Linux 3.9-rc8
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
68                            efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85                                      unsigned int index)
86 {
87         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88                         value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93                                      unsigned int index)
94 {
95         return ((efx_qword_t *) (channel->eventq.addr)) +
96                 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116                                      const efx_oword_t *mask)
117 {
118         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123                            const struct efx_nic_register_test *regs,
124                            size_t n_regs)
125 {
126         unsigned address = 0, i, j;
127         efx_oword_t mask, imask, original, reg, buf;
128
129         for (i = 0; i < n_regs; ++i) {
130                 address = regs[i].address;
131                 mask = imask = regs[i].mask;
132                 EFX_INVERT_OWORD(imask);
133
134                 efx_reado(efx, &original, address);
135
136                 /* bit sweep on and off */
137                 for (j = 0; j < 128; j++) {
138                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
139                                 continue;
140
141                         /* Test this testable bit can be set in isolation */
142                         EFX_AND_OWORD(reg, original, mask);
143                         EFX_SET_OWORD32(reg, j, j, 1);
144
145                         efx_writeo(efx, &reg, address);
146                         efx_reado(efx, &buf, address);
147
148                         if (efx_masked_compare_oword(&reg, &buf, &mask))
149                                 goto fail;
150
151                         /* Test this testable bit can be cleared in isolation */
152                         EFX_OR_OWORD(reg, original, mask);
153                         EFX_SET_OWORD32(reg, j, j, 0);
154
155                         efx_writeo(efx, &reg, address);
156                         efx_reado(efx, &buf, address);
157
158                         if (efx_masked_compare_oword(&reg, &buf, &mask))
159                                 goto fail;
160                 }
161
162                 efx_writeo(efx, &original, address);
163         }
164
165         return 0;
166
167 fail:
168         netif_err(efx, hw, efx->net_dev,
169                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172         return -EIO;
173 }
174
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193         efx_qword_t buf_desc;
194         unsigned int index;
195         dma_addr_t dma_addr;
196         int i;
197
198         EFX_BUG_ON_PARANOID(!buffer->addr);
199
200         /* Write buffer descriptors to NIC */
201         for (i = 0; i < buffer->entries; i++) {
202                 index = buffer->index + i;
203                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204                 netif_dbg(efx, probe, efx->net_dev,
205                           "mapping special buffer %d at %llx\n",
206                           index, (unsigned long long)dma_addr);
207                 EFX_POPULATE_QWORD_3(buf_desc,
208                                      FRF_AZ_BUF_ADR_REGION, 0,
209                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211                 efx_write_buf_tbl(efx, &buf_desc, index);
212         }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219         efx_oword_t buf_tbl_upd;
220         unsigned int start = buffer->index;
221         unsigned int end = (buffer->index + buffer->entries - 1);
222
223         if (!buffer->entries)
224                 return;
225
226         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227                   buffer->index, buffer->index + buffer->entries - 1);
228
229         EFX_POPULATE_OWORD_4(buf_tbl_upd,
230                              FRF_AZ_BUF_UPD_CMD, 0,
231                              FRF_AZ_BUF_CLR_CMD, 1,
232                              FRF_AZ_BUF_CLR_END_ID, end,
233                              FRF_AZ_BUF_CLR_START_ID, start);
234         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247                                     struct efx_special_buffer *buffer,
248                                     unsigned int len)
249 {
250         len = ALIGN(len, EFX_BUF_SIZE);
251
252         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253                                           &buffer->dma_addr, GFP_KERNEL);
254         if (!buffer->addr)
255                 return -ENOMEM;
256         buffer->len = len;
257         buffer->entries = len / EFX_BUF_SIZE;
258         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260         /* Select new buffer ID */
261         buffer->index = efx->next_buffer_table;
262         efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264         BUG_ON(efx_sriov_enabled(efx) &&
265                efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268         netif_dbg(efx, probe, efx->net_dev,
269                   "allocating special buffers %d-%d at %llx+%x "
270                   "(virt %p phys %llx)\n", buffer->index,
271                   buffer->index + buffer->entries - 1,
272                   (u64)buffer->dma_addr, len,
273                   buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275         return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281         if (!buffer->addr)
282                 return;
283
284         netif_dbg(efx, hw, efx->net_dev,
285                   "deallocating special buffers %d-%d at %llx+%x "
286                   "(virt %p phys %llx)\n", buffer->index,
287                   buffer->index + buffer->entries - 1,
288                   (u64)buffer->dma_addr, buffer->len,
289                   buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292                           buffer->dma_addr);
293         buffer->addr = NULL;
294         buffer->entries = 0;
295 }
296
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status, MAC stats, etc.
301  *
302  **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305                          unsigned int len)
306 {
307         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308                                           &buffer->dma_addr, GFP_ATOMIC);
309         if (!buffer->addr)
310                 return -ENOMEM;
311         buffer->len = len;
312         memset(buffer->addr, 0, len);
313         return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318         if (buffer->addr) {
319                 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320                                   buffer->addr, buffer->dma_addr);
321                 buffer->addr = NULL;
322         }
323 }
324
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343         unsigned write_ptr;
344         efx_dword_t reg;
345
346         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348         efx_writed_page(tx_queue->efx, &reg,
349                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354                                     const efx_qword_t *txd)
355 {
356         unsigned write_ptr;
357         efx_oword_t reg;
358
359         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364                              FRF_AZ_TX_DESC_WPTR, write_ptr);
365         reg.qword[0] = *txd;
366         efx_writeo_page(tx_queue->efx, &reg,
367                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375         if (empty_read_count == 0)
376                 return false;
377
378         tx_queue->empty_read_count = 0;
379         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
380                 && tx_queue->write_count - write_count == 1;
381 }
382
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389
390         struct efx_tx_buffer *buffer;
391         efx_qword_t *txd;
392         unsigned write_ptr;
393         unsigned old_write_count = tx_queue->write_count;
394
395         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397         do {
398                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399                 buffer = &tx_queue->buffer[write_ptr];
400                 txd = efx_tx_desc(tx_queue, write_ptr);
401                 ++tx_queue->write_count;
402
403                 /* Create TX descriptor ring entry */
404                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405                 EFX_POPULATE_QWORD_4(*txd,
406                                      FSF_AZ_TX_KER_CONT,
407                                      buffer->flags & EFX_TX_BUF_CONT,
408                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409                                      FSF_AZ_TX_KER_BUF_REGION, 0,
410                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411         } while (tx_queue->write_count != tx_queue->insert_count);
412
413         wmb(); /* Ensure descriptors are written before they are fetched */
414
415         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416                 txd = efx_tx_desc(tx_queue,
417                                   old_write_count & tx_queue->ptr_mask);
418                 efx_push_tx_desc(tx_queue, txd);
419                 ++tx_queue->pushes;
420         } else {
421                 efx_notify_tx_desc(tx_queue);
422         }
423 }
424
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428         struct efx_nic *efx = tx_queue->efx;
429         unsigned entries;
430
431         entries = tx_queue->ptr_mask + 1;
432         return efx_alloc_special_buffer(efx, &tx_queue->txd,
433                                         entries * sizeof(efx_qword_t));
434 }
435
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438         struct efx_nic *efx = tx_queue->efx;
439         efx_oword_t reg;
440
441         /* Pin TX descriptor ring */
442         efx_init_special_buffer(efx, &tx_queue->txd);
443
444         /* Push TX descriptor ring to card */
445         EFX_POPULATE_OWORD_10(reg,
446                               FRF_AZ_TX_DESCQ_EN, 1,
447                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450                               FRF_AZ_TX_DESCQ_EVQ_ID,
451                               tx_queue->channel->channel,
452                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454                               FRF_AZ_TX_DESCQ_SIZE,
455                               __ffs(tx_queue->txd.entries),
456                               FRF_AZ_TX_DESCQ_TYPE, 0,
457                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463                                     !csum);
464         }
465
466         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467                          tx_queue->queue);
468
469         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470                 /* Only 128 bits in this register */
471                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472
473                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475                         __clear_bit_le(tx_queue->queue, &reg);
