adapter->phy_info_timer);
2487
2488         cancel_work_sync(&adapter->reset_task);
2489         cancel_work_sync(&adapter->watchdog_task);
2490
2491 #ifdef CONFIG_IGB_DCA
2492         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2493                 dev_info(&pdev->dev, "DCA disabled\n");
2494                 dca_remove_requester(&pdev->dev);
2495                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2496                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2497         }
2498 #endif
2499
2500         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2501          * would have already happened in close and is redundant. */
2502         igb_release_hw_control(adapter);
2503
2504         unregister_netdev(netdev);
2505
2506         igb_clear_interrupt_scheme(adapter);
2507
2508 #ifdef CONFIG_PCI_IOV
2509         igb_disable_sriov(pdev);
2510 #endif
2511
2512         iounmap(hw->hw_addr);
2513         if (hw->flash_address)
2514                 iounmap(hw->flash_address);
2515         pci_release_selected_regions(pdev,
2516                                      pci_select_bars(pdev, IORESOURCE_MEM));
2517
2518         kfree(adapter->shadow_vfta);
2519         free_netdev(netdev);
2520
2521         pci_disable_pcie_error_reporting(pdev);
2522
2523         pci_disable_device(pdev);
2524 }
2525
2526 /**
2527  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2528  * @adapter: board private structure to initialize
2529  *
2530  * This function initializes the vf specific data storage and then attempts to
2531  * allocate the VFs.  The reason for ordering it this way is because it is much
2532  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2533  * the memory for the VFs.
2534  **/
2535 static void igb_probe_vfs(struct igb_adapter *adapter)
2536 {
2537 #ifdef CONFIG_PCI_IOV
2538         struct pci_dev *pdev = adapter->pdev;
2539         struct e1000_hw *hw = &adapter->hw;
2540
2541         /* Virtualization features not supported on i210 family. */
2542         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2543                 return;
2544
2545         pci_sriov_set_totalvfs(pdev, 7);
2546         igb_enable_sriov(pdev, max_vfs);
2547
2548 #endif /* CONFIG_PCI_IOV */
2549 }
2550
2551 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2552 {
2553         struct e1000_hw *hw = &adapter->hw;
2554         u32 max_rss_queues;
2555
2556         /* Determine the maximum number of RSS queues supported. */
2557         switch (hw->mac.type) {
2558         case e1000_i211:
2559                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2560                 break;
2561         case e1000_82575:
2562         case e1000_i210:
2563                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2564                 break;
2565         case e1000_i350:
2566                 /* I350 cannot do RSS and SR-IOV at the same time */
2567                 if (!!adapter->vfs_allocated_count) {
2568                         max_rss_queues = 1;
2569                         break;
2570                 }
2571                 /* fall through */
2572         case e1000_82576:
2573                 if (!!adapter->vfs_allocated_count) {
2574                         max_rss_queues = 2;
2575                         break;
2576                 }
2577                 /* fall through */
2578         case e1000_82580:
2579         default:
2580                 max_rss_queues = IGB_MAX_RX_QUEUES;
2581                 break;
2582         }
2583
2584         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2585
2586         /* Determine if we need to pair queues. */
2587         switch (hw->mac.type) {
2588         case e1000_82575:
2589         case e1000_i211:
2590                 /* Device supports enough interrupts without queue pairing. */
2591                 break;
2592         case e1000_82576:
2593                 /*
2594                  * If VFs are going to be allocated with RSS queues then we
2595                  * should pair the queues in order to conserve interrupts due
2596                  * to limited supply.
2597                  */
2598                 if ((adapter->rss_queues > 1) &&
2599                     (adapter->vfs_allocated_count > 6))
2600                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2601                 /* fall through */
2602         case e1000_82580:
2603         case e1000_i350:
2604         case e1000_i210:
2605         default:
2606                 /*
2607                  * If rss_queues > half of max_rss_queues, pair the queues in
2608                  * order to conserve interrupts due to limited supply.
2609                  */
2610                 if (adapter->rss_queues > (max_rss_queues / 2))
2611                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2612                 break;
2613         }
2614 }
2615
2616 /**
2617  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2618  * @adapter: board private structure to initialize
2619  *
2620  * igb_sw_init initializes the Adapter private data structure.
2621  * Fields are initialized based on PCI device information and
2622  * OS network device settings (MTU size).
2623  **/
2624 static int igb_sw_init(struct igb_adapter *adapter)
2625 {
2626         struct e1000_hw *hw = &adapter->hw;
2627         struct net_device *netdev = adapter->netdev;
2628         struct pci_dev *pdev = adapter->pdev;
2629
2630         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2631
2632         /* set default ring sizes */
2633         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2634         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2635
2636         /* set default ITR values */
2637         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2638         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2639
2640         /* set default work limits */
2641         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2642
2643         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2644                                   VLAN_HLEN;
2645         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2646
2647         spin_lock_init(&adapter->stats64_lock);
2648 #ifdef CONFIG_PCI_IOV
2649         switch (hw->mac.type) {
2650         case e1000_82576:
2651         case e1000_i350:
2652                 if (max_vfs > 7) {
2653                         dev_warn(&pdev->dev,
2654                                  "Maximum of 7 VFs per PF, using max\n");
2655                         max_vfs = adapter->vfs_allocated_count = 7;
2656                 } else
2657                         adapter->vfs_allocated_count = max_vfs;
2658                 if (adapter->vfs_allocated_count)
2659                         dev_warn(&pdev->dev,
2660                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2661                 break;
2662         default:
2663                 break;
2664         }
2665 #endif /* CONFIG_PCI_IOV */
2666
2667         igb_init_queue_configuration(adapter);
2668
2669         /* Setup and initialize a copy of the hw vlan table array */
2670         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2671                                        GFP_ATOMIC);
2672
2673         /* This call may decrease the number of queues */
2674         if (igb_init_interrupt_scheme(adapter, true)) {
2675                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2676                 return -ENOMEM;
2677         }
2678
2679         igb_probe_vfs(adapter);
2680
2681         /* Explicitly disable IRQ since the NIC can be in any state. */
2682         igb_irq_disable(adapter);
2683
2684         if (hw->mac.type >= e1000_i350)
2685                 adapter->flags &= ~IGB_FLAG_DMAC;
2686
2687         set_bit(__IGB_DOWN, &adapter->state);
2688         return 0;
2689 }
2690
2691 /**
2692  * igb_open - Called when a network interface is made active
2693  * @netdev: network interface device structure
2694  *
2695  * Returns 0 on success, negative value on failure
2696  *
2697  * The open entry point is called when a network interface is made
2698  * active by the system (IFF_UP).  At this point all resources needed
2699  * for transmit and receive operations are allocated, the interrupt
2700  * handler is registered with the OS, the watchdog timer is started,
2701  * and the stack is notified that the interface is ready.
2702  **/
2703 static int __igb_open(struct net_device *netdev, bool resuming)
2704 {
2705         struct igb_adapter *adapter = netdev_priv(netdev);
2706         struct e1000_hw *hw = &adapter->hw;
2707         struct pci_dev *pdev = adapter->pdev;
2708         int err;
2709         int i;
2710
2711         /* disallow open during test */
2712         if (test_bit(__IGB_TESTING, &adapter->state)) {
2713                 WARN_ON(resuming);
2714                 return -EBUSY;
2715         }
2716
2717         if (!resuming)
2718                 pm_runtime_get_sync(&pdev->dev);
2719
2720         netif_carrier_off(netdev);
2721
2722         /* allocate transmit descriptors */
2723         err = igb_setup_all_tx_resources(adapter);
2724         if (err)
2725                 goto err_setup_tx;
2726
2727         /* allocate receive descriptors */
2728         err = igb_setup_all_rx_resources(adapter);
2729         if (err)
2730                 goto err_setup_rx;
2731
2732         igb_power_up_link(adapter);
2733
2734         /* before we allocate an interrupt, we must be ready to handle it.
2735          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2736          * as soon as we call pci_request_irq, so we have to setup our
2737          * clean_rx handler before we do so.  */
2738         igb_configure(adapter);
2739
2740         err = igb_request_irq(adapter);
2741         if (err)
2742                 goto err_req_irq;
2743
2744         /* Notify the stack of the actual queue counts. */
2745         err = netif_set_real_num_tx_queues(adapter->netdev,
2746                                            adapter->num_tx_queues);
2747         if (err)
2748                 goto err_set_queues;
2749
2750         err = netif_set_real_num_rx_queues(adapter->netdev,
2751                                            adapter->num_rx_queues);
2752         if (err)
2753                 goto err_set_queues;
2754
2755         /* From here on the code is the same as igb_up() */
2756         clear_bit(__IGB_DOWN, &adapter->state);
2757
2758         for (i = 0; i < adapter->num_q_vectors; i++)
2759                 napi_enable(&(adapter->q_vector[i]->napi));
2760
2761         /* Clear any pending interrupts. */
2762         rd32(E1000_ICR);
2763
2764         igb_irq_enable(adapter);
2765
2766         /* notify VFs that reset has been completed */
2767         if (adapter->vfs_allocated_count) {
2768                 u32 reg_data = rd32(E1000_CTRL_EXT);
2769                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2770                 wr32(E1000_CTRL_EXT, reg_data);
2771         }
2772
2773         netif_tx_start_all_queues(netdev);
2774
2775         if (!resuming)
2776                 pm_runtime_put(&pdev->dev);
2777
2778         /* start the watchdog. */
2779         hw->mac.get_link_status = 1;
2780         schedule_work(&adapter->watchdog_task);
2781
2782         return 0;
2783
2784 err_set_queues:
2785         igb_free_irq(adapter);
2786 err_req_irq:
2787         igb_release_hw_control(adapter);
2788         igb_power_down_link(adapter);
2789         igb_free_all_rx_resources(adapter);
2790 err_setup_rx:
2791         igb_free_all_tx_resources(adapter);
2792 err_setup_tx:
2793         igb_reset(adapter);
2794         if (!resuming)
2795                 pm_runtime_put(&pdev->dev);
2796
2797         return err;
2798 }
2799
2800 static int igb_open(struct net_device *netdev)
2801 {
2802         return __igb_open(netdev, false);
2803 }
2804
2805 /**
2806  * igb_close - Disables a network interface
2807  * @netdev: network interface device structure
2808  *
2809  * Returns 0, this is not allowed to fail
2810  *
2811  * The close entry point is called when an interface is de-activated
2812  * by the OS.  The hardware is still under the driver's control, but
2813  * needs to be disabled.  A global MAC reset is issued to stop the
2814  * hardware, and all transmit and receive resources are freed.
2815  **/
2816 static int __igb_close(struct net_device *netdev, bool suspending)
2817 {
2818         struct igb_adapter *adapter = netdev_priv(netdev);
2819         struct pci_dev *pdev = adapter->pdev;
2820
2821         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2822
2823         if (!suspending)
2824                 pm_runtime_get_sync(&pdev->dev);
2825
2826         igb_down(adapter);
2827         igb_free_irq(adapter);
2828
2829         igb_free_all_tx_resources(adapter);
2830         igb_free_all_rx_resources(adapter);
2831
2832         if (!suspending)
2833                 pm_runtime_put_sync(&pdev->dev);
2834         return 0;
2835 }
2836
2837 static int igb_close(struct net_device *netdev)
2838 {
2839         return __igb_close(netdev, false);
2840 }
2841
2842 /**
2843  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2844  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2845  *
2846  * Return 0 on success, negative on failure
2847  **/
2848 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2849 {
2850         struct device *dev = tx_ring->dev;
2851         int size;
2852
2853         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2854
2855         tx_ring->tx_buffer_info = vzalloc(size);
2856         if (!tx_ring->tx_buffer_info)
2857                 goto err;
2858
2859         /* round up to nearest 4K */
2860         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2861         tx_ring->size = ALIGN(tx_ring->size, 4096);
2862
2863         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2864                                            &tx_ring->dma, GFP_KERNEL);
2865         if (!tx_ring->desc)
2866                 goto err;
2867
2868         tx_ring->next_to_use = 0;
2869         tx_ring->next_to_clean = 0;
2870
2871         return 0;
2872
2873 err:
2874         vfree(tx_ring->tx_buffer_info);
2875         tx_ring->tx_buffer_info = NULL;
2876         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2877         return -ENOMEM;
2878 }
2879
2880 /**
2881  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2882  *                                (Descriptors) for all queues
2883  * @adapter: board private structure
2884  *
2885  * Return 0 on success, negative on failure
2886  **/
2887 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2888 {
2889         struct pci_dev *pdev = adapter->pdev;
2890         int i, err = 0;
2891
2892         for (i = 0; i < adapter->num_tx_queues; i++) {
2893                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2894                 if (err) {
2895                         dev_err(&pdev->dev,
2896                                 "Allocation for Tx Queue %u failed\n", i);
2897                         for (i--; i >= 0; i--)
2898                                 igb_free_tx_resources(adapter->tx_ring[i]);
2899                         break;
2900                 }
2901         }
2902
2903         return err;
2904 }
2905
2906 /**
2907  * igb_setup_tctl - configure the transmit control registers
2908  * @adapter: Board private structure
2909  **/
2910 void igb_setup_tctl(struct igb_adapter *adapter)
2911 {
2912         struct e1000_hw *hw = &adapter->hw;
2913         u32 tctl;
2914
2915         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2916         wr32(E1000_TXDCTL(0), 0);
2917
2918         /* Program the Transmit Control Register */
2919         tctl = rd32(E1000_TCTL);
2920         tctl &= ~E1000_TCTL_CT;
2921         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2922                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2923
2924         igb_config_collision_dist(hw);
2925
2926         /* Enable transmits */
2927         tctl |= E1000_TCTL_EN;
2928
2929         wr32(E1000_TCTL, tctl);
2930 }
2931
2932 /**
2933  * igb_configure_tx_ring - Configure transmit ring after Reset
2934  * @adapter: board private structure
2935  * @ring: tx ring to configure
2936  *
2937  * Configure a transmit ring after a reset.
2938  **/
2939 void igb_configure_tx_ring(struct igb_adapter *adapter,
2940                            struct igb_ring *ring)
2941 {
2942         struct e1000_hw *hw = &adapter->hw;
2943         u32 txdctl = 0;
2944         u64 tdba = ring->dma;
2945         int reg_idx = ring->reg_idx;
2946
2947         /* disable the queue */
2948         wr32(E1000_TXDCTL(reg_idx), 0);
2949         wrfl();
2950         mdelay(10);
2951
2952         wr32(E1000_TDLEN(reg_idx),
2953                         ring->count * sizeof(union e1000_adv_tx_desc));
2954         wr32(E1000_TDBAL(reg_idx),
2955                         tdba & 0x00000000ffffffffULL);
2956         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2957
2958         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2959         wr32(E1000_TDH(reg_idx), 0);
2960         writel(0, ring->tail);
2961
2962         txdctl |= IGB_TX_PTHRESH;
2963         txdctl |= IGB_TX_HTHRESH << 8;
2964         txdctl |= IGB_TX_WTHRESH << 16;
2965
2966         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2967         wr32(E1000_TXDCTL(reg_idx), txdctl);
2968 }
2969
2970 /**
2971  * igb_configure_tx - Configure transmit Unit after Reset
2972  * @adapter: board private structure
2973  *
2974  * Configure the Tx unit of the MAC after a reset.
2975  **/
2976 static void igb_configure_tx(struct igb_adapter *adapter)
2977 {
2978         int i;
2979
2980         for (i = 0; i < adapter->num_tx_queues; i++)
2981                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2982 }
2983
2984 /**
2985  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2986  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2987  *
2988  * Returns 0 on success, negative on failure
2989  **/
2990 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2991 {
2992         struct device *dev = rx_ring->dev;
2993         int size;
2994
2995         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2996
2997         rx_ring->rx_buffer_info = vzalloc(size);
2998         if (!rx_ring->rx_buffer_info)
2999                 goto err;
3000
3001         /* Round up to nearest 4K */
3002         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3003         rx_ring->size = ALIGN(rx_ring->size, 4096);
3004
3005         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3006                                            &rx_ring->dma, GFP_KERNEL);
3007         if (!rx_ring->desc)
3008                 goto err;
3009
3010         rx_ring->next_to_alloc = 0;
3011         rx_ring->next_to_clean = 0;
3012         rx_ring->next_to_use = 0;
3013
3014         return 0;
3015
3016 err:
3017         vfree(rx_ring->rx_buffer_info);
3018         rx_ring->rx_buffer_info = NULL;
3019         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3020         return -ENOMEM;
3021 }
3022
3023 /**
3024  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3025  *                                (Descriptors) for all queues
3026  * @adapter: board private structure
3027  *
3028  * Return 0 on success, negative on failure
3029  **/
3030 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3031 {
3032         struct pci_dev *pdev = adapter->pdev;
3033         int i, err = 0;
3034
3035         for (i = 0; i < adapter->num_rx_queues; i++) {
3036                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3037                 if (err) {
3038                         dev_err(&pdev->dev,
3039                                 "Allocation for Rx Queue %u failed\n", i);
3040                         for (i--; i >= 0; i--)
3041                                 igb_free_rx_resources(adapter->rx_ring[i]);
3042                         break;
3043                 }
3044         }
3045
3046         return err;
3047 }
3048
3049 /**
3050  * igb_setup_mrqc - configure the multiple receive queue control registers
3051  * @adapter: Board private structure
3052  **/
3053 static void igb_setup_mrqc(struct igb_adapter *adapter)
3054 {
3055         struct e1000_hw *hw = &adapter->hw;
3056         u32 mrqc, rxcsum;
3057         u32 j, num_rx_queues, shift = 0;
3058         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3059                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3060                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3061                                         0xFA01ACBE };
3062
3063         /* Fill out hash function seeds */
3064         for (j = 0; j < 10; j++)
3065                 wr32(E1000_RSSRK(j), rsskey[j]);
3066
3067         num_rx_queues = adapter->rss_queues;
3068
3069         switch (hw->mac.type) {
3070         case e1000_82575:
3071                 shift = 6;
3072                 break;
3073         case e1000_82576:
3074                 /* 82576 supports 2 RSS queues for SR-IOV */
3075                 if (adapter->vfs_allocated_count) {
3076                         shift = 3;
3077                         num_rx_queues = 2;
3078                 }
3079                 break;
3080         default:
3081                 break;
3082         }
3083
3084         /*
3085          * Populate the indirection table 4 entries at a time.  To do this
3086          * we are generating the results for n and n+2 and then interleaving
3087          * those with the results with n+1 and n+3.
3088          */
3089         for (j = 0; j < 32; j++) {
3090                 /* first pass generates n and n+2 */
3091                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3092                 u32 reta = (base & 0x07800780) >> (7 - shift);
3093
3094                 /* second pass generates n+1 and n+3 */
3095                 base += 0x00010001 * num_rx_queues;
3096                 reta |= (base & 0x07800780) << (1 + shift);
3097
3098                 wr32(E1000_RETA(j), reta);
3099         }
3100
3101         /*
3102          * Disable raw packet checksumming so that RSS hash is placed in
3103          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3104          * offloads as they are enabled by default
3105          */
3106         rxcsum = rd32(E1000_RXCSUM);
3107         rxcsum |= E1000_RXCSUM_PCSD;
3108
3109         if (adapter->hw.mac.type >= e1000_82576)
3110                 /* Enable Receive Checksum Offload for SCTP */
3111                 rxcsum |= E1000_RXCSUM_CRCOFL;
3112
3113         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3114         wr32(E1000_RXCSUM, rxcsum);
3115
3116         /* Generate RSS hash based on packet types, TCP/UDP
3117          * port numbers and/or IPv4/v6 src and dst addresses
3118          */
3119         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3120                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3121                E1000_MRQC_RSS_FIELD_IPV6 |
3122                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3123                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3124
3125         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3126                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3127         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3128                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3129
3130         /* If VMDq is enabled then we set the appropriate mode for that, else
3131          * we default to RSS so that an RSS hash is calculated per packet even
3132          * if we are only using one queue */
3133         if (adapter->vfs_allocated_count) {
3134                 if (hw->mac.type > e1000_82575) {
3135                         /* Set the default pool for the PF's first queue */
3136                         u32 vtctl = rd32(E1000_VT_CTL);
3137                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3138                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3139                         vtctl |= adapter->vfs_allocated_count <<
3140                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3141                         wr32(E1000_VT_CTL, vtctl);
3142                 }
3143                 if (adapter->rss_queues > 1)
3144                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3145                 else
3146                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3147         } else {
3148                 if (hw->mac.type != e1000_i211)
3149                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3150         }
3151         igb_vmm_control(adapter);
3152
3153         wr32(E1000_MRQC, mrqc);
3154 }
3155
3156 /**
3157  * igb_setup_rctl - configure the receive control registers
3158  * @adapter: Board private structure
3159  **/
3160 void igb_setup_rctl(struct igb_adapter *adapter)
3161 {
3162         struct e1000_hw *hw = &adapter->hw;
3163         u32 rctl;
3164
3165         rctl = rd32(E1000_RCTL);
3166
3167         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3168         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3169
3170         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3171                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3172
3173         /*
3174          * enable stripping of CRC. It's unlikely this will break BMC
3175          * redirection as it did with e1000. Newer features require
3176          * that the HW strips the CRC.
