drivers/net: fix up function prototypes after __dev* removals
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac                    = e1000_vfadapt,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac                    = e1000_vfadapt_i350,
77         .flags                  = 0,
78         .pba                    = 10,
79         .init_ops               = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]              = &igbvf_vf_info,
84         [board_i350_vf]         = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         u16 vid;
111
112         if (status & E1000_RXD_STAT_VP) {
113                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114                     (status & E1000_RXDEXT_STATERR_LB))
115                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116                 else
117                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118                 if (test_bit(vid, adapter->active_vlans))
119                         __vlan_hwaccel_put_tag(skb, vid);
120         }
121
122         napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128         skb_checksum_none_assert(skb);
129
130         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131         if ((status_err & E1000_RXD_STAT_IXSM) ||
132             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133                 return;
134
135         /* TCP/UDP checksum error bit is set */
136         if (status_err &
137             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138                 /* let the stack verify checksum errors */
139                 adapter->hw_csum_err++;
140                 return;
141         }
142
143         /* It must be a TCP or UDP packet with a valid checksum */
144         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145                 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147         adapter->hw_csum_good++;
148 }
149
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158         struct igbvf_adapter *adapter = rx_ring->adapter;
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         union e1000_adv_rx_desc *rx_desc;
162         struct igbvf_buffer *buffer_info;
163         struct sk_buff *skb;
164         unsigned int i;
165         int bufsz;
166
167         i = rx_ring->next_to_use;
168         buffer_info = &rx_ring->buffer_info[i];
169
170         if (adapter->rx_ps_hdr_size)
171                 bufsz = adapter->rx_ps_hdr_size;
172         else
173                 bufsz = adapter->rx_buffer_len;
174
175         while (cleaned_count--) {
176                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179                         if (!buffer_info->page) {
180                                 buffer_info->page = alloc_page(GFP_ATOMIC);
181                                 if (!buffer_info->page) {
182                                         adapter->alloc_rx_buff_failed++;
183                                         goto no_buffers;
184                                 }
185                                 buffer_info->page_offset = 0;
186                         } else {
187                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
188                         }
189                         buffer_info->page_dma =
190                                 dma_map_page(&pdev->dev, buffer_info->page,
191                                              buffer_info->page_offset,
192                                              PAGE_SIZE / 2,
193                                              DMA_FROM_DEVICE);
194                         if (dma_mapping_error(&pdev->dev,
195                                               buffer_info->page_dma)) {
196                                 __free_page(buffer_info->page);
197                                 buffer_info->page = NULL;
198                                 dev_err(&pdev->dev, "RX DMA map failed\n");
199                                 break;
200                         }
201                 }
202
203                 if (!buffer_info->skb) {
204                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205                         if (!skb) {
206                                 adapter->alloc_rx_buff_failed++;
207                                 goto no_buffers;
208                         }
209
210                         buffer_info->skb = skb;
211                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212                                                           bufsz,
213                                                           DMA_FROM_DEVICE);
214                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215                                 dev_kfree_skb(buffer_info->skb);
216                                 buffer_info->skb = NULL;
217                                 dev_err(&pdev->dev, "RX DMA map failed\n");
218                                 goto no_buffers;
219                         }
220                 }
221                 /* Refresh the desc even if buffer_addrs didn't change because
222                  * each write-back erases this info. */
223                 if (adapter->rx_ps_hdr_size) {
224                         rx_desc->read.pkt_addr =
225                              cpu_to_le64(buffer_info->page_dma);
226                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227                 } else {
228                         rx_desc->read.pkt_addr =
229                              cpu_to_le64(buffer_info->dma);
230                         rx_desc->read.hdr_addr = 0;
231                 }
232
233                 i++;
234                 if (i == rx_ring->count)
235                         i = 0;
236                 buffer_info = &rx_ring->buffer_info[i];
237         }
238
239 no_buffers:
240         if (rx_ring->next_to_use != i) {
241                 rx_ring->next_to_use = i;
242                 if (i == 0)
243                         i = (rx_ring->count - 1);
244                 else
245                         i--;
246
247                 /* Force memory writes to complete before letting h/w
248                  * know there are new descriptors to fetch.  (Only
249                  * applicable for weak-ordered memory model archs,
250                  * such as IA-64). */
251                 wmb();
252                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253         }
254 }
255
256 /**
257  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258  * @adapter: board private structure
259  *
260  * the return value indicates whether actual cleaning was done, there
261  * is no guarantee that everything was cleaned
262  **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264                                int *work_done, int work_to_do)
265 {
266         struct igbvf_ring *rx_ring = adapter->rx_ring;
267         struct net_device *netdev = adapter->netdev;
268         struct pci_dev *pdev = adapter->pdev;
269         union e1000_adv_rx_desc *rx_desc, *next_rxd;
270         struct igbvf_buffer *buffer_info, *next_buffer;
271         struct sk_buff *skb;
272         bool cleaned = false;
273         int cleaned_count = 0;
274         unsigned int total_bytes = 0, total_packets = 0;
275         unsigned int i;
276         u32 length, hlen, staterr;
277
278         i = rx_ring->next_to_clean;
279         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282         while (staterr & E1000_RXD_STAT_DD) {
283                 if (*work_done >= work_to_do)
284                         break;
285                 (*work_done)++;
286                 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288                 buffer_info = &rx_ring->buffer_info[i];
289
290                 /* HW will not DMA in data larger than the given buffer, even
291                  * if it parses the (NFS, of course) header to be larger.  In
292                  * that case, it fills the header buffer and spills the rest
293                  * into the page.
294                  */
295                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297                 if (hlen > adapter->rx_ps_hdr_size)
298                         hlen = adapter->rx_ps_hdr_size;
299
300                 length = le16_to_cpu(rx_desc->wb.upper.length);
301                 cleaned = true;
302                 cleaned_count++;
303
304                 skb = buffer_info->skb;
305                 prefetch(skb->data - NET_IP_ALIGN);
306                 buffer_info->skb = NULL;
307                 if (!adapter->rx_ps_hdr_size) {
308                         dma_unmap_single(&pdev->dev, buffer_info->dma,
309                                          adapter->rx_buffer_len,
310                                          DMA_FROM_DEVICE);
311                         buffer_info->dma = 0;
312                         skb_put(skb, length);
313                         goto send_up;
314                 }
315
316                 if (!skb_shinfo(skb)->nr_frags) {
317                         dma_unmap_single(&pdev->dev, buffer_info->dma,
318                                          adapter->rx_ps_hdr_size,
319                                          DMA_FROM_DEVICE);
320                         skb_put(skb, hlen);
321                 }
322
323                 if (length) {
324                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325                                        PAGE_SIZE / 2,
326                                        DMA_FROM_DEVICE);
327                         buffer_info->page_dma = 0;
328
329                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330                                            buffer_info->page,
331                                            buffer_info->page_offset,
332                                            length);
333
334                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335                             (page_count(buffer_info->page) != 1))
336                                 buffer_info->page = NULL;
337                         else
338                                 get_page(buffer_info->page);
339
340                         skb->len += length;
341                         skb->data_len += length;
342                         skb->truesize += PAGE_SIZE / 2;
343                 }
344 send_up:
345                 i++;
346                 if (i == rx_ring->count)
347                         i = 0;
348                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349                 prefetch(next_rxd);
350                 next_buffer = &rx_ring->buffer_info[i];
351
352                 if (!(staterr & E1000_RXD_STAT_EOP)) {
353                         buffer_info->skb = next_buffer->skb;
354                         buffer_info->dma = next_buffer->dma;
355                         next_buffer->skb = skb;
356                         next_buffer->dma = 0;
357                         goto next_desc;
358                 }
359
360                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361                         dev_kfree_skb_irq(skb);
362                         goto next_desc;
363                 }
364
365                 total_bytes += skb->len;
366                 total_packets++;
367
368                 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370                 skb->protocol = eth_type_trans(skb, netdev);
371
372                 igbvf_receive_skb(adapter, netdev, skb, staterr,
373                                   rx_desc->wb.upper.vlan);
374
375 next_desc:
376                 rx_desc->wb.upper.status_error = 0;
377
378                 /* return some buffers to hardware, one at a time is too slow */
379                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381                         cleaned_count = 0;
382                 }
383
384                 /* use prefetched values */
385                 rx_desc = next_rxd;
386                 buffer_info = next_buffer;
387
388                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389         }
390
391         rx_ring->next_to_clean = i;
392         cleaned_count = igbvf_desc_unused(rx_ring);
393
394         if (cleaned_count)
395                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397         adapter->total_rx_packets += total_packets;
398         adapter->total_rx_bytes += total_bytes;
399         adapter->net_stats.rx_bytes += total_bytes;
400         adapter->net_stats.rx_packets += total_packets;
401         return cleaned;
402 }
403
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405                             struct igbvf_buffer *buffer_info)
406 {
407         if (buffer_info->dma) {
408                 if (buffer_info->mapped_as_page)
409                         dma_unmap_page(&adapter->pdev->dev,
410                                        buffer_info->dma,
411                                        buffer_info->length,
412                                        DMA_TO_DEVICE);
413                 else
414                         dma_unmap_single(&adapter->pdev->dev,
415                                          buffer_info->dma,
416                                          buffer_info->length,
417                                          DMA_TO_DEVICE);
418                 buffer_info->dma = 0;
419         }
420         if (buffer_info->skb) {
421                 dev_kfree_skb_any(buffer_info->skb);
422                 buffer_info->skb = NULL;
423         }
424         buffer_info->time_stamp = 0;
425 }
426
427 /**
428  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429  * @adapter: board private structure
430  *
431  * Return 0 on success, negative on failure
432  **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434                              struct igbvf_ring *tx_ring)
435 {
436         struct pci_dev *pdev = adapter->pdev;
437         int size;
438
439         size = sizeof(struct igbvf_buffer) * tx_ring->count;
440         tx_ring->buffer_info = vzalloc(size);
441         if (!tx_ring->buffer_info)
442                 goto err;
443
444         /* round up to nearest 4K */
445         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446         tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449                                            &tx_ring->dma, GFP_KERNEL);
450
451         if (!tx_ring->desc)
452                 goto err;
453
454         tx_ring->adapter = adapter;
455         tx_ring->next_to_use = 0;
456         tx_ring->next_to_clean = 0;
457
458         return 0;
459 err:
460         vfree(tx_ring->buffer_info);
461         dev_err(&adapter->pdev->dev,