476                 else
477                         __set_bit_le(tx_queue->queue, &reg);
478                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479         }
480
481         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482                 EFX_POPULATE_OWORD_1(reg,
483                                      FRF_BZ_TX_PACE,
484                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485                                      FFE_BZ_TX_PACE_OFF :
486                                      FFE_BZ_TX_PACE_RESERVED);
487                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488                                  tx_queue->queue);
489         }
490 }
491
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494         struct efx_nic *efx = tx_queue->efx;
495         efx_oword_t tx_flush_descq;
496
497         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
498         atomic_set(&tx_queue->flush_outstanding, 1);
499
500         EFX_POPULATE_OWORD_2(tx_flush_descq,
501                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
502                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
503         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 }
505
506 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
507 {
508         struct efx_nic *efx = tx_queue->efx;
509         efx_oword_t tx_desc_ptr;
510
511         /* Remove TX descriptor ring from card */
512         EFX_ZERO_OWORD(tx_desc_ptr);
513         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514                          tx_queue->queue);
515
516         /* Unpin TX descriptor ring */
517         efx_fini_special_buffer(efx, &tx_queue->txd);
518 }
519
520 /* Free buffers backing TX queue */
521 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525
526 /**************************************************************************
527  *
528  * RX path
529  *
530  **************************************************************************/
531
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *
534 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
535 {
536         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 }
538
539 /* This creates an entry in the RX descriptor queue */
540 static inline void
541 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
542 {
543         struct efx_rx_buffer *rx_buf;
544         efx_qword_t *rxd;
545
546         rxd = efx_rx_desc(rx_queue, index);
547         rx_buf = efx_rx_buffer(rx_queue, index);
548         EFX_POPULATE_QWORD_3(*rxd,
549                              FSF_AZ_RX_KER_BUF_SIZE,
550                              rx_buf->len -
551                              rx_queue->efx->type->rx_buffer_padding,
552                              FSF_AZ_RX_KER_BUF_REGION, 0,
553                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557  * descriptor ring.
558  */
559 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561         struct efx_nic *efx = rx_queue->efx;
562         efx_dword_t reg;
563         unsigned write_ptr;
564
565         while (rx_queue->notified_count != rx_queue->added_count) {
566                 efx_build_rx_desc(
567                         rx_queue,
568                         rx_queue->notified_count & rx_queue->ptr_mask);
569                 ++rx_queue->notified_count;
570         }
571
572         wmb();
573         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
574         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
575         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
576                         efx_rx_queue_index(rx_queue));
577 }
578
579 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
580 {
581         struct efx_nic *efx = rx_queue->efx;
582         unsigned entries;
583
584         entries = rx_queue->ptr_mask + 1;
585         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
586                                         entries * sizeof(efx_qword_t));
587 }
588
589 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
590 {
591         efx_oword_t rx_desc_ptr;
592         struct efx_nic *efx = rx_queue->efx;
593         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
594         bool iscsi_digest_en = is_b0;
595
596         netif_dbg(efx, hw, efx->net_dev,
597                   "RX queue %d ring in special buffers %d-%d\n",
598                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
599                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
600
601         /* Pin RX descriptor ring */
602         efx_init_special_buffer(efx, &rx_queue->rxd);
603
604         /* Push RX descriptor ring to card */
605         EFX_POPULATE_OWORD_10(rx_desc_ptr,
606                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
607                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
608                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
609                               FRF_AZ_RX_DESCQ_EVQ_ID,
610                               efx_rx_queue_channel(rx_queue)->channel,
611                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
612                               FRF_AZ_RX_DESCQ_LABEL,
613                               efx_rx_queue_index(rx_queue),
614                               FRF_AZ_RX_DESCQ_SIZE,
615                               __ffs(rx_queue->rxd.entries),
616                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
617                               /* For >=B0 this is scatter so disable */
618                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
619                               FRF_AZ_RX_DESCQ_EN, 1);
620         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
621                          efx_rx_queue_index(rx_queue));
622 }
623
624 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
625 {
626         struct efx_nic *efx = rx_queue->efx;
627         efx_oword_t rx_flush_descq;
628
629         EFX_POPULATE_OWORD_2(rx_flush_descq,
630                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
631                              FRF_AZ_RX_FLUSH_DESCQ,
632                              efx_rx_queue_index(rx_queue));
633         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
634 }
635
636 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
637 {
638         efx_oword_t rx_desc_ptr;
639         struct efx_nic *efx = rx_queue->efx;
640
641         /* Remove RX descriptor ring from card */
642         EFX_ZERO_OWORD(rx_desc_ptr);
643         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
644                          efx_rx_queue_index(rx_queue));
645
646         /* Unpin RX descriptor ring */
647         efx_fini_special_buffer(efx, &rx_queue->rxd);
648 }
649
650 /* Free buffers backing RX queue */
651 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
652 {
653         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
654 }
655
656 /**************************************************************************
657  *
658  * Flush handling
659  *
660  **************************************************************************/
661
662 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
663  * or more RX flushes can be kicked off.
664  */
665 static bool efx_flush_wake(struct efx_nic *efx)
666 {
667         /* Ensure that all updates are visible to efx_nic_flush_queues() */
668         smp_mb();
669
670         return (atomic_read(&efx->drain_pending) == 0 ||
671                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
672                  && atomic_read(&efx->rxq_flush_pending) > 0));
673 }
674
675 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
676 {
677         bool i = true;
678         efx_oword_t txd_ptr_tbl;
679         struct efx_channel *channel;
680         struct efx_tx_queue *tx_queue;
681
682         efx_for_each_channel(channel, efx) {
683                 efx_for_each_channel_tx_queue(tx_queue, channel) {
684                         efx_reado_table(efx, &txd_ptr_tbl,
685                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
686                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
687                                             FRF_AZ_TX_DESCQ_FLUSH) ||
688                             EFX_OWORD_FIELD(txd_ptr_tbl,
689                                             FRF_AZ_TX_DESCQ_EN)) {
690                                 netif_dbg(efx, hw, efx->net_dev,
691                                           "flush did not complete on TXQ %d\n",
692                                           tx_queue->queue);
693                                 i = false;
694                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
695                                                   1, 0)) {
696                                 /* The flush is complete, but we didn't
697                                  * receive a flush completion event
698                                  */
699                                 netif_dbg(efx, hw, efx->net_dev,
700                                           "flush complete on TXQ %d, so drain "
701                                           "the queue\n", tx_queue->queue);
702                                 /* Don't need to increment drain_pending as it
703                                  * has already been incremented for the queues
704                                  * which did not drain
705                                  */
706                                 efx_magic_event(channel,
707                                                 EFX_CHANNEL_MAGIC_TX_DRAIN(
708                                                         tx_queue));
709                         }
710                 }
711         }
712
713         return i;
714 }
715
716 /* Flush all the transmit queues, and continue flushing receive queues until
717  * they're all flushed. Wait for the DRAIN events to be recieved so that there
718  * are no more RX and TX events left on any channel. */
719 int efx_nic_flush_queues(struct efx_nic *efx)
720 {
721         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
722         struct efx_channel *channel;
723         struct efx_rx_queue *rx_queue;
724         struct efx_tx_queue *tx_queue;
725         int rc = 0;
726
727         efx->type->prepare_flush(efx);
728
729         efx_for_each_channel(channel, efx) {
730                 efx_for_each_channel_tx_queue(tx_queue, channel) {
731                         atomic_inc(&efx->drain_pending);
732                         efx_flush_tx_queue(tx_queue);
733                 }
734                 efx_for_each_channel_rx_queue(rx_queue, channel) {
735                         atomic_inc(&efx->drain_pending);
736                         rx_queue->flush_pending = true;
737                         atomic_inc(&efx->rxq_flush_pending);
738                 }
739         }
740
741         while (timeout && atomic_read(&efx->drain_pending) > 0) {
742                 /* If SRIOV is enabled, then offload receive queue flushing to
743                  * the firmware (though we will still have to poll for
744                  * completion). If that fails, fall back to the old scheme.
