Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
72         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
73                            efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
75         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
76                            efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
78         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
79                            (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88
89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90                                      unsigned int index)
91 {
92         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93                         value, index);
94 }
95
96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97                                      const efx_oword_t *mask)
98 {
99         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
103 int efx_farch_test_registers(struct efx_nic *efx,
104                              const struct efx_farch_register_test *regs,
105                              size_t n_regs)
106 {
107         unsigned address = 0, i, j;
108         efx_oword_t mask, imask, original, reg, buf;
109
110         for (i = 0; i < n_regs; ++i) {
111                 address = regs[i].address;
112                 mask = imask = regs[i].mask;
113                 EFX_INVERT_OWORD(imask);
114
115                 efx_reado(efx, &original, address);
116
117                 /* bit sweep on and off */
118                 for (j = 0; j < 128; j++) {
119                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
120                                 continue;
121
122                         /* Test this testable bit can be set in isolation */
123                         EFX_AND_OWORD(reg, original, mask);
124                         EFX_SET_OWORD32(reg, j, j, 1);
125
126                         efx_writeo(efx, &reg, address);
127                         efx_reado(efx, &buf, address);
128
129                         if (efx_masked_compare_oword(&reg, &buf, &mask))
130                                 goto fail;
131
132                         /* Test this testable bit can be cleared in isolation */
133                         EFX_OR_OWORD(reg, original, mask);
134                         EFX_SET_OWORD32(reg, j, j, 0);
135
136                         efx_writeo(efx, &reg, address);
137                         efx_reado(efx, &buf, address);
138
139                         if (efx_masked_compare_oword(&reg, &buf, &mask))
140                                 goto fail;
141                 }
142
143                 efx_writeo(efx, &original, address);
144         }
145
146         return 0;
147
148 fail:
149         netif_err(efx, hw, efx->net_dev,
150                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153         return -EIO;
154 }
155
156 /**************************************************************************
157  *
158  * Special buffer handling
159  * Special buffers are used for event queues and the TX and RX
160  * descriptor rings.
161  *
162  *************************************************************************/
163
164 /*
165  * Initialise a special buffer
166  *
167  * This will define a buffer (previously allocated via
168  * efx_alloc_special_buffer()) in the buffer table, allowing
169  * it to be used for event queues, descriptor rings etc.
170  */
171 static void
172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 {
174         efx_qword_t buf_desc;
175         unsigned int index;
176         dma_addr_t dma_addr;
177         int i;
178
179         EFX_BUG_ON_PARANOID(!buffer->buf.addr);
180
181         /* Write buffer descriptors to NIC */
182         for (i = 0; i < buffer->entries; i++) {
183                 index = buffer->index + i;
184                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185                 netif_dbg(efx, probe, efx->net_dev,
186                           "mapping special buffer %d at %llx\n",
187                           index, (unsigned long long)dma_addr);
188                 EFX_POPULATE_QWORD_3(buf_desc,
189                                      FRF_AZ_BUF_ADR_REGION, 0,
190                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192                 efx_write_buf_tbl(efx, &buf_desc, index);
193         }
194 }
195
196 /* Unmaps a buffer and clears the buffer table entries */
197 static void
198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 {
200         efx_oword_t buf_tbl_upd;
201         unsigned int start = buffer->index;
202         unsigned int end = (buffer->index + buffer->entries - 1);
203
204         if (!buffer->entries)
205                 return;
206
207         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208                   buffer->index, buffer->index + buffer->entries - 1);
209
210         EFX_POPULATE_OWORD_4(buf_tbl_upd,
211                              FRF_AZ_BUF_UPD_CMD, 0,
212                              FRF_AZ_BUF_CLR_CMD, 1,
213                              FRF_AZ_BUF_CLR_END_ID, end,
214                              FRF_AZ_BUF_CLR_START_ID, start);
215         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216 }
217
218 /*
219  * Allocate a new special buffer
220  *
221  * This allocates memory for a new buffer, clears it and allocates a
222  * new buffer ID range.  It does not write into the buffer table.
223  *
224  * This call will allocate 4KB buffers, since 8KB buffers can't be
225  * used for event queues and descriptor rings.
226  */
227 static int efx_alloc_special_buffer(struct efx_nic *efx,
228                                     struct efx_special_buffer *buffer,
229                                     unsigned int len)
230 {
231 #ifdef CONFIG_SFC_SRIOV
232         struct siena_nic_data *nic_data = efx->nic_data;
233 #endif
234         len = ALIGN(len, EFX_BUF_SIZE);
235
236         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237                 return -ENOMEM;
238         buffer->entries = len / EFX_BUF_SIZE;
239         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241         /* Select new buffer ID */
242         buffer->index = efx->next_buffer_table;
243         efx->next_buffer_table += buffer->entries;
244 #ifdef CONFIG_SFC_SRIOV
245         BUG_ON(efx_siena_sriov_enabled(efx) &&
246                nic_data->vf_buftbl_base < efx->next_buffer_table);
247 #endif
248
249         netif_dbg(efx, probe, efx->net_dev,
250                   "allocating special buffers %d-%d at %llx+%x "
251                   "(virt %p phys %llx)\n", buffer->index,
252                   buffer->index + buffer->entries - 1,
253                   (u64)buffer->buf.dma_addr, len,
254                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256         return 0;
257 }
258
259 static void
260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 {
262         if (!buffer->buf.addr)
263                 return;
264
265         netif_dbg(efx, hw, efx->net_dev,
266                   "deallocating special buffers %d-%d at %llx+%x "
267                   "(virt %p phys %llx)\n", buffer->index,
268                   buffer->index + buffer->entries - 1,
269                   (u64)buffer->buf.dma_addr, buffer->buf.len,
270                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272         efx_nic_free_buffer(efx, &buffer->buf);
273         buffer->entries = 0;
274 }
275
276 /**************************************************************************
277  *
278  * TX path
279  *
280  **************************************************************************/
281
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 {
285         unsigned write_ptr;
286         efx_dword_t reg;
287
288         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290         efx_writed_page(tx_queue->efx, &reg,
291                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292 }
293
294 /* Write pointer and first descriptor for TX descriptor ring */
295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296                                           const efx_qword_t *txd)
297 {
298         unsigned write_ptr;
299         efx_oword_t reg;
300
301         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306                              FRF_AZ_TX_DESC_WPTR, write_ptr);
307         reg.qword[0] = *txd;
308         efx_writeo_page(tx_queue->efx, &reg,
309                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310 }
311
312
313 /* For each entry inserted into the software descriptor ring, create a
314  * descriptor in the hardware TX descriptor ring (in host memory), and
315  * write a doorbell.
316  */
317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 {
319         struct efx_tx_buffer *buffer;
320         efx_qword_t *txd;
321         unsigned write_ptr;
322         unsigned old_write_count = tx_queue->write_count;
323
324         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
325
326         do {
327                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328                 buffer = &tx_queue->buffer[write_ptr];
329                 txd = efx_tx_desc(tx_queue, write_ptr);
330                 ++tx_queue->write_count;
331
332                 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333
334                 /* Create TX descriptor ring entry */
335                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336                 EFX_POPULATE_QWORD_4(*txd,
337                                      FSF_AZ_TX_KER_CONT,
338                                      buffer->flags & EFX_TX_BUF_CONT,
339                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340                                      FSF_AZ_TX_KER_BUF_REGION, 0,
341                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342         } while (tx_queue->write_count != tx_queue->insert_count);
343
344         wmb(); /* Ensure descriptors are written before they are fetched */
345
346         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347                 txd = efx_tx_desc(tx_queue,
348                                   old_write_count & tx_queue->ptr_mask);
349                 efx_farch_push_tx_desc(tx_queue, txd);
350                 ++tx_queue->pushes;
351         } else {
352                 efx_farch_notify_tx_desc(tx_queue);
353         }
354 }
355
356 /* Allocate hardware resources for a TX queue */
357 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
358 {
359         struct efx_nic *efx = tx_queue->efx;
360         unsigned entries;
361
362         entries = tx_queue->ptr_mask + 1;
363         return efx_alloc_special_buffer(efx, &tx_queue->txd,
364                                         entries * sizeof(efx_qword_t));
365 }
366
367 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
368 {
369         struct efx_nic *efx = tx_queue->efx;
370         efx_oword_t reg;
371
372         /* Pin TX descriptor ring */
373         efx_init_special_buffer(efx, &tx_queue->txd);
374
375         /* Push TX descriptor ring to card */
376         EFX_POPULATE_OWORD_10(reg,
377                               FRF_AZ_TX_DESCQ_EN, 1,
378                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
379                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
380                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
381                               FRF_AZ_TX_DESCQ_EVQ_ID,
382                               tx_queue->channel->channel,
383                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
384                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
385                               FRF_AZ_TX_DESCQ_SIZE,
386                               __ffs(tx_queue->txd.entries),
387                               FRF_AZ_TX_DESCQ_TYPE, 0,
388                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
389
390         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
391                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
392                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
393                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
394                                     !csum);
395         }
396
397         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
398                          tx_queue->queue);
399
400         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
401                 /* Only 128 bits in this register */
402                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
403
404                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
405                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
406                         __clear_bit_le(tx_queue->queue, &reg);
407                 else
408                         __set_bit_le(tx_queue->queue, &reg);
409                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
410         }
411
412         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
413                 EFX_POPULATE_OWORD_1(reg,
414                                      FRF_BZ_TX_PACE,
415                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
416                                      FFE_BZ_TX_PACE_OFF :
417                                      FFE_BZ_TX_PACE_RESERVED);
418                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
419                                  tx_queue->queue);
420         }
421 }
422
423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424 {
425         struct efx_nic *efx = tx_queue->efx;
426         efx_oword_t tx_flush_descq;
427
428         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429         atomic_set(&tx_queue->flush_outstanding, 1);
430
431         EFX_POPULATE_OWORD_2(tx_flush_descq,
432                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435 }
436
437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438 {
439         struct efx_nic *efx = tx_queue->efx;
440         efx_oword_t tx_desc_ptr;
441
442         /* Remove TX descriptor ring from card */
443         EFX_ZERO_OWORD(tx_desc_ptr);
444         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445                          tx_queue->queue);
446
447         /* Unpin TX descriptor ring */
448         efx_fini_special_buffer(efx, &tx_queue->txd);
449 }
450
451 /* Free buffers backing TX queue */
452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453 {
454         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455 }
456
457 /**************************************************************************
458  *
459  * RX path
460  *
461  **************************************************************************/
462
463 /* This creates an entry in the RX descriptor queue */
464 static inline void
465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466 {
467         struct efx_rx_buffer *rx_buf;
468         efx_qword_t *rxd;
469
470         rxd = efx_rx_desc(rx_queue, index);
471         rx_buf = efx_rx_buffer(rx_queue, index);
472         EFX_POPULATE_QWORD_3(*rxd,
473                              FSF_AZ_RX_KER_BUF_SIZE,
474                              rx_buf->len -
475                              rx_queue->efx->type->rx_buffer_padding,
476                              FSF_AZ_RX_KER_BUF_REGION, 0,
477                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478 }
479
480 /* This writes to the RX_DESC_WPTR register for the specified receive
481  * descriptor ring.
