5b3dd028ce852a267833254bf4c5f28fcf9acf7e
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / sfc / ptp.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2011 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 /* Theory of operation:
11  *
12  * PTP support is assisted by firmware running on the MC, which provides
13  * the hardware timestamping capabilities.  Both transmitted and received
14  * PTP event packets are queued onto internal queues for subsequent processing;
15  * this is because the MC operations are relatively long and would block
16  * block NAPI/interrupt operation.
17  *
18  * Receive event processing:
19  *      The event contains the packet's UUID and sequence number, together
20  *      with the hardware timestamp.  The PTP receive packet queue is searched
21  *      for this UUID/sequence number and, if found, put on a pending queue.
22  *      Packets not matching are delivered without timestamps (MCDI events will
23  *      always arrive after the actual packet).
24  *      It is important for the operation of the PTP protocol that the ordering
25  *      of packets between the event and general port is maintained.
26  *
27  * Work queue processing:
28  *      If work waiting, synchronise host/hardware time
29  *
30  *      Transmit: send packet through MC, which returns the transmission time
31  *      that is converted to an appropriate timestamp.
32  *
33  *      Receive: the packet's reception time is converted to an appropriate
34  *      timestamp.
35  */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "regs.h"
50 #include "nic.h"
51
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS                 3
54
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS         2
57
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS           250000
60
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS  200
63
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS          120
66
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS          1000
69
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS              8
72
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH                  16
75
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS           10
78
79 /* Offsets into PTP packet for identification.  These offsets are from the
80  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
81  * PTP V2 permit the use of IPV4 options.
82  */
83 #define PTP_DPORT_OFFSET        22
84
85 #define PTP_V1_VERSION_LENGTH   2
86 #define PTP_V1_VERSION_OFFSET   28
87
88 #define PTP_V1_UUID_LENGTH      6
89 #define PTP_V1_UUID_OFFSET      50
90
91 #define PTP_V1_SEQUENCE_LENGTH  2
92 #define PTP_V1_SEQUENCE_OFFSET  58
93
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95  * includes IP header.
96  */
97 #define PTP_V1_MIN_LENGTH       64
98
99 #define PTP_V2_VERSION_LENGTH   1
100 #define PTP_V2_VERSION_OFFSET   29
101
102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103  * the MC only captures the last six bytes of the clock identity. These values
104  * reflect those, not the ones used in the standard.  The standard permits
105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
106  */
107 #define PTP_V2_MC_UUID_LENGTH   6
108 #define PTP_V2_MC_UUID_OFFSET   50
109
110 #define PTP_V2_SEQUENCE_LENGTH  2
111 #define PTP_V2_SEQUENCE_OFFSET  58
112
113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114  * includes IP header.
115  */
116 #define PTP_V2_MIN_LENGTH       63
117
118 #define PTP_MIN_LENGTH          63
119
120 #define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
121 #define PTP_EVENT_PORT          319
122 #define PTP_GENERAL_PORT        320
123
124 /* Annoyingly the format of the version numbers are different between
125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126  */
127 #define PTP_VERSION_V1          1
128
129 #define PTP_VERSION_V2          2
130 #define PTP_VERSION_V2_MASK     0x0f
131
132 enum ptp_packet_state {
133         PTP_PACKET_STATE_UNMATCHED = 0,
134         PTP_PACKET_STATE_MATCHED,
135         PTP_PACKET_STATE_TIMED_OUT,
136         PTP_PACKET_STATE_MATCH_UNWANTED
137 };
138
139 /* NIC synchronised with single word of time only comprising
140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141  */
142 #define MC_NANOSECOND_BITS      30
143 #define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
144 #define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145
146 /* Maximum parts-per-billion adjustment that is acceptable */
147 #define MAX_PPB                 1000000
148
149 /* Number of bits required to hold the above */
150 #define MAX_PPB_BITS            20
151
152 /* Number of extra bits allowed when calculating fractional ns.
153  * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
154  * be less than 63.
155  */
156 #define PPB_EXTRA_BITS          2
157
158 /* Precalculate scale word to avoid long long division at runtime */
159 #define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
160                         MAX_PPB_BITS)) / 1000000000LL)
161
162 #define PTP_SYNC_ATTEMPTS       4
163
164 /**
165  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
166  * @words: UUID and (partial) sequence number
167  * @expiry: Time after which the packet should be delivered irrespective of
168  *            event arrival.
169  * @state: The state of the packet - whether it is ready for processing or
170  *         whether that is of no interest.
171  */
172 struct efx_ptp_match {
173         u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
174         unsigned long expiry;
175         enum ptp_packet_state state;
176 };
177
178 /**
179  * struct efx_ptp_event_rx - A PTP receive event (from MC)
180  * @seq0: First part of (PTP) UUID
181  * @seq1: Second part of (PTP) UUID and sequence number
182  * @hwtimestamp: Event timestamp
183  */
184 struct efx_ptp_event_rx {
185         struct list_head link;
186         u32 seq0;
187         u32 seq1;
188         ktime_t hwtimestamp;
189         unsigned long expiry;
190 };
191
192 /**
193  * struct efx_ptp_timeset - Synchronisation between host and MC
194  * @host_start: Host time immediately before hardware timestamp taken
195  * @seconds: Hardware timestamp, seconds
196  * @nanoseconds: Hardware timestamp, nanoseconds
197  * @host_end: Host time immediately after hardware timestamp taken
198  * @waitns: Number of nanoseconds between hardware timestamp being read and
199  *          host end time being seen
200  * @window: Difference of host_end and host_start
201  * @valid: Whether this timeset is valid
202  */
203 struct efx_ptp_timeset {
204         u32 host_start;
205         u32 seconds;
206         u32 nanoseconds;
207         u32 host_end;
208         u32 waitns;
209         u32 window;     /* Derived: end - start, allowing for wrap */
210 };
211
212 /**
213  * struct efx_ptp_data - Precision Time Protocol (PTP) state
214  * @channel: The PTP channel
215  * @rxq: Receive queue (awaiting timestamps)
216  * @txq: Transmit queue
217  * @evt_list: List of MC receive events awaiting packets
218  * @evt_free_list: List of free events
219  * @evt_lock: Lock for manipulating evt_list and evt_free_list
220  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
221  * @workwq: Work queue for processing pending PTP operations
222  * @work: Work task
223  * @reset_required: A serious error has occurred and the PTP task needs to be
224  *                  reset (disable, enable).