462                 "Unable to allocate memory for the transmit descriptor ring\n");
463         return -ENOMEM;
464 }
465
466 /**
467  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
468  * @adapter: board private structure
469  *
470  * Returns 0 on success, negative on failure
471  **/
472 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
473                              struct igbvf_ring *rx_ring)
474 {
475         struct pci_dev *pdev = adapter->pdev;
476         int size, desc_len;
477
478         size = sizeof(struct igbvf_buffer) * rx_ring->count;
479         rx_ring->buffer_info = vzalloc(size);
480         if (!rx_ring->buffer_info)
481                 goto err;
482
483         desc_len = sizeof(union e1000_adv_rx_desc);
484
485         /* Round up to nearest 4K */
486         rx_ring->size = rx_ring->count * desc_len;
487         rx_ring->size = ALIGN(rx_ring->size, 4096);
488
489         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
490                                            &rx_ring->dma, GFP_KERNEL);
491
492         if (!rx_ring->desc)
493                 goto err;
494
495         rx_ring->next_to_clean = 0;
496         rx_ring->next_to_use = 0;
497
498         rx_ring->adapter = adapter;
499
500         return 0;
501
502 err:
503         vfree(rx_ring->buffer_info);
504         rx_ring->buffer_info = NULL;
505         dev_err(&adapter->pdev->dev,
506                 "Unable to allocate memory for the receive descriptor ring\n");
507         return -ENOMEM;
508 }
509
510 /**
511  * igbvf_clean_tx_ring - Free Tx Buffers
512  * @tx_ring: ring to be cleaned
513  **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516         struct igbvf_adapter *adapter = tx_ring->adapter;
517         struct igbvf_buffer *buffer_info;
518         unsigned long size;
519         unsigned int i;
520
521         if (!tx_ring->buffer_info)
522                 return;
523
524         /* Free all the Tx ring sk_buffs */
525         for (i = 0; i < tx_ring->count; i++) {
526                 buffer_info = &tx_ring->buffer_info[i];
527                 igbvf_put_txbuf(adapter, buffer_info);
528         }
529
530         size = sizeof(struct igbvf_buffer) * tx_ring->count;
531         memset(tx_ring->buffer_info, 0, size);
532
533         /* Zero out the descriptor ring */
534         memset(tx_ring->desc, 0, tx_ring->size);
535
536         tx_ring->next_to_use = 0;
537         tx_ring->next_to_clean = 0;
538
539         writel(0, adapter->hw.hw_addr + tx_ring->head);
540         writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542
543 /**
544  * igbvf_free_tx_resources - Free Tx Resources per Queue
545  * @tx_ring: ring to free resources from
546  *
547  * Free all transmit software resources
548  **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551         struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553         igbvf_clean_tx_ring(tx_ring);
554
555         vfree(tx_ring->buffer_info);
556         tx_ring->buffer_info = NULL;
557
558         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559                           tx_ring->dma);
560
561         tx_ring->desc = NULL;
562 }
563
564 /**
565  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566  * @adapter: board private structure
567  **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570         struct igbvf_adapter *adapter = rx_ring->adapter;
571         struct igbvf_buffer *buffer_info;
572         struct pci_dev *pdev = adapter->pdev;
573         unsigned long size;
574         unsigned int i;
575
576         if (!rx_ring->buffer_info)
577                 return;
578
579         /* Free all the Rx ring sk_buffs */
580         for (i = 0; i < rx_ring->count; i++) {
581                 buffer_info = &rx_ring->buffer_info[i];
582                 if (buffer_info->dma) {
583                         if (adapter->rx_ps_hdr_size){
584                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
585                                                  adapter->rx_ps_hdr_size,
586                                                  DMA_FROM_DEVICE);
587                         } else {
588                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
589                                                  adapter->rx_buffer_len,
590                                                  DMA_FROM_DEVICE);
591                         }
592                         buffer_info->dma = 0;
593                 }
594
595                 if (buffer_info->skb) {
596                         dev_kfree_skb(buffer_info->skb);
597                         buffer_info->skb = NULL;
598                 }
599
600                 if (buffer_info->page) {
601                         if (buffer_info->page_dma)
602                                 dma_unmap_page(&pdev->dev,
603                                                buffer_info->page_dma,
604                                                PAGE_SIZE / 2,
605                                                DMA_FROM_DEVICE);
606                         put_page(buffer_info->page);
607                         buffer_info->page = NULL;
608                         buffer_info->page_dma = 0;
609                         buffer_info->page_offset = 0;
610                 }
611         }
612
613         size = sizeof(struct igbvf_buffer) * rx_ring->count;
614         memset(rx_ring->buffer_info, 0, size);
615
616         /* Zero out the descriptor ring */
617         memset(rx_ring->desc, 0, rx_ring->size);
618
619         rx_ring->next_to_clean = 0;
620         rx_ring->next_to_use = 0;
621
622         writel(0, adapter->hw.hw_addr + rx_ring->head);
623         writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625
626 /**
627  * igbvf_free_rx_resources - Free Rx Resources
628  * @rx_ring: ring to clean the resources from
629  *
630  * Free all receive software resources
631  **/
632
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635         struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637         igbvf_clean_rx_ring(rx_ring);
638
639         vfree(rx_ring->buffer_info);
640         rx_ring->buffer_info = NULL;
641
642         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643                           rx_ring->dma);
644         rx_ring->desc = NULL;
645 }
646
647 /**
648  * igbvf_update_itr - update the dynamic ITR value based on statistics
649  * @adapter: pointer to adapter
650  * @itr_setting: current adapter->itr
651  * @packets: the number of packets during this measurement interval
652  * @bytes: the number of bytes during this measurement interval
653  *
654  *      Stores a new ITR value based on packets and byte
655  *      counts during the last interrupt.  The advantage of per interrupt
656  *      computation is faster updates and more accurate ITR for the current
657  *      traffic pattern.  Constants in this function were computed
658  *      based on theoretical maximum wire speed and thresholds were set based
659  *      on testing data as well as attempting to minimize response time
660  *      while increasing bulk throughput.
661  **/
662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663                                            enum latency_range itr_setting,
664                                            int packets, int bytes)
665 {
666         enum latency_range retval = itr_setting;
667
668         if (packets == 0)
669                 goto update_itr_done;
670
671         switch (itr_setting) {
672         case lowest_latency:
673                 /* handle TSO and jumbo frames */
674                 if (bytes/packets > 8000)
675                         retval = bulk_latency;
676                 else if ((packets < 5) && (bytes > 512))
677                         retval = low_latency;
678                 break;
679         case low_latency:  /* 50 usec aka 20000 ints/s */
680                 if (bytes > 10000) {
681                         /* this if handles the TSO accounting */
682                         if (bytes/packets > 8000)
683                                 retval = bulk_latency;
684                         else if ((packets < 10) || ((bytes/packets) > 1200))
685                                 retval = bulk_latency;
686                         else if ((packets > 35))
687                                 retval = lowest_latency;
688                 } else if (bytes/packets > 2000) {
689                         retval = bulk_latency;
690                 } else if (packets <= 2 && bytes < 512) {
691                         retval = lowest_latency;
692                 }
693                 break;
694         case bulk_latency: /* 250 usec aka 4000 ints/s */
695                 if (bytes > 25000) {
696                         if (packets > 35)
697                                 retval = low_latency;
698                 } else if (bytes < 6000) {
699                         retval = low_latency;
700                 }
701                 break;
702         default:
703                 break;
704         }
705
706 update_itr_done:
707         return retval;
708 }
709
710 static int igbvf_range_to_itr(enum latency_range current_range)
711 {
712         int new_itr;
713
714         switch (current_range) {
715         /* counts and packets in update_itr are dependent on these numbers */
716         case lowest_latency:
717                 new_itr = IGBVF_70K_ITR;
718                 break;
719         case low_latency:
720                 new_itr = IGBVF_20K_ITR;
721                 break;
722         case bulk_latency:
723                 new_itr = IGBVF_4K_ITR;
724                 break;
725         default:
726                 new_itr = IGBVF_START_ITR;
727                 break;
728         }
729         return new_itr;
730 }
731
732 static void igbvf_set_itr(struct igbvf_adapter *adapter)
733 {
734         u32 new_itr;
735
736         adapter->tx_ring->itr_range =
737                         igbvf_update_itr(adapter,
738                                          adapter->tx_ring->itr_val,
739                                          adapter->total_tx_packets,
740                                          adapter->total_tx_bytes);
741
742         /* conservative mode (itr 3) eliminates the lowest_latency setting */
743         if (adapter->requested_itr == 3 &&
744             adapter->tx_ring->itr_range == lowest_latency)
745                 adapter->tx_ring->itr_range = low_latency;
746
747         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748
749
750         if (new_itr != adapter->tx_ring->itr_val) {
751                 u32 current_itr = adapter->tx_ring->itr_val;
752                 /*
753                  * this attempts to bias the interrupt rate towards Bulk
754                  * by adding intermediate steps when interrupt rate is
755                  * increasing
756                  */
757                 new_itr = new_itr > current_itr ?
758                              min(current_itr + (new_itr >> 2), new_itr) :
759                              new_itr;
760                 adapter->tx_ring->itr_val = new_itr;
761
762                 adapter->tx_ring->set_itr = 1;
763         }
764
765         adapter->rx_ring->itr_range =
766                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767                                          adapter->total_rx_packets,
768                                          adapter->total_rx_bytes);
769         if (adapter->requested_itr == 3 &&
770             adapter->rx_ring->itr_range == lowest_latency)
771                 adapter->rx_ring->itr_range = low_latency;
772
773         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774
775         if (new_itr != adapter->rx_ring->itr_val) {
776                 u32 current_itr = adapter->rx_ring->itr_val;
777                 new_itr = new_itr > current_itr ?
778                              min(current_itr + (new_itr >> 2), new_itr) :
779                              new_itr;
780                 adapter->rx_ring->itr_val = new_itr;
781
782                 adapter->rx_ring->set_itr = 1;
783         }
784 }
785
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794         struct igbvf_adapter *adapter = tx_ring->adapter;
795         struct net_device *netdev = adapter->netdev;
796         struct igbvf_buffer *buffer_info;
797         struct sk_buff *skb;
798         union e1000_adv_tx_desc *tx_desc, *eop_desc;
799         unsigned int total_bytes = 0, total_packets = 0;
800         unsigned int i, eop, count = 0;
801         bool cleaned = false;
802
803         i = tx_ring->next_to_clean;
804         eop = tx_ring->buffer_info[i].next_to_watch;
805         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806
807         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
808                (count < tx_ring->count)) {
809                 rmb();  /* read buffer_info after eop_desc status */
810                 for (cleaned = false; !cleaned; count++) {
811                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
812                         buffer_info = &tx_ring->buffer_info[i];
813                         cleaned = (i == eop);
814                         skb = buffer_info->skb;
815
816                         if (skb) {
817                                 unsigned int segs, bytecount;
818
819                                 /* gso_segs is currently only valid for tcp */
820                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
821                                 /* multiply data chunks by size of headers */
822                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
823                                             skb->len;
824                                 total_packets += segs;
825                                 total_bytes += bytecount;
826                         }
827
828                         igbvf_put_txbuf(adapter, buffer_info);
829                         tx_desc->wb.status = 0;
830
831                         i++;
832                         if (i == tx_ring->count)
833                                 i = 0;
834                 }
835                 eop = tx_ring->buffer_info[i].next_to_watch;
836                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
837         }
838
839         tx_ring->next_to_clean = i;
840
841         if (unlikely(count &&
842                      netif_carrier_ok(netdev) &&
843                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
844                 /* Make sure that anybody stopping the queue after this
845                  * sees the new next_to_clean.