3177          */
3178         rctl |= E1000_RCTL_SECRC;
3179
3180         /* disable store bad packets and clear size bits. */
3181         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3182
3183         /* enable LPE to prevent packets larger than max_frame_size */
3184         rctl |= E1000_RCTL_LPE;
3185
3186         /* disable queue 0 to prevent tail write w/o re-config */
3187         wr32(E1000_RXDCTL(0), 0);
3188
3189         /* Attention!!!  For SR-IOV PF driver operations you must enable
3190          * queue drop for all VF and PF queues to prevent head of line blocking
3191          * if an un-trusted VF does not provide descriptors to hardware.
3192          */
3193         if (adapter->vfs_allocated_count) {
3194                 /* set all queue drop enable bits */
3195                 wr32(E1000_QDE, ALL_QUEUES);
3196         }
3197
3198         /* This is useful for sniffing bad packets. */
3199         if (adapter->netdev->features & NETIF_F_RXALL) {
3200                 /* UPE and MPE will be handled by normal PROMISC logic
3201                  * in e1000e_set_rx_mode */
3202                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3203                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3204                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3205
3206                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3207                           E1000_RCTL_DPF | /* Allow filtered pause */
3208                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3209                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3210                  * and that breaks VLANs.
3211                  */
3212         }
3213
3214         wr32(E1000_RCTL, rctl);
3215 }
3216
3217 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3218                                    int vfn)
3219 {
3220         struct e1000_hw *hw = &adapter->hw;
3221         u32 vmolr;
3222
3223         /* if it isn't the PF check to see if VFs are enabled and
3224          * increase the size to support vlan tags */
3225         if (vfn < adapter->vfs_allocated_count &&
3226             adapter->vf_data[vfn].vlans_enabled)
3227                 size += VLAN_TAG_SIZE;
3228
3229         vmolr = rd32(E1000_VMOLR(vfn));
3230         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3231         vmolr |= size | E1000_VMOLR_LPE;
3232         wr32(E1000_VMOLR(vfn), vmolr);
3233
3234         return 0;
3235 }
3236
3237 /**
3238  * igb_rlpml_set - set maximum receive packet size
3239  * @adapter: board private structure
3240  *
3241  * Configure maximum receivable packet size.
3242  **/
3243 static void igb_rlpml_set(struct igb_adapter *adapter)
3244 {
3245         u32 max_frame_size = adapter->max_frame_size;
3246         struct e1000_hw *hw = &adapter->hw;
3247         u16 pf_id = adapter->vfs_allocated_count;
3248
3249         if (pf_id) {
3250                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3251                 /*
3252                  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3253                  * to our max jumbo frame size, in case we need to enable
3254                  * jumbo frames on one of the rings later.
3255                  * This will not pass over-length frames into the default
3256                  * queue because it's gated by the VMOLR.RLPML.
3257                  */
3258                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3259         }
3260
3261         wr32(E1000_RLPML, max_frame_size);
3262 }
3263
3264 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3265                                  int vfn, bool aupe)
3266 {
3267         struct e1000_hw *hw = &adapter->hw;
3268         u32 vmolr;
3269
3270         /*
3271          * This register exists only on 82576 and newer so if we are older then
3272          * we should exit and do nothing
3273          */
3274         if (hw->mac.type < e1000_82576)
3275                 return;
3276
3277         vmolr = rd32(E1000_VMOLR(vfn));
3278         vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3279         if (aupe)
3280                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3281         else
3282                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3283
3284         /* clear all bits that might not be set */
3285         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3286
3287         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3288                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3289         /*
3290          * for VMDq only allow the VFs and pool 0 to accept broadcast and
3291          * multicast packets
3292          */
3293         if (vfn <= adapter->vfs_allocated_count)
3294                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
3295
3296         wr32(E1000_VMOLR(vfn), vmolr);
3297 }
3298
3299 /**
3300  * igb_configure_rx_ring - Configure a receive ring after Reset
3301  * @adapter: board private structure
3302  * @ring: receive ring to be configured
3303  *
3304  * Configure the Rx unit of the MAC after a reset.
3305  **/
3306 void igb_configure_rx_ring(struct igb_adapter *adapter,
3307                            struct igb_ring *ring)
3308 {
3309         struct e1000_hw *hw = &adapter->hw;
3310         u64 rdba = ring->dma;
3311         int reg_idx = ring->reg_idx;
3312         u32 srrctl = 0, rxdctl = 0;
3313
3314         /* disable the queue */
3315         wr32(E1000_RXDCTL(reg_idx), 0);
3316
3317         /* Set DMA base address registers */
3318         wr32(E1000_RDBAL(reg_idx),
3319              rdba & 0x00000000ffffffffULL);
3320         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3321         wr32(E1000_RDLEN(reg_idx),
3322                        ring->count * sizeof(union e1000_adv_rx_desc));
3323
3324         /* initialize head and tail */
3325         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3326         wr32(E1000_RDH(reg_idx), 0);
3327         writel(0, ring->tail);
3328
3329         /* set descriptor configuration */
3330         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3331         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3332         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3333         if (hw->mac.type >= e1000_82580)
3334                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3335         /* Only set Drop Enable if we are supporting multiple queues */
3336         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3337                 srrctl |= E1000_SRRCTL_DROP_EN;
3338
3339         wr32(E1000_SRRCTL(reg_idx), srrctl);
3340
3341         /* set filtering for VMDQ pools */
3342         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3343
3344         rxdctl |= IGB_RX_PTHRESH;
3345         rxdctl |= IGB_RX_HTHRESH << 8;
3346         rxdctl |= IGB_RX_WTHRESH << 16;
3347
3348         /* enable receive descriptor fetching */
3349         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3350         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3351 }
3352
3353 /**
3354  * igb_configure_rx - Configure receive Unit after Reset
3355  * @adapter: board private structure
3356  *
3357  * Configure the Rx unit of the MAC after a reset.
3358  **/
3359 static void igb_configure_rx(struct igb_adapter *adapter)
3360 {
3361         int i;
3362
3363         /* set UTA to appropriate mode */
3364         igb_set_uta(adapter);
3365
3366         /* set the correct pool for the PF default MAC address in entry 0 */
3367         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3368                          adapter->vfs_allocated_count);
3369
3370         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3371          * the Base and Length of the Rx Descriptor Ring */
3372         for (i = 0; i < adapter->num_rx_queues; i++)
3373                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3374 }
3375
3376 /**
3377  * igb_free_tx_resources - Free Tx Resources per Queue
3378  * @tx_ring: Tx descriptor ring for a specific queue
3379  *
3380  * Free all transmit software resources
3381  **/
3382 void igb_free_tx_resources(struct igb_ring *tx_ring)
3383 {
3384         igb_clean_tx_ring(tx_ring);
3385
3386         vfree(tx_ring->tx_buffer_info);
3387         tx_ring->tx_buffer_info = NULL;
3388
3389         /* if not set, then don't free */
3390         if (!tx_ring->desc)
3391                 return;
3392
3393         dma_free_coherent(tx_ring->dev, tx_ring->size,
3394                           tx_ring->desc, tx_ring->dma);
3395
3396         tx_ring->desc = NULL;
3397 }
3398
3399 /**
3400  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3401  * @adapter: board private structure
3402  *
3403  * Free all transmit software resources
3404  **/
3405 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3406 {
3407         int i;
3408
3409         for (i = 0; i < adapter->num_tx_queues; i++)
3410                 igb_free_tx_resources(adapter->tx_ring[i]);
3411 }
3412
3413 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3414                                     struct igb_tx_buffer *tx_buffer)
3415 {
3416         if (tx_buffer->skb) {
3417                 dev_kfree_skb_any(tx_buffer->skb);
3418                 if (dma_unmap_len(tx_buffer, len))
3419                         dma_unmap_single(ring->dev,
3420                                          dma_unmap_addr(tx_buffer, dma),
3421                                          dma_unmap_len(tx_buffer, len),
3422                                          DMA_TO_DEVICE);
3423         } else if (dma_unmap_len(tx_buffer, len)) {
3424                 dma_unmap_page(ring->dev,
3425                                dma_unmap_addr(tx_buffer, dma),
3426                                dma_unmap_len(tx_buffer, len),
3427                                DMA_TO_DEVICE);
3428         }
3429         tx_buffer->next_to_watch = NULL;
3430         tx_buffer->skb = NULL;
3431         dma_unmap_len_set(tx_buffer, len, 0);
3432         /* buffer_info must be completely set up in the transmit path */
3433 }
3434
3435 /**
3436  * igb_clean_tx_ring - Free Tx Buffers
3437  * @tx_ring: ring to be cleaned
3438  **/
3439 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3440 {
3441         struct igb_tx_buffer *buffer_info;
3442         unsigned long size;
3443         u16 i;
3444
3445         if (!tx_ring->tx_buffer_info)
3446                 return;
3447         /* Free all the Tx ring sk_buffs */
3448
3449         for (i = 0; i < tx_ring->count; i++) {
3450                 buffer_info = &tx_ring->tx_buffer_info[i];
3451                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3452         }
3453
3454         netdev_tx_reset_queue(txring_txq(tx_ring));
3455
3456         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3457         memset(tx_ring->tx_buffer_info, 0, size);
3458
3459         /* Zero out the descriptor ring */
3460         memset(tx_ring->desc, 0, tx_ring->size);
3461
3462         tx_ring->next_to_use = 0;
3463         tx_ring->next_to_clean = 0;
3464 }
3465
3466 /**
3467  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3468  * @adapter: board private structure
3469  **/
3470 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3471 {
3472         int i;
3473
3474         for (i = 0; i < adapter->num_tx_queues; i++)
3475                 igb_clean_tx_ring(adapter->tx_ring[i]);
3476 }
3477
3478 /**
3479  * igb_free_rx_resources - Free Rx Resources
3480  * @rx_ring: ring to clean the resources from
3481  *
3482  * Free all receive software resources
3483  **/
3484 void igb_free_rx_resources(struct igb_ring *rx_ring)
3485 {
3486         igb_clean_rx_ring(rx_ring);
3487
3488         vfree(rx_ring->rx_buffer_info);
3489         rx_ring->rx_buffer_info = NULL;
3490
3491         /* if not set, then don't free */
3492         if (!rx_ring->desc)
3493                 return;
3494
3495         dma_free_coherent(rx_ring->dev, rx_ring->size,
3496                           rx_ring->desc, rx_ring->dma);
3497
3498         rx_ring->desc = NULL;
3499 }
3500
3501 /**
3502  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3503  * @adapter: board private structure
3504  *
3505  * Free all receive software resources
3506  **/
3507 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3508 {
3509         int i;
3510
3511         for (i = 0; i < adapter->num_rx_queues; i++)
3512                 igb_free_rx_resources(adapter->rx_ring[i]);
3513 }
3514
3515 /**
3516  * igb_clean_rx_ring - Free Rx Buffers per Queue
3517  * @rx_ring: ring to free buffers from
3518  **/
3519 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3520 {
3521         unsigned long size;
3522         u16 i;
3523
3524         if (rx_ring->skb)
3525                 dev_kfree_skb(rx_ring->skb);
3526         rx_ring->skb = NULL;
3527
3528         if (!rx_ring->rx_buffer_info)
3529                 return;
3530
3531         /* Free all the Rx ring sk_buffs */
3532         for (i = 0; i < rx_ring->count; i++) {
3533                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3534
3535                 if (!buffer_info->page)
3536                         continue;
3537
3538                 dma_unmap_page(rx_ring->dev,
3539                                buffer_info->dma,
3540                                PAGE_SIZE,
3541                                DMA_FROM_DEVICE);
3542                 __free_page(buffer_info->page);
3543
3544                 buffer_info->page = NULL;
3545         }
3546
3547         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3548         memset(rx_ring->rx_buffer_info, 0, size);
3549
3550         /* Zero out the descriptor ring */
3551         memset(rx_ring->desc, 0, rx_ring->size);
3552
3553         rx_ring->next_to_alloc = 0;
3554         rx_ring->next_to_clean = 0;
3555         rx_ring->next_to_use = 0;
3556 }
3557
3558 /**
3559  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3560  * @adapter: board private structure
3561  **/
3562 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3563 {
3564         int i;
3565
3566         for (i = 0; i < adapter->num_rx_queues; i++)
3567                 igb_clean_rx_ring(adapter->rx_ring[i]);
3568 }
3569
3570 /**
3571  * igb_set_mac - Change the Ethernet Address of the NIC
3572  * @netdev: network interface device structure
3573  * @p: pointer to an address structure
3574  *
3575  * Returns 0 on success, negative on failure
3576  **/
3577 static int igb_set_mac(struct net_device *netdev, void *p)
3578 {
3579         struct igb_adapter *adapter = netdev_priv(netdev);
3580         struct e1000_hw *hw = &adapter->hw;
3581         struct sockaddr *addr = p;
3582
3583         if (!is_valid_ether_addr(addr->sa_data))
3584                 return -EADDRNOTAVAIL;
3585
3586         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3587         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3588
3589         /* set the correct pool for the new PF MAC address in entry 0 */
3590         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3591                          adapter->vfs_allocated_count);
3592
3593         return 0;
3594 }
3595
3596 /**
3597  * igb_write_mc_addr_list - write multicast addresses to MTA
3598  * @netdev: network interface device structure
3599  *
3600  * Writes multicast address list to the MTA hash table.
3601  * Returns: -ENOMEM on failure
3602  *                0 on no addresses written
3603  *                X on writing X addresses to MTA
3604  **/
3605 static int igb_write_mc_addr_list(struct net_device *netdev)
3606 {
3607         struct igb_adapter *adapter = netdev_priv(netdev);
3608         struct e1000_hw *hw = &adapter->hw;
3609         struct netdev_hw_addr *ha;
3610         u8  *mta_list;
3611         int i;
3612
3613         if (netdev_mc_empty(netdev)) {
3614                 /* nothing to program, so clear mc list */
3615                 igb_update_mc_addr_list(hw, NULL, 0);
3616                 igb_restore_vf_multicasts(adapter);
3617                 return 0;
3618         }
3619
3620         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3621         if (!mta_list)
3622                 return -ENOMEM;
3623
3624         /* The shared function expects a packed array of only addresses. */
3625         i = 0;
3626         netdev_for_each_mc_addr(ha, netdev)
3627                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3628
3629         igb_update_mc_addr_list(hw, mta_list, i);
3630         kfree(mta_list);
3631
3632         return netdev_mc_count(netdev);
3633 }
3634
3635 /**
3636  * igb_write_uc_addr_list - write unicast addresses to RAR table
3637  * @netdev: network interface device structure
3638  *
3639  * Writes unicast address list to the RAR table.
3640  * Returns: -ENOMEM on failure/insufficient address space
3641  *                0 on no addresses written
3642  *                X on writing X addresses to the RAR table
3643  **/
3644 static int igb_write_uc_addr_list(struct net_device *netdev)
3645 {
3646         struct igb_adapter *adapter = netdev_priv(netdev);
3647         struct e1000_hw *hw = &adapter->hw;
3648         unsigned int vfn = adapter->vfs_allocated_count;
3649         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3650         int count = 0;
3651
3652         /* return ENOMEM indicating insufficient memory for addresses */
3653         if (netdev_uc_count(netdev) > rar_entries)
3654                 return -ENOMEM;
3655
3656         if (!netdev_uc_empty(netdev) && rar_entries) {
3657                 struct netdev_hw_addr *ha;
3658
3659                 netdev_for_each_uc_addr(ha, netdev) {
3660                         if (!rar_entries)
3661                                 break;
3662                         igb_rar_set_qsel(adapter, ha->addr,
3663                                          rar_entries--,
3664                                          vfn);
3665                         count++;
3666                 }
3667         }
3668         /* write the addresses in reverse order to avoid write combining */
3669         for (; rar_entries > 0 ; rar_entries--) {
3670                 wr32(E1000_RAH(rar_entries), 0);
3671                 wr32(E1000_RAL(rar_entries), 0);
3672         }
3673         wrfl();
3674
3675         return count;
3676 }
3677
3678 /**
3679  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3680  * @netdev: network interface device structure
3681  *
3682  * The set_rx_mode entry point is called whenever the unicast or multicast
3683  * address lists or the network interface flags are updated.  This routine is
3684  * responsible for configuring the hardware for proper unicast, multicast,
3685  * promiscuous mode, and all-multi behavior.
3686  **/
3687 static void igb_set_rx_mode(struct net_device *netdev)
3688 {
3689         struct igb_adapter *adapter = netdev_priv(netdev);
3690         struct e1000_hw *hw = &adapter->hw;
3691         unsigned int vfn = adapter->vfs_allocated_count;
3692         u32 rctl, vmolr = 0;
3693         int count;
3694
3695         /* Check for Promiscuous and All Multicast modes */
3696         rctl = rd32(E1000_RCTL);
3697
3698         /* clear the effected bits */
3699         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3700
3701         if (netdev->flags & IFF_PROMISC) {
3702                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3703                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3704         } else {
3705                 if (netdev->flags & IFF_ALLMULTI) {
3706                         rctl |= E1000_RCTL_MPE;
3707                         vmolr |= E1000_VMOLR_MPME;
3708                 } else {
3709                         /*
3710                          * Write addresses to the MTA, if the attempt fails
3711                          * then we should just turn on promiscuous mode so
3712                          * that we can at least receive multicast traffic
3713                          */
3714                         count = igb_write_mc_addr_list(netdev);
3715                         if (count < 0) {
3716                                 rctl |= E1000_RCTL_MPE;
3717                                 vmolr |= E1000_VMOLR_MPME;
3718                         } else if (count) {
3719                                 vmolr |= E1000_VMOLR_ROMPE;
3720                         }
3721                 }
3722                 /*
3723                  * Write addresses to available RAR registers, if there is not
3724                  * sufficient space to store all the addresses then enable
3725                  * unicast promiscuous mode
3726                  */
3727                 count = igb_write_uc_addr_list(netdev);
3728                 if (count < 0) {
3729                         rctl |= E1000_RCTL_UPE;
3730                         vmolr |= E1000_VMOLR_ROPE;
3731                 }
3732                 rctl |= E1000_RCTL_VFE;
3733         }
3734         wr32(E1000_RCTL, rctl);
3735
3736         /*
3737          * In order to support SR-IOV and eventually VMDq it is necessary to set
3738          * the VMOLR to enable the appropriate modes.  Without this workaround
3739          * we will have issues with VLAN tag stripping not being done for frames
3740          * that are only arriving because we are the default pool
3741          */
3742         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3743                 return;
3744
3745         vmolr |= rd32(E1000_VMOLR(vfn)) &
3746                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3747         wr32(E1000_VMOLR(vfn), vmolr);
3748         igb_restore_vf_multicasts(adapter);
3749 }
3750
3751 static void igb_check_wvbr(struct igb_adapter *adapter)
3752 {
3753         struct e1000_hw *hw = &adapter->hw;
3754         u32 wvbr = 0;
3755
3756         switch (hw->mac.type) {
3757         case e1000_82576:
3758         case e1000_i350:
3759                 if (!(wvbr = rd32(E1000_WVBR)))
3760                         return;
3761                 break;
3762         default:
3763                 break;
3764         }
3765
3766         adapter->wvbr |= wvbr;
3767 }
3768
3769 #define IGB_STAGGERED_QUEUE_OFFSET 8
3770
3771 static void igb_spoof_check(struct igb_adapter *adapter)
3772 {
3773         int j;
3774
3775         if (!adapter->wvbr)
3776                 return;
3777
3778         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3779                 if (adapter->wvbr & (1 << j) ||
3780                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3781                         dev_warn(&adapter->pdev->dev,
3782                                 "Spoof event(s) detected on VF %d\n", j);
3783                         adapter->wvbr &=
3784                                 ~((1 << j) |
3785                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3786                 }
3787         }
3788 }
3789
3790 /* Need to wait a few seconds after link up to get diagnostic information from
3791  * the phy */
3792 static void igb_update_phy_info(unsigned long data)
3793 {
3794         struct igb_adapter *adapter = (struct igb_adapter *) data;
3795         igb_get_phy_info(&adapter->hw);
3796 }
3797
3798 /**
3799  * igb_has_link - check shared code for link and determine up/down
3800  * @adapter: pointer to driver private info
3801  **/
3802 bool igb_has_link(struct igb_adapter *adapter)
3803 {
3804         struct e1000_hw *hw = &adapter->hw;
3805         bool link_active = false;
3806         s32 ret_val = 0;
3807
3808         /* get_link_status is set on LSC (link status) interrupt or
3809          * rx sequence error interrupt.  get_link_status will stay
3810          * false until the e1000_check_for_link establishes link
3811          * for copper adapters ONLY
3812          */
3813         switch (hw->phy.media_type) {
3814         case e1000_media_type_copper:
3815                 if (hw->mac.get_link_status) {
3816                         ret_val = hw->mac.ops.check_for_link(hw);
3817                         link_active = !hw->mac.get_link_status;
3818                 } else {
3819                         link_active = true;
3820                 }
3821                 break;
3822         case e1000_media_type_internal_serdes:
3823                 ret_val = hw->mac.ops.check_for_link(hw);
3824                 link_active = hw->mac.serdes_has_link;
3825                 break;
3826         default:
3827         case e1000_media_type_unknown:
3828                 break;
3829         }
3830
3831         return link_active;
3832 }
3833
3834 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3835 {
3836         bool ret = false;
3837         u32 ctrl_ext, thstat;
3838
3839         /* check for thermal sensor event on i350 copper only */
3840         if (hw->mac.type == e1000_i350) {
3841                 thstat = rd32(E1000_THSTAT);
3842                 ctrl_ext = rd32(E1000_CTRL_EXT);
3843
3844                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3845                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3846                         ret = !!(thstat & event);
3847                 }
3848         }
3849
3850         return ret;
3851 }
3852
3853 /**
3854  * igb_watchdog - Timer Call-back
3855  * @data: pointer to adapter cast into an unsigned long
3856  **/
3857 static void igb_watchdog(unsigned long data)
3858 {
3859         struct igb_adapter *adapter = (struct igb_adapter *)data;
3860         /* Do the rest outside of interrupt context */
3861         schedule_work(&adapter->watchdog_task);
3862 }
3863
3864 static void igb_watchdog_task(struct work_struct *work)
3865 {
3866         struct igb_adapter *adapter = container_of(work,
3867                                                    struct igb_adapter,
3868                                                    watchdog_task);
3869         struct e1000_hw *hw = &adapter->hw;
3870         struct net_device *netdev = adapter->netdev;
3871         u32 link;
3872         int i;
3873
3874         link = igb_has_link(adapter);
3875         if (link) {
3876                 /* Cancel scheduled suspend requests. */
3877                 pm_runtime_resume(netdev->dev.parent);
3878
3879                 if (!netif_carrier_ok(netdev)) {
3880                         u32 ctrl;
3881                         hw->mac.ops.get_speed_and_duplex(hw,
3882                                                          &adapter->link_speed,
3883                                                          &adapter->link_duplex);
3884
3885                         ctrl = rd32(E1000_CTRL);
3886                         /* Links status message must follow this format */
3887                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3888                                "Duplex, Flow Control: %s\n",
3889                                netdev->name,
3890                                adapter->link_speed,
3891                                adapter->link_duplex == FULL_DUPLEX ?
