S2IO: Optimized the delay to wait for command completion
[firefly-linux-kernel-4.4.55.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/ethtool.h>
63 #include <linux/workqueue.h>
64 #include <linux/if_vlan.h>
65 #include <linux/ip.h>
66 #include <linux/tcp.h>
67 #include <net/tcp.h>
68
69 #include <asm/system.h>
70 #include <asm/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/div64.h>
73 #include <asm/irq.h>
74
75 /* local include */
76 #include "s2io.h"
77 #include "s2io-regs.h"
78
79 #define DRV_VERSION "2.0.16.1"
80
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
84
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
87
88 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
89 {
90         int ret;
91
92         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
94
95         return ret;
96 }
97
98 /*
99  * Cards with following subsystem_id have a link state indication
100  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101  * macro below identifies these cards given the subsystem_id.
102  */
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104         (dev_type == XFRAME_I_DEVICE) ?                 \
105                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
107
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111 #define PANIC   1
112 #define LOW     2
113 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
114 {
115         struct mac_info *mac_control;
116
117         mac_control = &sp->mac_control;
118         if (rxb_size <= rxd_count[sp->rxd_mode])
119                 return PANIC;
120         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121                 return  LOW;
122         return 0;
123 }
124
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127         "Register test\t(offline)",
128         "Eeprom test\t(offline)",
129         "Link test\t(online)",
130         "RLDRAM test\t(offline)",
131         "BIST Test\t(offline)"
132 };
133
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135         {"tmac_frms"},
136         {"tmac_data_octets"},
137         {"tmac_drop_frms"},
138         {"tmac_mcst_frms"},
139         {"tmac_bcst_frms"},
140         {"tmac_pause_ctrl_frms"},
141         {"tmac_ttl_octets"},
142         {"tmac_ucst_frms"},
143         {"tmac_nucst_frms"},
144         {"tmac_any_err_frms"},
145         {"tmac_ttl_less_fb_octets"},
146         {"tmac_vld_ip_octets"},
147         {"tmac_vld_ip"},
148         {"tmac_drop_ip"},
149         {"tmac_icmp"},
150         {"tmac_rst_tcp"},
151         {"tmac_tcp"},
152         {"tmac_udp"},
153         {"rmac_vld_frms"},
154         {"rmac_data_octets"},
155         {"rmac_fcs_err_frms"},
156         {"rmac_drop_frms"},
157         {"rmac_vld_mcst_frms"},
158         {"rmac_vld_bcst_frms"},
159         {"rmac_in_rng_len_err_frms"},
160         {"rmac_out_rng_len_err_frms"},
161         {"rmac_long_frms"},
162         {"rmac_pause_ctrl_frms"},
163         {"rmac_unsup_ctrl_frms"},
164         {"rmac_ttl_octets"},
165         {"rmac_accepted_ucst_frms"},
166         {"rmac_accepted_nucst_frms"},
167         {"rmac_discarded_frms"},
168         {"rmac_drop_events"},
169         {"rmac_ttl_less_fb_octets"},
170         {"rmac_ttl_frms"},
171         {"rmac_usized_frms"},
172         {"rmac_osized_frms"},
173         {"rmac_frag_frms"},
174         {"rmac_jabber_frms"},
175         {"rmac_ttl_64_frms"},
176         {"rmac_ttl_65_127_frms"},
177         {"rmac_ttl_128_255_frms"},
178         {"rmac_ttl_256_511_frms"},
179         {"rmac_ttl_512_1023_frms"},
180         {"rmac_ttl_1024_1518_frms"},
181         {"rmac_ip"},
182         {"rmac_ip_octets"},
183         {"rmac_hdr_err_ip"},
184         {"rmac_drop_ip"},
185         {"rmac_icmp"},
186         {"rmac_tcp"},
187         {"rmac_udp"},
188         {"rmac_err_drp_udp"},
189         {"rmac_xgmii_err_sym"},
190         {"rmac_frms_q0"},
191         {"rmac_frms_q1"},
192         {"rmac_frms_q2"},
193         {"rmac_frms_q3"},
194         {"rmac_frms_q4"},
195         {"rmac_frms_q5"},
196         {"rmac_frms_q6"},
197         {"rmac_frms_q7"},
198         {"rmac_full_q0"},
199         {"rmac_full_q1"},
200         {"rmac_full_q2"},
201         {"rmac_full_q3"},
202         {"rmac_full_q4"},
203         {"rmac_full_q5"},
204         {"rmac_full_q6"},
205         {"rmac_full_q7"},
206         {"rmac_pause_cnt"},
207         {"rmac_xgmii_data_err_cnt"},
208         {"rmac_xgmii_ctrl_err_cnt"},
209         {"rmac_accepted_ip"},
210         {"rmac_err_tcp"},
211         {"rd_req_cnt"},
212         {"new_rd_req_cnt"},
213         {"new_rd_req_rtry_cnt"},
214         {"rd_rtry_cnt"},
215         {"wr_rtry_rd_ack_cnt"},
216         {"wr_req_cnt"},
217         {"new_wr_req_cnt"},
218         {"new_wr_req_rtry_cnt"},
219         {"wr_rtry_cnt"},
220         {"wr_disc_cnt"},
221         {"rd_rtry_wr_ack_cnt"},
222         {"txp_wr_cnt"},
223         {"txd_rd_cnt"},
224         {"txd_wr_cnt"},
225         {"rxd_rd_cnt"},
226         {"rxd_wr_cnt"},
227         {"txf_rd_cnt"},
228         {"rxf_wr_cnt"},
229         {"rmac_ttl_1519_4095_frms"},
230         {"rmac_ttl_4096_8191_frms"},
231         {"rmac_ttl_8192_max_frms"},
232         {"rmac_ttl_gt_max_frms"},
233         {"rmac_osized_alt_frms"},
234         {"rmac_jabber_alt_frms"},
235         {"rmac_gt_max_alt_frms"},
236         {"rmac_vlan_frms"},
237         {"rmac_len_discard"},
238         {"rmac_fcs_discard"},
239         {"rmac_pf_discard"},
240         {"rmac_da_discard"},
241         {"rmac_red_discard"},
242         {"rmac_rts_discard"},
243         {"rmac_ingm_full_discard"},
244         {"link_fault_cnt"},
245         {"\n DRIVER STATISTICS"},
246         {"single_bit_ecc_errs"},
247         {"double_bit_ecc_errs"},
248         {"parity_err_cnt"},
249         {"serious_err_cnt"},
250         {"soft_reset_cnt"},
251         {"fifo_full_cnt"},
252         {"ring_full_cnt"},
253         ("alarm_transceiver_temp_high"),
254         ("alarm_transceiver_temp_low"),
255         ("alarm_laser_bias_current_high"),
256         ("alarm_laser_bias_current_low"),
257         ("alarm_laser_output_power_high"),
258         ("alarm_laser_output_power_low"),
259         ("warn_transceiver_temp_high"),
260         ("warn_transceiver_temp_low"),
261         ("warn_laser_bias_current_high"),
262         ("warn_laser_bias_current_low"),
263         ("warn_laser_output_power_high"),
264         ("warn_laser_output_power_low"),
265         ("lro_aggregated_pkts"),
266         ("lro_flush_both_count"),
267         ("lro_out_of_sequence_pkts"),
268         ("lro_flush_due_to_max_pkts"),
269         ("lro_avg_aggr_pkts"),
270 };
271
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
274
275 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
277
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
279                         init_timer(&timer);                     \
280                         timer.function = handle;                \
281                         timer.data = (unsigned long) arg;       \
282                         mod_timer(&timer, (jiffies + exp))      \
283
284 /* Add the vlan */
285 static void s2io_vlan_rx_register(struct net_device *dev,
286                                         struct vlan_group *grp)
287 {
288         struct s2io_nic *nic = dev->priv;
289         unsigned long flags;
290
291         spin_lock_irqsave(&nic->tx_lock, flags);
292         nic->vlgrp = grp;
293         spin_unlock_irqrestore(&nic->tx_lock, flags);
294 }
295
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
298 {
299         struct s2io_nic *nic = dev->priv;
300         unsigned long flags;
301
302         spin_lock_irqsave(&nic->tx_lock, flags);
303         if (nic->vlgrp)
304                 nic->vlgrp->vlan_devices[vid] = NULL;
305         spin_unlock_irqrestore(&nic->tx_lock, flags);
306 }
307
308 /*
309  * Constants to be programmed into the Xena's registers, to configure
310  * the XAUI.
311  */
312
313 #define END_SIGN        0x0
314 static const u64 herc_act_dtx_cfg[] = {
315         /* Set address */
316         0x8000051536750000ULL, 0x80000515367500E0ULL,
317         /* Write data */
318         0x8000051536750004ULL, 0x80000515367500E4ULL,
319         /* Set address */
320         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321         /* Write data */
322         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323         /* Set address */
324         0x801205150D440000ULL, 0x801205150D4400E0ULL,
325         /* Write data */
326         0x801205150D440004ULL, 0x801205150D4400E4ULL,
327         /* Set address */
328         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329         /* Write data */
330         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331         /* Done */
332         END_SIGN
333 };
334
335 static const u64 xena_dtx_cfg[] = {
336         /* Set address */
337         0x8000051500000000ULL, 0x80000515000000E0ULL,
338         /* Write data */
339         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340         /* Set address */
341         0x8001051500000000ULL, 0x80010515000000E0ULL,
342         /* Write data */
343         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344         /* Set address */
345         0x8002051500000000ULL, 0x80020515000000E0ULL,
346         /* Write data */
347         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
348         END_SIGN
349 };
350
351 /*
352  * Constants for Fixing the MacAddress problem seen mostly on
353  * Alpha machines.
354  */
355 static const u64 fix_mac[] = {
356         0x0060000000000000ULL, 0x0060600000000000ULL,
357         0x0040600000000000ULL, 0x0000600000000000ULL,
358         0x0020600000000000ULL, 0x0060600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0000600000000000ULL,
369         0x0040600000000000ULL, 0x0060600000000000ULL,
370         END_SIGN
371 };
372
373 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
374 MODULE_LICENSE("GPL");
375 MODULE_VERSION(DRV_VERSION);
376
377
378 /* Module Loadable parameters. */
379 S2IO_PARM_INT(tx_fifo_num, 1);
380 S2IO_PARM_INT(rx_ring_num, 1);
381
382
383 S2IO_PARM_INT(rx_ring_mode, 1);
384 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
385 S2IO_PARM_INT(rmac_pause_time, 0x100);
386 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
387 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
388 S2IO_PARM_INT(shared_splits, 0);
389 S2IO_PARM_INT(tmac_util_period, 5);
390 S2IO_PARM_INT(rmac_util_period, 5);
391 S2IO_PARM_INT(bimodal, 0);
392 S2IO_PARM_INT(l3l4hdr_size, 128);
393 /* Frequency of Rx desc syncs expressed as power of 2 */
394 S2IO_PARM_INT(rxsync_frequency, 3);
395 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
396 S2IO_PARM_INT(intr_type, 0);
397 /* Large receive offload feature */
398 S2IO_PARM_INT(lro, 0);
399 /* Max pkts to be aggregated by LRO at one time. If not specified,
400  * aggregation happens until we hit max IP pkt size(64K)
401  */
402 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
403 S2IO_PARM_INT(indicate_max_pkts, 0);
404
405 S2IO_PARM_INT(napi, 1);
406 S2IO_PARM_INT(ufo, 0);
407
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
414
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
418
419 /*
420  * S2IO device table.
421  * This table lists all the devices that this driver supports.
422  */
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425          PCI_ANY_ID, PCI_ANY_ID},
426         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427          PCI_ANY_ID, PCI_ANY_ID},
428         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429          PCI_ANY_ID, PCI_ANY_ID},
430         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431          PCI_ANY_ID, PCI_ANY_ID},
432         {0,}
433 };
434
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
436
437 static struct pci_driver s2io_driver = {
438       .name = "S2IO",
439       .id_table = s2io_tbl,
440       .probe = s2io_init_nic,
441       .remove = __devexit_p(s2io_rem_nic),
442 };
443
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
446
447 /**
448  * init_shared_mem - Allocation and Initialization of Memory
449  * @nic: Device private variable.
450  * Description: The function allocates all the memory areas shared
451  * between the NIC and the driver. This includes Tx descriptors,
452  * Rx descriptors and the statistics block.
453  */
454
455 static int init_shared_mem(struct s2io_nic *nic)
456 {
457         u32 size;
458         void *tmp_v_addr, *tmp_v_addr_next;
459         dma_addr_t tmp_p_addr, tmp_p_addr_next;
460         struct RxD_block *pre_rxd_blk = NULL;
461         int i, j, blk_cnt;
462         int lst_size, lst_per_page;
463         struct net_device *dev = nic->dev;
464         unsigned long tmp;
465         struct buffAdd *ba;
466
467         struct mac_info *mac_control;
468         struct config_param *config;
469
470         mac_control = &nic->mac_control;
471         config = &nic->config;
472
473
474         /* Allocation and initialization of TXDLs in FIOFs */
475         size = 0;
476         for (i = 0; i < config->tx_fifo_num; i++) {
477                 size += config->tx_cfg[i].fifo_len;
478         }
479         if (size > MAX_AVAILABLE_TXDS) {
480                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482                 return -EINVAL;
483         }
484
485         lst_size = (sizeof(struct TxD) * config->max_txds);
486         lst_per_page = PAGE_SIZE / lst_size;
487
488         for (i = 0; i < config->tx_fifo_num; i++) {
489                 int fifo_len = config->tx_cfg[i].fifo_len;
490                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
491                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
492                                                           GFP_KERNEL);
493                 if (!mac_control->fifos[i].list_info) {
494                         DBG_PRINT(ERR_DBG,
495                                   "Malloc failed for list_info\n");
496                         return -ENOMEM;
497                 }
498                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
499         }
500         for (i = 0; i < config->tx_fifo_num; i++) {
501                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
502                                                 lst_per_page);
503                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
504                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
505                     config->tx_cfg[i].fifo_len - 1;
506                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
507                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
508                     config->tx_cfg[i].fifo_len - 1;
509                 mac_control->fifos[i].fifo_no = i;
510                 mac_control->fifos[i].nic = nic;
511                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
512
513                 for (j = 0; j < page_num; j++) {
514                         int k = 0;
515                         dma_addr_t tmp_p;
516                         void *tmp_v;
517                         tmp_v = pci_alloc_consistent(nic->pdev,
518                                                      PAGE_SIZE, &tmp_p);
519                         if (!tmp_v) {
520                                 DBG_PRINT(ERR_DBG,
521                                           "pci_alloc_consistent ");
522                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
523                                 return -ENOMEM;
524                         }
525                         /* If we got a zero DMA address(can happen on
526                          * certain platforms like PPC), reallocate.
527                          * Store virtual address of page we don't want,
528                          * to be freed later.
529                          */
530                         if (!tmp_p) {
531                                 mac_control->zerodma_virt_addr = tmp_v;
532                                 DBG_PRINT(INIT_DBG,
533                                 "%s: Zero DMA address for TxDL. ", dev->name);
534                                 DBG_PRINT(INIT_DBG,
535                                 "Virtual address %p\n", tmp_v);
536                                 tmp_v = pci_alloc_consistent(nic->pdev,
537                                                      PAGE_SIZE, &tmp_p);
538                                 if (!tmp_v) {
539                                         DBG_PRINT(ERR_DBG,
540                                           "pci_alloc_consistent ");
541                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
542                                         return -ENOMEM;
543                                 }
544                         }
545                         while (k < lst_per_page) {
546                                 int l = (j * lst_per_page) + k;
547                                 if (l == config->tx_cfg[i].fifo_len)
548                                         break;
549                                 mac_control->fifos[i].list_info[l].list_virt_addr =
550                                     tmp_v + (k * lst_size);
551                                 mac_control->fifos[i].list_info[l].list_phy_addr =
552                                     tmp_p + (k * lst_size);
553                                 k++;
554                         }
555                 }
556         }
557
558         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
559         if (!nic->ufo_in_band_v)
560                 return -ENOMEM;
561
562         /* Allocation and initialization of RXDs in Rings */
563         size = 0;
564         for (i = 0; i < config->rx_ring_num; i++) {
565                 if (config->rx_cfg[i].num_rxd %
566                     (rxd_count[nic->rxd_mode] + 1)) {
567                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
568                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
569                                   i);
570                         DBG_PRINT(ERR_DBG, "RxDs per Block");
571                         return FAILURE;
572                 }
573                 size += config->rx_cfg[i].num_rxd;
574                 mac_control->rings[i].block_count =
575                         config->rx_cfg[i].num_rxd /
576                         (rxd_count[nic->rxd_mode] + 1 );
577                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
578                         mac_control->rings[i].block_count;
579         }
580         if (nic->rxd_mode == RXD_MODE_1)
581                 size = (size * (sizeof(struct RxD1)));
582         else
583                 size = (size * (sizeof(struct RxD3)));
584
585         for (i = 0; i < config->rx_ring_num; i++) {
586                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
587                 mac_control->rings[i].rx_curr_get_info.offset = 0;
588                 mac_control->rings[i].rx_curr_get_info.ring_len =
589                     config->rx_cfg[i].num_rxd - 1;
590                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
591                 mac_control->rings[i].rx_curr_put_info.offset = 0;
592                 mac_control->rings[i].rx_curr_put_info.ring_len =
593                     config->rx_cfg[i].num_rxd - 1;
594                 mac_control->rings[i].nic = nic;
595                 mac_control->rings[i].ring_no = i;
596
597                 blk_cnt = config->rx_cfg[i].num_rxd /
598                                 (rxd_count[nic->rxd_mode] + 1);
599                 /*  Allocating all the Rx blocks */
600                 for (j = 0; j < blk_cnt; j++) {
601                         struct rx_block_info *rx_blocks;
602                         int l;
603
604                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
605                         size = SIZE_OF_BLOCK; //size is always page size
606                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
607                                                           &tmp_p_addr);
608                         if (tmp_v_addr == NULL) {
609                                 /*
610                                  * In case of failure, free_shared_mem()
611                                  * is called, which should free any
612                                  * memory that was alloced till the
613                                  * failure happened.
614                                  */
615                                 rx_blocks->block_virt_addr = tmp_v_addr;
616                                 return -ENOMEM;
617                         }
618                         memset(tmp_v_addr, 0, size);
619                         rx_blocks->block_virt_addr = tmp_v_addr;
620                         rx_blocks->block_dma_addr = tmp_p_addr;
621                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
622                                                   rxd_count[nic->rxd_mode],
623                                                   GFP_KERNEL);
624                         if (!rx_blocks->rxds)
625                                 return -ENOMEM;
626                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
627                                 rx_blocks->rxds[l].virt_addr =
628                                         rx_blocks->block_virt_addr +
629                                         (rxd_size[nic->rxd_mode] * l);
630                                 rx_blocks->rxds[l].dma_addr =
631                                         rx_blocks->block_dma_addr +
632                                         (rxd_size[nic->rxd_mode] * l);
633                         }
634                 }
635                 /* Interlinking all Rx Blocks */
636                 for (j = 0; j < blk_cnt; j++) {
637                         tmp_v_addr =
638                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
639                         tmp_v_addr_next =
640                                 mac_control->rings[i].rx_blocks[(j + 1) %
641                                               blk_cnt].block_virt_addr;
642                         tmp_p_addr =
643                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
644                         tmp_p_addr_next =
645                                 mac_control->rings[i].rx_blocks[(j + 1) %
646                                               blk_cnt].block_dma_addr;
647
648                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
649                         pre_rxd_blk->reserved_2_pNext_RxD_block =
650                             (unsigned long) tmp_v_addr_next;
651                         pre_rxd_blk->pNext_RxD_Blk_physical =
652                             (u64) tmp_p_addr_next;
653                 }
654         }
655         if (nic->rxd_mode >= RXD_MODE_3A) {
656                 /*
657                  * Allocation of Storages for buffer addresses in 2BUFF mode
658                  * and the buffers as well.
659                  */
660                 for (i = 0; i < config->rx_ring_num; i++) {
661                         blk_cnt = config->rx_cfg[i].num_rxd /
662                            (rxd_count[nic->rxd_mode]+ 1);
663                         mac_control->rings[i].ba =
664                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
665                                      GFP_KERNEL);
666                         if (!mac_control->rings[i].ba)
667                                 return -ENOMEM;
668                         for (j = 0; j < blk_cnt; j++) {
669                                 int k = 0;
670                                 mac_control->rings[i].ba[j] =
671                                         kmalloc((sizeof(struct buffAdd) *
672                                                 (rxd_count[nic->rxd_mode] + 1)),
673                                                 GFP_KERNEL);
674                                 if (!mac_control->rings[i].ba[j])
675                                         return -ENOMEM;
676                                 while (k != rxd_count[nic->rxd_mode]) {
677                                         ba = &mac_control->rings[i].ba[j][k];
678
679                                         ba->ba_0_org = (void *) kmalloc
680                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
681                                         if (!ba->ba_0_org)
682                                                 return -ENOMEM;
683                                         tmp = (unsigned long)ba->ba_0_org;
684                                         tmp += ALIGN_SIZE;
685                                         tmp &= ~((unsigned long) ALIGN_SIZE);
686                                         ba->ba_0 = (void *) tmp;
687
688                                         ba->ba_1_org = (void *) kmalloc
689                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
690                                         if (!ba->ba_1_org)
691                                                 return -ENOMEM;
692                                         tmp = (unsigned long) ba->ba_1_org;
693                                         tmp += ALIGN_SIZE;
694                                         tmp &= ~((unsigned long) ALIGN_SIZE);
695                                         ba->ba_1 = (void *) tmp;
696                                         k++;
697                                 }
698                         }
699                 }
700         }
701
702         /* Allocation and initialization of Statistics block */
703         size = sizeof(struct stat_block);
704         mac_control->stats_mem = pci_alloc_consistent
705             (nic->pdev, size, &mac_control->stats_mem_phy);
706
707         if (!mac_control->stats_mem) {
708                 /*
709                  * In case of failure, free_shared_mem() is called, which
710                  * should free any memory that was alloced till the
711                  * failure happened.
712                  */
713                 return -ENOMEM;
714         }
715         mac_control->stats_mem_sz = size;
716
717         tmp_v_addr = mac_control->stats_mem;
718         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
719         memset(tmp_v_addr, 0, size);
720         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
721                   (unsigned long long) tmp_p_addr);
722
723         return SUCCESS;
724 }
725
726 /**
727  * free_shared_mem - Free the allocated Memory
728  * @nic:  Device private variable.
729  * Description: This function is to free all memory locations allocated by
730  * the init_shared_mem() function and return it to the kernel.
731  */
732
733 static void free_shared_mem(struct s2io_nic *nic)
734 {
735         int i, j, blk_cnt, size;
736         void *tmp_v_addr;
737         dma_addr_t tmp_p_addr;
738         struct mac_info *mac_control;
739         struct config_param *config;
740         int lst_size, lst_per_page;
741         struct net_device *dev = nic->dev;
742
743         if (!nic)
744                 return;
745
746         mac_control = &nic->mac_control;
747         config = &nic->config;
748
749         lst_size = (sizeof(struct TxD) * config->max_txds);
750         lst_per_page = PAGE_SIZE / lst_size;
751
752         for (i = 0; i < config->tx_fifo_num; i++) {
753                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
754                                                 lst_per_page);
755                 for (j = 0; j < page_num; j++) {
756                         int mem_blks = (j * lst_per_page);
757                         if (!mac_control->fifos[i].list_info)
758                                 return;
759                         if (!mac_control->fifos[i].list_info[mem_blks].
760                                  list_virt_addr)
761                                 break;
762                         pci_free_consistent(nic->pdev, PAGE_SIZE,
763                                             mac_control->fifos[i].
764                                             list_info[mem_blks].
765                                             list_virt_addr,
766                                             mac_control->fifos[i].
767                                             list_info[mem_blks].
768                                             list_phy_addr);
769                 }
770                 /* If we got a zero DMA address during allocation,
771                  * free the page now
772                  */
773                 if (mac_control->zerodma_virt_addr) {
774                         pci_free_consistent(nic->pdev, PAGE_SIZE,
775                                             mac_control->zerodma_virt_addr,
776                                             (dma_addr_t)0);
777                         DBG_PRINT(INIT_DBG,
778                                 "%s: Freeing TxDL with zero DMA addr. ",
779                                 dev->name);
780                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
781                                 mac_control->zerodma_virt_addr);
782                 }
783                 kfree(mac_control->fifos[i].list_info);
784         }
785
786         size = SIZE_OF_BLOCK;
787         for (i = 0; i < config->rx_ring_num; i++) {
788                 blk_cnt = mac_control->rings[i].block_count;
789                 for (j = 0; j < blk_cnt; j++) {
790                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
791                                 block_virt_addr;
792                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
793                                 block_dma_addr;
794                         if (tmp_v_addr == NULL)
795                                 break;
796                         pci_free_consistent(nic->pdev, size,
797                                             tmp_v_addr, tmp_p_addr);
798                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
799                 }
800         }
801
802         if (nic->rxd_mode >= RXD_MODE_3A) {
803                 /* Freeing buffer storage addresses in 2BUFF mode. */
804                 for (i = 0; i < config->rx_ring_num; i++) {
805                         blk_cnt = config->rx_cfg[i].num_rxd /
806                             (rxd_count[nic->rxd_mode] + 1);
807                         for (j = 0; j < blk_cnt; j++) {
808                                 int k = 0;
809                                 if (!mac_control->rings[i].ba[j])
810                                         continue;
811                                 while (k != rxd_count[nic->rxd_mode]) {
812                                         struct buffAdd *ba =
813                                                 &mac_control->rings[i].ba[j][k];
814                                         kfree(ba->ba_0_org);
815                                         kfree(ba->ba_1_org);
816                                         k++;
817                                 }
818                                 kfree(mac_control->rings[i].ba[j]);
819                         }
820                         kfree(mac_control->rings[i].ba);
821                 }
822         }
823
824         if (mac_control->stats_mem) {
825                 pci_free_consistent(nic->pdev,
826                                     mac_control->stats_mem_sz,
827                                     mac_control->stats_mem,
828                                     mac_control->stats_mem_phy);
829         }
830         if (nic->ufo_in_band_v)
831                 kfree(nic->ufo_in_band_v);
832 }
833
834 /**
835  * s2io_verify_pci_mode -
836  */
837
838 static int s2io_verify_pci_mode(struct s2io_nic *nic)
839 {
840         struct XENA_dev_config __iomem *bar0 = nic->bar0;
841         register u64 val64 = 0;
842         int     mode;
843
844         val64 = readq(&bar0->pci_mode);
845         mode = (u8)GET_PCI_MODE(val64);
846
847         if ( val64 & PCI_MODE_UNKNOWN_MODE)
848                 return -1;      /* Unknown PCI mode */
849         return mode;
850 }
851
852 #define NEC_VENID   0x1033
853 #define NEC_DEVID   0x0125
854 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
855 {
856         struct pci_dev *tdev = NULL;
857         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
858                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
859                         if (tdev->bus == s2io_pdev->bus->parent)
860                                 pci_dev_put(tdev);
861                                 return 1;
862                 }
863         }
864         return 0;
865 }
866
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
868 /**
869  * s2io_print_pci_mode -
870  */
871 static int s2io_print_pci_mode(struct s2io_nic *nic)
872 {
873         struct XENA_dev_config __iomem *bar0 = nic->bar0;
874         register u64 val64 = 0;
875         int     mode;
876         struct config_param *config = &nic->config;
877
878         val64 = readq(&bar0->pci_mode);
879         mode = (u8)GET_PCI_MODE(val64);
880
881         if ( val64 & PCI_MODE_UNKNOWN_MODE)
882                 return -1;      /* Unknown PCI mode */
883
884         config->bus_speed = bus_speed[mode];
885
886         if (s2io_on_nec_bridge(nic->pdev)) {
887                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888                                                         nic->dev->name);
889                 return mode;
890         }
891
892         if (val64 & PCI_MODE_32_BITS) {
893                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894         } else {
895                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
896         }
897
898         switch(mode) {
899                 case PCI_MODE_PCI_33:
900                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901                         break;
902                 case PCI_MODE_PCI_66:
903                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904                         break;
905                 case PCI_MODE_PCIX_M1_66:
906                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907                         break;
908                 case PCI_MODE_PCIX_M1_100:
909                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910                         break;
911                 case PCI_MODE_PCIX_M1_133:
912                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913                         break;
914                 case PCI_MODE_PCIX_M2_66:
915                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916                         break;
917                 case PCI_MODE_PCIX_M2_100:
918                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919                         break;
920                 case PCI_MODE_PCIX_M2_133:
921                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922                         break;
923                 default:
924                         return -1;      /* Unsupported bus speed */
925         }
926
927         return mode;
928 }
929
930 /**
931  *  init_nic - Initialization of hardware
932  *  @nic: device peivate variable
933  *  Description: The function sequentially configures every block
934  *  of the H/W from their reset values.
