1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
21 EFX_REV_FALCON_A0 = 0,
22 EFX_REV_FALCON_A1 = 1,
23 EFX_REV_FALCON_B0 = 2,
28 static inline int efx_nic_rev(struct efx_nic *efx)
30 return efx->type->revision;
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
38 return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
45 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 (index & channel->eventq_mask);
49 /* See if an event is present
51 * We check both the high and low dword of the event for all ones. We
52 * wrote all ones when we cleared the event, and no valid event can
53 * have all ones in either its high or low dwords. This approach is
54 * robust against reordering.
56 * Note that using a single 64-bit comparison is incorrect; even
57 * though the CPU read will be atomic, the DMA write may not be.
59 static inline int efx_event_present(efx_qword_t *event)
61 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
65 /* Returns a pointer to the specified transmit descriptor in the TX
66 * descriptor queue belonging to the specified channel.
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
71 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
74 /* Report whether the NIC considers this TX queue empty, given the
75 * write_count used for the last doorbell push. May return false
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
79 unsigned int write_count)
81 unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
83 if (empty_read_count == 0)
86 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
89 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
91 return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count);
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95 * the doorbell. This can reduce latency when we are adding a single
96 * descriptor to an empty queue, but is otherwise pointless. Further,
97 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98 * triggered if we don't check this.
100 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
101 unsigned int write_count)
103 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
105 tx_queue->empty_read_count = 0;
106 return was_empty && tx_queue->write_count - write_count == 1;
109 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
110 static inline efx_qword_t *
111 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
113 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
118 PHY_TYPE_TXC43128 = 1,
119 PHY_TYPE_88E1111 = 2,
120 PHY_TYPE_SFX7101 = 3,
121 PHY_TYPE_QT2022C2 = 4,
123 PHY_TYPE_SFT9001A = 8,
124 PHY_TYPE_QT2025C = 9,
125 PHY_TYPE_SFT9001B = 10,
128 #define FALCON_XMAC_LOOPBACKS \
129 ((1 << LOOPBACK_XGMII) | \
130 (1 << LOOPBACK_XGXS) | \
131 (1 << LOOPBACK_XAUI))
133 /* Alignment of PCIe DMA boundaries (4KB) */
134 #define EFX_PAGE_SIZE 4096
135 /* Size and alignment of buffer table entries (same) */
136 #define EFX_BUF_SIZE EFX_PAGE_SIZE
139 * struct falcon_board_type - board operations and type information
140 * @id: Board type id, as found in NVRAM
141 * @init: Allocate resources and initialise peripheral hardware
142 * @init_phy: Do board-specific PHY initialisation
143 * @fini: Shut down hardware and free resources
144 * @set_id_led: Set state of identifying LED or revert to automatic function
145 * @monitor: Board-specific health check function
147 struct falcon_board_type {
149 int (*init) (struct efx_nic *nic);
150 void (*init_phy) (struct efx_nic *efx);
151 void (*fini) (struct efx_nic *nic);
152 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
153 int (*monitor) (struct efx_nic *nic);
157 * struct falcon_board - board information
158 * @type: Type of board
159 * @major: Major rev. ('A', 'B' ...)
160 * @minor: Minor rev. (0, 1, ...)
161 * @i2c_adap: I2C adapter for on-board peripherals
162 * @i2c_data: Data for bit-banging algorithm
163 * @hwmon_client: I2C client for hardware monitor
164 * @ioexp_client: I2C client for power/port control
166 struct falcon_board {
167 const struct falcon_board_type *type;
170 struct i2c_adapter i2c_adap;
171 struct i2c_algo_bit_data i2c_data;
172 struct i2c_client *hwmon_client, *ioexp_client;
176 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
177 * @device_id: Controller's id for the device
178 * @size: Size (in bytes)
179 * @addr_len: Number of address bytes in read/write commands
180 * @munge_address: Flag whether addresses should be munged.