846                  */
847                 smp_mb();
848                 if (netif_queue_stopped(netdev) &&
849                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
850                         netif_wake_queue(netdev);
851                         ++adapter->restart_queue;
852                 }
853         }
854
855         adapter->net_stats.tx_bytes += total_bytes;
856         adapter->net_stats.tx_packets += total_packets;
857         return count < tx_ring->count;
858 }
859
860 static irqreturn_t igbvf_msix_other(int irq, void *data)
861 {
862         struct net_device *netdev = data;
863         struct igbvf_adapter *adapter = netdev_priv(netdev);
864         struct e1000_hw *hw = &adapter->hw;
865
866         adapter->int_counter1++;
867
868         netif_carrier_off(netdev);
869         hw->mac.get_link_status = 1;
870         if (!test_bit(__IGBVF_DOWN, &adapter->state))
871                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
872
873         ew32(EIMS, adapter->eims_other);
874
875         return IRQ_HANDLED;
876 }
877
878 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
879 {
880         struct net_device *netdev = data;
881         struct igbvf_adapter *adapter = netdev_priv(netdev);
882         struct e1000_hw *hw = &adapter->hw;
883         struct igbvf_ring *tx_ring = adapter->tx_ring;
884
885         if (tx_ring->set_itr) {
886                 writel(tx_ring->itr_val,
887                        adapter->hw.hw_addr + tx_ring->itr_register);
888                 adapter->tx_ring->set_itr = 0;
889         }
890
891         adapter->total_tx_bytes = 0;
892         adapter->total_tx_packets = 0;
893
894         /* auto mask will automatically reenable the interrupt when we write
895          * EICS */
896         if (!igbvf_clean_tx_irq(tx_ring))
897                 /* Ring was not completely cleaned, so fire another interrupt */
898                 ew32(EICS, tx_ring->eims_value);
899         else
900                 ew32(EIMS, tx_ring->eims_value);
901
902         return IRQ_HANDLED;
903 }
904
905 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
906 {
907         struct net_device *netdev = data;
908         struct igbvf_adapter *adapter = netdev_priv(netdev);
909
910         adapter->int_counter0++;
911
912         /* Write the ITR value calculated at the end of the
913          * previous interrupt.
914          */
915         if (adapter->rx_ring->set_itr) {
916                 writel(adapter->rx_ring->itr_val,
917                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
918                 adapter->rx_ring->set_itr = 0;
919         }
920
921         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
922                 adapter->total_rx_bytes = 0;
923                 adapter->total_rx_packets = 0;
924                 __napi_schedule(&adapter->rx_ring->napi);
925         }
926
927         return IRQ_HANDLED;
928 }
929
930 #define IGBVF_NO_QUEUE -1
931
932 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
933                                 int tx_queue, int msix_vector)
934 {
935         struct e1000_hw *hw = &adapter->hw;
936         u32 ivar, index;
937
938         /* 82576 uses a table-based method for assigning vectors.
939            Each queue has a single entry in the table to which we write
940            a vector number along with a "valid" bit.  Sadly, the layout
941            of the table is somewhat counterintuitive. */
942         if (rx_queue > IGBVF_NO_QUEUE) {
943                 index = (rx_queue >> 1);
944                 ivar = array_er32(IVAR0, index);
945                 if (rx_queue & 0x1) {
946                         /* vector goes into third byte of register */
947                         ivar = ivar & 0xFF00FFFF;
948                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
949                 } else {
950                         /* vector goes into low byte of register */
951                         ivar = ivar & 0xFFFFFF00;
952                         ivar |= msix_vector | E1000_IVAR_VALID;
953                 }
954                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
955                 array_ew32(IVAR0, index, ivar);
956         }
957         if (tx_queue > IGBVF_NO_QUEUE) {
958                 index = (tx_queue >> 1);
959                 ivar = array_er32(IVAR0, index);
960                 if (tx_queue & 0x1) {
961                         /* vector goes into high byte of register */
962                         ivar = ivar & 0x00FFFFFF;
963                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
964                 } else {
965                         /* vector goes into second byte of register */
966                         ivar = ivar & 0xFFFF00FF;
967                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
968                 }
969                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
970                 array_ew32(IVAR0, index, ivar);
971         }
972 }
973
974 /**
975  * igbvf_configure_msix - Configure MSI-X hardware
976  *
977  * igbvf_configure_msix sets up the hardware to properly
978  * generate MSI-X interrupts.
979  **/
980 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
981 {
982         u32 tmp;
983         struct e1000_hw *hw = &adapter->hw;
984         struct igbvf_ring *tx_ring = adapter->tx_ring;
985         struct igbvf_ring *rx_ring = adapter->rx_ring;
986         int vector = 0;
987
988         adapter->eims_enable_mask = 0;
989
990         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
991         adapter->eims_enable_mask |= tx_ring->eims_value;
992         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
993         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
994         adapter->eims_enable_mask |= rx_ring->eims_value;
995         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
996
997         /* set vector for other causes, i.e. link changes */
998
999         tmp = (vector++ | E1000_IVAR_VALID);
1000
1001         ew32(IVAR_MISC, tmp);
1002
1003         adapter->eims_enable_mask = (1 << (vector)) - 1;
1004         adapter->eims_other = 1 << (vector - 1);
1005         e1e_flush();
1006 }
1007
1008 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1009 {
1010         if (adapter->msix_entries) {
1011                 pci_disable_msix(adapter->pdev);
1012                 kfree(adapter->msix_entries);
1013                 adapter->msix_entries = NULL;
1014         }
1015 }
1016
1017 /**
1018  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019  *
1020  * Attempt to configure interrupts using the best available
1021  * capabilities of the hardware and kernel.
1022  **/
1023 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1024 {
1025         int err = -ENOMEM;
1026         int i;
1027
1028         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030                                         GFP_KERNEL);
1031         if (adapter->msix_entries) {
1032                 for (i = 0; i < 3; i++)
1033                         adapter->msix_entries[i].entry = i;
1034
1035                 err = pci_enable_msix(adapter->pdev,
1036                                       adapter->msix_entries, 3);
1037         }
1038
1039         if (err) {
1040                 /* MSI-X failed */
1041                 dev_err(&adapter->pdev->dev,
1042                         "Failed to initialize MSI-X interrupts.\n");
1043                 igbvf_reset_interrupt_capability(adapter);
1044         }
1045 }
1046
1047 /**
1048  * igbvf_request_msix - Initialize MSI-X interrupts
1049  *
1050  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051  * kernel.
1052  **/
1053 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054 {
1055         struct net_device *netdev = adapter->netdev;
1056         int err = 0, vector = 0;
1057
1058         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061         } else {
1062                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064         }
1065
1066         err = request_irq(adapter->msix_entries[vector].vector,
1067                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1068                           netdev);
1069         if (err)
1070                 goto out;
1071
1072         adapter->tx_ring->itr_register = E1000_EITR(vector);
1073         adapter->tx_ring->itr_val = adapter->current_itr;
1074         vector++;
1075
1076         err = request_irq(adapter->msix_entries[vector].vector,
1077                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1078                           netdev);
1079         if (err)
1080                 goto out;
1081
1082         adapter->rx_ring->itr_register = E1000_EITR(vector);
1083         adapter->rx_ring->itr_val = adapter->current_itr;
1084         vector++;
1085
1086         err = request_irq(adapter->msix_entries[vector].vector,
1087                           igbvf_msix_other, 0, netdev->name, netdev);
1088         if (err)
1089                 goto out;
1090
1091         igbvf_configure_msix(adapter);
1092         return 0;
1093 out:
1094         return err;
1095 }
1096
1097 /**
1098  * igbvf_alloc_queues - Allocate memory for all rings
1099  * @adapter: board private structure to initialize
1100  **/
1101 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102 {
1103         struct net_device *netdev = adapter->netdev;
1104
1105         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106         if (!adapter->tx_ring)
1107                 return -ENOMEM;
1108
1109         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110         if (!adapter->rx_ring) {
1111                 kfree(adapter->tx_ring);
1112                 return -ENOMEM;
1113         }
1114
1115         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * igbvf_request_irq - initialize interrupts
1122  *
1123  * Attempts to configure interrupts using the best available
1124  * capabilities of the hardware and kernel.