225  * @rxfilter_event: Receive filter when operating
226  * @rxfilter_general: Receive filter when operating
227  * @config: Current timestamp configuration
228  * @enabled: PTP operation enabled
229  * @mode: Mode in which PTP operating (PTP version)
230  * @evt_frags: Partly assembled PTP events
231  * @evt_frag_idx: Current fragment number
232  * @evt_code: Last event code
233  * @start: Address at which MC indicates ready for synchronisation
234  * @host_time_pps: Host time at last PPS
235  * @last_sync_ns: Last number of nanoseconds between readings when synchronising
236  * @base_sync_ns: Number of nanoseconds for last synchronisation.
237  * @base_sync_valid: Whether base_sync_time is valid.
238  * @current_adjfreq: Current ppb adjustment.
239  * @phc_clock: Pointer to registered phc device
240  * @phc_clock_info: Registration structure for phc device
241  * @pps_work: pps work task for handling pps events
242  * @pps_workwq: pps work queue
243  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
244  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
245  *         allocations in main data path).
246  * @debug_ptp_dir: PTP debugfs directory
247  * @missed_rx_sync: Number of packets received without syncrhonisation.
248  * @good_syncs: Number of successful synchronisations.
249  * @no_time_syncs: Number of synchronisations with no good times.
250  * @bad_sync_durations: Number of synchronisations with bad durations.
251  * @bad_syncs: Number of failed synchronisations.
252  * @last_sync_time: Number of nanoseconds for last synchronisation.
253  * @sync_timeouts: Number of synchronisation timeouts
254  * @fast_syncs: Number of synchronisations requiring short delay
255  * @min_sync_delta: Minimum time between event and synchronisation
256  * @max_sync_delta: Maximum time between event and synchronisation
257  * @average_sync_delta: Average time between event and synchronisation.
258  *                      Modified moving average.
259  * @last_sync_delta: Last time between event and synchronisation
260  * @mc_stats: Context value for MC statistics
261  * @timeset: Last set of synchronisation statistics.
262  */
263 struct efx_ptp_data {
264         struct efx_channel *channel;
265         struct sk_buff_head rxq;
266         struct sk_buff_head txq;
267         struct list_head evt_list;
268         struct list_head evt_free_list;
269         spinlock_t evt_lock;
270         struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
271         struct workqueue_struct *workwq;
272         struct work_struct work;
273         bool reset_required;
274         u32 rxfilter_event;
275         u32 rxfilter_general;
276         bool rxfilter_installed;
277         struct hwtstamp_config config;
278         bool enabled;
279         unsigned int mode;
280         efx_qword_t evt_frags[MAX_EVENT_FRAGS];
281         int evt_frag_idx;
282         int evt_code;
283         struct efx_buffer start;
284         struct pps_event_time host_time_pps;
285         unsigned last_sync_ns;
286         unsigned base_sync_ns;
287         bool base_sync_valid;
288         s64 current_adjfreq;
289         struct ptp_clock *phc_clock;
290         struct ptp_clock_info phc_clock_info;
291         struct work_struct pps_work;
292         struct workqueue_struct *pps_workwq;
293         bool nic_ts_enabled;
294         u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
295                                MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
296         struct efx_ptp_timeset
297         timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
298 };
299
300 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
301 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
302 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
303 static int efx_phc_settime(struct ptp_clock_info *ptp,
304                            const struct timespec *e_ts);
305 static int efx_phc_enable(struct ptp_clock_info *ptp,
306                           struct ptp_clock_request *request, int on);
307
308 /* Enable MCDI PTP support. */
309 static int efx_ptp_enable(struct efx_nic *efx)
310 {
311         u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
312
313         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
314         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
315                        efx->ptp_data->channel->channel);
316         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
317
318         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
319                             NULL, 0, NULL);
320 }
321
322 /* Disable MCDI PTP support.
323  *
324  * Note that this function should never rely on the presence of ptp_data -
325  * may be called before that exists.
326  */
327 static int efx_ptp_disable(struct efx_nic *efx)
328 {
329         u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
330
331         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
332         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
333                             NULL, 0, NULL);
334 }
335
336 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
337 {
338         struct sk_buff *skb;
339
340         while ((skb = skb_dequeue(q))) {
341                 local_bh_disable();
342                 netif_receive_skb(skb);
343                 local_bh_enable();
344         }
345 }
346
347 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
348 {
349         netif_err(efx, drv, efx->net_dev,
350                   "ERROR: PTP requires MSI-X and 1 additional interrupt"
351                   "vector. PTP disabled\n");
352 }
353
354 /* Repeatedly send the host time to the MC which will capture the hardware
355  * time.