3892                                "Full" : "Half",
3893                                (ctrl & E1000_CTRL_TFCE) &&
3894                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3895                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3896                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3897
3898                         /* check for thermal sensor event */
3899                         if (igb_thermal_sensor_event(hw,
3900                             E1000_THSTAT_LINK_THROTTLE)) {
3901                                 netdev_info(netdev, "The network adapter link "
3902                                             "speed was downshifted because it "
3903                                             "overheated\n");
3904                         }
3905
3906                         /* adjust timeout factor according to speed/duplex */
3907                         adapter->tx_timeout_factor = 1;
3908                         switch (adapter->link_speed) {
3909                         case SPEED_10:
3910                                 adapter->tx_timeout_factor = 14;
3911                                 break;
3912                         case SPEED_100:
3913                                 /* maybe add some timeout factor ? */
3914                                 break;
3915                         }
3916
3917                         netif_carrier_on(netdev);
3918
3919                         igb_ping_all_vfs(adapter);
3920                         igb_check_vf_rate_limit(adapter);
3921
3922                         /* link state has changed, schedule phy info update */
3923                         if (!test_bit(__IGB_DOWN, &adapter->state))
3924                                 mod_timer(&adapter->phy_info_timer,
3925                                           round_jiffies(jiffies + 2 * HZ));
3926                 }
3927         } else {
3928                 if (netif_carrier_ok(netdev)) {
3929                         adapter->link_speed = 0;
3930                         adapter->link_duplex = 0;
3931
3932                         /* check for thermal sensor event */
3933                         if (igb_thermal_sensor_event(hw,
3934                             E1000_THSTAT_PWR_DOWN)) {
3935                                 netdev_err(netdev, "The network adapter was "
3936                                            "stopped because it overheated\n");
3937                         }
3938
3939                         /* Links status message must follow this format */
3940                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3941                                netdev->name);
3942                         netif_carrier_off(netdev);
3943
3944                         igb_ping_all_vfs(adapter);
3945
3946                         /* link state has changed, schedule phy info update */
3947                         if (!test_bit(__IGB_DOWN, &adapter->state))
3948                                 mod_timer(&adapter->phy_info_timer,
3949                                           round_jiffies(jiffies + 2 * HZ));
3950
3951                         pm_schedule_suspend(netdev->dev.parent,
3952                                             MSEC_PER_SEC * 5);
3953                 }
3954         }
3955
3956         spin_lock(&adapter->stats64_lock);
3957         igb_update_stats(adapter, &adapter->stats64);
3958         spin_unlock(&adapter->stats64_lock);
3959
3960         for (i = 0; i < adapter->num_tx_queues; i++) {
3961                 struct igb_ring *tx_ring = adapter->tx_ring[i];
3962                 if (!netif_carrier_ok(netdev)) {
3963                         /* We've lost link, so the controller stops DMA,
3964                          * but we've got queued Tx work that's never going
3965                          * to get done, so reset controller to flush Tx.
3966                          * (Do the reset outside of interrupt context). */
3967                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3968                                 adapter->tx_timeout_count++;
3969                                 schedule_work(&adapter->reset_task);
3970                                 /* return immediately since reset is imminent */
3971                                 return;
3972                         }
3973                 }
3974
3975                 /* Force detection of hung controller every watchdog period */
3976                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3977         }
3978
3979         /* Cause software interrupt to ensure rx ring is cleaned */
3980         if (adapter->msix_entries) {
3981                 u32 eics = 0;
3982                 for (i = 0; i < adapter->num_q_vectors; i++)
3983                         eics |= adapter->q_vector[i]->eims_value;
3984                 wr32(E1000_EICS, eics);
3985         } else {
3986                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3987         }
3988
3989         igb_spoof_check(adapter);
3990         igb_ptp_rx_hang(adapter);
3991
3992         /* Reset the timer */
3993         if (!test_bit(__IGB_DOWN, &adapter->state))
3994                 mod_timer(&adapter->watchdog_timer,
3995                           round_jiffies(jiffies + 2 * HZ));
3996 }
3997
3998 enum latency_range {
3999         lowest_latency = 0,
4000         low_latency = 1,
4001         bulk_latency = 2,
4002         latency_invalid = 255
4003 };
4004
4005 /**
4006  * igb_update_ring_itr - update the dynamic ITR value based on packet size
4007  *
4008  *      Stores a new ITR value based on strictly on packet size.  This
4009  *      algorithm is less sophisticated than that used in igb_update_itr,
4010  *      due to the difficulty of synchronizing statistics across multiple
4011  *      receive rings.  The divisors and thresholds used by this function
4012  *      were determined based on theoretical maximum wire speed and testing
4013  *      data, in order to minimize response time while increasing bulk
4014  *      throughput.
4015  *      This functionality is controlled by the InterruptThrottleRate module
4016  *      parameter (see igb_param.c)
4017  *      NOTE:  This function is called only when operating in a multiqueue
4018  *             receive environment.
4019  * @q_vector: pointer to q_vector
4020  **/
4021 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4022 {
4023         int new_val = q_vector->itr_val;
4024         int avg_wire_size = 0;
4025         struct igb_adapter *adapter = q_vector->adapter;
4026         unsigned int packets;
4027
4028         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4029          * ints/sec - ITR timer value of 120 ticks.
4030          */
4031         if (adapter->link_speed != SPEED_1000) {
4032                 new_val = IGB_4K_ITR;
4033                 goto set_itr_val;
4034         }
4035
4036         packets = q_vector->rx.total_packets;
4037         if (packets)
4038                 avg_wire_size = q_vector->rx.total_bytes / packets;
4039
4040         packets = q_vector->tx.total_packets;
4041         if (packets)
4042                 avg_wire_size = max_t(u32, avg_wire_size,
4043                                       q_vector->tx.total_bytes / packets);
4044
4045         /* if avg_wire_size isn't set no work was done */
4046         if (!avg_wire_size)
4047                 goto clear_counts;
4048
4049         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4050         avg_wire_size += 24;
4051
4052         /* Don't starve jumbo frames */
4053         avg_wire_size = min(avg_wire_size, 3000);
4054
4055         /* Give a little boost to mid-size frames */
4056         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4057                 new_val = avg_wire_size / 3;
4058         else
4059                 new_val = avg_wire_size / 2;
4060
4061         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4062         if (new_val < IGB_20K_ITR &&
4063             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4064              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4065                 new_val = IGB_20K_ITR;
4066
4067 set_itr_val:
4068         if (new_val != q_vector->itr_val) {
4069                 q_vector->itr_val = new_val;
4070                 q_vector->set_itr = 1;
4071         }
4072 clear_counts:
4073         q_vector->rx.total_bytes = 0;
4074         q_vector->rx.total_packets = 0;
4075         q_vector->tx.total_bytes = 0;
4076         q_vector->tx.total_packets = 0;
4077 }
4078
4079 /**
4080  * igb_update_itr - update the dynamic ITR value based on statistics
4081  *      Stores a new ITR value based on packets and byte
4082  *      counts during the last interrupt.  The advantage of per interrupt
4083  *      computation is faster updates and more accurate ITR for the current
4084  *      traffic pattern.  Constants in this function were computed
4085  *      based on theoretical maximum wire speed and thresholds were set based
4086  *      on testing data as well as attempting to minimize response time
4087  *      while increasing bulk throughput.
4088  *      this functionality is controlled by the InterruptThrottleRate module
4089  *      parameter (see igb_param.c)
4090  *      NOTE:  These calculations are only valid when operating in a single-
4091  *             queue environment.
4092  * @q_vector: pointer to q_vector
4093  * @ring_container: ring info to update the itr for
4094  **/
4095 static void igb_update_itr(struct igb_q_vector *q_vector,
4096                            struct igb_ring_container *ring_container)
4097 {
4098         unsigned int packets = ring_container->total_packets;
4099         unsigned int bytes = ring_container->total_bytes;
4100         u8 itrval = ring_container->itr;
4101
4102         /* no packets, exit with status unchanged */
4103         if (packets == 0)
4104                 return;
4105
4106         switch (itrval) {
4107         case lowest_latency:
4108                 /* handle TSO and jumbo frames */
4109                 if (bytes/packets > 8000)
4110                         itrval = bulk_latency;
4111                 else if ((packets < 5) && (bytes > 512))
4112                         itrval = low_latency;
4113                 break;
4114         case low_latency:  /* 50 usec aka 20000 ints/s */
4115                 if (bytes > 10000) {
4116                         /* this if handles the TSO accounting */
4117                         if (bytes/packets > 8000) {
4118                                 itrval = bulk_latency;
4119                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4120                                 itrval = bulk_latency;
4121                         } else if ((packets > 35)) {
4122                                 itrval = lowest_latency;
4123                         }
4124                 } else if (bytes/packets > 2000) {
4125                         itrval = bulk_latency;
4126                 } else if (packets <= 2 && bytes < 512) {
4127                         itrval = lowest_latency;
4128                 }
4129                 break;
4130         case bulk_latency: /* 250 usec aka 4000 ints/s */
4131                 if (bytes > 25000) {
4132                         if (packets > 35)
4133                                 itrval = low_latency;
4134                 } else if (bytes < 1500) {
4135                         itrval = low_latency;
4136                 }
4137                 break;
4138         }
4139
4140         /* clear work counters since we have the values we need */
4141         ring_container->total_bytes = 0;
4142         ring_container->total_packets = 0;
4143
4144         /* write updated itr to ring container */
4145         ring_container->itr = itrval;
4146 }
4147
4148 static void igb_set_itr(struct igb_q_vector *q_vector)
4149 {
4150         struct igb_adapter *adapter = q_vector->adapter;
4151         u32 new_itr = q_vector->itr_val;
4152         u8 current_itr = 0;
4153
4154         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4155         if (adapter->link_speed != SPEED_1000) {
4156                 current_itr = 0;
4157                 new_itr = IGB_4K_ITR;
4158                 goto set_itr_now;
4159         }
4160
4161         igb_update_itr(q_vector, &q_vector->tx);
4162         igb_update_itr(q_vector, &q_vector->rx);
4163
4164         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4165
4166         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4167         if (current_itr == lowest_latency &&
4168             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4169              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4170                 current_itr = low_latency;
4171
4172         switch (current_itr) {
4173         /* counts and packets in update_itr are dependent on these numbers */
4174         case lowest_latency:
4175                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4176                 break;
4177         case low_latency:
4178                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4179                 break;
4180         case bulk_latency:
4181                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4182                 break;
4183         default:
4184                 break;
4185         }
4186
4187 set_itr_now:
4188         if (new_itr != q_vector->itr_val) {
4189                 /* this attempts to bias the interrupt rate towards Bulk
4190                  * by adding intermediate steps when interrupt rate is
4191                  * increasing */
4192                 new_itr = new_itr > q_vector->itr_val ?
4193                              max((new_itr * q_vector->itr_val) /
4194                                  (new_itr + (q_vector->itr_val >> 2)),
4195                                  new_itr) :
4196                              new_itr;
4197                 /* Don't write the value here; it resets the adapter's
4198                  * internal timer, and causes us to delay far longer than
4199                  * we should between interrupts.  Instead, we write the ITR
4200                  * value at the beginning of the next interrupt so the timing
4201                  * ends up being correct.
4202                  */
4203                 q_vector->itr_val = new_itr;
4204                 q_vector->set_itr = 1;
4205         }
4206 }
4207
4208 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4209                             u32 type_tucmd, u32 mss_l4len_idx)
4210 {
4211         struct e1000_adv_tx_context_desc *context_desc;
4212         u16 i = tx_ring->next_to_use;
4213
4214         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4215
4216         i++;
4217         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4218
4219         /* set bits to identify this as an advanced context descriptor */
4220         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4221
4222         /* For 82575, context index must be unique per ring. */
4223         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4224                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4225
4226         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4227         context_desc->seqnum_seed       = 0;
4228         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4229         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4230 }
4231
4232 static int igb_tso(struct igb_ring *tx_ring,
4233                    struct igb_tx_buffer *first,
4234                    u8 *hdr_len)
4235 {
4236         struct sk_buff *skb = first->skb;
4237         u32 vlan_macip_lens, type_tucmd;
4238         u32 mss_l4len_idx, l4len;
4239
4240         if (skb->ip_summed != CHECKSUM_PARTIAL)
4241                 return 0;
4242
4243         if (!skb_is_gso(skb))
4244                 return 0;
4245
4246         if (skb_header_cloned(skb)) {
4247                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4248                 if (err)
4249                         return err;
4250         }
4251
4252         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4253         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4254
4255         if (first->protocol == __constant_htons(ETH_P_IP)) {
4256                 struct iphdr *iph = ip_hdr(skb);
4257                 iph->tot_len = 0;
4258                 iph->check = 0;
4259                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4260                                                          iph->daddr, 0,
4261                                                          IPPROTO_TCP,
4262                                                          0);
4263                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4264                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4265                                    IGB_TX_FLAGS_CSUM |
4266                                    IGB_TX_FLAGS_IPV4;
4267         } else if (skb_is_gso_v6(skb)) {
4268                 ipv6_hdr(skb)->payload_len = 0;
4269                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4270                                                        &ipv6_hdr(skb)->daddr,
4271                                                        0, IPPROTO_TCP, 0);
4272                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4273                                    IGB_TX_FLAGS_CSUM;
4274         }
4275
4276         /* compute header lengths */
4277         l4len = tcp_hdrlen(skb);
4278         *hdr_len = skb_transport_offset(skb) + l4len;
4279
4280         /* update gso size and bytecount with header size */
4281         first->gso_segs = skb_shinfo(skb)->gso_segs;
4282         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4283
4284         /* MSS L4LEN IDX */
4285         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4286         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4287
4288         /* VLAN MACLEN IPLEN */
4289         vlan_macip_lens = skb_network_header_len(skb);
4290         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4291         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4292
4293         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4294
4295         return 1;
4296 }
4297
4298 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4299 {
4300         struct sk_buff *skb = first->skb;
4301         u32 vlan_macip_lens = 0;
4302         u32 mss_l4len_idx = 0;
4303         u32 type_tucmd = 0;
4304
4305         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4306                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4307                         return;
4308         } else {
4309                 u8 l4_hdr = 0;
4310                 switch (first->protocol) {
4311                 case __constant_htons(ETH_P_IP):
4312                         vlan_macip_lens |= skb_network_header_len(skb);
4313                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4314                         l4_hdr = ip_hdr(skb)->protocol;
4315                         break;
4316                 case __constant_htons(ETH_P_IPV6):
4317                         vlan_macip_lens |= skb_network_header_len(skb);
4318                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4319                         break;
4320                 default:
4321                         if (unlikely(net_ratelimit())) {
4322                                 dev_warn(tx_ring->dev,
4323                                  "partial checksum but proto=%x!\n",
4324                                  first->protocol);
4325                         }
4326                         break;
4327                 }
4328
4329                 switch (l4_hdr) {
4330                 case IPPROTO_TCP:
4331                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4332                         mss_l4len_idx = tcp_hdrlen(skb) <<
4333                                         E1000_ADVTXD_L4LEN_SHIFT;
4334                         break;
4335                 case IPPROTO_SCTP:
4336                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4337                         mss_l4len_idx = sizeof(struct sctphdr) <<
4338                                         E1000_ADVTXD_L4LEN_SHIFT;
4339                         break;
4340                 case IPPROTO_UDP:
4341                         mss_l4len_idx = sizeof(struct udphdr) <<
4342                                         E1000_ADVTXD_L4LEN_SHIFT;
4343                         break;
4344                 default:
4345                         if (unlikely(net_ratelimit())) {
4346                                 dev_warn(tx_ring->dev,
4347                                  "partial checksum but l4 proto=%x!\n",
4348                                  l4_hdr);
4349                         }
4350                         break;
4351                 }
4352
4353                 /* update TX checksum flag */
4354                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4355         }
4356
4357         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4358         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4359
4360         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4361 }
4362
4363 #define IGB_SET_FLAG(_input, _flag, _result) \
4364         ((_flag <= _result) ? \
4365          ((u32)(_input & _flag) * (_result / _flag)) : \
4366          ((u32)(_input & _flag) / (_flag / _result)))
4367
4368 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4369 {
4370         /* set type for advanced descriptor with frame checksum insertion */
4371         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4372                        E1000_ADVTXD_DCMD_DEXT |
4373                        E1000_ADVTXD_DCMD_IFCS;
4374
4375         /* set HW vlan bit if vlan is present */
4376         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4377                                  (E1000_ADVTXD_DCMD_VLE));
4378
4379         /* set segmentation bits for TSO */
4380         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4381                                  (E1000_ADVTXD_DCMD_TSE));
4382
4383         /* set timestamp bit if present */
4384         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4385                                  (E1000_ADVTXD_MAC_TSTAMP));
4386
4387         /* insert frame checksum */
4388         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4389
4390         return cmd_type;
4391 }
4392
4393 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4394                                  union e1000_adv_tx_desc *tx_desc,
4395                                  u32 tx_flags, unsigned int paylen)
4396 {
4397         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4398
4399         /* 82575 requires a unique index per ring */
4400         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4401                 olinfo_status |= tx_ring->reg_idx << 4;
4402
4403         /* insert L4 checksum */
4404         olinfo_status |= IGB_SET_FLAG(tx_flags,
4405                                       IGB_TX_FLAGS_CSUM,
4406                                       (E1000_TXD_POPTS_TXSM << 8));
4407
4408         /* insert IPv4 checksum */
4409         olinfo_status |= IGB_SET_FLAG(tx_flags,
4410                                       IGB_TX_FLAGS_IPV4,
4411                                       (E1000_TXD_POPTS_IXSM << 8));
4412
4413         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4414 }
4415
4416 static void igb_tx_map(struct igb_ring *tx_ring,
4417                        struct igb_tx_buffer *first,
4418                        const u8 hdr_len)
4419 {
4420         struct sk_buff *skb = first->skb;
4421         struct igb_tx_buffer *tx_buffer;
4422         union e1000_adv_tx_desc *tx_desc;
4423         struct skb_frag_struct *frag;
4424         dma_addr_t dma;
4425         unsigned int data_len, size;
4426         u32 tx_flags = first->tx_flags;
4427         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4428         u16 i = tx_ring->next_to_use;
4429
4430         tx_desc = IGB_TX_DESC(tx_ring, i);
4431
4432         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4433
4434         size = skb_headlen(skb);
4435         data_len = skb->data_len;
4436
4437         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4438
4439         tx_buffer = first;
4440
4441         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4442                 if (dma_mapping_error(tx_ring->dev, dma))
4443                         goto dma_error;
4444
4445                 /* record length, and DMA address */
4446                 dma_unmap_len_set(tx_buffer, len, size);
4447                 dma_unmap_addr_set(tx_buffer, dma, dma);
4448
4449                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4450
4451                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4452                         tx_desc->read.cmd_type_len =
4453                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4454
4455                         i++;
4456                         tx_desc++;
4457                         if (i == tx_ring->count) {
4458                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4459                                 i = 0;
4460                         }
4461                         tx_desc->read.olinfo_status = 0;
4462
4463                         dma += IGB_MAX_DATA_PER_TXD;
4464                         size -= IGB_MAX_DATA_PER_TXD;
4465
4466                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4467                 }
4468
4469                 if (likely(!data_len))
4470                         break;
4471
4472                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4473
4474                 i++;
4475                 tx_desc++;
4476                 if (i == tx_ring->count) {
4477                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4478                         i = 0;
4479                 }
4480                 tx_desc->read.olinfo_status = 0;
4481
4482                 size = skb_frag_size(frag);
4483                 data_len -= size;
4484
4485                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4486                                        size, DMA_TO_DEVICE);
4487
4488                 tx_buffer = &tx_ring->tx_buffer_info[i];
4489         }
4490
4491         /* write last descriptor with RS and EOP bits */
4492         cmd_type |= size | IGB_TXD_DCMD;
4493         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4494
4495         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4496
4497         /* set the timestamp */
4498         first->time_stamp = jiffies;
4499
4500         /*
4501          * Force memory writes to complete before letting h/w know there
4502          * are new descriptors to fetch.  (Only applicable for weak-ordered
4503          * memory model archs, such as IA-64).