745                  */
746                 if (efx_sriov_enabled(efx)) {
747                         rc = efx_mcdi_flush_rxqs(efx);
748                         if (!rc)
749                                 goto wait;
750                 }
751
752                 /* The hardware supports four concurrent rx flushes, each of
753                  * which may need to be retried if there is an outstanding
754                  * descriptor fetch
755                  */
756                 efx_for_each_channel(channel, efx) {
757                         efx_for_each_channel_rx_queue(rx_queue, channel) {
758                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
759                                     EFX_RX_FLUSH_COUNT)
760                                         break;
761
762                                 if (rx_queue->flush_pending) {
763                                         rx_queue->flush_pending = false;
764                                         atomic_dec(&efx->rxq_flush_pending);
765                                         atomic_inc(&efx->rxq_flush_outstanding);
766                                         efx_flush_rx_queue(rx_queue);
767                                 }
768                         }
769                 }
770
771         wait:
772                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
773                                              timeout);
774         }
775
776         if (atomic_read(&efx->drain_pending) &&
777             !efx_check_tx_flush_complete(efx)) {
778                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
779                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
780                           atomic_read(&efx->rxq_flush_outstanding),
781                           atomic_read(&efx->rxq_flush_pending));
782                 rc = -ETIMEDOUT;
783
784                 atomic_set(&efx->drain_pending, 0);
785                 atomic_set(&efx->rxq_flush_pending, 0);
786                 atomic_set(&efx->rxq_flush_outstanding, 0);
787         }
788
789         efx->type->finish_flush(efx);
790
791         return rc;
792 }
793
794 /**************************************************************************
795  *
796  * Event queue processing
797  * Event queues are processed by per-channel tasklets.
798  *
799  **************************************************************************/
800
801 /* Update a channel's event queue's read pointer (RPTR) register
802  *
803  * This writes the EVQ_RPTR_REG register for the specified channel's
804  * event queue.
805  */
806 void efx_nic_eventq_read_ack(struct efx_channel *channel)
807 {
808         efx_dword_t reg;
809         struct efx_nic *efx = channel->efx;
810
811         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
812                              channel->eventq_read_ptr & channel->eventq_mask);
813
814         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
815          * of 4 bytes, but it is really 16 bytes just like later revisions.
816          */
817         efx_writed(efx, &reg,
818                    efx->type->evq_rptr_tbl_base +
819                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
820 }
821
822 /* Use HW to insert a SW defined event */
823 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
824                         efx_qword_t *event)
825 {
826         efx_oword_t drv_ev_reg;
827
828         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
829                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
830         drv_ev_reg.u32[0] = event->u32[0];
831         drv_ev_reg.u32[1] = event->u32[1];
832         drv_ev_reg.u32[2] = 0;
833         drv_ev_reg.u32[3] = 0;
834         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
835         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
836 }
837
838 static void efx_magic_event(struct efx_channel *channel, u32 magic)
839 {
840         efx_qword_t event;
841
842         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
843                              FSE_AZ_EV_CODE_DRV_GEN_EV,
844                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
845         efx_generate_event(channel->efx, channel->channel, &event);
846 }
847
848 /* Handle a transmit completion event
849  *
850  * The NIC batches TX completion events; the message we receive is of
851  * the form "complete all TX events up to this index".
852  */
853 static int
854 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
855 {
856         unsigned int tx_ev_desc_ptr;
857         unsigned int tx_ev_q_label;
858         struct efx_tx_queue *tx_queue;
859         struct efx_nic *efx = channel->efx;
860         int tx_packets = 0;
861
862         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
863                 return 0;
864
865         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
866                 /* Transmit completion */
867                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
868                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
869                 tx_queue = efx_channel_get_tx_queue(
870                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
871                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
872                               tx_queue->ptr_mask);
873                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
874         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
875                 /* Rewrite the FIFO write pointer */
876                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
877                 tx_queue = efx_channel_get_tx_queue(
878                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
879
880                 netif_tx_lock(efx->net_dev);
881                 efx_notify_tx_desc(tx_queue);
882                 netif_tx_unlock(efx->net_dev);
883         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
884                    EFX_WORKAROUND_10727(efx)) {
885                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
886         } else {
887                 netif_err(efx, tx_err, efx->net_dev,
888                           "channel %d unexpected TX event "
889                           EFX_QWORD_FMT"\n", channel->channel,
890                           EFX_QWORD_VAL(*event));
891         }
892
893         return tx_packets;
894 }
895
896 /* Detect errors included in the rx_evt_pkt_ok bit. */
897 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
898                                 const efx_qword_t *event)
899 {
900         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
901         struct efx_nic *efx = rx_queue->efx;
902         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
903         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
904         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
905         bool rx_ev_other_err, rx_ev_pause_frm;
906         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
907         unsigned rx_ev_pkt_type;
908
909         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
910         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
911         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
912         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
913         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
914                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
915         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
916                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
917         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
918                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
919         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
920         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
921         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
922                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
923         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
924
925         /* Every error apart from tobe_disc and pause_frm */
926         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
927                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
928                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
929
930         /* Count errors that are not in MAC stats.  Ignore expected
931          * checksum errors during self-test. */
932         if (rx_ev_frm_trunc)
933                 ++channel->n_rx_frm_trunc;
934         else if (rx_ev_tobe_disc)
935                 ++channel->n_rx_tobe_disc;
936         else if (!efx->loopback_selftest) {
937                 if (rx_ev_ip_hdr_chksum_err)
938                         ++channel->n_rx_ip_hdr_chksum_err;
939                 else if (rx_ev_tcp_udp_chksum_err)
940                         ++channel->n_rx_tcp_udp_chksum_err;
941         }
942
943         /* TOBE_DISC is expected on unicast mismatches; don't print out an
944          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
945          * to a FIFO overflow.
946          */
947 #ifdef DEBUG
948         if (rx_ev_other_err && net_ratelimit()) {
949                 netif_dbg(efx, rx_err, efx->net_dev,
950                           " RX queue %d unexpected RX event "
951                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
952                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
953                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
954                           rx_ev_ip_hdr_chksum_err ?
955                           " [IP_HDR_CHKSUM_ERR]" : "",
956                           rx_ev_tcp_udp_chksum_err ?