482  */
483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484 {
485         struct efx_nic *efx = rx_queue->efx;
486         efx_dword_t reg;
487         unsigned write_ptr;
488
489         while (rx_queue->notified_count != rx_queue->added_count) {
490                 efx_farch_build_rx_desc(
491                         rx_queue,
492                         rx_queue->notified_count & rx_queue->ptr_mask);
493                 ++rx_queue->notified_count;
494         }
495
496         wmb();
497         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
500                         efx_rx_queue_index(rx_queue));
501 }
502
503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504 {
505         struct efx_nic *efx = rx_queue->efx;
506         unsigned entries;
507
508         entries = rx_queue->ptr_mask + 1;
509         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510                                         entries * sizeof(efx_qword_t));
511 }
512
513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514 {
515         efx_oword_t rx_desc_ptr;
516         struct efx_nic *efx = rx_queue->efx;
517         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
518         bool iscsi_digest_en = is_b0;
519         bool jumbo_en;
520
521         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
522          * DMA to continue after a PCIe page boundary (and scattering
523          * is not possible).  In Falcon B0 and Siena, it enables
524          * scatter.
525          */
526         jumbo_en = !is_b0 || efx->rx_scatter;
527
528         netif_dbg(efx, hw, efx->net_dev,
529                   "RX queue %d ring in special buffers %d-%d\n",
530                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
531                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
532
533         rx_queue->scatter_n = 0;
534
535         /* Pin RX descriptor ring */
536         efx_init_special_buffer(efx, &rx_queue->rxd);
537
538         /* Push RX descriptor ring to card */
539         EFX_POPULATE_OWORD_10(rx_desc_ptr,
540                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
541                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
542                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
543                               FRF_AZ_RX_DESCQ_EVQ_ID,
544                               efx_rx_queue_channel(rx_queue)->channel,
545                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
546                               FRF_AZ_RX_DESCQ_LABEL,
547                               efx_rx_queue_index(rx_queue),
548                               FRF_AZ_RX_DESCQ_SIZE,
549                               __ffs(rx_queue->rxd.entries),
550                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
551                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
552                               FRF_AZ_RX_DESCQ_EN, 1);
553         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
554                          efx_rx_queue_index(rx_queue));
555 }
556
557 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
558 {
559         struct efx_nic *efx = rx_queue->efx;
560         efx_oword_t rx_flush_descq;
561
562         EFX_POPULATE_OWORD_2(rx_flush_descq,
563                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
564                              FRF_AZ_RX_FLUSH_DESCQ,
565                              efx_rx_queue_index(rx_queue));
566         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
567 }
568
569 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
570 {
571         efx_oword_t rx_desc_ptr;
572         struct efx_nic *efx = rx_queue->efx;
573
574         /* Remove RX descriptor ring from card */
575         EFX_ZERO_OWORD(rx_desc_ptr);
576         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
577                          efx_rx_queue_index(rx_queue));
578
579         /* Unpin RX descriptor ring */
580         efx_fini_special_buffer(efx, &rx_queue->rxd);
581 }
582
583 /* Free buffers backing RX queue */
584 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
585 {
586         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
587 }
588
589 /**************************************************************************
590  *
591  * Flush handling
592  *
593  **************************************************************************/
594
595 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
596  * or more RX flushes can be kicked off.
597  */
598 static bool efx_farch_flush_wake(struct efx_nic *efx)
599 {
600         /* Ensure that all updates are visible to efx_farch_flush_queues() */
601         smp_mb();
602
603         return (atomic_read(&efx->active_queues) == 0 ||
604                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
605                  && atomic_read(&efx->rxq_flush_pending) > 0));
606 }
607
608 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
609 {
610         bool i = true;
611         efx_oword_t txd_ptr_tbl;
612         struct efx_channel *channel;
613         struct efx_tx_queue *tx_queue;
614
615         efx_for_each_channel(channel, efx) {
616                 efx_for_each_channel_tx_queue(tx_queue, channel) {
617                         efx_reado_table(efx, &txd_ptr_tbl,
618                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
619                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
620                                             FRF_AZ_TX_DESCQ_FLUSH) ||
621                             EFX_OWORD_FIELD(txd_ptr_tbl,
622                                             FRF_AZ_TX_DESCQ_EN)) {
623                                 netif_dbg(efx, hw, efx->net_dev,
624                                           "flush did not complete on TXQ %d\n",
625                                           tx_queue->queue);
626                                 i = false;
627                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
628                                                   1, 0)) {
629                                 /* The flush is complete, but we didn't
630                                  * receive a flush completion event
631                                  */
632                                 netif_dbg(efx, hw, efx->net_dev,
633                                           "flush complete on TXQ %d, so drain "
634                                           "the queue\n", tx_queue->queue);
635                                 /* Don't need to increment active_queues as it
636                                  * has already been incremented for the queues
637                                  * which did not drain
638                                  */
639                                 efx_farch_magic_event(channel,
640                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
641                                                               tx_queue));
642                         }
643                 }
644         }
645
646         return i;
647 }
648
649 /* Flush all the transmit queues, and continue flushing receive queues until
650  * they're all flushed. Wait for the DRAIN events to be received so that there
651  * are no more RX and TX events left on any channel. */
652 static int efx_farch_do_flush(struct efx_nic *efx)
653 {
654         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
655         struct efx_channel *channel;
656         struct efx_rx_queue *rx_queue;
657         struct efx_tx_queue *tx_queue;
658         int rc = 0;
659
660         efx_for_each_channel(channel, efx) {
661                 efx_for_each_channel_tx_queue(tx_queue, channel) {
662                         efx_farch_flush_tx_queue(tx_queue);
663                 }
664                 efx_for_each_channel_rx_queue(rx_queue, channel) {
665                         rx_queue->flush_pending = true;
666                         atomic_inc(&efx->rxq_flush_pending);
667                 }
668         }
669
670         while (timeout && atomic_read(&efx->active_queues) > 0) {
671                 /* If SRIOV is enabled, then offload receive queue flushing to
672                  * the firmware (though we will still have to poll for
673                  * completion). If that fails, fall back to the old scheme.
674                  */
675                 if (efx_siena_sriov_enabled(efx)) {
676                         rc = efx_mcdi_flush_rxqs(efx);
677                         if (!rc)
678                                 goto wait;
679                 }
680
681                 /* The hardware supports four concurrent rx flushes, each of
682                  * which may need to be retried if there is an outstanding
683                  * descriptor fetch
684                  */
685                 efx_for_each_channel(channel, efx) {
686                         efx_for_each_channel_rx_queue(rx_queue, channel) {
687                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
688                                     EFX_RX_FLUSH_COUNT)
689                                         break;
690
691                                 if (rx_queue->flush_pending) {
692                                         rx_queue->flush_pending = false;
693                                         atomic_dec(&efx->rxq_flush_pending);
694                                         atomic_inc(&efx->rxq_flush_outstanding);
695                                         efx_farch_flush_rx_queue(rx_queue);
696                                 }
697                         }
698                 }
699
700         wait:
701                 timeout = wait_event_timeout(efx->flush_wq,
702                                              efx_farch_flush_wake(efx),
703                                              timeout);
704         }
705
706         if (atomic_read(&efx->active_queues) &&
707             !efx_check_tx_flush_complete(efx)) {
708                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
709                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
710                           atomic_read(&efx->rxq_flush_outstanding),
711                           atomic_read(&efx->rxq_flush_pending));
712                 rc = -ETIMEDOUT;
713
714                 atomic_set(&efx->active_queues, 0);
715                 atomic_set(&efx->rxq_flush_pending, 0);
716                 atomic_set(&efx->rxq_flush_outstanding, 0);
717         }
718
719         return rc;
720 }
721
722 int efx_farch_fini_dmaq(struct efx_nic *efx)
723 {
724         struct efx_channel *channel;
725         struct efx_tx_queue *tx_queue;
726         struct efx_rx_queue *rx_queue;
727         int rc = 0;
728
729         /* Do not attempt to write to the NIC during EEH recovery */
730         if (efx->state != STATE_RECOVERY) {
731                 /* Only perform flush if DMA is enabled */
732                 if (efx->pci_dev->is_busmaster) {
733                         efx->type->prepare_flush(efx);
734                         rc = efx_farch_do_flush(efx);
735                         efx->type->finish_flush(efx);
736                 }
737
738                 efx_for_each_channel(channel, efx) {
739                         efx_for_each_channel_rx_queue(rx_queue, channel)
740                                 efx_farch_rx_fini(rx_queue);
741                         efx_for_each_channel_tx_queue(tx_queue, channel)
742                                 efx_farch_tx_fini(tx_queue);
743                 }
744         }
745
746         return rc;
747 }
748
749 /* Reset queue and flush accounting after FLR
750  *
751  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
752  * mastering was disabled), in which case we don't receive (RXQ) flush
753  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
754  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
755  * events were received, and we didn't go through efx_check_tx_flush_complete())
756  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
757  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
758  * for batched flush requests; and the efx->active_queues gets messed up because
759  * we keep incrementing for the newly initialised queues, but it never went to
760  * zero previously.  Then we get a timeout every time we try to restart the
761  * queues, as it doesn't go back to zero when we should be flushing the queues.
762  */
763 void efx_farch_finish_flr(struct efx_nic *efx)
764 {
765         atomic_set(&efx->rxq_flush_pending, 0);
766         atomic_set(&efx->rxq_flush_outstanding, 0);
767         atomic_set(&efx->active_queues, 0);
768 }
769
770
771 /**************************************************************************
772  *
773  * Event queue processing
774  * Event queues are processed by per-channel tasklets.
775  *
776  **************************************************************************/
777
778 /* Update a channel's event queue's read pointer (RPTR) register
779  *
780  * This writes the EVQ_RPTR_REG register for the specified channel's
781  * event queue.
782  */
783 void efx_farch_ev_read_ack(struct efx_channel *channel)
784 {
785         efx_dword_t reg;
786         struct efx_nic *efx = channel->efx;
787
788         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
789                              channel->eventq_read_ptr & channel->eventq_mask);
790
791         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
792          * of 4 bytes, but it is really 16 bytes just like later revisions.