4504          *
4505          * We also need this memory barrier to make certain all of the
4506          * status bits have been updated before next_to_watch is written.
4507          */
4508         wmb();
4509
4510         /* set next_to_watch value indicating a packet is present */
4511         first->next_to_watch = tx_desc;
4512
4513         i++;
4514         if (i == tx_ring->count)
4515                 i = 0;
4516
4517         tx_ring->next_to_use = i;
4518
4519         writel(i, tx_ring->tail);
4520
4521         /* we need this if more than one processor can write to our tail
4522          * at a time, it syncronizes IO on IA64/Altix systems */
4523         mmiowb();
4524
4525         return;
4526
4527 dma_error:
4528         dev_err(tx_ring->dev, "TX DMA map failed\n");
4529
4530         /* clear dma mappings for failed tx_buffer_info map */
4531         for (;;) {
4532                 tx_buffer = &tx_ring->tx_buffer_info[i];
4533                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4534                 if (tx_buffer == first)
4535                         break;
4536                 if (i == 0)
4537                         i = tx_ring->count;
4538                 i--;
4539         }
4540
4541         tx_ring->next_to_use = i;
4542 }
4543
4544 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4545 {
4546         struct net_device *netdev = tx_ring->netdev;
4547
4548         netif_stop_subqueue(netdev, tx_ring->queue_index);
4549
4550         /* Herbert's original patch had:
4551          *  smp_mb__after_netif_stop_queue();
4552          * but since that doesn't exist yet, just open code it. */
4553         smp_mb();
4554
4555         /* We need to check again in a case another CPU has just
4556          * made room available. */
4557         if (igb_desc_unused(tx_ring) < size)
4558                 return -EBUSY;
4559
4560         /* A reprieve! */
4561         netif_wake_subqueue(netdev, tx_ring->queue_index);
4562
4563         u64_stats_update_begin(&tx_ring->tx_syncp2);
4564         tx_ring->tx_stats.restart_queue2++;
4565         u64_stats_update_end(&tx_ring->tx_syncp2);
4566
4567         return 0;
4568 }
4569
4570 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4571 {
4572         if (igb_desc_unused(tx_ring) >= size)
4573                 return 0;
4574         return __igb_maybe_stop_tx(tx_ring, size);
4575 }
4576
4577 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4578                                 struct igb_ring *tx_ring)
4579 {
4580         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4581         struct igb_tx_buffer *first;
4582         int tso;
4583         u32 tx_flags = 0;
4584         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4585         __be16 protocol = vlan_get_protocol(skb);
4586         u8 hdr_len = 0;
4587
4588         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4589          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4590          *       + 2 desc gap to keep tail from touching head,
4591          *       + 1 desc for context descriptor,
4592          * otherwise try next time
4593          */
4594         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4595                 unsigned short f;
4596                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4597                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4598         } else {
4599                 count += skb_shinfo(skb)->nr_frags;
4600         }
4601
4602         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4603                 /* this is a hard error */
4604                 return NETDEV_TX_BUSY;
4605         }
4606
4607         /* record the location of the first descriptor for this packet */
4608         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4609         first->skb = skb;
4610         first->bytecount = skb->len;
4611         first->gso_segs = 1;
4612
4613         skb_tx_timestamp(skb);
4614
4615         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4616                      !(adapter->ptp_tx_skb))) {
4617                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4618                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4619
4620                 adapter->ptp_tx_skb = skb_get(skb);
4621                 adapter->ptp_tx_start = jiffies;
4622                 if (adapter->hw.mac.type == e1000_82576)
4623                         schedule_work(&adapter->ptp_tx_work);
4624         }
4625
4626         if (vlan_tx_tag_present(skb)) {
4627                 tx_flags |= IGB_TX_FLAGS_VLAN;
4628                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4629         }
4630
4631         /* record initial flags and protocol */
4632         first->tx_flags = tx_flags;
4633         first->protocol = protocol;
4634
4635         tso = igb_tso(tx_ring, first, &hdr_len);
4636         if (tso < 0)
4637                 goto out_drop;
4638         else if (!tso)
4639                 igb_tx_csum(tx_ring, first);
4640
4641         igb_tx_map(tx_ring, first, hdr_len);
4642
4643         /* Make sure there is space in the ring for the next send. */
4644         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4645
4646         return NETDEV_TX_OK;
4647
4648 out_drop:
4649         igb_unmap_and_free_tx_resource(tx_ring, first);
4650
4651         return NETDEV_TX_OK;
4652 }
4653
4654 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4655                                                     struct sk_buff *skb)
4656 {
4657         unsigned int r_idx = skb->queue_mapping;
4658
4659         if (r_idx >= adapter->num_tx_queues)
4660                 r_idx = r_idx % adapter->num_tx_queues;
4661
4662         return adapter->tx_ring[r_idx];
4663 }
4664
4665 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4666                                   struct net_device *netdev)
4667 {
4668         struct igb_adapter *adapter = netdev_priv(netdev);
4669
4670         if (test_bit(__IGB_DOWN, &adapter->state)) {
4671                 dev_kfree_skb_any(skb);
4672                 return NETDEV_TX_OK;
4673         }
4674
4675         if (skb->len <= 0) {
4676                 dev_kfree_skb_any(skb);
4677                 return NETDEV_TX_OK;
4678         }
4679
4680         /*
4681          * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4682          * in order to meet this minimum size requirement.
4683          */
4684         if (unlikely(skb->len < 17)) {
4685                 if (skb_pad(skb, 17 - skb->len))
4686                         return NETDEV_TX_OK;
4687                 skb->len = 17;
4688                 skb_set_tail_pointer(skb, 17);
4689         }
4690
4691         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4692 }
4693
4694 /**
4695  * igb_tx_timeout - Respond to a Tx Hang
4696  * @netdev: network interface device structure
4697  **/
4698 static void igb_tx_timeout(struct net_device *netdev)
4699 {
4700         struct igb_adapter *adapter = netdev_priv(netdev);
4701         struct e1000_hw *hw = &adapter->hw;
4702
4703         /* Do the reset outside of interrupt context */
4704         adapter->tx_timeout_count++;
4705
4706         if (hw->mac.type >= e1000_82580)
4707                 hw->dev_spec._82575.global_device_reset = true;
4708
4709         schedule_work(&adapter->reset_task);
4710         wr32(E1000_EICS,
4711              (adapter->eims_enable_mask & ~adapter->eims_other));
4712 }
4713
4714 static void igb_reset_task(struct work_struct *work)
4715 {
4716         struct igb_adapter *adapter;
4717         adapter = container_of(work, struct igb_adapter, reset_task);
4718
4719         igb_dump(adapter);
4720         netdev_err(adapter->netdev, "Reset adapter\n");
4721         igb_reinit_locked(adapter);
4722 }
4723
4724 /**
4725  * igb_get_stats64 - Get System Network Statistics
4726  * @netdev: network interface device structure
4727  * @stats: rtnl_link_stats64 pointer
4728  *
4729  **/
4730 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4731                                                  struct rtnl_link_stats64 *stats)
4732 {
4733         struct igb_adapter *adapter = netdev_priv(netdev);
4734
4735         spin_lock(&adapter->stats64_lock);
4736         igb_update_stats(adapter, &adapter->stats64);
4737         memcpy(stats, &adapter->stats64, sizeof(*stats));
4738         spin_unlock(&adapter->stats64_lock);
4739
4740         return stats;
4741 }
4742
4743 /**
4744  * igb_change_mtu - Change the Maximum Transfer Unit
4745  * @netdev: network interface device structure
4746  * @new_mtu: new value for maximum frame size
4747  *
4748  * Returns 0 on success, negative on failure
4749  **/
4750 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4751 {
4752         struct igb_adapter *adapter = netdev_priv(netdev);
4753         struct pci_dev *pdev = adapter->pdev;
4754         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4755
4756         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4757                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4758                 return -EINVAL;
4759         }
4760
4761 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4762         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4763                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4764                 return -EINVAL;
4765         }
4766
4767         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4768                 msleep(1);
4769
4770         /* igb_down has a dependency on max_frame_size */
4771         adapter->max_frame_size = max_frame;
4772
4773         if (netif_running(netdev))
4774                 igb_down(adapter);
4775
4776         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4777                  netdev->mtu, new_mtu);
4778         netdev->mtu = new_mtu;
4779
4780         if (netif_running(netdev))
4781                 igb_up(adapter);
4782         else
4783                 igb_reset(adapter);
4784
4785         clear_bit(__IGB_RESETTING, &adapter->state);
4786
4787         return 0;
4788 }
4789
4790 /**
4791  * igb_update_stats - Update the board statistics counters
4792  * @adapter: board private structure
4793  **/
4794
4795 void igb_update_stats(struct igb_adapter *adapter,
4796                       struct rtnl_link_stats64 *net_stats)
4797 {
4798         struct e1000_hw *hw = &adapter->hw;
4799         struct pci_dev *pdev = adapter->pdev;
4800         u32 reg, mpc;
4801         u16 phy_tmp;
4802         int i;
4803         u64 bytes, packets;
4804         unsigned int start;
4805         u64 _bytes, _packets;
4806
4807 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4808
4809         /*
4810          * Prevent stats update while adapter is being reset, or if the pci
4811          * connection is down.
4812          */
4813         if (adapter->link_speed == 0)
4814                 return;
4815         if (pci_channel_offline(pdev))
4816                 return;
4817
4818         bytes = 0;
4819         packets = 0;
4820         for (i = 0; i < adapter->num_rx_queues; i++) {
4821                 u32 rqdpc = rd32(E1000_RQDPC(i));
4822                 struct igb_ring *ring = adapter->rx_ring[i];
4823
4824                 if (rqdpc) {
4825                         ring->rx_stats.drops += rqdpc;
4826                         net_stats->rx_fifo_errors += rqdpc;
4827                 }
4828
4829                 do {
4830                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4831                         _bytes = ring->rx_stats.bytes;
4832                         _packets = ring->rx_stats.packets;
4833                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4834                 bytes += _bytes;
4835                 packets += _packets;
4836         }
4837
4838         net_stats->rx_bytes = bytes;
4839         net_stats->rx_packets = packets;
4840
4841         bytes = 0;
4842         packets = 0;
4843         for (i = 0; i < adapter->num_tx_queues; i++) {
4844                 struct igb_ring *ring = adapter->tx_ring[i];
4845                 do {
4846                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4847                         _bytes = ring->tx_stats.bytes;
4848                         _packets = ring->tx_stats.packets;
4849                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4850                 bytes += _bytes;
4851                 packets += _packets;
4852         }
4853         net_stats->tx_bytes = bytes;
4854         net_stats->tx_packets = packets;
4855
4856         /* read stats registers */
4857         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4858         adapter->stats.gprc += rd32(E1000_GPRC);
4859         adapter->stats.gorc += rd32(E1000_GORCL);
4860         rd32(E1000_GORCH); /* clear GORCL */
4861         adapter->stats.bprc += rd32(E1000_BPRC);
4862         adapter->stats.mprc += rd32(E1000_MPRC);
4863         adapter->stats.roc += rd32(E1000_ROC);
4864
4865         adapter->stats.prc64 += rd32(E1000_PRC64);
4866         adapter->stats.prc127 += rd32(E1000_PRC127);
4867         adapter->stats.prc255 += rd32(E1000_PRC255);
4868         adapter->stats.prc511 += rd32(E1000_PRC511);
4869         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4870         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4871         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4872         adapter->stats.sec += rd32(E1000_SEC);
4873
4874         mpc = rd32(E1000_MPC);
4875         adapter->stats.mpc += mpc;
4876         net_stats->rx_fifo_errors += mpc;
4877         adapter->stats.scc += rd32(E1000_SCC);
4878         adapter->stats.ecol += rd32(E1000_ECOL);
4879         adapter->stats.mcc += rd32(E1000_MCC);
4880         adapter->stats.latecol += rd32(E1000_LATECOL);
4881         adapter->stats.dc += rd32(E1000_DC);
4882         adapter->stats.rlec += rd32(E1000_RLEC);
4883         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4884         adapter->stats.xontxc += rd32(E1000_XONTXC);
4885         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4886         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4887         adapter->stats.fcruc += rd32(E1000_FCRUC);
4888         adapter->stats.gptc += rd32(E1000_GPTC);
4889         adapter->stats.gotc += rd32(E1000_GOTCL);
4890         rd32(E1000_GOTCH); /* clear GOTCL */
4891         adapter->stats.rnbc += rd32(E1000_RNBC);
4892         adapter->stats.ruc += rd32(E1000_RUC);
4893         adapter->stats.rfc += rd32(E1000_RFC);
4894         adapter->stats.rjc += rd32(E1000_RJC);
4895         adapter->stats.tor += rd32(E1000_TORH);
4896         adapter->stats.tot += rd32(E1000_TOTH);
4897         adapter->stats.tpr += rd32(E1000_TPR);
4898
4899         adapter->stats.ptc64 += rd32(E1000_PTC64);
4900         adapter->stats.ptc127 += rd32(E1000_PTC127);
4901         adapter->stats.ptc255 += rd32(E1000_PTC255);
4902         adapter->stats.ptc511 += rd32(E1000_PTC511);
4903         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4904         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4905
4906         adapter->stats.mptc += rd32(E1000_MPTC);
4907         adapter->stats.bptc += rd32(E1000_BPTC);
4908
4909         adapter->stats.tpt += rd32(E1000_TPT);
4910         adapter->stats.colc += rd32(E1000_COLC);
4911
4912         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4913         /* read internal phy specific stats */
4914         reg = rd32(E1000_CTRL_EXT);
4915         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4916                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4917
4918                 /* this stat has invalid values on i210/i211 */
4919                 if ((hw->mac.type != e1000_i210) &&
4920                     (hw->mac.type != e1000_i211))
4921                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4922         }
4923
4924         adapter->stats.tsctc += rd32(E1000_TSCTC);
4925         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4926
4927         adapter->stats.iac += rd32(E1000_IAC);
4928         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4929         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4930         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4931         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4932         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4933         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4934         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4935         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4936
4937         /* Fill out the OS statistics structure */
4938         net_stats->multicast = adapter->stats.mprc;
4939         net_stats->collisions = adapter->stats.colc;
4940
4941         /* Rx Errors */
4942
4943         /* RLEC on some newer hardware can be incorrect so build
4944          * our own version based on RUC and ROC */
4945         net_stats->rx_errors = adapter->stats.rxerrc +
4946                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4947                 adapter->stats.ruc + adapter->stats.roc +
4948                 adapter->stats.cexterr;
4949         net_stats->rx_length_errors = adapter->stats.ruc +
4950                                       adapter->stats.roc;
4951         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4952         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4953         net_stats->rx_missed_errors = adapter->stats.mpc;
4954
4955         /* Tx Errors */
4956         net_stats->tx_errors = adapter->stats.ecol +
4957                                adapter->stats.latecol;
4958         net_stats->tx_aborted_errors = adapter->stats.ecol;
4959         net_stats->tx_window_errors = adapter->stats.latecol;
4960         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4961
4962         /* Tx Dropped needs to be maintained elsewhere */
4963
4964         /* Phy Stats */
4965         if (hw->phy.media_type == e1000_media_type_copper) {
4966                 if ((adapter->link_speed == SPEED_1000) &&
4967                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4968                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4969                         adapter->phy_stats.idle_errors += phy_tmp;
4970                 }
4971         }
4972
4973         /* Management Stats */
4974         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4975         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4976         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4977
4978         /* OS2BMC Stats */
4979         reg = rd32(E1000_MANC);
4980         if (reg & E1000_MANC_EN_BMC2OS) {
4981                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4982                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4983                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4984                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4985         }
4986 }
4987
4988 static irqreturn_t igb_msix_other(int irq, void *data)
4989 {
4990         struct igb_adapter *adapter = data;
4991         struct e1000_hw *hw = &adapter->hw;
4992         u32 icr = rd32(E1000_ICR);
4993         /* reading ICR causes bit 31 of EICR to be cleared */
4994
4995         if (icr & E1000_ICR_DRSTA)
4996                 schedule_work(&adapter->reset_task);
4997
4998         if (icr & E1000_ICR_DOUTSYNC) {
4999                 /* HW is reporting DMA is out of sync */
5000                 adapter->stats.doosync++;
5001                 /* The DMA Out of Sync is also indication of a spoof event
5002                  * in IOV mode. Check the Wrong VM Behavior register to
5003                  * see if it is really a spoof event. */
5004                 igb_check_wvbr(adapter);
5005         }
5006
5007         /* Check for a mailbox event */
5008         if (icr & E1000_ICR_VMMB)
5009                 igb_msg_task(adapter);
5010
5011         if (icr & E1000_ICR_LSC) {
5012                 hw->mac.get_link_status = 1;
5013                 /* guard against interrupt when we're going down */
5014                 if (!test_bit(__IGB_DOWN, &adapter->state))
5015                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5016         }
5017
5018         if (icr & E1000_ICR_TS) {
5019                 u32 tsicr = rd32(E1000_TSICR);
5020
5021                 if (tsicr & E1000_TSICR_TXTS) {
5022                         /* acknowledge the interrupt */
5023                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5024                         /* retrieve hardware timestamp */
5025                         schedule_work(&adapter->ptp_tx_work);
5026                 }
5027         }
5028
5029         wr32(E1000_EIMS, adapter->eims_other);
5030
5031         return IRQ_HANDLED;
5032 }
5033
5034 static void igb_write_itr(struct igb_q_vector *q_vector)
5035 {
5036         struct igb_adapter *adapter = q_vector->adapter;
5037         u32 itr_val = q_vector->itr_val & 0x7FFC;
5038
5039         if (!q_vector->set_itr)
5040                 return;
5041
5042         if (!itr_val)
5043                 itr_val = 0x4;
5044
5045         if (adapter->hw.mac.type == e1000_82575)
5046                 itr_val |= itr_val << 16;
5047         else
5048                 itr_val |= E1000_EITR_CNT_IGNR;
5049
5050         writel(itr_val, q_vector->itr_register);
5051         q_vector->set_itr = 0;
5052 }
5053
5054 static irqreturn_t igb_msix_ring(int irq, void *data)
5055 {
5056         struct igb_q_vector *q_vector = data;
5057
5058         /* Write the ITR value calculated from the previous interrupt. */
5059         igb_write_itr(q_vector);
5060
5061         napi_schedule(&q_vector->napi);
5062
5063         return IRQ_HANDLED;
5064 }
5065
5066 #ifdef CONFIG_IGB_DCA
5067 static void igb_update_tx_dca(struct igb_adapter *adapter,
5068                               struct igb_ring *tx_ring,
5069                               int cpu)
5070 {
5071         struct e1000_hw *hw = &adapter->hw;
5072         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5073
5074         if (hw->mac.type != e1000_82575)
5075                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5076
5077         /*
5078          * We can enable relaxed ordering for reads, but not writes when
5079          * DCA is enabled.  This is due to a known issue in some chipsets
5080          * which will cause the DCA tag to be cleared.
