Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/pci.h>
22 #include <linux/ptp_classify.h>
23
24 #include "igb.h"
25
26 #define INCVALUE_MASK           0x7fffffff
27 #define ISGN                    0x80000000
28
29 /* The 82580 timesync updates the system timer every 8ns by 8ns,
30  * and this update value cannot be reprogrammed.
31  *
32  * Neither the 82576 nor the 82580 offer registers wide enough to hold
33  * nanoseconds time values for very long. For the 82580, SYSTIM always
34  * counts nanoseconds, but the upper 24 bits are not availible. The
35  * frequency is adjusted by changing the 32 bit fractional nanoseconds
36  * register, TIMINCA.
37  *
38  * For the 82576, the SYSTIM register time unit is affect by the
39  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40  * field are needed to provide the nominal 16 nanosecond period,
41  * leaving 19 bits for fractional nanoseconds.
42  *
43  * We scale the NIC clock cycle by a large factor so that relatively
44  * small clock corrections can be added or subtracted at each clock
45  * tick. The drawbacks of a large factor are a) that the clock
46  * register overflows more quickly (not such a big deal) and b) that
47  * the increment per tick has to fit into 24 bits.  As a result we
48  * need to use a shift of 19 so we can fit a value of 16 into the
49  * TIMINCA register.
50  *
51  *
52  *             SYSTIMH            SYSTIML
53  *        +--------------+   +---+---+------+
54  *  82576 |      32      |   | 8 | 5 |  19  |
55  *        +--------------+   +---+---+------+
56  *         \________ 45 bits _______/  fract
57  *
58  *        +----------+---+   +--------------+
59  *  82580 |    24    | 8 |   |      32      |
60  *        +----------+---+   +--------------+
61  *          reserved  \______ 40 bits _____/
62  *
63  *
64  * The 45 bit 82576 SYSTIM overflows every
65  *   2^45 * 10^-9 / 3600 = 9.77 hours.
66  *
67  * The 40 bit 82580 SYSTIM overflows every
68  *   2^40 * 10^-9 /  60  = 18.3 minutes.
69  */
70
71 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
72 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
73 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580                 40
77
78 /* SYSTIM read access for the 82576 */
79 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
80 {
81         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
82         struct e1000_hw *hw = &igb->hw;
83         u64 val;
84         u32 lo, hi;
85
86         lo = rd32(E1000_SYSTIML);
87         hi = rd32(E1000_SYSTIMH);
88
89         val = ((u64) hi) << 32;
90         val |= lo;
91
92         return val;
93 }
94
95 /* SYSTIM read access for the 82580 */
96 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
97 {
98         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
99         struct e1000_hw *hw = &igb->hw;
100         u64 val;
101         u32 lo, hi, jk;
102
103         /* The timestamp latches on lowest register read. For the 82580
104          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
105          * need to provide nanosecond resolution, so we just ignore it.
106          */
107         jk = rd32(E1000_SYSTIMR);
108         lo = rd32(E1000_SYSTIML);
109         hi = rd32(E1000_SYSTIMH);
110
111         val = ((u64) hi) << 32;
112         val |= lo;
113
114         return val;
115 }
116
117 /* SYSTIM read access for I210/I211 */
118 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
119 {
120         struct e1000_hw *hw = &adapter->hw;
121         u32 sec, nsec, jk;
122
123         /* The timestamp latches on lowest register read. For I210/I211, the
124          * lowest register is SYSTIMR. Since we only need to provide nanosecond
125          * resolution, we can ignore it.
126          */
127         jk = rd32(E1000_SYSTIMR);
128         nsec = rd32(E1000_SYSTIML);
129         sec = rd32(E1000_SYSTIMH);
130
131         ts->tv_sec = sec;
132         ts->tv_nsec = nsec;
133 }
134
135 static void igb_ptp_write_i210(struct igb_adapter *adapter,
136                                const struct timespec *ts)
137 {
138         struct e1000_hw *hw = &adapter->hw;
139
140         /* Writing the SYSTIMR register is not necessary as it only provides
141          * sub-nanosecond resolution.
142          */
143         wr32(E1000_SYSTIML, ts->tv_nsec);
144         wr32(E1000_SYSTIMH, ts->tv_sec);
145 }
146
147 /**
148  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
149  * @adapter: board private structure
150  * @hwtstamps: timestamp structure to update
151  * @systim: unsigned 64bit system time value.