793          */
794         efx_writed(efx, &reg,
795                    efx->type->evq_rptr_tbl_base +
796                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
797 }
798
799 /* Use HW to insert a SW defined event */
800 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
801                               efx_qword_t *event)
802 {
803         efx_oword_t drv_ev_reg;
804
805         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
806                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
807         drv_ev_reg.u32[0] = event->u32[0];
808         drv_ev_reg.u32[1] = event->u32[1];
809         drv_ev_reg.u32[2] = 0;
810         drv_ev_reg.u32[3] = 0;
811         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
812         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
813 }
814
815 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
816 {
817         efx_qword_t event;
818
819         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
820                              FSE_AZ_EV_CODE_DRV_GEN_EV,
821                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
822         efx_farch_generate_event(channel->efx, channel->channel, &event);
823 }
824
825 /* Handle a transmit completion event
826  *
827  * The NIC batches TX completion events; the message we receive is of
828  * the form "complete all TX events up to this index".
829  */
830 static int
831 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
832 {
833         unsigned int tx_ev_desc_ptr;
834         unsigned int tx_ev_q_label;
835         struct efx_tx_queue *tx_queue;
836         struct efx_nic *efx = channel->efx;
837         int tx_packets = 0;
838
839         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
840                 return 0;
841
842         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
843                 /* Transmit completion */
844                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
845                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846                 tx_queue = efx_channel_get_tx_queue(
847                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
848                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
849                               tx_queue->ptr_mask);
850                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
851         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
852                 /* Rewrite the FIFO write pointer */
853                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
854                 tx_queue = efx_channel_get_tx_queue(
855                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
856
857                 netif_tx_lock(efx->net_dev);
858                 efx_farch_notify_tx_desc(tx_queue);
859                 netif_tx_unlock(efx->net_dev);
860         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
861                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
862         } else {
863                 netif_err(efx, tx_err, efx->net_dev,
864                           "channel %d unexpected TX event "
865                           EFX_QWORD_FMT"\n", channel->channel,
866                           EFX_QWORD_VAL(*event));
867         }
868
869         return tx_packets;
870 }
871
872 /* Detect errors included in the rx_evt_pkt_ok bit. */
873 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
874                                       const efx_qword_t *event)
875 {
876         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
877         struct efx_nic *efx = rx_queue->efx;
878         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
879         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
880         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
881         bool rx_ev_other_err, rx_ev_pause_frm;
882         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
883         unsigned rx_ev_pkt_type;
884
885         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
886         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
887         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
888         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
889         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
890                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
891         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
892                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
893         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
894                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
895         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
896         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
897         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
898                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
899         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
900
901         /* Every error apart from tobe_disc and pause_frm */
902         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
903                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
904                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
905
906         /* Count errors that are not in MAC stats.  Ignore expected
907          * checksum errors during self-test. */
908         if (rx_ev_frm_trunc)
909                 ++channel->n_rx_frm_trunc;
910         else if (rx_ev_tobe_disc)
911                 ++channel->n_rx_tobe_disc;
912         else if (!efx->loopback_selftest) {
913                 if (rx_ev_ip_hdr_chksum_err)
914                         ++channel->n_rx_ip_hdr_chksum_err;
915                 else if (rx_ev_tcp_udp_chksum_err)
916                         ++channel->n_rx_tcp_udp_chksum_err;
917         }
918
919         /* TOBE_DISC is expected on unicast mismatches; don't print out an
920          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
921          * to a FIFO overflow.
922          */
923 #ifdef DEBUG
924         if (rx_ev_other_err && net_ratelimit()) {
925                 netif_dbg(efx, rx_err, efx->net_dev,
926                           " RX queue %d unexpected RX event "
927                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
928                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
929                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
930                           rx_ev_ip_hdr_chksum_err ?
931                           " [IP_HDR_CHKSUM_ERR]" : "",
932                           rx_ev_tcp_udp_chksum_err ?
933                           " [TCP_UDP_CHKSUM_ERR]" : "",
934                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
935                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
936                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
937                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
938                           rx_ev_pause_frm ? " [PAUSE]" : "");
939         }
940 #endif
941
942         /* The frame must be discarded if any of these are true. */
943         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
944                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
945                 EFX_RX_PKT_DISCARD : 0;
946 }
947
948 /* Handle receive events that are not in-order. Return true if this
949  * can be handled as a partial packet discard, false if it's more
950  * serious.
951  */
952 static bool
953 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
954 {
955         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
956         struct efx_nic *efx = rx_queue->efx;
957         unsigned expected, dropped;
958
959         if (rx_queue->scatter_n &&
960             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
961                       rx_queue->ptr_mask)) {
962                 ++channel->n_rx_nodesc_trunc;
963                 return true;
964         }
965
966         expected = rx_queue->removed_count & rx_queue->ptr_mask;
967         dropped = (index - expected) & rx_queue->ptr_mask;
968         netif_info(efx, rx_err, efx->net_dev,
969                    "dropped %d events (index=%d expected=%d)\n",
970                    dropped, index, expected);
971
972         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
973                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
974         return false;
975 }
976
977 /* Handle a packet received event
978  *
979  * The NIC gives a "discard" flag if it's a unicast packet with the
980  * wrong destination address
981  * Also "is multicast" and "matches multicast filter" flags can be used to
982  * discard non-matching multicast packets.
983  */
984 static void
985 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
986 {
987         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
988         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
989         unsigned expected_ptr;
990         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
991         u16 flags;
992         struct efx_rx_queue *rx_queue;
993         struct efx_nic *efx = channel->efx;
994
995         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
996                 return;
997
998         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
999         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1000         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1001                 channel->channel);
1002
1003         rx_queue = efx_channel_get_rx_queue(channel);
1004
1005         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1006         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1007                         rx_queue->ptr_mask);
1008
1009         /* Check for partial drops and other errors */
1010         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1011             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1012                 if (rx_ev_desc_ptr != expected_ptr &&
1013                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1014                         return;
1015
1016                 /* Discard all pending fragments */
1017                 if (rx_queue->scatter_n) {
1018                         efx_rx_packet(
1019                                 rx_queue,
1020                                 rx_queue->removed_count & rx_queue->ptr_mask,
1021                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1022                         rx_queue->removed_count += rx_queue->scatter_n;
1023                         rx_queue->scatter_n = 0;
1024                 }
1025
1026                 /* Return if there is no new fragment */
1027                 if (rx_ev_desc_ptr != expected_ptr)
1028                         return;
1029
1030                 /* Discard new fragment if not SOP */
1031                 if (!rx_ev_sop) {
1032                         efx_rx_packet(
1033                                 rx_queue,
1034                                 rx_queue->removed_count & rx_queue->ptr_mask,
1035                                 1, 0, EFX_RX_PKT_DISCARD);
1036                         ++rx_queue->removed_count;
1037                         return;
1038                 }
1039         }
1040
1041         ++rx_queue->scatter_n;
1042         if (rx_ev_cont)
1043                 return;
1044
1045         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1046         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1047         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1048
1049         if (likely(rx_ev_pkt_ok)) {
1050                 /* If packet is marked as OK then we can rely on the
1051                  * hardware checksum and classification.
1052                  */
1053                 flags = 0;
1054                 switch (rx_ev_hdr_type) {
1055                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1056                         flags |= EFX_RX_PKT_TCP;
1057                         /* fall through */
1058                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1059                         flags |= EFX_RX_PKT_CSUMMED;
1060                         /* fall through */
1061                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1062                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1063                         break;
1064                 }
1065         } else {
1066                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1067         }
1068
1069         /* Detect multicast packets that didn't match the filter */
1070         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1071         if (rx_ev_mcast_pkt) {
1072                 unsigned int rx_ev_mcast_hash_match =
1073                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1074
1075                 if (unlikely(!rx_ev_mcast_hash_match)) {
1076                         ++channel->n_rx_mcast_mismatch;
1077                         flags |= EFX_RX_PKT_DISCARD;
1078                 }
1079         }
1080
1081         channel->irq_mod_score += 2;
1082
1083         /* Handle received packet */
1084         efx_rx_packet(rx_queue,
1085                       rx_queue->removed_count & rx_queue->ptr_mask,
1086                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1087         rx_queue->removed_count += rx_queue->scatter_n;
1088         rx_queue->scatter_n = 0;
1089 }
1090
1091 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1092  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1093  * of all transmit completions.
1094  */
1095 static void
1096 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1097 {
1098         struct efx_tx_queue *tx_queue;
1099         int qid;
1100
1101         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1102         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1103                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1104                                             qid % EFX_TXQ_TYPES);
1105                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1106                         efx_farch_magic_event(tx_queue->channel,
1107                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1108                 }
1109         }
1110 }
1111
1112 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1113  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1114  * the RX queue back to the mask of RX queues in need of flushing.
1115  */
1116 static void
1117 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1118 {
1119         struct efx_channel *channel;
1120         struct efx_rx_queue *rx_queue;
1121         int qid;
1122         bool failed;
1123
1124         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1125         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1126         if (qid >= efx->n_channels)
1127                 return;
1128         channel = efx_get_channel(efx, qid);
1129         if (!efx_channel_has_rx_queue(channel))
1130                 return;
1131         rx_queue = efx_channel_get_rx_queue(channel);
1132
1133         if (failed) {
1134                 netif_info(efx, hw, efx->net_dev,
1135                            "RXQ %d flush retry\n", qid);
1136                 rx_queue->flush_pending = true;
1137                 atomic_inc(&efx->rxq_flush_pending);
1138         } else {
1139                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1140                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1141         }
1142         atomic_dec(&efx->rxq_flush_outstanding);
1143         if (efx_farch_flush_wake(efx))
1144                 wake_up(&efx->flush_wq);
1145 }
1146
1147 static void
1148 efx_farch_handle_drain_event(struct efx_channel *channel)
1149 {
1150         struct efx_nic *efx = channel->efx;
1151
1152         WARN_ON(atomic_read(&efx->active_queues) == 0);
1153         atomic_dec(&efx->active_queues);
1154         if (efx_farch_flush_wake(efx))
1155                 wake_up(&efx->flush_wq);
1156 }
1157
1158 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1159                                              efx_qword_t *event)
1160 {
1161         struct efx_nic *efx = channel->efx;
1162         struct efx_rx_queue *rx_queue =
1163                 efx_channel_has_rx_queue(channel) ?