356  */
357 static void efx_ptp_send_times(struct efx_nic *efx,
358                                struct pps_event_time *last_time)
359 {
360         struct pps_event_time now;
361         struct timespec limit;
362         struct efx_ptp_data *ptp = efx->ptp_data;
363         struct timespec start;
364         int *mc_running = ptp->start.addr;
365
366         pps_get_ts(&now);
367         start = now.ts_real;
368         limit = now.ts_real;
369         timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
370
371         /* Write host time for specified period or until MC is done */
372         while ((timespec_compare(&now.ts_real, &limit) < 0) &&
373                ACCESS_ONCE(*mc_running)) {
374                 struct timespec update_time;
375                 unsigned int host_time;
376
377                 /* Don't update continuously to avoid saturating the PCIe bus */
378                 update_time = now.ts_real;
379                 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
380                 do {
381                         pps_get_ts(&now);
382                 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
383                          ACCESS_ONCE(*mc_running));
384
385                 /* Synchronise NIC with single word of time only */
386                 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
387                              now.ts_real.tv_nsec);
388                 /* Update host time in NIC memory */
389                 _efx_writed(efx, cpu_to_le32(host_time),
390                             FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
391         }
392         *last_time = now;
393 }
394
395 /* Read a timeset from the MC's results and partial process. */
396 static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
397 {
398         unsigned start_ns, end_ns;
399
400         timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
401         timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
402         timeset->nanoseconds = MCDI_DWORD(data,
403                                          PTP_OUT_SYNCHRONIZE_NANOSECONDS);
404         timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
405         timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
406
407         /* Ignore seconds */
408         start_ns = timeset->host_start & MC_NANOSECOND_MASK;
409         end_ns = timeset->host_end & MC_NANOSECOND_MASK;
410         /* Allow for rollover */
411         if (end_ns < start_ns)
412                 end_ns += NSEC_PER_SEC;
413         /* Determine duration of operation */
414         timeset->window = end_ns - start_ns;
415 }
416
417 /* Process times received from MC.
418  *
419  * Extract times from returned results, and establish the minimum value
420  * seen.  The minimum value represents the "best" possible time and events
421  * too much greater than this are rejected - the machine is, perhaps, too
422  * busy. A number of readings are taken so that, hopefully, at least one good
423  * synchronisation will be seen in the results.
424  */
425 static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
426                                  size_t response_length,
427                                  const struct pps_event_time *last_time)
428 {
429         unsigned number_readings = (response_length /
430                                MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
431         unsigned i;
432         unsigned min;
433         unsigned min_set = 0;
434         unsigned total;
435         unsigned ngood = 0;
436         unsigned last_good = 0;
437         struct efx_ptp_data *ptp = efx->ptp_data;
438         bool min_valid = false;
439         u32 last_sec;
440         u32 start_sec;
441         struct timespec delta;
442
443         if (number_readings == 0)
444                 return -EAGAIN;
445
446         /* Find minimum value in this set of results, discarding clearly
447          * erroneous results.
448          */
449         for (i = 0; i < number_readings; i++) {
450                 efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
451                 synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
452                 if (ptp->timeset[i].window > SYNCHRONISATION_GRANULARITY_NS) {
453                         if (min_valid) {
454                                 if (ptp->timeset[i].window < min_set)
455                                         min_set = ptp->timeset[i].window;
456                         } else {
457                                 min_valid = true;
458                                 min_set = ptp->timeset[i].window;
459                         }
460                 }
461         }
462
463         if (min_valid) {
464                 if (ptp->base_sync_valid && (min_set > ptp->base_sync_ns))
465                         min = ptp->base_sync_ns;
466                 else
467                         min = min_set;
468         } else {
469                 min = SYNCHRONISATION_GRANULARITY_NS;
470         }
471
472         /* Discard excessively long synchronise durations.  The MC times
473          * when it finishes reading the host time so the corrected window
474          * time should be fairly constant for a given platform.
475          */
476         total = 0;
477         for (i = 0; i < number_readings; i++)
478                 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
479                         unsigned win;
480
481                         win = ptp->timeset[i].window - ptp->timeset[i].waitns;
482                         if (win >= MIN_SYNCHRONISATION_NS &&
483                             win < MAX_SYNCHRONISATION_NS) {
484                                 total += ptp->timeset[i].window;
485                                 ngood++;
486                                 last_good = i;
487                         }
488                 }
489
490         if (ngood == 0) {
491                 netif_warn(efx, drv, efx->net_dev,
492                            "PTP no suitable synchronisations %dns %dns\n",
493                            ptp->base_sync_ns, min_set);
494                 return -EAGAIN;
495         }
496
497         /* Average minimum this synchronisation */
498         ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
499         if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
500                 ptp->base_sync_valid = true;
501                 ptp->base_sync_ns = ptp->last_sync_ns;
502         }
503
504         /* Calculate delay from actual PPS to last_time */
505         delta.tv_nsec =
506                 ptp->timeset[last_good].nanoseconds +
507                 last_time->ts_real.tv_nsec -
508                 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
509
510         /* It is possible that the seconds rolled over between taking
511          * the start reading and the last value written by the host.  The
512          * timescales are such that a gap of more than one second is never
513          * expected.