935  *  Return Value:  SUCCESS on success and
936  *  '-1' on failure (endian settings incorrect).
937  */
938
939 static int init_nic(struct s2io_nic *nic)
940 {
941         struct XENA_dev_config __iomem *bar0 = nic->bar0;
942         struct net_device *dev = nic->dev;
943         register u64 val64 = 0;
944         void __iomem *add;
945         u32 time;
946         int i, j;
947         struct mac_info *mac_control;
948         struct config_param *config;
949         int dtx_cnt = 0;
950         unsigned long long mem_share;
951         int mem_size;
952
953         mac_control = &nic->mac_control;
954         config = &nic->config;
955
956         /* to set the swapper controle on the card */
957         if(s2io_set_swapper(nic)) {
958                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959                 return -1;
960         }
961
962         /*
963          * Herc requires EOI to be removed from reset before XGXS, so..
964          */
965         if (nic->device_type & XFRAME_II_DEVICE) {
966                 val64 = 0xA500000000ULL;
967                 writeq(val64, &bar0->sw_reset);
968                 msleep(500);
969                 val64 = readq(&bar0->sw_reset);
970         }
971
972         /* Remove XGXS from reset state */
973         val64 = 0;
974         writeq(val64, &bar0->sw_reset);
975         msleep(500);
976         val64 = readq(&bar0->sw_reset);
977
978         /*  Enable Receiving broadcasts */
979         add = &bar0->mac_cfg;
980         val64 = readq(&bar0->mac_cfg);
981         val64 |= MAC_RMAC_BCAST_ENABLE;
982         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983         writel((u32) val64, add);
984         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985         writel((u32) (val64 >> 32), (add + 4));
986
987         /* Read registers in all blocks */
988         val64 = readq(&bar0->mac_int_mask);
989         val64 = readq(&bar0->mc_int_mask);
990         val64 = readq(&bar0->xgxs_int_mask);
991
992         /*  Set MTU */
993         val64 = dev->mtu;
994         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
995
996         if (nic->device_type & XFRAME_II_DEVICE) {
997                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999                                           &bar0->dtx_control, UF);
1000                         if (dtx_cnt & 0x1)
1001                                 msleep(1); /* Necessary!! */
1002                         dtx_cnt++;
1003                 }
1004         } else {
1005                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007                                           &bar0->dtx_control, UF);
1008                         val64 = readq(&bar0->dtx_control);
1009                         dtx_cnt++;
1010                 }
1011         }
1012
1013         /*  Tx DMA Initialization */
1014         val64 = 0;
1015         writeq(val64, &bar0->tx_fifo_partition_0);
1016         writeq(val64, &bar0->tx_fifo_partition_1);
1017         writeq(val64, &bar0->tx_fifo_partition_2);
1018         writeq(val64, &bar0->tx_fifo_partition_3);
1019
1020
1021         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022                 val64 |=
1023                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1025                                     ((i * 32) + 5), 3);
1026
1027                 if (i == (config->tx_fifo_num - 1)) {
1028                         if (i % 2 == 0)
1029                                 i++;
1030                 }
1031
1032                 switch (i) {
1033                 case 1:
1034                         writeq(val64, &bar0->tx_fifo_partition_0);
1035                         val64 = 0;
1036                         break;
1037                 case 3:
1038                         writeq(val64, &bar0->tx_fifo_partition_1);
1039                         val64 = 0;
1040                         break;
1041                 case 5:
1042                         writeq(val64, &bar0->tx_fifo_partition_2);
1043                         val64 = 0;
1044                         break;
1045                 case 7:
1046                         writeq(val64, &bar0->tx_fifo_partition_3);
1047                         break;
1048                 }
1049         }
1050
1051         /*
1052          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1054          */
1055         if ((nic->device_type == XFRAME_I_DEVICE) &&
1056                 (get_xena_rev_id(nic->pdev) < 4))
1057                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1058
1059         val64 = readq(&bar0->tx_fifo_partition_0);
1060         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1062
1063         /*
1064          * Initialization of Tx_PA_CONFIG register to ignore packet
1065          * integrity checking.
1066          */
1067         val64 = readq(&bar0->tx_pa_cfg);
1068         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070         writeq(val64, &bar0->tx_pa_cfg);
1071
1072         /* Rx DMA intialization. */
1073         val64 = 0;
1074         for (i = 0; i < config->rx_ring_num; i++) {
1075                 val64 |=
1076                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1077                          3);
1078         }
1079         writeq(val64, &bar0->rx_queue_priority);
1080
1081         /*
1082          * Allocating equal share of memory to all the
1083          * configured Rings.
1084          */
1085         val64 = 0;
1086         if (nic->device_type & XFRAME_II_DEVICE)
1087                 mem_size = 32;
1088         else
1089                 mem_size = 64;
1090
1091         for (i = 0; i < config->rx_ring_num; i++) {
1092                 switch (i) {
1093                 case 0:
1094                         mem_share = (mem_size / config->rx_ring_num +
1095                                      mem_size % config->rx_ring_num);
1096                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097                         continue;
1098                 case 1:
1099                         mem_share = (mem_size / config->rx_ring_num);
1100                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101                         continue;
1102                 case 2:
1103                         mem_share = (mem_size / config->rx_ring_num);
1104                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105                         continue;
1106                 case 3:
1107                         mem_share = (mem_size / config->rx_ring_num);
1108                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109                         continue;
1110                 case 4:
1111                         mem_share = (mem_size / config->rx_ring_num);
1112                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113                         continue;
1114                 case 5:
1115                         mem_share = (mem_size / config->rx_ring_num);
1116                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117                         continue;
1118                 case 6:
1119                         mem_share = (mem_size / config->rx_ring_num);
1120                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121                         continue;
1122                 case 7:
1123                         mem_share = (mem_size / config->rx_ring_num);
1124                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125                         continue;
1126                 }
1127         }
1128         writeq(val64, &bar0->rx_queue_cfg);
1129
1130         /*
1131          * Filling Tx round robin registers
1132          * as per the number of FIFOs
1133          */
1134         switch (config->tx_fifo_num) {
1135         case 1:
1136                 val64 = 0x0000000000000000ULL;
1137                 writeq(val64, &bar0->tx_w_round_robin_0);
1138                 writeq(val64, &bar0->tx_w_round_robin_1);
1139                 writeq(val64, &bar0->tx_w_round_robin_2);
1140                 writeq(val64, &bar0->tx_w_round_robin_3);
1141                 writeq(val64, &bar0->tx_w_round_robin_4);
1142                 break;
1143         case 2:
1144                 val64 = 0x0000010000010000ULL;
1145                 writeq(val64, &bar0->tx_w_round_robin_0);
1146                 val64 = 0x0100000100000100ULL;
1147                 writeq(val64, &bar0->tx_w_round_robin_1);
1148                 val64 = 0x0001000001000001ULL;
1149                 writeq(val64, &bar0->tx_w_round_robin_2);
1150                 val64 = 0x0000010000010000ULL;
1151                 writeq(val64, &bar0->tx_w_round_robin_3);
1152                 val64 = 0x0100000000000000ULL;
1153                 writeq(val64, &bar0->tx_w_round_robin_4);
1154                 break;
1155         case 3:
1156                 val64 = 0x0001000102000001ULL;
1157                 writeq(val64, &bar0->tx_w_round_robin_0);
1158                 val64 = 0x0001020000010001ULL;
1159                 writeq(val64, &bar0->tx_w_round_robin_1);
1160                 val64 = 0x0200000100010200ULL;
1161                 writeq(val64, &bar0->tx_w_round_robin_2);
1162                 val64 = 0x0001000102000001ULL;
1163                 writeq(val64, &bar0->tx_w_round_robin_3);
1164                 val64 = 0x0001020000000000ULL;
1165                 writeq(val64, &bar0->tx_w_round_robin_4);
1166                 break;
1167         case 4:
1168                 val64 = 0x0001020300010200ULL;
1169                 writeq(val64, &bar0->tx_w_round_robin_0);
1170                 val64 = 0x0100000102030001ULL;
1171                 writeq(val64, &bar0->tx_w_round_robin_1);
1172                 val64 = 0x0200010000010203ULL;
1173                 writeq(val64, &bar0->tx_w_round_robin_2);
1174                 val64 = 0x0001020001000001ULL;
1175                 writeq(val64, &bar0->tx_w_round_robin_3);
1176                 val64 = 0x0203000100000000ULL;
1177                 writeq(val64, &bar0->tx_w_round_robin_4);
1178                 break;
1179         case 5:
1180                 val64 = 0x0001000203000102ULL;
1181                 writeq(val64, &bar0->tx_w_round_robin_0);
1182                 val64 = 0x0001020001030004ULL;
1183                 writeq(val64, &bar0->tx_w_round_robin_1);
1184                 val64 = 0x0001000203000102ULL;
1185                 writeq(val64, &bar0->tx_w_round_robin_2);
1186                 val64 = 0x0001020001030004ULL;
1187                 writeq(val64, &bar0->tx_w_round_robin_3);
1188                 val64 = 0x0001000000000000ULL;
1189                 writeq(val64, &bar0->tx_w_round_robin_4);
1190                 break;
1191         case 6:
1192                 val64 = 0x0001020304000102ULL;
1193                 writeq(val64, &bar0->tx_w_round_robin_0);
1194                 val64 = 0x0304050001020001ULL;
1195                 writeq(val64, &bar0->tx_w_round_robin_1);
1196                 val64 = 0x0203000100000102ULL;
1197                 writeq(val64, &bar0->tx_w_round_robin_2);
1198                 val64 = 0x0304000102030405ULL;
1199                 writeq(val64, &bar0->tx_w_round_robin_3);
1200                 val64 = 0x0001000200000000ULL;
1201                 writeq(val64, &bar0->tx_w_round_robin_4);
1202                 break;
1203         case 7:
1204                 val64 = 0x0001020001020300ULL;
1205                 writeq(val64, &bar0->tx_w_round_robin_0);
1206                 val64 = 0x0102030400010203ULL;
1207                 writeq(val64, &bar0->tx_w_round_robin_1);
1208                 val64 = 0x0405060001020001ULL;
1209                 writeq(val64, &bar0->tx_w_round_robin_2);
1210                 val64 = 0x0304050000010200ULL;
1211                 writeq(val64, &bar0->tx_w_round_robin_3);
1212                 val64 = 0x0102030000000000ULL;
1213                 writeq(val64, &bar0->tx_w_round_robin_4);
1214                 break;
1215         case 8:
1216                 val64 = 0x0001020300040105ULL;
1217                 writeq(val64, &bar0->tx_w_round_robin_0);
1218                 val64 = 0x0200030106000204ULL;
1219                 writeq(val64, &bar0->tx_w_round_robin_1);
1220                 val64 = 0x0103000502010007ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_2);
1222                 val64 = 0x0304010002060500ULL;
1223                 writeq(val64, &bar0->tx_w_round_robin_3);
1224                 val64 = 0x0103020400000000ULL;
1225                 writeq(val64, &bar0->tx_w_round_robin_4);
1226                 break;
1227         }
1228
1229         /* Enable all configured Tx FIFO partitions */
1230         val64 = readq(&bar0->tx_fifo_partition_0);
1231         val64 |= (TX_FIFO_PARTITION_EN);
1232         writeq(val64, &bar0->tx_fifo_partition_0);
1233
1234         /* Filling the Rx round robin registers as per the
1235          * number of Rings and steering based on QoS.
1236          */
1237         switch (config->rx_ring_num) {
1238         case 1:
1239                 val64 = 0x8080808080808080ULL;
1240                 writeq(val64, &bar0->rts_qos_steering);
1241                 break;
1242         case 2:
1243                 val64 = 0x0000010000010000ULL;
1244                 writeq(val64, &bar0->rx_w_round_robin_0);
1245                 val64 = 0x0100000100000100ULL;
1246                 writeq(val64, &bar0->rx_w_round_robin_1);
1247                 val64 = 0x0001000001000001ULL;
1248                 writeq(val64, &bar0->rx_w_round_robin_2);
1249                 val64 = 0x0000010000010000ULL;
1250                 writeq(val64, &bar0->rx_w_round_robin_3);
1251                 val64 = 0x0100000000000000ULL;
1252                 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254                 val64 = 0x8080808040404040ULL;
1255                 writeq(val64, &bar0->rts_qos_steering);
1256                 break;
1257         case 3:
1258                 val64 = 0x0001000102000001ULL;
1259                 writeq(val64, &bar0->rx_w_round_robin_0);
1260                 val64 = 0x0001020000010001ULL;
1261                 writeq(val64, &bar0->rx_w_round_robin_1);
1262                 val64 = 0x0200000100010200ULL;
1263                 writeq(val64, &bar0->rx_w_round_robin_2);
1264                 val64 = 0x0001000102000001ULL;
1265                 writeq(val64, &bar0->rx_w_round_robin_3);
1266                 val64 = 0x0001020000000000ULL;
1267                 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269                 val64 = 0x8080804040402020ULL;
1270                 writeq(val64, &bar0->rts_qos_steering);
1271                 break;
1272         case 4:
1273                 val64 = 0x0001020300010200ULL;
1274                 writeq(val64, &bar0->rx_w_round_robin_0);
1275                 val64 = 0x0100000102030001ULL;
1276                 writeq(val64, &bar0->rx_w_round_robin_1);
1277                 val64 = 0x0200010000010203ULL;
1278                 writeq(val64, &bar0->rx_w_round_robin_2);
1279                 val64 = 0x0001020001000001ULL;
1280                 writeq(val64, &bar0->rx_w_round_robin_3);
1281                 val64 = 0x0203000100000000ULL;
1282                 writeq(val64, &bar0->rx_w_round_robin_4);
1283
1284                 val64 = 0x8080404020201010ULL;
1285                 writeq(val64, &bar0->rts_qos_steering);
1286                 break;
1287         case 5:
1288                 val64 = 0x0001000203000102ULL;
1289                 writeq(val64, &bar0->rx_w_round_robin_0);
1290                 val64 = 0x0001020001030004ULL;
1291                 writeq(val64, &bar0->rx_w_round_robin_1);
1292                 val64 = 0x0001000203000102ULL;
1293                 writeq(val64, &bar0->rx_w_round_robin_2);
1294                 val64 = 0x0001020001030004ULL;
1295                 writeq(val64, &bar0->rx_w_round_robin_3);
1296                 val64 = 0x0001000000000000ULL;
1297                 writeq(val64, &bar0->rx_w_round_robin_4);
1298
1299                 val64 = 0x8080404020201008ULL;
1300                 writeq(val64, &bar0->rts_qos_steering);
1301                 break;
1302         case 6:
1303                 val64 = 0x0001020304000102ULL;
1304                 writeq(val64, &bar0->rx_w_round_robin_0);
1305                 val64 = 0x0304050001020001ULL;
1306                 writeq(val64, &bar0->rx_w_round_robin_1);
1307                 val64 = 0x0203000100000102ULL;
1308                 writeq(val64, &bar0->rx_w_round_robin_2);
1309                 val64 = 0x0304000102030405ULL;
1310                 writeq(val64, &bar0->rx_w_round_robin_3);
1311                 val64 = 0x0001000200000000ULL;
1312                 writeq(val64, &bar0->rx_w_round_robin_4);
1313
1314                 val64 = 0x8080404020100804ULL;
1315                 writeq(val64, &bar0->rts_qos_steering);
1316                 break;
1317         case 7:
1318                 val64 = 0x0001020001020300ULL;
1319                 writeq(val64, &bar0->rx_w_round_robin_0);
1320                 val64 = 0x0102030400010203ULL;
1321                 writeq(val64, &bar0->rx_w_round_robin_1);
1322                 val64 = 0x0405060001020001ULL;
1323                 writeq(val64, &bar0->rx_w_round_robin_2);
1324                 val64 = 0x0304050000010200ULL;
1325                 writeq(val64, &bar0->rx_w_round_robin_3);
1326                 val64 = 0x0102030000000000ULL;
1327                 writeq(val64, &bar0->rx_w_round_robin_4);
1328
1329                 val64 = 0x8080402010080402ULL;
1330                 writeq(val64, &bar0->rts_qos_steering);
1331                 break;
1332         case 8:
1333                 val64 = 0x0001020300040105ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_0);
1335                 val64 = 0x0200030106000204ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_1);
1337                 val64 = 0x0103000502010007ULL;
1338                 writeq(val64, &bar0->rx_w_round_robin_2);
1339                 val64 = 0x0304010002060500ULL;
1340                 writeq(val64, &bar0->rx_w_round_robin_3);
1341                 val64 = 0x0103020400000000ULL;
1342                 writeq(val64, &bar0->rx_w_round_robin_4);
1343
1344                 val64 = 0x8040201008040201ULL;
1345                 writeq(val64, &bar0->rts_qos_steering);
1346                 break;
1347         }
1348
1349         /* UDP Fix */
1350         val64 = 0;
1351         for (i = 0; i < 8; i++)
1352                 writeq(val64, &bar0->rts_frm_len_n[i]);
1353
1354         /* Set the default rts frame length for the rings configured */
1355         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356         for (i = 0 ; i < config->rx_ring_num ; i++)
1357                 writeq(val64, &bar0->rts_frm_len_n[i]);
1358
1359         /* Set the frame length for the configured rings
1360          * desired by the user
1361          */
1362         for (i = 0; i < config->rx_ring_num; i++) {
1363                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364                  * specified frame length steering.
1365                  * If the user provides the frame length then program
1366                  * the rts_frm_len register for those values or else
1367                  * leave it as it is.
1368                  */
1369                 if (rts_frm_len[i] != 0) {
1370                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371                                 &bar0->rts_frm_len_n[i]);
1372                 }
1373         }
1374
1375         /* Disable differentiated services steering logic */
1376         for (i = 0; i < 64; i++) {
1377                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1378                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1379                                 dev->name);
1380                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1381                         return FAILURE;
1382                 }
1383         }
1384
1385         /* Program statistics memory */
1386         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1387
1388         if (nic->device_type == XFRAME_II_DEVICE) {
1389                 val64 = STAT_BC(0x320);
1390                 writeq(val64, &bar0->stat_byte_cnt);
1391         }
1392
1393         /*
1394          * Initializing the sampling rate for the device to calculate the
1395          * bandwidth utilization.
1396          */
1397         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1398             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1399         writeq(val64, &bar0->mac_link_util);
1400
1401
1402         /*
1403          * Initializing the Transmit and Receive Traffic Interrupt
1404          * Scheme.
1405          */
1406         /*
1407          * TTI Initialization. Default Tx timer gets us about
1408          * 250 interrupts per sec. Continuous interrupts are enabled
1409          * by default.
1410          */
1411         if (nic->device_type == XFRAME_II_DEVICE) {
1412                 int count = (nic->config.bus_speed * 125)/2;
1413                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1414         } else {
1415
1416                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1417         }
1418         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1419             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1420             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1421                 if (use_continuous_tx_intrs)
1422                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1423         writeq(val64, &bar0->tti_data1_mem);
1424
1425         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1426             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1427             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1428         writeq(val64, &bar0->tti_data2_mem);
1429
1430         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1431         writeq(val64, &bar0->tti_command_mem);
1432
1433         /*
1434          * Once the operation completes, the Strobe bit of the command
1435          * register will be reset. We poll for this particular condition
1436          * We wait for a maximum of 500ms for the operation to complete,
1437          * if it's not complete by then we return error.
1438          */
1439         time = 0;
1440         while (TRUE) {
1441                 val64 = readq(&bar0->tti_command_mem);
1442                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1443                         break;
1444                 }
1445                 if (time > 10) {
1446                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1447                                   dev->name);
1448                         return -1;
1449                 }
1450                 msleep(50);
1451                 time++;
1452         }
1453
1454         if (nic->config.bimodal) {
1455                 int k = 0;
1456                 for (k = 0; k < config->rx_ring_num; k++) {
1457                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1458                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1459                         writeq(val64, &bar0->tti_command_mem);
1460
1461                 /*
1462                  * Once the operation completes, the Strobe bit of the command
1463                  * register will be reset. We poll for this particular condition
1464                  * We wait for a maximum of 500ms for the operation to complete,
1465                  * if it's not complete by then we return error.
1466                 */
1467                         time = 0;
1468                         while (TRUE) {
1469                                 val64 = readq(&bar0->tti_command_mem);
1470                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1471                                         break;
1472                                 }
1473                                 if (time > 10) {
1474                                         DBG_PRINT(ERR_DBG,
1475                                                 "%s: TTI init Failed\n",
1476                                         dev->name);
1477                                         return -1;
1478                                 }
1479                                 time++;
1480                                 msleep(50);
1481                         }
1482                 }
1483         } else {
1484
1485                 /* RTI Initialization */
1486                 if (nic->device_type == XFRAME_II_DEVICE) {
1487                         /*
1488                          * Programmed to generate Apprx 500 Intrs per
1489                          * second
1490                          */
1491                         int count = (nic->config.bus_speed * 125)/4;
1492                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1493                 } else {
1494                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1495                 }
1496                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1497                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1498                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1499
1500                 writeq(val64, &bar0->rti_data1_mem);
1501
1502                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1503                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1504                 if (nic->intr_type == MSI_X)
1505                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1506                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1507                 else
1508                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1509                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1510                 writeq(val64, &bar0->rti_data2_mem);
1511
1512                 for (i = 0; i < config->rx_ring_num; i++) {
1513                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1514                                         | RTI_CMD_MEM_OFFSET(i);
1515                         writeq(val64, &bar0->rti_command_mem);
1516
1517                         /*
1518                          * Once the operation completes, the Strobe bit of the
1519                          * command register will be reset. We poll for this
1520                          * particular condition. We wait for a maximum of 500ms
1521                          * for the operation to complete, if it's not complete
1522                          * by then we return error.
1523                          */
1524                         time = 0;
1525                         while (TRUE) {
1526                                 val64 = readq(&bar0->rti_command_mem);
1527                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1528                                         break;
1529                                 }
1530                                 if (time > 10) {
1531                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1532                                                   dev->name);
1533                                         return -1;
1534                                 }
1535                                 time++;
1536                                 msleep(50);
1537                         }
1538                 }
1539         }
1540
1541         /*
1542          * Initializing proper values as Pause threshold into all
1543          * the 8 Queues on Rx side.
1544          */
1545         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1546         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1547
1548         /* Disable RMAC PAD STRIPPING */
1549         add = &bar0->mac_cfg;
1550         val64 = readq(&bar0->mac_cfg);
1551         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1552         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1553         writel((u32) (val64), add);
1554         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1555         writel((u32) (val64 >> 32), (add + 4));
1556         val64 = readq(&bar0->mac_cfg);
1557
1558         /* Enable FCS stripping by adapter */
1559         add = &bar0->mac_cfg;
1560         val64 = readq(&bar0->mac_cfg);
1561         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1562         if (nic->device_type == XFRAME_II_DEVICE)
1563                 writeq(val64, &bar0->mac_cfg);
1564         else {
1565                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1566                 writel((u32) (val64), add);
1567                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1568                 writel((u32) (val64 >> 32), (add + 4));
1569         }
1570
1571         /*
1572          * Set the time value to be inserted in the pause frame
1573          * generated by xena.
1574          */
1575         val64 = readq(&bar0->rmac_pause_cfg);
1576         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1577         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1578         writeq(val64, &bar0->rmac_pause_cfg);
1579
1580         /*
1581          * Set the Threshold Limit for Generating the pause frame
1582          * If the amount of data in any Queue exceeds ratio of
1583          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1584          * pause frame is generated
1585          */
1586         val64 = 0;
1587         for (i = 0; i < 4; i++) {
1588                 val64 |=
1589                     (((u64) 0xFF00 | nic->mac_control.
1590                       mc_pause_threshold_q0q3)
1591                      << (i * 2 * 8));
1592         }
1593         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1594
1595         val64 = 0;
1596         for (i = 0; i < 4; i++) {
1597                 val64 |=
1598                     (((u64) 0xFF00 | nic->mac_control.
1599                       mc_pause_threshold_q4q7)
1600                      << (i * 2 * 8));
1601         }
1602         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1603
1604         /*
1605          * TxDMA will stop Read request if the number of read split has
1606          * exceeded the limit pointed by shared_splits
1607          */
1608         val64 = readq(&bar0->pic_control);
1609         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1610         writeq(val64, &bar0->pic_control);
1611
1612         if (nic->config.bus_speed == 266) {
1613                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1614                 writeq(0x0, &bar0->read_retry_delay);
1615                 writeq(0x0, &bar0->write_retry_delay);
1616         }
1617
1618         /*
1619          * Programming the Herc to split every write transaction
1620          * that does not start on an ADB to reduce disconnects.