1164                 efx_channel_get_rx_queue(channel) : NULL;
1165         unsigned magic, code;
1166
1167         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1168         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1169
1170         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1171                 channel->event_test_cpu = raw_smp_processor_id();
1172         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1173                 /* The queue must be empty, so we won't receive any rx
1174                  * events, so efx_process_channel() won't refill the
1175                  * queue. Refill it here */
1176                 efx_fast_push_rx_descriptors(rx_queue, true);
1177         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1178                 efx_farch_handle_drain_event(channel);
1179         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1180                 efx_farch_handle_drain_event(channel);
1181         } else {
1182                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1183                           "generated event "EFX_QWORD_FMT"\n",
1184                           channel->channel, EFX_QWORD_VAL(*event));
1185         }
1186 }
1187
1188 static void
1189 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1190 {
1191         struct efx_nic *efx = channel->efx;
1192         unsigned int ev_sub_code;
1193         unsigned int ev_sub_data;
1194
1195         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1196         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1197
1198         switch (ev_sub_code) {
1199         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1200                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1201                            channel->channel, ev_sub_data);
1202                 efx_farch_handle_tx_flush_done(efx, event);
1203 #ifdef CONFIG_SFC_SRIOV
1204                 efx_siena_sriov_tx_flush_done(efx, event);
1205 #endif
1206                 break;
1207         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1208                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1209                            channel->channel, ev_sub_data);
1210                 efx_farch_handle_rx_flush_done(efx, event);
1211 #ifdef CONFIG_SFC_SRIOV
1212                 efx_siena_sriov_rx_flush_done(efx, event);
1213 #endif
1214                 break;
1215         case FSE_AZ_EVQ_INIT_DONE_EV:
1216                 netif_dbg(efx, hw, efx->net_dev,
1217                           "channel %d EVQ %d initialised\n",
1218                           channel->channel, ev_sub_data);
1219                 break;
1220         case FSE_AZ_SRM_UPD_DONE_EV:
1221                 netif_vdbg(efx, hw, efx->net_dev,
1222                            "channel %d SRAM update done\n", channel->channel);
1223                 break;
1224         case FSE_AZ_WAKE_UP_EV:
1225                 netif_vdbg(efx, hw, efx->net_dev,
1226                            "channel %d RXQ %d wakeup event\n",
1227                            channel->channel, ev_sub_data);
1228                 break;
1229         case FSE_AZ_TIMER_EV:
1230                 netif_vdbg(efx, hw, efx->net_dev,
1231                            "channel %d RX queue %d timer expired\n",
1232                            channel->channel, ev_sub_data);
1233                 break;
1234         case FSE_AA_RX_RECOVER_EV:
1235                 netif_err(efx, rx_err, efx->net_dev,
1236                           "channel %d seen DRIVER RX_RESET event. "
1237                         "Resetting.\n", channel->channel);
1238                 atomic_inc(&efx->rx_reset);
1239                 efx_schedule_reset(efx,
1240                                    EFX_WORKAROUND_6555(efx) ?
1241                                    RESET_TYPE_RX_RECOVERY :
1242                                    RESET_TYPE_DISABLE);
1243                 break;
1244         case FSE_BZ_RX_DSC_ERROR_EV:
1245                 if (ev_sub_data < EFX_VI_BASE) {
1246                         netif_err(efx, rx_err, efx->net_dev,
1247                                   "RX DMA Q %d reports descriptor fetch error."
1248                                   " RX Q %d is disabled.\n", ev_sub_data,
1249                                   ev_sub_data);
1250                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1251                 }
1252 #ifdef CONFIG_SFC_SRIOV
1253                 else
1254                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1255 #endif
1256                 break;
1257         case FSE_BZ_TX_DSC_ERROR_EV:
1258                 if (ev_sub_data < EFX_VI_BASE) {
1259                         netif_err(efx, tx_err, efx->net_dev,
1260                                   "TX DMA Q %d reports descriptor fetch error."
1261                                   " TX Q %d is disabled.\n", ev_sub_data,
1262                                   ev_sub_data);
1263                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1264                 }
1265 #ifdef CONFIG_SFC_SRIOV
1266                 else
1267                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1268 #endif
1269                 break;
1270         default:
1271                 netif_vdbg(efx, hw, efx->net_dev,
1272                            "channel %d unknown driver event code %d "
1273                            "data %04x\n", channel->channel, ev_sub_code,
1274                            ev_sub_data);
1275                 break;
1276         }
1277 }
1278
1279 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1280 {
1281         struct efx_nic *efx = channel->efx;
1282         unsigned int read_ptr;
1283         efx_qword_t event, *p_event;
1284         int ev_code;
1285         int tx_packets = 0;
1286         int spent = 0;
1287
1288         if (budget <= 0)
1289                 return spent;
1290
1291         read_ptr = channel->eventq_read_ptr;
1292
1293         for (;;) {
1294                 p_event = efx_event(channel, read_ptr);
1295                 event = *p_event;
1296
1297                 if (!efx_event_present(&event))
1298                         /* End of events */
1299                         break;
1300
1301                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1302                            "channel %d event is "EFX_QWORD_FMT"\n",
1303                            channel->channel, EFX_QWORD_VAL(event));
1304
1305                 /* Clear this event by marking it all ones */
1306                 EFX_SET_QWORD(*p_event);
1307
1308                 ++read_ptr;
1309
1310                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1311
1312                 switch (ev_code) {
1313                 case FSE_AZ_EV_CODE_RX_EV:
1314                         efx_farch_handle_rx_event(channel, &event);
1315                         if (++spent == budget)
1316                                 goto out;
1317                         break;
1318                 case FSE_AZ_EV_CODE_TX_EV:
1319                         tx_packets += efx_farch_handle_tx_event(channel,
1320                                                                 &event);
1321                         if (tx_packets > efx->txq_entries) {
1322                                 spent = budget;
1323                                 goto out;
1324                         }
1325                         break;
1326                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1327                         efx_farch_handle_generated_event(channel, &event);
1328                         break;
1329                 case FSE_AZ_EV_CODE_DRIVER_EV:
1330                         efx_farch_handle_driver_event(channel, &event);
1331                         break;
1332 #ifdef CONFIG_SFC_SRIOV
1333                 case FSE_CZ_EV_CODE_USER_EV:
1334                         efx_siena_sriov_event(channel, &event);
1335                         break;
1336 #endif
1337                 case FSE_CZ_EV_CODE_MCDI_EV:
1338                         efx_mcdi_process_event(channel, &event);
1339                         break;
1340                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1341                         if (efx->type->handle_global_event &&
1342                             efx->type->handle_global_event(channel, &event))
1343                                 break;
1344                         /* else fall through */
1345                 default:
1346                         netif_err(channel->efx, hw, channel->efx->net_dev,
1347                                   "channel %d unknown event type %d (data "
1348                                   EFX_QWORD_FMT ")\n", channel->channel,
1349                                   ev_code, EFX_QWORD_VAL(event));
1350                 }
1351         }
1352
1353 out:
1354         channel->eventq_read_ptr = read_ptr;
1355         return spent;
1356 }
1357
1358 /* Allocate buffer table entries for event queue */
1359 int efx_farch_ev_probe(struct efx_channel *channel)
1360 {
1361         struct efx_nic *efx = channel->efx;
1362         unsigned entries;
1363
1364         entries = channel->eventq_mask + 1;
1365         return efx_alloc_special_buffer(efx, &channel->eventq,
1366                                         entries * sizeof(efx_qword_t));
1367 }
1368
1369 int efx_farch_ev_init(struct efx_channel *channel)
1370 {
1371         efx_oword_t reg;
1372         struct efx_nic *efx = channel->efx;
1373
1374         netif_dbg(efx, hw, efx->net_dev,
1375                   "channel %d event queue in special buffers %d-%d\n",
1376                   channel->channel, channel->eventq.index,
1377                   channel->eventq.index + channel->eventq.entries - 1);
1378
1379         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1380                 EFX_POPULATE_OWORD_3(reg,
1381                                      FRF_CZ_TIMER_Q_EN, 1,
1382                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1383                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1384                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1385         }
1386
1387         /* Pin event queue buffer */
1388         efx_init_special_buffer(efx, &channel->eventq);
1389
1390         /* Fill event queue with all ones (i.e. empty events) */
1391         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1392
1393         /* Push event queue to card */
1394         EFX_POPULATE_OWORD_3(reg,
1395                              FRF_AZ_EVQ_EN, 1,
1396                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1397                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1398         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1399                          channel->channel);
1400
1401         return 0;
1402 }
1403
1404 void efx_farch_ev_fini(struct efx_channel *channel)
1405 {
1406         efx_oword_t reg;
1407         struct efx_nic *efx = channel->efx;
1408
1409         /* Remove event queue from card */
1410         EFX_ZERO_OWORD(reg);
1411         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1412                          channel->channel);
1413         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1414                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1415
1416         /* Unpin event queue */
1417         efx_fini_special_buffer(efx, &channel->eventq);
1418 }
1419
1420 /* Free buffers backing event queue */
1421 void efx_farch_ev_remove(struct efx_channel *channel)
1422 {
1423         efx_free_special_buffer(channel->efx, &channel->eventq);
1424 }
1425
1426
1427 void efx_farch_ev_test_generate(struct efx_channel *channel)
1428 {
1429         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1430 }
1431
1432 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1433 {
1434         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1435                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1436 }
1437
1438 /**************************************************************************
1439  *
1440  * Hardware interrupts
1441  * The hardware interrupt handler does very little work; all the event
1442  * queue processing is carried out by per-channel tasklets.
1443  *
1444  **************************************************************************/
1445
1446 /* Enable/disable/generate interrupts */
1447 static inline void efx_farch_interrupts(struct efx_nic *efx,
1448                                       bool enabled, bool force)
1449 {
1450         efx_oword_t int_en_reg_ker;
1451
1452         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1453                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1454                              FRF_AZ_KER_INT_KER, force,
1455                              FRF_AZ_DRV_INT_EN_KER, enabled);
1456         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1457 }
1458
1459 void efx_farch_irq_enable_master(struct efx_nic *efx)
1460 {
1461         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1462         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1463
1464         efx_farch_interrupts(efx, true, false);
1465 }
1466
1467 void efx_farch_irq_disable_master(struct efx_nic *efx)
1468 {
1469         /* Disable interrupts */
1470         efx_farch_interrupts(efx, false, false);
1471 }
1472
1473 /* Generate a test interrupt
1474  * Interrupt must already have been enabled, otherwise nasty things
1475  * may happen.