1125  **/
1126 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127 {
1128         int err = -1;
1129
1130         /* igbvf supports msi-x only */
1131         if (adapter->msix_entries)
1132                 err = igbvf_request_msix(adapter);
1133
1134         if (!err)
1135                 return err;
1136
1137         dev_err(&adapter->pdev->dev,
1138                 "Unable to allocate interrupt, Error: %d\n", err);
1139
1140         return err;
1141 }
1142
1143 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144 {
1145         struct net_device *netdev = adapter->netdev;
1146         int vector;
1147
1148         if (adapter->msix_entries) {
1149                 for (vector = 0; vector < 3; vector++)
1150                         free_irq(adapter->msix_entries[vector].vector, netdev);
1151         }
1152 }
1153
1154 /**
1155  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156  **/
1157 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158 {
1159         struct e1000_hw *hw = &adapter->hw;
1160
1161         ew32(EIMC, ~0);
1162
1163         if (adapter->msix_entries)
1164                 ew32(EIAC, 0);
1165 }
1166
1167 /**
1168  * igbvf_irq_enable - Enable default interrupt generation settings
1169  **/
1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172         struct e1000_hw *hw = &adapter->hw;
1173
1174         ew32(EIAC, adapter->eims_enable_mask);
1175         ew32(EIAM, adapter->eims_enable_mask);
1176         ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178
1179 /**
1180  * igbvf_poll - NAPI Rx polling callback
1181  * @napi: struct associated with this polling callback
1182  * @budget: amount of packets driver is allowed to process this poll
1183  **/
1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187         struct igbvf_adapter *adapter = rx_ring->adapter;
1188         struct e1000_hw *hw = &adapter->hw;
1189         int work_done = 0;
1190
1191         igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193         /* If not enough Rx work done, exit the polling mode */
1194         if (work_done < budget) {
1195                 napi_complete(napi);
1196
1197                 if (adapter->requested_itr & 3)
1198                         igbvf_set_itr(adapter);
1199
1200                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201                         ew32(EIMS, adapter->rx_ring->eims_value);
1202         }
1203
1204         return work_done;
1205 }
1206
1207 /**
1208  * igbvf_set_rlpml - set receive large packet maximum length
1209  * @adapter: board private structure
1210  *
1211  * Configure the maximum size of packets that will be received
1212  */
1213 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214 {
1215         int max_frame_size;
1216         struct e1000_hw *hw = &adapter->hw;
1217
1218         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1219         e1000_rlpml_set_vf(hw, max_frame_size);
1220 }
1221
1222 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1223 {
1224         struct igbvf_adapter *adapter = netdev_priv(netdev);
1225         struct e1000_hw *hw = &adapter->hw;
1226
1227         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1228                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1229                 return -EINVAL;
1230         }
1231         set_bit(vid, adapter->active_vlans);
1232         return 0;
1233 }
1234
1235 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1236 {
1237         struct igbvf_adapter *adapter = netdev_priv(netdev);
1238         struct e1000_hw *hw = &adapter->hw;
1239
1240         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1241                 dev_err(&adapter->pdev->dev,
1242                         "Failed to remove vlan id %d\n", vid);
1243                 return -EINVAL;
1244         }
1245         clear_bit(vid, adapter->active_vlans);
1246         return 0;
1247 }
1248
1249 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1250 {
1251         u16 vid;
1252
1253         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1254                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1255 }
1256
1257 /**
1258  * igbvf_configure_tx - Configure Transmit Unit after Reset
1259  * @adapter: board private structure
1260  *
1261  * Configure the Tx unit of the MAC after a reset.
1262  **/
1263 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1264 {
1265         struct e1000_hw *hw = &adapter->hw;
1266         struct igbvf_ring *tx_ring = adapter->tx_ring;
1267         u64 tdba;
1268         u32 txdctl, dca_txctrl;
1269
1270         /* disable transmits */
1271         txdctl = er32(TXDCTL(0));
1272         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1273         e1e_flush();
1274         msleep(10);
1275
1276         /* Setup the HW Tx Head and Tail descriptor pointers */
1277         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278         tdba = tx_ring->dma;
1279         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1280         ew32(TDBAH(0), (tdba >> 32));
1281         ew32(TDH(0), 0);
1282         ew32(TDT(0), 0);
1283         tx_ring->head = E1000_TDH(0);
1284         tx_ring->tail = E1000_TDT(0);
1285
1286         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1287          * MUST be delivered in order or it will completely screw up
1288          * our bookeeping.
1289          */
1290         dca_txctrl = er32(DCA_TXCTRL(0));
1291         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292         ew32(DCA_TXCTRL(0), dca_txctrl);
1293
1294         /* enable transmits */
1295         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296         ew32(TXDCTL(0), txdctl);
1297
1298         /* Setup Transmit Descriptor Settings for eop descriptor */
1299         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300
1301         /* enable Report Status bit */
1302         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1303 }
1304
1305 /**
1306  * igbvf_setup_srrctl - configure the receive control registers
1307  * @adapter: Board private structure
1308  **/
1309 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1310 {
1311         struct e1000_hw *hw = &adapter->hw;
1312         u32 srrctl = 0;
1313
1314         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1315                     E1000_SRRCTL_BSIZEHDR_MASK |
1316                     E1000_SRRCTL_BSIZEPKT_MASK);
1317
1318         /* Enable queue drop to avoid head of line blocking */
1319         srrctl |= E1000_SRRCTL_DROP_EN;
1320
1321         /* Setup buffer sizes */
1322         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1323                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1324
1325         if (adapter->rx_buffer_len < 2048) {
1326                 adapter->rx_ps_hdr_size = 0;
1327                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1328         } else {
1329                 adapter->rx_ps_hdr_size = 128;
1330                 srrctl |= adapter->rx_ps_hdr_size <<
1331                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1332                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333         }
1334
1335         ew32(SRRCTL(0), srrctl);
1336 }
1337
1338 /**
1339  * igbvf_configure_rx - Configure Receive Unit after Reset
1340  * @adapter: board private structure
1341  *
1342  * Configure the Rx unit of the MAC after a reset.
1343  **/
1344 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1345 {
1346         struct e1000_hw *hw = &adapter->hw;
1347         struct igbvf_ring *rx_ring = adapter->rx_ring;
1348         u64 rdba;
1349         u32 rdlen, rxdctl;
1350
1351         /* disable receives */
1352         rxdctl = er32(RXDCTL(0));
1353         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1354         e1e_flush();
1355         msleep(10);
1356
1357         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1358
1359         /*
1360          * Setup the HW Rx Head and Tail Descriptor Pointers and
1361          * the Base and Length of the Rx Descriptor Ring
1362          */
1363         rdba = rx_ring->dma;
1364         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1365         ew32(RDBAH(0), (rdba >> 32));
1366         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1367         rx_ring->head = E1000_RDH(0);
1368         rx_ring->tail = E1000_RDT(0);
1369         ew32(RDH(0), 0);
1370         ew32(RDT(0), 0);
1371
1372         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1373         rxdctl &= 0xFFF00000;
1374         rxdctl |= IGBVF_RX_PTHRESH;
1375         rxdctl |= IGBVF_RX_HTHRESH << 8;
1376         rxdctl |= IGBVF_RX_WTHRESH << 16;
1377
1378         igbvf_set_rlpml(adapter);
1379
1380         /* enable receives */
1381         ew32(RXDCTL(0), rxdctl);
1382 }
1383
1384 /**
1385  * igbvf_set_multi - Multicast and Promiscuous mode set
1386  * @netdev: network interface device structure
1387  *
1388  * The set_multi entry point is called whenever the multicast address
1389  * list or the network interface flags are updated.  This routine is
1390  * responsible for configuring the hardware for proper multicast,
1391  * promiscuous mode, and all-multi behavior.
1392  **/
1393 static void igbvf_set_multi(struct net_device *netdev)
1394 {
1395         struct igbvf_adapter *adapter = netdev_priv(netdev);
1396         struct e1000_hw *hw = &adapter->hw;
1397         struct netdev_hw_addr *ha;
1398         u8  *mta_list = NULL;
1399         int i;
1400
1401         if (!netdev_mc_empty(netdev)) {
1402                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1403                 if (!mta_list) {
1404                         dev_err(&adapter->pdev->dev,
1405                                 "failed to allocate multicast filter list\n");
1406                         return;
1407                 }
1408         }
1409
1410         /* prepare a packed array of only addresses. */
1411         i = 0;
1412         netdev_for_each_mc_addr(ha, netdev)
1413                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1414
1415         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1416         kfree(mta_list);
1417 }
1418
1419 /**
1420  * igbvf_configure - configure the hardware for Rx and Tx
1421  * @adapter: private board structure
1422  **/
1423 static void igbvf_configure(struct igbvf_adapter *adapter)
1424 {
1425         igbvf_set_multi(adapter->netdev);
1426
1427         igbvf_restore_vlan(adapter);
1428
1429         igbvf_configure_tx(adapter);
1430         igbvf_setup_srrctl(adapter);
1431         igbvf_configure_rx(adapter);
1432         igbvf_alloc_rx_buffers(adapter->rx_ring,
1433                                igbvf_desc_unused(adapter->rx_ring));
1434 }
1435
1436 /* igbvf_reset - bring the hardware into a known good state
1437  *
1438  * This function boots the hardware and enables some settings that
1439  * require a configuration cycle of the hardware - those cannot be
1440  * set/changed during runtime. After reset the device needs to be
1441  * properly configured for Rx, Tx etc.
1442  */
1443 static void igbvf_reset(struct igbvf_adapter *adapter)
1444 {
1445         struct e1000_mac_info *mac = &adapter->hw.mac;
1446         struct net_device *netdev = adapter->netdev;
1447         struct e1000_hw *hw = &adapter->hw;
1448
1449         /* Allow time for pending master requests to run */
1450         if (mac->ops.reset_hw(hw))
1451                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1452
1453         mac->ops.init_hw(hw);
1454
1455         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1456                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1457                        netdev->addr_len);
1458                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1459                        netdev->addr_len);
1460         }
1461
1462         adapter->last_reset = jiffies;
1463 }
1464
1465 int igbvf_up(struct igbvf_adapter *adapter)
1466 {
1467         struct e1000_hw *hw = &adapter->hw;
1468
1469         /* hardware has been reset, we need to reload some things */
1470         igbvf_configure(adapter);
1471
1472         clear_bit(__IGBVF_DOWN, &adapter->state);
1473
1474         napi_enable(&adapter->rx_ring->napi);
1475         if (adapter->msix_entries)
1476                 igbvf_configure_msix(adapter);
1477
1478         /* Clear any pending interrupts. */
1479         er32(EICR);
1480         igbvf_irq_enable(adapter);
1481
1482         /* start the watchdog */
1483         hw->mac.get_link_status = 1;
1484         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1485
1486
1487         return 0;
1488 }
1489
1490 void igbvf_down(struct igbvf_adapter *adapter)
1491 {
1492         struct net_device *netdev = adapter->netdev;
1493         struct e1000_hw *hw = &adapter->hw;
1494         u32 rxdctl, txdctl;
1495
1496         /*
1497          * signal that we're down so the interrupt handler does not
1498          * reschedule our watchdog timer
1499          */
1500         set_bit(__IGBVF_DOWN, &adapter->state);
1501
1502         /* disable receives in the hardware */
1503         rxdctl = er32(RXDCTL(0));
1504         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1505
1506         netif_stop_queue(netdev);
1507
1508         /* disable transmits in the hardware */
1509         txdctl = er32(TXDCTL(0));
1510         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1511
1512         /* flush both disables and wait for them to finish */
1513         e1e_flush();
1514         msleep(10);
1515
1516         napi_disable(&adapter->rx_ring->napi);
1517
1518         igbvf_irq_disable(adapter);
1519
1520         del_timer_sync(&adapter->watchdog_timer);
1521
1522         netif_carrier_off(netdev);
1523
1524         /* record the stats before reset*/
1525         igbvf_update_stats(adapter);
1526
1527         adapter->link_speed = 0;
1528         adapter->link_duplex = 0;
1529
1530         igbvf_reset(adapter);
1531         igbvf_clean_tx_ring(adapter->tx_ring);
1532         igbvf_clean_rx_ring(adapter->rx_ring);
1533 }
1534
1535 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1536 {
1537         might_sleep();
1538         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1539                 msleep(1);
1540         igbvf_down(adapter);
1541         igbvf_up(adapter);
1542         clear_bit(__IGBVF_RESETTING, &adapter->state);
1543 }
1544
1545 /**
1546  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1547  * @adapter: board private structure to initialize
1548  *
1549  * igbvf_sw_init initializes the Adapter private data structure.