1621          */
1622         if (nic->device_type == XFRAME_II_DEVICE) {
1623                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1624                         MISC_LINK_STABILITY_PRD(3);
1625                 writeq(val64, &bar0->misc_control);
1626                 val64 = readq(&bar0->pic_control2);
1627                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1628                 writeq(val64, &bar0->pic_control2);
1629         }
1630         if (strstr(nic->product_name, "CX4")) {
1631                 val64 = TMAC_AVG_IPG(0x17);
1632                 writeq(val64, &bar0->tmac_avg_ipg);
1633         }
1634
1635         return SUCCESS;
1636 }
1637 #define LINK_UP_DOWN_INTERRUPT          1
1638 #define MAC_RMAC_ERR_TIMER              2
1639
1640 static int s2io_link_fault_indication(struct s2io_nic *nic)
1641 {
1642         if (nic->intr_type != INTA)
1643                 return MAC_RMAC_ERR_TIMER;
1644         if (nic->device_type == XFRAME_II_DEVICE)
1645                 return LINK_UP_DOWN_INTERRUPT;
1646         else
1647                 return MAC_RMAC_ERR_TIMER;
1648 }
1649
1650 /**
1651  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1652  *  @nic: device private variable,
1653  *  @mask: A mask indicating which Intr block must be modified and,
1654  *  @flag: A flag indicating whether to enable or disable the Intrs.
1655  *  Description: This function will either disable or enable the interrupts
1656  *  depending on the flag argument. The mask argument can be used to
1657  *  enable/disable any Intr block.
1658  *  Return Value: NONE.
1659  */
1660
1661 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1662 {
1663         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1664         register u64 val64 = 0, temp64 = 0;
1665
1666         /*  Top level interrupt classification */
1667         /*  PIC Interrupts */
1668         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1669                 /*  Enable PIC Intrs in the general intr mask register */
1670                 val64 = TXPIC_INT_M;
1671                 if (flag == ENABLE_INTRS) {
1672                         temp64 = readq(&bar0->general_int_mask);
1673                         temp64 &= ~((u64) val64);
1674                         writeq(temp64, &bar0->general_int_mask);
1675                         /*
1676                          * If Hercules adapter enable GPIO otherwise
1677                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1678                          * interrupts for now.
1679                          * TODO
1680                          */
1681                         if (s2io_link_fault_indication(nic) ==
1682                                         LINK_UP_DOWN_INTERRUPT ) {
1683                                 temp64 = readq(&bar0->pic_int_mask);
1684                                 temp64 &= ~((u64) PIC_INT_GPIO);
1685                                 writeq(temp64, &bar0->pic_int_mask);
1686                                 temp64 = readq(&bar0->gpio_int_mask);
1687                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1688                                 writeq(temp64, &bar0->gpio_int_mask);
1689                         } else {
1690                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1691                         }
1692                         /*
1693                          * No MSI Support is available presently, so TTI and
1694                          * RTI interrupts are also disabled.
1695                          */
1696                 } else if (flag == DISABLE_INTRS) {
1697                         /*
1698                          * Disable PIC Intrs in the general
1699                          * intr mask register
1700                          */
1701                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1702                         temp64 = readq(&bar0->general_int_mask);
1703                         val64 |= temp64;
1704                         writeq(val64, &bar0->general_int_mask);
1705                 }
1706         }
1707
1708         /*  MAC Interrupts */
1709         /*  Enabling/Disabling MAC interrupts */
1710         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1711                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1712                 if (flag == ENABLE_INTRS) {
1713                         temp64 = readq(&bar0->general_int_mask);
1714                         temp64 &= ~((u64) val64);
1715                         writeq(temp64, &bar0->general_int_mask);
1716                         /*
1717                          * All MAC block error interrupts are disabled for now
1718                          * TODO
1719                          */
1720                 } else if (flag == DISABLE_INTRS) {
1721                         /*
1722                          * Disable MAC Intrs in the general intr mask register
1723                          */
1724                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1725                         writeq(DISABLE_ALL_INTRS,
1726                                &bar0->mac_rmac_err_mask);
1727
1728                         temp64 = readq(&bar0->general_int_mask);
1729                         val64 |= temp64;
1730                         writeq(val64, &bar0->general_int_mask);
1731                 }
1732         }
1733
1734         /*  Tx traffic interrupts */
1735         if (mask & TX_TRAFFIC_INTR) {
1736                 val64 = TXTRAFFIC_INT_M;
1737                 if (flag == ENABLE_INTRS) {
1738                         temp64 = readq(&bar0->general_int_mask);
1739                         temp64 &= ~((u64) val64);
1740                         writeq(temp64, &bar0->general_int_mask);
1741                         /*
1742                          * Enable all the Tx side interrupts
1743                          * writing 0 Enables all 64 TX interrupt levels
1744                          */
1745                         writeq(0x0, &bar0->tx_traffic_mask);
1746                 } else if (flag == DISABLE_INTRS) {
1747                         /*
1748                          * Disable Tx Traffic Intrs in the general intr mask
1749                          * register.
1750                          */
1751                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1752                         temp64 = readq(&bar0->general_int_mask);
1753                         val64 |= temp64;
1754                         writeq(val64, &bar0->general_int_mask);
1755                 }
1756         }
1757
1758         /*  Rx traffic interrupts */
1759         if (mask & RX_TRAFFIC_INTR) {
1760                 val64 = RXTRAFFIC_INT_M;
1761                 if (flag == ENABLE_INTRS) {
1762                         temp64 = readq(&bar0->general_int_mask);
1763                         temp64 &= ~((u64) val64);
1764                         writeq(temp64, &bar0->general_int_mask);
1765                         /* writing 0 Enables all 8 RX interrupt levels */
1766                         writeq(0x0, &bar0->rx_traffic_mask);
1767                 } else if (flag == DISABLE_INTRS) {
1768                         /*
1769                          * Disable Rx Traffic Intrs in the general intr mask
1770                          * register.
1771                          */
1772                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1773                         temp64 = readq(&bar0->general_int_mask);
1774                         val64 |= temp64;
1775                         writeq(val64, &bar0->general_int_mask);
1776                 }
1777         }
1778 }
1779
1780 /**
1781  *  verify_pcc_quiescent- Checks for PCC quiescent state
1782  *  Return: 1 If PCC is quiescence
1783  *          0 If PCC is not quiescence
1784  */
1785 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1786 {
1787         int ret = 0, herc;
1788         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1789         u64 val64 = readq(&bar0->adapter_status);
1790         
1791         herc = (sp->device_type == XFRAME_II_DEVICE);
1792
1793         if (flag == FALSE) {
1794                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1795                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1796                                 ret = 1;
1797                 } else {
1798                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1799                                 ret = 1;
1800                 }
1801         } else {
1802                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1803                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1804                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1805                                 ret = 1;
1806                 } else {
1807                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1808                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1809                                 ret = 1;
1810                 }
1811         }
1812
1813         return ret;
1814 }
1815 /**
1816  *  verify_xena_quiescence - Checks whether the H/W is ready
1817  *  Description: Returns whether the H/W is ready to go or not. Depending
1818  *  on whether adapter enable bit was written or not the comparison
1819  *  differs and the calling function passes the input argument flag to
1820  *  indicate this.
1821  *  Return: 1 If xena is quiescence
1822  *          0 If Xena is not quiescence
1823  */
1824
1825 static int verify_xena_quiescence(struct s2io_nic *sp)
1826 {
1827         int  mode;
1828         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1829         u64 val64 = readq(&bar0->adapter_status);
1830         mode = s2io_verify_pci_mode(sp);
1831
1832         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1833                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1834                 return 0;
1835         }
1836         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1837         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1838                 return 0;
1839         }
1840         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1841                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1842                 return 0;
1843         }
1844         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1845                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1846                 return 0;
1847         }
1848         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1849                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1850                 return 0;
1851         }
1852         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1853                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1854                 return 0;
1855         }
1856         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1857                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1858                 return 0;
1859         }
1860         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1861                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1862                 return 0;
1863         }
1864
1865         /*
1866          * In PCI 33 mode, the P_PLL is not used, and therefore,
1867          * the the P_PLL_LOCK bit in the adapter_status register will
1868          * not be asserted.
1869          */
1870         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1871                 sp->device_type == XFRAME_II_DEVICE && mode !=
1872                 PCI_MODE_PCI_33) {
1873                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1874                 return 0;
1875         }
1876         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1877                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1878                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1879                 return 0;
1880         }
1881         return 1;
1882 }
1883
1884 /**
1885  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1886  * @sp: Pointer to device specifc structure
1887  * Description :
1888  * New procedure to clear mac address reading  problems on Alpha platforms
1889  *
1890  */
1891
1892 static void fix_mac_address(struct s2io_nic * sp)
1893 {
1894         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1895         u64 val64;
1896         int i = 0;
1897
1898         while (fix_mac[i] != END_SIGN) {
1899                 writeq(fix_mac[i++], &bar0->gpio_control);
1900                 udelay(10);
1901                 val64 = readq(&bar0->gpio_control);
1902         }
1903 }
1904
1905 /**
1906  *  start_nic - Turns the device on
1907  *  @nic : device private variable.
1908  *  Description:
1909  *  This function actually turns the device on. Before this  function is
1910  *  called,all Registers are configured from their reset states
1911  *  and shared memory is allocated but the NIC is still quiescent. On
1912  *  calling this function, the device interrupts are cleared and the NIC is
1913  *  literally switched on by writing into the adapter control register.
1914  *  Return Value:
1915  *  SUCCESS on success and -1 on failure.
1916  */
1917
1918 static int start_nic(struct s2io_nic *nic)
1919 {
1920         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1921         struct net_device *dev = nic->dev;
1922         register u64 val64 = 0;
1923         u16 subid, i;
1924         struct mac_info *mac_control;
1925         struct config_param *config;
1926
1927         mac_control = &nic->mac_control;
1928         config = &nic->config;
1929
1930         /*  PRC Initialization and configuration */
1931         for (i = 0; i < config->rx_ring_num; i++) {
1932                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1933                        &bar0->prc_rxd0_n[i]);
1934
1935                 val64 = readq(&bar0->prc_ctrl_n[i]);
1936                 if (nic->config.bimodal)
1937                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1938                 if (nic->rxd_mode == RXD_MODE_1)
1939                         val64 |= PRC_CTRL_RC_ENABLED;
1940                 else
1941                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1942                 if (nic->device_type == XFRAME_II_DEVICE)
1943                         val64 |= PRC_CTRL_GROUP_READS;
1944                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1945                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1946                 writeq(val64, &bar0->prc_ctrl_n[i]);
1947         }
1948
1949         if (nic->rxd_mode == RXD_MODE_3B) {
1950                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1951                 val64 = readq(&bar0->rx_pa_cfg);
1952                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1953                 writeq(val64, &bar0->rx_pa_cfg);
1954         }
1955
1956         /*
1957          * Enabling MC-RLDRAM. After enabling the device, we timeout
1958          * for around 100ms, which is approximately the time required
1959          * for the device to be ready for operation.
1960          */
1961         val64 = readq(&bar0->mc_rldram_mrs);
1962         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1963         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1964         val64 = readq(&bar0->mc_rldram_mrs);
1965
1966         msleep(100);    /* Delay by around 100 ms. */
1967
1968         /* Enabling ECC Protection. */
1969         val64 = readq(&bar0->adapter_control);
1970         val64 &= ~ADAPTER_ECC_EN;
1971         writeq(val64, &bar0->adapter_control);
1972
1973         /*
1974          * Clearing any possible Link state change interrupts that
1975          * could have popped up just before Enabling the card.
1976          */
1977         val64 = readq(&bar0->mac_rmac_err_reg);
1978         if (val64)
1979                 writeq(val64, &bar0->mac_rmac_err_reg);
1980
1981         /*
1982          * Verify if the device is ready to be enabled, if so enable
1983          * it.
1984          */
1985         val64 = readq(&bar0->adapter_status);
1986         if (!verify_xena_quiescence(nic)) {
1987                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1988                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1989                           (unsigned long long) val64);
1990                 return FAILURE;
1991         }
1992
1993         /*
1994          * With some switches, link might be already up at this point.
1995          * Because of this weird behavior, when we enable laser,
1996          * we may not get link. We need to handle this. We cannot
1997          * figure out which switch is misbehaving. So we are forced to
1998          * make a global change.
1999          */
2000
2001         /* Enabling Laser. */
2002         val64 = readq(&bar0->adapter_control);
2003         val64 |= ADAPTER_EOI_TX_ON;
2004         writeq(val64, &bar0->adapter_control);
2005
2006         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2007                 /*
2008                  * Dont see link state interrupts initally on some switches,
2009                  * so directly scheduling the link state task here.
2010                  */
2011                 schedule_work(&nic->set_link_task);
2012         }
2013         /* SXE-002: Initialize link and activity LED */
2014         subid = nic->pdev->subsystem_device;
2015         if (((subid & 0xFF) >= 0x07) &&
2016             (nic->device_type == XFRAME_I_DEVICE)) {
2017                 val64 = readq(&bar0->gpio_control);
2018                 val64 |= 0x0000800000000000ULL;
2019                 writeq(val64, &bar0->gpio_control);
2020                 val64 = 0x0411040400000000ULL;
2021                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2022         }
2023
2024         return SUCCESS;
2025 }
2026 /**
2027  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2028  */
2029 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2030                                         TxD *txdlp, int get_off)
2031 {
2032         struct s2io_nic *nic = fifo_data->nic;
2033         struct sk_buff *skb;
2034         struct TxD *txds;
2035         u16 j, frg_cnt;
2036
2037         txds = txdlp;
2038         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2039                 pci_unmap_single(nic->pdev, (dma_addr_t)
2040                         txds->Buffer_Pointer, sizeof(u64),
2041                         PCI_DMA_TODEVICE);
2042                 txds++;
2043         }
2044
2045         skb = (struct sk_buff *) ((unsigned long)
2046                         txds->Host_Control);
2047         if (!skb) {
2048                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2049                 return NULL;
2050         }
2051         pci_unmap_single(nic->pdev, (dma_addr_t)
2052                          txds->Buffer_Pointer,
2053                          skb->len - skb->data_len,
2054                          PCI_DMA_TODEVICE);
2055         frg_cnt = skb_shinfo(skb)->nr_frags;
2056         if (frg_cnt) {
2057                 txds++;
2058                 for (j = 0; j < frg_cnt; j++, txds++) {
2059                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2060                         if (!txds->Buffer_Pointer)
2061                                 break;
2062                         pci_unmap_page(nic->pdev, (dma_addr_t)
2063                                         txds->Buffer_Pointer,
2064                                        frag->size, PCI_DMA_TODEVICE);
2065                 }
2066         }
2067         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2068         return(skb);
2069 }
2070
2071 /**
2072  *  free_tx_buffers - Free all queued Tx buffers
2073  *  @nic : device private variable.
2074  *  Description:
2075  *  Free all queued Tx buffers.
2076  *  Return Value: void
2077 */
2078
2079 static void free_tx_buffers(struct s2io_nic *nic)
2080 {
2081         struct net_device *dev = nic->dev;
2082         struct sk_buff *skb;
2083         struct TxD *txdp;
2084         int i, j;
2085         struct mac_info *mac_control;
2086         struct config_param *config;
2087         int cnt = 0;
2088
2089         mac_control = &nic->mac_control;
2090         config = &nic->config;
2091
2092         for (i = 0; i < config->tx_fifo_num; i++) {
2093                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2094                         txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2095                             list_virt_addr;
2096                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2097                         if (skb) {
2098                                 dev_kfree_skb(skb);
2099                                 cnt++;
2100                         }
2101                 }
2102                 DBG_PRINT(INTR_DBG,
2103                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2104                           dev->name, cnt, i);
2105                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2106                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2107         }
2108 }
2109
2110 /**
2111  *   stop_nic -  To stop the nic
2112  *   @nic ; device private variable.
2113  *   Description:
2114  *   This function does exactly the opposite of what the start_nic()
2115  *   function does. This function is called to stop the device.
2116  *   Return Value:
2117  *   void.
2118  */
2119
2120 static void stop_nic(struct s2io_nic *nic)
2121 {
2122         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2123         register u64 val64 = 0;
2124         u16 interruptible;
2125         struct mac_info *mac_control;
2126         struct config_param *config;
2127
2128         mac_control = &nic->mac_control;
2129         config = &nic->config;
2130
2131         /*  Disable all interrupts */
2132         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2133         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2134         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2135         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2136
2137         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2138         val64 = readq(&bar0->adapter_control);
2139         val64 &= ~(ADAPTER_CNTL_EN);
2140         writeq(val64, &bar0->adapter_control);
2141 }
2142
2143 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2144                                 sk_buff *skb)
2145 {
2146         struct net_device *dev = nic->dev;
2147         struct sk_buff *frag_list;
2148         void *tmp;
2149
2150         /* Buffer-1 receives L3/L4 headers */
2151         ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2152                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2153                         PCI_DMA_FROMDEVICE);
2154
2155         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2156         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2157         if (skb_shinfo(skb)->frag_list == NULL) {
2158                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2159                 return -ENOMEM ;
2160         }
2161         frag_list = skb_shinfo(skb)->frag_list;
2162         skb->truesize += frag_list->truesize;
2163         frag_list->next = NULL;
2164         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2165         frag_list->data = tmp;
2166         frag_list->tail = tmp;
2167
2168         /* Buffer-2 receives L4 data payload */
2169         ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2170                                 frag_list->data, dev->mtu,
2171                                 PCI_DMA_FROMDEVICE);
2172         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2173         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2174
2175         return SUCCESS;
2176 }
2177
2178 /**
2179  *  fill_rx_buffers - Allocates the Rx side skbs
2180  *  @nic:  device private variable
2181  *  @ring_no: ring number
2182  *  Description:
2183  *  The function allocates Rx side skbs and puts the physical
2184  *  address of these buffers into the RxD buffer pointers, so that the NIC
2185  *  can DMA the received frame into these locations.
2186  *  The NIC supports 3 receive modes, viz
2187  *  1. single buffer,
2188  *  2. three buffer and
2189  *  3. Five buffer modes.
2190  *  Each mode defines how many fragments the received frame will be split
2191  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2192  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2193  *  is split into 3 fragments. As of now only single buffer mode is
2194  *  supported.
2195  *   Return Value:
2196  *  SUCCESS on success or an appropriate -ve value on failure.
2197  */
2198
2199 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2200 {
2201         struct net_device *dev = nic->dev;
2202         struct sk_buff *skb;
2203         struct RxD_t *rxdp;
2204         int off, off1, size, block_no, block_no1;
2205         u32 alloc_tab = 0;
2206         u32 alloc_cnt;
2207         struct mac_info *mac_control;
2208         struct config_param *config;
2209         u64 tmp;
2210         struct buffAdd *ba;
2211         unsigned long flags;
2212         struct RxD_t *first_rxdp = NULL;
2213
2214         mac_control = &nic->mac_control;
2215         config = &nic->config;
2216         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2217             atomic_read(&nic->rx_bufs_left[ring_no]);
2218
2219         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2220         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2221         while (alloc_tab < alloc_cnt) {
2222                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2223                     block_index;
2224                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2225
2226                 rxdp = mac_control->rings[ring_no].
2227                                 rx_blocks[block_no].rxds[off].virt_addr;
2228
2229                 if ((block_no == block_no1) && (off == off1) &&
2230                                         (rxdp->Host_Control)) {
2231                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2232                                   dev->name);
2233                         DBG_PRINT(INTR_DBG, " info equated\n");
2234                         goto end;
2235                 }
2236                 if (off && (off == rxd_count[nic->rxd_mode])) {
2237                         mac_control->rings[ring_no].rx_curr_put_info.
2238                             block_index++;
2239                         if (mac_control->rings[ring_no].rx_curr_put_info.
2240                             block_index == mac_control->rings[ring_no].
2241                                         block_count)
2242                                 mac_control->rings[ring_no].rx_curr_put_info.
2243                                         block_index = 0;
2244                         block_no = mac_control->rings[ring_no].
2245                                         rx_curr_put_info.block_index;
2246                         if (off == rxd_count[nic->rxd_mode])
2247                                 off = 0;
2248                         mac_control->rings[ring_no].rx_curr_put_info.
2249                                 offset = off;
2250                         rxdp = mac_control->rings[ring_no].
2251                                 rx_blocks[block_no].block_virt_addr;
2252                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2253                                   dev->name, rxdp);
2254                 }
2255                 if(!napi) {
2256                         spin_lock_irqsave(&nic->put_lock, flags);
2257                         mac_control->rings[ring_no].put_pos =
2258                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2259                         spin_unlock_irqrestore(&nic->put_lock, flags);
2260                 } else {
2261                         mac_control->rings[ring_no].put_pos =
2262                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2263                 }
2264                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2265                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2266                                 (rxdp->Control_2 & BIT(0)))) {
2267                         mac_control->rings[ring_no].rx_curr_put_info.
2268                                         offset = off;
2269                         goto end;
2270                 }
2271                 /* calculate size of skb based on ring mode */
2272                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2273                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2274                 if (nic->rxd_mode == RXD_MODE_1)
2275                         size += NET_IP_ALIGN;
2276                 else if (nic->rxd_mode == RXD_MODE_3B)
2277                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2278                 else
2279                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2280
2281                 /* allocate skb */
2282                 skb = dev_alloc_skb(size);
2283                 if(!skb) {
2284                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2285                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2286                         if (first_rxdp) {
2287                                 wmb();
2288                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2289                         }
2290                         return -ENOMEM ;
2291                 }
2292                 if (nic->rxd_mode == RXD_MODE_1) {
2293                         /* 1 buffer mode - normal operation mode */
2294                         memset(rxdp, 0, sizeof(struct RxD1));
2295                         skb_reserve(skb, NET_IP_ALIGN);
2296                         ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2297                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2298                                 PCI_DMA_FROMDEVICE);
2299                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2300
2301                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2302                         /*
2303                          * 2 or 3 buffer mode -
2304                          * Both 2 buffer mode and 3 buffer mode provides 128
2305                          * byte aligned receive buffers.
2306                          *
2307                          * 3 buffer mode provides header separation where in
2308                          * skb->data will have L3/L4 headers where as
2309                          * skb_shinfo(skb)->frag_list will have the L4 data
2310                          * payload
2311                          */
2312
2313                         memset(rxdp, 0, sizeof(struct RxD3));
2314                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2315                         skb_reserve(skb, BUF0_LEN);
2316                         tmp = (u64)(unsigned long) skb->data;
2317                         tmp += ALIGN_SIZE;
2318                         tmp &= ~ALIGN_SIZE;
2319                         skb->data = (void *) (unsigned long)tmp;
2320                         skb->tail = (void *) (unsigned long)tmp;
2321
2322                         if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2323                                 ((struct RxD3*)rxdp)->Buffer0_ptr =
2324                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2325                                            PCI_DMA_FROMDEVICE);
2326                         else
2327                                 pci_dma_sync_single_for_device(nic->pdev,
2328                                     (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2329                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2330                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2331                         if (nic->rxd_mode == RXD_MODE_3B) {
2332                                 /* Two buffer mode */
2333
2334                                 /*
2335                                  * Buffer2 will have L3/L4 header plus
2336                                  * L4 payload
2337                                  */
2338                                 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2339                                 (nic->pdev, skb->data, dev->mtu + 4,
2340                                                 PCI_DMA_FROMDEVICE);
2341
2342                                 /* Buffer-1 will be dummy buffer. Not used */
2343                                 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2344                                         ((struct RxD3*)rxdp)->Buffer1_ptr =
2345                                                 pci_map_single(nic->pdev,
2346                                                 ba->ba_1, BUF1_LEN,
2347                                                 PCI_DMA_FROMDEVICE);
2348                                 }
2349                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2350                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2351                                                                 (dev->mtu + 4);
2352                         } else {
2353                                 /* 3 buffer mode */
2354                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2355                                         dev_kfree_skb_irq(skb);
2356                                         if (first_rxdp) {
2357                                                 wmb();
2358                                                 first_rxdp->Control_1 |=
2359                                                         RXD_OWN_XENA;
2360                                         }
2361                                         return -ENOMEM ;
2362                                 }
2363                         }
2364                         rxdp->Control_2 |= BIT(0);
2365                 }
2366                 rxdp->Host_Control = (unsigned long) (skb);
2367                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2368                         rxdp->Control_1 |= RXD_OWN_XENA;
2369                 off++;
2370                 if (off == (rxd_count[nic->rxd_mode] + 1))
2371                         off = 0;
2372                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2373
2374                 rxdp->Control_2 |= SET_RXD_MARKER;
2375                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2376                         if (first_rxdp) {
2377                                 wmb();
2378                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2379                         }
2380                         first_rxdp = rxdp;
2381                 }
2382                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2383                 alloc_tab++;
2384         }
2385
2386       end:
2387         /* Transfer ownership of first descriptor to adapter just before
2388          * exiting. Before that, use memory barrier so that ownership
2389          * and other fields are seen by adapter correctly.
2390          */
2391         if (first_rxdp) {
2392                 wmb();
2393                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2394         }
2395
2396         return SUCCESS;
2397 }
2398
2399 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2400 {
2401         struct net_device *dev = sp->dev;
2402         int j;
2403         struct sk_buff *skb;
2404         struct RxD_t *rxdp;
2405         struct mac_info *mac_control;
2406         struct buffAdd *ba;
2407
2408         mac_control = &sp->mac_control;
2409         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2410                 rxdp = mac_control->rings[ring_no].
2411                                 rx_blocks[blk].rxds[j].virt_addr;
2412                 skb = (struct sk_buff *)
2413                         ((unsigned long) rxdp->Host_Control);
2414                 if (!skb) {
2415                         continue;
2416                 }
2417                 if (sp->rxd_mode == RXD_MODE_1) {
2418                         pci_unmap_single(sp->pdev, (dma_addr_t)
2419                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2420                                  dev->mtu +
2421                                  HEADER_ETHERNET_II_802_3_SIZE
2422                                  + HEADER_802_2_SIZE +
2423                                  HEADER_SNAP_SIZE,
2424                                  PCI_DMA_FROMDEVICE);
2425                         memset(rxdp, 0, sizeof(struct RxD1));
2426                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2427                         ba = &mac_control->rings[ring_no].