152  *
153  * We need to convert the system time value stored in the RX/TXSTMP registers
154  * into a hwtstamp which can be used by the upper level timestamping functions.
155  *
156  * The 'tmreg_lock' spinlock is used to protect the consistency of the
157  * system time value. This is needed because reading the 64 bit time
158  * value involves reading two (or three) 32 bit registers. The first
159  * read latches the value. Ditto for writing.
160  *
161  * In addition, here have extended the system time with an overflow
162  * counter in software.
163  **/
164 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
165                                        struct skb_shared_hwtstamps *hwtstamps,
166                                        u64 systim)
167 {
168         unsigned long flags;
169         u64 ns;
170
171         switch (adapter->hw.mac.type) {
172         case e1000_82576:
173         case e1000_82580:
174         case e1000_i354:
175         case e1000_i350:
176                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177
178                 ns = timecounter_cyc2time(&adapter->tc, systim);
179
180                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
181
182                 memset(hwtstamps, 0, sizeof(*hwtstamps));
183                 hwtstamps->hwtstamp = ns_to_ktime(ns);
184                 break;
185         case e1000_i210:
186         case e1000_i211:
187                 memset(hwtstamps, 0, sizeof(*hwtstamps));
188                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
189                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
190                                                 systim & 0xFFFFFFFF);
191                 break;
192         default:
193                 break;
194         }
195 }
196
197 /* PTP clock operations */
198 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
199 {
200         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
201                                                ptp_caps);
202         struct e1000_hw *hw = &igb->hw;
203         int neg_adj = 0;
204         u64 rate;
205         u32 incvalue;
206
207         if (ppb < 0) {
208                 neg_adj = 1;
209                 ppb = -ppb;
210         }
211         rate = ppb;
212         rate <<= 14;
213         rate = div_u64(rate, 1953125);
214
215         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
216
217         if (neg_adj)
218                 incvalue -= rate;
219         else
220                 incvalue += rate;
221
222         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
223
224         return 0;
225 }
226
227 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
228 {
229         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
230                                                ptp_caps);
231         struct e1000_hw *hw = &igb->hw;
232         int neg_adj = 0;
233         u64 rate;
234         u32 inca;
235
236         if (ppb < 0) {
237                 neg_adj = 1;
238                 ppb = -ppb;
239         }
240         rate = ppb;
241         rate <<= 26;
242         rate = div_u64(rate, 1953125);
243
244         inca = rate & INCVALUE_MASK;
245         if (neg_adj)
246                 inca |= ISGN;
247
248         wr32(E1000_TIMINCA, inca);
249
250         return 0;
251 }
252
253 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
254 {
255         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
256                                                ptp_caps);
257         unsigned long flags;
258         s64 now;
259
260         spin_lock_irqsave(&igb->tmreg_lock, flags);
261
262         now = timecounter_read(&igb->tc);
263         now += delta;
264         timecounter_init(&igb->tc, &igb->cc, now);
265
266         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
267
268         return 0;
269 }
270
271 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
272 {
273         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
274                                                ptp_caps);
275         unsigned long flags;
276         struct timespec now, then = ns_to_timespec(delta);
277
278         spin_lock_irqsave(&igb->tmreg_lock, flags);
279
280         igb_ptp_read_i210(igb, &now);
281         now = timespec_add(now, then);
282         igb_ptp_write_i210(igb, (const struct timespec *)&now);
283
284         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
285
286         return 0;
287 }
288
289 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
290                                  struct timespec *ts)
291 {
292         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
293                                                ptp_caps);
294         unsigned long flags;
295         u64 ns;
296         u32 remainder;
297
298         spin_lock_irqsave(&igb->tmreg_lock, flags);
299
300         ns = timecounter_read(&igb->tc);
301
302         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
303
304         ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
305         ts->tv_nsec = remainder;
306
307         return 0;
308 }
309
310 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
311                                 struct timespec *ts)
312 {
313         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
314                                                ptp_caps);
315         unsigned long flags;
316
317         spin_lock_irqsave(&igb->tmreg_lock, flags);
318
319         igb_ptp_read_i210(igb, ts);
320
321         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
322
323         return 0;
324 }
325
326 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
327                                  const struct timespec *ts)
328 {
329         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
330                                                ptp_caps);
331         unsigned long flags;
332         u64 ns;
333
334         ns = ts->tv_sec * 1000000000ULL;
335         ns += ts->tv_nsec;
336
337         spin_lock_irqsave(&igb->tmreg_lock, flags);
338
339         timecounter_init(&igb->tc, &igb->cc, ns);
340
341         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
342
343         return 0;
344 }
345
346 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
347                                 const struct timespec *ts)
348 {
349         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
350                                                ptp_caps);
351         unsigned long flags;
352
353         spin_lock_irqsave(&igb->tmreg_lock, flags);
354
355         igb_ptp_write_i210(igb, ts);
356
357         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
358
359         return 0;
360 }
361
362 static int igb_ptp_enable(struct ptp_clock_info *ptp,
363                           struct ptp_clock_request *rq, int on)
364 {
365         return -EOPNOTSUPP;
366 }
367
368 /**
369  * igb_ptp_tx_work
370  * @work: pointer to work struct
371  *
372  * This work function polls the TSYNCTXCTL valid bit to determine when a
373  * timestamp has been taken for the current stored skb.
