Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
68                            efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85                                      unsigned int index)
86 {
87         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88                         value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93                                      unsigned int index)
94 {
95         return ((efx_qword_t *) (channel->eventq.addr)) +
96                 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116                                      const efx_oword_t *mask)
117 {
118         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123                            const struct efx_nic_register_test *regs,
124                            size_t n_regs)
125 {
126         unsigned address = 0, i, j;
127         efx_oword_t mask, imask, original, reg, buf;
128
129         for (i = 0; i < n_regs; ++i) {
130                 address = regs[i].address;
131                 mask = imask = regs[i].mask;
132                 EFX_INVERT_OWORD(imask);
133
134                 efx_reado(efx, &original, address);
135
136                 /* bit sweep on and off */
137                 for (j = 0; j < 128; j++) {
138                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
139                                 continue;
140
141                         /* Test this testable bit can be set in isolation */
142                         EFX_AND_OWORD(reg, original, mask);
143                         EFX_SET_OWORD32(reg, j, j, 1);
144
145                         efx_writeo(efx, &reg, address);
146                         efx_reado(efx, &buf, address);
147
148                         if (efx_masked_compare_oword(&reg, &buf, &mask))
149                                 goto fail;
150
151                         /* Test this testable bit can be cleared in isolation */
152                         EFX_OR_OWORD(reg, original, mask);
153                         EFX_SET_OWORD32(reg, j, j, 0);
154
155                         efx_writeo(efx, &reg, address);
156                         efx_reado(efx, &buf, address);
157
158                         if (efx_masked_compare_oword(&reg, &buf, &mask))
159                                 goto fail;
160                 }
161
162                 efx_writeo(efx, &original, address);
163         }
164
165         return 0;
166
167 fail:
168         netif_err(efx, hw, efx->net_dev,
169                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172         return -EIO;
173 }
174
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193         efx_qword_t buf_desc;
194         unsigned int index;
195         dma_addr_t dma_addr;
196         int i;
197
198         EFX_BUG_ON_PARANOID(!buffer->addr);
199
200         /* Write buffer descriptors to NIC */
201         for (i = 0; i < buffer->entries; i++) {
202                 index = buffer->index + i;
203                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204                 netif_dbg(efx, probe, efx->net_dev,
205                           "mapping special buffer %d at %llx\n",
206                           index, (unsigned long long)dma_addr);
207                 EFX_POPULATE_QWORD_3(buf_desc,
208                                      FRF_AZ_BUF_ADR_REGION, 0,
209                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211                 efx_write_buf_tbl(efx, &buf_desc, index);
212         }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219         efx_oword_t buf_tbl_upd;
220         unsigned int start = buffer->index;
221         unsigned int end = (buffer->index + buffer->entries - 1);
222
223         if (!buffer->entries)
224                 return;
225
226         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227                   buffer->index, buffer->index + buffer->entries - 1);
228
229         EFX_POPULATE_OWORD_4(buf_tbl_upd,
230                              FRF_AZ_BUF_UPD_CMD, 0,
231                              FRF_AZ_BUF_CLR_CMD, 1,
232                              FRF_AZ_BUF_CLR_END_ID, end,
233                              FRF_AZ_BUF_CLR_START_ID, start);
234         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247                                     struct efx_special_buffer *buffer,
248                                     unsigned int len)
249 {
250         len = ALIGN(len, EFX_BUF_SIZE);
251
252         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253                                           &buffer->dma_addr, GFP_KERNEL);
254         if (!buffer->addr)
255                 return -ENOMEM;
256         buffer->len = len;
257         buffer->entries = len / EFX_BUF_SIZE;
258         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260         /* Select new buffer ID */
261         buffer->index = efx->next_buffer_table;
262         efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264         BUG_ON(efx_sriov_enabled(efx) &&
265                efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268         netif_dbg(efx, probe, efx->net_dev,
269                   "allocating special buffers %d-%d at %llx+%x "
270                   "(virt %p phys %llx)\n", buffer->index,
271                   buffer->index + buffer->entries - 1,
272                   (u64)buffer->dma_addr, len,
273                   buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275         return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281         if (!buffer->addr)
282                 return;
283
284         netif_dbg(efx, hw, efx->net_dev,
285                   "deallocating special buffers %d-%d at %llx+%x "
286                   "(virt %p phys %llx)\n", buffer->index,
287                   buffer->index + buffer->entries - 1,
288                   (u64)buffer->dma_addr, buffer->len,
289                   buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292                           buffer->dma_addr);
293         buffer->addr = NULL;
294         buffer->entries = 0;
295 }
296
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status, MAC stats, etc.
301  *
302  **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305                          unsigned int len)
306 {
307         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308                                           &buffer->dma_addr,
309                                           GFP_ATOMIC | __GFP_ZERO);
310         if (!buffer->addr)
311                 return -ENOMEM;
312         buffer->len = len;
313         return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318         if (buffer->addr) {
319                 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320                                   buffer->addr, buffer->dma_addr);
321                 buffer->addr = NULL;
322         }
323 }
324
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343         unsigned write_ptr;
344         efx_dword_t reg;
345
346         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348         efx_writed_page(tx_queue->efx, &reg,
349                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354                                     const efx_qword_t *txd)
355 {
356         unsigned write_ptr;
357         efx_oword_t reg;
358
359         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364                              FRF_AZ_TX_DESC_WPTR, write_ptr);
365         reg.qword[0] = *txd;
366         efx_writeo_page(tx_queue->efx, &reg,
367                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375         if (empty_read_count == 0)
376                 return false;
377
378         tx_queue->empty_read_count = 0;
379         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
380                 && tx_queue->write_count - write_count == 1;
381 }
382
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389
390         struct efx_tx_buffer *buffer;
391         efx_qword_t *txd;
392         unsigned write_ptr;
393         unsigned old_write_count = tx_queue->write_count;
394
395         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397         do {
398                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399                 buffer = &tx_queue->buffer[write_ptr];
400                 txd = efx_tx_desc(tx_queue, write_ptr);
401                 ++tx_queue->write_count;
402
403                 /* Create TX descriptor ring entry */
404                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405                 EFX_POPULATE_QWORD_4(*txd,
406                                      FSF_AZ_TX_KER_CONT,
407                                      buffer->flags & EFX_TX_BUF_CONT,
408                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409                                      FSF_AZ_TX_KER_BUF_REGION, 0,
410                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411         } while (tx_queue->write_count != tx_queue->insert_count);
412
413         wmb(); /* Ensure descriptors are written before they are fetched */
414
415         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416                 txd = efx_tx_desc(tx_queue,
417                                   old_write_count & tx_queue->ptr_mask);
418                 efx_push_tx_desc(tx_queue, txd);
419                 ++tx_queue->pushes;
420         } else {
421                 efx_notify_tx_desc(tx_queue);
422         }
423 }
424
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428         struct efx_nic *efx = tx_queue->efx;
429         unsigned entries;
430
431         entries = tx_queue->ptr_mask + 1;
432         return efx_alloc_special_buffer(efx, &tx_queue->txd,
433                                         entries * sizeof(efx_qword_t));
434 }
435
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438         struct efx_nic *efx = tx_queue->efx;
439         efx_oword_t reg;
440
441         /* Pin TX descriptor ring */
442         efx_init_special_buffer(efx, &tx_queue->txd);
443
444         /* Push TX descriptor ring to card */
445         EFX_POPULATE_OWORD_10(reg,
446                               FRF_AZ_TX_DESCQ_EN, 1,
447                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450                               FRF_AZ_TX_DESCQ_EVQ_ID,
451                               tx_queue->channel->channel,
452                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454                               FRF_AZ_TX_DESCQ_SIZE,
455                               __ffs(tx_queue->txd.entries),
456                               FRF_AZ_TX_DESCQ_TYPE, 0,
457                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463                                     !csum);
464         }
465
466         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467                          tx_queue->queue);
468
469         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470                 /* Only 128 bits in this register */
471                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472
473                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475                         __clear_bit_le(tx_queue->queue, &reg);
476                 else
477                         __set_bit_le(tx_queue->queue, &reg);
478                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479         }
480
481         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482                 EFX_POPULATE_OWORD_1(reg,
483                                      FRF_BZ_TX_PACE,
484                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485                                      FFE_BZ_TX_PACE_OFF :
486                                      FFE_BZ_TX_PACE_RESERVED);
487                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488                                  tx_queue->queue);
489         }
490 }
491
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494         struct efx_nic *efx = tx_queue->efx;
495         efx_oword_t tx_flush_descq;
496
497         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
498         atomic_set(&tx_queue->flush_outstanding, 1);
499
500         EFX_POPULATE_OWORD_2(tx_flush_descq,
501                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
502                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
503         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 }
505
506 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
507 {
508         struct efx_nic *efx = tx_queue->efx;
509         efx_oword_t tx_desc_ptr;
510
511         /* Remove TX descriptor ring from card */
512         EFX_ZERO_OWORD(tx_desc_ptr);
513         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514                          tx_queue->queue);
515
516         /* Unpin TX descriptor ring */
517         efx_fini_special_buffer(efx, &tx_queue->txd);
518 }
519
520 /* Free buffers backing TX queue */
521 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525
526 /**************************************************************************
527  *
528  * RX path
529  *
530  **************************************************************************/
531
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *
534 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
535 {
536         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 }
538
539 /* This creates an entry in the RX descriptor queue */
540 static inline void
541 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
542 {
543         struct efx_rx_buffer *rx_buf;
544         efx_qword_t *rxd;
545
546         rxd = efx_rx_desc(rx_queue, index);
547         rx_buf = efx_rx_buffer(rx_queue, index);
548         EFX_POPULATE_QWORD_3(*rxd,
549                              FSF_AZ_RX_KER_BUF_SIZE,
550                              rx_buf->len -
551                              rx_queue->efx->type->rx_buffer_padding,
552                              FSF_AZ_RX_KER_BUF_REGION, 0,
553                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557  * descriptor ring.