2428                                 ba[blk][j];
2429                         pci_unmap_single(sp->pdev, (dma_addr_t)
2430                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2431                                  BUF0_LEN,
2432                                  PCI_DMA_FROMDEVICE);
2433                         pci_unmap_single(sp->pdev, (dma_addr_t)
2434                                  ((struct RxD3*)rxdp)->Buffer1_ptr,
2435                                  BUF1_LEN,
2436                                  PCI_DMA_FROMDEVICE);
2437                         pci_unmap_single(sp->pdev, (dma_addr_t)
2438                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2439                                  dev->mtu + 4,
2440                                  PCI_DMA_FROMDEVICE);
2441                         memset(rxdp, 0, sizeof(struct RxD3));
2442                 } else {
2443                         pci_unmap_single(sp->pdev, (dma_addr_t)
2444                                 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2445                                 PCI_DMA_FROMDEVICE);
2446                         pci_unmap_single(sp->pdev, (dma_addr_t)
2447                                 ((struct RxD3*)rxdp)->Buffer1_ptr,
2448                                 l3l4hdr_size + 4,
2449                                 PCI_DMA_FROMDEVICE);
2450                         pci_unmap_single(sp->pdev, (dma_addr_t)
2451                                 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2452                                 PCI_DMA_FROMDEVICE);
2453                         memset(rxdp, 0, sizeof(struct RxD3));
2454                 }
2455                 dev_kfree_skb(skb);
2456                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2457         }
2458 }
2459
2460 /**
2461  *  free_rx_buffers - Frees all Rx buffers
2462  *  @sp: device private variable.
2463  *  Description:
2464  *  This function will free all Rx buffers allocated by host.
2465  *  Return Value:
2466  *  NONE.
2467  */
2468
2469 static void free_rx_buffers(struct s2io_nic *sp)
2470 {
2471         struct net_device *dev = sp->dev;
2472         int i, blk = 0, buf_cnt = 0;
2473         struct mac_info *mac_control;
2474         struct config_param *config;
2475
2476         mac_control = &sp->mac_control;
2477         config = &sp->config;
2478
2479         for (i = 0; i < config->rx_ring_num; i++) {
2480                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2481                         free_rxd_blk(sp,i,blk);
2482
2483                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2484                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2485                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2486                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2487                 atomic_set(&sp->rx_bufs_left[i], 0);
2488                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2489                           dev->name, buf_cnt, i);
2490         }
2491 }
2492
2493 /**
2494  * s2io_poll - Rx interrupt handler for NAPI support
2495  * @dev : pointer to the device structure.
2496  * @budget : The number of packets that were budgeted to be processed
2497  * during  one pass through the 'Poll" function.
2498  * Description:
2499  * Comes into picture only if NAPI support has been incorporated. It does
2500  * the same thing that rx_intr_handler does, but not in a interrupt context
2501  * also It will process only a given number of packets.
2502  * Return value:
2503  * 0 on success and 1 if there are No Rx packets to be processed.
2504  */
2505
2506 static int s2io_poll(struct net_device *dev, int *budget)
2507 {
2508         struct s2io_nic *nic = dev->priv;
2509         int pkt_cnt = 0, org_pkts_to_process;
2510         struct mac_info *mac_control;
2511         struct config_param *config;
2512         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2513         int i;
2514
2515         atomic_inc(&nic->isr_cnt);
2516         mac_control = &nic->mac_control;
2517         config = &nic->config;
2518
2519         nic->pkts_to_process = *budget;
2520         if (nic->pkts_to_process > dev->quota)
2521                 nic->pkts_to_process = dev->quota;
2522         org_pkts_to_process = nic->pkts_to_process;
2523
2524         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2525         readl(&bar0->rx_traffic_int);
2526
2527         for (i = 0; i < config->rx_ring_num; i++) {
2528                 rx_intr_handler(&mac_control->rings[i]);
2529                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2530                 if (!nic->pkts_to_process) {
2531                         /* Quota for the current iteration has been met */
2532                         goto no_rx;
2533                 }
2534         }
2535         if (!pkt_cnt)
2536                 pkt_cnt = 1;
2537
2538         dev->quota -= pkt_cnt;
2539         *budget -= pkt_cnt;
2540         netif_rx_complete(dev);
2541
2542         for (i = 0; i < config->rx_ring_num; i++) {
2543                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2544                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2545                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2546                         break;
2547                 }
2548         }
2549         /* Re enable the Rx interrupts. */
2550         writeq(0x0, &bar0->rx_traffic_mask);
2551         readl(&bar0->rx_traffic_mask);
2552         atomic_dec(&nic->isr_cnt);
2553         return 0;
2554
2555 no_rx:
2556         dev->quota -= pkt_cnt;
2557         *budget -= pkt_cnt;
2558
2559         for (i = 0; i < config->rx_ring_num; i++) {
2560                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2561                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2562                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2563                         break;
2564                 }
2565         }
2566         atomic_dec(&nic->isr_cnt);
2567         return 1;
2568 }
2569
2570 #ifdef CONFIG_NET_POLL_CONTROLLER
2571 /**
2572  * s2io_netpoll - netpoll event handler entry point
2573  * @dev : pointer to the device structure.
2574  * Description:
2575  *      This function will be called by upper layer to check for events on the
2576  * interface in situations where interrupts are disabled. It is used for
2577  * specific in-kernel networking tasks, such as remote consoles and kernel
2578  * debugging over the network (example netdump in RedHat).
2579  */
2580 static void s2io_netpoll(struct net_device *dev)
2581 {
2582         struct s2io_nic *nic = dev->priv;
2583         struct mac_info *mac_control;
2584         struct config_param *config;
2585         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2586         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2587         int i;
2588
2589         disable_irq(dev->irq);
2590
2591         atomic_inc(&nic->isr_cnt);
2592         mac_control = &nic->mac_control;
2593         config = &nic->config;
2594
2595         writeq(val64, &bar0->rx_traffic_int);
2596         writeq(val64, &bar0->tx_traffic_int);
2597
2598         /* we need to free up the transmitted skbufs or else netpoll will
2599          * run out of skbs and will fail and eventually netpoll application such
2600          * as netdump will fail.
2601          */
2602         for (i = 0; i < config->tx_fifo_num; i++)
2603                 tx_intr_handler(&mac_control->fifos[i]);
2604
2605         /* check for received packet and indicate up to network */
2606         for (i = 0; i < config->rx_ring_num; i++)
2607                 rx_intr_handler(&mac_control->rings[i]);
2608
2609         for (i = 0; i < config->rx_ring_num; i++) {
2610                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2611                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2612                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2613                         break;
2614                 }
2615         }
2616         atomic_dec(&nic->isr_cnt);
2617         enable_irq(dev->irq);
2618         return;
2619 }
2620 #endif
2621
2622 /**
2623  *  rx_intr_handler - Rx interrupt handler
2624  *  @nic: device private variable.
2625  *  Description:
2626  *  If the interrupt is because of a received frame or if the
2627  *  receive ring contains fresh as yet un-processed frames,this function is
2628  *  called. It picks out the RxD at which place the last Rx processing had
2629  *  stopped and sends the skb to the OSM's Rx handler and then increments
2630  *  the offset.
2631  *  Return Value:
2632  *  NONE.
2633  */
2634 static void rx_intr_handler(struct ring_info *ring_data)
2635 {
2636         struct s2io_nic *nic = ring_data->nic;
2637         struct net_device *dev = (struct net_device *) nic->dev;
2638         int get_block, put_block, put_offset;
2639         struct rx_curr_get_info get_info, put_info;
2640         struct RxD_t *rxdp;
2641         struct sk_buff *skb;
2642         int pkt_cnt = 0;
2643         int i;
2644
2645         spin_lock(&nic->rx_lock);
2646         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2647                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2648                           __FUNCTION__, dev->name);
2649                 spin_unlock(&nic->rx_lock);
2650                 return;
2651         }
2652
2653         get_info = ring_data->rx_curr_get_info;
2654         get_block = get_info.block_index;
2655         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2656         put_block = put_info.block_index;
2657         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2658         if (!napi) {
2659                 spin_lock(&nic->put_lock);
2660                 put_offset = ring_data->put_pos;
2661                 spin_unlock(&nic->put_lock);
2662         } else
2663                 put_offset = ring_data->put_pos;
2664
2665         while (RXD_IS_UP2DT(rxdp)) {
2666                 /*
2667                  * If your are next to put index then it's
2668                  * FIFO full condition
2669                  */
2670                 if ((get_block == put_block) &&
2671                     (get_info.offset + 1) == put_info.offset) {
2672                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2673                         break;
2674                 }
2675                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2676                 if (skb == NULL) {
2677                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2678                                   dev->name);
2679                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2680                         spin_unlock(&nic->rx_lock);
2681                         return;
2682                 }
2683                 if (nic->rxd_mode == RXD_MODE_1) {
2684                         pci_unmap_single(nic->pdev, (dma_addr_t)
2685                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2686                                  dev->mtu +
2687                                  HEADER_ETHERNET_II_802_3_SIZE +
2688                                  HEADER_802_2_SIZE +
2689                                  HEADER_SNAP_SIZE,
2690                                  PCI_DMA_FROMDEVICE);
2691                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2692                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2693                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2694                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2695                         pci_unmap_single(nic->pdev, (dma_addr_t)
2696                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2697                                  dev->mtu + 4,
2698                                  PCI_DMA_FROMDEVICE);
2699                 } else {
2700                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2701                                          ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2702                                          PCI_DMA_FROMDEVICE);
2703                         pci_unmap_single(nic->pdev, (dma_addr_t)
2704                                          ((struct RxD3*)rxdp)->Buffer1_ptr,
2705                                          l3l4hdr_size + 4,
2706                                          PCI_DMA_FROMDEVICE);
2707                         pci_unmap_single(nic->pdev, (dma_addr_t)
2708                                          ((struct RxD3*)rxdp)->Buffer2_ptr,
2709                                          dev->mtu, PCI_DMA_FROMDEVICE);
2710                 }
2711                 prefetch(skb->data);
2712                 rx_osm_handler(ring_data, rxdp);
2713                 get_info.offset++;
2714                 ring_data->rx_curr_get_info.offset = get_info.offset;
2715                 rxdp = ring_data->rx_blocks[get_block].
2716                                 rxds[get_info.offset].virt_addr;
2717                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2718                         get_info.offset = 0;
2719                         ring_data->rx_curr_get_info.offset = get_info.offset;
2720                         get_block++;
2721                         if (get_block == ring_data->block_count)
2722                                 get_block = 0;
2723                         ring_data->rx_curr_get_info.block_index = get_block;
2724                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2725                 }
2726
2727                 nic->pkts_to_process -= 1;
2728                 if ((napi) && (!nic->pkts_to_process))
2729                         break;
2730                 pkt_cnt++;
2731                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2732                         break;
2733         }
2734         if (nic->lro) {
2735                 /* Clear all LRO sessions before exiting */
2736                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2737                         struct lro *lro = &nic->lro0_n[i];
2738                         if (lro->in_use) {
2739                                 update_L3L4_header(nic, lro);
2740                                 queue_rx_frame(lro->parent);
2741                                 clear_lro_session(lro);
2742                         }
2743                 }
2744         }
2745
2746         spin_unlock(&nic->rx_lock);
2747 }
2748
2749 /**
2750  *  tx_intr_handler - Transmit interrupt handler
2751  *  @nic : device private variable
2752  *  Description:
2753  *  If an interrupt was raised to indicate DMA complete of the
2754  *  Tx packet, this function is called. It identifies the last TxD
2755  *  whose buffer was freed and frees all skbs whose data have already
2756  *  DMA'ed into the NICs internal memory.
2757  *  Return Value:
2758  *  NONE
2759  */
2760
2761 static void tx_intr_handler(struct fifo_info *fifo_data)
2762 {
2763         struct s2io_nic *nic = fifo_data->nic;
2764         struct net_device *dev = (struct net_device *) nic->dev;
2765         struct tx_curr_get_info get_info, put_info;
2766         struct sk_buff *skb;
2767         struct TxD *txdlp;
2768
2769         get_info = fifo_data->tx_curr_get_info;
2770         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2771         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2772             list_virt_addr;
2773         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2774                (get_info.offset != put_info.offset) &&
2775                (txdlp->Host_Control)) {
2776                 /* Check for TxD errors */
2777                 if (txdlp->Control_1 & TXD_T_CODE) {
2778                         unsigned long long err;
2779                         err = txdlp->Control_1 & TXD_T_CODE;
2780                         if (err & 0x1) {
2781                                 nic->mac_control.stats_info->sw_stat.
2782                                                 parity_err_cnt++;
2783                         }
2784                         if ((err >> 48) == 0xA) {
2785                                 DBG_PRINT(TX_DBG, "TxD returned due \
2786                                                 to loss of link\n");
2787                         }
2788                         else {
2789                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2790                         }
2791                 }
2792
2793                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2794                 if (skb == NULL) {
2795                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2796                         __FUNCTION__);
2797                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2798                         return;
2799                 }
2800
2801                 /* Updating the statistics block */
2802                 nic->stats.tx_bytes += skb->len;
2803                 dev_kfree_skb_irq(skb);
2804
2805                 get_info.offset++;
2806                 if (get_info.offset == get_info.fifo_len + 1)
2807                         get_info.offset = 0;
2808                 txdlp = (struct TxD *) fifo_data->list_info
2809                     [get_info.offset].list_virt_addr;
2810                 fifo_data->tx_curr_get_info.offset =
2811                     get_info.offset;
2812         }
2813
2814         spin_lock(&nic->tx_lock);
2815         if (netif_queue_stopped(dev))
2816                 netif_wake_queue(dev);
2817         spin_unlock(&nic->tx_lock);
2818 }
2819
2820 /**
2821  *  s2io_mdio_write - Function to write in to MDIO registers
2822  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2823  *  @addr     : address value
2824  *  @value    : data value
2825  *  @dev      : pointer to net_device structure
2826  *  Description:
2827  *  This function is used to write values to the MDIO registers
2828  *  NONE
2829  */
2830 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2831 {
2832         u64 val64 = 0x0;
2833         struct s2io_nic *sp = dev->priv;
2834         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2835
2836         //address transaction
2837         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2838                         | MDIO_MMD_DEV_ADDR(mmd_type)
2839                         | MDIO_MMS_PRT_ADDR(0x0);
2840         writeq(val64, &bar0->mdio_control);
2841         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2842         writeq(val64, &bar0->mdio_control);
2843         udelay(100);
2844
2845         //Data transaction
2846         val64 = 0x0;
2847         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2848                         | MDIO_MMD_DEV_ADDR(mmd_type)
2849                         | MDIO_MMS_PRT_ADDR(0x0)
2850                         | MDIO_MDIO_DATA(value)
2851                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2852         writeq(val64, &bar0->mdio_control);
2853         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2854         writeq(val64, &bar0->mdio_control);
2855         udelay(100);
2856
2857         val64 = 0x0;
2858         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2859         | MDIO_MMD_DEV_ADDR(mmd_type)
2860         | MDIO_MMS_PRT_ADDR(0x0)
2861         | MDIO_OP(MDIO_OP_READ_TRANS);
2862         writeq(val64, &bar0->mdio_control);
2863         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2864         writeq(val64, &bar0->mdio_control);
2865         udelay(100);
2866
2867 }
2868
2869 /**
2870  *  s2io_mdio_read - Function to write in to MDIO registers
2871  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2872  *  @addr     : address value
2873  *  @dev      : pointer to net_device structure
2874  *  Description:
2875  *  This function is used to read values to the MDIO registers
2876  *  NONE
2877  */
2878 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2879 {
2880         u64 val64 = 0x0;
2881         u64 rval64 = 0x0;
2882         struct s2io_nic *sp = dev->priv;
2883         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2884
2885         /* address transaction */
2886         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2887                         | MDIO_MMD_DEV_ADDR(mmd_type)
2888                         | MDIO_MMS_PRT_ADDR(0x0);
2889         writeq(val64, &bar0->mdio_control);
2890         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2891         writeq(val64, &bar0->mdio_control);
2892         udelay(100);
2893
2894         /* Data transaction */
2895         val64 = 0x0;
2896         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2897                         | MDIO_MMD_DEV_ADDR(mmd_type)
2898                         | MDIO_MMS_PRT_ADDR(0x0)
2899                         | MDIO_OP(MDIO_OP_READ_TRANS);
2900         writeq(val64, &bar0->mdio_control);
2901         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2902         writeq(val64, &bar0->mdio_control);
2903         udelay(100);
2904
2905         /* Read the value from regs */
2906         rval64 = readq(&bar0->mdio_control);
2907         rval64 = rval64 & 0xFFFF0000;
2908         rval64 = rval64 >> 16;
2909         return rval64;
2910 }
2911 /**
2912  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2913  *  @counter      : couter value to be updated
2914  *  @flag         : flag to indicate the status
2915  *  @type         : counter type
2916  *  Description:
2917  *  This function is to check the status of the xpak counters value
2918  *  NONE
2919  */
2920
2921 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2922 {
2923         u64 mask = 0x3;
2924         u64 val64;
2925         int i;
2926         for(i = 0; i <index; i++)
2927                 mask = mask << 0x2;
2928
2929         if(flag > 0)
2930         {
2931                 *counter = *counter + 1;
2932                 val64 = *regs_stat & mask;
2933                 val64 = val64 >> (index * 0x2);
2934                 val64 = val64 + 1;
2935                 if(val64 == 3)
2936                 {
2937                         switch(type)
2938                         {
2939                         case 1:
2940                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2941                                           "service. Excessive temperatures may "
2942                                           "result in premature transceiver "
2943                                           "failure \n");
2944                         break;
2945                         case 2:
2946                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2947                                           "service Excessive bias currents may "
2948                                           "indicate imminent laser diode "
2949                                           "failure \n");
2950                         break;
2951                         case 3:
2952                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2953                                           "service Excessive laser output "
2954                                           "power may saturate far-end "
2955                                           "receiver\n");
2956                         break;
2957                         default:
2958                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2959                                           "type \n");
2960                         }
2961                         val64 = 0x0;
2962                 }
2963                 val64 = val64 << (index * 0x2);
2964                 *regs_stat = (*regs_stat & (~mask)) | (val64);
2965
2966         } else {
2967                 *regs_stat = *regs_stat & (~mask);
2968         }
2969 }
2970
2971 /**
2972  *  s2io_updt_xpak_counter - Function to update the xpak counters
2973  *  @dev         : pointer to net_device struct
2974  *  Description:
2975  *  This function is to upate the status of the xpak counters value
2976  *  NONE
2977  */
2978 static void s2io_updt_xpak_counter(struct net_device *dev)
2979 {
2980         u16 flag  = 0x0;
2981         u16 type  = 0x0;
2982         u16 val16 = 0x0;
2983         u64 val64 = 0x0;
2984         u64 addr  = 0x0;
2985
2986         struct s2io_nic *sp = dev->priv;
2987         struct stat_block *stat_info = sp->mac_control.stats_info;
2988
2989         /* Check the communication with the MDIO slave */
2990         addr = 0x0000;
2991         val64 = 0x0;
2992         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2993         if((val64 == 0xFFFF) || (val64 == 0x0000))
2994         {
2995                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2996                           "Returned %llx\n", (unsigned long long)val64);
2997                 return;
2998         }
2999
3000         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3001         if(val64 != 0x2040)
3002         {
3003                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3004                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3005                           (unsigned long long)val64);
3006                 return;
3007         }
3008
3009         /* Loading the DOM register to MDIO register */
3010         addr = 0xA100;
3011         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3012         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3013
3014         /* Reading the Alarm flags */
3015         addr = 0xA070;
3016         val64 = 0x0;
3017         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3018
3019         flag = CHECKBIT(val64, 0x7);
3020         type = 1;
3021         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3022                                 &stat_info->xpak_stat.xpak_regs_stat,
3023                                 0x0, flag, type);
3024
3025         if(CHECKBIT(val64, 0x6))
3026                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3027
3028         flag = CHECKBIT(val64, 0x3);
3029         type = 2;
3030         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3031                                 &stat_info->xpak_stat.xpak_regs_stat,
3032                                 0x2, flag, type);
3033
3034         if(CHECKBIT(val64, 0x2))
3035                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3036
3037         flag = CHECKBIT(val64, 0x1);
3038         type = 3;
3039         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3040                                 &stat_info->xpak_stat.xpak_regs_stat,
3041                                 0x4, flag, type);
3042
3043         if(CHECKBIT(val64, 0x0))
3044                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3045
3046         /* Reading the Warning flags */
3047         addr = 0xA074;
3048         val64 = 0x0;
3049         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3050
3051         if(CHECKBIT(val64, 0x7))
3052                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3053
3054         if(CHECKBIT(val64, 0x6))
3055                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3056
3057         if(CHECKBIT(val64, 0x3))
3058                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3059
3060         if(CHECKBIT(val64, 0x2))
3061                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3062
3063         if(CHECKBIT(val64, 0x1))
3064                 stat_info->xpak_stat.warn_laser_output_power_high++;
3065
3066         if(CHECKBIT(val64, 0x0))
3067                 stat_info->xpak_stat.warn_laser_output_power_low++;
3068 }
3069
3070 /**
3071  *  alarm_intr_handler - Alarm Interrrupt handler
3072  *  @nic: device private variable
3073  *  Description: If the interrupt was neither because of Rx packet or Tx
3074  *  complete, this function is called. If the interrupt was to indicate
3075  *  a loss of link, the OSM link status handler is invoked for any other
3076  *  alarm interrupt the block that raised the interrupt is displayed
3077  *  and a H/W reset is issued.
3078  *  Return Value:
3079  *  NONE
3080 */
3081
3082 static void alarm_intr_handler(struct s2io_nic *nic)
3083 {
3084         struct net_device *dev = (struct net_device *) nic->dev;
3085         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3086         register u64 val64 = 0, err_reg = 0;
3087         u64 cnt;
3088         int i;
3089         if (atomic_read(&nic->card_state) == CARD_DOWN)
3090                 return;
3091         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3092         /* Handling the XPAK counters update */
3093         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3094                 /* waiting for an hour */
3095                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3096         } else {
3097                 s2io_updt_xpak_counter(dev);
3098                 /* reset the count to zero */
3099                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3100         }
3101
3102         /* Handling link status change error Intr */
3103         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3104                 err_reg = readq(&bar0->mac_rmac_err_reg);
3105                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3106                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3107                         schedule_work(&nic->set_link_task);
3108                 }
3109         }
3110
3111         /* Handling Ecc errors */
3112         val64 = readq(&bar0->mc_err_reg);
3113         writeq(val64, &bar0->mc_err_reg);
3114         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3115                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3116                         nic->mac_control.stats_info->sw_stat.
3117                                 double_ecc_errs++;
3118                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3119                                   dev->name);
3120                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3121                         if (nic->device_type != XFRAME_II_DEVICE) {
3122                                 /* Reset XframeI only if critical error */
3123                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3124                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3125                                         netif_stop_queue(dev);
3126                                         schedule_work(&nic->rst_timer_task);
3127                                         nic->mac_control.stats_info->sw_stat.
3128                                                         soft_reset_cnt++;
3129                                 }
3130                         }
3131                 } else {
3132                         nic->mac_control.stats_info->sw_stat.
3133                                 single_ecc_errs++;
3134                 }
3135         }
3136
3137         /* In case of a serious error, the device will be Reset. */
3138         val64 = readq(&bar0->serr_source);
3139         if (val64 & SERR_SOURCE_ANY) {
3140                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3141                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3142                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3143                           (unsigned long long)val64);
3144                 netif_stop_queue(dev);
3145                 schedule_work(&nic->rst_timer_task);
3146                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3147         }
3148
3149         /*
3150          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3151          * Error occurs, the adapter will be recycled by disabling the
3152          * adapter enable bit and enabling it again after the device
3153          * becomes Quiescent.
3154          */
3155         val64 = readq(&bar0->pcc_err_reg);
3156         writeq(val64, &bar0->pcc_err_reg);
3157         if (val64 & PCC_FB_ECC_DB_ERR) {
3158                 u64 ac = readq(&bar0->adapter_control);
3159                 ac &= ~(ADAPTER_CNTL_EN);
3160                 writeq(ac, &bar0->adapter_control);
3161                 ac = readq(&bar0->adapter_control);
3162                 schedule_work(&nic->set_link_task);
3163         }
3164         /* Check for data parity error */
3165         val64 = readq(&bar0->pic_int_status);
3166         if (val64 & PIC_INT_GPIO) {
3167                 val64 = readq(&bar0->gpio_int_reg);
3168                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3169                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3170                         schedule_work(&nic->rst_timer_task);
3171                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3172                 }
3173         }
3174
3175         /* Check for ring full counter */
3176         if (nic->device_type & XFRAME_II_DEVICE) {
3177                 val64 = readq(&bar0->ring_bump_counter1);
3178                 for (i=0; i<4; i++) {
3179                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3180                         cnt >>= 64 - ((i+1)*16);
3181                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3182                                 += cnt;
3183                 }
3184
3185                 val64 = readq(&bar0->ring_bump_counter2);
3186                 for (i=0; i<4; i++) {
3187                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3188                         cnt >>= 64 - ((i+1)*16);
3189                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3190                                 += cnt;
3191                 }
3192         }
3193
3194         /* Other type of interrupts are not being handled now,  TODO */
3195 }
3196
3197 /**
3198  *  wait_for_cmd_complete - waits for a command to complete.
3199  *  @sp : private member of the device structure, which is a pointer to the
3200  *  s2io_nic structure.
3201  *  Description: Function that waits for a command to Write into RMAC
3202  *  ADDR DATA registers to be completed and returns either success or
3203  *  error depending on whether the command was complete or not.
3204  *  Return value:
3205  *   SUCCESS on success and FAILURE on failure.
3206  */
3207
3208 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3209                                 int bit_state)
3210 {
3211         int ret = FAILURE, cnt = 0, delay = 1;
3212         u64 val64;
3213
3214         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3215                 return FAILURE;
3216
3217         do {
3218                 val64 = readq(addr);
3219                 if (bit_state == S2IO_BIT_RESET) {
3220                         if (!(val64 & busy_bit)) {
3221                                 ret = SUCCESS;
3222                                 break;
3223                         }
3224                 } else {
3225                         if (!(val64 & busy_bit)) {
3226                                 ret = SUCCESS;
3227                                 break;
3228                         }
3229                 }
3230
3231                 if(in_interrupt())
3232                         mdelay(delay);
3233                 else
3234                         msleep(delay);
3235
3236                 if (++cnt >= 10)
3237                         delay = 50;
3238         } while (cnt < 20);
3239         return ret;
3240 }
3241 /*
3242  * check_pci_device_id - Checks if the device id is supported
3243  * @id : device id
3244  * Description: Function to check if the pci device id is supported by driver.
3245  * Return value: Actual device id if supported else PCI_ANY_ID
3246  */
3247 static u16 check_pci_device_id(u16 id)
3248 {
3249         switch (id) {
3250         case PCI_DEVICE_ID_HERC_WIN:
3251         case PCI_DEVICE_ID_HERC_UNI:
3252                 return XFRAME_II_DEVICE;
3253         case PCI_DEVICE_ID_S2IO_UNI:
3254         case PCI_DEVICE_ID_S2IO_WIN:
3255                 return XFRAME_I_DEVICE;
3256         default:
3257                 return PCI_ANY_ID;
3258         }
3259 }
3260
3261 /**
3262  *  s2io_reset - Resets the card.
3263  *  @sp : private member of the device structure.