374  **/
375 void igb_ptp_tx_work(struct work_struct *work)
376 {
377         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
378                                                    ptp_tx_work);
379         struct e1000_hw *hw = &adapter->hw;
380         u32 tsynctxctl;
381
382         if (!adapter->ptp_tx_skb)
383                 return;
384
385         if (time_is_before_jiffies(adapter->ptp_tx_start +
386                                    IGB_PTP_TX_TIMEOUT)) {
387                 dev_kfree_skb_any(adapter->ptp_tx_skb);
388                 adapter->ptp_tx_skb = NULL;
389                 adapter->tx_hwtstamp_timeouts++;
390                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
391                 return;
392         }
393
394         tsynctxctl = rd32(E1000_TSYNCTXCTL);
395         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
396                 igb_ptp_tx_hwtstamp(adapter);
397         else
398                 /* reschedule to check later */
399                 schedule_work(&adapter->ptp_tx_work);
400 }
401
402 static void igb_ptp_overflow_check(struct work_struct *work)
403 {
404         struct igb_adapter *igb =
405                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
406         struct timespec ts;
407
408         igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
409
410         pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
411
412         schedule_delayed_work(&igb->ptp_overflow_work,
413                               IGB_SYSTIM_OVERFLOW_PERIOD);
414 }
415
416 /**
417  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
418  * @adapter: private network adapter structure
419  *
420  * This watchdog task is scheduled to detect error case where hardware has
421  * dropped an Rx packet that was timestamped when the ring is full. The
422  * particular error is rare but leaves the device in a state unable to timestamp
423  * any future packets.
424  **/
425 void igb_ptp_rx_hang(struct igb_adapter *adapter)
426 {
427         struct e1000_hw *hw = &adapter->hw;
428         struct igb_ring *rx_ring;
429         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
430         unsigned long rx_event;
431         int n;
432
433         if (hw->mac.type != e1000_82576)
434                 return;
435
436         /* If we don't have a valid timestamp in the registers, just update the
437          * timeout counter and exit
438          */
439         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440                 adapter->last_rx_ptp_check = jiffies;
441                 return;
442         }
443
444         /* Determine the most recent watchdog or rx_timestamp event */
445         rx_event = adapter->last_rx_ptp_check;
446         for (n = 0; n < adapter->num_rx_queues; n++) {
447                 rx_ring = adapter->rx_ring[n];
448                 if (time_after(rx_ring->last_rx_timestamp, rx_event))
449                         rx_event = rx_ring->last_rx_timestamp;
450         }
451
452         /* Only need to read the high RXSTMP register to clear the lock */
453         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
454                 rd32(E1000_RXSTMPH);
455                 adapter->last_rx_ptp_check = jiffies;
456                 adapter->rx_hwtstamp_cleared++;
457                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
458         }
459 }
460
461 /**
462  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
463  * @adapter: Board private structure.
464  *
465  * If we were asked to do hardware stamping and such a time stamp is
466  * available, then it must have been for this skb here because we only
467  * allow only one such packet into the queue.
468  **/
469 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
470 {
471         struct e1000_hw *hw = &adapter->hw;
472         struct skb_shared_hwtstamps shhwtstamps;
473         u64 regval;
474
475         regval = rd32(E1000_TXSTMPL);
476         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
477
478         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
479         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
480         dev_kfree_skb_any(adapter->ptp_tx_skb);
481         adapter->ptp_tx_skb = NULL;
482 }
483
484 /**
485  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
486  * @q_vector: Pointer to interrupt specific structure
487  * @va: Pointer to address containing Rx buffer
488  * @skb: Buffer containing timestamp and packet
489  *
490  * This function is meant to retrieve a timestamp from the first buffer of an
491  * incoming frame.  The value is stored in little endian format starting on
492  * byte 8.