957                           " [TCP_UDP_CHKSUM_ERR]" : "",
958                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
959                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
960                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
961                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
962                           rx_ev_pause_frm ? " [PAUSE]" : "");
963         }
964 #endif
965
966         /* The frame must be discarded if any of these are true. */
967         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
968                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
969                 EFX_RX_PKT_DISCARD : 0;
970 }
971
972 /* Handle receive events that are not in-order. */
973 static void
974 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
975 {
976         struct efx_nic *efx = rx_queue->efx;
977         unsigned expected, dropped;
978
979         expected = rx_queue->removed_count & rx_queue->ptr_mask;
980         dropped = (index - expected) & rx_queue->ptr_mask;
981         netif_info(efx, rx_err, efx->net_dev,
982                    "dropped %d events (index=%d expected=%d)\n",
983                    dropped, index, expected);
984
985         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
986                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
987 }
988
989 /* Handle a packet received event
990  *
991  * The NIC gives a "discard" flag if it's a unicast packet with the
992  * wrong destination address
993  * Also "is multicast" and "matches multicast filter" flags can be used to
994  * discard non-matching multicast packets.
995  */
996 static void
997 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
998 {
999         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1000         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1001         unsigned expected_ptr;
1002         bool rx_ev_pkt_ok;
1003         u16 flags;
1004         struct efx_rx_queue *rx_queue;
1005         struct efx_nic *efx = channel->efx;
1006
1007         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1008                 return;
1009
1010         /* Basic packet information */
1011         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1012         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1013         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1014         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1015         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1016         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1017                 channel->channel);
1018
1019         rx_queue = efx_channel_get_rx_queue(channel);
1020
1021         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1022         expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1023         if (unlikely(rx_ev_desc_ptr != expected_ptr))
1024                 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1025
1026         if (likely(rx_ev_pkt_ok)) {
1027                 /* If packet is marked as OK and packet type is TCP/IP or
1028                  * UDP/IP, then we can rely on the hardware checksum.
1029                  */
1030                 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1031                          rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1032                         EFX_RX_PKT_CSUMMED : 0;
1033         } else {
1034                 flags = efx_handle_rx_not_ok(rx_queue, event);
1035         }
1036
1037         /* Detect multicast packets that didn't match the filter */
1038         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1039         if (rx_ev_mcast_pkt) {
1040                 unsigned int rx_ev_mcast_hash_match =
1041                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1042
1043                 if (unlikely(!rx_ev_mcast_hash_match)) {
1044                         ++channel->n_rx_mcast_mismatch;
1045                         flags |= EFX_RX_PKT_DISCARD;
1046                 }
1047         }
1048
1049         channel->irq_mod_score += 2;
1050
1051         /* Handle received packet */
1052         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1053 }
1054
1055 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1056  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1057  * of all transmit completions.
1058  */
1059 static void
1060 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1061 {
1062         struct efx_tx_queue *tx_queue;
1063         int qid;
1064
1065         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1066         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1067                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1068                                             qid % EFX_TXQ_TYPES);
1069                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1070                         efx_magic_event(tx_queue->channel,
1071                                         EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1072                 }
1073         }
1074 }
1075
1076 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1077  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1078  * the RX queue back to the mask of RX queues in need of flushing.
1079  */
1080 static void
1081 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082 {
1083         struct efx_channel *channel;
1084         struct efx_rx_queue *rx_queue;
1085         int qid;
1086         bool failed;
1087
1088         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1089         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1090         if (qid >= efx->n_channels)
1091                 return;
1092         channel = efx_get_channel(efx, qid);
1093         if (!efx_channel_has_rx_queue(channel))
1094                 return;
1095         rx_queue = efx_channel_get_rx_queue(channel);
1096
1097         if (failed) {
1098                 netif_info(efx, hw, efx->net_dev,
1099                            "RXQ %d flush retry\n", qid);
1100                 rx_queue->flush_pending = true;
1101                 atomic_inc(&efx->rxq_flush_pending);
1102         } else {
1103                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1104                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1105         }
1106         atomic_dec(&efx->rxq_flush_outstanding);
1107         if (efx_flush_wake(efx))
1108                 wake_up(&efx->flush_wq);
1109 }
1110
1111 static void
1112 efx_handle_drain_event(struct efx_channel *channel)
1113 {
1114         struct efx_nic *efx = channel->efx;
1115
1116         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1117         atomic_dec(&efx->drain_pending);
1118         if (efx_flush_wake(efx))
1119                 wake_up(&efx->flush_wq);
1120 }
1121
1122 static void
1123 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1124 {
1125         struct efx_nic *efx = channel->efx;
1126         struct efx_rx_queue *rx_queue =
1127                 efx_channel_has_rx_queue(channel) ?
1128                 efx_channel_get_rx_queue(channel) : NULL;
1129         unsigned magic, code;
1130
1131         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1132         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1133
1134         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1135                 channel->event_test_cpu = raw_smp_processor_id();
1136         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1137                 /* The queue must be empty, so we won't receive any rx
1138                  * events, so efx_process_channel() won't refill the
1139                  * queue. Refill it here */
1140                 efx_fast_push_rx_descriptors(rx_queue);
1141         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1142                 rx_queue->enabled = false;
1143                 efx_handle_drain_event(channel);
1144         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1145                 efx_handle_drain_event(channel);
1146         } else {
1147                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1148                           "generated event "EFX_QWORD_FMT"\n",
1149                           channel->channel, EFX_QWORD_VAL(*event));
1150         }
1151 }
1152
1153 static void
1154 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1155 {
1156         struct efx_nic *efx = channel->efx;
1157         unsigned int ev_sub_code;
1158         unsigned int ev_sub_data;
1159
1160         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1161         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1162
1163         switch (ev_sub_code) {
1164         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1165                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1166                            channel->channel, ev_sub_data);
1167                 efx_handle_tx_flush_done(efx, event);
1168                 efx_sriov_tx_flush_done(efx, event);
1169                 break;
1170         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1171                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1172                            channel->channel, ev_sub_data);
1173                 efx_handle_rx_flush_done(efx, event);
1174                 efx_sriov_rx_flush_done(efx, event);
1175                 break;
1176         case FSE_AZ_EVQ_INIT_DONE_EV:
1177                 netif_dbg(efx, hw, efx->net_dev,
1178                           "channel %d EVQ %d initialised\n",
1179                           channel->channel, ev_sub_data);
1180                 break;
1181         case FSE_AZ_SRM_UPD_DONE_EV:
1182                 netif_vdbg(efx, hw, efx->net_dev,
1183                            "channel %d SRAM update done\n", channel->channel);
1184                 break;
1185         case FSE_AZ_WAKE_UP_EV:
1186                 netif_vdbg(efx, hw, efx->net_dev,
1187                            "channel %d RXQ %d wakeup event\n",
1188                            channel->channel, ev_sub_data);
1189                 break;
1190         case FSE_AZ_TIMER_EV:
1191                 netif_vdbg(efx, hw, efx->net_dev,
1192                            "channel %d RX queue %d timer expired\n",
1193                            channel->channel, ev_sub_data);
1194                 break;
1195         case FSE_AA_RX_RECOVER_EV:
1196                 netif_err(efx, rx_err, efx->net_dev,
1197                           "channel %d seen DRIVER RX_RESET event. "
1198                         "Resetting.\n", channel->channel);
1199                 atomic_inc(&efx->rx_reset);
1200                 efx_schedule_reset(efx,
1201                                    EFX_WORKAROUND_6555(efx) ?
1202                                    RESET_TYPE_RX_RECOVERY :
1203                                    RESET_TYPE_DISABLE);
1204                 break;
1205         case FSE_BZ_RX_DSC_ERROR_EV:
1206                 if (ev_sub_data < EFX_VI_BASE) {
1207                         netif_err(efx, rx_err, efx->net_dev,
1208                                   "RX DMA Q %d reports descriptor fetch error."