558  */
559 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561         struct efx_nic *efx = rx_queue->efx;
562         efx_dword_t reg;
563         unsigned write_ptr;
564
565         while (rx_queue->notified_count != rx_queue->added_count) {
566                 efx_build_rx_desc(
567                         rx_queue,
568                         rx_queue->notified_count & rx_queue->ptr_mask);
569                 ++rx_queue->notified_count;
570         }
571
572         wmb();
573         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
574         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
575         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
576                         efx_rx_queue_index(rx_queue));
577 }
578
579 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
580 {
581         struct efx_nic *efx = rx_queue->efx;
582         unsigned entries;
583
584         entries = rx_queue->ptr_mask + 1;
585         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
586                                         entries * sizeof(efx_qword_t));
587 }
588
589 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
590 {
591         efx_oword_t rx_desc_ptr;
592         struct efx_nic *efx = rx_queue->efx;
593         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
594         bool iscsi_digest_en = is_b0;
595         bool jumbo_en;
596
597         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
598          * DMA to continue after a PCIe page boundary (and scattering
599          * is not possible).  In Falcon B0 and Siena, it enables
600          * scatter.
601          */
602         jumbo_en = !is_b0 || efx->rx_scatter;
603
604         netif_dbg(efx, hw, efx->net_dev,
605                   "RX queue %d ring in special buffers %d-%d\n",
606                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
607                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
608
609         rx_queue->scatter_n = 0;
610
611         /* Pin RX descriptor ring */
612         efx_init_special_buffer(efx, &rx_queue->rxd);
613
614         /* Push RX descriptor ring to card */
615         EFX_POPULATE_OWORD_10(rx_desc_ptr,
616                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
617                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
618                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
619                               FRF_AZ_RX_DESCQ_EVQ_ID,
620                               efx_rx_queue_channel(rx_queue)->channel,
621                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
622                               FRF_AZ_RX_DESCQ_LABEL,
623                               efx_rx_queue_index(rx_queue),
624                               FRF_AZ_RX_DESCQ_SIZE,
625                               __ffs(rx_queue->rxd.entries),
626                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
627                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
628                               FRF_AZ_RX_DESCQ_EN, 1);
629         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
630                          efx_rx_queue_index(rx_queue));
631 }
632
633 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
634 {
635         struct efx_nic *efx = rx_queue->efx;
636         efx_oword_t rx_flush_descq;
637
638         EFX_POPULATE_OWORD_2(rx_flush_descq,
639                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
640                              FRF_AZ_RX_FLUSH_DESCQ,
641                              efx_rx_queue_index(rx_queue));
642         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
643 }
644
645 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
646 {
647         efx_oword_t rx_desc_ptr;
648         struct efx_nic *efx = rx_queue->efx;
649
650         /* Remove RX descriptor ring from card */
651         EFX_ZERO_OWORD(rx_desc_ptr);
652         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
653                          efx_rx_queue_index(rx_queue));
654
655         /* Unpin RX descriptor ring */
656         efx_fini_special_buffer(efx, &rx_queue->rxd);
657 }
658
659 /* Free buffers backing RX queue */
660 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
661 {
662         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
663 }
664
665 /**************************************************************************
666  *
667  * Flush handling
668  *
669  **************************************************************************/
670
671 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
672  * or more RX flushes can be kicked off.
673  */
674 static bool efx_flush_wake(struct efx_nic *efx)
675 {
676         /* Ensure that all updates are visible to efx_nic_flush_queues() */
677         smp_mb();
678
679         return (atomic_read(&efx->drain_pending) == 0 ||
680                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
681                  && atomic_read(&efx->rxq_flush_pending) > 0));
682 }
683
684 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
685 {
686         bool i = true;
687         efx_oword_t txd_ptr_tbl;
688         struct efx_channel *channel;
689         struct efx_tx_queue *tx_queue;
690
691         efx_for_each_channel(channel, efx) {
692                 efx_for_each_channel_tx_queue(tx_queue, channel) {
693                         efx_reado_table(efx, &txd_ptr_tbl,
694                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
695                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
696                                             FRF_AZ_TX_DESCQ_FLUSH) ||
697                             EFX_OWORD_FIELD(txd_ptr_tbl,
698                                             FRF_AZ_TX_DESCQ_EN)) {
699                                 netif_dbg(efx, hw, efx->net_dev,
700                                           "flush did not complete on TXQ %d\n",
701                                           tx_queue->queue);
702                                 i = false;
703                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
704                                                   1, 0)) {
705                                 /* The flush is complete, but we didn't
706                                  * receive a flush completion event
707                                  */
708                                 netif_dbg(efx, hw, efx->net_dev,
709                                           "flush complete on TXQ %d, so drain "
710                                           "the queue\n", tx_queue->queue);
711                                 /* Don't need to increment drain_pending as it
712                                  * has already been incremented for the queues
713                                  * which did not drain
714                                  */
715                                 efx_magic_event(channel,
716                                                 EFX_CHANNEL_MAGIC_TX_DRAIN(
717                                                         tx_queue));
718                         }
719                 }
720         }
721
722         return i;
723 }
724
725 /* Flush all the transmit queues, and continue flushing receive queues until
726  * they're all flushed. Wait for the DRAIN events to be recieved so that there
727  * are no more RX and TX events left on any channel. */
728 int efx_nic_flush_queues(struct efx_nic *efx)
729 {
730         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
731         struct efx_channel *channel;
732         struct efx_rx_queue *rx_queue;
733         struct efx_tx_queue *tx_queue;
734         int rc = 0;
735
736         efx->type->prepare_flush(efx);
737
738         efx_for_each_channel(channel, efx) {
739                 efx_for_each_channel_tx_queue(tx_queue, channel) {
740                         atomic_inc(&efx->drain_pending);
741                         efx_flush_tx_queue(tx_queue);
742                 }
743                 efx_for_each_channel_rx_queue(rx_queue, channel) {
744                         atomic_inc(&efx->drain_pending);
745                         rx_queue->flush_pending = true;
746                         atomic_inc(&efx->rxq_flush_pending);
747                 }
748         }
749
750         while (timeout && atomic_read(&efx->drain_pending) > 0) {
751                 /* If SRIOV is enabled, then offload receive queue flushing to
752                  * the firmware (though we will still have to poll for
753                  * completion). If that fails, fall back to the old scheme.