181 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
182 * use bit 3 of the command byte as address bit A8, rather
183 * than having a two-byte address. If this flag is set, then
184 * commands should be munged in this way.
185 * @erase_command: Erase command (or 0 if sector erase not needed).
186 * @erase_size: Erase sector size (in bytes)
187 * Erase commands affect sectors with this size and alignment.
188 * This must be a power of two.
189 * @block_size: Write block size (in bytes).
190 * Write commands are limited to blocks with this size and alignment.
192 struct falcon_spi_device {
195 unsigned int addr_len;
196 unsigned int munge_address:1;
198 unsigned int erase_size;
199 unsigned int block_size;
202 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
204 return spi->size != 0;
208 FALCON_STAT_tx_bytes,
209 FALCON_STAT_tx_packets,
210 FALCON_STAT_tx_pause,
211 FALCON_STAT_tx_control,
212 FALCON_STAT_tx_unicast,
213 FALCON_STAT_tx_multicast,
214 FALCON_STAT_tx_broadcast,
217 FALCON_STAT_tx_65_to_127,
218 FALCON_STAT_tx_128_to_255,
219 FALCON_STAT_tx_256_to_511,
220 FALCON_STAT_tx_512_to_1023,
221 FALCON_STAT_tx_1024_to_15xx,
222 FALCON_STAT_tx_15xx_to_jumbo,
223 FALCON_STAT_tx_gtjumbo,
224 FALCON_STAT_tx_non_tcpudp,
225 FALCON_STAT_tx_mac_src_error,
226 FALCON_STAT_tx_ip_src_error,
227 FALCON_STAT_rx_bytes,
228 FALCON_STAT_rx_good_bytes,
229 FALCON_STAT_rx_bad_bytes,
230 FALCON_STAT_rx_packets,
233 FALCON_STAT_rx_pause,
234 FALCON_STAT_rx_control,
235 FALCON_STAT_rx_unicast,
236 FALCON_STAT_rx_multicast,
237 FALCON_STAT_rx_broadcast,
240 FALCON_STAT_rx_65_to_127,
241 FALCON_STAT_rx_128_to_255,
242 FALCON_STAT_rx_256_to_511,
243 FALCON_STAT_rx_512_to_1023,
244 FALCON_STAT_rx_1024_to_15xx,
245 FALCON_STAT_rx_15xx_to_jumbo,
246 FALCON_STAT_rx_gtjumbo,
247 FALCON_STAT_rx_bad_lt64,
248 FALCON_STAT_rx_bad_gtjumbo,
249 FALCON_STAT_rx_overflow,
250 FALCON_STAT_rx_symbol_error,
251 FALCON_STAT_rx_align_error,
252 FALCON_STAT_rx_length_error,
253 FALCON_STAT_rx_internal_error,
254 FALCON_STAT_rx_nodesc_drop_cnt,
259 * struct falcon_nic_data - Falcon NIC state
260 * @pci_dev2: Secondary function of Falcon A
261 * @board: Board state and functions
262 * @stats: Hardware statistics
263 * @stats_disable_count: Nest count for disabling statistics fetches
264 * @stats_pending: Is there a pending DMA of MAC statistics.
265 * @stats_timer: A timer for regularly fetching MAC statistics.