3264  *  Description: Function to Reset the card. This function then also
3265  *  restores the previously saved PCI configuration space registers as
3266  *  the card reset also resets the configuration space.
3267  *  Return value:
3268  *  void.
3269  */
3270
3271 static void s2io_reset(struct s2io_nic * sp)
3272 {
3273         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3274         u64 val64;
3275         u16 subid, pci_cmd;
3276         int i;
3277         u16 val16;
3278         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3279                         __FUNCTION__, sp->dev->name);
3280
3281         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3282         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3283
3284         if (sp->device_type == XFRAME_II_DEVICE) {
3285                 int ret;
3286                 ret = pci_set_power_state(sp->pdev, 3);
3287                 if (!ret)
3288                         ret = pci_set_power_state(sp->pdev, 0);
3289                 else {
3290                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3291                                         __FUNCTION__);
3292                         goto old_way;
3293                 }
3294                 msleep(20);
3295                 goto new_way;
3296         }
3297 old_way:
3298         val64 = SW_RESET_ALL;
3299         writeq(val64, &bar0->sw_reset);
3300 new_way:
3301         if (strstr(sp->product_name, "CX4")) {
3302                 msleep(750);
3303         }
3304         msleep(250);
3305         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3306
3307                 /* Restore the PCI state saved during initialization. */
3308                 pci_restore_state(sp->pdev);
3309                 pci_read_config_word(sp->pdev, 0x2, &val16);
3310                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3311                         break;
3312                 msleep(200);
3313         }
3314
3315         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3316                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3317         }
3318
3319         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3320
3321         s2io_init_pci(sp);
3322
3323         /* Set swapper to enable I/O register access */
3324         s2io_set_swapper(sp);
3325
3326         /* Restore the MSIX table entries from local variables */
3327         restore_xmsi_data(sp);
3328
3329         /* Clear certain PCI/PCI-X fields after reset */
3330         if (sp->device_type == XFRAME_II_DEVICE) {
3331                 /* Clear "detected parity error" bit */
3332                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3333
3334                 /* Clearing PCIX Ecc status register */
3335                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3336
3337                 /* Clearing PCI_STATUS error reflected here */
3338                 writeq(BIT(62), &bar0->txpic_int_reg);
3339         }
3340
3341         /* Reset device statistics maintained by OS */
3342         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3343
3344         /* SXE-002: Configure link and activity LED to turn it off */
3345         subid = sp->pdev->subsystem_device;
3346         if (((subid & 0xFF) >= 0x07) &&
3347             (sp->device_type == XFRAME_I_DEVICE)) {
3348                 val64 = readq(&bar0->gpio_control);
3349                 val64 |= 0x0000800000000000ULL;
3350                 writeq(val64, &bar0->gpio_control);
3351                 val64 = 0x0411040400000000ULL;
3352                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3353         }
3354
3355         /*
3356          * Clear spurious ECC interrupts that would have occured on
3357          * XFRAME II cards after reset.
3358          */
3359         if (sp->device_type == XFRAME_II_DEVICE) {
3360                 val64 = readq(&bar0->pcc_err_reg);
3361                 writeq(val64, &bar0->pcc_err_reg);
3362         }
3363
3364         sp->device_enabled_once = FALSE;
3365 }
3366
3367 /**
3368  *  s2io_set_swapper - to set the swapper controle on the card
3369  *  @sp : private member of the device structure,
3370  *  pointer to the s2io_nic structure.
3371  *  Description: Function to set the swapper control on the card
3372  *  correctly depending on the 'endianness' of the system.
3373  *  Return value:
3374  *  SUCCESS on success and FAILURE on failure.
3375  */
3376
3377 static int s2io_set_swapper(struct s2io_nic * sp)
3378 {
3379         struct net_device *dev = sp->dev;
3380         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3381         u64 val64, valt, valr;
3382
3383         /*
3384          * Set proper endian settings and verify the same by reading
3385          * the PIF Feed-back register.
3386          */
3387
3388         val64 = readq(&bar0->pif_rd_swapper_fb);
3389         if (val64 != 0x0123456789ABCDEFULL) {
3390                 int i = 0;
3391                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3392                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3393                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3394                                 0};                     /* FE=0, SE=0 */
3395
3396                 while(i<4) {
3397                         writeq(value[i], &bar0->swapper_ctrl);
3398                         val64 = readq(&bar0->pif_rd_swapper_fb);
3399                         if (val64 == 0x0123456789ABCDEFULL)
3400                                 break;
3401                         i++;
3402                 }
3403                 if (i == 4) {
3404                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3405                                 dev->name);
3406                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3407                                 (unsigned long long) val64);
3408                         return FAILURE;
3409                 }
3410                 valr = value[i];
3411         } else {
3412                 valr = readq(&bar0->swapper_ctrl);
3413         }
3414
3415         valt = 0x0123456789ABCDEFULL;
3416         writeq(valt, &bar0->xmsi_address);
3417         val64 = readq(&bar0->xmsi_address);
3418
3419         if(val64 != valt) {
3420                 int i = 0;
3421                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3422                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3423                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3424                                 0};                     /* FE=0, SE=0 */
3425
3426                 while(i<4) {
3427                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3428                         writeq(valt, &bar0->xmsi_address);
3429                         val64 = readq(&bar0->xmsi_address);
3430                         if(val64 == valt)
3431                                 break;
3432                         i++;
3433                 }
3434                 if(i == 4) {
3435                         unsigned long long x = val64;
3436                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3437                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3438                         return FAILURE;
3439                 }
3440         }
3441         val64 = readq(&bar0->swapper_ctrl);
3442         val64 &= 0xFFFF000000000000ULL;
3443
3444 #ifdef  __BIG_ENDIAN
3445         /*
3446          * The device by default set to a big endian format, so a
3447          * big endian driver need not set anything.
3448          */
3449         val64 |= (SWAPPER_CTRL_TXP_FE |
3450                  SWAPPER_CTRL_TXP_SE |
3451                  SWAPPER_CTRL_TXD_R_FE |
3452                  SWAPPER_CTRL_TXD_W_FE |
3453                  SWAPPER_CTRL_TXF_R_FE |
3454                  SWAPPER_CTRL_RXD_R_FE |
3455                  SWAPPER_CTRL_RXD_W_FE |
3456                  SWAPPER_CTRL_RXF_W_FE |
3457                  SWAPPER_CTRL_XMSI_FE |
3458                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3459         if (sp->intr_type == INTA)
3460                 val64 |= SWAPPER_CTRL_XMSI_SE;
3461         writeq(val64, &bar0->swapper_ctrl);
3462 #else
3463         /*
3464          * Initially we enable all bits to make it accessible by the
3465          * driver, then we selectively enable only those bits that
3466          * we want to set.
3467          */
3468         val64 |= (SWAPPER_CTRL_TXP_FE |
3469                  SWAPPER_CTRL_TXP_SE |
3470                  SWAPPER_CTRL_TXD_R_FE |
3471                  SWAPPER_CTRL_TXD_R_SE |
3472                  SWAPPER_CTRL_TXD_W_FE |
3473                  SWAPPER_CTRL_TXD_W_SE |
3474                  SWAPPER_CTRL_TXF_R_FE |
3475                  SWAPPER_CTRL_RXD_R_FE |
3476                  SWAPPER_CTRL_RXD_R_SE |
3477                  SWAPPER_CTRL_RXD_W_FE |
3478                  SWAPPER_CTRL_RXD_W_SE |
3479                  SWAPPER_CTRL_RXF_W_FE |
3480                  SWAPPER_CTRL_XMSI_FE |
3481                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3482         if (sp->intr_type == INTA)
3483                 val64 |= SWAPPER_CTRL_XMSI_SE;
3484         writeq(val64, &bar0->swapper_ctrl);
3485 #endif
3486         val64 = readq(&bar0->swapper_ctrl);
3487
3488         /*
3489          * Verifying if endian settings are accurate by reading a
3490          * feedback register.
3491          */
3492         val64 = readq(&bar0->pif_rd_swapper_fb);
3493         if (val64 != 0x0123456789ABCDEFULL) {
3494                 /* Endian settings are incorrect, calls for another dekko. */
3495                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3496                           dev->name);
3497                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3498                           (unsigned long long) val64);
3499                 return FAILURE;
3500         }
3501
3502         return SUCCESS;
3503 }
3504
3505 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3506 {
3507         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3508         u64 val64;
3509         int ret = 0, cnt = 0;
3510
3511         do {
3512                 val64 = readq(&bar0->xmsi_access);
3513                 if (!(val64 & BIT(15)))
3514                         break;
3515                 mdelay(1);
3516                 cnt++;
3517         } while(cnt < 5);
3518         if (cnt == 5) {
3519                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3520                 ret = 1;
3521         }
3522
3523         return ret;
3524 }
3525
3526 static void restore_xmsi_data(struct s2io_nic *nic)
3527 {
3528         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3529         u64 val64;
3530         int i;
3531
3532         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3533                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3534                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3535                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3536                 writeq(val64, &bar0->xmsi_access);
3537                 if (wait_for_msix_trans(nic, i)) {
3538                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3539                         continue;
3540                 }
3541         }
3542 }
3543
3544 static void store_xmsi_data(struct s2io_nic *nic)
3545 {
3546         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3547         u64 val64, addr, data;
3548         int i;
3549
3550         /* Store and display */
3551         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3552                 val64 = (BIT(15) | vBIT(i, 26, 6));
3553                 writeq(val64, &bar0->xmsi_access);
3554                 if (wait_for_msix_trans(nic, i)) {
3555                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3556                         continue;
3557                 }
3558                 addr = readq(&bar0->xmsi_address);
3559                 data = readq(&bar0->xmsi_data);
3560                 if (addr && data) {
3561                         nic->msix_info[i].addr = addr;
3562                         nic->msix_info[i].data = data;
3563                 }
3564         }
3565 }
3566
3567 int s2io_enable_msi(struct s2io_nic *nic)
3568 {
3569         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3570         u16 msi_ctrl, msg_val;
3571         struct config_param *config = &nic->config;
3572         struct net_device *dev = nic->dev;
3573         u64 val64, tx_mat, rx_mat;
3574         int i, err;
3575
3576         val64 = readq(&bar0->pic_control);
3577         val64 &= ~BIT(1);
3578         writeq(val64, &bar0->pic_control);
3579
3580         err = pci_enable_msi(nic->pdev);
3581         if (err) {
3582                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3583                           nic->dev->name);
3584                 return err;
3585         }
3586
3587         /*
3588          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3589          * for interrupt handling.
3590          */
3591         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3592         msg_val ^= 0x1;
3593         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3594         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3595
3596         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3597         msi_ctrl |= 0x10;
3598         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3599
3600         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3601         tx_mat = readq(&bar0->tx_mat0_n[0]);
3602         for (i=0; i<config->tx_fifo_num; i++) {
3603                 tx_mat |= TX_MAT_SET(i, 1);
3604         }
3605         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3606
3607         rx_mat = readq(&bar0->rx_mat);
3608         for (i=0; i<config->rx_ring_num; i++) {
3609                 rx_mat |= RX_MAT_SET(i, 1);
3610         }
3611         writeq(rx_mat, &bar0->rx_mat);
3612
3613         dev->irq = nic->pdev->irq;
3614         return 0;
3615 }
3616
3617 static int s2io_enable_msi_x(struct s2io_nic *nic)
3618 {
3619         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3620         u64 tx_mat, rx_mat;
3621         u16 msi_control; /* Temp variable */
3622         int ret, i, j, msix_indx = 1;
3623
3624         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3625                                GFP_KERNEL);
3626         if (nic->entries == NULL) {
3627                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3628                 return -ENOMEM;
3629         }
3630         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3631
3632         nic->s2io_entries =
3633                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3634                                    GFP_KERNEL);
3635         if (nic->s2io_entries == NULL) {
3636                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3637                 kfree(nic->entries);
3638                 return -ENOMEM;
3639         }
3640         memset(nic->s2io_entries, 0,
3641                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3642
3643         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3644                 nic->entries[i].entry = i;
3645                 nic->s2io_entries[i].entry = i;
3646                 nic->s2io_entries[i].arg = NULL;
3647                 nic->s2io_entries[i].in_use = 0;
3648         }
3649
3650         tx_mat = readq(&bar0->tx_mat0_n[0]);
3651         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3652                 tx_mat |= TX_MAT_SET(i, msix_indx);
3653                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3654                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3655                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3656         }
3657         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3658
3659         if (!nic->config.bimodal) {
3660                 rx_mat = readq(&bar0->rx_mat);
3661                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3662                         rx_mat |= RX_MAT_SET(j, msix_indx);
3663                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3664                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3665                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3666                 }
3667                 writeq(rx_mat, &bar0->rx_mat);
3668         } else {
3669                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3670                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3671                         tx_mat |= TX_MAT_SET(i, msix_indx);
3672                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3673                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3674                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3675                 }
3676                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3677         }
3678
3679         nic->avail_msix_vectors = 0;
3680         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3681         /* We fail init if error or we get less vectors than min required */
3682         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3683                 nic->avail_msix_vectors = ret;
3684                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3685         }
3686         if (ret) {
3687                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3688                 kfree(nic->entries);
3689                 kfree(nic->s2io_entries);
3690                 nic->entries = NULL;
3691                 nic->s2io_entries = NULL;
3692                 nic->avail_msix_vectors = 0;
3693                 return -ENOMEM;
3694         }
3695         if (!nic->avail_msix_vectors)
3696                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3697
3698         /*
3699          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3700          * in the herc NIC. (Temp change, needs to be removed later)
3701          */
3702         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3703         msi_control |= 0x1; /* Enable MSI */
3704         pci_write_config_word(nic->pdev, 0x42, msi_control);
3705
3706         return 0;
3707 }
3708
3709 /* ********************************************************* *
3710  * Functions defined below concern the OS part of the driver *
3711  * ********************************************************* */
3712
3713 /**
3714  *  s2io_open - open entry point of the driver
3715  *  @dev : pointer to the device structure.
3716  *  Description:
3717  *  This function is the open entry point of the driver. It mainly calls a
3718  *  function to allocate Rx buffers and inserts them into the buffer
3719  *  descriptors and then enables the Rx part of the NIC.
3720  *  Return value:
3721  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3722  *   file on failure.
3723  */
3724
3725 static int s2io_open(struct net_device *dev)
3726 {
3727         struct s2io_nic *sp = dev->priv;
3728         int err = 0;
3729
3730         /*
3731          * Make sure you have link off by default every time
3732          * Nic is initialized
3733          */
3734         netif_carrier_off(dev);
3735         sp->last_link_state = 0;
3736
3737         /* Initialize H/W and enable interrupts */
3738         err = s2io_card_up(sp);
3739         if (err) {
3740                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3741                           dev->name);
3742                 goto hw_init_failed;
3743         }
3744
3745         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3746                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3747                 s2io_card_down(sp);
3748                 err = -ENODEV;
3749                 goto hw_init_failed;
3750         }
3751
3752         netif_start_queue(dev);
3753         return 0;
3754
3755 hw_init_failed:
3756         if (sp->intr_type == MSI_X) {
3757                 if (sp->entries)
3758                         kfree(sp->entries);
3759                 if (sp->s2io_entries)
3760                         kfree(sp->s2io_entries);
3761         }
3762         return err;
3763 }
3764
3765 /**
3766  *  s2io_close -close entry point of the driver
3767  *  @dev : device pointer.
3768  *  Description:
3769  *  This is the stop entry point of the driver. It needs to undo exactly
3770  *  whatever was done by the open entry point,thus it's usually referred to
3771  *  as the close function.Among other things this function mainly stops the
3772  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3773  *  Return value:
3774  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3775  *  file on failure.
3776  */
3777
3778 static int s2io_close(struct net_device *dev)
3779 {
3780         struct s2io_nic *sp = dev->priv;
3781
3782         netif_stop_queue(dev);
3783         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3784         s2io_card_down(sp);
3785
3786         sp->device_close_flag = TRUE;   /* Device is shut down. */
3787         return 0;
3788 }
3789
3790 /**
3791  *  s2io_xmit - Tx entry point of te driver
3792  *  @skb : the socket buffer containing the Tx data.
3793  *  @dev : device pointer.
3794  *  Description :
3795  *  This function is the Tx entry point of the driver. S2IO NIC supports
3796  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3797  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3798  *  not be upadted.
3799  *  Return value:
3800  *  0 on success & 1 on failure.
3801  */
3802
3803 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3804 {
3805         struct s2io_nic *sp = dev->priv;
3806         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3807         register u64 val64;
3808         struct TxD *txdp;
3809         struct TxFIFO_element __iomem *tx_fifo;
3810         unsigned long flags;
3811         u16 vlan_tag = 0;
3812         int vlan_priority = 0;
3813         struct mac_info *mac_control;
3814         struct config_param *config;
3815         int offload_type;
3816
3817         mac_control = &sp->mac_control;
3818         config = &sp->config;
3819
3820         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3821         spin_lock_irqsave(&sp->tx_lock, flags);
3822         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3823                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3824                           dev->name);
3825                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3826                 dev_kfree_skb(skb);
3827                 return 0;
3828         }
3829
3830         queue = 0;
3831
3832         /* Get Fifo number to Transmit based on vlan priority */
3833         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3834                 vlan_tag = vlan_tx_tag_get(skb);
3835                 vlan_priority = vlan_tag >> 13;
3836                 queue = config->fifo_mapping[vlan_priority];
3837         }
3838
3839         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3840         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3841         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3842                 list_virt_addr;
3843
3844         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3845         /* Avoid "put" pointer going beyond "get" pointer */
3846         if (txdp->Host_Control ||
3847                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3848                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3849                 netif_stop_queue(dev);
3850                 dev_kfree_skb(skb);
3851                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3852                 return 0;
3853         }
3854
3855         /* A buffer with no data will be dropped */
3856         if (!skb->len) {
3857                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3858                 dev_kfree_skb(skb);
3859                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3860                 return 0;
3861         }
3862
3863         offload_type = s2io_offload_type(skb);
3864         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3865                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3866                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3867         }
3868         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3869                 txdp->Control_2 |=
3870                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3871                      TXD_TX_CKO_UDP_EN);
3872         }
3873         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3874         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3875         txdp->Control_2 |= config->tx_intr_type;
3876
3877         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3878                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3879                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3880         }
3881
3882         frg_len = skb->len - skb->data_len;
3883         if (offload_type == SKB_GSO_UDP) {
3884                 int ufo_size;
3885
3886                 ufo_size = s2io_udp_mss(skb);
3887                 ufo_size &= ~7;
3888                 txdp->Control_1 |= TXD_UFO_EN;
3889                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3890                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3891 #ifdef __BIG_ENDIAN
3892                 sp->ufo_in_band_v[put_off] =
3893                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3894 #else
3895                 sp->ufo_in_band_v[put_off] =
3896                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3897 #endif
3898                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3899                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3900                                         sp->ufo_in_band_v,
3901                                         sizeof(u64), PCI_DMA_TODEVICE);
3902                 txdp++;
3903         }
3904
3905         txdp->Buffer_Pointer = pci_map_single
3906             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3907         txdp->Host_Control = (unsigned long) skb;
3908         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3909         if (offload_type == SKB_GSO_UDP)
3910                 txdp->Control_1 |= TXD_UFO_EN;
3911
3912         frg_cnt = skb_shinfo(skb)->nr_frags;
3913         /* For fragmented SKB. */
3914         for (i = 0; i < frg_cnt; i++) {
3915                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3916                 /* A '0' length fragment will be ignored */
3917                 if (!frag->size)
3918                         continue;
3919                 txdp++;
3920                 txdp->Buffer_Pointer = (u64) pci_map_page
3921                     (sp->pdev, frag->page, frag->page_offset,
3922                      frag->size, PCI_DMA_TODEVICE);
3923                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3924                 if (offload_type == SKB_GSO_UDP)
3925                         txdp->Control_1 |= TXD_UFO_EN;
3926         }
3927         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3928
3929         if (offload_type == SKB_GSO_UDP)
3930                 frg_cnt++; /* as Txd0 was used for inband header */
3931
3932         tx_fifo = mac_control->tx_FIFO_start[queue];
3933         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3934         writeq(val64, &tx_fifo->TxDL_Pointer);
3935
3936         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3937                  TX_FIFO_LAST_LIST);
3938         if (offload_type)
3939                 val64 |= TX_FIFO_SPECIAL_FUNC;
3940
3941         writeq(val64, &tx_fifo->List_Control);
3942
3943         mmiowb();
3944
3945         put_off++;
3946         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3947                 put_off = 0;
3948         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3949
3950         /* Avoid "put" pointer going beyond "get" pointer */
3951         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3952                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3953                 DBG_PRINT(TX_DBG,
3954                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3955                           put_off, get_off);
3956                 netif_stop_queue(dev);
3957         }
3958
3959         dev->trans_start = jiffies;
3960         spin_unlock_irqrestore(&sp->tx_lock, flags);
3961
3962         return 0;
3963 }
3964
3965 static void
3966 s2io_alarm_handle(unsigned long data)
3967 {
3968         struct s2io_nic *sp = (struct s2io_nic *)data;
3969
3970         alarm_intr_handler(sp);
3971         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3972 }
3973
3974 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3975 {
3976         int rxb_size, level;
3977
3978         if (!sp->lro) {
3979                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3980                 level = rx_buffer_level(sp, rxb_size, rng_n);
3981
3982                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3983                         int ret;
3984                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3985                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3986                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3987                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3988                                           __FUNCTION__);
3989                                 clear_bit(0, (&sp->tasklet_status));
3990                                 return -1;
3991                         }
3992                         clear_bit(0, (&sp->tasklet_status));
3993                 } else if (level == LOW)
3994                         tasklet_schedule(&sp->task);
3995
3996         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3997                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3998                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3999         }
4000         return 0;
4001 }
4002
4003 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4004 {
4005         struct net_device *dev = (struct net_device *) dev_id;
4006         struct s2io_nic *sp = dev->priv;
4007         int i;
4008         struct mac_info *mac_control;
4009         struct config_param *config;
4010
4011         atomic_inc(&sp->isr_cnt);
4012         mac_control = &sp->mac_control;
4013         config = &sp->config;
4014         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4015
4016         /* If Intr is because of Rx Traffic */
4017         for (i = 0; i < config->rx_ring_num; i++)
4018                 rx_intr_handler(&mac_control->rings[i]);
4019
4020         /* If Intr is because of Tx Traffic */
4021         for (i = 0; i < config->tx_fifo_num; i++)
4022                 tx_intr_handler(&mac_control->fifos[i]);
4023
4024         /*
4025          * If the Rx buffer count is below the panic threshold then
4026          * reallocate the buffers from the interrupt handler itself,
4027          * else schedule a tasklet to reallocate the buffers.
4028          */
4029         for (i = 0; i < config->rx_ring_num; i++)
4030                 s2io_chk_rx_buffers(sp, i);
4031
4032         atomic_dec(&sp->isr_cnt);
4033         return IRQ_HANDLED;
4034 }
4035
4036 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4037 {
4038         struct ring_info *ring = (struct ring_info *)dev_id;
4039         struct s2io_nic *sp = ring->nic;
4040
4041         atomic_inc(&sp->isr_cnt);
4042
4043         rx_intr_handler(ring);
4044         s2io_chk_rx_buffers(sp, ring->ring_no);
4045
4046         atomic_dec(&sp->isr_cnt);
4047         return IRQ_HANDLED;
4048 }
4049
4050 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4051 {
4052         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4053         struct s2io_nic *sp = fifo->nic;
4054
4055         atomic_inc(&sp->isr_cnt);
4056         tx_intr_handler(fifo);
4057         atomic_dec(&sp->isr_cnt);
4058         return IRQ_HANDLED;
4059 }
4060 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4061 {
4062         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4063         u64 val64;
4064
4065         val64 = readq(&bar0->pic_int_status);
4066         if (val64 & PIC_INT_GPIO) {
4067                 val64 = readq(&bar0->gpio_int_reg);
4068                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4069                     (val64 & GPIO_INT_REG_LINK_UP)) {
4070                         /*
4071                          * This is unstable state so clear both up/down
4072                          * interrupt and adapter to re-evaluate the link state.
4073                          */
4074                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4075                         val64 |= GPIO_INT_REG_LINK_UP;
4076                         writeq(val64, &bar0->gpio_int_reg);
4077                         val64 = readq(&bar0->gpio_int_mask);
4078                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4079                                    GPIO_INT_MASK_LINK_DOWN);
4080                         writeq(val64, &bar0->gpio_int_mask);
4081                 }
4082                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4083                         val64 = readq(&bar0->adapter_status);
4084                                 /* Enable Adapter */
4085                         val64 = readq(&bar0->adapter_control);
4086                         val64 |= ADAPTER_CNTL_EN;
4087                         writeq(val64, &bar0->adapter_control);
4088                         val64 |= ADAPTER_LED_ON;
4089                         writeq(val64, &bar0->adapter_control);
4090                         if (!sp->device_enabled_once)
4091                                 sp->device_enabled_once = 1;
4092
4093                         s2io_link(sp, LINK_UP);
4094                         /*
4095                          * unmask link down interrupt and mask link-up
4096                          * intr
4097                          */
4098                         val64 = readq(&bar0->gpio_int_mask);
4099                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4100                         val64 |= GPIO_INT_MASK_LINK_UP;
4101                         writeq(val64, &bar0->gpio_int_mask);
4102
4103                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4104                         val64 = readq(&bar0->adapter_status);
4105                         s2io_link(sp, LINK_DOWN);
4106                         /* Link is down so unmaks link up interrupt */
4107                         val64 = readq(&bar0->gpio_int_mask);
4108                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4109                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4110                         writeq(val64, &bar0->gpio_int_mask);
4111                 }
4112         }
4113         val64 = readq(&bar0->gpio_int_mask);
4114 }
4115
4116 /**
4117  *  s2io_isr - ISR handler of the device .
4118  *  @irq: the irq of the device.
4119  *  @dev_id: a void pointer to the dev structure of the NIC.
4120  *  Description:  This function is the ISR handler of the device. It
4121  *  identifies the reason for the interrupt and calls the relevant
4122  *  service routines. As a contongency measure, this ISR allocates the
4123  *  recv buffers, if their numbers are below the panic value which is
4124  *  presently set to 25% of the original number of rcv buffers allocated.
4125  *  Return value:
4126  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4127  *   IRQ_NONE: will be returned if interrupt is not from our device
4128  */
4129 static irqreturn_t s2io_isr(int irq, void *dev_id)
4130 {
4131         struct net_device *dev = (struct net_device *) dev_id;
4132         struct s2io_nic *sp = dev->priv;
4133         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4134         int i;
4135         u64 reason = 0;
4136         struct mac_info *mac_control;
4137         struct config_param *config;
4138
4139         atomic_inc(&sp->isr_cnt);
4140         mac_control = &sp->mac_control;
4141         config = &sp->config;
4142
4143         /*
4144          * Identify the cause for interrupt and call the appropriate
4145          * interrupt handler. Causes for the interrupt could be;
4146          * 1. Rx of packet.