754                  */
755                 if (efx_sriov_enabled(efx)) {
756                         rc = efx_mcdi_flush_rxqs(efx);
757                         if (!rc)
758                                 goto wait;
759                 }
760
761                 /* The hardware supports four concurrent rx flushes, each of
762                  * which may need to be retried if there is an outstanding
763                  * descriptor fetch
764                  */
765                 efx_for_each_channel(channel, efx) {
766                         efx_for_each_channel_rx_queue(rx_queue, channel) {
767                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
768                                     EFX_RX_FLUSH_COUNT)
769                                         break;
770
771                                 if (rx_queue->flush_pending) {
772                                         rx_queue->flush_pending = false;
773                                         atomic_dec(&efx->rxq_flush_pending);
774                                         atomic_inc(&efx->rxq_flush_outstanding);
775                                         efx_flush_rx_queue(rx_queue);
776                                 }
777                         }
778                 }
779
780         wait:
781                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
782                                              timeout);
783         }
784
785         if (atomic_read(&efx->drain_pending) &&
786             !efx_check_tx_flush_complete(efx)) {
787                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
788                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
789                           atomic_read(&efx->rxq_flush_outstanding),
790                           atomic_read(&efx->rxq_flush_pending));
791                 rc = -ETIMEDOUT;
792
793                 atomic_set(&efx->drain_pending, 0);
794                 atomic_set(&efx->rxq_flush_pending, 0);
795                 atomic_set(&efx->rxq_flush_outstanding, 0);
796         }
797
798         efx->type->finish_flush(efx);
799
800         return rc;
801 }
802
803 /**************************************************************************
804  *
805  * Event queue processing
806  * Event queues are processed by per-channel tasklets.
807  *
808  **************************************************************************/
809
810 /* Update a channel's event queue's read pointer (RPTR) register
811  *
812  * This writes the EVQ_RPTR_REG register for the specified channel's
813  * event queue.
814  */
815 void efx_nic_eventq_read_ack(struct efx_channel *channel)
816 {
817         efx_dword_t reg;
818         struct efx_nic *efx = channel->efx;
819
820         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
821                              channel->eventq_read_ptr & channel->eventq_mask);
822
823         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
824          * of 4 bytes, but it is really 16 bytes just like later revisions.
825          */
826         efx_writed(efx, &reg,
827                    efx->type->evq_rptr_tbl_base +
828                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
829 }
830
831 /* Use HW to insert a SW defined event */
832 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
833                         efx_qword_t *event)
834 {
835         efx_oword_t drv_ev_reg;
836
837         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
838                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
839         drv_ev_reg.u32[0] = event->u32[0];
840         drv_ev_reg.u32[1] = event->u32[1];
841         drv_ev_reg.u32[2] = 0;
842         drv_ev_reg.u32[3] = 0;
843         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
844         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
845 }
846
847 static void efx_magic_event(struct efx_channel *channel, u32 magic)
848 {
849         efx_qword_t event;
850
851         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
852                              FSE_AZ_EV_CODE_DRV_GEN_EV,
853                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
854         efx_generate_event(channel->efx, channel->channel, &event);
855 }
856
857 /* Handle a transmit completion event
858  *
859  * The NIC batches TX completion events; the message we receive is of
860  * the form "complete all TX events up to this index".
861  */
862 static int
863 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
864 {
865         unsigned int tx_ev_desc_ptr;
866         unsigned int tx_ev_q_label;
867         struct efx_tx_queue *tx_queue;
868         struct efx_nic *efx = channel->efx;
869         int tx_packets = 0;
870
871         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
872                 return 0;
873
874         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
875                 /* Transmit completion */
876                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
877                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
878                 tx_queue = efx_channel_get_tx_queue(
879                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
880                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
881                               tx_queue->ptr_mask);
882                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
883         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
884                 /* Rewrite the FIFO write pointer */
885                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
886                 tx_queue = efx_channel_get_tx_queue(
887                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
888
889                 netif_tx_lock(efx->net_dev);
890                 efx_notify_tx_desc(tx_queue);
891                 netif_tx_unlock(efx->net_dev);
892         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
893                    EFX_WORKAROUND_10727(efx)) {
894                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
895         } else {
896                 netif_err(efx, tx_err, efx->net_dev,
897                           "channel %d unexpected TX event "
898                           EFX_QWORD_FMT"\n", channel->channel,
899                           EFX_QWORD_VAL(*event));
900         }
901
902         return tx_packets;
903 }
904
905 /* Detect errors included in the rx_evt_pkt_ok bit. */
906 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
907                                 const efx_qword_t *event)
908 {
909         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
910         struct efx_nic *efx = rx_queue->efx;
911         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
912         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
913         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
914         bool rx_ev_other_err, rx_ev_pause_frm;
915         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
916         unsigned rx_ev_pkt_type;
917
918         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
919         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
920         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
921         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
922         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
923                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
924         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
925                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
926         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
927                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
928         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
929         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
930         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
931                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
932         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
933
934         /* Every error apart from tobe_disc and pause_frm */
935         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
936                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
937                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
938
939         /* Count errors that are not in MAC stats.  Ignore expected
940          * checksum errors during self-test. */
941         if (rx_ev_frm_trunc)
942                 ++channel->n_rx_frm_trunc;
943         else if (rx_ev_tobe_disc)
944                 ++channel->n_rx_tobe_disc;
945         else if (!efx->loopback_selftest) {
946                 if (rx_ev_ip_hdr_chksum_err)
947                         ++channel->n_rx_ip_hdr_chksum_err;
948                 else if (rx_ev_tcp_udp_chksum_err)
949                         ++channel->n_rx_tcp_udp_chksum_err;
950         }
951
952         /* TOBE_DISC is expected on unicast mismatches; don't print out an
953          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
954          * to a FIFO overflow.
955          */
956 #ifdef DEBUG
957         if (rx_ev_other_err && net_ratelimit()) {
958                 netif_dbg(efx, rx_err, efx->net_dev,
959                           " RX queue %d unexpected RX event "
960                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
961                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
962                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
963                           rx_ev_ip_hdr_chksum_err ?
964                           " [IP_HDR_CHKSUM_ERR]" : "",
965                           rx_ev_tcp_udp_chksum_err ?
966                           " [TCP_UDP_CHKSUM_ERR]" : "",
967                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
968                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
969                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
970                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
971                           rx_ev_pause_frm ? " [PAUSE]" : "");
972         }
973 #endif
974
975         /* The frame must be discarded if any of these are true. */
976         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
977                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
978                 EFX_RX_PKT_DISCARD : 0;
979 }
980
981 /* Handle receive events that are not in-order. Return true if this
982  * can be handled as a partial packet discard, false if it's more
983  * serious.