1209                                   " RX Q %d is disabled.\n", ev_sub_data,
1210                                   ev_sub_data);
1211                         efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1212                 } else
1213                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1214                 break;
1215         case FSE_BZ_TX_DSC_ERROR_EV:
1216                 if (ev_sub_data < EFX_VI_BASE) {
1217                         netif_err(efx, tx_err, efx->net_dev,
1218                                   "TX DMA Q %d reports descriptor fetch error."
1219                                   " TX Q %d is disabled.\n", ev_sub_data,
1220                                   ev_sub_data);
1221                         efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1222                 } else
1223                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1224                 break;
1225         default:
1226                 netif_vdbg(efx, hw, efx->net_dev,
1227                            "channel %d unknown driver event code %d "
1228                            "data %04x\n", channel->channel, ev_sub_code,
1229                            ev_sub_data);
1230                 break;
1231         }
1232 }
1233
1234 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1235 {
1236         struct efx_nic *efx = channel->efx;
1237         unsigned int read_ptr;
1238         efx_qword_t event, *p_event;
1239         int ev_code;
1240         int tx_packets = 0;
1241         int spent = 0;
1242
1243         read_ptr = channel->eventq_read_ptr;
1244
1245         for (;;) {
1246                 p_event = efx_event(channel, read_ptr);
1247                 event = *p_event;
1248
1249                 if (!efx_event_present(&event))
1250                         /* End of events */
1251                         break;
1252
1253                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1254                            "channel %d event is "EFX_QWORD_FMT"\n",
1255                            channel->channel, EFX_QWORD_VAL(event));
1256
1257                 /* Clear this event by marking it all ones */
1258                 EFX_SET_QWORD(*p_event);
1259
1260                 ++read_ptr;
1261
1262                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1263
1264                 switch (ev_code) {
1265                 case FSE_AZ_EV_CODE_RX_EV:
1266                         efx_handle_rx_event(channel, &event);
1267                         if (++spent == budget)
1268                                 goto out;
1269                         break;
1270                 case FSE_AZ_EV_CODE_TX_EV:
1271                         tx_packets += efx_handle_tx_event(channel, &event);
1272                         if (tx_packets > efx->txq_entries) {
1273                                 spent = budget;
1274                                 goto out;
1275                         }
1276                         break;
1277                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1278                         efx_handle_generated_event(channel, &event);
1279                         break;
1280                 case FSE_AZ_EV_CODE_DRIVER_EV:
1281                         efx_handle_driver_event(channel, &event);
1282                         break;
1283                 case FSE_CZ_EV_CODE_USER_EV:
1284                         efx_sriov_event(channel, &event);
1285                         break;
1286                 case FSE_CZ_EV_CODE_MCDI_EV:
1287                         efx_mcdi_process_event(channel, &event);
1288                         break;
1289                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1290                         if (efx->type->handle_global_event &&
1291                             efx->type->handle_global_event(channel, &event))
1292                                 break;
1293                         /* else fall through */
1294                 default:
1295                         netif_err(channel->efx, hw, channel->efx->net_dev,
1296                                   "channel %d unknown event type %d (data "
1297                                   EFX_QWORD_FMT ")\n", channel->channel,
1298                                   ev_code, EFX_QWORD_VAL(event));
1299                 }
1300         }
1301
1302 out:
1303         channel->eventq_read_ptr = read_ptr;
1304         return spent;
1305 }
1306
1307 /* Check whether an event is present in the eventq at the current
1308  * read pointer.  Only useful for self-test.
1309  */
1310 bool efx_nic_event_present(struct efx_channel *channel)
1311 {
1312         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1313 }
1314
1315 /* Allocate buffer table entries for event queue */
1316 int efx_nic_probe_eventq(struct efx_channel *channel)
1317 {
1318         struct efx_nic *efx = channel->efx;
1319         unsigned entries;
1320
1321         entries = channel->eventq_mask + 1;
1322         return efx_alloc_special_buffer(efx, &channel->eventq,
1323                                         entries * sizeof(efx_qword_t));
1324 }
1325
1326 void efx_nic_init_eventq(struct efx_channel *channel)
1327 {
1328         efx_oword_t reg;
1329         struct efx_nic *efx = channel->efx;
1330
1331         netif_dbg(efx, hw, efx->net_dev,
1332                   "channel %d event queue in special buffers %d-%d\n",
1333                   channel->channel, channel->eventq.index,
1334                   channel->eventq.index + channel->eventq.entries - 1);
1335
1336         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1337                 EFX_POPULATE_OWORD_3(reg,
1338                                      FRF_CZ_TIMER_Q_EN, 1,
1339                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1340                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1341                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1342         }
1343
1344         /* Pin event queue buffer */
1345         efx_init_special_buffer(efx, &channel->eventq);
1346
1347         /* Fill event queue with all ones (i.e. empty events) */
1348         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1349
1350         /* Push event queue to card */
1351         EFX_POPULATE_OWORD_3(reg,
1352                              FRF_AZ_EVQ_EN, 1,
1353                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1354                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1355         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1356                          channel->channel);
1357
1358         efx->type->push_irq_moderation(channel);
1359 }
1360
1361 void efx_nic_fini_eventq(struct efx_channel *channel)
1362 {
1363         efx_oword_t reg;
1364         struct efx_nic *efx = channel->efx;
1365
1366         /* Remove event queue from card */
1367         EFX_ZERO_OWORD(reg);
1368         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1369                          channel->channel);
1370         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1371                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1372
1373         /* Unpin event queue */
1374         efx_fini_special_buffer(efx, &channel->eventq);
1375 }
1376
1377 /* Free buffers backing event queue */
1378 void efx_nic_remove_eventq(struct efx_channel *channel)
1379 {
1380         efx_free_special_buffer(channel->efx, &channel->eventq);
1381 }
1382
1383
1384 void efx_nic_event_test_start(struct efx_channel *channel)
1385 {
1386         channel->event_test_cpu = -1;
1387         smp_wmb();
1388         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389 }
1390
1391 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1392 {
1393         efx_magic_event(efx_rx_queue_channel(rx_queue),
1394                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396
1397 /**************************************************************************
1398  *
1399  * Hardware interrupts
1400  * The hardware interrupt handler does very little work; all the event
1401  * queue processing is carried out by per-channel tasklets.
1402  *
1403  **************************************************************************/
1404
1405 /* Enable/disable/generate interrupts */
1406 static inline void efx_nic_interrupts(struct efx_nic *efx,
1407                                       bool enabled, bool force)
1408 {
1409         efx_oword_t int_en_reg_ker;
1410
1411         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413                              FRF_AZ_KER_INT_KER, force,
1414                              FRF_AZ_DRV_INT_EN_KER, enabled);
1415         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417
1418 void efx_nic_enable_interrupts(struct efx_nic *efx)
1419 {
1420         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423         efx_nic_interrupts(efx, true, false);
1424 }
1425
1426 void efx_nic_disable_interrupts(struct efx_nic *efx)
1427 {
1428         /* Disable interrupts */
1429         efx_nic_interrupts(efx, false, false);
1430 }
1431
1432 /* Generate a test interrupt
1433  * Interrupt must already have been enabled, otherwise nasty things
1434  * may happen.