1476  */
1477 void efx_farch_irq_test_generate(struct efx_nic *efx)
1478 {
1479         efx_farch_interrupts(efx, true, true);
1480 }
1481
1482 /* Process a fatal interrupt
1483  * Disable bus mastering ASAP and schedule a reset
1484  */
1485 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1486 {
1487         struct falcon_nic_data *nic_data = efx->nic_data;
1488         efx_oword_t *int_ker = efx->irq_status.addr;
1489         efx_oword_t fatal_intr;
1490         int error, mem_perr;
1491
1492         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1493         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1494
1495         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1496                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1497                   EFX_OWORD_VAL(fatal_intr),
1498                   error ? "disabling bus mastering" : "no recognised error");
1499
1500         /* If this is a memory parity error dump which blocks are offending */
1501         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1502                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1503         if (mem_perr) {
1504                 efx_oword_t reg;
1505                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1506                 netif_err(efx, hw, efx->net_dev,
1507                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1508                           EFX_OWORD_VAL(reg));
1509         }
1510
1511         /* Disable both devices */
1512         pci_clear_master(efx->pci_dev);
1513         if (efx_nic_is_dual_func(efx))
1514                 pci_clear_master(nic_data->pci_dev2);
1515         efx_farch_irq_disable_master(efx);
1516
1517         /* Count errors and reset or disable the NIC accordingly */
1518         if (efx->int_error_count == 0 ||
1519             time_after(jiffies, efx->int_error_expire)) {
1520                 efx->int_error_count = 0;
1521                 efx->int_error_expire =
1522                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1523         }
1524         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1525                 netif_err(efx, hw, efx->net_dev,
1526                           "SYSTEM ERROR - reset scheduled\n");
1527                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1528         } else {
1529                 netif_err(efx, hw, efx->net_dev,
1530                           "SYSTEM ERROR - max number of errors seen."
1531                           "NIC will be disabled\n");
1532                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1533         }
1534
1535         return IRQ_HANDLED;
1536 }
1537
1538 /* Handle a legacy interrupt
1539  * Acknowledges the interrupt and schedule event queue processing.
1540  */
1541 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1542 {
1543         struct efx_nic *efx = dev_id;
1544         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1545         efx_oword_t *int_ker = efx->irq_status.addr;
1546         irqreturn_t result = IRQ_NONE;
1547         struct efx_channel *channel;
1548         efx_dword_t reg;
1549         u32 queues;
1550         int syserr;
1551
1552         /* Read the ISR which also ACKs the interrupts */
1553         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1554         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1555
1556         /* Legacy interrupts are disabled too late by the EEH kernel
1557          * code. Disable them earlier.
1558          * If an EEH error occurred, the read will have returned all ones.
1559          */
1560         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1561             !efx->eeh_disabled_legacy_irq) {
1562                 disable_irq_nosync(efx->legacy_irq);
1563                 efx->eeh_disabled_legacy_irq = true;
1564         }
1565
1566         /* Handle non-event-queue sources */
1567         if (queues & (1U << efx->irq_level) && soft_enabled) {
1568                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1569                 if (unlikely(syserr))
1570                         return efx_farch_fatal_interrupt(efx);
1571                 efx->last_irq_cpu = raw_smp_processor_id();
1572         }
1573
1574         if (queues != 0) {
1575                 efx->irq_zero_count = 0;
1576
1577                 /* Schedule processing of any interrupting queues */
1578                 if (likely(soft_enabled)) {
1579                         efx_for_each_channel(channel, efx) {
1580                                 if (queues & 1)
1581                                         efx_schedule_channel_irq(channel);
1582                                 queues >>= 1;
1583                         }
1584                 }
1585                 result = IRQ_HANDLED;
1586
1587         } else {
1588                 efx_qword_t *event;
1589
1590                 /* Legacy ISR read can return zero once (SF bug 15783) */
1591
1592                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1593                  * because this might be a shared interrupt. */
1594                 if (efx->irq_zero_count++ == 0)
1595                         result = IRQ_HANDLED;
1596
1597                 /* Ensure we schedule or rearm all event queues */
1598                 if (likely(soft_enabled)) {
1599                         efx_for_each_channel(channel, efx) {
1600                                 event = efx_event(channel,
1601                                                   channel->eventq_read_ptr);
1602                                 if (efx_event_present(event))
1603                                         efx_schedule_channel_irq(channel);
1604                                 else
1605                                         efx_farch_ev_read_ack(channel);
1606                         }
1607                 }
1608         }
1609
1610         if (result == IRQ_HANDLED)
1611                 netif_vdbg(efx, intr, efx->net_dev,
1612                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1613                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1614
1615         return result;
1616 }
1617
1618 /* Handle an MSI interrupt
1619  *
1620  * Handle an MSI hardware interrupt.  This routine schedules event
1621  * queue processing.  No interrupt acknowledgement cycle is necessary.
1622  * Also, we never need to check that the interrupt is for us, since
1623  * MSI interrupts cannot be shared.
1624  */
1625 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1626 {
1627         struct efx_msi_context *context = dev_id;
1628         struct efx_nic *efx = context->efx;
1629         efx_oword_t *int_ker = efx->irq_status.addr;
1630         int syserr;
1631
1632         netif_vdbg(efx, intr, efx->net_dev,
1633                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1634                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1635
1636         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1637                 return IRQ_HANDLED;
1638
1639         /* Handle non-event-queue sources */
1640         if (context->index == efx->irq_level) {
1641                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1642                 if (unlikely(syserr))
1643                         return efx_farch_fatal_interrupt(efx);
1644                 efx->last_irq_cpu = raw_smp_processor_id();
1645         }
1646
1647         /* Schedule processing of the channel */
1648         efx_schedule_channel_irq(efx->channel[context->index]);
1649
1650         return IRQ_HANDLED;
1651 }
1652
1653 /* Setup RSS indirection table.
1654  * This maps from the hash value of the packet to RXQ
1655  */
1656 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1657 {
1658         size_t i = 0;
1659         efx_dword_t dword;
1660
1661         BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1662
1663         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1664                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1665
1666         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1667                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1668                                      efx->rx_indir_table[i]);
1669                 efx_writed(efx, &dword,
1670                            FR_BZ_RX_INDIRECTION_TBL +
1671                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1672         }
1673 }
1674
1675 /* Looks at available SRAM resources and works out how many queues we
1676  * can support, and where things like descriptor caches should live.
1677  *
1678  * SRAM is split up as follows:
1679  * 0                          buftbl entries for channels
1680  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1681  * efx->rx_dc_base            RX descriptor caches
1682  * efx->tx_dc_base            TX descriptor caches
1683  */
1684 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1685 {
1686         unsigned vi_count, buftbl_min;
1687
1688 #ifdef CONFIG_SFC_SRIOV
1689         struct siena_nic_data *nic_data = efx->nic_data;
1690 #endif
1691
1692         /* Account for the buffer table entries backing the datapath channels
1693          * and the descriptor caches for those channels.
1694          */
1695         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1696                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1697                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1698                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1699         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1700
1701 #ifdef CONFIG_SFC_SRIOV
1702         if (efx->type->sriov_wanted) {
1703                 if (efx->type->sriov_wanted(efx)) {
1704                         unsigned vi_dc_entries, buftbl_free;
1705                         unsigned entries_per_vf, vf_limit;
1706
1707                         nic_data->vf_buftbl_base = buftbl_min;
1708
1709                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1710                         vi_count = max(vi_count, EFX_VI_BASE);
1711                         buftbl_free = (sram_lim_qw - buftbl_min -
1712                                        vi_count * vi_dc_entries);
1713
1714                         entries_per_vf = ((vi_dc_entries +
1715                                            EFX_VF_BUFTBL_PER_VI) *
1716                                           efx_vf_size(efx));
1717                         vf_limit = min(buftbl_free / entries_per_vf,
1718                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1719
1720                         if (efx->vf_count > vf_limit) {
1721                                 netif_err(efx, probe, efx->net_dev,
1722                                           "Reducing VF count from from %d to %d\n",
1723                                           efx->vf_count, vf_limit);
1724                                 efx->vf_count = vf_limit;
1725                         }
1726                         vi_count += efx->vf_count * efx_vf_size(efx);
1727                 }
1728         }
1729 #endif
1730
1731         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1732         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1733 }
1734
1735 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1736 {
1737         efx_oword_t altera_build;
1738         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1739         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1740 }
1741
1742 void efx_farch_init_common(struct efx_nic *efx)
1743 {
1744         efx_oword_t temp;
1745
1746         /* Set positions of descriptor caches in SRAM. */
1747         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1748         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1749         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1750         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1751
1752         /* Set TX descriptor cache size. */
1753         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1754         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1755         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1756
1757         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1758          * this allows most efficient prefetching.
1759          */
1760         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1761         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1762         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1763         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1764         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1765
1766         /* Program INT_KER address */
1767         EFX_POPULATE_OWORD_2(temp,
1768                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1769                              EFX_INT_MODE_USE_MSI(efx),
1770                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1771         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1772
1773         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1774                 /* Use an interrupt level unused by event queues */
1775                 efx->irq_level = 0x1f;
1776         else
1777                 /* Use a valid MSI-X vector */
1778                 efx->irq_level = 0;
1779
1780         /* Enable all the genuinely fatal interrupts.  (They are still
1781          * masked by the overall interrupt mask, controlled by
1782          * falcon_interrupts()).
1783          *
1784          * Note: All other fatal interrupts are enabled
1785          */
1786         EFX_POPULATE_OWORD_3(temp,
1787                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1788                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1789                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1790         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1791                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1792         EFX_INVERT_OWORD(temp);
1793         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1794
1795         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1796          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1797          */
1798         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1799         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1800         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1801         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1802         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1803         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1804         /* Enable SW_EV to inherit in char driver - assume harmless here */
1805         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1806         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1807         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1808         /* Disable hardware watchdog which can misfire */
1809         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1810         /* Squash TX of packets of 16 bytes or less */
1811         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1812                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1813         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1814
1815         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1816                 EFX_POPULATE_OWORD_4(temp,
1817                                      /* Default values */
1818                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1819                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1820                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1821                                      /* Allow large pace values in the
1822                                       * fast bin. */
1823                                      FRF_BZ_TX_PACE_BIN_TH,
1824                                      FFE_BZ_TX_PACE_RESERVED);
1825                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1826         }
1827 }
1828
1829 /**************************************************************************
1830  *
1831  * Filter tables
1832  *
1833  **************************************************************************
1834  */
1835
1836 /* "Fudge factors" - difference between programmed value and actual depth.
1837  * Due to pipelined implementation we need to program H/W with a value that
1838  * is larger than the hop limit we want.
1839  */
1840 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1841 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1842
1843 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1844  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1845  * table is full.