514          */
515         start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
516         last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
517         if (start_sec != last_sec) {
518                 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
519                         netif_warn(efx, hw, efx->net_dev,
520                                    "PTP bad synchronisation seconds\n");
521                         return -EAGAIN;
522                 } else {
523                         delta.tv_sec = 1;
524                 }
525         } else {
526                 delta.tv_sec = 0;
527         }
528
529         ptp->host_time_pps = *last_time;
530         pps_sub_ts(&ptp->host_time_pps, delta);
531
532         return 0;
533 }
534
535 /* Synchronize times between the host and the MC */
536 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
537 {
538         struct efx_ptp_data *ptp = efx->ptp_data;
539         u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
540         size_t response_length;
541         int rc;
542         unsigned long timeout;
543         struct pps_event_time last_time = {};
544         unsigned int loops = 0;
545         int *start = ptp->start.addr;
546
547         MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
548         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
549                        num_readings);
550         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
551                        (u32)ptp->start.dma_addr);
552         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
553                        (u32)((u64)ptp->start.dma_addr >> 32));
554
555         /* Clear flag that signals MC ready */
556         ACCESS_ONCE(*start) = 0;
557         efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
558                            MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
559
560         /* Wait for start from MCDI (or timeout) */
561         timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
562         while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
563                 udelay(20);     /* Usually start MCDI execution quickly */
564                 loops++;
565         }
566
567         if (ACCESS_ONCE(*start))
568                 efx_ptp_send_times(efx, &last_time);
569
570         /* Collect results */
571         rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
572                                  MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
573                                  synch_buf, sizeof(synch_buf),
574                                  &response_length);
575         if (rc == 0)
576                 rc = efx_ptp_process_times(efx, synch_buf, response_length,
577                                            &last_time);
578
579         return rc;
580 }
581
582 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
583 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
584 {
585         u8 *txbuf = efx->ptp_data->txbuf;
586         struct skb_shared_hwtstamps timestamps;
587         int rc = -EIO;
588         /* MCDI driver requires word aligned lengths */
589         size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
590         u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
591
592         MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
593         MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
594         if (skb_shinfo(skb)->nr_frags != 0) {
595                 rc = skb_linearize(skb);
596                 if (rc != 0)
597                         goto fail;
598         }
599
600         if (skb->ip_summed == CHECKSUM_PARTIAL) {
601                 rc = skb_checksum_help(skb);
602                 if (rc != 0)
603                         goto fail;
604         }
605         skb_copy_from_linear_data(skb,
606                                   &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
607                                   len);
608         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
609                           sizeof(txtime), &len);
610         if (rc != 0)
611                 goto fail;
612
613         memset(&timestamps, 0, sizeof(timestamps));
614         timestamps.hwtstamp = ktime_set(
615                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
616                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
617
618         skb_tstamp_tx(skb, &timestamps);
619
620         rc = 0;
621
622 fail:
623         dev_kfree_skb(skb);
624
625         return rc;
626 }
627
628 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
629 {
630         struct efx_ptp_data *ptp = efx->ptp_data;
631         struct list_head *cursor;
632         struct list_head *next;
633
634         /* Drop time-expired events */
635         spin_lock_bh(&ptp->evt_lock);
636         if (!list_empty(&ptp->evt_list)) {
637                 list_for_each_safe(cursor, next, &ptp->evt_list) {
638                         struct efx_ptp_event_rx *evt;
639
640                         evt = list_entry(cursor, struct efx_ptp_event_rx,
641                                          link);
642                         if (time_after(jiffies, evt->expiry)) {
643                                 list_del(&evt->link);
644                                 list_add(&evt->link, &ptp->evt_free_list);
645                                 netif_warn(efx, hw, efx->net_dev,
646                                            "PTP rx event dropped\n");
647                         }
648                 }
649         }
650         spin_unlock_bh(&ptp->evt_lock);
651 }
652
653 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
654                                               struct sk_buff *skb)
655 {
656         struct efx_ptp_data *ptp = efx->ptp_data;
657         bool evts_waiting;
658         struct list_head *cursor;
659         struct list_head *next;
660         struct efx_ptp_match *match;
661         enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
662
663         spin_lock_bh(&ptp->evt_lock);
664         evts_waiting = !list_empty(&ptp->evt_list);
665         spin_unlock_bh(&ptp->evt_lock);
666
667         if (!evts_waiting)
668                 return PTP_PACKET_STATE_UNMATCHED;
669
670         match = (struct efx_ptp_match *)skb->cb;
671         /* Look for a matching timestamp in the event queue */
672         spin_lock_bh(&ptp->evt_lock);
673         list_for_each_safe(cursor, next, &ptp->evt_list) {
674                 struct efx_ptp_event_rx *evt;
675
676                 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
677                 if ((evt->seq0 == match->words[0]) &&
678                     (evt->seq1 == match->words[1])) {
679                         struct skb_shared_hwtstamps *timestamps;
680
681                         /* Match - add in hardware timestamp */
682                         timestamps = skb_hwtstamps(skb);
683                         timestamps->hwtstamp = evt->hwtimestamp;
684
685                         match->state = PTP_PACKET_STATE_MATCHED;
686                         rc = PTP_PACKET_STATE_MATCHED;
687                         list_del(&evt->link);
688                         list_add(&evt->link, &ptp->evt_free_list);
689                         break;
690                 }
691         }
692         spin_unlock_bh(&ptp->evt_lock);
693
694         return rc;
695 }
696
697 /* Process any queued receive events and corresponding packets
698  *
699  * q is returned with all the packets that are ready for delivery.
700  * true is returned if at least one of those packets requires
701  * synchronisation.
702  */
703 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
704 {
705         struct efx_ptp_data *ptp = efx->ptp_data;
706         bool rc = false;
707         struct sk_buff *skb;
708
709         while ((skb = skb_dequeue(&ptp->rxq))) {
710                 struct efx_ptp_match *match;
711
712                 match = (struct efx_ptp_match *)skb->cb;
713                 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
714                         __skb_queue_tail(q, skb);
715                 } else if (efx_ptp_match_rx(efx, skb) ==
716                            PTP_PACKET_STATE_MATCHED) {
717                         rc = true;
718                         __skb_queue_tail(q, skb);
719                 } else if (time_after(jiffies, match->expiry)) {
720                         match->state = PTP_PACKET_STATE_TIMED_OUT;
721                         netif_warn(efx, rx_err, efx->net_dev,
722                                    "PTP packet - no timestamp seen\n");
723                         __skb_queue_tail(q, skb);
724                 } else {
725                         /* Replace unprocessed entry and stop */
726                         skb_queue_head(&ptp->rxq, skb);
727                         break;
728                 }
729         }
730
731         return rc;
732 }
733
734 /* Complete processing of a received packet */
735 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
736 {
737         local_bh_disable();
738         netif_receive_skb(skb);
739         local_bh_enable();
740 }
741
742 static int efx_ptp_start(struct efx_nic *efx)
743 {
744         struct efx_ptp_data *ptp = efx->ptp_data;
745         struct efx_filter_spec rxfilter;
746         int rc;
747
748         ptp->reset_required = false;
749
750         /* Must filter on both event and general ports to ensure
751          * that there is no packet re-ordering.