1435  */
1436 void efx_nic_irq_test_start(struct efx_nic *efx)
1437 {
1438         efx->last_irq_cpu = -1;
1439         smp_wmb();
1440         efx_nic_interrupts(efx, true, true);
1441 }
1442
1443 /* Process a fatal interrupt
1444  * Disable bus mastering ASAP and schedule a reset
1445  */
1446 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1447 {
1448         struct falcon_nic_data *nic_data = efx->nic_data;
1449         efx_oword_t *int_ker = efx->irq_status.addr;
1450         efx_oword_t fatal_intr;
1451         int error, mem_perr;
1452
1453         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1454         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1455
1456         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1457                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1458                   EFX_OWORD_VAL(fatal_intr),
1459                   error ? "disabling bus mastering" : "no recognised error");
1460
1461         /* If this is a memory parity error dump which blocks are offending */
1462         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1463                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1464         if (mem_perr) {
1465                 efx_oword_t reg;
1466                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1467                 netif_err(efx, hw, efx->net_dev,
1468                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1469                           EFX_OWORD_VAL(reg));
1470         }
1471
1472         /* Disable both devices */
1473         pci_clear_master(efx->pci_dev);
1474         if (efx_nic_is_dual_func(efx))
1475                 pci_clear_master(nic_data->pci_dev2);
1476         efx_nic_disable_interrupts(efx);
1477
1478         /* Count errors and reset or disable the NIC accordingly */
1479         if (efx->int_error_count == 0 ||
1480             time_after(jiffies, efx->int_error_expire)) {
1481                 efx->int_error_count = 0;
1482                 efx->int_error_expire =
1483                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1484         }
1485         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1486                 netif_err(efx, hw, efx->net_dev,
1487                           "SYSTEM ERROR - reset scheduled\n");
1488                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1489         } else {
1490                 netif_err(efx, hw, efx->net_dev,
1491                           "SYSTEM ERROR - max number of errors seen."
1492                           "NIC will be disabled\n");
1493                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1494         }
1495
1496         return IRQ_HANDLED;
1497 }
1498
1499 /* Handle a legacy interrupt
1500  * Acknowledges the interrupt and schedule event queue processing.
1501  */
1502 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1503 {
1504         struct efx_nic *efx = dev_id;
1505         efx_oword_t *int_ker = efx->irq_status.addr;
1506         irqreturn_t result = IRQ_NONE;
1507         struct efx_channel *channel;
1508         efx_dword_t reg;
1509         u32 queues;
1510         int syserr;
1511
1512         /* Could this be ours?  If interrupts are disabled then the
1513          * channel state may not be valid.
1514          */
1515         if (!efx->legacy_irq_enabled)
1516                 return result;
1517
1518         /* Read the ISR which also ACKs the interrupts */
1519         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1520         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1521
1522         /* Handle non-event-queue sources */
1523         if (queues & (1U << efx->irq_level)) {
1524                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1525                 if (unlikely(syserr))
1526                         return efx_nic_fatal_interrupt(efx);
1527                 efx->last_irq_cpu = raw_smp_processor_id();
1528         }
1529
1530         if (queues != 0) {
1531                 if (EFX_WORKAROUND_15783(efx))
1532                         efx->irq_zero_count = 0;
1533
1534                 /* Schedule processing of any interrupting queues */
1535                 efx_for_each_channel(channel, efx) {
1536                         if (queues & 1)
1537                                 efx_schedule_channel_irq(channel);
1538                         queues >>= 1;
1539                 }
1540                 result = IRQ_HANDLED;
1541
1542         } else if (EFX_WORKAROUND_15783(efx)) {
1543                 efx_qword_t *event;
1544
1545                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1546                  * because this might be a shared interrupt. */
1547                 if (efx->irq_zero_count++ == 0)
1548                         result = IRQ_HANDLED;
1549
1550                 /* Ensure we schedule or rearm all event queues */
1551                 efx_for_each_channel(channel, efx) {
1552                         event = efx_event(channel, channel->eventq_read_ptr);
1553                         if (efx_event_present(event))
1554                                 efx_schedule_channel_irq(channel);
1555                         else
1556                                 efx_nic_eventq_read_ack(channel);
1557                 }
1558         }
1559
1560         if (result == IRQ_HANDLED)
1561                 netif_vdbg(efx, intr, efx->net_dev,
1562                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1563                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1564
1565         return result;
1566 }
1567
1568 /* Handle an MSI interrupt
1569  *
1570  * Handle an MSI hardware interrupt.  This routine schedules event
1571  * queue processing.  No interrupt acknowledgement cycle is necessary.
1572  * Also, we never need to check that the interrupt is for us, since
1573  * MSI interrupts cannot be shared.
1574  */
1575 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1576 {
1577         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1578         struct efx_nic *efx = channel->efx;
1579         efx_oword_t *int_ker = efx->irq_status.addr;
1580         int syserr;
1581
1582         netif_vdbg(efx, intr, efx->net_dev,
1583                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1584                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1585
1586         /* Handle non-event-queue sources */
1587         if (channel->channel == efx->irq_level) {
1588                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1589                 if (unlikely(syserr))
1590                         return efx_nic_fatal_interrupt(efx);
1591                 efx->last_irq_cpu = raw_smp_processor_id();
1592         }
1593
1594         /* Schedule processing of the channel */
1595         efx_schedule_channel_irq(channel);
1596
1597         return IRQ_HANDLED;
1598 }
1599
1600
1601 /* Setup RSS indirection table.
1602  * This maps from the hash value of the packet to RXQ
1603  */
1604 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1605 {
1606         size_t i = 0;
1607         efx_dword_t dword;
1608
1609         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1610                 return;
1611
1612         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1613                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1614
1615         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1616                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1617                                      efx->rx_indir_table[i]);
1618                 efx_writed(efx, &dword,
1619                            FR_BZ_RX_INDIRECTION_TBL +
1620                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1621         }
1622 }
1623
1624 /* Hook interrupt handler(s)
1625  * Try MSI and then legacy interrupts.
1626  */
1627 int efx_nic_init_interrupt(struct efx_nic *efx)
1628 {
1629         struct efx_channel *channel;
1630         int rc;
1631
1632         if (!EFX_INT_MODE_USE_MSI(efx)) {
1633                 irq_handler_t handler;
1634                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1635                         handler = efx_legacy_interrupt;
1636                 else
1637                         handler = falcon_legacy_interrupt_a1;
1638
1639                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1640                                  efx->name, efx);
1641                 if (rc) {
1642                         netif_err(efx, drv, efx->net_dev,
1643                                   "failed to hook legacy IRQ %d\n",
1644                                   efx->pci_dev->irq);
1645                         goto fail1;
1646                 }
1647                 return 0;
1648         }
1649
1650         /* Hook MSI or MSI-X interrupt */
1651         efx_for_each_channel(channel, efx) {
1652                 rc = request_irq(channel->irq, efx_msi_interrupt,
1653                                  IRQF_PROBE_SHARED, /* Not shared */
1654                                  efx->channel_name[channel->channel],
1655                                  &efx->channel[channel->channel]);
1656                 if (rc) {
1657                         netif_err(efx, drv, efx->net_dev,
1658                                   "failed to hook IRQ %d\n", channel->irq);
1659                         goto fail2;
1660                 }
1661         }
1662
1663         return 0;
1664
1665  fail2:
1666         efx_for_each_channel(channel, efx)
1667                 free_irq(channel->irq, &efx->channel[channel->channel]);
1668  fail1:
1669         return rc;
1670 }
1671
1672 void efx_nic_fini_interrupt(struct efx_nic *efx)
1673 {
1674         struct efx_channel *channel;
1675         efx_oword_t reg;
1676
1677         /* Disable MSI/MSI-X interrupts */
1678         efx_for_each_channel(channel, efx) {
1679                 if (channel->irq)
1680                         free_irq(channel->irq, &efx->channel[channel->channel]);
1681         }
1682
1683         /* ACK legacy interrupt */
1684         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1685                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1686         else
1687                 falcon_irq_ack_a1(efx);
1688
1689         /* Disable legacy interrupt */
1690         if (efx->legacy_irq)
1691                 free_irq(efx->legacy_irq, efx);
1692 }
1693
1694 /* Looks at available SRAM resources and works out how many queues we
1695  * can support, and where things like descriptor caches should live.