5081          */
5082         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5083                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5084                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5085
5086         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5087 }
5088
5089 static void igb_update_rx_dca(struct igb_adapter *adapter,
5090                               struct igb_ring *rx_ring,
5091                               int cpu)
5092 {
5093         struct e1000_hw *hw = &adapter->hw;
5094         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5095
5096         if (hw->mac.type != e1000_82575)
5097                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5098
5099         /*
5100          * We can enable relaxed ordering for reads, but not writes when
5101          * DCA is enabled.  This is due to a known issue in some chipsets
5102          * which will cause the DCA tag to be cleared.
5103          */
5104         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5105                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5106
5107         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5108 }
5109
5110 static void igb_update_dca(struct igb_q_vector *q_vector)
5111 {
5112         struct igb_adapter *adapter = q_vector->adapter;
5113         int cpu = get_cpu();
5114
5115         if (q_vector->cpu == cpu)
5116                 goto out_no_update;
5117
5118         if (q_vector->tx.ring)
5119                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5120
5121         if (q_vector->rx.ring)
5122                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5123
5124         q_vector->cpu = cpu;
5125 out_no_update:
5126         put_cpu();
5127 }
5128
5129 static void igb_setup_dca(struct igb_adapter *adapter)
5130 {
5131         struct e1000_hw *hw = &adapter->hw;
5132         int i;
5133
5134         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5135                 return;
5136
5137         /* Always use CB2 mode, difference is masked in the CB driver. */
5138         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5139
5140         for (i = 0; i < adapter->num_q_vectors; i++) {
5141                 adapter->q_vector[i]->cpu = -1;
5142                 igb_update_dca(adapter->q_vector[i]);
5143         }
5144 }
5145
5146 static int __igb_notify_dca(struct device *dev, void *data)
5147 {
5148         struct net_device *netdev = dev_get_drvdata(dev);
5149         struct igb_adapter *adapter = netdev_priv(netdev);
5150         struct pci_dev *pdev = adapter->pdev;
5151         struct e1000_hw *hw = &adapter->hw;
5152         unsigned long event = *(unsigned long *)data;
5153
5154         switch (event) {
5155         case DCA_PROVIDER_ADD:
5156                 /* if already enabled, don't do it again */
5157                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5158                         break;
5159                 if (dca_add_requester(dev) == 0) {
5160                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5161                         dev_info(&pdev->dev, "DCA enabled\n");
5162                         igb_setup_dca(adapter);
5163                         break;
5164                 }
5165                 /* Fall Through since DCA is disabled. */
5166         case DCA_PROVIDER_REMOVE:
5167                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5168                         /* without this a class_device is left
5169                          * hanging around in the sysfs model */
5170                         dca_remove_requester(dev);
5171                         dev_info(&pdev->dev, "DCA disabled\n");
5172                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5173                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5174                 }
5175                 break;
5176         }
5177
5178         return 0;
5179 }
5180
5181 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5182                           void *p)
5183 {
5184         int ret_val;
5185
5186         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5187                                          __igb_notify_dca);
5188
5189         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5190 }
5191 #endif /* CONFIG_IGB_DCA */
5192
5193 #ifdef CONFIG_PCI_IOV
5194 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5195 {
5196         unsigned char mac_addr[ETH_ALEN];
5197
5198         eth_zero_addr(mac_addr);
5199         igb_set_vf_mac(adapter, vf, mac_addr);
5200
5201         return 0;
5202 }
5203
5204 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5205 {
5206         struct pci_dev *pdev = adapter->pdev;
5207         struct pci_dev *vfdev;
5208         int dev_id;
5209
5210         switch (adapter->hw.mac.type) {
5211         case e1000_82576:
5212                 dev_id = IGB_82576_VF_DEV_ID;
5213                 break;
5214         case e1000_i350:
5215                 dev_id = IGB_I350_VF_DEV_ID;
5216                 break;
5217         default:
5218                 return false;
5219         }
5220
5221         /* loop through all the VFs to see if we own any that are assigned */
5222         vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5223         while (vfdev) {
5224                 /* if we don't own it we don't care */
5225                 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5226                         /* if it is assigned we cannot release it */
5227                         if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5228                                 return true;
5229                 }
5230
5231                 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5232         }
5233
5234         return false;
5235 }
5236
5237 #endif
5238 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5239 {
5240         struct e1000_hw *hw = &adapter->hw;
5241         u32 ping;
5242         int i;
5243
5244         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5245                 ping = E1000_PF_CONTROL_MSG;
5246                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5247                         ping |= E1000_VT_MSGTYPE_CTS;
5248                 igb_write_mbx(hw, &ping, 1, i);
5249         }
5250 }
5251
5252 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5253 {
5254         struct e1000_hw *hw = &adapter->hw;
5255         u32 vmolr = rd32(E1000_VMOLR(vf));
5256         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5257
5258         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5259                             IGB_VF_FLAG_MULTI_PROMISC);
5260         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5261
5262         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5263                 vmolr |= E1000_VMOLR_MPME;
5264                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5265                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5266         } else {
5267                 /*
5268                  * if we have hashes and we are clearing a multicast promisc
5269                  * flag we need to write the hashes to the MTA as this step
5270                  * was previously skipped
5271                  */
5272                 if (vf_data->num_vf_mc_hashes > 30) {
5273                         vmolr |= E1000_VMOLR_MPME;
5274                 } else if (vf_data->num_vf_mc_hashes) {
5275                         int j;
5276                         vmolr |= E1000_VMOLR_ROMPE;
5277                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5278                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5279                 }
5280         }
5281
5282         wr32(E1000_VMOLR(vf), vmolr);
5283
5284         /* there are flags left unprocessed, likely not supported */
5285         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5286                 return -EINVAL;
5287
5288         return 0;
5289
5290 }
5291
5292 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5293                                   u32 *msgbuf, u32 vf)
5294 {
5295         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5296         u16 *hash_list = (u16 *)&msgbuf[1];
5297         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5298         int i;
5299
5300         /* salt away the number of multicast addresses assigned
5301          * to this VF for later use to restore when the PF multi cast
5302          * list changes
5303          */
5304         vf_data->num_vf_mc_hashes = n;
5305
5306         /* only up to 30 hash values supported */
5307         if (n > 30)
5308                 n = 30;
5309
5310         /* store the hashes for later use */
5311         for (i = 0; i < n; i++)
5312                 vf_data->vf_mc_hashes[i] = hash_list[i];
5313
5314         /* Flush and reset the mta with the new values */
5315         igb_set_rx_mode(adapter->netdev);
5316
5317         return 0;
5318 }
5319
5320 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5321 {
5322         struct e1000_hw *hw = &adapter->hw;
5323         struct vf_data_storage *vf_data;
5324         int i, j;
5325
5326         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5327                 u32 vmolr = rd32(E1000_VMOLR(i));
5328                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5329
5330                 vf_data = &adapter->vf_data[i];
5331
5332                 if ((vf_data->num_vf_mc_hashes > 30) ||
5333                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5334                         vmolr |= E1000_VMOLR_MPME;
5335                 } else if (vf_data->num_vf_mc_hashes) {
5336                         vmolr |= E1000_VMOLR_ROMPE;
5337                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5338                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5339                 }
5340                 wr32(E1000_VMOLR(i), vmolr);
5341         }
5342 }
5343
5344 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5345 {
5346         struct e1000_hw *hw = &adapter->hw;
5347         u32 pool_mask, reg, vid;
5348         int i;
5349
5350         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5351
5352         /* Find the vlan filter for this id */
5353         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5354                 reg = rd32(E1000_VLVF(i));
5355
5356                 /* remove the vf from the pool */
5357                 reg &= ~pool_mask;
5358
5359                 /* if pool is empty then remove entry from vfta */
5360                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5361                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5362                         reg = 0;
5363                         vid = reg & E1000_VLVF_VLANID_MASK;
5364                         igb_vfta_set(hw, vid, false);
5365                 }
5366
5367                 wr32(E1000_VLVF(i), reg);
5368         }
5369
5370         adapter->vf_data[vf].vlans_enabled = 0;
5371 }
5372
5373 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5374 {
5375         struct e1000_hw *hw = &adapter->hw;
5376         u32 reg, i;
5377
5378         /* The vlvf table only exists on 82576 hardware and newer */
5379         if (hw->mac.type < e1000_82576)
5380                 return -1;
5381
5382         /* we only need to do this if VMDq is enabled */
5383         if (!adapter->vfs_allocated_count)
5384                 return -1;
5385
5386         /* Find the vlan filter for this id */
5387         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5388                 reg = rd32(E1000_VLVF(i));
5389                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5390                     vid == (reg & E1000_VLVF_VLANID_MASK))
5391                         break;
5392         }
5393
5394         if (add) {
5395                 if (i == E1000_VLVF_ARRAY_SIZE) {
5396                         /* Did not find a matching VLAN ID entry that was
5397                          * enabled.  Search for a free filter entry, i.e.
5398                          * one without the enable bit set
5399                          */
5400                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5401                                 reg = rd32(E1000_VLVF(i));
5402                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5403                                         break;
5404                         }
5405                 }
5406                 if (i < E1000_VLVF_ARRAY_SIZE) {
5407                         /* Found an enabled/available entry */
5408                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5409
5410                         /* if !enabled we need to set this up in vfta */
5411                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5412                                 /* add VID to filter table */
5413                                 igb_vfta_set(hw, vid, true);
5414                                 reg |= E1000_VLVF_VLANID_ENABLE;
5415                         }
5416                         reg &= ~E1000_VLVF_VLANID_MASK;
5417                         reg |= vid;
5418                         wr32(E1000_VLVF(i), reg);
5419
5420                         /* do not modify RLPML for PF devices */
5421                         if (vf >= adapter->vfs_allocated_count)
5422                                 return 0;
5423
5424                         if (!adapter->vf_data[vf].vlans_enabled) {
5425                                 u32 size;
5426                                 reg = rd32(E1000_VMOLR(vf));
5427                                 size = reg & E1000_VMOLR_RLPML_MASK;
5428                                 size += 4;
5429                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5430                                 reg |= size;
5431                                 wr32(E1000_VMOLR(vf), reg);
5432                         }
5433
5434                         adapter->vf_data[vf].vlans_enabled++;
5435                 }
5436         } else {
5437                 if (i < E1000_VLVF_ARRAY_SIZE) {
5438                         /* remove vf from the pool */
5439                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5440                         /* if pool is empty then remove entry from vfta */
5441                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5442                                 reg = 0;
5443                                 igb_vfta_set(hw, vid, false);
5444                         }
5445                         wr32(E1000_VLVF(i), reg);
5446
5447                         /* do not modify RLPML for PF devices */
5448                         if (vf >= adapter->vfs_allocated_count)
5449                                 return 0;
5450
5451                         adapter->vf_data[vf].vlans_enabled--;
5452                         if (!adapter->vf_data[vf].vlans_enabled) {
5453                                 u32 size;
5454                                 reg = rd32(E1000_VMOLR(vf));
5455                                 size = reg & E1000_VMOLR_RLPML_MASK;
5456                                 size -= 4;
5457                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5458                                 reg |= size;
5459                                 wr32(E1000_VMOLR(vf), reg);
5460                         }
5461                 }
5462         }
5463         return 0;
5464 }
5465
5466 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5467 {
5468         struct e1000_hw *hw = &adapter->hw;
5469
5470         if (vid)
5471                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5472         else
5473                 wr32(E1000_VMVIR(vf), 0);
5474 }
5475
5476 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5477                                int vf, u16 vlan, u8 qos)
5478 {
5479         int err = 0;
5480         struct igb_adapter *adapter = netdev_priv(netdev);
5481
5482         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5483                 return -EINVAL;
5484         if (vlan || qos) {
5485                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5486                 if (err)
5487                         goto out;
5488                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5489                 igb_set_vmolr(adapter, vf, !vlan);
5490                 adapter->vf_data[vf].pf_vlan = vlan;
5491                 adapter->vf_data[vf].pf_qos = qos;
5492                 dev_info(&adapter->pdev->dev,
5493                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5494                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5495                         dev_warn(&adapter->pdev->dev,
5496                                  "The VF VLAN has been set,"
5497                                  " but the PF device is not up.\n");
5498                         dev_warn(&adapter->pdev->dev,
5499                                  "Bring the PF device up before"
5500                                  " attempting to use the VF device.\n");
5501                 }
5502         } else {
5503                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5504                                    false, vf);
5505                 igb_set_vmvir(adapter, vlan, vf);
5506                 igb_set_vmolr(adapter, vf, true);
5507                 adapter->vf_data[vf].pf_vlan = 0;
5508                 adapter->vf_data[vf].pf_qos = 0;
5509        }
5510 out:
5511        return err;
5512 }
5513
5514 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5515 {
5516         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5517         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5518
5519         return igb_vlvf_set(adapter, vid, add, vf);
5520 }
5521
5522 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5523 {
5524         /* clear flags - except flag that indicates PF has set the MAC */
5525         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5526         adapter->vf_data[vf].last_nack = jiffies;
5527
5528         /* reset offloads to defaults */
5529         igb_set_vmolr(adapter, vf, true);
5530
5531         /* reset vlans for device */
5532         igb_clear_vf_vfta(adapter, vf);
5533         if (adapter->vf_data[vf].pf_vlan)
5534                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5535                                     adapter->vf_data[vf].pf_vlan,
5536                                     adapter->vf_data[vf].pf_qos);
5537         else
5538                 igb_clear_vf_vfta(adapter, vf);
5539
5540         /* reset multicast table array for vf */
5541         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5542
5543         /* Flush and reset the mta with the new values */
5544         igb_set_rx_mode(adapter->netdev);
5545 }
5546
5547 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5548 {
5549         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5550
5551         /* clear mac address as we were hotplug removed/added */
5552         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5553                 eth_zero_addr(vf_mac);
5554
5555         /* process remaining reset events */
5556         igb_vf_reset(adapter, vf);
5557 }
5558
5559 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5560 {
5561         struct e1000_hw *hw = &adapter->hw;
5562         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5563         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5564         u32 reg, msgbuf[3];
5565         u8 *addr = (u8 *)(&msgbuf[1]);
5566
5567         /* process all the same items cleared in a function level reset */
5568         igb_vf_reset(adapter, vf);
5569
5570         /* set vf mac address */
5571         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5572
5573         /* enable transmit and receive for vf */
5574         reg = rd32(E1000_VFTE);
5575         wr32(E1000_VFTE, reg | (1 << vf));
5576         reg = rd32(E1000_VFRE);
5577         wr32(E1000_VFRE, reg | (1 << vf));
5578
5579         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5580
5581         /* reply to reset with ack and vf mac address */
5582         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5583         memcpy(addr, vf_mac, 6);
5584         igb_write_mbx(hw, msgbuf, 3, vf);
5585 }
5586
5587 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5588 {
5589         /*
5590          * The VF MAC Address is stored in a packed array of bytes
5591          * starting at the second 32 bit word of the msg array
5592          */
5593         unsigned char *addr = (char *)&msg[1];
5594         int err = -1;
5595
5596         if (is_valid_ether_addr(addr))
5597                 err = igb_set_vf_mac(adapter, vf, addr);
5598
5599         return err;
5600 }
5601
5602 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5603 {
5604         struct e1000_hw *hw = &adapter->hw;
5605         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5606         u32 msg = E1000_VT_MSGTYPE_NACK;
5607
5608         /* if device isn't clear to send it shouldn't be reading either */
5609         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5610             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5611                 igb_write_mbx(hw, &msg, 1, vf);
5612                 vf_data->last_nack = jiffies;
5613         }
5614 }
5615
5616 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5617 {
5618         struct pci_dev *pdev = adapter->pdev;
5619         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5620         struct e1000_hw *hw = &adapter->hw;
5621         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5622         s32 retval;
5623
5624         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5625
5626         if (retval) {
5627                 /* if receive failed revoke VF CTS stats and restart init */
5628                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5629                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5630                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5631                         return;
5632                 goto out;
5633         }
5634
5635         /* this is a message we already processed, do nothing */
5636         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5637                 return;
5638
5639         /*
5640          * until the vf completes a reset it should not be
5641          * allowed to start any configuration.
5642          */
5643
5644         if (msgbuf[0] == E1000_VF_RESET) {
5645                 igb_vf_reset_msg(adapter, vf);
5646                 return;
5647         }
5648
5649         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5650                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5651                         return;
5652                 retval = -1;
5653                 goto out;
5654         }
5655
5656         switch ((msgbuf[0] & 0xFFFF)) {
5657         case E1000_VF_SET_MAC_ADDR:
5658                 retval = -EINVAL;
5659                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5660                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5661                 else
5662                         dev_warn(&pdev->dev,
5663                                  "VF %d attempted to override administratively "
5664                                  "set MAC address\nReload the VF driver to "
5665                                  "resume operations\n", vf);
5666                 break;
5667         case E1000_VF_SET_PROMISC:
5668                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5669                 break;
5670         case E1000_VF_SET_MULTICAST:
5671                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5672                 break;
5673         case E1000_VF_SET_LPE:
5674                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5675                 break;
5676         case E1000_VF_SET_VLAN:
5677                 retval = -1;
5678                 if (vf_data->pf_vlan)
5679                         dev_warn(&pdev->dev,
5680                                  "VF %d attempted to override administratively "
5681                                  "set VLAN tag\nReload the VF driver to "
5682                                  "resume operations\n", vf);
5683                 else
5684                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5685                 break;
5686         default:
5687                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5688                 retval = -1;
5689                 break;
5690         }
5691
5692         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5693 out:
5694         /* notify the VF of the results of what it sent us */
5695         if (retval)
5696                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5697         else
5698                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5699
5700         igb_write_mbx(hw, msgbuf, 1, vf);
5701 }
5702
5703 static void igb_msg_task(struct igb_adapter *adapter)
5704 {
5705         struct e1000_hw *hw = &adapter->hw;
5706         u32 vf;
5707
5708         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5709                 /* process any reset requests */
5710                 if (!igb_check_for_rst(hw, vf))
5711                         igb_vf_reset_event(adapter, vf);
5712
5713                 /* process any messages pending */
5714                 if (!igb_check_for_msg(hw, vf))
5715                         igb_rcv_msg_from_vf(adapter, vf);
5716
5717                 /* process any acks */
5718                 if (!igb_check_for_ack(hw, vf))
5719                         igb_rcv_ack_from_vf(adapter, vf);
5720         }
5721 }
5722
5723 /**
5724  *  igb_set_uta - Set unicast filter table address
5725  *  @adapter: board private structure
5726  *
5727  *  The unicast table address is a register array of 32-bit registers.