984  */
985 static bool
986 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
987 {
988         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
989         struct efx_nic *efx = rx_queue->efx;
990         unsigned expected, dropped;
991
992         if (rx_queue->scatter_n &&
993             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
994                       rx_queue->ptr_mask)) {
995                 ++channel->n_rx_nodesc_trunc;
996                 return true;
997         }
998
999         expected = rx_queue->removed_count & rx_queue->ptr_mask;
1000         dropped = (index - expected) & rx_queue->ptr_mask;
1001         netif_info(efx, rx_err, efx->net_dev,
1002                    "dropped %d events (index=%d expected=%d)\n",
1003                    dropped, index, expected);
1004
1005         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1006                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1007         return false;
1008 }
1009
1010 /* Handle a packet received event
1011  *
1012  * The NIC gives a "discard" flag if it's a unicast packet with the
1013  * wrong destination address
1014  * Also "is multicast" and "matches multicast filter" flags can be used to
1015  * discard non-matching multicast packets.
1016  */
1017 static void
1018 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1019 {
1020         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1021         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1022         unsigned expected_ptr;
1023         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1024         u16 flags;
1025         struct efx_rx_queue *rx_queue;
1026         struct efx_nic *efx = channel->efx;
1027
1028         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1029                 return;
1030
1031         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1032         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1033         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1034                 channel->channel);
1035
1036         rx_queue = efx_channel_get_rx_queue(channel);
1037
1038         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1039         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1040                         rx_queue->ptr_mask);
1041
1042         /* Check for partial drops and other errors */
1043         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1044             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1045                 if (rx_ev_desc_ptr != expected_ptr &&
1046                     !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1047                         return;
1048
1049                 /* Discard all pending fragments */
1050                 if (rx_queue->scatter_n) {
1051                         efx_rx_packet(
1052                                 rx_queue,
1053                                 rx_queue->removed_count & rx_queue->ptr_mask,
1054                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1055                         rx_queue->removed_count += rx_queue->scatter_n;
1056                         rx_queue->scatter_n = 0;
1057                 }
1058
1059                 /* Return if there is no new fragment */
1060                 if (rx_ev_desc_ptr != expected_ptr)
1061                         return;
1062
1063                 /* Discard new fragment if not SOP */
1064                 if (!rx_ev_sop) {
1065                         efx_rx_packet(
1066                                 rx_queue,
1067                                 rx_queue->removed_count & rx_queue->ptr_mask,
1068                                 1, 0, EFX_RX_PKT_DISCARD);
1069                         ++rx_queue->removed_count;
1070                         return;
1071                 }
1072         }
1073
1074         ++rx_queue->scatter_n;
1075         if (rx_ev_cont)
1076                 return;
1077
1078         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1079         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1080         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1081
1082         if (likely(rx_ev_pkt_ok)) {
1083                 /* If packet is marked as OK and packet type is TCP/IP or
1084                  * UDP/IP, then we can rely on the hardware checksum.
1085                  */
1086                 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1087                          rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1088                         EFX_RX_PKT_CSUMMED : 0;
1089         } else {
1090                 flags = efx_handle_rx_not_ok(rx_queue, event);
1091         }
1092
1093         /* Detect multicast packets that didn't match the filter */
1094         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1095         if (rx_ev_mcast_pkt) {
1096                 unsigned int rx_ev_mcast_hash_match =
1097                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1098
1099                 if (unlikely(!rx_ev_mcast_hash_match)) {
1100                         ++channel->n_rx_mcast_mismatch;
1101                         flags |= EFX_RX_PKT_DISCARD;
1102                 }
1103         }
1104
1105         channel->irq_mod_score += 2;
1106
1107         /* Handle received packet */
1108         efx_rx_packet(rx_queue,
1109                       rx_queue->removed_count & rx_queue->ptr_mask,
1110                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1111         rx_queue->removed_count += rx_queue->scatter_n;
1112         rx_queue->scatter_n = 0;
1113 }
1114
1115 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1116  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1117  * of all transmit completions.
1118  */
1119 static void
1120 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121 {
1122         struct efx_tx_queue *tx_queue;
1123         int qid;
1124
1125         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1126         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1127                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1128                                             qid % EFX_TXQ_TYPES);
1129                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1130                         efx_magic_event(tx_queue->channel,
1131                                         EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1132                 }
1133         }
1134 }
1135
1136 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1137  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1138  * the RX queue back to the mask of RX queues in need of flushing.
1139  */
1140 static void
1141 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1142 {
1143         struct efx_channel *channel;
1144         struct efx_rx_queue *rx_queue;
1145         int qid;
1146         bool failed;
1147
1148         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1149         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1150         if (qid >= efx->n_channels)
1151                 return;
1152         channel = efx_get_channel(efx, qid);
1153         if (!efx_channel_has_rx_queue(channel))
1154                 return;
1155         rx_queue = efx_channel_get_rx_queue(channel);
1156
1157         if (failed) {
1158                 netif_info(efx, hw, efx->net_dev,
1159                            "RXQ %d flush retry\n", qid);
1160                 rx_queue->flush_pending = true;
1161                 atomic_inc(&efx->rxq_flush_pending);
1162         } else {
1163                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1164                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1165         }
1166         atomic_dec(&efx->rxq_flush_outstanding);
1167         if (efx_flush_wake(efx))
1168                 wake_up(&efx->flush_wq);
1169 }
1170
1171 static void
1172 efx_handle_drain_event(struct efx_channel *channel)
1173 {
1174         struct efx_nic *efx = channel->efx;
1175
1176         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1177         atomic_dec(&efx->drain_pending);
1178         if (efx_flush_wake(efx))
1179                 wake_up(&efx->flush_wq);
1180 }
1181
1182 static void
1183 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1184 {
1185         struct efx_nic *efx = channel->efx;
1186         struct efx_rx_queue *rx_queue =
1187                 efx_channel_has_rx_queue(channel) ?
1188                 efx_channel_get_rx_queue(channel) : NULL;
1189         unsigned magic, code;
1190
1191         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1192         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1193
1194         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1195                 channel->event_test_cpu = raw_smp_processor_id();
1196         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1197                 /* The queue must be empty, so we won't receive any rx
1198                  * events, so efx_process_channel() won't refill the
1199                  * queue. Refill it here */
1200                 efx_fast_push_rx_descriptors(rx_queue);
1201         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1202                 rx_queue->enabled = false;
1203                 efx_handle_drain_event(channel);
1204         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1205                 efx_handle_drain_event(channel);
1206         } else {
1207                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1208                           "generated event "EFX_QWORD_FMT"\n",
1209                           channel->channel, EFX_QWORD_VAL(*event));
1210         }
1211 }
1212
1213 static void
1214 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1215 {
1216         struct efx_nic *efx = channel->efx;
1217         unsigned int ev_sub_code;
1218         unsigned int ev_sub_data;
1219
1220         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1221         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1222
1223         switch (ev_sub_code) {
1224         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1225                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1226                            channel->channel, ev_sub_data);
1227                 efx_handle_tx_flush_done(efx, event);
1228                 efx_sriov_tx_flush_done(efx, event);
1229                 break;
1230         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1231                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1232                            channel->channel, ev_sub_data);
1233                 efx_handle_rx_flush_done(efx, event);
1234                 efx_sriov_rx_flush_done(efx, event);
1235                 break;
1236         case FSE_AZ_EVQ_INIT_DONE_EV:
1237                 netif_dbg(efx, hw, efx->net_dev,
1238                           "channel %d EVQ %d initialised\n",
1239                           channel->channel, ev_sub_data);
1240                 break;
1241         case FSE_AZ_SRM_UPD_DONE_EV:
1242                 netif_vdbg(efx, hw, efx->net_dev,
1243                            "channel %d SRAM update done\n", channel->channel);
1244                 break;
1245         case FSE_AZ_WAKE_UP_EV:
1246                 netif_vdbg(efx, hw, efx->net_dev,
1247                            "channel %d RXQ %d wakeup event\n",
1248                            channel->channel, ev_sub_data);
1249                 break;
1250         case FSE_AZ_TIMER_EV:
1251                 netif_vdbg(efx, hw, efx->net_dev,
1252                            "channel %d RX queue %d timer expired\n",
1253                            channel->channel, ev_sub_data);
1254                 break;
1255         case FSE_AA_RX_RECOVER_EV:
1256                 netif_err(efx, rx_err, efx->net_dev,
1257                           "channel %d seen DRIVER RX_RESET event. "
1258                         "Resetting.\n", channel->channel);
1259                 atomic_inc(&efx->rx_reset);
1260                 efx_schedule_reset(efx,
1261                                    EFX_WORKAROUND_6555(efx) ?
1262                                    RESET_TYPE_RX_RECOVERY :
1263                                    RESET_TYPE_DISABLE);
1264                 break;
1265         case FSE_BZ_RX_DSC_ERROR_EV:
1266                 if (ev_sub_data < EFX_VI_BASE) {
1267                         netif_err(efx, rx_err, efx->net_dev,
1268                                   "RX DMA Q %d reports descriptor fetch error."