1550  * Fields are initialized based on PCI device information and
1551  * OS network device settings (MTU size).
1552  **/
1553 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1554 {
1555         struct net_device *netdev = adapter->netdev;
1556         s32 rc;
1557
1558         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1559         adapter->rx_ps_hdr_size = 0;
1560         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1561         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1562
1563         adapter->tx_int_delay = 8;
1564         adapter->tx_abs_int_delay = 32;
1565         adapter->rx_int_delay = 0;
1566         adapter->rx_abs_int_delay = 8;
1567         adapter->requested_itr = 3;
1568         adapter->current_itr = IGBVF_START_ITR;
1569
1570         /* Set various function pointers */
1571         adapter->ei->init_ops(&adapter->hw);
1572
1573         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1574         if (rc)
1575                 return rc;
1576
1577         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1578         if (rc)
1579                 return rc;
1580
1581         igbvf_set_interrupt_capability(adapter);
1582
1583         if (igbvf_alloc_queues(adapter))
1584                 return -ENOMEM;
1585
1586         spin_lock_init(&adapter->tx_queue_lock);
1587
1588         /* Explicitly disable IRQ since the NIC can be in any state. */
1589         igbvf_irq_disable(adapter);
1590
1591         spin_lock_init(&adapter->stats_lock);
1592
1593         set_bit(__IGBVF_DOWN, &adapter->state);
1594         return 0;
1595 }
1596
1597 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1598 {
1599         struct e1000_hw *hw = &adapter->hw;
1600
1601         adapter->stats.last_gprc = er32(VFGPRC);
1602         adapter->stats.last_gorc = er32(VFGORC);
1603         adapter->stats.last_gptc = er32(VFGPTC);
1604         adapter->stats.last_gotc = er32(VFGOTC);
1605         adapter->stats.last_mprc = er32(VFMPRC);
1606         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1607         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1608         adapter->stats.last_gorlbc = er32(VFGORLBC);
1609         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1610
1611         adapter->stats.base_gprc = er32(VFGPRC);
1612         adapter->stats.base_gorc = er32(VFGORC);
1613         adapter->stats.base_gptc = er32(VFGPTC);
1614         adapter->stats.base_gotc = er32(VFGOTC);
1615         adapter->stats.base_mprc = er32(VFMPRC);
1616         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1617         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1618         adapter->stats.base_gorlbc = er32(VFGORLBC);
1619         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1620 }
1621
1622 /**
1623  * igbvf_open - Called when a network interface is made active
1624  * @netdev: network interface device structure
1625  *
1626  * Returns 0 on success, negative value on failure
1627  *
1628  * The open entry point is called when a network interface is made
1629  * active by the system (IFF_UP).  At this point all resources needed
1630  * for transmit and receive operations are allocated, the interrupt
1631  * handler is registered with the OS, the watchdog timer is started,
1632  * and the stack is notified that the interface is ready.
1633  **/
1634 static int igbvf_open(struct net_device *netdev)
1635 {
1636         struct igbvf_adapter *adapter = netdev_priv(netdev);
1637         struct e1000_hw *hw = &adapter->hw;
1638         int err;
1639
1640         /* disallow open during test */
1641         if (test_bit(__IGBVF_TESTING, &adapter->state))
1642                 return -EBUSY;
1643
1644         /* allocate transmit descriptors */
1645         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1646         if (err)
1647                 goto err_setup_tx;
1648
1649         /* allocate receive descriptors */
1650         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1651         if (err)
1652                 goto err_setup_rx;
1653
1654         /*
1655          * before we allocate an interrupt, we must be ready to handle it.
1656          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1657          * as soon as we call pci_request_irq, so we have to setup our
1658          * clean_rx handler before we do so.
1659          */
1660         igbvf_configure(adapter);
1661
1662         err = igbvf_request_irq(adapter);
1663         if (err)
1664                 goto err_req_irq;
1665
1666         /* From here on the code is the same as igbvf_up() */
1667         clear_bit(__IGBVF_DOWN, &adapter->state);
1668
1669         napi_enable(&adapter->rx_ring->napi);
1670
1671         /* clear any pending interrupts */
1672         er32(EICR);
1673
1674         igbvf_irq_enable(adapter);
1675
1676         /* start the watchdog */
1677         hw->mac.get_link_status = 1;
1678         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1679
1680         return 0;
1681
1682 err_req_irq:
1683         igbvf_free_rx_resources(adapter->rx_ring);
1684 err_setup_rx:
1685         igbvf_free_tx_resources(adapter->tx_ring);
1686 err_setup_tx:
1687         igbvf_reset(adapter);
1688
1689         return err;
1690 }
1691
1692 /**
1693  * igbvf_close - Disables a network interface
1694  * @netdev: network interface device structure
1695  *
1696  * Returns 0, this is not allowed to fail
1697  *
1698  * The close entry point is called when an interface is de-activated
1699  * by the OS.  The hardware is still under the drivers control, but
1700  * needs to be disabled.  A global MAC reset is issued to stop the
1701  * hardware, and all transmit and receive resources are freed.
1702  **/
1703 static int igbvf_close(struct net_device *netdev)
1704 {
1705         struct igbvf_adapter *adapter = netdev_priv(netdev);
1706
1707         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1708         igbvf_down(adapter);
1709
1710         igbvf_free_irq(adapter);
1711
1712         igbvf_free_tx_resources(adapter->tx_ring);
1713         igbvf_free_rx_resources(adapter->rx_ring);
1714
1715         return 0;
1716 }
1717 /**
1718  * igbvf_set_mac - Change the Ethernet Address of the NIC
1719  * @netdev: network interface device structure
1720  * @p: pointer to an address structure
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724 static int igbvf_set_mac(struct net_device *netdev, void *p)
1725 {
1726         struct igbvf_adapter *adapter = netdev_priv(netdev);
1727         struct e1000_hw *hw = &adapter->hw;
1728         struct sockaddr *addr = p;
1729
1730         if (!is_valid_ether_addr(addr->sa_data))
1731                 return -EADDRNOTAVAIL;
1732
1733         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1734
1735         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1736
1737         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1738                 return -EADDRNOTAVAIL;
1739
1740         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1741         netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1742
1743         return 0;
1744 }
1745
1746 #define UPDATE_VF_COUNTER(reg, name)                                    \
1747         {                                                               \
1748                 u32 current_counter = er32(reg);                        \
1749                 if (current_counter < adapter->stats.last_##name)       \
1750                         adapter->stats.name += 0x100000000LL;           \
1751                 adapter->stats.last_##name = current_counter;           \
1752                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1753                 adapter->stats.name |= current_counter;                 \
1754         }
1755
1756 /**
1757  * igbvf_update_stats - Update the board statistics counters
1758  * @adapter: board private structure
1759 **/
1760 void igbvf_update_stats(struct igbvf_adapter *adapter)
1761 {
1762         struct e1000_hw *hw = &adapter->hw;
1763         struct pci_dev *pdev = adapter->pdev;
1764
1765         /*
1766          * Prevent stats update while adapter is being reset, link is down
1767          * or if the pci connection is down.
1768          */
1769         if (adapter->link_speed == 0)
1770                 return;
1771
1772         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1773                 return;
1774
1775         if (pci_channel_offline(pdev))
1776                 return;
1777
1778         UPDATE_VF_COUNTER(VFGPRC, gprc);
1779         UPDATE_VF_COUNTER(VFGORC, gorc);
1780         UPDATE_VF_COUNTER(VFGPTC, gptc);
1781         UPDATE_VF_COUNTER(VFGOTC, gotc);
1782         UPDATE_VF_COUNTER(VFMPRC, mprc);
1783         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1784         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1785         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1786         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1787
1788         /* Fill out the OS statistics structure */
1789         adapter->net_stats.multicast = adapter->stats.mprc;
1790 }
1791
1792 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1793 {
1794         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1795                  adapter->link_speed,
1796                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1797 }
1798
1799 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1800 {
1801         struct e1000_hw *hw = &adapter->hw;
1802         s32 ret_val = E1000_SUCCESS;
1803         bool link_active;
1804
1805         /* If interface is down, stay link down */
1806         if (test_bit(__IGBVF_DOWN, &adapter->state))
1807                 return false;
1808
1809         ret_val = hw->mac.ops.check_for_link(hw);
1810         link_active = !hw->mac.get_link_status;
1811
1812         /* if check for link returns error we will need to reset */
1813         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1814                 schedule_work(&adapter->reset_task);
1815
1816         return link_active;
1817 }
1818
1819 /**
1820  * igbvf_watchdog - Timer Call-back
1821  * @data: pointer to adapter cast into an unsigned long
1822  **/
1823 static void igbvf_watchdog(unsigned long data)
1824 {
1825         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1826
1827         /* Do the rest outside of interrupt context */
1828         schedule_work(&adapter->watchdog_task);
1829 }
1830
1831 static void igbvf_watchdog_task(struct work_struct *work)
1832 {
1833         struct igbvf_adapter *adapter = container_of(work,
1834                                                      struct igbvf_adapter,
1835                                                      watchdog_task);
1836         struct net_device *netdev = adapter->netdev;
1837         struct e1000_mac_info *mac = &adapter->hw.mac;
1838         struct igbvf_ring *tx_ring = adapter->tx_ring;
1839         struct e1000_hw *hw = &adapter->hw;
1840         u32 link;
1841         int tx_pending = 0;
1842
1843         link = igbvf_has_link(adapter);
1844
1845         if (link) {
1846                 if (!netif_carrier_ok(netdev)) {
1847                         mac->ops.get_link_up_info(&adapter->hw,
1848                                                   &adapter->link_speed,
1849                                                   &adapter->link_duplex);
1850                         igbvf_print_link_info(adapter);
1851
1852                         netif_carrier_on(netdev);
1853                         netif_wake_queue(netdev);
1854                 }
1855         } else {
1856                 if (netif_carrier_ok(netdev)) {
1857                         adapter->link_speed = 0;
1858                         adapter->link_duplex = 0;
1859                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1860                         netif_carrier_off(netdev);
1861                         netif_stop_queue(netdev);
1862                 }
1863         }
1864
1865         if (netif_carrier_ok(netdev)) {
1866                 igbvf_update_stats(adapter);
1867         } else {
1868                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1869                               tx_ring->count);
1870                 if (tx_pending) {
1871                         /*
1872                          * We've lost link, so the controller stops DMA,
1873                          * but we've got queued Tx work that's never going
1874                          * to get done, so reset controller to flush Tx.