493  **/
494 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
495                          unsigned char *va,
496                          struct sk_buff *skb)
497 {
498         __le64 *regval = (__le64 *)va;
499
500         /* The timestamp is recorded in little endian format.
501          * DWORD: 0        1        2        3
502          * Field: Reserved Reserved SYSTIML  SYSTIMH
503          */
504         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
505                                    le64_to_cpu(regval[1]));
506 }
507
508 /**
509  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
510  * @q_vector: Pointer to interrupt specific structure
511  * @skb: Buffer containing timestamp and packet
512  *
513  * This function is meant to retrieve a timestamp from the internal registers
514  * of the adapter and store it in the skb.
515  **/
516 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
517                          struct sk_buff *skb)
518 {
519         struct igb_adapter *adapter = q_vector->adapter;
520         struct e1000_hw *hw = &adapter->hw;
521         u64 regval;
522
523         /* If this bit is set, then the RX registers contain the time stamp. No
524          * other packet will be time stamped until we read these registers, so
525          * read the registers to make them available again. Because only one
526          * packet can be time stamped at a time, we know that the register
527          * values must belong to this one here and therefore we don't need to
528          * compare any of the additional attributes stored for it.
529          *
530          * If nothing went wrong, then it should have a shared tx_flags that we
531          * can turn into a skb_shared_hwtstamps.
532          */
533         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
534                 return;
535
536         regval = rd32(E1000_RXSTMPL);
537         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
538
539         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
540 }
541
542 /**
543  * igb_ptp_hwtstamp_ioctl - control hardware time stamping
544  * @netdev:
545  * @ifreq:
546  * @cmd:
547  *
548  * Outgoing time stamping can be enabled and disabled. Play nice and
549  * disable it when requested, although it shouldn't case any overhead
550  * when no packet needs it. At most one packet in the queue may be
551  * marked for time stamping, otherwise it would be impossible to tell
552  * for sure to which packet the hardware time stamp belongs.
553  *
554  * Incoming time stamping has to be configured via the hardware
555  * filters. Not all combinations are supported, in particular event
556  * type has to be specified. Matching the kind of event packet is
557  * not supported, with the exception of "all V2 events regardless of
558  * level 2 or 4".
559  **/
560 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
561                            struct ifreq *ifr, int cmd)
562 {
563         struct igb_adapter *adapter = netdev_priv(netdev);
564         struct e1000_hw *hw = &adapter->hw;
565         struct hwtstamp_config config;
566         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
567         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
568         u32 tsync_rx_cfg = 0;
569         bool is_l4 = false;
570         bool is_l2 = false;
571         u32 regval;
572
573         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
574                 return -EFAULT;
575
576         /* reserved for future extensions */
577         if (config.flags)
578                 return -EINVAL;
579
580         switch (config.tx_type) {
581         case HWTSTAMP_TX_OFF:
582                 tsync_tx_ctl = 0;
583         case HWTSTAMP_TX_ON:
584                 break;
585         default:
586                 return -ERANGE;
587         }
588
589         switch (config.rx_filter) {
590         case HWTSTAMP_FILTER_NONE:
591                 tsync_rx_ctl = 0;
592                 break;
593         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
594                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
595                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
596                 is_l4 = true;
597                 break;
598         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
599                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
600                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
601                 is_l4 = true;
602                 break;
603         case HWTSTAMP_FILTER_PTP_V2_EVENT:
604         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
605         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
606         case HWTSTAMP_FILTER_PTP_V2_SYNC:
607         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
608         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
609         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
610         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
611         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
612                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
613                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
614                 is_l2 = true;
615                 is_l4 = true;
616                 break;
617         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
618         case HWTSTAMP_FILTER_ALL:
619                 /* 82576 cannot timestamp all packets, which it needs to do to
620                  * support both V1 Sync and Delay_Req messages
621                  */
622                 if (hw->mac.type != e1000_82576) {
623                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
624                         config.rx_filter = HWTSTAMP_FILTER_ALL;
625                         break;
626                 }
627                 /* fall through */
628         default:
629                 config.rx_filter = HWTSTAMP_FILTER_NONE;
630                 return -ERANGE;
631         }
632
633         if (hw->mac.type == e1000_82575) {
634                 if (tsync_rx_ctl | tsync_tx_ctl)
635                         return -EINVAL;
636                 return 0;
637         }
638
639         /* Per-packet timestamping only works if all packets are
640          * timestamped, so enable timestamping in all packets as
641          * long as one Rx filter was configured.