1269                                   " RX Q %d is disabled.\n", ev_sub_data,
1270                                   ev_sub_data);
1271                         efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1272                 } else
1273                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1274                 break;
1275         case FSE_BZ_TX_DSC_ERROR_EV:
1276                 if (ev_sub_data < EFX_VI_BASE) {
1277                         netif_err(efx, tx_err, efx->net_dev,
1278                                   "TX DMA Q %d reports descriptor fetch error."
1279                                   " TX Q %d is disabled.\n", ev_sub_data,
1280                                   ev_sub_data);
1281                         efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1282                 } else
1283                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1284                 break;
1285         default:
1286                 netif_vdbg(efx, hw, efx->net_dev,
1287                            "channel %d unknown driver event code %d "
1288                            "data %04x\n", channel->channel, ev_sub_code,
1289                            ev_sub_data);
1290                 break;
1291         }
1292 }
1293
1294 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1295 {
1296         struct efx_nic *efx = channel->efx;
1297         unsigned int read_ptr;
1298         efx_qword_t event, *p_event;
1299         int ev_code;
1300         int tx_packets = 0;
1301         int spent = 0;
1302
1303         read_ptr = channel->eventq_read_ptr;
1304
1305         for (;;) {
1306                 p_event = efx_event(channel, read_ptr);
1307                 event = *p_event;
1308
1309                 if (!efx_event_present(&event))
1310                         /* End of events */
1311                         break;
1312
1313                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1314                            "channel %d event is "EFX_QWORD_FMT"\n",
1315                            channel->channel, EFX_QWORD_VAL(event));
1316
1317                 /* Clear this event by marking it all ones */
1318                 EFX_SET_QWORD(*p_event);
1319
1320                 ++read_ptr;
1321
1322                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1323
1324                 switch (ev_code) {
1325                 case FSE_AZ_EV_CODE_RX_EV:
1326                         efx_handle_rx_event(channel, &event);
1327                         if (++spent == budget)
1328                                 goto out;
1329                         break;
1330                 case FSE_AZ_EV_CODE_TX_EV:
1331                         tx_packets += efx_handle_tx_event(channel, &event);
1332                         if (tx_packets > efx->txq_entries) {
1333                                 spent = budget;
1334                                 goto out;
1335                         }
1336                         break;
1337                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1338                         efx_handle_generated_event(channel, &event);
1339                         break;
1340                 case FSE_AZ_EV_CODE_DRIVER_EV:
1341                         efx_handle_driver_event(channel, &event);
1342                         break;
1343                 case FSE_CZ_EV_CODE_USER_EV:
1344                         efx_sriov_event(channel, &event);
1345                         break;
1346                 case FSE_CZ_EV_CODE_MCDI_EV:
1347                         efx_mcdi_process_event(channel, &event);
1348                         break;
1349                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1350                         if (efx->type->handle_global_event &&
1351                             efx->type->handle_global_event(channel, &event))
1352                                 break;
1353                         /* else fall through */
1354                 default:
1355                         netif_err(channel->efx, hw, channel->efx->net_dev,
1356                                   "channel %d unknown event type %d (data "
1357                                   EFX_QWORD_FMT ")\n", channel->channel,
1358                                   ev_code, EFX_QWORD_VAL(event));
1359                 }
1360         }
1361
1362 out:
1363         channel->eventq_read_ptr = read_ptr;
1364         return spent;
1365 }
1366
1367 /* Check whether an event is present in the eventq at the current
1368  * read pointer.  Only useful for self-test.
1369  */
1370 bool efx_nic_event_present(struct efx_channel *channel)
1371 {
1372         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1373 }
1374
1375 /* Allocate buffer table entries for event queue */
1376 int efx_nic_probe_eventq(struct efx_channel *channel)
1377 {
1378         struct efx_nic *efx = channel->efx;
1379         unsigned entries;
1380
1381         entries = channel->eventq_mask + 1;
1382         return efx_alloc_special_buffer(efx, &channel->eventq,
1383                                         entries * sizeof(efx_qword_t));
1384 }
1385
1386 void efx_nic_init_eventq(struct efx_channel *channel)
1387 {
1388         efx_oword_t reg;
1389         struct efx_nic *efx = channel->efx;
1390
1391         netif_dbg(efx, hw, efx->net_dev,
1392                   "channel %d event queue in special buffers %d-%d\n",
1393                   channel->channel, channel->eventq.index,
1394                   channel->eventq.index + channel->eventq.entries - 1);
1395
1396         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1397                 EFX_POPULATE_OWORD_3(reg,
1398                                      FRF_CZ_TIMER_Q_EN, 1,
1399                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1400                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1401                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1402         }
1403
1404         /* Pin event queue buffer */
1405         efx_init_special_buffer(efx, &channel->eventq);
1406
1407         /* Fill event queue with all ones (i.e. empty events) */
1408         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1409
1410         /* Push event queue to card */
1411         EFX_POPULATE_OWORD_3(reg,
1412                              FRF_AZ_EVQ_EN, 1,
1413                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1414                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1415         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1416                          channel->channel);
1417
1418         efx->type->push_irq_moderation(channel);
1419 }
1420
1421 void efx_nic_fini_eventq(struct efx_channel *channel)
1422 {
1423         efx_oword_t reg;
1424         struct efx_nic *efx = channel->efx;
1425
1426         /* Remove event queue from card */
1427         EFX_ZERO_OWORD(reg);
1428         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1429                          channel->channel);
1430         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1431                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1432
1433         /* Unpin event queue */
1434         efx_fini_special_buffer(efx, &channel->eventq);
1435 }
1436
1437 /* Free buffers backing event queue */
1438 void efx_nic_remove_eventq(struct efx_channel *channel)
1439 {
1440         efx_free_special_buffer(channel->efx, &channel->eventq);
1441 }
1442
1443
1444 void efx_nic_event_test_start(struct efx_channel *channel)
1445 {
1446         channel->event_test_cpu = -1;
1447         smp_wmb();
1448         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1449 }
1450
1451 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1452 {
1453         efx_magic_event(efx_rx_queue_channel(rx_queue),
1454                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1455 }
1456
1457 /**************************************************************************
1458  *
1459  * Hardware interrupts
1460  * The hardware interrupt handler does very little work; all the event
1461  * queue processing is carried out by per-channel tasklets.