1875                          * (Do the reset outside of interrupt context).
1876                          */
1877                         adapter->tx_timeout_count++;
1878                         schedule_work(&adapter->reset_task);
1879                 }
1880         }
1881
1882         /* Cause software interrupt to ensure Rx ring is cleaned */
1883         ew32(EICS, adapter->rx_ring->eims_value);
1884
1885         /* Reset the timer */
1886         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1887                 mod_timer(&adapter->watchdog_timer,
1888                           round_jiffies(jiffies + (2 * HZ)));
1889 }
1890
1891 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1892 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1893 #define IGBVF_TX_FLAGS_TSO              0x00000004
1894 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1895 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1896 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1897
1898 static int igbvf_tso(struct igbvf_adapter *adapter,
1899                      struct igbvf_ring *tx_ring,
1900                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1901 {
1902         struct e1000_adv_tx_context_desc *context_desc;
1903         unsigned int i;
1904         int err;
1905         struct igbvf_buffer *buffer_info;
1906         u32 info = 0, tu_cmd = 0;
1907         u32 mss_l4len_idx, l4len;
1908         *hdr_len = 0;
1909
1910         if (skb_header_cloned(skb)) {
1911                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1912                 if (err) {
1913                         dev_err(&adapter->pdev->dev,
1914                                 "igbvf_tso returning an error\n");
1915                         return err;
1916                 }
1917         }
1918
1919         l4len = tcp_hdrlen(skb);
1920         *hdr_len += l4len;
1921
1922         if (skb->protocol == htons(ETH_P_IP)) {
1923                 struct iphdr *iph = ip_hdr(skb);
1924                 iph->tot_len = 0;
1925                 iph->check = 0;
1926                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1927                                                          iph->daddr, 0,
1928                                                          IPPROTO_TCP,
1929                                                          0);
1930         } else if (skb_is_gso_v6(skb)) {
1931                 ipv6_hdr(skb)->payload_len = 0;
1932                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1933                                                        &ipv6_hdr(skb)->daddr,
1934                                                        0, IPPROTO_TCP, 0);
1935         }
1936
1937         i = tx_ring->next_to_use;
1938
1939         buffer_info = &tx_ring->buffer_info[i];
1940         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1941         /* VLAN MACLEN IPLEN */
1942         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1943                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1944         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1945         *hdr_len += skb_network_offset(skb);
1946         info |= (skb_transport_header(skb) - skb_network_header(skb));
1947         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1948         context_desc->vlan_macip_lens = cpu_to_le32(info);
1949
1950         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1951         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1952
1953         if (skb->protocol == htons(ETH_P_IP))
1954                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1955         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1956
1957         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1958
1959         /* MSS L4LEN IDX */
1960         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1961         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1962
1963         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1964         context_desc->seqnum_seed = 0;
1965
1966         buffer_info->time_stamp = jiffies;
1967         buffer_info->next_to_watch = i;
1968         buffer_info->dma = 0;
1969         i++;
1970         if (i == tx_ring->count)
1971                 i = 0;
1972
1973         tx_ring->next_to_use = i;
1974
1975         return true;
1976 }
1977
1978 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1979                                  struct igbvf_ring *tx_ring,
1980                                  struct sk_buff *skb, u32 tx_flags)
1981 {
1982         struct e1000_adv_tx_context_desc *context_desc;
1983         unsigned int i;
1984         struct igbvf_buffer *buffer_info;
1985         u32 info = 0, tu_cmd = 0;
1986
1987         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1988             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1989                 i = tx_ring->next_to_use;
1990                 buffer_info = &tx_ring->buffer_info[i];
1991                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1992
1993                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1994                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1995
1996                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1997                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1998                         info |= (skb_transport_header(skb) -
1999                                  skb_network_header(skb));
2000
2001
2002                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2003
2004                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2005
2006                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2007                         switch (skb->protocol) {
2008                         case __constant_htons(ETH_P_IP):
2009                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2010                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2011                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2012                                 break;
2013                         case __constant_htons(ETH_P_IPV6):
2014                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2015                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2016                                 break;
2017                         default:
2018                                 break;
2019                         }
2020                 }
2021
2022                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2023                 context_desc->seqnum_seed = 0;
2024                 context_desc->mss_l4len_idx = 0;
2025
2026                 buffer_info->time_stamp = jiffies;
2027                 buffer_info->next_to_watch = i;
2028                 buffer_info->dma = 0;
2029                 i++;
2030                 if (i == tx_ring->count)
2031                         i = 0;
2032                 tx_ring->next_to_use = i;
2033
2034                 return true;
2035         }
2036
2037         return false;
2038 }
2039
2040 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2041 {
2042         struct igbvf_adapter *adapter = netdev_priv(netdev);
2043
2044         /* there is enough descriptors then we don't need to worry  */
2045         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2046                 return 0;
2047
2048         netif_stop_queue(netdev);
2049
2050         smp_mb();
2051
2052         /* We need to check again just in case room has been made available */
2053         if (igbvf_desc_unused(adapter->tx_ring) < size)
2054                 return -EBUSY;
2055
2056         netif_wake_queue(netdev);
2057
2058         ++adapter->restart_queue;
2059         return 0;
2060 }
2061
2062 #define IGBVF_MAX_TXD_PWR       16
2063 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2064
2065 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2066                                    struct igbvf_ring *tx_ring,
2067                                    struct sk_buff *skb,
2068                                    unsigned int first)
2069 {
2070         struct igbvf_buffer *buffer_info;
2071         struct pci_dev *pdev = adapter->pdev;
2072         unsigned int len = skb_headlen(skb);
2073         unsigned int count = 0, i;
2074         unsigned int f;
2075
2076         i = tx_ring->next_to_use;
2077
2078         buffer_info = &tx_ring->buffer_info[i];
2079         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2080         buffer_info->length = len;
2081         /* set time_stamp *before* dma to help avoid a possible race */
2082         buffer_info->time_stamp = jiffies;
2083         buffer_info->next_to_watch = i;
2084         buffer_info->mapped_as_page = false;
2085         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2086                                           DMA_TO_DEVICE);
2087         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2088                 goto dma_error;
2089
2090
2091         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2092                 const struct skb_frag_struct *frag;
2093
2094                 count++;
2095                 i++;
2096                 if (i == tx_ring->count)
2097                         i = 0;
2098
2099                 frag = &skb_shinfo(skb)->frags[f];
2100                 len = skb_frag_size(frag);
2101
2102                 buffer_info = &tx_ring->buffer_info[i];
2103                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2104                 buffer_info->length = len;
2105                 buffer_info->time_stamp = jiffies;
2106                 buffer_info->next_to_watch = i;
2107                 buffer_info->mapped_as_page = true;
2108                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2109                                                 DMA_TO_DEVICE);
2110                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2111                         goto dma_error;
2112         }
2113
2114         tx_ring->buffer_info[i].skb = skb;
2115         tx_ring->buffer_info[first].next_to_watch = i;
2116
2117         return ++count;
2118
2119 dma_error:
2120         dev_err(&pdev->dev, "TX DMA map failed\n");
2121
2122         /* clear timestamp and dma mappings for failed buffer_info mapping */
2123         buffer_info->dma = 0;
2124         buffer_info->time_stamp = 0;
2125         buffer_info->length = 0;
2126         buffer_info->next_to_watch = 0;
2127         buffer_info->mapped_as_page = false;
2128         if (count)
2129                 count--;
2130
2131         /* clear timestamp and dma mappings for remaining portion of packet */
2132         while (count--) {
2133                 if (i==0)
2134                         i += tx_ring->count;
2135                 i--;
2136                 buffer_info = &tx_ring->buffer_info[i];
2137                 igbvf_put_txbuf(adapter, buffer_info);
2138         }
2139
2140         return 0;
2141 }
2142
2143 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2144                                       struct igbvf_ring *tx_ring,
2145                                       int tx_flags, int count, u32 paylen,
2146                                       u8 hdr_len)
2147 {
2148         union e1000_adv_tx_desc *tx_desc = NULL;
2149         struct igbvf_buffer *buffer_info;
2150         u32 olinfo_status = 0, cmd_type_len;
2151         unsigned int i;
2152
2153         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2154                         E1000_ADVTXD_DCMD_DEXT);
2155
2156         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2157                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2158
2159         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2160                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2161
2162                 /* insert tcp checksum */
2163                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2164
2165                 /* insert ip checksum */
2166                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2167                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2168
2169         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2170                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2171         }
2172
2173         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2174
2175         i = tx_ring->next_to_use;
2176         while (count--) {
2177                 buffer_info = &tx_ring->buffer_info[i];
2178                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2179                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2180                 tx_desc->read.cmd_type_len =
2181                          cpu_to_le32(cmd_type_len | buffer_info->length);
2182                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2183                 i++;
2184                 if (i == tx_ring->count)
2185                         i = 0;
2186         }
2187
2188         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2189         /* Force memory writes to complete before letting h/w
2190          * know there are new descriptors to fetch.  (Only
2191          * applicable for weak-ordered memory model archs,
2192          * such as IA-64). */
2193         wmb();
2194
2195         tx_ring->next_to_use = i;
2196         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2197         /* we need this if more than one processor can write to our tail
2198          * at a time, it syncronizes IO on IA64/Altix systems */
2199         mmiowb();
2200 }
2201
2202 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2203                                              struct net_device *netdev,
2204                                              struct igbvf_ring *tx_ring)
2205 {
2206         struct igbvf_adapter *adapter = netdev_priv(netdev);
2207         unsigned int first, tx_flags = 0;
2208         u8 hdr_len = 0;
2209         int count = 0;
2210         int tso = 0;
2211
2212         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2213                 dev_kfree_skb_any(skb);
2214                 return NETDEV_TX_OK;
2215         }
2216
2217         if (skb->len <= 0) {
2218                 dev_kfree_skb_any(skb);
2219                 return NETDEV_TX_OK;
2220         }
2221
2222         /*
2223          * need: count + 4 desc gap to keep tail from touching
2224          *       + 2 desc gap to keep tail from touching head,
2225          *       + 1 desc for skb->data,
2226          *       + 1 desc for context descriptor,
2227          * head, otherwise try next time
2228          */
2229         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2230                 /* this is a hard error */
2231                 return NETDEV_TX_BUSY;
2232         }
2233
2234         if (vlan_tx_tag_present(skb)) {
2235                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2236                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2237         }
2238
2239         if (skb->protocol == htons(ETH_P_IP))
2240                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2241
2242         first = tx_ring->next_to_use;
2243
2244         tso = skb_is_gso(skb) ?