1846  */
1847 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1848
1849 /* Don't try very hard to find space for performance hints, as this is
1850  * counter-productive. */
1851 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1852
1853 enum efx_farch_filter_type {
1854         EFX_FARCH_FILTER_TCP_FULL = 0,
1855         EFX_FARCH_FILTER_TCP_WILD,
1856         EFX_FARCH_FILTER_UDP_FULL,
1857         EFX_FARCH_FILTER_UDP_WILD,
1858         EFX_FARCH_FILTER_MAC_FULL = 4,
1859         EFX_FARCH_FILTER_MAC_WILD,
1860         EFX_FARCH_FILTER_UC_DEF = 8,
1861         EFX_FARCH_FILTER_MC_DEF,
1862         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1863 };
1864
1865 enum efx_farch_filter_table_id {
1866         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1867         EFX_FARCH_FILTER_TABLE_RX_MAC,
1868         EFX_FARCH_FILTER_TABLE_RX_DEF,
1869         EFX_FARCH_FILTER_TABLE_TX_MAC,
1870         EFX_FARCH_FILTER_TABLE_COUNT,
1871 };
1872
1873 enum efx_farch_filter_index {
1874         EFX_FARCH_FILTER_INDEX_UC_DEF,
1875         EFX_FARCH_FILTER_INDEX_MC_DEF,
1876         EFX_FARCH_FILTER_SIZE_RX_DEF,
1877 };
1878
1879 struct efx_farch_filter_spec {
1880         u8      type:4;
1881         u8      priority:4;
1882         u8      flags;
1883         u16     dmaq_id;
1884         u32     data[3];
1885 };
1886
1887 struct efx_farch_filter_table {
1888         enum efx_farch_filter_table_id id;
1889         u32             offset;         /* address of table relative to BAR */
1890         unsigned        size;           /* number of entries */
1891         unsigned        step;           /* step between entries */
1892         unsigned        used;           /* number currently used */
1893         unsigned long   *used_bitmap;
1894         struct efx_farch_filter_spec *spec;
1895         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1896 };
1897
1898 struct efx_farch_filter_state {
1899         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1900 };
1901
1902 static void
1903 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1904                                    struct efx_farch_filter_table *table,
1905                                    unsigned int filter_idx);
1906
1907 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1908  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1909 static u16 efx_farch_filter_hash(u32 key)
1910 {
1911         u16 tmp;
1912
1913         /* First 16 rounds */
1914         tmp = 0x1fff ^ key >> 16;
1915         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1916         tmp = tmp ^ tmp >> 9;
1917         /* Last 16 rounds */
1918         tmp = tmp ^ tmp << 13 ^ key;
1919         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1920         return tmp ^ tmp >> 9;
1921 }
1922
1923 /* To allow for hash collisions, filter search continues at these
1924  * increments from the first possible entry selected by the hash. */
1925 static u16 efx_farch_filter_increment(u32 key)
1926 {
1927         return key * 2 - 1;
1928 }
1929
1930 static enum efx_farch_filter_table_id
1931 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1932 {
1933         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1934                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1935         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1937         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1939         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1941         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1942                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1943         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1945         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1946                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1947         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1948 }
1949
1950 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1951 {
1952         struct efx_farch_filter_state *state = efx->filter_state;
1953         struct efx_farch_filter_table *table;
1954         efx_oword_t filter_ctl;
1955
1956         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1957
1958         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1959         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1960                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1961                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1962         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1963                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1964                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1966                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1967                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1968         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1969                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1970                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1971
1972         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1973         if (table->size) {
1974                 EFX_SET_OWORD_FIELD(
1975                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1976                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1977                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1978                 EFX_SET_OWORD_FIELD(
1979                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1980                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1981                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1982         }
1983
1984         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1985         if (table->size) {
1986                 EFX_SET_OWORD_FIELD(
1987                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1988                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1989                 EFX_SET_OWORD_FIELD(
1990                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1991                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1992                            EFX_FILTER_FLAG_RX_RSS));
1993                 EFX_SET_OWORD_FIELD(
1994                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1995                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1996                 EFX_SET_OWORD_FIELD(
1997                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1998                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1999                            EFX_FILTER_FLAG_RX_RSS));
2000
2001                 /* There is a single bit to enable RX scatter for all
2002                  * unmatched packets.  Only set it if scatter is
2003                  * enabled in both filter specs.
2004                  */
2005                 EFX_SET_OWORD_FIELD(
2006                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2007                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2008                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2009                            EFX_FILTER_FLAG_RX_SCATTER));
2010         } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2011                 /* We don't expose 'default' filters because unmatched
2012                  * packets always go to the queue number found in the
2013                  * RSS table.  But we still need to set the RX scatter
2014                  * bit here.
2015                  */
2016                 EFX_SET_OWORD_FIELD(
2017                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2018                         efx->rx_scatter);
2019         }
2020
2021         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2022 }
2023
2024 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2025 {
2026         struct efx_farch_filter_state *state = efx->filter_state;
2027         struct efx_farch_filter_table *table;
2028         efx_oword_t tx_cfg;
2029
2030         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2031
2032         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2033         if (table->size) {
2034                 EFX_SET_OWORD_FIELD(
2035                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2036                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2037                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2038                 EFX_SET_OWORD_FIELD(
2039                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2040                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2041                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2042         }
2043
2044         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2045 }
2046
2047 static int
2048 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2049                                const struct efx_filter_spec *gen_spec)
2050 {
2051         bool is_full = false;
2052
2053         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2054             gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2055                 return -EINVAL;
2056
2057         spec->priority = gen_spec->priority;
2058         spec->flags = gen_spec->flags;
2059         spec->dmaq_id = gen_spec->dmaq_id;
2060
2061         switch (gen_spec->match_flags) {
2062         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2063               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2064               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2065                 is_full = true;
2066                 /* fall through */
2067         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2068               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2069                 __be32 rhost, host1, host2;
2070                 __be16 rport, port1, port2;
2071
2072                 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2073
2074                 if (gen_spec->ether_type != htons(ETH_P_IP))
2075                         return -EPROTONOSUPPORT;
2076                 if (gen_spec->loc_port == 0 ||
2077                     (is_full && gen_spec->rem_port == 0))
2078                         return -EADDRNOTAVAIL;
2079                 switch (gen_spec->ip_proto) {
2080                 case IPPROTO_TCP:
2081                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2082                                       EFX_FARCH_FILTER_TCP_WILD);
2083                         break;
2084                 case IPPROTO_UDP:
2085                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2086                                       EFX_FARCH_FILTER_UDP_WILD);
2087                         break;
2088                 default:
2089                         return -EPROTONOSUPPORT;
2090                 }
2091
2092                 /* Filter is constructed in terms of source and destination,
2093                  * with the odd wrinkle that the ports are swapped in a UDP
2094                  * wildcard filter.  We need to convert from local and remote
2095                  * (= zero for wildcard) addresses.
2096                  */
2097                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2098                 rport = is_full ? gen_spec->rem_port : 0;
2099                 host1 = rhost;
2100                 host2 = gen_spec->loc_host[0];
2101                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2102                         port1 = gen_spec->loc_port;
2103                         port2 = rport;
2104                 } else {
2105                         port1 = rport;
2106                         port2 = gen_spec->loc_port;
2107                 }
2108                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2109                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2110                 spec->data[2] = ntohl(host2);
2111
2112                 break;
2113         }
2114
2115         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2116                 is_full = true;
2117                 /* fall through */
2118         case EFX_FILTER_MATCH_LOC_MAC:
2119                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2120                               EFX_FARCH_FILTER_MAC_WILD);
2121                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2122                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2123                                  gen_spec->loc_mac[3] << 16 |
2124                                  gen_spec->loc_mac[4] << 8 |
2125                                  gen_spec->loc_mac[5]);
2126                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2127                                  gen_spec->loc_mac[1]);
2128                 break;
2129
2130         case EFX_FILTER_MATCH_LOC_MAC_IG:
2131                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2132                               EFX_FARCH_FILTER_MC_DEF :
2133                               EFX_FARCH_FILTER_UC_DEF);
2134                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2135                 break;
2136
2137         default:
2138                 return -EPROTONOSUPPORT;
2139         }
2140
2141         return 0;
2142 }
2143
2144 static void
2145 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2146                              const struct efx_farch_filter_spec *spec)
2147 {
2148         bool is_full = false;
2149
2150         /* *gen_spec should be completely initialised, to be consistent
2151          * with efx_filter_init_{rx,tx}() and in case we want to copy
2152          * it back to userland.
2153          */
2154         memset(gen_spec, 0, sizeof(*gen_spec));
2155
2156         gen_spec->priority = spec->priority;
2157         gen_spec->flags = spec->flags;
2158         gen_spec->dmaq_id = spec->dmaq_id;
2159
2160         switch (spec->type) {
2161         case EFX_FARCH_FILTER_TCP_FULL:
2162         case EFX_FARCH_FILTER_UDP_FULL:
2163                 is_full = true;
2164                 /* fall through */
2165         case EFX_FARCH_FILTER_TCP_WILD:
2166         case EFX_FARCH_FILTER_UDP_WILD: {
2167                 __be32 host1, host2;
2168                 __be16 port1, port2;
2169
2170                 gen_spec->match_flags =
2171                         EFX_FILTER_MATCH_ETHER_TYPE |
2172                         EFX_FILTER_MATCH_IP_PROTO |
2173                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2174                 if (is_full)
2175                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2176                                                   EFX_FILTER_MATCH_REM_PORT);
2177                 gen_spec->ether_type = htons(ETH_P_IP);
2178                 gen_spec->ip_proto =
2179                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2180                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2181                         IPPROTO_TCP : IPPROTO_UDP;
2182
2183                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2184                 port1 = htons(spec->data[0]);
2185                 host2 = htonl(spec->data[2]);
2186                 port2 = htons(spec->data[1] >> 16);
2187                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2188                         gen_spec->loc_host[0] = host1;
2189                         gen_spec->rem_host[0] = host2;
2190                 } else {
2191                         gen_spec->loc_host[0] = host2;
2192                         gen_spec->rem_host[0] = host1;
2193                 }
2194                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2195                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2196                         gen_spec->loc_port = port1;
2197                         gen_spec->rem_port = port2;
2198                 } else {
2199                         gen_spec->loc_port = port2;
2200                         gen_spec->rem_port = port1;
2201                 }
2202
2203                 break;
2204         }
2205
2206         case EFX_FARCH_FILTER_MAC_FULL:
2207                 is_full = true;
2208                 /* fall through */
2209         case EFX_FARCH_FILTER_MAC_WILD:
2210                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2211                 if (is_full)
2212                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2213                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2214                 gen_spec->loc_mac[1] = spec->data[2];
2215                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2216                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2217                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2218                 gen_spec->loc_mac[5] = spec->data[1];
2219                 gen_spec->outer_vid = htons(spec->data[0]);
2220                 break;
2221
2222         case EFX_FARCH_FILTER_UC_DEF:
2223         case EFX_FARCH_FILTER_MC_DEF:
2224                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2225                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2226                 break;
2227
2228         default:
2229                 WARN_ON(1);
2230                 break;
2231         }
2232 }
2233
2234 static void
2235 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2236                               struct efx_farch_filter_spec *spec)
2237 {
2238         /* If there's only one channel then disable RSS for non VF
2239          * traffic, thereby allowing VFs to use RSS when the PF can't.