1462  *
1463  **************************************************************************/
1464
1465 /* Enable/disable/generate interrupts */
1466 static inline void efx_nic_interrupts(struct efx_nic *efx,
1467                                       bool enabled, bool force)
1468 {
1469         efx_oword_t int_en_reg_ker;
1470
1471         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1472                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1473                              FRF_AZ_KER_INT_KER, force,
1474                              FRF_AZ_DRV_INT_EN_KER, enabled);
1475         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1476 }
1477
1478 void efx_nic_enable_interrupts(struct efx_nic *efx)
1479 {
1480         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1481         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1482
1483         efx_nic_interrupts(efx, true, false);
1484 }
1485
1486 void efx_nic_disable_interrupts(struct efx_nic *efx)
1487 {
1488         /* Disable interrupts */
1489         efx_nic_interrupts(efx, false, false);
1490 }
1491
1492 /* Generate a test interrupt
1493  * Interrupt must already have been enabled, otherwise nasty things
1494  * may happen.
1495  */
1496 void efx_nic_irq_test_start(struct efx_nic *efx)
1497 {
1498         efx->last_irq_cpu = -1;
1499         smp_wmb();
1500         efx_nic_interrupts(efx, true, true);
1501 }
1502
1503 /* Process a fatal interrupt
1504  * Disable bus mastering ASAP and schedule a reset
1505  */
1506 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1507 {
1508         struct falcon_nic_data *nic_data = efx->nic_data;
1509         efx_oword_t *int_ker = efx->irq_status.addr;
1510         efx_oword_t fatal_intr;
1511         int error, mem_perr;
1512
1513         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1514         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1515
1516         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1517                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1518                   EFX_OWORD_VAL(fatal_intr),
1519                   error ? "disabling bus mastering" : "no recognised error");
1520
1521         /* If this is a memory parity error dump which blocks are offending */
1522         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1523                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1524         if (mem_perr) {
1525                 efx_oword_t reg;
1526                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1527                 netif_err(efx, hw, efx->net_dev,
1528                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1529                           EFX_OWORD_VAL(reg));
1530         }
1531
1532         /* Disable both devices */
1533         pci_clear_master(efx->pci_dev);
1534         if (efx_nic_is_dual_func(efx))
1535                 pci_clear_master(nic_data->pci_dev2);
1536         efx_nic_disable_interrupts(efx);
1537
1538         /* Count errors and reset or disable the NIC accordingly */
1539         if (efx->int_error_count == 0 ||
1540             time_after(jiffies, efx->int_error_expire)) {
1541                 efx->int_error_count = 0;
1542                 efx->int_error_expire =
1543                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1544         }
1545         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1546                 netif_err(efx, hw, efx->net_dev,
1547                           "SYSTEM ERROR - reset scheduled\n");
1548                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1549         } else {
1550                 netif_err(efx, hw, efx->net_dev,
1551                           "SYSTEM ERROR - max number of errors seen."
1552                           "NIC will be disabled\n");
1553                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1554         }
1555
1556         return IRQ_HANDLED;
1557 }
1558
1559 /* Handle a legacy interrupt
1560  * Acknowledges the interrupt and schedule event queue processing.
1561  */
1562 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1563 {
1564         struct efx_nic *efx = dev_id;
1565         efx_oword_t *int_ker = efx->irq_status.addr;
1566         irqreturn_t result = IRQ_NONE;
1567         struct efx_channel *channel;
1568         efx_dword_t reg;
1569         u32 queues;
1570         int syserr;
1571
1572         /* Could this be ours?  If interrupts are disabled then the
1573          * channel state may not be valid.
1574          */
1575         if (!efx->legacy_irq_enabled)
1576                 return result;
1577
1578         /* Read the ISR which also ACKs the interrupts */
1579         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1580         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1581
1582         /* Handle non-event-queue sources */
1583         if (queues & (1U << efx->irq_level)) {
1584                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1585                 if (unlikely(syserr))
1586                         return efx_nic_fatal_interrupt(efx);
1587                 efx->last_irq_cpu = raw_smp_processor_id();
1588         }
1589
1590         if (queues != 0) {
1591                 if (EFX_WORKAROUND_15783(efx))
1592                         efx->irq_zero_count = 0;
1593
1594                 /* Schedule processing of any interrupting queues */
1595                 efx_for_each_channel(channel, efx) {
1596                         if (queues & 1)
1597                                 efx_schedule_channel_irq(channel);
1598                         queues >>= 1;
1599                 }
1600                 result = IRQ_HANDLED;
1601
1602         } else if (EFX_WORKAROUND_15783(efx)) {
1603                 efx_qword_t *event;
1604
1605                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1606                  * because this might be a shared interrupt. */
1607                 if (efx->irq_zero_count++ == 0)
1608                         result = IRQ_HANDLED;
1609
1610                 /* Ensure we schedule or rearm all event queues */
1611                 efx_for_each_channel(channel, efx) {
1612                         event = efx_event(channel, channel->eventq_read_ptr);
1613                         if (efx_event_present(event))
1614                                 efx_schedule_channel_irq(channel);
1615                         else
1616                                 efx_nic_eventq_read_ack(channel);
1617                 }
1618         }
1619
1620         if (result == IRQ_HANDLED)
1621                 netif_vdbg(efx, intr, efx->net_dev,
1622                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1623                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1624
1625         return result;
1626 }
1627
1628 /* Handle an MSI interrupt
1629  *
1630  * Handle an MSI hardware interrupt.  This routine schedules event
1631  * queue processing.  No interrupt acknowledgement cycle is necessary.
1632  * Also, we never need to check that the interrupt is for us, since
1633  * MSI interrupts cannot be shared.
1634  */
1635 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1636 {
1637         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1638         struct efx_nic *efx = channel->efx;
1639         efx_oword_t *int_ker = efx->irq_status.addr;
1640         int syserr;
1641
1642         netif_vdbg(efx, intr, efx->net_dev,
1643                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1644                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1645
1646         /* Handle non-event-queue sources */
1647         if (channel->channel == efx->irq_level) {
1648                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1649                 if (unlikely(syserr))
1650                         return efx_nic_fatal_interrupt(efx);
1651                 efx->last_irq_cpu = raw_smp_processor_id();
1652         }
1653
1654         /* Schedule processing of the channel */
1655         efx_schedule_channel_irq(channel);
1656
1657         return IRQ_HANDLED;
1658 }
1659
1660
1661 /* Setup RSS indirection table.
1662  * This maps from the hash value of the packet to RXQ
1663  */
1664 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1665 {
1666         size_t i = 0;
1667         efx_dword_t dword;
1668
1669         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1670                 return;
1671
1672         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1673                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1674
1675         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1676                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1677                                      efx->rx_indir_table[i]);
1678                 efx_writed(efx, &dword,
1679                            FR_BZ_RX_INDIRECTION_TBL +
1680                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1681         }
1682 }
1683
1684 /* Hook interrupt handler(s)
1685  * Try MSI and then legacy interrupts.
1686  */
1687 int efx_nic_init_interrupt(struct efx_nic *efx)
1688 {
1689         struct efx_channel *channel;
1690         int rc;
1691
1692         if (!EFX_INT_MODE_USE_MSI(efx)) {
1693                 irq_handler_t handler;
1694                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1695                         handler = efx_legacy_interrupt;
1696                 else
1697                         handler = falcon_legacy_interrupt_a1;
1698
1699                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1700                                  efx->name, efx);
1701                 if (rc) {
1702                         netif_err(efx, drv, efx->net_dev,
1703                                   "failed to hook legacy IRQ %d\n",
1704                                   efx->pci_dev->irq);
1705                         goto fail1;
1706                 }
1707                 return 0;
1708         }
1709
1710         /* Hook MSI or MSI-X interrupt */
1711         efx_for_each_channel(channel, efx) {
1712                 rc = request_irq(channel->irq, efx_msi_interrupt,
1713                                  IRQF_PROBE_SHARED, /* Not shared */
1714                                  efx->channel_name[channel->channel],
1715                                  &efx->channel[channel->channel]);
1716                 if (rc) {
1717                         netif_err(efx, drv, efx->net_dev,
1718                                   "failed to hook IRQ %d\n", channel->irq);
1719                         goto fail2;
1720                 }
1721         }
1722
1723         return 0;
1724
1725  fail2:
1726         efx_for_each_channel(channel, efx)
1727                 free_irq(channel->irq, &efx->channel[channel->channel]);
1728  fail1:
1729         return rc;
1730 }
1731
1732 void efx_nic_fini_interrupt(struct efx_nic *efx)
1733 {
1734         struct efx_channel *channel;
1735         efx_oword_t reg;
1736
1737         /* Disable MSI/MSI-X interrupts */
1738         efx_for_each_channel(channel, efx) {
1739                 if (channel->irq)
1740                         free_irq(channel->irq, &efx->channel[channel->channel]);
1741         }
1742
1743         /* ACK legacy interrupt */
1744         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1745                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1746         else
1747                 falcon_irq_ack_a1(efx);
1748
1749         /* Disable legacy interrupt */
1750         if (efx->legacy_irq)
1751                 free_irq(efx->legacy_irq, efx);
1752 }
1753
1754 /* Looks at available SRAM resources and works out how many queues we
1755  * can support, and where things like descriptor caches should live.