2245                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2246         if (unlikely(tso < 0)) {
2247                 dev_kfree_skb_any(skb);
2248                 return NETDEV_TX_OK;
2249         }
2250
2251         if (tso)
2252                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2253         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2254                  (skb->ip_summed == CHECKSUM_PARTIAL))
2255                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2256
2257         /*
2258          * count reflects descriptors mapped, if 0 then mapping error
2259          * has occurred and we need to rewind the descriptor queue
2260          */
2261         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2262
2263         if (count) {
2264                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2265                                    skb->len, hdr_len);
2266                 /* Make sure there is space in the ring for the next send. */
2267                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2268         } else {
2269                 dev_kfree_skb_any(skb);
2270                 tx_ring->buffer_info[first].time_stamp = 0;
2271                 tx_ring->next_to_use = first;
2272         }
2273
2274         return NETDEV_TX_OK;
2275 }
2276
2277 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2278                                     struct net_device *netdev)
2279 {
2280         struct igbvf_adapter *adapter = netdev_priv(netdev);
2281         struct igbvf_ring *tx_ring;
2282
2283         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2284                 dev_kfree_skb_any(skb);
2285                 return NETDEV_TX_OK;
2286         }
2287
2288         tx_ring = &adapter->tx_ring[0];
2289
2290         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2291 }
2292
2293 /**
2294  * igbvf_tx_timeout - Respond to a Tx Hang
2295  * @netdev: network interface device structure
2296  **/
2297 static void igbvf_tx_timeout(struct net_device *netdev)
2298 {
2299         struct igbvf_adapter *adapter = netdev_priv(netdev);
2300
2301         /* Do the reset outside of interrupt context */
2302         adapter->tx_timeout_count++;
2303         schedule_work(&adapter->reset_task);
2304 }
2305
2306 static void igbvf_reset_task(struct work_struct *work)
2307 {
2308         struct igbvf_adapter *adapter;
2309         adapter = container_of(work, struct igbvf_adapter, reset_task);
2310
2311         igbvf_reinit_locked(adapter);
2312 }
2313
2314 /**
2315  * igbvf_get_stats - Get System Network Statistics
2316  * @netdev: network interface device structure
2317  *
2318  * Returns the address of the device statistics structure.
2319  * The statistics are actually updated from the timer callback.
2320  **/
2321 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2322 {
2323         struct igbvf_adapter *adapter = netdev_priv(netdev);
2324
2325         /* only return the current stats */
2326         return &adapter->net_stats;
2327 }
2328
2329 /**
2330  * igbvf_change_mtu - Change the Maximum Transfer Unit
2331  * @netdev: network interface device structure
2332  * @new_mtu: new value for maximum frame size
2333  *
2334  * Returns 0 on success, negative on failure
2335  **/
2336 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2337 {
2338         struct igbvf_adapter *adapter = netdev_priv(netdev);
2339         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2340
2341         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2342                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2343                 return -EINVAL;
2344         }
2345
2346 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2347         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2348                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2349                 return -EINVAL;
2350         }
2351
2352         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2353                 msleep(1);
2354         /* igbvf_down has a dependency on max_frame_size */
2355         adapter->max_frame_size = max_frame;
2356         if (netif_running(netdev))
2357                 igbvf_down(adapter);
2358
2359         /*
2360          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2361          * means we reserve 2 more, this pushes us to allocate from the next
2362          * larger slab size.
2363          * i.e. RXBUFFER_2048 --> size-4096 slab
2364          * However with the new *_jumbo_rx* routines, jumbo receives will use
2365          * fragmented skbs
2366          */
2367
2368         if (max_frame <= 1024)
2369                 adapter->rx_buffer_len = 1024;
2370         else if (max_frame <= 2048)
2371                 adapter->rx_buffer_len = 2048;
2372         else
2373 #if (PAGE_SIZE / 2) > 16384
2374                 adapter->rx_buffer_len = 16384;
2375 #else
2376                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2377 #endif
2378
2379
2380         /* adjust allocation if LPE protects us, and we aren't using SBP */
2381         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2382              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2383                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2384                                          ETH_FCS_LEN;
2385
2386         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2387                  netdev->mtu, new_mtu);
2388         netdev->mtu = new_mtu;
2389
2390         if (netif_running(netdev))
2391                 igbvf_up(adapter);
2392         else
2393                 igbvf_reset(adapter);
2394
2395         clear_bit(__IGBVF_RESETTING, &adapter->state);
2396
2397         return 0;
2398 }
2399
2400 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2401 {
2402         switch (cmd) {
2403         default:
2404                 return -EOPNOTSUPP;
2405         }
2406 }
2407
2408 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2409 {
2410         struct net_device *netdev = pci_get_drvdata(pdev);
2411         struct igbvf_adapter *adapter = netdev_priv(netdev);
2412 #ifdef CONFIG_PM
2413         int retval = 0;
2414 #endif
2415
2416         netif_device_detach(netdev);
2417
2418         if (netif_running(netdev)) {
2419                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2420                 igbvf_down(adapter);
2421                 igbvf_free_irq(adapter);
2422         }
2423
2424 #ifdef CONFIG_PM
2425         retval = pci_save_state(pdev);
2426         if (retval)
2427                 return retval;
2428 #endif
2429
2430         pci_disable_device(pdev);
2431
2432         return 0;
2433 }
2434
2435 #ifdef CONFIG_PM
2436 static int igbvf_resume(struct pci_dev *pdev)
2437 {
2438         struct net_device *netdev = pci_get_drvdata(pdev);
2439         struct igbvf_adapter *adapter = netdev_priv(netdev);
2440         u32 err;
2441
2442         pci_restore_state(pdev);
2443         err = pci_enable_device_mem(pdev);
2444         if (err) {
2445                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2446                 return err;
2447         }
2448
2449         pci_set_master(pdev);
2450
2451         if (netif_running(netdev)) {
2452                 err = igbvf_request_irq(adapter);
2453                 if (err)
2454                         return err;
2455         }
2456
2457         igbvf_reset(adapter);
2458
2459         if (netif_running(netdev))
2460                 igbvf_up(adapter);
2461
2462         netif_device_attach(netdev);
2463
2464         return 0;
2465 }
2466 #endif
2467
2468 static void igbvf_shutdown(struct pci_dev *pdev)
2469 {
2470         igbvf_suspend(pdev, PMSG_SUSPEND);
2471 }
2472
2473 #ifdef CONFIG_NET_POLL_CONTROLLER
2474 /*
2475  * Polling 'interrupt' - used by things like netconsole to send skbs
2476  * without having to re-enable interrupts. It's not called while
2477  * the interrupt routine is executing.
2478  */
2479 static void igbvf_netpoll(struct net_device *netdev)
2480 {
2481         struct igbvf_adapter *adapter = netdev_priv(netdev);
2482
2483         disable_irq(adapter->pdev->irq);
2484
2485         igbvf_clean_tx_irq(adapter->tx_ring);
2486
2487         enable_irq(adapter->pdev->irq);
2488 }
2489 #endif
2490
2491 /**
2492  * igbvf_io_error_detected - called when PCI error is detected
2493  * @pdev: Pointer to PCI device
2494  * @state: The current pci connection state
2495  *
2496  * This function is called after a PCI bus error affecting
2497  * this device has been detected.
2498  */
2499 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2500                                                 pci_channel_state_t state)
2501 {
2502         struct net_device *netdev = pci_get_drvdata(pdev);
2503         struct igbvf_adapter *adapter = netdev_priv(netdev);
2504
2505         netif_device_detach(netdev);
2506
2507         if (state == pci_channel_io_perm_failure)
2508                 return PCI_ERS_RESULT_DISCONNECT;
2509
2510         if (netif_running(netdev))
2511                 igbvf_down(adapter);
2512         pci_disable_device(pdev);
2513
2514         /* Request a slot slot reset. */
2515         return PCI_ERS_RESULT_NEED_RESET;
2516 }
2517
2518 /**
2519  * igbvf_io_slot_reset - called after the pci bus has been reset.
2520  * @pdev: Pointer to PCI device
2521  *
2522  * Restart the card from scratch, as if from a cold-boot. Implementation
2523  * resembles the first-half of the igbvf_resume routine.
2524  */
2525 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2526 {
2527         struct net_device *netdev = pci_get_drvdata(pdev);
2528         struct igbvf_adapter *adapter = netdev_priv(netdev);
2529
2530         if (pci_enable_device_mem(pdev)) {
2531                 dev_err(&pdev->dev,
2532                         "Cannot re-enable PCI device after reset.\n");
2533                 return PCI_ERS_RESULT_DISCONNECT;
2534         }
2535         pci_set_master(pdev);
2536
2537         igbvf_reset(adapter);
2538
2539         return PCI_ERS_RESULT_RECOVERED;
2540 }
2541
2542 /**
2543  * igbvf_io_resume - called when traffic can start flowing again.
2544  * @pdev: Pointer to PCI device
2545  *
2546  * This callback is called when the error recovery driver tells us that
2547  * its OK to resume normal operation. Implementation resembles the
2548  * second-half of the igbvf_resume routine.
2549  */
2550 static void igbvf_io_resume(struct pci_dev *pdev)
2551 {
2552         struct net_device *netdev = pci_get_drvdata(pdev);
2553         struct igbvf_adapter *adapter = netdev_priv(netdev);
2554
2555         if (netif_running(netdev)) {
2556                 if (igbvf_up(adapter)) {
2557                         dev_err(&pdev->dev,
2558                                 "can't bring device back up after reset\n");
2559                         return;
2560                 }
2561         }
2562
2563         netif_device_attach(netdev);
2564 }
2565
2566 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2567 {
2568         struct e1000_hw *hw = &adapter->hw;
2569         struct net_device *netdev = adapter->netdev;
2570         struct pci_dev *pdev = adapter->pdev;
2571
2572         if (hw->mac.type == e1000_vfadapt_i350)
2573                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2574         else
2575                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2576         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2577 }
2578
2579 static int igbvf_set_features(struct net_device *netdev,
2580         netdev_features_t features)
2581 {
2582         struct igbvf_adapter *adapter = netdev_priv(netdev);
2583
2584         if (features & NETIF_F_RXCSUM)
2585                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2586         else
2587                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2588
2589         return 0;
2590 }
2591
2592 static const struct net_device_ops igbvf_netdev_ops = {
2593         .ndo_open                       = igbvf_open,
2594         .ndo_stop                       = igbvf_close,
2595         .ndo_start_xmit                 = igbvf_xmit_frame,
2596         .ndo_get_stats                  = igbvf_get_stats,
2597         .ndo_set_rx_mode                = igbvf_set_multi,
2598         .ndo_set_mac_address            = igbvf_set_mac,
2599         .ndo_change_mtu                 = igbvf_change_mtu,
2600         .ndo_do_ioctl                   = igbvf_ioctl,
2601         .ndo_tx_timeout                 = igbvf_tx_timeout,
2602         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2603         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2604 #ifdef CONFIG_NET_POLL_CONTROLLER
2605         .ndo_poll_controller            = igbvf_netpoll,
2606 #endif
2607         .ndo_set_features               = igbvf_set_features,
2608 };
2609
2610 /**
2611  * igbvf_probe - Device Initialization Routine
2612  * @pdev: PCI device information struct
2613  * @ent: entry in igbvf_pci_tbl
2614  *
2615  * Returns 0 on success, negative on failure
2616  *
2617  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2618  * The OS initialization, configuring of the adapter private structure,
2619  * and a hardware reset occur.