5728  *  The table is meant to be used in a way similar to how the MTA is used
5729  *  however due to certain limitations in the hardware it is necessary to
5730  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5731  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5732  **/
5733 static void igb_set_uta(struct igb_adapter *adapter)
5734 {
5735         struct e1000_hw *hw = &adapter->hw;
5736         int i;
5737
5738         /* The UTA table only exists on 82576 hardware and newer */
5739         if (hw->mac.type < e1000_82576)
5740                 return;
5741
5742         /* we only need to do this if VMDq is enabled */
5743         if (!adapter->vfs_allocated_count)
5744                 return;
5745
5746         for (i = 0; i < hw->mac.uta_reg_count; i++)
5747                 array_wr32(E1000_UTA, i, ~0);
5748 }
5749
5750 /**
5751  * igb_intr_msi - Interrupt Handler
5752  * @irq: interrupt number
5753  * @data: pointer to a network interface device structure
5754  **/
5755 static irqreturn_t igb_intr_msi(int irq, void *data)
5756 {
5757         struct igb_adapter *adapter = data;
5758         struct igb_q_vector *q_vector = adapter->q_vector[0];
5759         struct e1000_hw *hw = &adapter->hw;
5760         /* read ICR disables interrupts using IAM */
5761         u32 icr = rd32(E1000_ICR);
5762
5763         igb_write_itr(q_vector);
5764
5765         if (icr & E1000_ICR_DRSTA)
5766                 schedule_work(&adapter->reset_task);
5767
5768         if (icr & E1000_ICR_DOUTSYNC) {
5769                 /* HW is reporting DMA is out of sync */
5770                 adapter->stats.doosync++;
5771         }
5772
5773         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5774                 hw->mac.get_link_status = 1;
5775                 if (!test_bit(__IGB_DOWN, &adapter->state))
5776                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5777         }
5778
5779         if (icr & E1000_ICR_TS) {
5780                 u32 tsicr = rd32(E1000_TSICR);
5781
5782                 if (tsicr & E1000_TSICR_TXTS) {
5783                         /* acknowledge the interrupt */
5784                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5785                         /* retrieve hardware timestamp */
5786                         schedule_work(&adapter->ptp_tx_work);
5787                 }
5788         }
5789
5790         napi_schedule(&q_vector->napi);
5791
5792         return IRQ_HANDLED;
5793 }
5794
5795 /**
5796  * igb_intr - Legacy Interrupt Handler
5797  * @irq: interrupt number
5798  * @data: pointer to a network interface device structure
5799  **/
5800 static irqreturn_t igb_intr(int irq, void *data)
5801 {
5802         struct igb_adapter *adapter = data;
5803         struct igb_q_vector *q_vector = adapter->q_vector[0];
5804         struct e1000_hw *hw = &adapter->hw;
5805         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5806          * need for the IMC write */
5807         u32 icr = rd32(E1000_ICR);
5808
5809         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5810          * not set, then the adapter didn't send an interrupt */
5811         if (!(icr & E1000_ICR_INT_ASSERTED))
5812                 return IRQ_NONE;
5813
5814         igb_write_itr(q_vector);
5815
5816         if (icr & E1000_ICR_DRSTA)
5817                 schedule_work(&adapter->reset_task);
5818
5819         if (icr & E1000_ICR_DOUTSYNC) {
5820                 /* HW is reporting DMA is out of sync */
5821                 adapter->stats.doosync++;
5822         }
5823
5824         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5825                 hw->mac.get_link_status = 1;
5826                 /* guard against interrupt when we're going down */
5827                 if (!test_bit(__IGB_DOWN, &adapter->state))
5828                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5829         }
5830
5831         if (icr & E1000_ICR_TS) {
5832                 u32 tsicr = rd32(E1000_TSICR);
5833
5834                 if (tsicr & E1000_TSICR_TXTS) {
5835                         /* acknowledge the interrupt */
5836                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5837                         /* retrieve hardware timestamp */
5838                         schedule_work(&adapter->ptp_tx_work);
5839                 }
5840         }
5841
5842         napi_schedule(&q_vector->napi);
5843
5844         return IRQ_HANDLED;
5845 }
5846
5847 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5848 {
5849         struct igb_adapter *adapter = q_vector->adapter;
5850         struct e1000_hw *hw = &adapter->hw;
5851
5852         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5853             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5854                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5855                         igb_set_itr(q_vector);
5856                 else
5857                         igb_update_ring_itr(q_vector);
5858         }
5859
5860         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5861                 if (adapter->msix_entries)
5862                         wr32(E1000_EIMS, q_vector->eims_value);
5863                 else
5864                         igb_irq_enable(adapter);
5865         }
5866 }
5867
5868 /**
5869  * igb_poll - NAPI Rx polling callback
5870  * @napi: napi polling structure
5871  * @budget: count of how many packets we should handle
5872  **/
5873 static int igb_poll(struct napi_struct *napi, int budget)
5874 {
5875         struct igb_q_vector *q_vector = container_of(napi,
5876                                                      struct igb_q_vector,
5877                                                      napi);
5878         bool clean_complete = true;
5879
5880 #ifdef CONFIG_IGB_DCA
5881         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5882                 igb_update_dca(q_vector);
5883 #endif
5884         if (q_vector->tx.ring)
5885                 clean_complete = igb_clean_tx_irq(q_vector);
5886
5887         if (q_vector->rx.ring)
5888                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5889
5890         /* If all work not completed, return budget and keep polling */
5891         if (!clean_complete)
5892                 return budget;
5893
5894         /* If not enough Rx work done, exit the polling mode */
5895         napi_complete(napi);
5896         igb_ring_irq_enable(q_vector);
5897
5898         return 0;
5899 }
5900
5901 /**
5902  * igb_clean_tx_irq - Reclaim resources after transmit completes
5903  * @q_vector: pointer to q_vector containing needed info
5904  *
5905  * returns true if ring is completely cleaned
5906  **/
5907 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5908 {
5909         struct igb_adapter *adapter = q_vector->adapter;
5910         struct igb_ring *tx_ring = q_vector->tx.ring;
5911         struct igb_tx_buffer *tx_buffer;
5912         union e1000_adv_tx_desc *tx_desc;
5913         unsigned int total_bytes = 0, total_packets = 0;
5914         unsigned int budget = q_vector->tx.work_limit;
5915         unsigned int i = tx_ring->next_to_clean;
5916
5917         if (test_bit(__IGB_DOWN, &adapter->state))
5918                 return true;
5919
5920         tx_buffer = &tx_ring->tx_buffer_info[i];
5921         tx_desc = IGB_TX_DESC(tx_ring, i);
5922         i -= tx_ring->count;
5923
5924         do {
5925                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5926
5927                 /* if next_to_watch is not set then there is no work pending */
5928                 if (!eop_desc)
5929                         break;
5930
5931                 /* prevent any other reads prior to eop_desc */
5932                 read_barrier_depends();
5933
5934                 /* if DD is not set pending work has not been completed */
5935                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5936                         break;
5937
5938                 /* clear next_to_watch to prevent false hangs */
5939                 tx_buffer->next_to_watch = NULL;
5940
5941                 /* update the statistics for this packet */
5942                 total_bytes += tx_buffer->bytecount;
5943                 total_packets += tx_buffer->gso_segs;
5944
5945                 /* free the skb */
5946                 dev_kfree_skb_any(tx_buffer->skb);
5947
5948                 /* unmap skb header data */
5949                 dma_unmap_single(tx_ring->dev,
5950                                  dma_unmap_addr(tx_buffer, dma),
5951                                  dma_unmap_len(tx_buffer, len),
5952                                  DMA_TO_DEVICE);
5953
5954                 /* clear tx_buffer data */
5955                 tx_buffer->skb = NULL;
5956                 dma_unmap_len_set(tx_buffer, len, 0);
5957
5958                 /* clear last DMA location and unmap remaining buffers */
5959                 while (tx_desc != eop_desc) {
5960                         tx_buffer++;
5961                         tx_desc++;
5962                         i++;
5963                         if (unlikely(!i)) {
5964                                 i -= tx_ring->count;
5965                                 tx_buffer = tx_ring->tx_buffer_info;
5966                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5967                         }
5968
5969                         /* unmap any remaining paged data */
5970                         if (dma_unmap_len(tx_buffer, len)) {
5971                                 dma_unmap_page(tx_ring->dev,
5972                                                dma_unmap_addr(tx_buffer, dma),
5973                                                dma_unmap_len(tx_buffer, len),
5974                                                DMA_TO_DEVICE);
5975                                 dma_unmap_len_set(tx_buffer, len, 0);
5976                         }
5977                 }
5978
5979                 /* move us one more past the eop_desc for start of next pkt */
5980                 tx_buffer++;
5981                 tx_desc++;
5982                 i++;
5983                 if (unlikely(!i)) {
5984                         i -= tx_ring->count;
5985                         tx_buffer = tx_ring->tx_buffer_info;
5986                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5987                 }
5988
5989                 /* issue prefetch for next Tx descriptor */
5990                 prefetch(tx_desc);
5991
5992                 /* update budget accounting */
5993                 budget--;
5994         } while (likely(budget));
5995
5996         netdev_tx_completed_queue(txring_txq(tx_ring),
5997                                   total_packets, total_bytes);
5998         i += tx_ring->count;
5999         tx_ring->next_to_clean = i;
6000         u64_stats_update_begin(&tx_ring->tx_syncp);
6001         tx_ring->tx_stats.bytes += total_bytes;
6002         tx_ring->tx_stats.packets += total_packets;
6003         u64_stats_update_end(&tx_ring->tx_syncp);
6004         q_vector->tx.total_bytes += total_bytes;
6005         q_vector->tx.total_packets += total_packets;
6006
6007         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6008                 struct e1000_hw *hw = &adapter->hw;
6009
6010                 /* Detect a transmit hang in hardware, this serializes the
6011                  * check with the clearing of time_stamp and movement of i */
6012                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6013                 if (tx_buffer->next_to_watch &&
6014                     time_after(jiffies, tx_buffer->time_stamp +
6015                                (adapter->tx_timeout_factor * HZ)) &&
6016                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6017
6018                         /* detected Tx unit hang */
6019                         dev_err(tx_ring->dev,
6020                                 "Detected Tx Unit Hang\n"
6021                                 "  Tx Queue             <%d>\n"
6022                                 "  TDH                  <%x>\n"
6023                                 "  TDT                  <%x>\n"
6024                                 "  next_to_use          <%x>\n"
6025                                 "  next_to_clean        <%x>\n"
6026                                 "buffer_info[next_to_clean]\n"
6027                                 "  time_stamp           <%lx>\n"
6028                                 "  next_to_watch        <%p>\n"
6029                                 "  jiffies              <%lx>\n"
6030                                 "  desc.status          <%x>\n",
6031                                 tx_ring->queue_index,
6032                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6033                                 readl(tx_ring->tail),
6034                                 tx_ring->next_to_use,
6035                                 tx_ring->next_to_clean,
6036                                 tx_buffer->time_stamp,
6037                                 tx_buffer->next_to_watch,
6038                                 jiffies,
6039                                 tx_buffer->next_to_watch->wb.status);
6040                         netif_stop_subqueue(tx_ring->netdev,
6041                                             tx_ring->queue_index);
6042
6043                         /* we are about to reset, no point in enabling stuff */
6044                         return true;
6045                 }
6046         }
6047
6048 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6049         if (unlikely(total_packets &&
6050                      netif_carrier_ok(tx_ring->netdev) &&
6051                      igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6052                 /* Make sure that anybody stopping the queue after this
6053                  * sees the new next_to_clean.
6054                  */
6055                 smp_mb();
6056                 if (__netif_subqueue_stopped(tx_ring->netdev,
6057                                              tx_ring->queue_index) &&
6058                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6059                         netif_wake_subqueue(tx_ring->netdev,
6060                                             tx_ring->queue_index);
6061
6062                         u64_stats_update_begin(&tx_ring->tx_syncp);
6063                         tx_ring->tx_stats.restart_queue++;
6064                         u64_stats_update_end(&tx_ring->tx_syncp);
6065                 }
6066         }
6067
6068         return !!budget;
6069 }
6070
6071 /**
6072  * igb_reuse_rx_page - page flip buffer and store it back on the ring
6073  * @rx_ring: rx descriptor ring to store buffers on
6074  * @old_buff: donor buffer to have page reused
6075  *
6076  * Synchronizes page for reuse by the adapter
6077  **/
6078 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6079                               struct igb_rx_buffer *old_buff)
6080 {
6081         struct igb_rx_buffer *new_buff;
6082         u16 nta = rx_ring->next_to_alloc;
6083
6084         new_buff = &rx_ring->rx_buffer_info[nta];
6085
6086         /* update, and store next to alloc */
6087         nta++;
6088         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6089
6090         /* transfer page from old buffer to new buffer */
6091         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6092
6093         /* sync the buffer for use by the device */
6094         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6095                                          old_buff->page_offset,
6096                                          IGB_RX_BUFSZ,
6097                                          DMA_FROM_DEVICE);
6098 }
6099
6100 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6101                                   struct page *page,
6102                                   unsigned int truesize)
6103 {
6104         /* avoid re-using remote pages */
6105         if (unlikely(page_to_nid(page) != numa_node_id()))
6106                 return false;
6107
6108 #if (PAGE_SIZE < 8192)
6109         /* if we are only owner of page we can reuse it */
6110         if (unlikely(page_count(page) != 1))
6111                 return false;
6112
6113         /* flip page offset to other buffer */
6114         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6115
6116         /* since we are the only owner of the page and we need to
6117          * increment it, just set the value to 2 in order to avoid
6118          * an unnecessary locked operation
6119          */
6120         atomic_set(&page->_count, 2);
6121 #else
6122         /* move offset up to the next cache line */
6123         rx_buffer->page_offset += truesize;
6124
6125         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6126                 return false;
6127
6128         /* bump ref count on page before it is given to the stack */
6129         get_page(page);
6130 #endif
6131
6132         return true;
6133 }
6134
6135 /**
6136  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6137  * @rx_ring: rx descriptor ring to transact packets on
6138  * @rx_buffer: buffer containing page to add
6139  * @rx_desc: descriptor containing length of buffer written by hardware
6140  * @skb: sk_buff to place the data into
6141  *
6142  * This function will add the data contained in rx_buffer->page to the skb.
6143  * This is done either through a direct copy if the data in the buffer is
6144  * less than the skb header size, otherwise it will just attach the page as
6145  * a frag to the skb.
6146  *
6147  * The function will then update the page offset if necessary and return
6148  * true if the buffer can be reused by the adapter.
6149  **/
6150 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6151                             struct igb_rx_buffer *rx_buffer,
6152                             union e1000_adv_rx_desc *rx_desc,
6153                             struct sk_buff *skb)
6154 {
6155         struct page *page = rx_buffer->page;
6156         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6157 #if (PAGE_SIZE < 8192)
6158         unsigned int truesize = IGB_RX_BUFSZ;
6159 #else
6160         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6161 #endif
6162
6163         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6164                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6165
6166                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6167                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6168                         va += IGB_TS_HDR_LEN;
6169                         size -= IGB_TS_HDR_LEN;
6170                 }
6171
6172                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6173
6174                 /* we can reuse buffer as-is, just make sure it is local */
6175                 if (likely(page_to_nid(page) == numa_node_id()))
6176                         return true;
6177
6178                 /* this page cannot be reused so discard it */
6179                 put_page(page);
6180                 return false;
6181         }
6182
6183         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6184                         rx_buffer->page_offset, size, truesize);
6185
6186         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6187 }
6188
6189 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6190                                            union e1000_adv_rx_desc *rx_desc,
6191                                            struct sk_buff *skb)
6192 {
6193         struct igb_rx_buffer *rx_buffer;
6194         struct page *page;
6195
6196         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6197
6198         page = rx_buffer->page;
6199         prefetchw(page);
6200
6201         if (likely(!skb)) {
6202                 void *page_addr = page_address(page) +
6203                                   rx_buffer->page_offset;
6204
6205                 /* prefetch first cache line of first page */
6206                 prefetch(page_addr);
6207 #if L1_CACHE_BYTES < 128
6208                 prefetch(page_addr + L1_CACHE_BYTES);
6209 #endif
6210
6211                 /* allocate a skb to store the frags */
6212                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6213                                                 IGB_RX_HDR_LEN);
6214                 if (unlikely(!skb)) {
6215                         rx_ring->rx_stats.alloc_failed++;
6216                         return NULL;
6217                 }
6218
6219                 /*
6220                  * we will be copying header into skb->data in
6221                  * pskb_may_pull so it is in our interest to prefetch
6222                  * it now to avoid a possible cache miss
6223                  */
6224                 prefetchw(skb->data);
6225         }
6226
6227         /* we are reusing so sync this buffer for CPU use */
6228         dma_sync_single_range_for_cpu(rx_ring->dev,
6229                                       rx_buffer->dma,
6230                                       rx_buffer->page_offset,
6231                                       IGB_RX_BUFSZ,
6232                                       DMA_FROM_DEVICE);
6233
6234         /* pull page into skb */
6235         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6236                 /* hand second half of page back to the ring */
6237                 igb_reuse_rx_page(rx_ring, rx_buffer);
6238         } else {
6239                 /* we are not reusing the buffer so unmap it */
6240                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6241                                PAGE_SIZE, DMA_FROM_DEVICE);
6242         }
6243
6244         /* clear contents of rx_buffer */
6245         rx_buffer->page = NULL;
6246
6247         return skb;
6248 }
6249
6250 static inline void igb_rx_checksum(struct igb_ring *ring,
6251                                    union e1000_adv_rx_desc *rx_desc,
6252                                    struct sk_buff *skb)
6253 {
6254         skb_checksum_none_assert(skb);
6255
6256         /* Ignore Checksum bit is set */
6257         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6258                 return;
6259
6260         /* Rx checksum disabled via ethtool */
6261         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6262                 return;
6263
6264         /* TCP/UDP checksum error bit is set */
6265         if (igb_test_staterr(rx_desc,
6266                              E1000_RXDEXT_STATERR_TCPE |
6267                              E1000_RXDEXT_STATERR_IPE)) {
6268                 /*
6269                  * work around errata with sctp packets where the TCPE aka
6270                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6271                  * packets, (aka let the stack check the crc32c)
6272                  */
6273                 if (!((skb->len == 60) &&
6274                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6275                         u64_stats_update_begin(&ring->rx_syncp);
6276                         ring->rx_stats.csum_err++;
6277                         u64_stats_update_end(&ring->rx_syncp);
6278                 }
6279                 /* let the stack verify checksum errors */
6280                 return;
6281         }
6282         /* It must be a TCP or UDP packet with a valid checksum */
6283         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6284                                       E1000_RXD_STAT_UDPCS))
6285                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6286
6287         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6288                 le32_to_cpu(rx_desc->wb.upper.status_error));
6289 }
6290
6291 static inline void igb_rx_hash(struct igb_ring *ring,
6292                                union e1000_adv_rx_desc *rx_desc,
6293                                struct sk_buff *skb)
6294 {
6295         if (ring->netdev->features & NETIF_F_RXHASH)
6296                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6297 }
6298
6299 /**
6300  * igb_is_non_eop - process handling of non-EOP buffers
6301  * @rx_ring: Rx ring being processed
6302  * @rx_desc: Rx descriptor for current buffer
6303  * @skb: current socket buffer containing buffer in progress
6304  *
6305  * This function updates next to clean.  If the buffer is an EOP buffer
6306  * this function exits returning false, otherwise it will place the
6307  * sk_buff in the next buffer to be chained and return true indicating
6308  * that this is in fact a non-EOP buffer.
6309  **/
6310 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6311                            union e1000_adv_rx_desc *rx_desc)
6312 {
6313         u32 ntc = rx_ring->next_to_clean + 1;
6314
6315         /* fetch, update, and store next to clean */
6316         ntc = (ntc < rx_ring->count) ? ntc : 0;
6317         rx_ring->next_to_clean = ntc;
6318
6319         prefetch(IGB_RX_DESC(rx_ring, ntc));
6320
6321         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6322                 return false;
6323
6324         return true;
6325 }
6326
6327 /**
6328  * igb_get_headlen - determine size of header for LRO/GRO
6329  * @data: pointer to the start of the headers
6330  * @max_len: total length of section to find headers in
6331  *
6332  * This function is meant to determine the length of headers that will
6333  * be recognized by hardware for LRO, and GRO offloads.  The main
6334  * motivation of doing this is to only perform one pull for IPv4 TCP
6335  * packets so that we can do basic things like calculating the gso_size
6336  * based on the average data per packet.