4147          * 2. Tx complete.
4148          * 3. Link down.
4149          * 4. Error in any functional blocks of the NIC.
4150          */
4151         reason = readq(&bar0->general_int_status);
4152
4153         if (!reason) {
4154                 /* The interrupt was not raised by us. */
4155                 atomic_dec(&sp->isr_cnt);
4156                 return IRQ_NONE;
4157         }
4158         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4159                 /* Disable device and get out */
4160                 atomic_dec(&sp->isr_cnt);
4161                 return IRQ_NONE;
4162         }
4163
4164         if (napi) {
4165                 if (reason & GEN_INTR_RXTRAFFIC) {
4166                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4167                                 __netif_rx_schedule(dev);
4168                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4169                         }
4170                         else
4171                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4172                 }
4173         } else {
4174                 /*
4175                  * Rx handler is called by default, without checking for the
4176                  * cause of interrupt.
4177                  * rx_traffic_int reg is an R1 register, writing all 1's
4178                  * will ensure that the actual interrupt causing bit get's
4179                  * cleared and hence a read can be avoided.
4180                  */
4181                 if (reason & GEN_INTR_RXTRAFFIC)
4182                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4183
4184                 for (i = 0; i < config->rx_ring_num; i++) {
4185                         rx_intr_handler(&mac_control->rings[i]);
4186                 }
4187         }
4188
4189         /*
4190          * tx_traffic_int reg is an R1 register, writing all 1's
4191          * will ensure that the actual interrupt causing bit get's
4192          * cleared and hence a read can be avoided.
4193          */
4194         if (reason & GEN_INTR_TXTRAFFIC)
4195                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4196
4197         for (i = 0; i < config->tx_fifo_num; i++)
4198                 tx_intr_handler(&mac_control->fifos[i]);
4199
4200         if (reason & GEN_INTR_TXPIC)
4201                 s2io_txpic_intr_handle(sp);
4202         /*
4203          * If the Rx buffer count is below the panic threshold then
4204          * reallocate the buffers from the interrupt handler itself,
4205          * else schedule a tasklet to reallocate the buffers.
4206          */
4207         if (!napi) {
4208                 for (i = 0; i < config->rx_ring_num; i++)
4209                         s2io_chk_rx_buffers(sp, i);
4210         }
4211
4212         writeq(0, &bar0->general_int_mask);
4213         readl(&bar0->general_int_status);
4214
4215         atomic_dec(&sp->isr_cnt);
4216         return IRQ_HANDLED;
4217 }
4218
4219 /**
4220  * s2io_updt_stats -
4221  */
4222 static void s2io_updt_stats(struct s2io_nic *sp)
4223 {
4224         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4225         u64 val64;
4226         int cnt = 0;
4227
4228         if (atomic_read(&sp->card_state) == CARD_UP) {
4229                 /* Apprx 30us on a 133 MHz bus */
4230                 val64 = SET_UPDT_CLICKS(10) |
4231                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4232                 writeq(val64, &bar0->stat_cfg);
4233                 do {
4234                         udelay(100);
4235                         val64 = readq(&bar0->stat_cfg);
4236                         if (!(val64 & BIT(0)))
4237                                 break;
4238                         cnt++;
4239                         if (cnt == 5)
4240                                 break; /* Updt failed */
4241                 } while(1);
4242         } else {
4243                 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4244         }
4245 }
4246
4247 /**
4248  *  s2io_get_stats - Updates the device statistics structure.
4249  *  @dev : pointer to the device structure.
4250  *  Description:
4251  *  This function updates the device statistics structure in the s2io_nic
4252  *  structure and returns a pointer to the same.
4253  *  Return value:
4254  *  pointer to the updated net_device_stats structure.
4255  */
4256
4257 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4258 {
4259         struct s2io_nic *sp = dev->priv;
4260         struct mac_info *mac_control;
4261         struct config_param *config;
4262
4263
4264         mac_control = &sp->mac_control;
4265         config = &sp->config;
4266
4267         /* Configure Stats for immediate updt */
4268         s2io_updt_stats(sp);
4269
4270         sp->stats.tx_packets =
4271                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4272         sp->stats.tx_errors =
4273                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4274         sp->stats.rx_errors =
4275                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4276         sp->stats.multicast =
4277                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4278         sp->stats.rx_length_errors =
4279                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4280
4281         return (&sp->stats);
4282 }
4283
4284 /**
4285  *  s2io_set_multicast - entry point for multicast address enable/disable.
4286  *  @dev : pointer to the device structure
4287  *  Description:
4288  *  This function is a driver entry point which gets called by the kernel
4289  *  whenever multicast addresses must be enabled/disabled. This also gets
4290  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4291  *  determine, if multicast address must be enabled or if promiscuous mode
4292  *  is to be disabled etc.
4293  *  Return value:
4294  *  void.
4295  */
4296
4297 static void s2io_set_multicast(struct net_device *dev)
4298 {
4299         int i, j, prev_cnt;
4300         struct dev_mc_list *mclist;
4301         struct s2io_nic *sp = dev->priv;
4302         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4303         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4304             0xfeffffffffffULL;
4305         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4306         void __iomem *add;
4307
4308         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4309                 /*  Enable all Multicast addresses */
4310                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4311                        &bar0->rmac_addr_data0_mem);
4312                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4313                        &bar0->rmac_addr_data1_mem);
4314                 val64 = RMAC_ADDR_CMD_MEM_WE |
4315                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4316                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4317                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4318                 /* Wait till command completes */
4319                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4320                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4321                                         S2IO_BIT_RESET);
4322
4323                 sp->m_cast_flg = 1;
4324                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4325         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4326                 /*  Disable all Multicast addresses */
4327                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4328                        &bar0->rmac_addr_data0_mem);
4329                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4330                        &bar0->rmac_addr_data1_mem);
4331                 val64 = RMAC_ADDR_CMD_MEM_WE |
4332                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4333                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4334                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4335                 /* Wait till command completes */
4336                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4337                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4338                                         S2IO_BIT_RESET);
4339
4340                 sp->m_cast_flg = 0;
4341                 sp->all_multi_pos = 0;
4342         }
4343
4344         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4345                 /*  Put the NIC into promiscuous mode */
4346                 add = &bar0->mac_cfg;
4347                 val64 = readq(&bar0->mac_cfg);
4348                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4349
4350                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4351                 writel((u32) val64, add);
4352                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4353                 writel((u32) (val64 >> 32), (add + 4));
4354
4355                 val64 = readq(&bar0->mac_cfg);
4356                 sp->promisc_flg = 1;
4357                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4358                           dev->name);
4359         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4360                 /*  Remove the NIC from promiscuous mode */
4361                 add = &bar0->mac_cfg;
4362                 val64 = readq(&bar0->mac_cfg);
4363                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4364
4365                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4366                 writel((u32) val64, add);
4367                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4368                 writel((u32) (val64 >> 32), (add + 4));
4369
4370                 val64 = readq(&bar0->mac_cfg);
4371                 sp->promisc_flg = 0;
4372                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4373                           dev->name);
4374         }
4375
4376         /*  Update individual M_CAST address list */
4377         if ((!sp->m_cast_flg) && dev->mc_count) {
4378                 if (dev->mc_count >
4379                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4380                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4381                                   dev->name);
4382                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4383                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4384                         return;
4385                 }
4386
4387                 prev_cnt = sp->mc_addr_count;
4388                 sp->mc_addr_count = dev->mc_count;
4389
4390                 /* Clear out the previous list of Mc in the H/W. */
4391                 for (i = 0; i < prev_cnt; i++) {
4392                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4393                                &bar0->rmac_addr_data0_mem);
4394                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4395                                 &bar0->rmac_addr_data1_mem);
4396                         val64 = RMAC_ADDR_CMD_MEM_WE |
4397                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4398                             RMAC_ADDR_CMD_MEM_OFFSET
4399                             (MAC_MC_ADDR_START_OFFSET + i);
4400                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4401
4402                         /* Wait for command completes */
4403                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4404                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4405                                         S2IO_BIT_RESET)) {
4406                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4407                                           dev->name);
4408                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4409                                 return;
4410                         }
4411                 }
4412
4413                 /* Create the new Rx filter list and update the same in H/W. */
4414                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4415                      i++, mclist = mclist->next) {
4416                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4417                                ETH_ALEN);
4418                         mac_addr = 0;
4419                         for (j = 0; j < ETH_ALEN; j++) {
4420                                 mac_addr |= mclist->dmi_addr[j];
4421                                 mac_addr <<= 8;
4422                         }
4423                         mac_addr >>= 8;
4424                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4425                                &bar0->rmac_addr_data0_mem);
4426                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4427                                 &bar0->rmac_addr_data1_mem);
4428                         val64 = RMAC_ADDR_CMD_MEM_WE |
4429                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4430                             RMAC_ADDR_CMD_MEM_OFFSET
4431                             (i + MAC_MC_ADDR_START_OFFSET);
4432                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4433
4434                         /* Wait for command completes */
4435                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4436                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4437                                         S2IO_BIT_RESET)) {
4438                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4439                                           dev->name);
4440                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4441                                 return;
4442                         }
4443                 }
4444         }
4445 }
4446
4447 /**
4448  *  s2io_set_mac_addr - Programs the Xframe mac address
4449  *  @dev : pointer to the device structure.
4450  *  @addr: a uchar pointer to the new mac address which is to be set.
4451  *  Description : This procedure will program the Xframe to receive
4452  *  frames with new Mac Address
4453  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4454  *  as defined in errno.h file on failure.
4455  */
4456
4457 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4458 {
4459         struct s2io_nic *sp = dev->priv;
4460         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4461         register u64 val64, mac_addr = 0;
4462         int i;
4463
4464         /*
4465          * Set the new MAC address as the new unicast filter and reflect this
4466          * change on the device address registered with the OS. It will be
4467          * at offset 0.
4468          */
4469         for (i = 0; i < ETH_ALEN; i++) {
4470                 mac_addr <<= 8;
4471                 mac_addr |= addr[i];
4472         }
4473
4474         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4475                &bar0->rmac_addr_data0_mem);
4476
4477         val64 =
4478             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4479             RMAC_ADDR_CMD_MEM_OFFSET(0);
4480         writeq(val64, &bar0->rmac_addr_cmd_mem);
4481         /* Wait till command completes */
4482         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4483                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4484                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4485                 return FAILURE;
4486         }
4487
4488         return SUCCESS;
4489 }
4490
4491 /**
4492  * s2io_ethtool_sset - Sets different link parameters.
4493  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4494  * @info: pointer to the structure with parameters given by ethtool to set
4495  * link information.
4496  * Description:
4497  * The function sets different link parameters provided by the user onto
4498  * the NIC.
4499  * Return value:
4500  * 0 on success.
4501 */
4502
4503 static int s2io_ethtool_sset(struct net_device *dev,
4504                              struct ethtool_cmd *info)
4505 {
4506         struct s2io_nic *sp = dev->priv;
4507         if ((info->autoneg == AUTONEG_ENABLE) ||
4508             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4509                 return -EINVAL;
4510         else {
4511                 s2io_close(sp->dev);
4512                 s2io_open(sp->dev);
4513         }
4514
4515         return 0;
4516 }
4517
4518 /**
4519  * s2io_ethtol_gset - Return link specific information.
4520  * @sp : private member of the device structure, pointer to the
4521  *      s2io_nic structure.
4522  * @info : pointer to the structure with parameters given by ethtool
4523  * to return link information.
4524  * Description:
4525  * Returns link specific information like speed, duplex etc.. to ethtool.
4526  * Return value :
4527  * return 0 on success.
4528  */
4529
4530 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4531 {
4532         struct s2io_nic *sp = dev->priv;
4533         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4534         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4535         info->port = PORT_FIBRE;
4536         /* info->transceiver?? TODO */
4537
4538         if (netif_carrier_ok(sp->dev)) {
4539                 info->speed = 10000;
4540                 info->duplex = DUPLEX_FULL;
4541         } else {
4542                 info->speed = -1;
4543                 info->duplex = -1;
4544         }
4545
4546         info->autoneg = AUTONEG_DISABLE;
4547         return 0;
4548 }
4549
4550 /**
4551  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4552  * @sp : private member of the device structure, which is a pointer to the
4553  * s2io_nic structure.
4554  * @info : pointer to the structure with parameters given by ethtool to
4555  * return driver information.
4556  * Description:
4557  * Returns driver specefic information like name, version etc.. to ethtool.
4558  * Return value:
4559  *  void
4560  */
4561
4562 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4563                                   struct ethtool_drvinfo *info)
4564 {
4565         struct s2io_nic *sp = dev->priv;
4566
4567         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4568         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4569         strncpy(info->fw_version, "", sizeof(info->fw_version));
4570         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4571         info->regdump_len = XENA_REG_SPACE;
4572         info->eedump_len = XENA_EEPROM_SPACE;
4573         info->testinfo_len = S2IO_TEST_LEN;
4574         info->n_stats = S2IO_STAT_LEN;
4575 }
4576
4577 /**
4578  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4579  *  @sp: private member of the device structure, which is a pointer to the
4580  *  s2io_nic structure.
4581  *  @regs : pointer to the structure with parameters given by ethtool for
4582  *  dumping the registers.
4583  *  @reg_space: The input argumnet into which all the registers are dumped.
4584  *  Description:
4585  *  Dumps the entire register space of xFrame NIC into the user given
4586  *  buffer area.
4587  * Return value :
4588  * void .
4589 */
4590
4591 static void s2io_ethtool_gregs(struct net_device *dev,
4592                                struct ethtool_regs *regs, void *space)
4593 {
4594         int i;
4595         u64 reg;
4596         u8 *reg_space = (u8 *) space;
4597         struct s2io_nic *sp = dev->priv;
4598
4599         regs->len = XENA_REG_SPACE;
4600         regs->version = sp->pdev->subsystem_device;
4601
4602         for (i = 0; i < regs->len; i += 8) {
4603                 reg = readq(sp->bar0 + i);
4604                 memcpy((reg_space + i), &reg, 8);
4605         }
4606 }
4607
4608 /**
4609  *  s2io_phy_id  - timer function that alternates adapter LED.
4610  *  @data : address of the private member of the device structure, which
4611  *  is a pointer to the s2io_nic structure, provided as an u32.
4612  * Description: This is actually the timer function that alternates the
4613  * adapter LED bit of the adapter control bit to set/reset every time on
4614  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4615  *  once every second.
4616 */
4617 static void s2io_phy_id(unsigned long data)
4618 {
4619         struct s2io_nic *sp = (struct s2io_nic *) data;
4620         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4621         u64 val64 = 0;
4622         u16 subid;
4623
4624         subid = sp->pdev->subsystem_device;
4625         if ((sp->device_type == XFRAME_II_DEVICE) ||
4626                    ((subid & 0xFF) >= 0x07)) {
4627                 val64 = readq(&bar0->gpio_control);
4628                 val64 ^= GPIO_CTRL_GPIO_0;
4629                 writeq(val64, &bar0->gpio_control);
4630         } else {
4631                 val64 = readq(&bar0->adapter_control);
4632                 val64 ^= ADAPTER_LED_ON;
4633                 writeq(val64, &bar0->adapter_control);
4634         }
4635
4636         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4637 }
4638
4639 /**
4640  * s2io_ethtool_idnic - To physically identify the nic on the system.
4641  * @sp : private member of the device structure, which is a pointer to the
4642  * s2io_nic structure.
4643  * @id : pointer to the structure with identification parameters given by
4644  * ethtool.
4645  * Description: Used to physically identify the NIC on the system.
4646  * The Link LED will blink for a time specified by the user for
4647  * identification.
4648  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4649  * identification is possible only if it's link is up.
4650  * Return value:
4651  * int , returns 0 on success
4652  */
4653
4654 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4655 {
4656         u64 val64 = 0, last_gpio_ctrl_val;
4657         struct s2io_nic *sp = dev->priv;
4658         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4659         u16 subid;
4660
4661         subid = sp->pdev->subsystem_device;
4662         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4663         if ((sp->device_type == XFRAME_I_DEVICE) &&
4664                 ((subid & 0xFF) < 0x07)) {
4665                 val64 = readq(&bar0->adapter_control);
4666                 if (!(val64 & ADAPTER_CNTL_EN)) {
4667                         printk(KERN_ERR
4668                                "Adapter Link down, cannot blink LED\n");
4669                         return -EFAULT;
4670                 }
4671         }
4672         if (sp->id_timer.function == NULL) {
4673                 init_timer(&sp->id_timer);
4674                 sp->id_timer.function = s2io_phy_id;
4675                 sp->id_timer.data = (unsigned long) sp;
4676         }
4677         mod_timer(&sp->id_timer, jiffies);
4678         if (data)
4679                 msleep_interruptible(data * HZ);
4680         else
4681                 msleep_interruptible(MAX_FLICKER_TIME);
4682         del_timer_sync(&sp->id_timer);
4683
4684         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4685                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4686                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4687         }
4688
4689         return 0;
4690 }
4691
4692 /**
4693  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4694  * @sp : private member of the device structure, which is a pointer to the
4695  *      s2io_nic structure.
4696  * @ep : pointer to the structure with pause parameters given by ethtool.
4697  * Description:
4698  * Returns the Pause frame generation and reception capability of the NIC.
4699  * Return value:
4700  *  void
4701  */
4702 static void s2io_ethtool_getpause_data(struct net_device *dev,
4703                                        struct ethtool_pauseparam *ep)
4704 {
4705         u64 val64;
4706         struct s2io_nic *sp = dev->priv;
4707         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4708
4709         val64 = readq(&bar0->rmac_pause_cfg);
4710         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4711                 ep->tx_pause = TRUE;
4712         if (val64 & RMAC_PAUSE_RX_ENABLE)
4713                 ep->rx_pause = TRUE;
4714         ep->autoneg = FALSE;
4715 }
4716
4717 /**
4718  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4719  * @sp : private member of the device structure, which is a pointer to the
4720  *      s2io_nic structure.
4721  * @ep : pointer to the structure with pause parameters given by ethtool.
4722  * Description:
4723  * It can be used to set or reset Pause frame generation or reception
4724  * support of the NIC.
4725  * Return value:
4726  * int, returns 0 on Success
4727  */
4728
4729 static int s2io_ethtool_setpause_data(struct net_device *dev,
4730                                struct ethtool_pauseparam *ep)
4731 {
4732         u64 val64;
4733         struct s2io_nic *sp = dev->priv;
4734         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4735
4736         val64 = readq(&bar0->rmac_pause_cfg);
4737         if (ep->tx_pause)
4738                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4739         else
4740                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4741         if (ep->rx_pause)
4742                 val64 |= RMAC_PAUSE_RX_ENABLE;
4743         else
4744                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4745         writeq(val64, &bar0->rmac_pause_cfg);
4746         return 0;
4747 }
4748
4749 /**
4750  * read_eeprom - reads 4 bytes of data from user given offset.
4751  * @sp : private member of the device structure, which is a pointer to the
4752  *      s2io_nic structure.
4753  * @off : offset at which the data must be written
4754  * @data : Its an output parameter where the data read at the given
4755  *      offset is stored.
4756  * Description:
4757  * Will read 4 bytes of data from the user given offset and return the
4758  * read data.
4759  * NOTE: Will allow to read only part of the EEPROM visible through the
4760  *   I2C bus.
4761  * Return value:
4762  *  -1 on failure and 0 on success.
4763  */
4764
4765 #define S2IO_DEV_ID             5
4766 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4767 {
4768         int ret = -1;
4769         u32 exit_cnt = 0;
4770         u64 val64;
4771         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4772
4773         if (sp->device_type == XFRAME_I_DEVICE) {
4774                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4775                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4776                     I2C_CONTROL_CNTL_START;
4777                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4778
4779                 while (exit_cnt < 5) {
4780                         val64 = readq(&bar0->i2c_control);
4781                         if (I2C_CONTROL_CNTL_END(val64)) {
4782                                 *data = I2C_CONTROL_GET_DATA(val64);
4783                                 ret = 0;
4784                                 break;
4785                         }
4786                         msleep(50);
4787                         exit_cnt++;
4788                 }
4789         }
4790
4791         if (sp->device_type == XFRAME_II_DEVICE) {
4792                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4793                         SPI_CONTROL_BYTECNT(0x3) |
4794                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4795                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4796                 val64 |= SPI_CONTROL_REQ;
4797                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4798                 while (exit_cnt < 5) {
4799                         val64 = readq(&bar0->spi_control);
4800                         if (val64 & SPI_CONTROL_NACK) {
4801                                 ret = 1;
4802                                 break;
4803                         } else if (val64 & SPI_CONTROL_DONE) {
4804                                 *data = readq(&bar0->spi_data);
4805                                 *data &= 0xffffff;
4806                                 ret = 0;
4807                                 break;
4808                         }
4809                         msleep(50);
4810                         exit_cnt++;
4811                 }
4812         }
4813         return ret;
4814 }
4815
4816 /**
4817  *  write_eeprom - actually writes the relevant part of the data value.
4818  *  @sp : private member of the device structure, which is a pointer to the
4819  *       s2io_nic structure.
4820  *  @off : offset at which the data must be written
4821  *  @data : The data that is to be written
4822  *  @cnt : Number of bytes of the data that are actually to be written into
4823  *  the Eeprom. (max of 3)
4824  * Description:
4825  *  Actually writes the relevant part of the data value into the Eeprom
4826  *  through the I2C bus.
4827  * Return value:
4828  *  0 on success, -1 on failure.
4829  */
4830
4831 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4832 {
4833         int exit_cnt = 0, ret = -1;
4834         u64 val64;
4835         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4836
4837         if (sp->device_type == XFRAME_I_DEVICE) {
4838                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4839                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4840                     I2C_CONTROL_CNTL_START;
4841                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4842
4843                 while (exit_cnt < 5) {
4844                         val64 = readq(&bar0->i2c_control);
4845                         if (I2C_CONTROL_CNTL_END(val64)) {
4846                                 if (!(val64 & I2C_CONTROL_NACK))
4847                                         ret = 0;
4848                                 break;
4849                         }
4850                         msleep(50);
4851                         exit_cnt++;
4852                 }
4853         }
4854
4855         if (sp->device_type == XFRAME_II_DEVICE) {
4856                 int write_cnt = (cnt == 8) ? 0 : cnt;
4857                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4858
4859                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4860                         SPI_CONTROL_BYTECNT(write_cnt) |
4861                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4862                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4863                 val64 |= SPI_CONTROL_REQ;
4864                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4865                 while (exit_cnt < 5) {
4866                         val64 = readq(&bar0->spi_control);
4867                         if (val64 & SPI_CONTROL_NACK) {
4868                                 ret = 1;
4869                                 break;
4870                         } else if (val64 & SPI_CONTROL_DONE) {
4871                                 ret = 0;
4872                                 break;
4873                         }
4874                         msleep(50);
4875                         exit_cnt++;
4876                 }
4877         }
4878         return ret;
4879 }
4880 static void s2io_vpd_read(struct s2io_nic *nic)
4881 {
4882         u8 *vpd_data;
4883         u8 data;
4884         int i=0, cnt, fail = 0;
4885         int vpd_addr = 0x80;
4886
4887         if (nic->device_type == XFRAME_II_DEVICE) {
4888                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4889                 vpd_addr = 0x80;
4890         }
4891         else {
4892                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4893                 vpd_addr = 0x50;
4894         }
4895         strcpy(nic->serial_num, "NOT AVAILABLE");
4896
4897         vpd_data = kmalloc(256, GFP_KERNEL);
4898         if (!vpd_data)
4899                 return;
4900
4901         for (i = 0; i < 256; i +=4 ) {
4902                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4903                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4904                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4905                 for (cnt = 0; cnt <5; cnt++) {
4906                         msleep(2);
4907                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4908                         if (data == 0x80)
4909                                 break;
4910                 }
4911                 if (cnt >= 5) {
4912                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4913                         fail = 1;
4914                         break;
4915                 }
4916                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
4917                                       (u32 *)&vpd_data[i]);
4918         }
4919
4920         if(!fail) {
4921                 /* read serial number of adapter */
4922                 for (cnt = 0; cnt < 256; cnt++) {
4923                 if ((vpd_data[cnt] == 'S') &&
4924                         (vpd_data[cnt+1] == 'N') &&
4925                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4926                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
4927                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4928                                         vpd_data[cnt+2]);
4929                                 break;
4930                         }
4931                 }
4932         }
4933
4934         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4935                 memset(nic->product_name, 0, vpd_data[1]);
4936                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4937         }
4938         kfree(vpd_data);
4939 }
4940
4941 /**
4942  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
4943  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4944  *  @eeprom : pointer to the user level structure provided by ethtool,
4945  *  containing all relevant information.
4946  *  @data_buf : user defined value to be written into Eeprom.
4947  *  Description: Reads the values stored in the Eeprom at given offset
4948  *  for a given length. Stores these values int the input argument data
4949  *  buffer 'data_buf' and returns these to the caller (ethtool.)
4950  *  Return value:
4951  *  int  0 on success
4952  */
4953
4954 static int s2io_ethtool_geeprom(struct net_device *dev,
4955                          struct ethtool_eeprom *eeprom, u8 * data_buf)
4956 {
4957         u32 i, valid;
4958         u64 data;
4959         struct s2io_nic *sp = dev->priv;
4960
4961         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4962
4963         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4964                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4965
4966         for (i = 0; i < eeprom->len; i += 4) {
4967                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4968                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4969                         return -EFAULT;
4970                 }
4971                 valid = INV(data);
4972                 memcpy((data_buf + i), &valid, 4);
4973         }
4974         return 0;
4975 }
4976
4977 /**
4978  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4979  *  @sp : private member of the device structure, which is a pointer to the
4980  *  s2io_nic structure.
4981  *  @eeprom : pointer to the user level structure provided by ethtool,
4982  *  containing all relevant information.
4983  *  @data_buf ; user defined value to be written into Eeprom.
4984  *  Description:
4985  *  Tries to write the user provided value in the Eeprom, at the offset
4986  *  given by the user.
4987  *  Return value:
4988  *  0 on success, -EFAULT on failure.