266 * @spi_flash: SPI flash device
267 * @spi_eeprom: SPI EEPROM device
268 * @spi_lock: SPI bus lock
269 * @mdio_lock: MDIO bus lock
270 * @xmac_poll_required: XMAC link state needs polling
272 struct falcon_nic_data {
273 struct pci_dev *pci_dev2;
274 struct falcon_board board;
275 u64 stats[FALCON_STAT_COUNT];
276 unsigned int stats_disable_count;
278 struct timer_list stats_timer;
279 struct falcon_spi_device spi_flash;
280 struct falcon_spi_device spi_eeprom;
281 struct mutex spi_lock;
282 struct mutex mdio_lock;
283 bool xmac_poll_required;
286 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
288 struct falcon_nic_data *data = efx->nic_data;
294 SIENA_STAT_tx_good_bytes,
295 SIENA_STAT_tx_bad_bytes,
296 SIENA_STAT_tx_packets,
299 SIENA_STAT_tx_control,
300 SIENA_STAT_tx_unicast,
301 SIENA_STAT_tx_multicast,
302 SIENA_STAT_tx_broadcast,
305 SIENA_STAT_tx_65_to_127,
306 SIENA_STAT_tx_128_to_255,
307 SIENA_STAT_tx_256_to_511,
308 SIENA_STAT_tx_512_to_1023,
309 SIENA_STAT_tx_1024_to_15xx,
310 SIENA_STAT_tx_15xx_to_jumbo,
311 SIENA_STAT_tx_gtjumbo,
312 SIENA_STAT_tx_collision,
313 SIENA_STAT_tx_single_collision,
314 SIENA_STAT_tx_multiple_collision,
315 SIENA_STAT_tx_excessive_collision,
316 SIENA_STAT_tx_deferred,
317 SIENA_STAT_tx_late_collision,
318 SIENA_STAT_tx_excessive_deferred,
319 SIENA_STAT_tx_non_tcpudp,
320 SIENA_STAT_tx_mac_src_error,
321 SIENA_STAT_tx_ip_src_error,
323 SIENA_STAT_rx_good_bytes,
324 SIENA_STAT_rx_bad_bytes,
325 SIENA_STAT_rx_packets,
329 SIENA_STAT_rx_control,
330 SIENA_STAT_rx_unicast,
331 SIENA_STAT_rx_multicast,
332 SIENA_STAT_rx_broadcast,
335 SIENA_STAT_rx_65_to_127,
336 SIENA_STAT_rx_128_to_255,
337 SIENA_STAT_rx_256_to_511,
338 SIENA_STAT_rx_512_to_1023,
339 SIENA_STAT_rx_1024_to_15xx,
340 SIENA_STAT_rx_15xx_to_jumbo,
341 SIENA_STAT_rx_gtjumbo,
342 SIENA_STAT_rx_bad_gtjumbo,
343 SIENA_STAT_rx_overflow,
344 SIENA_STAT_rx_false_carrier,
345 SIENA_STAT_rx_symbol_error,
346 SIENA_STAT_rx_align_error,
347 SIENA_STAT_rx_length_error,
348 SIENA_STAT_rx_internal_error,
349 SIENA_STAT_rx_nodesc_drop_cnt,
354 * struct siena_nic_data - Siena NIC state
355 * @wol_filter_id: Wake-on-LAN packet filter id
356 * @stats: Hardware statistics
358 struct siena_nic_data {
360 u64 stats[SIENA_STAT_COUNT];
365 EF10_STAT_tx_packets,
367 EF10_STAT_tx_control,
368 EF10_STAT_tx_unicast,
369 EF10_STAT_tx_multicast,
370 EF10_STAT_tx_broadcast,
373 EF10_STAT_tx_65_to_127,
374 EF10_STAT_tx_128_to_255,
375 EF10_STAT_tx_256_to_511,
376 EF10_STAT_tx_512_to_1023,
377 EF10_STAT_tx_1024_to_15xx,
378 EF10_STAT_tx_15xx_to_jumbo,
380 EF10_STAT_rx_bytes_minus_good_bytes,
381 EF10_STAT_rx_good_bytes,
382 EF10_STAT_rx_bad_bytes,
383 EF10_STAT_rx_packets,
387 EF10_STAT_rx_control,
388 EF10_STAT_rx_unicast,
389 EF10_STAT_rx_multicast,
390 EF10_STAT_rx_broadcast,
393 EF10_STAT_rx_65_to_127,
394 EF10_STAT_rx_128_to_255,
395 EF10_STAT_rx_256_to_511,
396 EF10_STAT_rx_512_to_1023,
397 EF10_STAT_rx_1024_to_15xx,
398 EF10_STAT_rx_15xx_to_jumbo,
399 EF10_STAT_rx_gtjumbo,
400 EF10_STAT_rx_bad_gtjumbo,