2240          */
2241         spec->priority = EFX_FILTER_PRI_AUTO;
2242         spec->flags = (EFX_FILTER_FLAG_RX |
2243                        (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2244                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2245         spec->dmaq_id = 0;
2246 }
2247
2248 /* Build a filter entry and return its n-tuple key. */
2249 static u32 efx_farch_filter_build(efx_oword_t *filter,
2250                                   struct efx_farch_filter_spec *spec)
2251 {
2252         u32 data3;
2253
2254         switch (efx_farch_filter_spec_table_id(spec)) {
2255         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2256                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2257                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2258                 EFX_POPULATE_OWORD_7(
2259                         *filter,
2260                         FRF_BZ_RSS_EN,
2261                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2262                         FRF_BZ_SCATTER_EN,
2263                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2264                         FRF_BZ_TCP_UDP, is_udp,
2265                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2266                         EFX_DWORD_2, spec->data[2],
2267                         EFX_DWORD_1, spec->data[1],
2268                         EFX_DWORD_0, spec->data[0]);
2269                 data3 = is_udp;
2270                 break;
2271         }
2272
2273         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2274                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2275                 EFX_POPULATE_OWORD_7(
2276                         *filter,
2277                         FRF_CZ_RMFT_RSS_EN,
2278                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2279                         FRF_CZ_RMFT_SCATTER_EN,
2280                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2281                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2282                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2283                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2284                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2285                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2286                 data3 = is_wild;
2287                 break;
2288         }
2289
2290         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2291                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2292                 EFX_POPULATE_OWORD_5(*filter,
2293                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2294                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2295                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2296                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2297                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2298                 data3 = is_wild | spec->dmaq_id << 1;
2299                 break;
2300         }
2301
2302         default:
2303                 BUG();
2304         }
2305
2306         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2307 }
2308
2309 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2310                                    const struct efx_farch_filter_spec *right)
2311 {
2312         if (left->type != right->type ||
2313             memcmp(left->data, right->data, sizeof(left->data)))
2314                 return false;
2315
2316         if (left->flags & EFX_FILTER_FLAG_TX &&
2317             left->dmaq_id != right->dmaq_id)
2318                 return false;
2319
2320         return true;
2321 }
2322
2323 /*
2324  * Construct/deconstruct external filter IDs.  At least the RX filter
2325  * IDs must be ordered by matching priority, for RX NFC semantics.
2326  *
2327  * Deconstruction needs to be robust against invalid IDs so that
2328  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2329  * accept user-provided IDs.
2330  */
2331
2332 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2333
2334 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2335         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2336         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2337         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2338         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2339         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2340         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2341         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2342         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2343 };
2344
2345 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2346         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2347         EFX_FARCH_FILTER_TABLE_RX_IP,
2348         EFX_FARCH_FILTER_TABLE_RX_MAC,
2349         EFX_FARCH_FILTER_TABLE_RX_MAC,
2350         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2351         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2352         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2353 };
2354
2355 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2356 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2357
2358 static inline u32
2359 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2360                          unsigned int index)
2361 {
2362         unsigned int range;
2363
2364         range = efx_farch_filter_type_match_pri[spec->type];
2365         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2366                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2367
2368         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2369 }
2370
2371 static inline enum efx_farch_filter_table_id
2372 efx_farch_filter_id_table_id(u32 id)
2373 {
2374         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2375
2376         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2377                 return efx_farch_filter_range_table[range];
2378         else
2379                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2380 }
2381
2382 static inline unsigned int efx_farch_filter_id_index(u32 id)
2383 {
2384         return id & EFX_FARCH_FILTER_INDEX_MASK;
2385 }
2386
2387 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2388 {
2389         struct efx_farch_filter_state *state = efx->filter_state;
2390         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2391         enum efx_farch_filter_table_id table_id;
2392
2393         do {
2394                 table_id = efx_farch_filter_range_table[range];
2395                 if (state->table[table_id].size != 0)
2396                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2397                                 state->table[table_id].size;
2398         } while (range--);
2399
2400         return 0;
2401 }
2402
2403 s32 efx_farch_filter_insert(struct efx_nic *efx,
2404                             struct efx_filter_spec *gen_spec,
2405                             bool replace_equal)
2406 {
2407         struct efx_farch_filter_state *state = efx->filter_state;
2408         struct efx_farch_filter_table *table;
2409         struct efx_farch_filter_spec spec;
2410         efx_oword_t filter;
2411         int rep_index, ins_index;
2412         unsigned int depth = 0;
2413         int rc;
2414
2415         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2416         if (rc)
2417                 return rc;
2418
2419         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2420         if (table->size == 0)
2421                 return -EINVAL;
2422
2423         netif_vdbg(efx, hw, efx->net_dev,
2424                    "%s: type %d search_limit=%d", __func__, spec.type,
2425                    table->search_limit[spec.type]);
2426
2427         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2428                 /* One filter spec per type */
2429                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2430                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2431                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2432                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2433                 ins_index = rep_index;
2434
2435                 spin_lock_bh(&efx->filter_lock);
2436         } else {
2437                 /* Search concurrently for
2438                  * (1) a filter to be replaced (rep_index): any filter
2439                  *     with the same match values, up to the current
2440                  *     search depth for this type, and
2441                  * (2) the insertion point (ins_index): (1) or any
2442                  *     free slot before it or up to the maximum search
2443                  *     depth for this priority
2444                  * We fail if we cannot find (2).
2445                  *
2446                  * We can stop once either
2447                  * (a) we find (1), in which case we have definitely
2448                  *     found (2) as well; or
2449                  * (b) we have searched exhaustively for (1), and have
2450                  *     either found (2) or searched exhaustively for it
2451                  */
2452                 u32 key = efx_farch_filter_build(&filter, &spec);
2453                 unsigned int hash = efx_farch_filter_hash(key);
2454                 unsigned int incr = efx_farch_filter_increment(key);
2455                 unsigned int max_rep_depth = table->search_limit[spec.type];
2456                 unsigned int max_ins_depth =
2457                         spec.priority <= EFX_FILTER_PRI_HINT ?
2458                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2459                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2460                 unsigned int i = hash & (table->size - 1);
2461
2462                 ins_index = -1;
2463                 depth = 1;
2464
2465                 spin_lock_bh(&efx->filter_lock);
2466
2467                 for (;;) {
2468                         if (!test_bit(i, table->used_bitmap)) {
2469                                 if (ins_index < 0)
2470                                         ins_index = i;
2471                         } else if (efx_farch_filter_equal(&spec,
2472                                                           &table->spec[i])) {
2473                                 /* Case (a) */
2474                                 if (ins_index < 0)
2475                                         ins_index = i;
2476                                 rep_index = i;
2477                                 break;
2478                         }
2479
2480                         if (depth >= max_rep_depth &&
2481                             (ins_index >= 0 || depth >= max_ins_depth)) {
2482                                 /* Case (b) */
2483                                 if (ins_index < 0) {
2484                                         rc = -EBUSY;
2485                                         goto out;
2486                                 }
2487                                 rep_index = -1;
2488                                 break;
2489                         }
2490
2491                         i = (i + incr) & (table->size - 1);
2492                         ++depth;
2493                 }
2494         }
2495
2496         /* If we found a filter to be replaced, check whether we
2497          * should do so
2498          */
2499         if (rep_index >= 0) {
2500                 struct efx_farch_filter_spec *saved_spec =
2501                         &table->spec[rep_index];
2502
2503                 if (spec.priority == saved_spec->priority && !replace_equal) {
2504                         rc = -EEXIST;
2505                         goto out;
2506                 }
2507                 if (spec.priority < saved_spec->priority) {
2508                         rc = -EPERM;
2509                         goto out;
2510                 }
2511                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2512                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2513                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2514         }
2515
2516         /* Insert the filter */
2517         if (ins_index != rep_index) {
2518                 __set_bit(ins_index, table->used_bitmap);
2519                 ++table->used;
2520         }
2521         table->spec[ins_index] = spec;
2522
2523         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2524                 efx_farch_filter_push_rx_config(efx);
2525         } else {
2526                 if (table->search_limit[spec.type] < depth) {
2527                         table->search_limit[spec.type] = depth;
2528                         if (spec.flags & EFX_FILTER_FLAG_TX)
2529                                 efx_farch_filter_push_tx_limits(efx);
2530                         else
2531                                 efx_farch_filter_push_rx_config(efx);
2532                 }
2533
2534                 efx_writeo(efx, &filter,
2535                            table->offset + table->step * ins_index);
2536
2537                 /* If we were able to replace a filter by inserting
2538                  * at a lower depth, clear the replaced filter
2539                  */
2540                 if (ins_index != rep_index && rep_index >= 0)
2541                         efx_farch_filter_table_clear_entry(efx, table,
2542                                                            rep_index);
2543         }
2544
2545         netif_vdbg(efx, hw, efx->net_dev,
2546                    "%s: filter type %d index %d rxq %u set",
2547                    __func__, spec.type, ins_index, spec.dmaq_id);
2548         rc = efx_farch_filter_make_id(&spec, ins_index);
2549
2550 out:
2551         spin_unlock_bh(&efx->filter_lock);
2552         return rc;
2553 }
2554
2555 static void
2556 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2557                                    struct efx_farch_filter_table *table,
2558                                    unsigned int filter_idx)
2559 {
2560         static efx_oword_t filter;
2561
2562         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2563         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2564
2565         __clear_bit(filter_idx, table->used_bitmap);
2566         --table->used;
2567         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2568
2569         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2570
2571         /* If this filter required a greater search depth than
2572          * any other, the search limit for its type can now be
2573          * decreased.  However, it is hard to determine that
2574          * unless the table has become completely empty - in
2575          * which case, all its search limits can be set to 0.