752          */
753         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
754                            efx_rx_queue_index(
755                                    efx_channel_get_rx_queue(ptp->channel)));
756         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
757                                        htonl(PTP_ADDRESS),
758                                        htons(PTP_EVENT_PORT));
759         if (rc != 0)
760                 return rc;
761
762         rc = efx_filter_insert_filter(efx, &rxfilter, true);
763         if (rc < 0)
764                 return rc;
765         ptp->rxfilter_event = rc;
766
767         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
768                            efx_rx_queue_index(
769                                    efx_channel_get_rx_queue(ptp->channel)));
770         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
771                                        htonl(PTP_ADDRESS),
772                                        htons(PTP_GENERAL_PORT));
773         if (rc != 0)
774                 goto fail;
775
776         rc = efx_filter_insert_filter(efx, &rxfilter, true);
777         if (rc < 0)
778                 goto fail;
779         ptp->rxfilter_general = rc;
780
781         rc = efx_ptp_enable(efx);
782         if (rc != 0)
783                 goto fail2;
784
785         ptp->evt_frag_idx = 0;
786         ptp->current_adjfreq = 0;
787         ptp->rxfilter_installed = true;
788
789         return 0;
790
791 fail2:
792         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
793                                   ptp->rxfilter_general);
794 fail:
795         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
796                                   ptp->rxfilter_event);
797
798         return rc;
799 }
800
801 static int efx_ptp_stop(struct efx_nic *efx)
802 {
803         struct efx_ptp_data *ptp = efx->ptp_data;
804         int rc = efx_ptp_disable(efx);
805         struct list_head *cursor;
806         struct list_head *next;
807
808         if (ptp->rxfilter_installed) {
809                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
810                                           ptp->rxfilter_general);
811                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
812                                           ptp->rxfilter_event);
813                 ptp->rxfilter_installed = false;
814         }
815
816         /* Make sure RX packets are really delivered */
817         efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
818         skb_queue_purge(&efx->ptp_data->txq);
819
820         /* Drop any pending receive events */
821         spin_lock_bh(&efx->ptp_data->evt_lock);
822         list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
823                 list_del(cursor);
824                 list_add(cursor, &efx->ptp_data->evt_free_list);
825         }
826         spin_unlock_bh(&efx->ptp_data->evt_lock);
827
828         return rc;
829 }
830
831 static void efx_ptp_pps_worker(struct work_struct *work)
832 {
833         struct efx_ptp_data *ptp =
834                 container_of(work, struct efx_ptp_data, pps_work);
835         struct efx_nic *efx = ptp->channel->efx;
836         struct ptp_clock_event ptp_evt;
837
838         if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
839                 return;
840
841         ptp_evt.type = PTP_CLOCK_PPSUSR;
842         ptp_evt.pps_times = ptp->host_time_pps;
843         ptp_clock_event(ptp->phc_clock, &ptp_evt);
844 }
845
846 /* Process any pending transmissions and timestamp any received packets.
847  */
848 static void efx_ptp_worker(struct work_struct *work)
849 {
850         struct efx_ptp_data *ptp_data =
851                 container_of(work, struct efx_ptp_data, work);
852         struct efx_nic *efx = ptp_data->channel->efx;
853         struct sk_buff *skb;
854         struct sk_buff_head tempq;
855
856         if (ptp_data->reset_required) {
857                 efx_ptp_stop(efx);
858                 efx_ptp_start(efx);
859                 return;
860         }
861
862         efx_ptp_drop_time_expired_events(efx);
863
864         __skb_queue_head_init(&tempq);
865         if (efx_ptp_process_events(efx, &tempq) ||
866             !skb_queue_empty(&ptp_data->txq)) {
867
868                 while ((skb = skb_dequeue(&ptp_data->txq)))
869                         efx_ptp_xmit_skb(efx, skb);
870         }
871
872         while ((skb = __skb_dequeue(&tempq)))
873                 efx_ptp_process_rx(efx, skb);
874 }
875
876 /* Initialise PTP channel and state.