1696  *
1697  * SRAM is split up as follows:
1698  * 0                          buftbl entries for channels
1699  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1700  * efx->rx_dc_base            RX descriptor caches
1701  * efx->tx_dc_base            TX descriptor caches
1702  */
1703 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1704 {
1705         unsigned vi_count, buftbl_min;
1706
1707         /* Account for the buffer table entries backing the datapath channels
1708          * and the descriptor caches for those channels.
1709          */
1710         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1711                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1712                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1713                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1714         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1715
1716 #ifdef CONFIG_SFC_SRIOV
1717         if (efx_sriov_wanted(efx)) {
1718                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1719
1720                 efx->vf_buftbl_base = buftbl_min;
1721
1722                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1723                 vi_count = max(vi_count, EFX_VI_BASE);
1724                 buftbl_free = (sram_lim_qw - buftbl_min -
1725                                vi_count * vi_dc_entries);
1726
1727                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1728                                   efx_vf_size(efx));
1729                 vf_limit = min(buftbl_free / entries_per_vf,
1730                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1731
1732                 if (efx->vf_count > vf_limit) {
1733                         netif_err(efx, probe, efx->net_dev,
1734                                   "Reducing VF count from from %d to %d\n",
1735                                   efx->vf_count, vf_limit);
1736                         efx->vf_count = vf_limit;
1737                 }
1738                 vi_count += efx->vf_count * efx_vf_size(efx);
1739         }
1740 #endif
1741
1742         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1743         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1744 }
1745
1746 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1747 {
1748         efx_oword_t altera_build;
1749         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1750         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1751 }
1752
1753 void efx_nic_init_common(struct efx_nic *efx)
1754 {
1755         efx_oword_t temp;
1756
1757         /* Set positions of descriptor caches in SRAM. */
1758         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1759         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1760         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1761         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1762
1763         /* Set TX descriptor cache size. */
1764         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1765         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1766         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1767
1768         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1769          * this allows most efficient prefetching.
1770          */
1771         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1772         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1773         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1774         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1775         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1776
1777         /* Program INT_KER address */
1778         EFX_POPULATE_OWORD_2(temp,
1779                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1780                              EFX_INT_MODE_USE_MSI(efx),
1781                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1782         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1783
1784         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1785                 /* Use an interrupt level unused by event queues */
1786                 efx->irq_level = 0x1f;
1787         else
1788                 /* Use a valid MSI-X vector */
1789                 efx->irq_level = 0;
1790
1791         /* Enable all the genuinely fatal interrupts.  (They are still
1792          * masked by the overall interrupt mask, controlled by
1793          * falcon_interrupts()).
1794          *
1795          * Note: All other fatal interrupts are enabled
1796          */
1797         EFX_POPULATE_OWORD_3(temp,
1798                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1799                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1800                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1801         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1802                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1803         EFX_INVERT_OWORD(temp);
1804         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1805
1806         efx_nic_push_rx_indir_table(efx);
1807
1808         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1809          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1810          */
1811         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1812         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1813         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1814         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1815         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1816         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1817         /* Enable SW_EV to inherit in char driver - assume harmless here */
1818         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1819         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1820         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1821         /* Disable hardware watchdog which can misfire */
1822         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1823         /* Squash TX of packets of 16 bytes or less */
1824         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1825                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1826         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1827
1828         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1829                 EFX_POPULATE_OWORD_4(temp,
1830                                      /* Default values */
1831                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1832                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1833                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1834                                      /* Allow large pace values in the
1835                                       * fast bin. */
1836                                      FRF_BZ_TX_PACE_BIN_TH,
1837                                      FFE_BZ_TX_PACE_RESERVED);
1838                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1839         }
1840 }
1841
1842 /* Register dump */
1843
1844 #define REGISTER_REVISION_A     1
1845 #define REGISTER_REVISION_B     2
1846 #define REGISTER_REVISION_C     3
1847 #define REGISTER_REVISION_Z     3       /* latest revision */
1848
1849 struct efx_nic_reg {
1850         u32 offset:24;
1851         u32 min_revision:2, max_revision:2;
1852 };
1853
1854 #define REGISTER(name, min_rev, max_rev) {                              \
1855         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1856         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1857 }
1858 #define REGISTER_AA(name) REGISTER(name, A, A)
1859 #define REGISTER_AB(name) REGISTER(name, A, B)
1860 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1861 #define REGISTER_BB(name) REGISTER(name, B, B)
1862 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1863 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1864
1865 static const struct efx_nic_reg efx_nic_regs[] = {
1866         REGISTER_AZ(ADR_REGION),
1867         REGISTER_AZ(INT_EN_KER),
1868         REGISTER_BZ(INT_EN_CHAR),
1869         REGISTER_AZ(INT_ADR_KER),
1870         REGISTER_BZ(INT_ADR_CHAR),
1871         /* INT_ACK_KER is WO */
1872         /* INT_ISR0 is RC */
1873         REGISTER_AZ(HW_INIT),
1874         REGISTER_CZ(USR_EV_CFG),
1875         REGISTER_AB(EE_SPI_HCMD),
1876         REGISTER_AB(EE_SPI_HADR),
1877         REGISTER_AB(EE_SPI_HDATA),
1878         REGISTER_AB(EE_BASE_PAGE),
1879         REGISTER_AB(EE_VPD_CFG0),
1880         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1881         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1882         /* PCIE_CORE_INDIRECT is indirect */
1883         REGISTER_AB(NIC_STAT),
1884         REGISTER_AB(GPIO_CTL),
1885         REGISTER_AB(GLB_CTL),
1886         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1887         REGISTER_BZ(DP_CTRL),
1888         REGISTER_AZ(MEM_STAT),
1889         REGISTER_AZ(CS_DEBUG),
1890         REGISTER_AZ(ALTERA_BUILD),
1891         REGISTER_AZ(CSR_SPARE),
1892         REGISTER_AB(PCIE_SD_CTL0123),
1893         REGISTER_AB(PCIE_SD_CTL45),
1894         REGISTER_AB(PCIE_PCS_CTL_STAT),
1895         /* DEBUG_DATA_OUT is not used */
1896         /* DRV_EV is WO */
1897         REGISTER_AZ(EVQ_CTL),
1898         REGISTER_AZ(EVQ_CNT1),
1899         REGISTER_AZ(EVQ_CNT2),