401 EF10_STAT_rx_overflow,
402 EF10_STAT_rx_align_error,
403 EF10_STAT_rx_length_error,
404 EF10_STAT_rx_nodesc_drops,
405 EF10_STAT_rx_pm_trunc_bb_overflow,
406 EF10_STAT_rx_pm_discard_bb_overflow,
407 EF10_STAT_rx_pm_trunc_vfifo_full,
408 EF10_STAT_rx_pm_discard_vfifo_full,
409 EF10_STAT_rx_pm_trunc_qbb,
410 EF10_STAT_rx_pm_discard_qbb,
411 EF10_STAT_rx_pm_discard_mapping,
412 EF10_STAT_rx_dp_q_disabled_packets,
413 EF10_STAT_rx_dp_di_dropped_packets,
414 EF10_STAT_rx_dp_streaming_packets,
415 EF10_STAT_rx_dp_emerg_fetch,
416 EF10_STAT_rx_dp_emerg_wait,
420 /* Maximum number of TX PIO buffers we may allocate to a function.
421 * This matches the total number of buffers on each SFC9100-family
424 #define EF10_TX_PIOBUF_COUNT 16
427 * struct efx_ef10_nic_data - EF10 architecture NIC state
428 * @mcdi_buf: DMA buffer for MCDI
429 * @warm_boot_count: Last seen MC warm boot count
430 * @vi_base: Absolute index of first VI in this function
431 * @n_allocated_vis: Number of VIs allocated to this function
432 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
433 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
434 * @n_piobufs: Number of PIO buffers allocated to this function
435 * @wc_membase: Base address of write-combining mapping of the memory BAR
436 * @pio_write_base: Base address for writing PIO buffers
437 * @pio_write_vi_base: Relative VI number for @pio_write_base
438 * @piobuf_handle: Handle of each PIO buffer allocated
439 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
441 * @rx_rss_context: Firmware handle for our RSS context
442 * @stats: Hardware statistics
443 * @workaround_35388: Flag: firmware supports workaround for bug 35388
444 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
446 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
447 * %MC_CMD_GET_CAPABILITIES response)
449 struct efx_ef10_nic_data {
450 struct efx_buffer mcdi_buf;
452 unsigned int vi_base;
453 unsigned int n_allocated_vis;
454 bool must_realloc_vis;
455 bool must_restore_filters;
456 unsigned int n_piobufs;
457 void __iomem *wc_membase, *pio_write_base;
458 unsigned int pio_write_vi_base;
459 unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
460 bool must_restore_piobufs;
462 u64 stats[EF10_STAT_COUNT];
463 bool workaround_35388;
464 bool must_check_datapath_caps;
469 * On the SFC9000 family each port is associated with 1 PCI physical
470 * function (PF) handled by sfc and a configurable number of virtual
471 * functions (VFs) that may be handled by some other driver, often in
472 * a VM guest. The queue pointer registers are mapped in both PF and
473 * VF BARs such that an 8K region provides access to a single RX, TX
474 * and event queue (collectively a Virtual Interface, VI or VNIC).
476 * The PF has access to all 1024 VIs while VFs are mapped to VIs
477 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
478 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
479 * The number of VIs and the VI_SCALE value are configurable but must
480 * be established at boot time by firmware.