877  *
878  * Setting core_index to zero causes the queue to be initialised and doesn't
879  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
880  */
881 static int efx_ptp_probe_channel(struct efx_channel *channel)
882 {
883         struct efx_nic *efx = channel->efx;
884         struct efx_ptp_data *ptp;
885         int rc = 0;
886         unsigned int pos;
887
888         channel->irq_moderation = 0;
889         channel->rx_queue.core_index = 0;
890
891         ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
892         efx->ptp_data = ptp;
893         if (!efx->ptp_data)
894                 return -ENOMEM;
895
896         rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
897         if (rc != 0)
898                 goto fail1;
899
900         ptp->channel = channel;
901         skb_queue_head_init(&ptp->rxq);
902         skb_queue_head_init(&ptp->txq);
903         ptp->workwq = create_singlethread_workqueue("sfc_ptp");
904         if (!ptp->workwq) {
905                 rc = -ENOMEM;
906                 goto fail2;
907         }
908
909         INIT_WORK(&ptp->work, efx_ptp_worker);
910         ptp->config.flags = 0;
911         ptp->config.tx_type = HWTSTAMP_TX_OFF;
912         ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
913         INIT_LIST_HEAD(&ptp->evt_list);
914         INIT_LIST_HEAD(&ptp->evt_free_list);
915         spin_lock_init(&ptp->evt_lock);
916         for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
917                 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
918
919         ptp->phc_clock_info.owner = THIS_MODULE;
920         snprintf(ptp->phc_clock_info.name,
921                  sizeof(ptp->phc_clock_info.name),
922                  "%pm", efx->net_dev->perm_addr);
923         ptp->phc_clock_info.max_adj = MAX_PPB;
924         ptp->phc_clock_info.n_alarm = 0;
925         ptp->phc_clock_info.n_ext_ts = 0;
926         ptp->phc_clock_info.n_per_out = 0;
927         ptp->phc_clock_info.pps = 1;
928         ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
929         ptp->phc_clock_info.adjtime = efx_phc_adjtime;
930         ptp->phc_clock_info.gettime = efx_phc_gettime;
931         ptp->phc_clock_info.settime = efx_phc_settime;
932         ptp->phc_clock_info.enable = efx_phc_enable;
933
934         ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
935                                             &efx->pci_dev->dev);
936         if (!ptp->phc_clock)
937                 goto fail3;
938
939         INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
940         ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
941         if (!ptp->pps_workwq) {
942                 rc = -ENOMEM;
943                 goto fail4;
944         }
945         ptp->nic_ts_enabled = false;
946
947         return 0;
948 fail4:
949         ptp_clock_unregister(efx->ptp_data->phc_clock);
950
951 fail3:
952         destroy_workqueue(efx->ptp_data->workwq);
953
954 fail2:
955         efx_nic_free_buffer(efx, &ptp->start);
956
957 fail1:
958         kfree(efx->ptp_data);
959         efx->ptp_data = NULL;
960
961         return rc;
962 }
963
964 static void efx_ptp_remove_channel(struct efx_channel *channel)
965 {
966         struct efx_nic *efx = channel->efx;
967
968         if (!efx->ptp_data)
969                 return;
970
971         (void)efx_ptp_disable(channel->efx);
972
973         cancel_work_sync(&efx->ptp_data->work);
974         cancel_work_sync(&efx->ptp_data->pps_work);
975
976         skb_queue_purge(&efx->ptp_data->rxq);
977         skb_queue_purge(&efx->ptp_data->txq);
978
979         ptp_clock_unregister(efx->ptp_data->phc_clock);
980
981         destroy_workqueue(efx->ptp_data->workwq);
982         destroy_workqueue(efx->ptp_data->pps_workwq);
983
984         efx_nic_free_buffer(efx, &efx->ptp_data->start);
985         kfree(efx->ptp_data);
986 }
987
988 static void efx_ptp_get_channel_name(struct efx_channel *channel,
989                                      char *buf, size_t len)
990 {
991         snprintf(buf, len, "%s-ptp", channel->efx->name);
992 }
993
994 /* Determine whether this packet should be processed by the PTP module
995  * or transmitted conventionally.
996  */
997 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
998 {
999         return efx->ptp_data &&
1000                 efx->ptp_data->enabled &&
1001                 skb->len >= PTP_MIN_LENGTH &&
1002                 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1003                 likely(skb->protocol == htons(ETH_P_IP)) &&
1004                 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1005                 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1006 }
1007
1008 /* Receive a PTP packet.  Packets are queued until the arrival of
1009  * the receive timestamp from the MC - this will probably occur after the
1010  * packet arrival because of the processing in the MC.
1011  */
1012 static void efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1013 {
1014         struct efx_nic *efx = channel->efx;
1015         struct efx_ptp_data *ptp = efx->ptp_data;
1016         struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1017         u8 *data;
1018         unsigned int version;
1019
1020         match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1021
1022         /* Correct version? */
1023         if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1024                 if (skb->len < PTP_V1_MIN_LENGTH) {
1025                         netif_receive_skb(skb);
1026                         return;
1027                 }
1028                 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1029                 if (version != PTP_VERSION_V1) {
1030                         netif_receive_skb(skb);
1031                         return;
1032                 }
1033         } else {
1034                 if (skb->len < PTP_V2_MIN_LENGTH) {
1035                         netif_receive_skb(skb);
1036                         return;
1037                 }
1038                 version = skb->data[PTP_V2_VERSION_OFFSET];
1039
1040                 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2);
1041                 BUILD_BUG_ON(PTP_V1_UUID_OFFSET != PTP_V2_MC_UUID_OFFSET);
1042                 BUILD_BUG_ON(PTP_V1_UUID_LENGTH != PTP_V2_MC_UUID_LENGTH);
1043                 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1044                 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1045
1046                 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1047                         netif_receive_skb(skb);
1048                         return;
1049                 }
1050         }
1051
1052         /* Does this packet require timestamping? */
1053         if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1054                 struct skb_shared_hwtstamps *timestamps;
1055
1056                 match->state = PTP_PACKET_STATE_UNMATCHED;
1057
1058                 /* Clear all timestamps held: filled in later */
1059                 timestamps = skb_hwtstamps(skb);
1060                 memset(timestamps, 0, sizeof(*timestamps));
1061
1062                 /* Extract UUID/Sequence information */
1063                 data = skb->data + PTP_V1_UUID_OFFSET;
1064                 match->words[0] = (data[0]         |
1065                                    (data[1] << 8)  |
1066                                    (data[2] << 16) |
1067                                    (data[3] << 24));
1068                 match->words[1] = (data[4]         |
1069                                    (data[5] << 8)  |
1070                                    (skb->data[PTP_V1_SEQUENCE_OFFSET +
1071                                               PTP_V1_SEQUENCE_LENGTH - 1] <<
1072                                     16));
1073         } else {
1074                 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1075         }
1076
1077         skb_queue_tail(&ptp->rxq, skb);
1078         queue_work(ptp->workwq, &ptp->work);
1079 }
1080
1081 /* Transmit a PTP packet.  This has to be transmitted by the MC
1082  * itself, through an MCDI call.  MCDI calls aren't permitted
1083  * in the transmit path so defer the actual transmission to a suitable worker.