4989  */
4990
4991 static int s2io_ethtool_seeprom(struct net_device *dev,
4992                                 struct ethtool_eeprom *eeprom,
4993                                 u8 * data_buf)
4994 {
4995         int len = eeprom->len, cnt = 0;
4996         u64 valid = 0, data;
4997         struct s2io_nic *sp = dev->priv;
4998
4999         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5000                 DBG_PRINT(ERR_DBG,
5001                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5002                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5003                           eeprom->magic);
5004                 return -EFAULT;
5005         }
5006
5007         while (len) {
5008                 data = (u32) data_buf[cnt] & 0x000000FF;
5009                 if (data) {
5010                         valid = (u32) (data << 24);
5011                 } else
5012                         valid = data;
5013
5014                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5015                         DBG_PRINT(ERR_DBG,
5016                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5017                         DBG_PRINT(ERR_DBG,
5018                                   "write into the specified offset\n");
5019                         return -EFAULT;
5020                 }
5021                 cnt++;
5022                 len--;
5023         }
5024
5025         return 0;
5026 }
5027
5028 /**
5029  * s2io_register_test - reads and writes into all clock domains.
5030  * @sp : private member of the device structure, which is a pointer to the
5031  * s2io_nic structure.
5032  * @data : variable that returns the result of each of the test conducted b
5033  * by the driver.
5034  * Description:
5035  * Read and write into all clock domains. The NIC has 3 clock domains,
5036  * see that registers in all the three regions are accessible.
5037  * Return value:
5038  * 0 on success.
5039  */
5040
5041 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5042 {
5043         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5044         u64 val64 = 0, exp_val;
5045         int fail = 0;
5046
5047         val64 = readq(&bar0->pif_rd_swapper_fb);
5048         if (val64 != 0x123456789abcdefULL) {
5049                 fail = 1;
5050                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5051         }
5052
5053         val64 = readq(&bar0->rmac_pause_cfg);
5054         if (val64 != 0xc000ffff00000000ULL) {
5055                 fail = 1;
5056                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5057         }
5058
5059         val64 = readq(&bar0->rx_queue_cfg);
5060         if (sp->device_type == XFRAME_II_DEVICE)
5061                 exp_val = 0x0404040404040404ULL;
5062         else
5063                 exp_val = 0x0808080808080808ULL;
5064         if (val64 != exp_val) {
5065                 fail = 1;
5066                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5067         }
5068
5069         val64 = readq(&bar0->xgxs_efifo_cfg);
5070         if (val64 != 0x000000001923141EULL) {
5071                 fail = 1;
5072                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5073         }
5074
5075         val64 = 0x5A5A5A5A5A5A5A5AULL;
5076         writeq(val64, &bar0->xmsi_data);
5077         val64 = readq(&bar0->xmsi_data);
5078         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5079                 fail = 1;
5080                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5081         }
5082
5083         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5084         writeq(val64, &bar0->xmsi_data);
5085         val64 = readq(&bar0->xmsi_data);
5086         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5087                 fail = 1;
5088                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5089         }
5090
5091         *data = fail;
5092         return fail;
5093 }
5094
5095 /**
5096  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5097  * @sp : private member of the device structure, which is a pointer to the
5098  * s2io_nic structure.
5099  * @data:variable that returns the result of each of the test conducted by
5100  * the driver.
5101  * Description:
5102  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5103  * register.
5104  * Return value:
5105  * 0 on success.
5106  */
5107
5108 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5109 {
5110         int fail = 0;
5111         u64 ret_data, org_4F0, org_7F0;
5112         u8 saved_4F0 = 0, saved_7F0 = 0;
5113         struct net_device *dev = sp->dev;
5114
5115         /* Test Write Error at offset 0 */
5116         /* Note that SPI interface allows write access to all areas
5117          * of EEPROM. Hence doing all negative testing only for Xframe I.
5118          */
5119         if (sp->device_type == XFRAME_I_DEVICE)
5120                 if (!write_eeprom(sp, 0, 0, 3))
5121                         fail = 1;
5122
5123         /* Save current values at offsets 0x4F0 and 0x7F0 */
5124         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5125                 saved_4F0 = 1;
5126         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5127                 saved_7F0 = 1;
5128
5129         /* Test Write at offset 4f0 */
5130         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5131                 fail = 1;
5132         if (read_eeprom(sp, 0x4F0, &ret_data))
5133                 fail = 1;
5134
5135         if (ret_data != 0x012345) {
5136                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5137                         "Data written %llx Data read %llx\n",
5138                         dev->name, (unsigned long long)0x12345,
5139                         (unsigned long long)ret_data);
5140                 fail = 1;
5141         }
5142
5143         /* Reset the EEPROM data go FFFF */
5144         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5145
5146         /* Test Write Request Error at offset 0x7c */
5147         if (sp->device_type == XFRAME_I_DEVICE)
5148                 if (!write_eeprom(sp, 0x07C, 0, 3))
5149                         fail = 1;
5150
5151         /* Test Write Request at offset 0x7f0 */
5152         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5153                 fail = 1;
5154         if (read_eeprom(sp, 0x7F0, &ret_data))
5155                 fail = 1;
5156
5157         if (ret_data != 0x012345) {
5158                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5159                         "Data written %llx Data read %llx\n",
5160                         dev->name, (unsigned long long)0x12345,
5161                         (unsigned long long)ret_data);
5162                 fail = 1;
5163         }
5164
5165         /* Reset the EEPROM data go FFFF */
5166         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5167
5168         if (sp->device_type == XFRAME_I_DEVICE) {
5169                 /* Test Write Error at offset 0x80 */
5170                 if (!write_eeprom(sp, 0x080, 0, 3))
5171                         fail = 1;
5172
5173                 /* Test Write Error at offset 0xfc */
5174                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5175                         fail = 1;
5176
5177                 /* Test Write Error at offset 0x100 */
5178                 if (!write_eeprom(sp, 0x100, 0, 3))
5179                         fail = 1;
5180
5181                 /* Test Write Error at offset 4ec */
5182                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5183                         fail = 1;
5184         }
5185
5186         /* Restore values at offsets 0x4F0 and 0x7F0 */
5187         if (saved_4F0)
5188                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5189         if (saved_7F0)
5190                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5191
5192         *data = fail;
5193         return fail;
5194 }
5195
5196 /**
5197  * s2io_bist_test - invokes the MemBist test of the card .
5198  * @sp : private member of the device structure, which is a pointer to the
5199  * s2io_nic structure.
5200  * @data:variable that returns the result of each of the test conducted by
5201  * the driver.
5202  * Description:
5203  * This invokes the MemBist test of the card. We give around
5204  * 2 secs time for the Test to complete. If it's still not complete
5205  * within this peiod, we consider that the test failed.
5206  * Return value:
5207  * 0 on success and -1 on failure.
5208  */
5209
5210 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5211 {
5212         u8 bist = 0;
5213         int cnt = 0, ret = -1;
5214
5215         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5216         bist |= PCI_BIST_START;
5217         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5218
5219         while (cnt < 20) {
5220                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5221                 if (!(bist & PCI_BIST_START)) {
5222                         *data = (bist & PCI_BIST_CODE_MASK);
5223                         ret = 0;
5224                         break;
5225                 }
5226                 msleep(100);
5227                 cnt++;
5228         }
5229
5230         return ret;
5231 }
5232
5233 /**
5234  * s2io-link_test - verifies the link state of the nic
5235  * @sp ; private member of the device structure, which is a pointer to the
5236  * s2io_nic structure.
5237  * @data: variable that returns the result of each of the test conducted by
5238  * the driver.
5239  * Description:
5240  * The function verifies the link state of the NIC and updates the input
5241  * argument 'data' appropriately.
5242  * Return value:
5243  * 0 on success.
5244  */
5245
5246 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5247 {
5248         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5249         u64 val64;
5250
5251         val64 = readq(&bar0->adapter_status);
5252         if(!(LINK_IS_UP(val64)))
5253                 *data = 1;
5254         else
5255                 *data = 0;
5256
5257         return *data;
5258 }
5259
5260 /**
5261  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5262  * @sp - private member of the device structure, which is a pointer to the
5263  * s2io_nic structure.
5264  * @data - variable that returns the result of each of the test
5265  * conducted by the driver.
5266  * Description:
5267  *  This is one of the offline test that tests the read and write
5268  *  access to the RldRam chip on the NIC.
5269  * Return value:
5270  *  0 on success.
5271  */
5272
5273 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5274 {
5275         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5276         u64 val64;
5277         int cnt, iteration = 0, test_fail = 0;
5278
5279         val64 = readq(&bar0->adapter_control);
5280         val64 &= ~ADAPTER_ECC_EN;
5281         writeq(val64, &bar0->adapter_control);
5282
5283         val64 = readq(&bar0->mc_rldram_test_ctrl);
5284         val64 |= MC_RLDRAM_TEST_MODE;
5285         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5286
5287         val64 = readq(&bar0->mc_rldram_mrs);
5288         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5289         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5290
5291         val64 |= MC_RLDRAM_MRS_ENABLE;
5292         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5293
5294         while (iteration < 2) {
5295                 val64 = 0x55555555aaaa0000ULL;
5296                 if (iteration == 1) {
5297                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5298                 }
5299                 writeq(val64, &bar0->mc_rldram_test_d0);
5300
5301                 val64 = 0xaaaa5a5555550000ULL;
5302                 if (iteration == 1) {
5303                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5304                 }
5305                 writeq(val64, &bar0->mc_rldram_test_d1);
5306
5307                 val64 = 0x55aaaaaaaa5a0000ULL;
5308                 if (iteration == 1) {
5309                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5310                 }
5311                 writeq(val64, &bar0->mc_rldram_test_d2);
5312
5313                 val64 = (u64) (0x0000003ffffe0100ULL);
5314                 writeq(val64, &bar0->mc_rldram_test_add);
5315
5316                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5317                         MC_RLDRAM_TEST_GO;
5318                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5319
5320                 for (cnt = 0; cnt < 5; cnt++) {
5321                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5322                         if (val64 & MC_RLDRAM_TEST_DONE)
5323                                 break;
5324                         msleep(200);
5325                 }
5326
5327                 if (cnt == 5)
5328                         break;
5329
5330                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5331                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5332
5333                 for (cnt = 0; cnt < 5; cnt++) {
5334                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5335                         if (val64 & MC_RLDRAM_TEST_DONE)
5336                                 break;
5337                         msleep(500);
5338                 }
5339
5340                 if (cnt == 5)
5341                         break;
5342
5343                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5344                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5345                         test_fail = 1;
5346
5347                 iteration++;
5348         }
5349
5350         *data = test_fail;
5351
5352         /* Bring the adapter out of test mode */
5353         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5354
5355         return test_fail;
5356 }
5357
5358 /**
5359  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5360  *  @sp : private member of the device structure, which is a pointer to the
5361  *  s2io_nic structure.
5362  *  @ethtest : pointer to a ethtool command specific structure that will be
5363  *  returned to the user.
5364  *  @data : variable that returns the result of each of the test
5365  * conducted by the driver.
5366  * Description:
5367  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5368  *  the health of the card.
5369  * Return value:
5370  *  void
5371  */
5372
5373 static void s2io_ethtool_test(struct net_device *dev,
5374                               struct ethtool_test *ethtest,
5375                               uint64_t * data)
5376 {
5377         struct s2io_nic *sp = dev->priv;
5378         int orig_state = netif_running(sp->dev);
5379
5380         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5381                 /* Offline Tests. */
5382                 if (orig_state)
5383                         s2io_close(sp->dev);
5384
5385                 if (s2io_register_test(sp, &data[0]))
5386                         ethtest->flags |= ETH_TEST_FL_FAILED;
5387
5388                 s2io_reset(sp);
5389
5390                 if (s2io_rldram_test(sp, &data[3]))
5391                         ethtest->flags |= ETH_TEST_FL_FAILED;
5392
5393                 s2io_reset(sp);
5394
5395                 if (s2io_eeprom_test(sp, &data[1]))
5396                         ethtest->flags |= ETH_TEST_FL_FAILED;
5397
5398                 if (s2io_bist_test(sp, &data[4]))
5399                         ethtest->flags |= ETH_TEST_FL_FAILED;
5400
5401                 if (orig_state)
5402                         s2io_open(sp->dev);
5403
5404                 data[2] = 0;
5405         } else {
5406                 /* Online Tests. */
5407                 if (!orig_state) {
5408                         DBG_PRINT(ERR_DBG,
5409                                   "%s: is not up, cannot run test\n",
5410                                   dev->name);
5411                         data[0] = -1;
5412                         data[1] = -1;
5413                         data[2] = -1;
5414                         data[3] = -1;
5415                         data[4] = -1;
5416                 }
5417
5418                 if (s2io_link_test(sp, &data[2]))
5419                         ethtest->flags |= ETH_TEST_FL_FAILED;
5420
5421                 data[0] = 0;
5422                 data[1] = 0;
5423                 data[3] = 0;
5424                 data[4] = 0;
5425         }
5426 }
5427
5428 static void s2io_get_ethtool_stats(struct net_device *dev,
5429                                    struct ethtool_stats *estats,
5430                                    u64 * tmp_stats)
5431 {
5432         int i = 0;
5433         struct s2io_nic *sp = dev->priv;
5434         struct stat_block *stat_info = sp->mac_control.stats_info;
5435
5436         s2io_updt_stats(sp);
5437         tmp_stats[i++] =
5438                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5439                 le32_to_cpu(stat_info->tmac_frms);
5440         tmp_stats[i++] =
5441                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5442                 le32_to_cpu(stat_info->tmac_data_octets);
5443         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5444         tmp_stats[i++] =
5445                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5446                 le32_to_cpu(stat_info->tmac_mcst_frms);
5447         tmp_stats[i++] =
5448                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5449                 le32_to_cpu(stat_info->tmac_bcst_frms);
5450         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5451         tmp_stats[i++] =
5452                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5453                 le32_to_cpu(stat_info->tmac_ttl_octets);
5454         tmp_stats[i++] =
5455                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5456                 le32_to_cpu(stat_info->tmac_ucst_frms);
5457         tmp_stats[i++] =
5458                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5459                 le32_to_cpu(stat_info->tmac_nucst_frms);
5460         tmp_stats[i++] =
5461                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5462                 le32_to_cpu(stat_info->tmac_any_err_frms);
5463         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5464         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5465         tmp_stats[i++] =
5466                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5467                 le32_to_cpu(stat_info->tmac_vld_ip);
5468         tmp_stats[i++] =
5469                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5470                 le32_to_cpu(stat_info->tmac_drop_ip);
5471         tmp_stats[i++] =
5472                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5473                 le32_to_cpu(stat_info->tmac_icmp);
5474         tmp_stats[i++] =
5475                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5476                 le32_to_cpu(stat_info->tmac_rst_tcp);
5477         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5478         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5479                 le32_to_cpu(stat_info->tmac_udp);
5480         tmp_stats[i++] =
5481                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5482                 le32_to_cpu(stat_info->rmac_vld_frms);
5483         tmp_stats[i++] =
5484                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5485                 le32_to_cpu(stat_info->rmac_data_octets);
5486         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5487         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5488         tmp_stats[i++] =
5489                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5490                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5491         tmp_stats[i++] =
5492                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5493                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5494         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5495         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5496         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5497         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5498         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5499         tmp_stats[i++] =
5500                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5501                 le32_to_cpu(stat_info->rmac_ttl_octets);
5502         tmp_stats[i++] =
5503                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5504                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5505         tmp_stats[i++] =
5506                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5507                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5508         tmp_stats[i++] =
5509                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5510                 le32_to_cpu(stat_info->rmac_discarded_frms);
5511         tmp_stats[i++] =
5512                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5513                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5514         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5515         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5516         tmp_stats[i++] =
5517                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5518                 le32_to_cpu(stat_info->rmac_usized_frms);
5519         tmp_stats[i++] =
5520                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5521                 le32_to_cpu(stat_info->rmac_osized_frms);
5522         tmp_stats[i++] =
5523                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5524                 le32_to_cpu(stat_info->rmac_frag_frms);
5525         tmp_stats[i++] =
5526                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5527                 le32_to_cpu(stat_info->rmac_jabber_frms);
5528         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5529         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5530         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5531         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5532         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5533         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5534         tmp_stats[i++] =
5535                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5536                 le32_to_cpu(stat_info->rmac_ip);
5537         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5538         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5539         tmp_stats[i++] =
5540                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5541                 le32_to_cpu(stat_info->rmac_drop_ip);
5542         tmp_stats[i++] =
5543                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5544                 le32_to_cpu(stat_info->rmac_icmp);
5545         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5546         tmp_stats[i++] =
5547                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5548                 le32_to_cpu(stat_info->rmac_udp);
5549         tmp_stats[i++] =
5550                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5551                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5552         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5553         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5554         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5555         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5556         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5557         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5558         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5559         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5560         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5561         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5562         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5563         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5564         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5565         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5566         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5567         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5568         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5569         tmp_stats[i++] =
5570                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5571                 le32_to_cpu(stat_info->rmac_pause_cnt);
5572         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5573         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5574         tmp_stats[i++] =
5575                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5576                 le32_to_cpu(stat_info->rmac_accepted_ip);
5577         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5578         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5579         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5580         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5581         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5582         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5583         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5584         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5585         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5586         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5587         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5588         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5589         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5590         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5591         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5592         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5593         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5594         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5595         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5596         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5597         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5598         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5599         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5600         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5601         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5602         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5603         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5604         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5605         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5606         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5607         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5608         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5609         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5610         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5611         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5612         tmp_stats[i++] = 0;
5613         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5614         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5615         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5616         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5617         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5618         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5619         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5620         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5621         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5622         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5623         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5624         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5625         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5626         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5627         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5628         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5629         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5630         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5631         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5632         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5633         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5634         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5635         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5636         if (stat_info->sw_stat.num_aggregations) {
5637                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5638                 int count = 0;
5639                 /*
5640                  * Since 64-bit divide does not work on all platforms,
5641                  * do repeated subtraction.
5642                  */
5643                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5644                         tmp -= stat_info->sw_stat.num_aggregations;
5645                         count++;
5646                 }
5647                 tmp_stats[i++] = count;
5648         }
5649         else
5650                 tmp_stats[i++] = 0;
5651 }
5652
5653 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5654 {
5655         return (XENA_REG_SPACE);
5656 }
5657
5658
5659 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5660 {
5661         struct s2io_nic *sp = dev->priv;
5662
5663         return (sp->rx_csum);
5664 }
5665
5666 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5667 {
5668         struct s2io_nic *sp = dev->priv;
5669
5670         if (data)
5671                 sp->rx_csum = 1;
5672         else
5673                 sp->rx_csum = 0;
5674
5675         return 0;
5676 }
5677
5678 static int s2io_get_eeprom_len(struct net_device *dev)
5679 {
5680         return (XENA_EEPROM_SPACE);
5681 }
5682
5683 static int s2io_ethtool_self_test_count(struct net_device *dev)
5684 {
5685         return (S2IO_TEST_LEN);
5686 }
5687
5688 static void s2io_ethtool_get_strings(struct net_device *dev,
5689                                      u32 stringset, u8 * data)
5690 {
5691         switch (stringset) {
5692         case ETH_SS_TEST:
5693                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5694                 break;
5695         case ETH_SS_STATS:
5696                 memcpy(data, &ethtool_stats_keys,
5697                        sizeof(ethtool_stats_keys));
5698         }
5699 }
5700 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5701 {
5702         return (S2IO_STAT_LEN);
5703 }
5704
5705 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5706 {
5707         if (data)
5708                 dev->features |= NETIF_F_IP_CSUM;
5709         else
5710                 dev->features &= ~NETIF_F_IP_CSUM;
5711
5712         return 0;
5713 }
5714
5715 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5716 {
5717         return (dev->features & NETIF_F_TSO) != 0;
5718 }
5719 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5720 {
5721         if (data)
5722                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5723         else
5724                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5725
5726         return 0;
5727 }
5728
5729 static const struct ethtool_ops netdev_ethtool_ops = {
5730         .get_settings = s2io_ethtool_gset,
5731         .set_settings = s2io_ethtool_sset,
5732         .get_drvinfo = s2io_ethtool_gdrvinfo,
5733         .get_regs_len = s2io_ethtool_get_regs_len,
5734         .get_regs = s2io_ethtool_gregs,
5735         .get_link = ethtool_op_get_link,
5736         .get_eeprom_len = s2io_get_eeprom_len,
5737         .get_eeprom = s2io_ethtool_geeprom,
5738         .set_eeprom = s2io_ethtool_seeprom,
5739         .get_pauseparam = s2io_ethtool_getpause_data,
5740         .set_pauseparam = s2io_ethtool_setpause_data,
5741         .get_rx_csum = s2io_ethtool_get_rx_csum,
5742         .set_rx_csum = s2io_ethtool_set_rx_csum,
5743         .get_tx_csum = ethtool_op_get_tx_csum,
5744         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5745         .get_sg = ethtool_op_get_sg,
5746         .set_sg = ethtool_op_set_sg,
5747         .get_tso = s2io_ethtool_op_get_tso,
5748         .set_tso = s2io_ethtool_op_set_tso,
5749         .get_ufo = ethtool_op_get_ufo,
5750         .set_ufo = ethtool_op_set_ufo,
5751         .self_test_count = s2io_ethtool_self_test_count,
5752         .self_test = s2io_ethtool_test,
5753         .get_strings = s2io_ethtool_get_strings,
5754         .phys_id = s2io_ethtool_idnic,
5755         .get_stats_count = s2io_ethtool_get_stats_count,
5756         .get_ethtool_stats = s2io_get_ethtool_stats
5757 };
5758
5759 /**
5760  *  s2io_ioctl - Entry point for the Ioctl
5761  *  @dev :  Device pointer.
5762  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5763  *  a proprietary structure used to pass information to the driver.
5764  *  @cmd :  This is used to distinguish between the different commands that
5765  *  can be passed to the IOCTL functions.
5766  *  Description:
5767  *  Currently there are no special functionality supported in IOCTL, hence
5768  *  function always return EOPNOTSUPPORTED
5769  */
5770
5771 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5772 {
5773         return -EOPNOTSUPP;
5774 }
5775
5776 /**
5777  *  s2io_change_mtu - entry point to change MTU size for the device.
5778  *   @dev : device pointer.
5779  *   @new_mtu : the new MTU size for the device.
5780  *   Description: A driver entry point to change MTU size for the device.
5781  *   Before changing the MTU the device must be stopped.
5782  *  Return value:
5783  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5784  *   file on failure.
5785  */
5786
5787 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5788 {
5789         struct s2io_nic *sp = dev->priv;
5790
5791         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5792                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5793                           dev->name);
5794                 return -EPERM;
5795         }
5796
5797         dev->mtu = new_mtu;
5798         if (netif_running(dev)) {
5799                 s2io_card_down(sp);
5800                 netif_stop_queue(dev);
5801                 if (s2io_card_up(sp)) {
5802                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5803                                   __FUNCTION__);
5804                 }
5805                 if (netif_queue_stopped(dev))
5806                         netif_wake_queue(dev);
5807         } else { /* Device is down */
5808                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5809                 u64 val64 = new_mtu;
5810
5811                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5812         }
5813
5814         return 0;
5815 }
5816
5817 /**
5818  *  s2io_tasklet - Bottom half of the ISR.
5819  *  @dev_adr : address of the device structure in dma_addr_t format.
5820  *  Description:
5821  *  This is the tasklet or the bottom half of the ISR. This is
5822  *  an extension of the ISR which is scheduled by the scheduler to be run
5823  *  when the load on the CPU is low. All low priority tasks of the ISR can
5824  *  be pushed into the tasklet. For now the tasklet is used only to
5825  *  replenish the Rx buffers in the Rx buffer descriptors.
5826  *  Return value:
5827  *  void.
5828  */
5829
5830 static void s2io_tasklet(unsigned long dev_addr)
5831 {
5832         struct net_device *dev = (struct net_device *) dev_addr;
5833         struct s2io_nic *sp = dev->priv;
5834         int i, ret;
5835         struct mac_info *mac_control;
5836         struct config_param *config;
5837
5838         mac_control = &sp->mac_control;
5839         config = &sp->config;
5840
5841         if (!TASKLET_IN_USE) {
5842                 for (i = 0; i < config->rx_ring_num; i++) {
5843                         ret = fill_rx_buffers(sp, i);
5844                         if (ret == -ENOMEM) {
5845                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5846                                           dev->name);
5847                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5848                                 break;
5849                         } else if (ret == -EFILL) {
5850                                 DBG_PRINT(ERR_DBG,
5851                                           "%s: Rx Ring %d is full\n",
5852                                           dev->name, i);
5853                                 break;
5854                         }
5855                 }
5856                 clear_bit(0, (&sp->tasklet_status));
5857         }
5858 }
5859
5860 /**
5861  * s2io_set_link - Set the LInk status
5862  * @data: long pointer to device private structue
5863  * Description: Sets the link status for the adapter
5864  */
5865
5866 static void s2io_set_link(struct work_struct *work)
5867 {
5868         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5869         struct net_device *dev = nic->dev;
5870         struct XENA_dev_config __iomem *bar0 = nic->bar0;
5871         register u64 val64;
5872         u16 subid;
5873
5874         rtnl_lock();
5875
5876         if (!netif_running(dev))
5877                 goto out_unlock;
5878
5879         if (test_and_set_bit(0, &(nic->link_state))) {
5880                 /* The card is being reset, no point doing anything */
5881                 goto out_unlock;
5882         }
5883
5884         subid = nic->pdev->subsystem_device;
5885         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5886                 /*
5887                  * Allow a small delay for the NICs self initiated
5888                  * cleanup to complete.