2620  **/
2621 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2622 {
2623         struct net_device *netdev;
2624         struct igbvf_adapter *adapter;
2625         struct e1000_hw *hw;
2626         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2627
2628         static int cards_found;
2629         int err, pci_using_dac;
2630
2631         err = pci_enable_device_mem(pdev);
2632         if (err)
2633                 return err;
2634
2635         pci_using_dac = 0;
2636         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2637         if (!err) {
2638                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2639                 if (!err)
2640                         pci_using_dac = 1;
2641         } else {
2642                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2643                 if (err) {
2644                         err = dma_set_coherent_mask(&pdev->dev,
2645                                                     DMA_BIT_MASK(32));
2646                         if (err) {
2647                                 dev_err(&pdev->dev, "No usable DMA "
2648                                         "configuration, aborting\n");
2649                                 goto err_dma;
2650                         }
2651                 }
2652         }
2653
2654         err = pci_request_regions(pdev, igbvf_driver_name);
2655         if (err)
2656                 goto err_pci_reg;
2657
2658         pci_set_master(pdev);
2659
2660         err = -ENOMEM;
2661         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2662         if (!netdev)
2663                 goto err_alloc_etherdev;
2664
2665         SET_NETDEV_DEV(netdev, &pdev->dev);
2666
2667         pci_set_drvdata(pdev, netdev);
2668         adapter = netdev_priv(netdev);
2669         hw = &adapter->hw;
2670         adapter->netdev = netdev;
2671         adapter->pdev = pdev;
2672         adapter->ei = ei;
2673         adapter->pba = ei->pba;
2674         adapter->flags = ei->flags;
2675         adapter->hw.back = adapter;
2676         adapter->hw.mac.type = ei->mac;
2677         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2678
2679         /* PCI config space info */
2680
2681         hw->vendor_id = pdev->vendor;
2682         hw->device_id = pdev->device;
2683         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2684         hw->subsystem_device_id = pdev->subsystem_device;
2685         hw->revision_id = pdev->revision;
2686
2687         err = -EIO;
2688         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2689                                       pci_resource_len(pdev, 0));
2690
2691         if (!adapter->hw.hw_addr)
2692                 goto err_ioremap;
2693
2694         if (ei->get_variants) {
2695                 err = ei->get_variants(adapter);
2696                 if (err)
2697                         goto err_ioremap;
2698         }
2699
2700         /* setup adapter struct */
2701         err = igbvf_sw_init(adapter);
2702         if (err)
2703                 goto err_sw_init;
2704
2705         /* construct the net_device struct */
2706         netdev->netdev_ops = &igbvf_netdev_ops;
2707
2708         igbvf_set_ethtool_ops(netdev);
2709         netdev->watchdog_timeo = 5 * HZ;
2710         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2711
2712         adapter->bd_number = cards_found++;
2713
2714         netdev->hw_features = NETIF_F_SG |
2715                            NETIF_F_IP_CSUM |
2716                            NETIF_F_IPV6_CSUM |
2717                            NETIF_F_TSO |
2718                            NETIF_F_TSO6 |
2719                            NETIF_F_RXCSUM;
2720
2721         netdev->features = netdev->hw_features |
2722                            NETIF_F_HW_VLAN_TX |
2723                            NETIF_F_HW_VLAN_RX |
2724                            NETIF_F_HW_VLAN_FILTER;
2725
2726         if (pci_using_dac)
2727                 netdev->features |= NETIF_F_HIGHDMA;
2728
2729         netdev->vlan_features |= NETIF_F_TSO;
2730         netdev->vlan_features |= NETIF_F_TSO6;
2731         netdev->vlan_features |= NETIF_F_IP_CSUM;
2732         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2733         netdev->vlan_features |= NETIF_F_SG;
2734
2735         /*reset the controller to put the device in a known good state */
2736         err = hw->mac.ops.reset_hw(hw);
2737         if (err) {
2738                 dev_info(&pdev->dev,
2739                          "PF still in reset state, assigning new address."
2740                          " Is the PF interface up?\n");
2741                 eth_hw_addr_random(netdev);
2742                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2743                         netdev->addr_len);
2744         } else {
2745                 err = hw->mac.ops.read_mac_addr(hw);
2746                 if (err) {
2747                         dev_err(&pdev->dev, "Error reading MAC address\n");
2748                         goto err_hw_init;
2749                 }
2750                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751                         netdev->addr_len);
2752         }
2753
2754         if (!is_valid_ether_addr(netdev->dev_addr)) {
2755                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2756                         netdev->dev_addr);
2757                 err = -EIO;
2758                 goto err_hw_init;
2759         }
2760
2761         memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2762
2763         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2764                     (unsigned long) adapter);
2765
2766         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2767         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2768
2769         /* ring size defaults */
2770         adapter->rx_ring->count = 1024;
2771         adapter->tx_ring->count = 1024;
2772
2773         /* reset the hardware with the new settings */
2774         igbvf_reset(adapter);
2775
2776         /* set hardware-specific flags */
2777         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2778                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2779
2780         strcpy(netdev->name, "eth%d");
2781         err = register_netdev(netdev);
2782         if (err)
2783                 goto err_hw_init;
2784
2785         /* tell the stack to leave us alone until igbvf_open() is called */
2786         netif_carrier_off(netdev);
2787         netif_stop_queue(netdev);
2788
2789         igbvf_print_device_info(adapter);
2790
2791         igbvf_initialize_last_counter_stats(adapter);
2792
2793         return 0;
2794
2795 err_hw_init:
2796         kfree(adapter->tx_ring);
2797         kfree(adapter->rx_ring);
2798 err_sw_init:
2799         igbvf_reset_interrupt_capability(adapter);
2800         iounmap(adapter->hw.hw_addr);
2801 err_ioremap:
2802         free_netdev(netdev);
2803 err_alloc_etherdev:
2804         pci_release_regions(pdev);
2805 err_pci_reg:
2806 err_dma:
2807         pci_disable_device(pdev);
2808         return err;
2809 }
2810
2811 /**
2812  * igbvf_remove - Device Removal Routine
2813  * @pdev: PCI device information struct
2814  *
2815  * igbvf_remove is called by the PCI subsystem to alert the driver
2816  * that it should release a PCI device.  The could be caused by a
2817  * Hot-Plug event, or because the driver is going to be removed from
2818  * memory.
2819  **/
2820 static void igbvf_remove(struct pci_dev *pdev)
2821 {
2822         struct net_device *netdev = pci_get_drvdata(pdev);
2823         struct igbvf_adapter *adapter = netdev_priv(netdev);
2824         struct e1000_hw *hw = &adapter->hw;
2825
2826         /*
2827          * The watchdog timer may be rescheduled, so explicitly
2828          * disable it from being rescheduled.
2829          */
2830         set_bit(__IGBVF_DOWN, &adapter->state);
2831         del_timer_sync(&adapter->watchdog_timer);
2832
2833         cancel_work_sync(&adapter->reset_task);
2834         cancel_work_sync(&adapter->watchdog_task);
2835
2836         unregister_netdev(netdev);
2837
2838         igbvf_reset_interrupt_capability(adapter);
2839
2840         /*
2841          * it is important to delete the napi struct prior to freeing the
2842          * rx ring so that you do not end up with null pointer refs
2843          */
2844         netif_napi_del(&adapter->rx_ring->napi);
2845         kfree(adapter->tx_ring);
2846         kfree(adapter->rx_ring);
2847
2848         iounmap(hw->hw_addr);
2849         if (hw->flash_address)
2850                 iounmap(hw->flash_address);
2851         pci_release_regions(pdev);
2852
2853         free_netdev(netdev);
2854
2855         pci_disable_device(pdev);
2856 }
2857
2858 /* PCI Error Recovery (ERS) */
2859 static const struct pci_error_handlers igbvf_err_handler = {
2860         .error_detected = igbvf_io_error_detected,
2861         .slot_reset = igbvf_io_slot_reset,
2862         .resume = igbvf_io_resume,
2863 };
2864
2865 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2867         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2868         { } /* terminate list */
2869 };
2870 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2871
2872 /* PCI Device API Driver */
2873 static struct pci_driver igbvf_driver = {
2874         .name     = igbvf_driver_name,
2875         .id_table = igbvf_pci_tbl,
2876         .probe    = igbvf_probe,
2877         .remove   = igbvf_remove,
2878 #ifdef CONFIG_PM
2879         /* Power Management Hooks */
2880         .suspend  = igbvf_suspend,
2881         .resume   = igbvf_resume,
2882 #endif
2883         .shutdown = igbvf_shutdown,
2884         .err_handler = &igbvf_err_handler
2885 };
2886
2887 /**
2888  * igbvf_init_module - Driver Registration Routine
2889  *
2890  * igbvf_init_module is the first routine called when the driver is
2891  * loaded. All it does is register with the PCI subsystem.
2892  **/
2893 static int __init igbvf_init_module(void)
2894 {
2895         int ret;
2896         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2897         pr_info("%s\n", igbvf_copyright);
2898
2899         ret = pci_register_driver(&igbvf_driver);
2900
2901         return ret;
2902 }
2903 module_init(igbvf_init_module);
2904
2905 /**
2906  * igbvf_exit_module - Driver Exit Cleanup Routine
2907  *
2908  * igbvf_exit_module is called just before the driver is removed
2909  * from memory.
2910  **/
2911 static void __exit igbvf_exit_module(void)
2912 {
2913         pci_unregister_driver(&igbvf_driver);
2914 }
2915 module_exit(igbvf_exit_module);
2916
2917
2918 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2919 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2920 MODULE_LICENSE("GPL");
2921 MODULE_VERSION(DRV_VERSION);
2922
2923 /* netdev.c */