1084  */
1085 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1086 {
1087         struct efx_ptp_data *ptp = efx->ptp_data;
1088
1089         skb_queue_tail(&ptp->txq, skb);
1090
1091         if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1092             (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1093                 efx_xmit_hwtstamp_pending(skb);
1094         queue_work(ptp->workwq, &ptp->work);
1095
1096         return NETDEV_TX_OK;
1097 }
1098
1099 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1100                                unsigned int new_mode)
1101 {
1102         if ((enable_wanted != efx->ptp_data->enabled) ||
1103             (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1104                 int rc;
1105
1106                 if (enable_wanted) {
1107                         /* Change of mode requires disable */
1108                         if (efx->ptp_data->enabled &&
1109                             (efx->ptp_data->mode != new_mode)) {
1110                                 efx->ptp_data->enabled = false;
1111                                 rc = efx_ptp_stop(efx);
1112                                 if (rc != 0)
1113                                         return rc;
1114                         }
1115
1116                         /* Set new operating mode and establish
1117                          * baseline synchronisation, which must
1118                          * succeed.
1119                          */
1120                         efx->ptp_data->mode = new_mode;
1121                         rc = efx_ptp_start(efx);
1122                         if (rc == 0) {
1123                                 rc = efx_ptp_synchronize(efx,
1124                                                          PTP_SYNC_ATTEMPTS * 2);
1125                                 if (rc != 0)
1126                                         efx_ptp_stop(efx);
1127                         }
1128                 } else {
1129                         rc = efx_ptp_stop(efx);
1130                 }
1131
1132                 if (rc != 0)
1133                         return rc;
1134
1135                 efx->ptp_data->enabled = enable_wanted;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1142 {
1143         bool enable_wanted = false;
1144         unsigned int new_mode;
1145         int rc;
1146
1147         if (init->flags)
1148                 return -EINVAL;
1149
1150         if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1151             (init->tx_type != HWTSTAMP_TX_ON))
1152                 return -ERANGE;
1153
1154         new_mode = efx->ptp_data->mode;
1155         /* Determine whether any PTP HW operations are required */
1156         switch (init->rx_filter) {
1157         case HWTSTAMP_FILTER_NONE:
1158                 break;
1159         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1160         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1161         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1162                 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1163                 new_mode = MC_CMD_PTP_MODE_V1;
1164                 enable_wanted = true;
1165                 break;
1166         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1167         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1168         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1169         /* Although these three are accepted only IPV4 packets will be
1170          * timestamped
1171          */
1172                 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1173                 new_mode = MC_CMD_PTP_MODE_V2;
1174                 enable_wanted = true;
1175                 break;
1176         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1177         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1179         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1180         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1181         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182                 /* Non-IP + IPv6 timestamping not supported */
1183                 return -ERANGE;
1184                 break;
1185         default:
1186                 return -ERANGE;
1187         }
1188
1189         if (init->tx_type != HWTSTAMP_TX_OFF)
1190                 enable_wanted = true;
1191
1192         rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1193         if (rc != 0)
1194                 return rc;
1195
1196         efx->ptp_data->config = *init;
1197
1198         return 0;
1199 }
1200
1201 int
1202 efx_ptp_get_ts_info(struct net_device *net_dev, struct ethtool_ts_info *ts_info)
1203 {
1204         struct efx_nic *efx = netdev_priv(net_dev);
1205         struct efx_ptp_data *ptp = efx->ptp_data;
1206
1207         if (!ptp)
1208                 return -EOPNOTSUPP;
1209
1210         ts_info->so_timestamping = (SOF_TIMESTAMPING_TX_HARDWARE |
1211                                     SOF_TIMESTAMPING_RX_HARDWARE |
1212                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1213         ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1214         ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1215         ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1216                                1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1217                                1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1218                                1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1219                                1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1220                                1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1221                                1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1222         return 0;
1223 }
1224
1225 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1226 {
1227         struct hwtstamp_config config;
1228         int rc;
1229
1230         /* Not a PTP enabled port */
1231         if (!efx->ptp_data)
1232                 return -EOPNOTSUPP;
1233
1234         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1235                 return -EFAULT;
1236
1237         rc = efx_ptp_ts_init(efx, &config);
1238         if (rc != 0)
1239                 return rc;
1240
1241         return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1242                 ? -EFAULT : 0;
1243 }
1244
1245 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1246 {
1247         struct efx_ptp_data *ptp = efx->ptp_data;
1248
1249         netif_err(efx, hw, efx->net_dev,
1250                 "PTP unexpected event length: got %d expected %d\n",
1251                 ptp->evt_frag_idx, expected_frag_len);
1252         ptp->reset_required = true;
1253         queue_work(ptp->workwq, &ptp->work);
1254 }
1255
1256 /* Process a completed receive event.  Put it on the event queue and
1257  * start worker thread.  This is required because event and their
1258  * correspoding packets may come in either order.