1900         REGISTER_AZ(BUF_TBL_CFG),
1901         REGISTER_AZ(SRM_RX_DC_CFG),
1902         REGISTER_AZ(SRM_TX_DC_CFG),
1903         REGISTER_AZ(SRM_CFG),
1904         /* BUF_TBL_UPD is WO */
1905         REGISTER_AZ(SRM_UPD_EVQ),
1906         REGISTER_AZ(SRAM_PARITY),
1907         REGISTER_AZ(RX_CFG),
1908         REGISTER_BZ(RX_FILTER_CTL),
1909         /* RX_FLUSH_DESCQ is WO */
1910         REGISTER_AZ(RX_DC_CFG),
1911         REGISTER_AZ(RX_DC_PF_WM),
1912         REGISTER_BZ(RX_RSS_TKEY),
1913         /* RX_NODESC_DROP is RC */
1914         REGISTER_AA(RX_SELF_RST),
1915         /* RX_DEBUG, RX_PUSH_DROP are not used */
1916         REGISTER_CZ(RX_RSS_IPV6_REG1),
1917         REGISTER_CZ(RX_RSS_IPV6_REG2),
1918         REGISTER_CZ(RX_RSS_IPV6_REG3),
1919         /* TX_FLUSH_DESCQ is WO */
1920         REGISTER_AZ(TX_DC_CFG),
1921         REGISTER_AA(TX_CHKSM_CFG),
1922         REGISTER_AZ(TX_CFG),
1923         /* TX_PUSH_DROP is not used */
1924         REGISTER_AZ(TX_RESERVED),
1925         REGISTER_BZ(TX_PACE),
1926         /* TX_PACE_DROP_QID is RC */
1927         REGISTER_BB(TX_VLAN),
1928         REGISTER_BZ(TX_IPFIL_PORTEN),
1929         REGISTER_AB(MD_TXD),
1930         REGISTER_AB(MD_RXD),
1931         REGISTER_AB(MD_CS),
1932         REGISTER_AB(MD_PHY_ADR),
1933         REGISTER_AB(MD_ID),
1934         /* MD_STAT is RC */
1935         REGISTER_AB(MAC_STAT_DMA),
1936         REGISTER_AB(MAC_CTRL),
1937         REGISTER_BB(GEN_MODE),
1938         REGISTER_AB(MAC_MC_HASH_REG0),
1939         REGISTER_AB(MAC_MC_HASH_REG1),
1940         REGISTER_AB(GM_CFG1),
1941         REGISTER_AB(GM_CFG2),
1942         /* GM_IPG and GM_HD are not used */
1943         REGISTER_AB(GM_MAX_FLEN),
1944         /* GM_TEST is not used */
1945         REGISTER_AB(GM_ADR1),
1946         REGISTER_AB(GM_ADR2),
1947         REGISTER_AB(GMF_CFG0),
1948         REGISTER_AB(GMF_CFG1),
1949         REGISTER_AB(GMF_CFG2),
1950         REGISTER_AB(GMF_CFG3),
1951         REGISTER_AB(GMF_CFG4),
1952         REGISTER_AB(GMF_CFG5),
1953         REGISTER_BB(TX_SRC_MAC_CTL),
1954         REGISTER_AB(XM_ADR_LO),
1955         REGISTER_AB(XM_ADR_HI),
1956         REGISTER_AB(XM_GLB_CFG),
1957         REGISTER_AB(XM_TX_CFG),
1958         REGISTER_AB(XM_RX_CFG),
1959         REGISTER_AB(XM_MGT_INT_MASK),
1960         REGISTER_AB(XM_FC),
1961         REGISTER_AB(XM_PAUSE_TIME),
1962         REGISTER_AB(XM_TX_PARAM),
1963         REGISTER_AB(XM_RX_PARAM),
1964         /* XM_MGT_INT_MSK (note no 'A') is RC */
1965         REGISTER_AB(XX_PWR_RST),
1966         REGISTER_AB(XX_SD_CTL),
1967         REGISTER_AB(XX_TXDRV_CTL),
1968         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1969         /* XX_CORE_STAT is partly RC */
1970 };
1971
1972 struct efx_nic_reg_table {
1973         u32 offset:24;
1974         u32 min_revision:2, max_revision:2;
1975         u32 step:6, rows:21;
1976 };
1977
1978 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1979         offset,                                                         \
1980         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
1981         step, rows                                                      \
1982 }
1983 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
1984         REGISTER_TABLE_DIMENSIONS(                                      \
1985                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
1986                 min_rev, max_rev,                                       \
1987                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
1988                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1989 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1990 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1991 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1992 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1993 #define REGISTER_TABLE_BB_CZ(name)                                      \
1994         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
1995                                   FR_BZ_ ## name ## _STEP,              \
1996                                   FR_BB_ ## name ## _ROWS),             \
1997         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
1998                                   FR_BZ_ ## name ## _STEP,              \
1999                                   FR_CZ_ ## name ## _ROWS)
2000 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2001
2002 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2003         /* DRIVER is not used */
2004         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2005         REGISTER_TABLE_BB(TX_IPFIL_TBL),
2006         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2007         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2008         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2009         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2010         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2011         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2012         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2013         /* We can't reasonably read all of the buffer table (up to 8MB!).
2014          * However this driver will only use a few entries.  Reading
2015          * 1K entries allows for some expansion of queue count and
2016          * size before we need to change the version. */
2017         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2018                                   A, A, 8, 1024),
2019         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2020                                   B, Z, 8, 1024),
2021         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2022         REGISTER_TABLE_BB_CZ(TIMER_TBL),
2023         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2024         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2025         /* TX_FILTER_TBL0 is huge and not used by this driver */
2026         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2027         REGISTER_TABLE_CZ(MC_TREG_SMEM),
2028         /* MSIX_PBA_TABLE is not mapped */
2029         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2030         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2031 };
2032
2033 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2034 {
2035         const struct efx_nic_reg *reg;
2036         const struct efx_nic_reg_table *table;
2037         size_t len = 0;
2038
2039         for (reg = efx_nic_regs;
2040              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2041              reg++)
2042                 if (efx->type->revision >= reg->min_revision &&
2043                     efx->type->revision <= reg->max_revision)
2044                         len += sizeof(efx_oword_t);
2045
2046         for (table = efx_nic_reg_tables;
2047              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2048              table++)
2049                 if (efx->type->revision >= table->min_revision &&
2050                     efx->type->revision <= table->max_revision)
2051                         len += table->rows * min_t(size_t, table->step, 16);
2052
2053         return len;
2054 }
2055
2056 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2057 {
2058         const struct efx_nic_reg *reg;
2059         const struct efx_nic_reg_table *table;
2060
2061         for (reg = efx_nic_regs;
2062              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2063              reg++) {
2064                 if (efx->type->revision >= reg->min_revision &&
2065                     efx->type->revision <= reg->max_revision) {
2066                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2067                         buf += sizeof(efx_oword_t);
2068                 }
2069         }
2070
2071         for (table = efx_nic_reg_tables;
2072              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2073              table++) {
2074                 size_t size, i;
2075
2076                 if (!(efx->type->revision >= table->min_revision &&
2077                       efx->type->revision <= table->max_revision))
2078                         continue;
2079
2080                 size = min_t(size_t, table->step, 16);
2081
2082                 for (i = 0; i < table->rows; i++) {
2083                         switch (table->step) {
2084                         case 4: /* 32-bit SRAM */
2085                                 efx_readd(efx, buf, table->offset + 4 * i);
2086                                 break;
2087                         case 8: /* 64-bit SRAM */
2088                                 efx_sram_readq(efx,
2089                                                efx->membase + table->offset,
2090                                                buf, i);
2091                                 break;
2092                         case 16: /* 128-bit-readable register */
2093                                 efx_reado_table(efx, buf, table->offset, i);
2094                                 break;
2095                         case 32: /* 128-bit register, interleaved */
2096                                 efx_reado_table(efx, buf, table->offset, 2 * i);
2097                                 break;
2098                         default:
2099                                 WARN_ON(1);
2100                                 return;
2101                         }
2102                         buf += size;
2103                 }
2104         }
2105 }