1756  *
1757  * SRAM is split up as follows:
1758  * 0                          buftbl entries for channels
1759  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1760  * efx->rx_dc_base            RX descriptor caches
1761  * efx->tx_dc_base            TX descriptor caches
1762  */
1763 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1764 {
1765         unsigned vi_count, buftbl_min;
1766
1767         /* Account for the buffer table entries backing the datapath channels
1768          * and the descriptor caches for those channels.
1769          */
1770         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1771                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1772                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1773                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1774         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1775
1776 #ifdef CONFIG_SFC_SRIOV
1777         if (efx_sriov_wanted(efx)) {
1778                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1779
1780                 efx->vf_buftbl_base = buftbl_min;
1781
1782                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1783                 vi_count = max(vi_count, EFX_VI_BASE);
1784                 buftbl_free = (sram_lim_qw - buftbl_min -
1785                                vi_count * vi_dc_entries);
1786
1787                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1788                                   efx_vf_size(efx));
1789                 vf_limit = min(buftbl_free / entries_per_vf,
1790                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1791
1792                 if (efx->vf_count > vf_limit) {
1793                         netif_err(efx, probe, efx->net_dev,
1794                                   "Reducing VF count from from %d to %d\n",
1795                                   efx->vf_count, vf_limit);
1796                         efx->vf_count = vf_limit;
1797                 }
1798                 vi_count += efx->vf_count * efx_vf_size(efx);
1799         }
1800 #endif
1801
1802         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1803         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1804 }
1805
1806 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1807 {
1808         efx_oword_t altera_build;
1809         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1810         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1811 }
1812
1813 void efx_nic_init_common(struct efx_nic *efx)
1814 {
1815         efx_oword_t temp;
1816
1817         /* Set positions of descriptor caches in SRAM. */
1818         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1819         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1820         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1821         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1822
1823         /* Set TX descriptor cache size. */
1824         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1825         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1826         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1827
1828         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1829          * this allows most efficient prefetching.
1830          */
1831         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1832         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1833         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1834         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1835         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1836
1837         /* Program INT_KER address */
1838         EFX_POPULATE_OWORD_2(temp,
1839                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1840                              EFX_INT_MODE_USE_MSI(efx),
1841                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1842         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1843
1844         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1845                 /* Use an interrupt level unused by event queues */
1846                 efx->irq_level = 0x1f;
1847         else
1848                 /* Use a valid MSI-X vector */
1849                 efx->irq_level = 0;
1850
1851         /* Enable all the genuinely fatal interrupts.  (They are still
1852          * masked by the overall interrupt mask, controlled by
1853          * falcon_interrupts()).
1854          *
1855          * Note: All other fatal interrupts are enabled
1856          */
1857         EFX_POPULATE_OWORD_3(temp,
1858                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1859                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1860                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1861         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1862                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1863         EFX_INVERT_OWORD(temp);
1864         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1865
1866         efx_nic_push_rx_indir_table(efx);
1867
1868         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1869          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1870          */
1871         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1872         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1873         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1874         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1875         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1876         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1877         /* Enable SW_EV to inherit in char driver - assume harmless here */
1878         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1879         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1880         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1881         /* Disable hardware watchdog which can misfire */
1882         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1883         /* Squash TX of packets of 16 bytes or less */
1884         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1885                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1886         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1887
1888         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1889                 EFX_POPULATE_OWORD_4(temp,
1890                                      /* Default values */
1891                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1892                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1893                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1894                                      /* Allow large pace values in the
1895                                       * fast bin. */
1896                                      FRF_BZ_TX_PACE_BIN_TH,
1897                                      FFE_BZ_TX_PACE_RESERVED);
1898                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1899         }
1900 }
1901
1902 /* Register dump */
1903
1904 #define REGISTER_REVISION_A     1
1905 #define REGISTER_REVISION_B     2
1906 #define REGISTER_REVISION_C     3
1907 #define REGISTER_REVISION_Z     3       /* latest revision */
1908
1909 struct efx_nic_reg {
1910         u32 offset:24;
1911         u32 min_revision:2, max_revision:2;
1912 };
1913
1914 #define REGISTER(name, min_rev, max_rev) {                              \
1915         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1916         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1917 }
1918 #define REGISTER_AA(name) REGISTER(name, A, A)
1919 #define REGISTER_AB(name) REGISTER(name, A, B)
1920 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1921 #define REGISTER_BB(name) REGISTER(name, B, B)
1922 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1923 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1924
1925 static const struct efx_nic_reg efx_nic_regs[] = {
1926         REGISTER_AZ(ADR_REGION),
1927         REGISTER_AZ(INT_EN_KER),
1928         REGISTER_BZ(INT_EN_CHAR),
1929         REGISTER_AZ(INT_ADR_KER),
1930         REGISTER_BZ(INT_ADR_CHAR),
1931         /* INT_ACK_KER is WO */
1932         /* INT_ISR0 is RC */
1933         REGISTER_AZ(HW_INIT),
1934         REGISTER_CZ(USR_EV_CFG),
1935         REGISTER_AB(EE_SPI_HCMD),
1936         REGISTER_AB(EE_SPI_HADR),
1937         REGISTER_AB(EE_SPI_HDATA),
1938         REGISTER_AB(EE_BASE_PAGE),
1939         REGISTER_AB(EE_VPD_CFG0),
1940         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1941         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1942         /* PCIE_CORE_INDIRECT is indirect */
1943         REGISTER_AB(NIC_STAT),
1944         REGISTER_AB(GPIO_CTL),
1945         REGISTER_AB(GLB_CTL),
1946         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1947         REGISTER_BZ(DP_CTRL),
1948         REGISTER_AZ(MEM_STAT),
1949         REGISTER_AZ(CS_DEBUG),
1950         REGISTER_AZ(ALTERA_BUILD),
1951         REGISTER_AZ(CSR_SPARE),
1952         REGISTER_AB(PCIE_SD_CTL0123),
1953         REGISTER_AB(PCIE_SD_CTL45),
1954         REGISTER_AB(PCIE_PCS_CTL_STAT),
1955         /* DEBUG_DATA_OUT is not used */
1956         /* DRV_EV is WO */
1957         REGISTER_AZ(EVQ_CTL),
1958         REGISTER_AZ(EVQ_CNT1),
1959         REGISTER_AZ(EVQ_CNT2),