6337  **/
6338 static unsigned int igb_get_headlen(unsigned char *data,
6339                                     unsigned int max_len)
6340 {
6341         union {
6342                 unsigned char *network;
6343                 /* l2 headers */
6344                 struct ethhdr *eth;
6345                 struct vlan_hdr *vlan;
6346                 /* l3 headers */
6347                 struct iphdr *ipv4;
6348                 struct ipv6hdr *ipv6;
6349         } hdr;
6350         __be16 protocol;
6351         u8 nexthdr = 0; /* default to not TCP */
6352         u8 hlen;
6353
6354         /* this should never happen, but better safe than sorry */
6355         if (max_len < ETH_HLEN)
6356                 return max_len;
6357
6358         /* initialize network frame pointer */
6359         hdr.network = data;
6360
6361         /* set first protocol and move network header forward */
6362         protocol = hdr.eth->h_proto;
6363         hdr.network += ETH_HLEN;
6364
6365         /* handle any vlan tag if present */
6366         if (protocol == __constant_htons(ETH_P_8021Q)) {
6367                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6368                         return max_len;
6369
6370                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6371                 hdr.network += VLAN_HLEN;
6372         }
6373
6374         /* handle L3 protocols */
6375         if (protocol == __constant_htons(ETH_P_IP)) {
6376                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6377                         return max_len;
6378
6379                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6380                 hlen = (hdr.network[0] & 0x0F) << 2;
6381
6382                 /* verify hlen meets minimum size requirements */
6383                 if (hlen < sizeof(struct iphdr))
6384                         return hdr.network - data;
6385
6386                 /* record next protocol if header is present */
6387                 if (!hdr.ipv4->frag_off)
6388                         nexthdr = hdr.ipv4->protocol;
6389         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6390                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6391                         return max_len;
6392
6393                 /* record next protocol */
6394                 nexthdr = hdr.ipv6->nexthdr;
6395                 hlen = sizeof(struct ipv6hdr);
6396         } else {
6397                 return hdr.network - data;
6398         }
6399
6400         /* relocate pointer to start of L4 header */
6401         hdr.network += hlen;
6402
6403         /* finally sort out TCP */
6404         if (nexthdr == IPPROTO_TCP) {
6405                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6406                         return max_len;
6407
6408                 /* access doff as a u8 to avoid unaligned access on ia64 */
6409                 hlen = (hdr.network[12] & 0xF0) >> 2;
6410
6411                 /* verify hlen meets minimum size requirements */
6412                 if (hlen < sizeof(struct tcphdr))
6413                         return hdr.network - data;
6414
6415                 hdr.network += hlen;
6416         } else if (nexthdr == IPPROTO_UDP) {
6417                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6418                         return max_len;
6419
6420                 hdr.network += sizeof(struct udphdr);
6421         }
6422
6423         /*
6424          * If everything has gone correctly hdr.network should be the
6425          * data section of the packet and will be the end of the header.
6426          * If not then it probably represents the end of the last recognized
6427          * header.
6428          */
6429         if ((hdr.network - data) < max_len)
6430                 return hdr.network - data;
6431         else
6432                 return max_len;
6433 }
6434
6435 /**
6436  * igb_pull_tail - igb specific version of skb_pull_tail
6437  * @rx_ring: rx descriptor ring packet is being transacted on
6438  * @rx_desc: pointer to the EOP Rx descriptor
6439  * @skb: pointer to current skb being adjusted
6440  *
6441  * This function is an igb specific version of __pskb_pull_tail.  The
6442  * main difference between this version and the original function is that
6443  * this function can make several assumptions about the state of things
6444  * that allow for significant optimizations versus the standard function.
6445  * As a result we can do things like drop a frag and maintain an accurate
6446  * truesize for the skb.
6447  */
6448 static void igb_pull_tail(struct igb_ring *rx_ring,
6449                           union e1000_adv_rx_desc *rx_desc,
6450                           struct sk_buff *skb)
6451 {
6452         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6453         unsigned char *va;
6454         unsigned int pull_len;
6455
6456         /*
6457          * it is valid to use page_address instead of kmap since we are
6458          * working with pages allocated out of the lomem pool per
6459          * alloc_page(GFP_ATOMIC)
6460          */
6461         va = skb_frag_address(frag);
6462
6463         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6464                 /* retrieve timestamp from buffer */
6465                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6466
6467                 /* update pointers to remove timestamp header */
6468                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6469                 frag->page_offset += IGB_TS_HDR_LEN;
6470                 skb->data_len -= IGB_TS_HDR_LEN;
6471                 skb->len -= IGB_TS_HDR_LEN;
6472
6473                 /* move va to start of packet data */
6474                 va += IGB_TS_HDR_LEN;
6475         }
6476
6477         /*
6478          * we need the header to contain the greater of either ETH_HLEN or
6479          * 60 bytes if the skb->len is less than 60 for skb_pad.
6480          */
6481         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6482
6483         /* align pull length to size of long to optimize memcpy performance */
6484         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6485
6486         /* update all of the pointers */
6487         skb_frag_size_sub(frag, pull_len);
6488         frag->page_offset += pull_len;
6489         skb->data_len -= pull_len;
6490         skb->tail += pull_len;
6491 }
6492
6493 /**
6494  * igb_cleanup_headers - Correct corrupted or empty headers
6495  * @rx_ring: rx descriptor ring packet is being transacted on
6496  * @rx_desc: pointer to the EOP Rx descriptor
6497  * @skb: pointer to current skb being fixed
6498  *
6499  * Address the case where we are pulling data in on pages only
6500  * and as such no data is present in the skb header.
6501  *
6502  * In addition if skb is not at least 60 bytes we need to pad it so that
6503  * it is large enough to qualify as a valid Ethernet frame.
6504  *
6505  * Returns true if an error was encountered and skb was freed.
6506  **/
6507 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6508                                 union e1000_adv_rx_desc *rx_desc,
6509                                 struct sk_buff *skb)
6510 {
6511
6512         if (unlikely((igb_test_staterr(rx_desc,
6513                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6514                 struct net_device *netdev = rx_ring->netdev;
6515                 if (!(netdev->features & NETIF_F_RXALL)) {
6516                         dev_kfree_skb_any(skb);
6517                         return true;
6518                 }
6519         }
6520
6521         /* place header in linear portion of buffer */
6522         if (skb_is_nonlinear(skb))
6523                 igb_pull_tail(rx_ring, rx_desc, skb);
6524
6525         /* if skb_pad returns an error the skb was freed */
6526         if (unlikely(skb->len < 60)) {
6527                 int pad_len = 60 - skb->len;
6528
6529                 if (skb_pad(skb, pad_len))
6530                         return true;
6531                 __skb_put(skb, pad_len);
6532         }
6533
6534         return false;
6535 }
6536
6537 /**
6538  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6539  * @rx_ring: rx descriptor ring packet is being transacted on
6540  * @rx_desc: pointer to the EOP Rx descriptor
6541  * @skb: pointer to current skb being populated
6542  *
6543  * This function checks the ring, descriptor, and packet information in
6544  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6545  * other fields within the skb.
6546  **/
6547 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6548                                    union e1000_adv_rx_desc *rx_desc,
6549                                    struct sk_buff *skb)
6550 {
6551         struct net_device *dev = rx_ring->netdev;
6552
6553         igb_rx_hash(rx_ring, rx_desc, skb);
6554
6555         igb_rx_checksum(rx_ring, rx_desc, skb);
6556
6557         igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6558
6559         if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6560             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6561                 u16 vid;
6562                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6563                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6564                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6565                 else
6566                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6567
6568                 __vlan_hwaccel_put_tag(skb, vid);
6569         }
6570
6571         skb_record_rx_queue(skb, rx_ring->queue_index);
6572
6573         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6574 }
6575
6576 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6577 {
6578         struct igb_ring *rx_ring = q_vector->rx.ring;
6579         struct sk_buff *skb = rx_ring->skb;
6580         unsigned int total_bytes = 0, total_packets = 0;
6581         u16 cleaned_count = igb_desc_unused(rx_ring);
6582
6583         do {
6584                 union e1000_adv_rx_desc *rx_desc;
6585
6586                 /* return some buffers to hardware, one at a time is too slow */
6587                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6588                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6589                         cleaned_count = 0;
6590                 }
6591
6592                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6593
6594                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6595                         break;
6596
6597                 /* This memory barrier is needed to keep us from reading
6598                  * any other fields out of the rx_desc until we know the
6599                  * RXD_STAT_DD bit is set
6600                  */
6601                 rmb();
6602
6603                 /* retrieve a buffer from the ring */
6604                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6605
6606                 /* exit if we failed to retrieve a buffer */
6607                 if (!skb)
6608                         break;
6609
6610                 cleaned_count++;
6611
6612                 /* fetch next buffer in frame if non-eop */
6613                 if (igb_is_non_eop(rx_ring, rx_desc))
6614                         continue;
6615
6616                 /* verify the packet layout is correct */
6617                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6618                         skb = NULL;
6619                         continue;
6620                 }
6621
6622                 /* probably a little skewed due to removing CRC */
6623                 total_bytes += skb->len;
6624
6625                 /* populate checksum, timestamp, VLAN, and protocol */
6626                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6627
6628                 napi_gro_receive(&q_vector->napi, skb);
6629
6630                 /* reset skb pointer */
6631                 skb = NULL;
6632
6633                 /* update budget accounting */
6634                 total_packets++;
6635         } while (likely(total_packets < budget));
6636
6637         /* place incomplete frames back on ring for completion */
6638         rx_ring->skb = skb;
6639
6640         u64_stats_update_begin(&rx_ring->rx_syncp);
6641         rx_ring->rx_stats.packets += total_packets;
6642         rx_ring->rx_stats.bytes += total_bytes;
6643         u64_stats_update_end(&rx_ring->rx_syncp);
6644         q_vector->rx.total_packets += total_packets;
6645         q_vector->rx.total_bytes += total_bytes;
6646
6647         if (cleaned_count)
6648                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6649
6650         return (total_packets < budget);
6651 }
6652
6653 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6654                                   struct igb_rx_buffer *bi)
6655 {
6656         struct page *page = bi->page;
6657         dma_addr_t dma;
6658
6659         /* since we are recycling buffers we should seldom need to alloc */
6660         if (likely(page))
6661                 return true;
6662
6663         /* alloc new page for storage */
6664         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6665         if (unlikely(!page)) {
6666                 rx_ring->rx_stats.alloc_failed++;
6667                 return false;
6668         }
6669
6670         /* map page for use */
6671         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6672
6673         /*
6674          * if mapping failed free memory back to system since
6675          * there isn't much point in holding memory we can't use
6676          */
6677         if (dma_mapping_error(rx_ring->dev, dma)) {
6678                 __free_page(page);
6679
6680                 rx_ring->rx_stats.alloc_failed++;
6681                 return false;
6682         }
6683
6684         bi->dma = dma;
6685         bi->page = page;
6686         bi->page_offset = 0;
6687
6688         return true;
6689 }
6690
6691 /**
6692  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6693  * @adapter: address of board private structure
6694  **/
6695 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6696 {
6697         union e1000_adv_rx_desc *rx_desc;
6698         struct igb_rx_buffer *bi;
6699         u16 i = rx_ring->next_to_use;
6700
6701         /* nothing to do */
6702         if (!cleaned_count)
6703                 return;
6704
6705         rx_desc = IGB_RX_DESC(rx_ring, i);
6706         bi = &rx_ring->rx_buffer_info[i];
6707         i -= rx_ring->count;
6708
6709         do {
6710                 if (!igb_alloc_mapped_page(rx_ring, bi))
6711                         break;
6712
6713                 /*
6714                  * Refresh the desc even if buffer_addrs didn't change
6715                  * because each write-back erases this info.
6716                  */
6717                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6718
6719                 rx_desc++;
6720                 bi++;
6721                 i++;
6722                 if (unlikely(!i)) {
6723                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6724                         bi = rx_ring->rx_buffer_info;
6725                         i -= rx_ring->count;
6726                 }
6727
6728                 /* clear the hdr_addr for the next_to_use descriptor */
6729                 rx_desc->read.hdr_addr = 0;
6730
6731                 cleaned_count--;
6732         } while (cleaned_count);
6733
6734         i += rx_ring->count;
6735
6736         if (rx_ring->next_to_use != i) {
6737                 /* record the next descriptor to use */
6738                 rx_ring->next_to_use = i;
6739
6740                 /* update next to alloc since we have filled the ring */
6741                 rx_ring->next_to_alloc = i;
6742
6743                 /*
6744                  * Force memory writes to complete before letting h/w
6745                  * know there are new descriptors to fetch.  (Only
6746                  * applicable for weak-ordered memory model archs,
6747                  * such as IA-64).
6748                  */
6749                 wmb();
6750                 writel(i, rx_ring->tail);
6751         }
6752 }
6753
6754 /**
6755  * igb_mii_ioctl -
6756  * @netdev:
6757  * @ifreq:
6758  * @cmd:
6759  **/
6760 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6761 {
6762         struct igb_adapter *adapter = netdev_priv(netdev);
6763         struct mii_ioctl_data *data = if_mii(ifr);
6764
6765         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6766                 return -EOPNOTSUPP;
6767
6768         switch (cmd) {
6769         case SIOCGMIIPHY:
6770                 data->phy_id = adapter->hw.phy.addr;
6771                 break;
6772         case SIOCGMIIREG:
6773                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6774                                      &data->val_out))
6775                         return -EIO;
6776                 break;
6777         case SIOCSMIIREG:
6778         default:
6779                 return -EOPNOTSUPP;
6780         }
6781         return 0;
6782 }
6783
6784 /**
6785  * igb_ioctl -
6786  * @netdev:
6787  * @ifreq:
6788  * @cmd:
6789  **/
6790 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6791 {
6792         switch (cmd) {
6793         case SIOCGMIIPHY:
6794         case SIOCGMIIREG:
6795         case SIOCSMIIREG:
6796                 return igb_mii_ioctl(netdev, ifr, cmd);
6797         case SIOCSHWTSTAMP:
6798                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6799         default:
6800                 return -EOPNOTSUPP;
6801         }
6802 }
6803
6804 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6805 {
6806         struct igb_adapter *adapter = hw->back;
6807
6808         if (pcie_capability_read_word(adapter->pdev, reg, value))
6809                 return -E1000_ERR_CONFIG;
6810
6811         return 0;
6812 }
6813
6814 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6815 {
6816         struct igb_adapter *adapter = hw->back;
6817
6818         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6819                 return -E1000_ERR_CONFIG;
6820
6821         return 0;
6822 }
6823
6824 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6825 {
6826         struct igb_adapter *adapter = netdev_priv(netdev);
6827         struct e1000_hw *hw = &adapter->hw;
6828         u32 ctrl, rctl;
6829         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6830
6831         if (enable) {
6832                 /* enable VLAN tag insert/strip */
6833                 ctrl = rd32(E1000_CTRL);
6834                 ctrl |= E1000_CTRL_VME;
6835                 wr32(E1000_CTRL, ctrl);
6836
6837                 /* Disable CFI check */
6838                 rctl = rd32(E1000_RCTL);
6839                 rctl &= ~E1000_RCTL_CFIEN;
6840                 wr32(E1000_RCTL, rctl);
6841         } else {
6842                 /* disable VLAN tag insert/strip */
6843                 ctrl = rd32(E1000_CTRL);
6844                 ctrl &= ~E1000_CTRL_VME;
6845                 wr32(E1000_CTRL, ctrl);
6846         }
6847
6848         igb_rlpml_set(adapter);
6849 }
6850
6851 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6852 {
6853         struct igb_adapter *adapter = netdev_priv(netdev);
6854         struct e1000_hw *hw = &adapter->hw;
6855         int pf_id = adapter->vfs_allocated_count;
6856
6857         /* attempt to add filter to vlvf array */
6858         igb_vlvf_set(adapter, vid, true, pf_id);
6859
6860         /* add the filter since PF can receive vlans w/o entry in vlvf */
6861         igb_vfta_set(hw, vid, true);
6862
6863         set_bit(vid, adapter->active_vlans);
6864
6865         return 0;
6866 }
6867
6868 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6869 {
6870         struct igb_adapter *adapter = netdev_priv(netdev);
6871         struct e1000_hw *hw = &adapter->hw;
6872         int pf_id = adapter->vfs_allocated_count;
6873         s32 err;
6874
6875         /* remove vlan from VLVF table array */
6876         err = igb_vlvf_set(adapter, vid, false, pf_id);
6877
6878         /* if vid was not present in VLVF just remove it from table */
6879         if (err)
6880                 igb_vfta_set(hw, vid, false);
6881
6882         clear_bit(vid, adapter->active_vlans);
6883
6884         return 0;
6885 }
6886
6887 static void igb_restore_vlan(struct igb_adapter *adapter)
6888 {
6889         u16 vid;
6890
6891         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6892
6893         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6894                 igb_vlan_rx_add_vid(adapter->netdev, vid);
6895 }
6896
6897 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6898 {
6899         struct pci_dev *pdev = adapter->pdev;
6900         struct e1000_mac_info *mac = &adapter->hw.mac;
6901
6902         mac->autoneg = 0;
6903
6904         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6905          * for the switch() below to work */
6906         if ((spd & 1) || (dplx & ~1))
6907                 goto err_inval;
6908
6909         /* Fiber NIC's only allow 1000 Gbps Full duplex */
6910         if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6911             spd != SPEED_1000 &&
6912             dplx != DUPLEX_FULL)
6913                 goto err_inval;
6914
6915         switch (spd + dplx) {
6916         case SPEED_10 + DUPLEX_HALF:
6917                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6918                 break;
6919         case SPEED_10 + DUPLEX_FULL:
6920                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6921                 break;
6922         case SPEED_100 + DUPLEX_HALF:
6923                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6924                 break;
6925         case SPEED_100 + DUPLEX_FULL:
6926                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6927                 break;
6928         case SPEED_1000 + DUPLEX_FULL:
6929                 mac->autoneg = 1;
6930                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6931                 break;
6932         case SPEED_1000 + DUPLEX_HALF: /* not supported */
6933         default:
6934                 goto err_inval;
6935         }
6936
6937         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6938         adapter->hw.phy.mdix = AUTO_ALL_MODES;
6939
6940         return 0;
6941
6942 err_inval:
6943         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6944         return -EINVAL;
6945 }
6946
6947 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6948                           bool runtime)
6949 {
6950         struct net_device *netdev = pci_get_drvdata(pdev);
6951         struct igb_adapter *adapter = netdev_priv(netdev);
6952         struct e1000_hw *hw = &adapter->hw;
6953         u32 ctrl, rctl, status;
6954         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6955 #ifdef CONFIG_PM
6956         int retval = 0;
6957 #endif
6958
6959         netif_device_detach(netdev);
6960
6961         if (netif_running(netdev))
6962                 __igb_close(netdev, true);
6963
6964         igb_clear_interrupt_scheme(adapter);
6965
6966 #ifdef CONFIG_PM
6967         retval = pci_save_state(pdev);
6968         if (retval)
6969                 return retval;
6970 #endif
6971
6972         status = rd32(E1000_STATUS);
6973         if (status & E1000_STATUS_LU)
6974                 wufc &= ~E1000_WUFC_LNKC;
6975
6976         if (wufc) {
6977                 igb_setup_rctl(adapter);
6978                 igb_set_rx_mode(netdev);
6979
6980                 /* turn on all-multi mode if wake on multicast is enabled */
6981                 if (wufc & E1000_WUFC_MC) {
6982                         rctl = rd32(E1000_RCTL);
6983                         rctl |= E1000_RCTL_MPE;
6984                         wr32(E1000_RCTL, rctl);
6985                 }
6986
6987                 ctrl = rd32(E1000_CTRL);
6988                 /* advertise wake from D3Cold */
6989                 #define E1000_CTRL_ADVD3WUC 0x00100000
6990                 /* phy power management enable */
6991                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6992                 ctrl |= E1000_CTRL_ADVD3WUC;
6993                 wr32(E1000_CTRL, ctrl);
6994
6995                 /* Allow time for pending master requests to run */
6996                 igb_disable_pcie_master(hw);
6997
6998                 wr32(E1000_WUC, E1000_WUC_PME_EN);
6999                 wr32(E1000_WUFC, wufc);
7000         } else {
7001                 wr32(E1000_WUC, 0);
7002                 wr32(E1000_WUFC, 0);
7003         }
7004
7005         *enable_wake = wufc || adapter->en_mng_pt;
7006         if (!*enable_wake)
7007                 igb_power_down_link(adapter);
7008         else
7009                 igb_power_up_link(adapter);
7010
7011         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7012          * would have already happened in close and is redundant. */
7013         igb_release_hw_control(adapter);
7014
7015         pci_disable_device(pdev);
7016
7017         return 0;
7018 }
7019
7020 #ifdef CONFIG_PM
7021 #ifdef CONFIG_PM_SLEEP
7022 static int igb_suspend(struct device *dev)
7023 {
7024         int retval;
7025         bool wake;
7026         struct pci_dev *pdev = to_pci_dev(dev);
7027
7028         retval = __igb_shutdown(pdev, &wake, 0);
7029         if (retval)
7030                 return retval;
7031
7032         if (wake) {
7033                 pci_prepare_to_sleep(pdev);
7034         } else {
7035                 pci_wake_from_d3(pdev, false);
7036                 pci_set_power_state(pdev, PCI_D3hot);
7037         }
7038
7039         return 0;
7040 }
7041 #endif /* CONFIG_PM_SLEEP */
7042
7043 static int igb_resume(struct device *dev)
7044 {
7045         struct pci_dev *pdev = to_pci_dev(dev);
7046         struct net_device *netdev = pci_get_drvdata(pdev);
7047         struct igb_adapter *adapter = netdev_priv(netdev);
7048         struct e1000_hw *hw = &adapter->hw;
7049         u32 err;
7050
7051         pci_set_power_state(pdev, PCI_D0);
7052         pci_restore_state(pdev);
7053         pci_save_state(pdev);
7054
7055         err = pci_enable_device_mem(pdev);
7056         if (err) {
7057                 dev_err(&pdev->dev,
7058                         "igb: Cannot enable PCI device from suspend\n");
7059                 return err;
7060         }
7061         pci_set_master(pdev);
7062
7063         pci_enable_wake(pdev, PCI_D3hot, 0);
7064         pci_enable_wake(pdev, PCI_D3cold, 0);
7065
7066         if (igb_init_interrupt_scheme(adapter, true)) {
7067                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7068                 return -ENOMEM;
7069         }
7070
7071         igb_reset(adapter);
7072
7073         /* let the f/w know that the h/w is now under the control of the
7074          * driver. */
7075         igb_get_hw_control(adapter);
7076
7077         wr32(E1000_WUS, ~0);
7078
7079         if (netdev->flags & IFF_UP) {
7080                 rtnl_lock();
7081                 err = __igb_open(netdev, true);
7082                 rtnl_unlock();
7083                 if (err)
7084                         return err;
7085         }
7086
7087         netif_device_attach(netdev);
7088         return 0;
7089 }
7090
7091 #ifdef CONFIG_PM_RUNTIME
7092 static int igb_runtime_idle(struct device *dev)
7093 {
7094         struct pci_dev *pdev = to_pci_dev(dev);
7095         struct net_device *netdev = pci_get_drvdata(pdev);
7096         struct igb_adapter *adapter = netdev_priv(netdev);
7097
7098         if (!igb_has_link(adapter))
7099                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7100
7101         return -EBUSY;
7102 }
7103
7104 static int igb_runtime_suspend(struct device *dev)
7105 {
7106         struct pci_dev *pdev = to_pci_dev(dev);
7107         int retval;
7108         bool wake;
7109
7110         retval = __igb_shutdown(pdev, &wake, 1);
7111         if (retval)
7112                 return retval;
7113
7114         if (wake) {
7115                 pci_prepare_to_sleep(pdev);
7116         } else {
7117                 pci_wake_from_d3(pdev, false);
7118                 pci_set_power_state(pdev, PCI_D3hot);
7119         }
7120
7121         return 0;
7122 }
7123
7124 static int igb_runtime_resume(struct device *dev)
7125 {
7126         return igb_resume(dev);
7127 }
7128 #endif /* CONFIG_PM_RUNTIME */
7129 #endif
7130
7131 static void igb_shutdown(struct pci_dev *pdev)
7132 {
7133         bool wake;
7134
7135         __igb_shutdown(pdev, &wake, 0);
7136
7137         if (system_state == SYSTEM_POWER_OFF) {
7138                 pci_wake_from_d3(pdev, wake);
7139                 pci_set_power_state(pdev, PCI_D3hot);
7140         }
7141 }
7142
7143 #ifdef CONFIG_PCI_IOV
7144 static int igb_sriov_reinit(struct pci_dev *dev)
7145 {
7146         struct net_device *netdev = pci_get_drvdata(dev);
7147         struct igb_adapter *adapter = netdev_priv(netdev);
7148         struct pci_dev *pdev = adapter->pdev;
7149
7150         rtnl_lock();
7151
7152         if (netif_running(netdev))
7153                 igb_close(netdev);
7154
7155         igb_clear_interrupt_scheme(adapter);
7156
7157         igb_init_queue_configuration(adapter);
7158
7159         if (igb_init_interrupt_scheme(adapter, true)) {
7160                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7161                 return -ENOMEM;
7162         }
7163
7164         if (netif_running(netdev))
7165                 igb_open(netdev);
7166
7167         rtnl_unlock();
7168
7169         return 0;
7170 }
7171
7172 static int igb_pci_disable_sriov(struct pci_dev *dev)
7173 {
7174         int err = igb_disable_sriov(dev);
7175
7176         if (!err)
7177                 err = igb_sriov_reinit(dev);
7178
7179         return err;
7180 }
7181
7182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7183 {
7184         int err = igb_enable_sriov(dev, num_vfs);
7185
7186         if (err)
7187                 goto out;
7188
7189         err = igb_sriov_reinit(dev);
7190         if (!err)
7191                 return num_vfs;
7192
7193 out:
7194         return err;
7195 }
7196
7197 #endif
7198 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7199 {
7200 #ifdef CONFIG_PCI_IOV
7201         if (num_vfs == 0)
7202                 return igb_pci_disable_sriov(dev);
7203         else
7204                 return igb_pci_enable_sriov(dev, num_vfs);
7205 #endif
7206         return 0;
7207 }
7208
7209 #ifdef CONFIG_NET_POLL_CONTROLLER
7210 /*
7211  * Polling 'interrupt' - used by things like netconsole to send skbs
7212  * without having to re-enable interrupts. It's not called while
7213  * the interrupt routine is executing.