1259  */
1260 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1261 {
1262         struct efx_ptp_event_rx *evt = NULL;
1263
1264         if (ptp->evt_frag_idx != 3) {
1265                 ptp_event_failure(efx, 3);
1266                 return;
1267         }
1268
1269         spin_lock_bh(&ptp->evt_lock);
1270         if (!list_empty(&ptp->evt_free_list)) {
1271                 evt = list_first_entry(&ptp->evt_free_list,
1272                                        struct efx_ptp_event_rx, link);
1273                 list_del(&evt->link);
1274
1275                 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1276                 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1277                                              MCDI_EVENT_SRC)        |
1278                              (EFX_QWORD_FIELD(ptp->evt_frags[1],
1279                                               MCDI_EVENT_SRC) << 8) |
1280                              (EFX_QWORD_FIELD(ptp->evt_frags[0],
1281                                               MCDI_EVENT_SRC) << 16));
1282                 evt->hwtimestamp = ktime_set(
1283                         EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1284                         EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1285                 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1286                 list_add_tail(&evt->link, &ptp->evt_list);
1287
1288                 queue_work(ptp->workwq, &ptp->work);
1289         } else {
1290                 netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1291         }
1292         spin_unlock_bh(&ptp->evt_lock);
1293 }
1294
1295 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1296 {
1297         int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1298         if (ptp->evt_frag_idx != 1) {
1299                 ptp_event_failure(efx, 1);
1300                 return;
1301         }
1302
1303         netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1304 }
1305
1306 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1307 {
1308         if (ptp->nic_ts_enabled)
1309                 queue_work(ptp->pps_workwq, &ptp->pps_work);
1310 }
1311
1312 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1313 {
1314         struct efx_ptp_data *ptp = efx->ptp_data;
1315         int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1316
1317         if (!ptp->enabled)
1318                 return;
1319
1320         if (ptp->evt_frag_idx == 0) {
1321                 ptp->evt_code = code;
1322         } else if (ptp->evt_code != code) {
1323                 netif_err(efx, hw, efx->net_dev,
1324                           "PTP out of sequence event %d\n", code);
1325                 ptp->evt_frag_idx = 0;
1326         }
1327
1328         ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1329         if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1330                 /* Process resulting event */
1331                 switch (code) {
1332                 case MCDI_EVENT_CODE_PTP_RX:
1333                         ptp_event_rx(efx, ptp);
1334                         break;
1335                 case MCDI_EVENT_CODE_PTP_FAULT:
1336                         ptp_event_fault(efx, ptp);
1337                         break;
1338                 case MCDI_EVENT_CODE_PTP_PPS:
1339                         ptp_event_pps(efx, ptp);
1340                         break;
1341                 default:
1342                         netif_err(efx, hw, efx->net_dev,
1343                                   "PTP unknown event %d\n", code);
1344                         break;
1345                 }
1346                 ptp->evt_frag_idx = 0;
1347         } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1348                 netif_err(efx, hw, efx->net_dev,
1349                           "PTP too many event fragments\n");
1350                 ptp->evt_frag_idx = 0;
1351         }
1352 }
1353
1354 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1355 {
1356         struct efx_ptp_data *ptp_data = container_of(ptp,
1357                                                      struct efx_ptp_data,
1358                                                      phc_clock_info);
1359         struct efx_nic *efx = ptp_data->channel->efx;
1360         u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1361         s64 adjustment_ns;
1362         int rc;
1363
1364         if (delta > MAX_PPB)
1365                 delta = MAX_PPB;
1366         else if (delta < -MAX_PPB)
1367                 delta = -MAX_PPB;
1368
1369         /* Convert ppb to fixed point ns. */
1370         adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1371                          (PPB_EXTRA_BITS + MAX_PPB_BITS));
1372
1373         MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1374         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1375         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1376                        (u32)(adjustment_ns >> 32));
1377         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1378         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1379         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1380                           NULL, 0, NULL);
1381         if (rc != 0)
1382                 return rc;
1383
1384         ptp_data->current_adjfreq = delta;
1385         return 0;
1386 }
1387
1388 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1389 {
1390         struct efx_ptp_data *ptp_data = container_of(ptp,
1391                                                      struct efx_ptp_data,
1392                                                      phc_clock_info);
1393         struct efx_nic *efx = ptp_data->channel->efx;
1394         struct timespec delta_ts = ns_to_timespec(delta);
1395         u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1396
1397         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1398         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1399         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1400         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1401         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1402         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1403                             NULL, 0, NULL);
1404 }
1405
1406 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1407 {
1408         struct efx_ptp_data *ptp_data = container_of(ptp,
1409                                                      struct efx_ptp_data,
1410                                                      phc_clock_info);
1411         struct efx_nic *efx = ptp_data->channel->efx;
1412         u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1413         u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1414         int rc;
1415
1416         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1417
1418         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1419                           outbuf, sizeof(outbuf), NULL);
1420         if (rc != 0)
1421                 return rc;
1422
1423         ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1424         ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1425         return 0;
1426 }
1427
1428 static int efx_phc_settime(struct ptp_clock_info *ptp,
1429                            const struct timespec *e_ts)
1430 {
1431         /* Get the current NIC time, efx_phc_gettime.
1432          * Subtract from the desired time to get the offset
1433          * call efx_phc_adjtime with the offset
1434          */
1435         int rc;
1436         struct timespec time_now;
1437         struct timespec delta;
1438
1439         rc = efx_phc_gettime(ptp, &time_now);
1440         if (rc != 0)
1441                 return rc;
1442
1443         delta = timespec_sub(*e_ts, time_now);
1444
1445         efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1446         if (rc != 0)
1447                 return rc;
1448
1449         return 0;
1450 }
1451
1452 static int efx_phc_enable(struct ptp_clock_info *ptp,
1453                           struct ptp_clock_request *request,
1454                           int enable)
1455 {
1456         struct efx_ptp_data *ptp_data = container_of(ptp,
1457                                                      struct efx_ptp_data,
1458                                                      phc_clock_info);
1459         if (request->type != PTP_CLK_REQ_PPS)
1460                 return -EOPNOTSUPP;
1461
1462         ptp_data->nic_ts_enabled = !!enable;
1463         return 0;
1464 }
1465
1466 static const struct efx_channel_type efx_ptp_channel_type = {
1467         .handle_no_channel      = efx_ptp_handle_no_channel,
1468         .pre_probe              = efx_ptp_probe_channel,
1469         .post_remove            = efx_ptp_remove_channel,
1470         .get_name               = efx_ptp_get_channel_name,
1471         /* no copy operation; there is no need to reallocate this channel */
1472         .receive_skb            = efx_ptp_rx,
1473         .keep_eventq            = false,
1474 };
1475
1476 void efx_ptp_probe(struct efx_nic *efx)
1477 {
1478         /* Check whether PTP is implemented on this NIC.  The DISABLE
1479          * operation will succeed if and only if it is implemented.
1480          */
1481         if (efx_ptp_disable(efx) == 0)
1482                 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1483                         &efx_ptp_channel_type;
1484 }