1960         REGISTER_AZ(BUF_TBL_CFG),
1961         REGISTER_AZ(SRM_RX_DC_CFG),
1962         REGISTER_AZ(SRM_TX_DC_CFG),
1963         REGISTER_AZ(SRM_CFG),
1964         /* BUF_TBL_UPD is WO */
1965         REGISTER_AZ(SRM_UPD_EVQ),
1966         REGISTER_AZ(SRAM_PARITY),
1967         REGISTER_AZ(RX_CFG),
1968         REGISTER_BZ(RX_FILTER_CTL),
1969         /* RX_FLUSH_DESCQ is WO */
1970         REGISTER_AZ(RX_DC_CFG),
1971         REGISTER_AZ(RX_DC_PF_WM),
1972         REGISTER_BZ(RX_RSS_TKEY),
1973         /* RX_NODESC_DROP is RC */
1974         REGISTER_AA(RX_SELF_RST),
1975         /* RX_DEBUG, RX_PUSH_DROP are not used */
1976         REGISTER_CZ(RX_RSS_IPV6_REG1),
1977         REGISTER_CZ(RX_RSS_IPV6_REG2),
1978         REGISTER_CZ(RX_RSS_IPV6_REG3),
1979         /* TX_FLUSH_DESCQ is WO */
1980         REGISTER_AZ(TX_DC_CFG),
1981         REGISTER_AA(TX_CHKSM_CFG),
1982         REGISTER_AZ(TX_CFG),
1983         /* TX_PUSH_DROP is not used */
1984         REGISTER_AZ(TX_RESERVED),
1985         REGISTER_BZ(TX_PACE),
1986         /* TX_PACE_DROP_QID is RC */
1987         REGISTER_BB(TX_VLAN),
1988         REGISTER_BZ(TX_IPFIL_PORTEN),
1989         REGISTER_AB(MD_TXD),
1990         REGISTER_AB(MD_RXD),
1991         REGISTER_AB(MD_CS),
1992         REGISTER_AB(MD_PHY_ADR),
1993         REGISTER_AB(MD_ID),
1994         /* MD_STAT is RC */
1995         REGISTER_AB(MAC_STAT_DMA),
1996         REGISTER_AB(MAC_CTRL),
1997         REGISTER_BB(GEN_MODE),
1998         REGISTER_AB(MAC_MC_HASH_REG0),
1999         REGISTER_AB(MAC_MC_HASH_REG1),
2000         REGISTER_AB(GM_CFG1),
2001         REGISTER_AB(GM_CFG2),
2002         /* GM_IPG and GM_HD are not used */
2003         REGISTER_AB(GM_MAX_FLEN),
2004         /* GM_TEST is not used */
2005         REGISTER_AB(GM_ADR1),
2006         REGISTER_AB(GM_ADR2),
2007         REGISTER_AB(GMF_CFG0),
2008         REGISTER_AB(GMF_CFG1),
2009         REGISTER_AB(GMF_CFG2),
2010         REGISTER_AB(GMF_CFG3),
2011         REGISTER_AB(GMF_CFG4),
2012         REGISTER_AB(GMF_CFG5),
2013         REGISTER_BB(TX_SRC_MAC_CTL),
2014         REGISTER_AB(XM_ADR_LO),
2015         REGISTER_AB(XM_ADR_HI),
2016         REGISTER_AB(XM_GLB_CFG),
2017         REGISTER_AB(XM_TX_CFG),
2018         REGISTER_AB(XM_RX_CFG),
2019         REGISTER_AB(XM_MGT_INT_MASK),
2020         REGISTER_AB(XM_FC),
2021         REGISTER_AB(XM_PAUSE_TIME),
2022         REGISTER_AB(XM_TX_PARAM),
2023         REGISTER_AB(XM_RX_PARAM),
2024         /* XM_MGT_INT_MSK (note no 'A') is RC */
2025         REGISTER_AB(XX_PWR_RST),
2026         REGISTER_AB(XX_SD_CTL),
2027         REGISTER_AB(XX_TXDRV_CTL),
2028         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2029         /* XX_CORE_STAT is partly RC */
2030 };
2031
2032 struct efx_nic_reg_table {
2033         u32 offset:24;
2034         u32 min_revision:2, max_revision:2;
2035         u32 step:6, rows:21;
2036 };
2037
2038 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2039         offset,                                                         \
2040         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
2041         step, rows                                                      \
2042 }
2043 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
2044         REGISTER_TABLE_DIMENSIONS(                                      \
2045                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
2046                 min_rev, max_rev,                                       \
2047                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
2048                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2049 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2050 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2051 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2052 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2053 #define REGISTER_TABLE_BB_CZ(name)                                      \
2054         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
2055                                   FR_BZ_ ## name ## _STEP,              \
2056                                   FR_BB_ ## name ## _ROWS),             \
2057         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
2058                                   FR_BZ_ ## name ## _STEP,              \
2059                                   FR_CZ_ ## name ## _ROWS)
2060 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2061
2062 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2063         /* DRIVER is not used */
2064         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2065         REGISTER_TABLE_BB(TX_IPFIL_TBL),
2066         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2067         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2068         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2069         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2070         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2071         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2072         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2073         /* We can't reasonably read all of the buffer table (up to 8MB!).
2074          * However this driver will only use a few entries.  Reading
2075          * 1K entries allows for some expansion of queue count and
2076          * size before we need to change the version. */
2077         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2078                                   A, A, 8, 1024),
2079         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2080                                   B, Z, 8, 1024),
2081         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2082         REGISTER_TABLE_BB_CZ(TIMER_TBL),
2083         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2084         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2085         /* TX_FILTER_TBL0 is huge and not used by this driver */
2086         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2087         REGISTER_TABLE_CZ(MC_TREG_SMEM),
2088         /* MSIX_PBA_TABLE is not mapped */
2089         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2090         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2091 };
2092
2093 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2094 {
2095         const struct efx_nic_reg *reg;
2096         const struct efx_nic_reg_table *table;
2097         size_t len = 0;
2098
2099         for (reg = efx_nic_regs;
2100              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2101              reg++)
2102                 if (efx->type->revision >= reg->min_revision &&
2103                     efx->type->revision <= reg->max_revision)
2104                         len += sizeof(efx_oword_t);
2105
2106         for (table = efx_nic_reg_tables;
2107              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2108              table++)
2109                 if (efx->type->revision >= table->min_revision &&
2110                     efx->type->revision <= table->max_revision)
2111                         len += table->rows * min_t(size_t, table->step, 16);
2112
2113         return len;
2114 }
2115
2116 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2117 {
2118         const struct efx_nic_reg *reg;
2119         const struct efx_nic_reg_table *table;
2120
2121         for (reg = efx_nic_regs;
2122              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2123              reg++) {
2124                 if (efx->type->revision >= reg->min_revision &&
2125                     efx->type->revision <= reg->max_revision) {
2126                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2127                         buf += sizeof(efx_oword_t);
2128                 }
2129         }
2130
2131         for (table = efx_nic_reg_tables;
2132              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2133              table++) {
2134                 size_t size, i;
2135
2136                 if (!(efx->type->revision >= table->min_revision &&
2137                       efx->type->revision <= table->max_revision))
2138                         continue;
2139
2140                 size = min_t(size_t, table->step, 16);
2141
2142                 for (i = 0; i < table->rows; i++) {
2143                         switch (table->step) {
2144                         case 4: /* 32-bit SRAM */
2145                                 efx_readd(efx, buf, table->offset + 4 * i);
2146                                 break;
2147                         case 8: /* 64-bit SRAM */
2148                                 efx_sram_readq(efx,
2149                                                efx->membase + table->offset,
2150                                                buf, i);
2151                                 break;
2152                         case 16: /* 128-bit-readable register */
2153                                 efx_reado_table(efx, buf, table->offset, i);
2154                                 break;
2155                         case 32: /* 128-bit register, interleaved */
2156                                 efx_reado_table(efx, buf, table->offset, 2 * i);
2157                                 break;
2158                         default:
2159                                 WARN_ON(1);
2160                                 return;
2161                         }
2162                         buf += size;
2163                 }
2164         }
2165 }