642          */
643         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
644                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
645                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
646                 config.rx_filter = HWTSTAMP_FILTER_ALL;
647                 is_l2 = true;
648                 is_l4 = true;
649
650                 if ((hw->mac.type == e1000_i210) ||
651                     (hw->mac.type == e1000_i211)) {
652                         regval = rd32(E1000_RXPBS);
653                         regval |= E1000_RXPBS_CFG_TS_EN;
654                         wr32(E1000_RXPBS, regval);
655                 }
656         }
657
658         /* enable/disable TX */
659         regval = rd32(E1000_TSYNCTXCTL);
660         regval &= ~E1000_TSYNCTXCTL_ENABLED;
661         regval |= tsync_tx_ctl;
662         wr32(E1000_TSYNCTXCTL, regval);
663
664         /* enable/disable RX */
665         regval = rd32(E1000_TSYNCRXCTL);
666         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
667         regval |= tsync_rx_ctl;
668         wr32(E1000_TSYNCRXCTL, regval);
669
670         /* define which PTP packets are time stamped */
671         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
672
673         /* define ethertype filter for timestamped packets */
674         if (is_l2)
675                 wr32(E1000_ETQF(3),
676                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
677                       E1000_ETQF_1588 | /* enable timestamping */
678                       ETH_P_1588));     /* 1588 eth protocol type */
679         else
680                 wr32(E1000_ETQF(3), 0);
681
682         /* L4 Queue Filter[3]: filter by destination port and protocol */
683         if (is_l4) {
684                 u32 ftqf = (IPPROTO_UDP /* UDP */
685                         | E1000_FTQF_VF_BP /* VF not compared */
686                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
687                         | E1000_FTQF_MASK); /* mask all inputs */
688                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
689
690                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
691                 wr32(E1000_IMIREXT(3),
692                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
693                 if (hw->mac.type == e1000_82576) {
694                         /* enable source port check */
695                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
696                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
697                 }
698                 wr32(E1000_FTQF(3), ftqf);
699         } else {
700                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
701         }
702         wrfl();
703
704         /* clear TX/RX time stamp registers, just to be sure */
705         regval = rd32(E1000_TXSTMPL);
706         regval = rd32(E1000_TXSTMPH);
707         regval = rd32(E1000_RXSTMPL);
708         regval = rd32(E1000_RXSTMPH);
709
710         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
711                 -EFAULT : 0;
712 }
713
714 void igb_ptp_init(struct igb_adapter *adapter)
715 {
716         struct e1000_hw *hw = &adapter->hw;
717         struct net_device *netdev = adapter->netdev;
718
719         switch (hw->mac.type) {
720         case e1000_82576:
721                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
722                 adapter->ptp_caps.owner = THIS_MODULE;
723                 adapter->ptp_caps.max_adj = 999999881;
724                 adapter->ptp_caps.n_ext_ts = 0;
725                 adapter->ptp_caps.pps = 0;
726                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
727                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
728                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
729                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
730                 adapter->ptp_caps.enable = igb_ptp_enable;
731                 adapter->cc.read = igb_ptp_read_82576;
732                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
733                 adapter->cc.mult = 1;
734                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
735                 /* Dial the nominal frequency. */
736                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
737                 break;
738         case e1000_82580:
739         case e1000_i354:
740         case e1000_i350:
741                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
742                 adapter->ptp_caps.owner = THIS_MODULE;
743                 adapter->ptp_caps.max_adj = 62499999;
744                 adapter->ptp_caps.n_ext_ts = 0;
745                 adapter->ptp_caps.pps = 0;
746                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
747                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
748                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
749                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
750                 adapter->ptp_caps.enable = igb_ptp_enable;
751                 adapter->cc.read = igb_ptp_read_82580;
752                 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
753                 adapter->cc.mult = 1;
754                 adapter->cc.shift = 0;
755                 /* Enable the timer functions by clearing bit 31. */
756                 wr32(E1000_TSAUXC, 0x0);
757                 break;