2576          */
2577         if (unlikely(table->used == 0)) {
2578                 memset(table->search_limit, 0, sizeof(table->search_limit));
2579                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2580                         efx_farch_filter_push_tx_limits(efx);
2581                 else
2582                         efx_farch_filter_push_rx_config(efx);
2583         }
2584 }
2585
2586 static int efx_farch_filter_remove(struct efx_nic *efx,
2587                                    struct efx_farch_filter_table *table,
2588                                    unsigned int filter_idx,
2589                                    enum efx_filter_priority priority)
2590 {
2591         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2592
2593         if (!test_bit(filter_idx, table->used_bitmap) ||
2594             spec->priority != priority)
2595                 return -ENOENT;
2596
2597         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2598                 efx_farch_filter_init_rx_auto(efx, spec);
2599                 efx_farch_filter_push_rx_config(efx);
2600         } else {
2601                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2602         }
2603
2604         return 0;
2605 }
2606
2607 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2608                                  enum efx_filter_priority priority,
2609                                  u32 filter_id)
2610 {
2611         struct efx_farch_filter_state *state = efx->filter_state;
2612         enum efx_farch_filter_table_id table_id;
2613         struct efx_farch_filter_table *table;
2614         unsigned int filter_idx;
2615         struct efx_farch_filter_spec *spec;
2616         int rc;
2617
2618         table_id = efx_farch_filter_id_table_id(filter_id);
2619         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2620                 return -ENOENT;
2621         table = &state->table[table_id];
2622
2623         filter_idx = efx_farch_filter_id_index(filter_id);
2624         if (filter_idx >= table->size)
2625                 return -ENOENT;
2626         spec = &table->spec[filter_idx];
2627
2628         spin_lock_bh(&efx->filter_lock);
2629         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2630         spin_unlock_bh(&efx->filter_lock);
2631
2632         return rc;
2633 }
2634
2635 int efx_farch_filter_get_safe(struct efx_nic *efx,
2636                               enum efx_filter_priority priority,
2637                               u32 filter_id, struct efx_filter_spec *spec_buf)
2638 {
2639         struct efx_farch_filter_state *state = efx->filter_state;
2640         enum efx_farch_filter_table_id table_id;
2641         struct efx_farch_filter_table *table;
2642         struct efx_farch_filter_spec *spec;
2643         unsigned int filter_idx;
2644         int rc;
2645
2646         table_id = efx_farch_filter_id_table_id(filter_id);
2647         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2648                 return -ENOENT;
2649         table = &state->table[table_id];
2650
2651         filter_idx = efx_farch_filter_id_index(filter_id);
2652         if (filter_idx >= table->size)
2653                 return -ENOENT;
2654         spec = &table->spec[filter_idx];
2655
2656         spin_lock_bh(&efx->filter_lock);
2657
2658         if (test_bit(filter_idx, table->used_bitmap) &&
2659             spec->priority == priority) {
2660                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2661                 rc = 0;
2662         } else {
2663                 rc = -ENOENT;
2664         }
2665
2666         spin_unlock_bh(&efx->filter_lock);
2667
2668         return rc;
2669 }
2670
2671 static void
2672 efx_farch_filter_table_clear(struct efx_nic *efx,
2673                              enum efx_farch_filter_table_id table_id,
2674                              enum efx_filter_priority priority)
2675 {
2676         struct efx_farch_filter_state *state = efx->filter_state;
2677         struct efx_farch_filter_table *table = &state->table[table_id];
2678         unsigned int filter_idx;
2679
2680         spin_lock_bh(&efx->filter_lock);
2681         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2682                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2683                         efx_farch_filter_remove(efx, table,
2684                                                 filter_idx, priority);
2685         }
2686         spin_unlock_bh(&efx->filter_lock);
2687 }
2688
2689 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2690                                enum efx_filter_priority priority)
2691 {
2692         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2693                                      priority);
2694         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2695                                      priority);
2696         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2697                                      priority);
2698         return 0;
2699 }
2700
2701 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2702                                    enum efx_filter_priority priority)
2703 {
2704         struct efx_farch_filter_state *state = efx->filter_state;
2705         enum efx_farch_filter_table_id table_id;
2706         struct efx_farch_filter_table *table;
2707         unsigned int filter_idx;
2708         u32 count = 0;
2709
2710         spin_lock_bh(&efx->filter_lock);
2711
2712         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2713              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2714              table_id++) {
2715                 table = &state->table[table_id];
2716                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2717                         if (test_bit(filter_idx, table->used_bitmap) &&
2718                             table->spec[filter_idx].priority == priority)
2719                                 ++count;
2720                 }
2721         }
2722
2723         spin_unlock_bh(&efx->filter_lock);
2724
2725         return count;
2726 }
2727
2728 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2729                                 enum efx_filter_priority priority,
2730                                 u32 *buf, u32 size)
2731 {
2732         struct efx_farch_filter_state *state = efx->filter_state;
2733         enum efx_farch_filter_table_id table_id;
2734         struct efx_farch_filter_table *table;
2735         unsigned int filter_idx;
2736         s32 count = 0;
2737
2738         spin_lock_bh(&efx->filter_lock);
2739
2740         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2741              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2742              table_id++) {
2743                 table = &state->table[table_id];
2744                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2745                         if (test_bit(filter_idx, table->used_bitmap) &&
2746                             table->spec[filter_idx].priority == priority) {
2747                                 if (count == size) {
2748                                         count = -EMSGSIZE;
2749                                         goto out;
2750                                 }
2751                                 buf[count++] = efx_farch_filter_make_id(
2752                                         &table->spec[filter_idx], filter_idx);
2753                         }
2754                 }
2755         }
2756 out:
2757         spin_unlock_bh(&efx->filter_lock);
2758
2759         return count;
2760 }
2761
2762 /* Restore filter stater after reset */
2763 void efx_farch_filter_table_restore(struct efx_nic *efx)
2764 {
2765         struct efx_farch_filter_state *state = efx->filter_state;
2766         enum efx_farch_filter_table_id table_id;
2767         struct efx_farch_filter_table *table;
2768         efx_oword_t filter;
2769         unsigned int filter_idx;
2770
2771         spin_lock_bh(&efx->filter_lock);
2772
2773         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2774                 table = &state->table[table_id];
2775
2776                 /* Check whether this is a regular register table */
2777                 if (table->step == 0)
2778                         continue;
2779
2780                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2781                         if (!test_bit(filter_idx, table->used_bitmap))
2782                                 continue;
2783                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2784                         efx_writeo(efx, &filter,
2785                                    table->offset + table->step * filter_idx);
2786                 }
2787         }
2788
2789         efx_farch_filter_push_rx_config(efx);
2790         efx_farch_filter_push_tx_limits(efx);
2791
2792         spin_unlock_bh(&efx->filter_lock);
2793 }
2794
2795 void efx_farch_filter_table_remove(struct efx_nic *efx)
2796 {
2797         struct efx_farch_filter_state *state = efx->filter_state;
2798         enum efx_farch_filter_table_id table_id;
2799
2800         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2801                 kfree(state->table[table_id].used_bitmap);
2802                 vfree(state->table[table_id].spec);
2803         }
2804         kfree(state);
2805 }
2806
2807 int efx_farch_filter_table_probe(struct efx_nic *efx)
2808 {
2809         struct efx_farch_filter_state *state;
2810         struct efx_farch_filter_table *table;
2811         unsigned table_id;
2812
2813         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2814         if (!state)
2815                 return -ENOMEM;
2816         efx->filter_state = state;
2817
2818         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2819                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2820                 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2821                 table->offset = FR_BZ_RX_FILTER_TBL0;
2822                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2823                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2824         }
2825
2826         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2827                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2828                 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2829                 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2830                 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2831                 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2832
2833                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834                 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2835                 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2836
2837                 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2838                 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2839                 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2840                 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2841                 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2842         }
2843
2844         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2845                 table = &state->table[table_id];
2846                 if (table->size == 0)
2847                         continue;
2848                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2849                                              sizeof(unsigned long),
2850                                              GFP_KERNEL);
2851                 if (!table->used_bitmap)
2852                         goto fail;
2853                 table->spec = vzalloc(table->size * sizeof(*table->spec));
2854                 if (!table->spec)
2855                         goto fail;
2856         }
2857
2858         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2859         if (table->size) {
2860                 /* RX default filters must always exist */
2861                 struct efx_farch_filter_spec *spec;
2862                 unsigned i;
2863
2864                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2865                         spec = &table->spec[i];
2866                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2867                         efx_farch_filter_init_rx_auto(efx, spec);
2868                         __set_bit(i, table->used_bitmap);
2869                 }
2870         }
2871
2872         efx_farch_filter_push_rx_config(efx);
2873
2874         return 0;
2875
2876 fail:
2877         efx_farch_filter_table_remove(efx);
2878         return -ENOMEM;
2879 }
2880
2881 /* Update scatter enable flags for filters pointing to our own RX queues */
2882 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2883 {
2884         struct efx_farch_filter_state *state = efx->filter_state;
2885         enum efx_farch_filter_table_id table_id;
2886         struct efx_farch_filter_table *table;
2887         efx_oword_t filter;
2888         unsigned int filter_idx;
2889
2890         spin_lock_bh(&efx->filter_lock);
2891
2892         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2893              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2894              table_id++) {
2895                 table = &state->table[table_id];
2896
2897                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2898                         if (!test_bit(filter_idx, table->used_bitmap) ||
2899                             table->spec[filter_idx].dmaq_id >=
2900                             efx->n_rx_channels)
2901                                 continue;
2902
2903                         if (efx->rx_scatter)
2904                                 table->spec[filter_idx].flags |=
2905                                         EFX_FILTER_FLAG_RX_SCATTER;
2906                         else
2907                                 table->spec[filter_idx].flags &=
2908                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2909
2910                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2911                                 /* Pushed by efx_farch_filter_push_rx_config() */
2912                                 continue;
2913
2914                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2915                         efx_writeo(efx, &filter,
2916                                    table->offset + table->step * filter_idx);
2917                 }
2918         }
2919
2920         efx_farch_filter_push_rx_config(efx);
2921
2922         spin_unlock_bh(&efx->filter_lock);
2923 }
2924
2925 #ifdef CONFIG_RFS_ACCEL
2926
2927 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2928                                 struct efx_filter_spec *gen_spec)
2929 {
2930         return efx_farch_filter_insert(efx, gen_spec, true);
2931 }
2932
2933 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2934                                      unsigned int index)
2935 {
2936         struct efx_farch_filter_state *state = efx->filter_state;
2937         struct efx_farch_filter_table *table =
2938                 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2939
2940         if (test_bit(index, table->used_bitmap) &&
2941             table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2942             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2943                                 flow_id, index)) {
2944                 efx_farch_filter_table_clear_entry(efx, table, index);
2945                 return true;
2946         }
2947
2948         return false;
2949 }
2950
2951 #endif /* CONFIG_RFS_ACCEL */
2952
2953 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954 {
2955         struct net_device *net_dev = efx->net_dev;
2956         struct netdev_hw_addr *ha;
2957         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958         u32 crc;
2959         int bit;
2960
2961         if (!efx_dev_registered(efx))
2962                 return;
2963
2964         netif_addr_lock_bh(net_dev);
2965
2966         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968         /* Build multicast hash table */
2969         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2971         } else {
2972                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2973                 netdev_for_each_mc_addr(ha, net_dev) {
2974                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2975                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976                         __set_bit_le(bit, mc_hash);
2977                 }
2978
2979                 /* Broadcast packets go through the multicast hash filter.
2980                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2981                  * so we always add bit 0xff to the mask.
2982                  */
2983                 __set_bit_le(0xff, mc_hash);
2984         }
2985
2986         netif_addr_unlock_bh(net_dev);
2987 }