7214  */
7215 static void igb_netpoll(struct net_device *netdev)
7216 {
7217         struct igb_adapter *adapter = netdev_priv(netdev);
7218         struct e1000_hw *hw = &adapter->hw;
7219         struct igb_q_vector *q_vector;
7220         int i;
7221
7222         for (i = 0; i < adapter->num_q_vectors; i++) {
7223                 q_vector = adapter->q_vector[i];
7224                 if (adapter->msix_entries)
7225                         wr32(E1000_EIMC, q_vector->eims_value);
7226                 else
7227                         igb_irq_disable(adapter);
7228                 napi_schedule(&q_vector->napi);
7229         }
7230 }
7231 #endif /* CONFIG_NET_POLL_CONTROLLER */
7232
7233 /**
7234  * igb_io_error_detected - called when PCI error is detected
7235  * @pdev: Pointer to PCI device
7236  * @state: The current pci connection state
7237  *
7238  * This function is called after a PCI bus error affecting
7239  * this device has been detected.
7240  */
7241 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7242                                               pci_channel_state_t state)
7243 {
7244         struct net_device *netdev = pci_get_drvdata(pdev);
7245         struct igb_adapter *adapter = netdev_priv(netdev);
7246
7247         netif_device_detach(netdev);
7248
7249         if (state == pci_channel_io_perm_failure)
7250                 return PCI_ERS_RESULT_DISCONNECT;
7251
7252         if (netif_running(netdev))
7253                 igb_down(adapter);
7254         pci_disable_device(pdev);
7255
7256         /* Request a slot slot reset. */
7257         return PCI_ERS_RESULT_NEED_RESET;
7258 }
7259
7260 /**
7261  * igb_io_slot_reset - called after the pci bus has been reset.
7262  * @pdev: Pointer to PCI device
7263  *
7264  * Restart the card from scratch, as if from a cold-boot. Implementation
7265  * resembles the first-half of the igb_resume routine.
7266  */
7267 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7268 {
7269         struct net_device *netdev = pci_get_drvdata(pdev);
7270         struct igb_adapter *adapter = netdev_priv(netdev);
7271         struct e1000_hw *hw = &adapter->hw;
7272         pci_ers_result_t result;
7273         int err;
7274
7275         if (pci_enable_device_mem(pdev)) {
7276                 dev_err(&pdev->dev,
7277                         "Cannot re-enable PCI device after reset.\n");
7278                 result = PCI_ERS_RESULT_DISCONNECT;
7279         } else {
7280                 pci_set_master(pdev);
7281                 pci_restore_state(pdev);
7282                 pci_save_state(pdev);
7283
7284                 pci_enable_wake(pdev, PCI_D3hot, 0);
7285                 pci_enable_wake(pdev, PCI_D3cold, 0);
7286
7287                 igb_reset(adapter);
7288                 wr32(E1000_WUS, ~0);
7289                 result = PCI_ERS_RESULT_RECOVERED;
7290         }
7291
7292         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7293         if (err) {
7294                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7295                         "failed 0x%0x\n", err);
7296                 /* non-fatal, continue */
7297         }
7298
7299         return result;
7300 }
7301
7302 /**
7303  * igb_io_resume - called when traffic can start flowing again.
7304  * @pdev: Pointer to PCI device
7305  *
7306  * This callback is called when the error recovery driver tells us that
7307  * its OK to resume normal operation. Implementation resembles the
7308  * second-half of the igb_resume routine.
7309  */
7310 static void igb_io_resume(struct pci_dev *pdev)
7311 {
7312         struct net_device *netdev = pci_get_drvdata(pdev);
7313         struct igb_adapter *adapter = netdev_priv(netdev);
7314
7315         if (netif_running(netdev)) {
7316                 if (igb_up(adapter)) {
7317                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7318                         return;
7319                 }
7320         }
7321
7322         netif_device_attach(netdev);
7323
7324         /* let the f/w know that the h/w is now under the control of the
7325          * driver. */
7326         igb_get_hw_control(adapter);
7327 }
7328
7329 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7330                              u8 qsel)
7331 {
7332         u32 rar_low, rar_high;
7333         struct e1000_hw *hw = &adapter->hw;
7334
7335         /* HW expects these in little endian so we reverse the byte order
7336          * from network order (big endian) to little endian
7337          */
7338         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7339                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7340         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7341
7342         /* Indicate to hardware the Address is Valid. */
7343         rar_high |= E1000_RAH_AV;
7344
7345         if (hw->mac.type == e1000_82575)
7346                 rar_high |= E1000_RAH_POOL_1 * qsel;
7347         else
7348                 rar_high |= E1000_RAH_POOL_1 << qsel;
7349
7350         wr32(E1000_RAL(index), rar_low);
7351         wrfl();
7352         wr32(E1000_RAH(index), rar_high);
7353         wrfl();
7354 }
7355
7356 static int igb_set_vf_mac(struct igb_adapter *adapter,
7357                           int vf, unsigned char *mac_addr)
7358 {
7359         struct e1000_hw *hw = &adapter->hw;
7360         /* VF MAC addresses start at end of receive addresses and moves
7361          * torwards the first, as a result a collision should not be possible */
7362         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7363
7364         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7365
7366         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7367
7368         return 0;
7369 }
7370
7371 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7372 {
7373         struct igb_adapter *adapter = netdev_priv(netdev);
7374         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7375                 return -EINVAL;
7376         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7377         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7378         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7379                                       " change effective.");
7380         if (test_bit(__IGB_DOWN, &adapter->state)) {
7381                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7382                          " but the PF device is not up.\n");
7383                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7384                          " attempting to use the VF device.\n");
7385         }
7386         return igb_set_vf_mac(adapter, vf, mac);
7387 }
7388
7389 static int igb_link_mbps(int internal_link_speed)
7390 {
7391         switch (internal_link_speed) {
7392         case SPEED_100:
7393                 return 100;
7394         case SPEED_1000:
7395                 return 1000;
7396         default:
7397                 return 0;
7398         }
7399 }
7400
7401 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7402                                   int link_speed)
7403 {
7404         int rf_dec, rf_int;
7405         u32 bcnrc_val;
7406
7407         if (tx_rate != 0) {
7408                 /* Calculate the rate factor values to set */
7409                 rf_int = link_speed / tx_rate;
7410                 rf_dec = (link_speed - (rf_int * tx_rate));
7411                 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7412
7413                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7414                 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7415                                E1000_RTTBCNRC_RF_INT_MASK);
7416                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7417         } else {
7418                 bcnrc_val = 0;
7419         }
7420
7421         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7422         /*
7423          * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7424          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7425          */
7426         wr32(E1000_RTTBCNRM, 0x14);
7427         wr32(E1000_RTTBCNRC, bcnrc_val);
7428 }
7429
7430 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7431 {
7432         int actual_link_speed, i;
7433         bool reset_rate = false;
7434
7435         /* VF TX rate limit was not set or not supported */
7436         if ((adapter->vf_rate_link_speed == 0) ||
7437             (adapter->hw.mac.type != e1000_82576))
7438                 return;
7439
7440         actual_link_speed = igb_link_mbps(adapter->link_speed);
7441         if (actual_link_speed != adapter->vf_rate_link_speed) {
7442                 reset_rate = true;
7443                 adapter->vf_rate_link_speed = 0;
7444                 dev_info(&adapter->pdev->dev,
7445                          "Link speed has been changed. VF Transmit "
7446                          "rate is disabled\n");
7447         }
7448
7449         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7450                 if (reset_rate)
7451                         adapter->vf_data[i].tx_rate = 0;
7452
7453                 igb_set_vf_rate_limit(&adapter->hw, i,
7454                                       adapter->vf_data[i].tx_rate,
7455                                       actual_link_speed);
7456         }
7457 }
7458
7459 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7460 {
7461         struct igb_adapter *adapter = netdev_priv(netdev);
7462         struct e1000_hw *hw = &adapter->hw;
7463         int actual_link_speed;
7464
7465         if (hw->mac.type != e1000_82576)
7466                 return -EOPNOTSUPP;
7467
7468         actual_link_speed = igb_link_mbps(adapter->link_speed);
7469         if ((vf >= adapter->vfs_allocated_count) ||
7470             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7471             (tx_rate < 0) || (tx_rate > actual_link_speed))
7472                 return -EINVAL;
7473
7474         adapter->vf_rate_link_speed = actual_link_speed;
7475         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7476         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7477
7478         return 0;
7479 }
7480
7481 static int igb_ndo_get_vf_config(struct net_device *netdev,
7482                                  int vf, struct ifla_vf_info *ivi)
7483 {
7484         struct igb_adapter *adapter = netdev_priv(netdev);
7485         if (vf >= adapter->vfs_allocated_count)
7486                 return -EINVAL;
7487         ivi->vf = vf;
7488         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7489         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7490         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7491         ivi->qos = adapter->vf_data[vf].pf_qos;
7492         return 0;
7493 }
7494
7495 static void igb_vmm_control(struct igb_adapter *adapter)
7496 {
7497         struct e1000_hw *hw = &adapter->hw;
7498         u32 reg;
7499
7500         switch (hw->mac.type) {
7501         case e1000_82575:
7502         case e1000_i210:
7503         case e1000_i211:
7504         default:
7505                 /* replication is not supported for 82575 */
7506                 return;
7507         case e1000_82576:
7508                 /* notify HW that the MAC is adding vlan tags */
7509                 reg = rd32(E1000_DTXCTL);
7510                 reg |= E1000_DTXCTL_VLAN_ADDED;
7511                 wr32(E1000_DTXCTL, reg);
7512         case e1000_82580:
7513                 /* enable replication vlan tag stripping */
7514                 reg = rd32(E1000_RPLOLR);
7515                 reg |= E1000_RPLOLR_STRVLAN;
7516                 wr32(E1000_RPLOLR, reg);
7517         case e1000_i350:
7518                 /* none of the above registers are supported by i350 */
7519                 break;
7520         }
7521
7522         if (adapter->vfs_allocated_count) {
7523                 igb_vmdq_set_loopback_pf(hw, true);
7524                 igb_vmdq_set_replication_pf(hw, true);
7525                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7526                                                 adapter->vfs_allocated_count);
7527         } else {
7528                 igb_vmdq_set_loopback_pf(hw, false);
7529                 igb_vmdq_set_replication_pf(hw, false);
7530         }
7531 }
7532
7533 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7534 {
7535         struct e1000_hw *hw = &adapter->hw;
7536         u32 dmac_thr;
7537         u16 hwm;
7538
7539         if (hw->mac.type > e1000_82580) {
7540                 if (adapter->flags & IGB_FLAG_DMAC) {
7541                         u32 reg;
7542
7543                         /* force threshold to 0. */
7544                         wr32(E1000_DMCTXTH, 0);
7545
7546                         /*
7547                          * DMA Coalescing high water mark needs to be greater
7548                          * than the Rx threshold. Set hwm to PBA - max frame
7549                          * size in 16B units, capping it at PBA - 6KB.
7550                          */
7551                         hwm = 64 * pba - adapter->max_frame_size / 16;
7552                         if (hwm < 64 * (pba - 6))
7553                                 hwm = 64 * (pba - 6);
7554                         reg = rd32(E1000_FCRTC);
7555                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7556                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7557                                 & E1000_FCRTC_RTH_COAL_MASK);
7558                         wr32(E1000_FCRTC, reg);
7559
7560                         /*
7561                          * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7562                          * frame size, capping it at PBA - 10KB.
7563                          */
7564                         dmac_thr = pba - adapter->max_frame_size / 512;
7565                         if (dmac_thr < pba - 10)
7566                                 dmac_thr = pba - 10;
7567                         reg = rd32(E1000_DMACR);
7568                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7569                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7570                                 & E1000_DMACR_DMACTHR_MASK);
7571
7572                         /* transition to L0x or L1 if available..*/
7573                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7574
7575                         /* watchdog timer= +-1000 usec in 32usec intervals */
7576                         reg |= (1000 >> 5);
7577
7578                         /* Disable BMC-to-OS Watchdog Enable */
7579                         reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7580                         wr32(E1000_DMACR, reg);
7581
7582                         /*
7583                          * no lower threshold to disable
7584                          * coalescing(smart fifb)-UTRESH=0
7585                          */
7586                         wr32(E1000_DMCRTRH, 0);
7587
7588                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7589
7590                         wr32(E1000_DMCTLX, reg);
7591
7592                         /*
7593                          * free space in tx packet buffer to wake from
7594                          * DMA coal
7595                          */
7596                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7597                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7598
7599                         /*
7600                          * make low power state decision controlled
7601                          * by DMA coal
7602                          */
7603                         reg = rd32(E1000_PCIEMISC);
7604                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7605                         wr32(E1000_PCIEMISC, reg);
7606                 } /* endif adapter->dmac is not disabled */
7607         } else if (hw->mac.type == e1000_82580) {
7608                 u32 reg = rd32(E1000_PCIEMISC);
7609                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7610                 wr32(E1000_DMACR, 0);
7611         }
7612 }
7613
7614 /*  igb_read_i2c_byte - Reads 8 bit word over I2C
7615  *  @hw: pointer to hardware structure
7616  *  @byte_offset: byte offset to read
7617  *  @dev_addr: device address
7618  *  @data: value read
7619  *
7620  *  Performs byte read operation over I2C interface at
7621  *  a specified device address.
7622  */
7623 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7624                                 u8 dev_addr, u8 *data)
7625 {
7626         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7627         struct i2c_client *this_client = adapter->i2c_client;
7628         s32 status;
7629         u16 swfw_mask = 0;
7630
7631         if (!this_client)
7632                 return E1000_ERR_I2C;
7633
7634         swfw_mask = E1000_SWFW_PHY0_SM;
7635
7636         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7637             != E1000_SUCCESS)
7638                 return E1000_ERR_SWFW_SYNC;
7639
7640         status = i2c_smbus_read_byte_data(this_client, byte_offset);
7641         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7642
7643         if (status < 0)
7644                 return E1000_ERR_I2C;
7645         else {
7646                 *data = status;
7647                 return E1000_SUCCESS;
7648         }
7649 }
7650
7651 /*  igb_write_i2c_byte - Writes 8 bit word over I2C
7652  *  @hw: pointer to hardware structure
7653  *  @byte_offset: byte offset to write
7654  *  @dev_addr: device address
7655  *  @data: value to write
7656  *
7657  *  Performs byte write operation over I2C interface at
7658  *  a specified device address.
7659  */
7660 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7661                                  u8 dev_addr, u8 data)
7662 {
7663         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7664         struct i2c_client *this_client = adapter->i2c_client;
7665         s32 status;
7666         u16 swfw_mask = E1000_SWFW_PHY0_SM;
7667
7668         if (!this_client)
7669                 return E1000_ERR_I2C;
7670
7671         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7672                 return E1000_ERR_SWFW_SYNC;
7673         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7674         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7675
7676         if (status)
7677                 return E1000_ERR_I2C;
7678         else
7679                 return E1000_SUCCESS;
7680
7681 }
7682 /* igb_main.c */