483 /* Maximum VI_SCALE parameter supported by Siena */
484 #define EFX_VI_SCALE_MAX 6
485 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
486 * so this is the smallest allowed value. */
487 #define EFX_VI_BASE 128U
488 /* Maximum number of VFs allowed */
489 #define EFX_VF_COUNT_MAX 127
490 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
491 #define EFX_MAX_VF_EVQ_SIZE 8192UL
492 /* The number of buffer table entries reserved for each VI on a VF */
493 #define EFX_VF_BUFTBL_PER_VI \
494 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
495 sizeof(efx_qword_t) / EFX_BUF_SIZE)
497 #ifdef CONFIG_SFC_SRIOV
499 static inline bool efx_sriov_wanted(struct efx_nic *efx)
501 return efx->vf_count != 0;
503 static inline bool efx_sriov_enabled(struct efx_nic *efx)
505 return efx->vf_init_count != 0;
507 static inline unsigned int efx_vf_size(struct efx_nic *efx)
509 return 1 << efx->vi_scale;
512 int efx_init_sriov(void);
513 void efx_sriov_probe(struct efx_nic *efx);
514 int efx_sriov_init(struct efx_nic *efx);
515 void efx_sriov_mac_address_changed(struct efx_nic *efx);
516 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
517 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
518 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
519 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
520 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
521 void efx_sriov_reset(struct efx_nic *efx);
522 void efx_sriov_fini(struct efx_nic *efx);
523 void efx_fini_sriov(void);
527 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
528 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
529 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
531 static inline int efx_init_sriov(void) { return 0; }
532 static inline void efx_sriov_probe(struct efx_nic *efx) {}
533 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
534 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
535 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
536 efx_qword_t *event) {}
537 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
538 efx_qword_t *event) {}
539 static inline void efx_sriov_event(struct efx_channel *channel,
540 efx_qword_t *event) {}
541 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
542 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
543 static inline void efx_sriov_reset(struct efx_nic *efx) {}
544 static inline void efx_sriov_fini(struct efx_nic *efx) {}
545 static inline void efx_fini_sriov(void) {}
549 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
550 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
551 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
552 struct ifla_vf_info *ivf);
553 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
556 struct ethtool_ts_info;
557 void efx_ptp_probe(struct efx_nic *efx);
558 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
559 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
560 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
561 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
562 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
564 extern const struct efx_nic_type falcon_a1_nic_type;
565 extern const struct efx_nic_type falcon_b0_nic_type;
566 extern const struct efx_nic_type siena_a0_nic_type;
567 extern const struct efx_nic_type efx_hunt_a0_nic_type;
569 /**************************************************************************
573 **************************************************************************
576 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
579 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
581 return tx_queue->efx->type->tx_probe(tx_queue);
583 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
585 tx_queue->efx->type->tx_init(tx_queue);
587 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
589 tx_queue->efx->type->tx_remove(tx_queue);
591 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
593 tx_queue->efx->type->tx_write(tx_queue);
597 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
599 return rx_queue->efx->type->rx_probe(rx_queue);
601 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
603 rx_queue->efx->type->rx_init(rx_queue);
605 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
607 rx_queue->efx->type->rx_remove(rx_queue);
609 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
611 rx_queue->efx->type->rx_write(rx_queue);
613 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
615 rx_queue->efx->type->rx_defer_refill(rx_queue);
618 /* Event data path */
619 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
621 return channel->efx->type->ev_probe(channel);
623 static inline int efx_nic_init_eventq(struct efx_channel *channel)
625 return channel->efx->type->ev_init(channel);
627 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
629 channel->efx->type->ev_fini(channel);
631 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
633 channel->efx->type->ev_remove(channel);
636 efx_nic_process_eventq(struct efx_channel *channel, int quota)
638 return channel->efx->type->ev_process(channel, quota);
640 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
642 channel->efx->type->ev_read_ack(channel);
644 void efx_nic_event_test_start(struct efx_channel *channel);