758         case e1000_i210:
759         case e1000_i211:
760                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
761                 adapter->ptp_caps.owner = THIS_MODULE;
762                 adapter->ptp_caps.max_adj = 62499999;
763                 adapter->ptp_caps.n_ext_ts = 0;
764                 adapter->ptp_caps.pps = 0;
765                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
766                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
767                 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
768                 adapter->ptp_caps.settime = igb_ptp_settime_i210;
769                 adapter->ptp_caps.enable = igb_ptp_enable;
770                 /* Enable the timer functions by clearing bit 31. */
771                 wr32(E1000_TSAUXC, 0x0);
772                 break;
773         default:
774                 adapter->ptp_clock = NULL;
775                 return;
776         }
777
778         wrfl();
779
780         spin_lock_init(&adapter->tmreg_lock);
781         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
782
783         /* Initialize the clock and overflow work for devices that need it. */
784         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
785                 struct timespec ts = ktime_to_timespec(ktime_get_real());
786
787                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
788         } else {
789                 timecounter_init(&adapter->tc, &adapter->cc,
790                                  ktime_to_ns(ktime_get_real()));
791
792                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
793                                   igb_ptp_overflow_check);
794
795                 schedule_delayed_work(&adapter->ptp_overflow_work,
796                                       IGB_SYSTIM_OVERFLOW_PERIOD);
797         }
798
799         /* Initialize the time sync interrupts for devices that support it. */
800         if (hw->mac.type >= e1000_82580) {
801                 wr32(E1000_TSIM, E1000_TSIM_TXTS);
802                 wr32(E1000_IMS, E1000_IMS_TS);
803         }
804
805         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
806                                                 &adapter->pdev->dev);
807         if (IS_ERR(adapter->ptp_clock)) {
808                 adapter->ptp_clock = NULL;
809                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
810         } else {
811                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
812                          adapter->netdev->name);
813                 adapter->flags |= IGB_FLAG_PTP;
814         }
815 }
816
817 /**
818  * igb_ptp_stop - Disable PTP device and stop the overflow check.
819  * @adapter: Board private structure.
820  *
821  * This function stops the PTP support and cancels the delayed work.
822  **/
823 void igb_ptp_stop(struct igb_adapter *adapter)
824 {
825         switch (adapter->hw.mac.type) {
826         case e1000_82576:
827         case e1000_82580:
828         case e1000_i354:
829         case e1000_i350:
830                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
831                 break;
832         case e1000_i210:
833         case e1000_i211:
834                 /* No delayed work to cancel. */
835                 break;
836         default:
837                 return;
838         }
839
840         cancel_work_sync(&adapter->ptp_tx_work);
841         if (adapter->ptp_tx_skb) {
842                 dev_kfree_skb_any(adapter->ptp_tx_skb);
843                 adapter->ptp_tx_skb = NULL;
844         }
845
846         if (adapter->ptp_clock) {
847                 ptp_clock_unregister(adapter->ptp_clock);
848                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
849                          adapter->netdev->name);
850                 adapter->flags &= ~IGB_FLAG_PTP;
851         }
852 }
853
854 /**
855  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
856  * @adapter: Board private structure.
857  *
858  * This function handles the reset work required to re-enable the PTP device.
859  **/
860 void igb_ptp_reset(struct igb_adapter *adapter)
861 {
862         struct e1000_hw *hw = &adapter->hw;
863
864         if (!(adapter->flags & IGB_FLAG_PTP))
865                 return;
866
867         switch (adapter->hw.mac.type) {
868         case e1000_82576:
869                 /* Dial the nominal frequency. */
870                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
871                 break;
872         case e1000_82580:
873         case e1000_i354:
874         case e1000_i350:
875         case e1000_i210:
876         case e1000_i211:
877                 /* Enable the timer functions and interrupts. */
878                 wr32(E1000_TSAUXC, 0x0);
879                 wr32(E1000_TSIM, E1000_TSIM_TXTS);
880                 wr32(E1000_IMS, E1000_IMS_TS);
881                 break;
882         default:
883                 /* No work to do. */
884                 return;
885         }
886
887         /* Re-initialize the timer. */
888         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
889                 struct timespec ts = ktime_to_timespec(ktime_get_real());
890
891                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
892         } else {
893                 timecounter_init(&adapter->tc, &adapter->cc,
894                                  ktime_to_ns(ktime_get_real()));
895         }
896 }