646 /* Falcon/Siena queue operations */
647 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
648 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
649 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
650 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
651 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
652 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
653 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
654 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
655 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
656 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
657 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
658 int efx_farch_ev_probe(struct efx_channel *channel);
659 int efx_farch_ev_init(struct efx_channel *channel);
660 void efx_farch_ev_fini(struct efx_channel *channel);
661 void efx_farch_ev_remove(struct efx_channel *channel);
662 int efx_farch_ev_process(struct efx_channel *channel, int quota);
663 void efx_farch_ev_read_ack(struct efx_channel *channel);
664 void efx_farch_ev_test_generate(struct efx_channel *channel);
666 /* Falcon/Siena filter operations */
667 int efx_farch_filter_table_probe(struct efx_nic *efx);
668 void efx_farch_filter_table_restore(struct efx_nic *efx);
669 void efx_farch_filter_table_remove(struct efx_nic *efx);
670 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
671 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
673 int efx_farch_filter_remove_safe(struct efx_nic *efx,
674 enum efx_filter_priority priority,
676 int efx_farch_filter_get_safe(struct efx_nic *efx,
677 enum efx_filter_priority priority, u32 filter_id,
678 struct efx_filter_spec *);
679 void efx_farch_filter_clear_rx(struct efx_nic *efx,
680 enum efx_filter_priority priority);
681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
682 enum efx_filter_priority priority);
683 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
684 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
685 enum efx_filter_priority priority, u32 *buf,
687 #ifdef CONFIG_RFS_ACCEL
688 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
689 struct efx_filter_spec *spec);
690 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
693 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
695 bool efx_nic_event_present(struct efx_channel *channel);
697 /* Some statistics are computed as A - B where A and B each increase
698 * linearly with some hardware counter(s) and the counters are read
699 * asynchronously. If the counters contributing to B are always read
700 * after those contributing to A, the computed value may be lower than
701 * the true value by some variable amount, and may decrease between
702 * subsequent computations.
704 * We should never allow statistics to decrease or to exceed the true
705 * value. Since the computed value will never be greater than the
706 * true value, we can achieve this by only storing the computed value
709 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
711 if ((s64)(diff - *stat) > 0)
716 int efx_nic_init_interrupt(struct efx_nic *efx);
717 void efx_nic_irq_test_start(struct efx_nic *efx);
718 void efx_nic_fini_interrupt(struct efx_nic *efx);
720 /* Falcon/Siena interrupts */
721 void efx_farch_irq_enable_master(struct efx_nic *efx);
722 void efx_farch_irq_test_generate(struct efx_nic *efx);
723 void efx_farch_irq_disable_master(struct efx_nic *efx);
724 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
725 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
726 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
728 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
730 return ACCESS_ONCE(channel->event_test_cpu);
732 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
734 return ACCESS_ONCE(efx->last_irq_cpu);
737 /* Global Resources */
738 int efx_nic_flush_queues(struct efx_nic *efx);
739 void siena_prepare_flush(struct efx_nic *efx);
740 int efx_farch_fini_dmaq(struct efx_nic *efx);
741 void siena_finish_flush(struct efx_nic *efx);
742 void falcon_start_nic_stats(struct efx_nic *efx);
743 void falcon_stop_nic_stats(struct efx_nic *efx);
744 int falcon_reset_xaui(struct efx_nic *efx);
745 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
746 void efx_farch_init_common(struct efx_nic *efx);
747 void efx_ef10_handle_drain_event(struct efx_nic *efx);
748 static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
750 efx->type->rx_push_indir_table(efx);
752 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
754 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
755 unsigned int len, gfp_t gfp_flags);
756 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
759 struct efx_farch_register_test {
763 int efx_farch_test_registers(struct efx_nic *efx,
764 const struct efx_farch_register_test *regs,
767 size_t efx_nic_get_regs_len(struct efx_nic *efx);
768 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
770 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
771 const unsigned long *mask, u8 *names);
772 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
773 const unsigned long *mask, u64 *stats,
774 const void *dma_buf, bool accumulate);
776 #define EFX_MAX_FLUSH_TIME 5000
778 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
781 #endif /* EFX_NIC_H */