5889                  */
5890                 msleep(100);
5891         }
5892
5893         val64 = readq(&bar0->adapter_status);
5894         if (LINK_IS_UP(val64)) {
5895                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5896                         if (verify_xena_quiescence(nic)) {
5897                                 val64 = readq(&bar0->adapter_control);
5898                                 val64 |= ADAPTER_CNTL_EN;
5899                                 writeq(val64, &bar0->adapter_control);
5900                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5901                                         nic->device_type, subid)) {
5902                                         val64 = readq(&bar0->gpio_control);
5903                                         val64 |= GPIO_CTRL_GPIO_0;
5904                                         writeq(val64, &bar0->gpio_control);
5905                                         val64 = readq(&bar0->gpio_control);
5906                                 } else {
5907                                         val64 |= ADAPTER_LED_ON;
5908                                         writeq(val64, &bar0->adapter_control);
5909                                 }
5910                                 nic->device_enabled_once = TRUE;
5911                         } else {
5912                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5913                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5914                                 netif_stop_queue(dev);
5915                         }
5916                 }
5917                 val64 = readq(&bar0->adapter_status);
5918                 if (!LINK_IS_UP(val64)) {
5919                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5920                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
5921                         DBG_PRINT(ERR_DBG, "device \n");
5922                 } else
5923                         s2io_link(nic, LINK_UP);
5924         } else {
5925                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5926                                                       subid)) {
5927                         val64 = readq(&bar0->gpio_control);
5928                         val64 &= ~GPIO_CTRL_GPIO_0;
5929                         writeq(val64, &bar0->gpio_control);
5930                         val64 = readq(&bar0->gpio_control);
5931                 }
5932                 s2io_link(nic, LINK_DOWN);
5933         }
5934         clear_bit(0, &(nic->link_state));
5935
5936 out_unlock:
5937         rtnl_lock();
5938 }
5939
5940 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5941                                 struct buffAdd *ba,
5942                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5943                                 u64 *temp2, int size)
5944 {
5945         struct net_device *dev = sp->dev;
5946         struct sk_buff *frag_list;
5947
5948         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5949                 /* allocate skb */
5950                 if (*skb) {
5951                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5952                         /*
5953                          * As Rx frame are not going to be processed,
5954                          * using same mapped address for the Rxd
5955                          * buffer pointer
5956                          */
5957                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5958                 } else {
5959                         *skb = dev_alloc_skb(size);
5960                         if (!(*skb)) {
5961                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5962                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5963                                 return -ENOMEM ;
5964                         }
5965                         /* storing the mapped addr in a temp variable
5966                          * such it will be used for next rxd whose
5967                          * Host Control is NULL
5968                          */
5969                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5970                                 pci_map_single( sp->pdev, (*skb)->data,
5971                                         size - NET_IP_ALIGN,
5972                                         PCI_DMA_FROMDEVICE);
5973                         rxdp->Host_Control = (unsigned long) (*skb);
5974                 }
5975         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5976                 /* Two buffer Mode */
5977                 if (*skb) {
5978                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5979                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5980                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5981                 } else {
5982                         *skb = dev_alloc_skb(size);
5983                         if (!(*skb)) {
5984                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5985                                         dev->name);
5986                                 return -ENOMEM;
5987                         }
5988                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5989                                 pci_map_single(sp->pdev, (*skb)->data,
5990                                                dev->mtu + 4,
5991                                                PCI_DMA_FROMDEVICE);
5992                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5993                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5994                                                 PCI_DMA_FROMDEVICE);
5995                         rxdp->Host_Control = (unsigned long) (*skb);
5996
5997                         /* Buffer-1 will be dummy buffer not used */
5998                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5999                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6000                                                PCI_DMA_FROMDEVICE);
6001                 }
6002         } else if ((rxdp->Host_Control == 0)) {
6003                 /* Three buffer mode */
6004                 if (*skb) {
6005                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6006                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6007                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6008                 } else {
6009                         *skb = dev_alloc_skb(size);
6010                         if (!(*skb)) {
6011                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6012                                           dev->name);
6013                                 return -ENOMEM;
6014                         }
6015                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6016                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6017                                                PCI_DMA_FROMDEVICE);
6018                         /* Buffer-1 receives L3/L4 headers */
6019                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6020                                 pci_map_single( sp->pdev, (*skb)->data,
6021                                                 l3l4hdr_size + 4,
6022                                                 PCI_DMA_FROMDEVICE);
6023                         /*
6024                          * skb_shinfo(skb)->frag_list will have L4
6025                          * data payload
6026                          */
6027                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6028                                                                    ALIGN_SIZE);
6029                         if (skb_shinfo(*skb)->frag_list == NULL) {
6030                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6031                                           failed\n ", dev->name);
6032                                 return -ENOMEM ;
6033                         }
6034                         frag_list = skb_shinfo(*skb)->frag_list;
6035                         frag_list->next = NULL;
6036                         /*
6037                          * Buffer-2 receives L4 data payload
6038                          */
6039                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6040                                 pci_map_single( sp->pdev, frag_list->data,
6041                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6042                 }
6043         }
6044         return 0;
6045 }
6046 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6047                                 int size)
6048 {
6049         struct net_device *dev = sp->dev;
6050         if (sp->rxd_mode == RXD_MODE_1) {
6051                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6052         } else if (sp->rxd_mode == RXD_MODE_3B) {
6053                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6054                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6055                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6056         } else {
6057                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6058                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6059                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6060         }
6061 }
6062
6063 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6064 {
6065         int i, j, k, blk_cnt = 0, size;
6066         struct mac_info * mac_control = &sp->mac_control;
6067         struct config_param *config = &sp->config;
6068         struct net_device *dev = sp->dev;
6069         struct RxD_t *rxdp = NULL;
6070         struct sk_buff *skb = NULL;
6071         struct buffAdd *ba = NULL;
6072         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6073
6074         /* Calculate the size based on ring mode */
6075         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6076                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6077         if (sp->rxd_mode == RXD_MODE_1)
6078                 size += NET_IP_ALIGN;
6079         else if (sp->rxd_mode == RXD_MODE_3B)
6080                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6081         else
6082                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6083
6084         for (i = 0; i < config->rx_ring_num; i++) {
6085                 blk_cnt = config->rx_cfg[i].num_rxd /
6086                         (rxd_count[sp->rxd_mode] +1);
6087
6088                 for (j = 0; j < blk_cnt; j++) {
6089                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6090                                 rxdp = mac_control->rings[i].
6091                                         rx_blocks[j].rxds[k].virt_addr;
6092                                 if(sp->rxd_mode >= RXD_MODE_3A)
6093                                         ba = &mac_control->rings[i].ba[j][k];
6094                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6095                                                        &skb,(u64 *)&temp0_64,
6096                                                        (u64 *)&temp1_64,
6097                                                        (u64 *)&temp2_64, size);
6098
6099                                 set_rxd_buffer_size(sp, rxdp, size);
6100                                 wmb();
6101                                 /* flip the Ownership bit to Hardware */
6102                                 rxdp->Control_1 |= RXD_OWN_XENA;
6103                         }
6104                 }
6105         }
6106         return 0;
6107
6108 }
6109
6110 static int s2io_add_isr(struct s2io_nic * sp)
6111 {
6112         int ret = 0;
6113         struct net_device *dev = sp->dev;
6114         int err = 0;
6115
6116         if (sp->intr_type == MSI)
6117                 ret = s2io_enable_msi(sp);
6118         else if (sp->intr_type == MSI_X)
6119                 ret = s2io_enable_msi_x(sp);
6120         if (ret) {
6121                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6122                 sp->intr_type = INTA;
6123         }
6124
6125         /* Store the values of the MSIX table in the struct s2io_nic structure */
6126         store_xmsi_data(sp);
6127
6128         /* After proper initialization of H/W, register ISR */
6129         if (sp->intr_type == MSI) {
6130                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6131                         IRQF_SHARED, sp->name, dev);
6132                 if (err) {
6133                         pci_disable_msi(sp->pdev);
6134                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6135                                   dev->name);
6136                         return -1;
6137                 }
6138         }
6139         if (sp->intr_type == MSI_X) {
6140                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6141
6142                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6143                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6144                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6145                                         dev->name, i);
6146                                 err = request_irq(sp->entries[i].vector,
6147                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6148                                                   sp->s2io_entries[i].arg);
6149                                 /* If either data or addr is zero print it */
6150                                 if(!(sp->msix_info[i].addr &&
6151                                         sp->msix_info[i].data)) {
6152                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6153                                                 "Data:0x%lx\n",sp->desc[i],
6154                                                 (unsigned long long)
6155                                                 sp->msix_info[i].addr,
6156                                                 (unsigned long)
6157                                                 ntohl(sp->msix_info[i].data));
6158                                 } else {
6159                                         msix_tx_cnt++;
6160                                 }
6161                         } else {
6162                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6163                                         dev->name, i);
6164                                 err = request_irq(sp->entries[i].vector,
6165                                           s2io_msix_ring_handle, 0, sp->desc[i],
6166                                                   sp->s2io_entries[i].arg);
6167                                 /* If either data or addr is zero print it */
6168                                 if(!(sp->msix_info[i].addr &&
6169                                         sp->msix_info[i].data)) {
6170                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6171                                                 "Data:0x%lx\n",sp->desc[i],
6172                                                 (unsigned long long)
6173                                                 sp->msix_info[i].addr,
6174                                                 (unsigned long)
6175                                                 ntohl(sp->msix_info[i].data));
6176                                 } else {
6177                                         msix_rx_cnt++;
6178                                 }
6179                         }
6180                         if (err) {
6181                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6182                                           "failed\n", dev->name, i);
6183                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6184                                 return -1;
6185                         }
6186                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6187                 }
6188                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6189                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6190         }
6191         if (sp->intr_type == INTA) {
6192                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6193                                 sp->name, dev);
6194                 if (err) {
6195                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6196                                   dev->name);
6197                         return -1;
6198                 }
6199         }
6200         return 0;
6201 }
6202 static void s2io_rem_isr(struct s2io_nic * sp)
6203 {
6204         int cnt = 0;
6205         struct net_device *dev = sp->dev;
6206
6207         if (sp->intr_type == MSI_X) {
6208                 int i;
6209                 u16 msi_control;
6210
6211                 for (i=1; (sp->s2io_entries[i].in_use ==
6212                         MSIX_REGISTERED_SUCCESS); i++) {
6213                         int vector = sp->entries[i].vector;
6214                         void *arg = sp->s2io_entries[i].arg;
6215
6216                         free_irq(vector, arg);
6217                 }
6218                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6219                 msi_control &= 0xFFFE; /* Disable MSI */
6220                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6221
6222                 pci_disable_msix(sp->pdev);
6223         } else {
6224                 free_irq(sp->pdev->irq, dev);
6225                 if (sp->intr_type == MSI) {
6226                         u16 val;
6227
6228                         pci_disable_msi(sp->pdev);
6229                         pci_read_config_word(sp->pdev, 0x4c, &val);
6230                         val ^= 0x1;
6231                         pci_write_config_word(sp->pdev, 0x4c, val);
6232                 }
6233         }
6234         /* Waiting till all Interrupt handlers are complete */
6235         cnt = 0;
6236         do {
6237                 msleep(10);
6238                 if (!atomic_read(&sp->isr_cnt))
6239                         break;
6240                 cnt++;
6241         } while(cnt < 5);
6242 }
6243
6244 static void s2io_card_down(struct s2io_nic * sp)
6245 {
6246         int cnt = 0;
6247         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6248         unsigned long flags;
6249         register u64 val64 = 0;
6250
6251         del_timer_sync(&sp->alarm_timer);
6252         /* If s2io_set_link task is executing, wait till it completes. */
6253         while (test_and_set_bit(0, &(sp->link_state))) {
6254                 msleep(50);
6255         }
6256         atomic_set(&sp->card_state, CARD_DOWN);
6257
6258         /* disable Tx and Rx traffic on the NIC */
6259         stop_nic(sp);
6260
6261         s2io_rem_isr(sp);
6262
6263         /* Kill tasklet. */
6264         tasklet_kill(&sp->task);
6265
6266         /* Check if the device is Quiescent and then Reset the NIC */
6267         do {
6268                 /* As per the HW requirement we need to replenish the
6269                  * receive buffer to avoid the ring bump. Since there is
6270                  * no intention of processing the Rx frame at this pointwe are
6271                  * just settting the ownership bit of rxd in Each Rx
6272                  * ring to HW and set the appropriate buffer size
6273                  * based on the ring mode
6274                  */
6275                 rxd_owner_bit_reset(sp);
6276
6277                 val64 = readq(&bar0->adapter_status);
6278                 if (verify_xena_quiescence(sp)) {
6279                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6280                         break;
6281                 }
6282
6283                 msleep(50);
6284                 cnt++;
6285                 if (cnt == 10) {
6286                         DBG_PRINT(ERR_DBG,
6287                                   "s2io_close:Device not Quiescent ");
6288                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6289                                   (unsigned long long) val64);
6290                         break;
6291                 }
6292         } while (1);
6293         s2io_reset(sp);
6294
6295         spin_lock_irqsave(&sp->tx_lock, flags);
6296         /* Free all Tx buffers */
6297         free_tx_buffers(sp);
6298         spin_unlock_irqrestore(&sp->tx_lock, flags);
6299
6300         /* Free all Rx buffers */
6301         spin_lock_irqsave(&sp->rx_lock, flags);
6302         free_rx_buffers(sp);
6303         spin_unlock_irqrestore(&sp->rx_lock, flags);
6304
6305         clear_bit(0, &(sp->link_state));
6306 }
6307
6308 static int s2io_card_up(struct s2io_nic * sp)
6309 {
6310         int i, ret = 0;
6311         struct mac_info *mac_control;
6312         struct config_param *config;
6313         struct net_device *dev = (struct net_device *) sp->dev;
6314         u16 interruptible;
6315
6316         /* Initialize the H/W I/O registers */
6317         if (init_nic(sp) != 0) {
6318                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6319                           dev->name);
6320                 s2io_reset(sp);
6321                 return -ENODEV;
6322         }
6323
6324         /*
6325          * Initializing the Rx buffers. For now we are considering only 1
6326          * Rx ring and initializing buffers into 30 Rx blocks
6327          */
6328         mac_control = &sp->mac_control;
6329         config = &sp->config;
6330
6331         for (i = 0; i < config->rx_ring_num; i++) {
6332                 if ((ret = fill_rx_buffers(sp, i))) {
6333                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6334                                   dev->name);
6335                         s2io_reset(sp);
6336                         free_rx_buffers(sp);
6337                         return -ENOMEM;
6338                 }
6339                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6340                           atomic_read(&sp->rx_bufs_left[i]));
6341         }
6342         /* Maintain the state prior to the open */
6343         if (sp->promisc_flg)
6344                 sp->promisc_flg = 0;
6345         if (sp->m_cast_flg) {
6346                 sp->m_cast_flg = 0;
6347                 sp->all_multi_pos= 0;
6348         }
6349
6350         /* Setting its receive mode */
6351         s2io_set_multicast(dev);
6352
6353         if (sp->lro) {
6354                 /* Initialize max aggregatable pkts per session based on MTU */
6355                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6356                 /* Check if we can use(if specified) user provided value */
6357                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6358                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6359         }
6360
6361         /* Enable Rx Traffic and interrupts on the NIC */
6362         if (start_nic(sp)) {
6363                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6364                 s2io_reset(sp);
6365                 free_rx_buffers(sp);
6366                 return -ENODEV;
6367         }
6368
6369         /* Add interrupt service routine */
6370         if (s2io_add_isr(sp) != 0) {
6371                 if (sp->intr_type == MSI_X)
6372                         s2io_rem_isr(sp);
6373                 s2io_reset(sp);
6374                 free_rx_buffers(sp);
6375                 return -ENODEV;
6376         }
6377
6378         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6379
6380         /* Enable tasklet for the device */
6381         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6382
6383         /*  Enable select interrupts */
6384         if (sp->intr_type != INTA)
6385                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6386         else {
6387                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6388                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6389                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6390                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6391         }
6392
6393
6394         atomic_set(&sp->card_state, CARD_UP);
6395         return 0;
6396 }
6397
6398 /**
6399  * s2io_restart_nic - Resets the NIC.
6400  * @data : long pointer to the device private structure
6401  * Description:
6402  * This function is scheduled to be run by the s2io_tx_watchdog
6403  * function after 0.5 secs to reset the NIC. The idea is to reduce
6404  * the run time of the watch dog routine which is run holding a
6405  * spin lock.
6406  */
6407
6408 static void s2io_restart_nic(struct work_struct *work)
6409 {
6410         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6411         struct net_device *dev = sp->dev;
6412
6413         rtnl_lock();
6414
6415         if (!netif_running(dev))
6416                 goto out_unlock;
6417
6418         s2io_card_down(sp);
6419         if (s2io_card_up(sp)) {
6420                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6421                           dev->name);
6422         }
6423         netif_wake_queue(dev);
6424         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6425                   dev->name);
6426 out_unlock:
6427         rtnl_unlock();
6428 }
6429
6430 /**
6431  *  s2io_tx_watchdog - Watchdog for transmit side.
6432  *  @dev : Pointer to net device structure
6433  *  Description:
6434  *  This function is triggered if the Tx Queue is stopped
6435  *  for a pre-defined amount of time when the Interface is still up.
6436  *  If the Interface is jammed in such a situation, the hardware is
6437  *  reset (by s2io_close) and restarted again (by s2io_open) to
6438  *  overcome any problem that might have been caused in the hardware.
6439  *  Return value:
6440  *  void
6441  */
6442
6443 static void s2io_tx_watchdog(struct net_device *dev)
6444 {
6445         struct s2io_nic *sp = dev->priv;
6446
6447         if (netif_carrier_ok(dev)) {
6448                 schedule_work(&sp->rst_timer_task);
6449                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6450         }
6451 }
6452
6453 /**
6454  *   rx_osm_handler - To perform some OS related operations on SKB.
6455  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6456  *   @skb : the socket buffer pointer.
6457  *   @len : length of the packet
6458  *   @cksum : FCS checksum of the frame.
6459  *   @ring_no : the ring from which this RxD was extracted.
6460  *   Description:
6461  *   This function is called by the Rx interrupt serivce routine to perform
6462  *   some OS related operations on the SKB before passing it to the upper
6463  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6464  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6465  *   to the upper layer. If the checksum is wrong, it increments the Rx
6466  *   packet error count, frees the SKB and returns error.
6467  *   Return value:
6468  *   SUCCESS on success and -1 on failure.
6469  */
6470 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6471 {
6472         struct s2io_nic *sp = ring_data->nic;
6473         struct net_device *dev = (struct net_device *) sp->dev;
6474         struct sk_buff *skb = (struct sk_buff *)
6475                 ((unsigned long) rxdp->Host_Control);
6476         int ring_no = ring_data->ring_no;
6477         u16 l3_csum, l4_csum;
6478         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6479         struct lro *lro;
6480
6481         skb->dev = dev;
6482
6483         if (err) {
6484                 /* Check for parity error */
6485                 if (err & 0x1) {
6486                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6487                 }
6488
6489                 /*
6490                 * Drop the packet if bad transfer code. Exception being
6491                 * 0x5, which could be due to unsupported IPv6 extension header.
6492                 * In this case, we let stack handle the packet.
6493                 * Note that in this case, since checksum will be incorrect,
6494                 * stack will validate the same.
6495                 */
6496                 if (err && ((err >> 48) != 0x5)) {
6497                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6498                                 dev->name, err);
6499                         sp->stats.rx_crc_errors++;
6500                         dev_kfree_skb(skb);
6501                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6502                         rxdp->Host_Control = 0;
6503                         return 0;
6504                 }
6505         }
6506
6507         /* Updating statistics */
6508         rxdp->Host_Control = 0;
6509         sp->rx_pkt_count++;
6510         sp->stats.rx_packets++;
6511         if (sp->rxd_mode == RXD_MODE_1) {
6512                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6513
6514                 sp->stats.rx_bytes += len;
6515                 skb_put(skb, len);
6516
6517         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6518                 int get_block = ring_data->rx_curr_get_info.block_index;
6519                 int get_off = ring_data->rx_curr_get_info.offset;
6520                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6521                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6522                 unsigned char *buff = skb_push(skb, buf0_len);
6523
6524                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6525                 sp->stats.rx_bytes += buf0_len + buf2_len;
6526                 memcpy(buff, ba->ba_0, buf0_len);
6527
6528                 if (sp->rxd_mode == RXD_MODE_3A) {
6529                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6530
6531                         skb_put(skb, buf1_len);
6532                         skb->len += buf2_len;
6533                         skb->data_len += buf2_len;
6534                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6535                         sp->stats.rx_bytes += buf1_len;
6536
6537                 } else
6538                         skb_put(skb, buf2_len);
6539         }
6540
6541         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6542             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6543             (sp->rx_csum)) {
6544                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6545                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6546                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6547                         /*
6548                          * NIC verifies if the Checksum of the received
6549                          * frame is Ok or not and accordingly returns
6550                          * a flag in the RxD.
6551                          */
6552                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6553                         if (sp->lro) {
6554                                 u32 tcp_len;
6555                                 u8 *tcp;
6556                                 int ret = 0;
6557
6558                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6559                                                 &tcp_len, &lro, rxdp, sp);
6560                                 switch (ret) {
6561                                         case 3: /* Begin anew */
6562                                                 lro->parent = skb;
6563                                                 goto aggregate;
6564                                         case 1: /* Aggregate */
6565                                         {
6566                                                 lro_append_pkt(sp, lro,
6567                                                         skb, tcp_len);
6568                                                 goto aggregate;
6569                                         }
6570                                         case 4: /* Flush session */
6571                                         {
6572                                                 lro_append_pkt(sp, lro,
6573                                                         skb, tcp_len);
6574                                                 queue_rx_frame(lro->parent);
6575                                                 clear_lro_session(lro);
6576                                                 sp->mac_control.stats_info->
6577                                                     sw_stat.flush_max_pkts++;
6578                                                 goto aggregate;
6579                                         }
6580                                         case 2: /* Flush both */
6581                                                 lro->parent->data_len =
6582                                                         lro->frags_len;
6583                                                 sp->mac_control.stats_info->
6584                                                      sw_stat.sending_both++;
6585                                                 queue_rx_frame(lro->parent);
6586                                                 clear_lro_session(lro);
6587                                                 goto send_up;
6588                                         case 0: /* sessions exceeded */
6589                                         case -1: /* non-TCP or not
6590                                                   * L2 aggregatable
6591                                                   */
6592                                         case 5: /*
6593                                                  * First pkt in session not
6594                                                  * L3/L4 aggregatable
6595                                                  */
6596                                                 break;
6597                                         default:
6598                                                 DBG_PRINT(ERR_DBG,
6599                                                         "%s: Samadhana!!\n",
6600                                                          __FUNCTION__);
6601                                                 BUG();
6602                                 }
6603                         }
6604                 } else {
6605                         /*
6606                          * Packet with erroneous checksum, let the
6607                          * upper layers deal with it.
6608                          */
6609                         skb->ip_summed = CHECKSUM_NONE;
6610                 }
6611         } else {
6612                 skb->ip_summed = CHECKSUM_NONE;
6613         }
6614
6615         if (!sp->lro) {
6616                 skb->protocol = eth_type_trans(skb, dev);
6617                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6618                         /* Queueing the vlan frame to the upper layer */
6619                         if (napi)
6620                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6621                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6622                         else
6623                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6624                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6625                 } else {
6626                         if (napi)
6627                                 netif_receive_skb(skb);
6628                         else
6629                                 netif_rx(skb);
6630                 }
6631         } else {
6632 send_up:
6633                 queue_rx_frame(skb);
6634         }
6635         dev->last_rx = jiffies;
6636 aggregate:
6637         atomic_dec(&sp->rx_bufs_left[ring_no]);
6638         return SUCCESS;
6639 }
6640
6641 /**
6642  *  s2io_link - stops/starts the Tx queue.
6643  *  @sp : private member of the device structure, which is a pointer to the
6644  *  s2io_nic structure.
6645  *  @link : inidicates whether link is UP/DOWN.
6646  *  Description:
6647  *  This function stops/starts the Tx queue depending on whether the link
6648  *  status of the NIC is is down or up. This is called by the Alarm
6649  *  interrupt handler whenever a link change interrupt comes up.
6650  *  Return value:
6651  *  void.
6652  */
6653
6654 static void s2io_link(struct s2io_nic * sp, int link)
6655 {
6656         struct net_device *dev = (struct net_device *) sp->dev;
6657
6658         if (link != sp->last_link_state) {
6659                 if (link == LINK_DOWN) {
6660                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6661                         netif_carrier_off(dev);
6662                 } else {
6663                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6664                         netif_carrier_on(dev);
6665                 }
6666         }
6667         sp->last_link_state = link;
6668 }
6669
6670 /**
6671  *  get_xena_rev_id - to identify revision ID of xena.
6672  *  @pdev : PCI Dev structure
6673  *  Description:
6674  *  Function to identify the Revision ID of xena.
6675  *  Return value:
6676  *  returns the revision ID of the device.
6677  */
6678
6679 static int get_xena_rev_id(struct pci_dev *pdev)
6680 {
6681         u8 id = 0;
6682         int ret;
6683         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6684         return id;
6685 }
6686
6687 /**
6688  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6689  *  @sp : private member of the device structure, which is a pointer to the
6690  *  s2io_nic structure.
6691  *  Description:
6692  *  This function initializes a few of the PCI and PCI-X configuration registers
6693  *  with recommended values.
6694  *  Return value:
6695  *  void
6696  */
6697
6698 static void s2io_init_pci(struct s2io_nic * sp)
6699 {
6700         u16 pci_cmd = 0, pcix_cmd = 0;
6701
6702         /* Enable Data Parity Error Recovery in PCI-X command register. */
6703         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6704                              &(pcix_cmd));
6705         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6706                               (pcix_cmd | 1));
6707         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6708                              &(pcix_cmd));
6709
6710         /* Set the PErr Response bit in PCI command register. */
6711         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6712         pci_write_config_word(sp->pdev, PCI_COMMAND,
6713                               (pci_cmd | PCI_COMMAND_PARITY));
6714         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6715 }
6716
6717 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6718 {
6719         if ( tx_fifo_num > 8) {
6720                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6721                          "supported\n");
6722                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6723                 tx_fifo_num = 8;
6724         }
6725         if ( rx_ring_num > 8) {
6726                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6727                          "supported\n");
6728                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6729                 rx_ring_num = 8;
6730         }
6731         if (*dev_intr_type != INTA)
6732                 napi = 0;
6733
6734 #ifndef CONFIG_PCI_MSI
6735         if (*dev_intr_type != INTA) {
6736                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6737                           "MSI/MSI-X. Defaulting to INTA\n");
6738                 *dev_intr_type = INTA;
6739         }
6740 #else
6741         if (*dev_intr_type > MSI_X) {
6742                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6743                           "Defaulting to INTA\n");
6744                 *dev_intr_type = INTA;
6745         }
6746 #endif
6747         if ((*dev_intr_type == MSI_X) &&
6748                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6749                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6750                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6751                                         "Defaulting to INTA\n");
6752                 *dev_intr_type = INTA;
6753         }
6754
6755         if (rx_ring_mode > 3) {
6756                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6757                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6758                 rx_ring_mode = 3;
6759         }
6760         return SUCCESS;
6761 }
6762
6763 /**
6764  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6765  * or Traffic class respectively.
6766  * @nic: device peivate variable
6767  * Description: The function configures the receive steering to
6768  * desired receive ring.
6769  * Return Value:  SUCCESS on success and
6770  * '-1' on failure (endian settings incorrect).
6771  */
6772 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6773 {
6774         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6775         register u64 val64 = 0;
6776
6777         if (ds_codepoint > 63)
6778                 return FAILURE;
6779
6780         val64 = RTS_DS_MEM_DATA(ring);
6781         writeq(val64, &bar0->rts_ds_mem_data);
6782
6783         val64 = RTS_DS_MEM_CTRL_WE |
6784                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6785                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6786
6787         writeq(val64, &bar0->rts_ds_mem_ctrl);
6788
6789         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6790                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
6791                                 S2IO_BIT_RESET);
6792 }
6793
6794 /**
6795  *  s2io_init_nic - Initialization of the adapter .
6796  *  @pdev : structure containing the PCI related information of the device.
6797  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6798  *  Description:
6799  *  The function initializes an adapter identified by the pci_dec structure.
6800  *  All OS related initialization including memory and device structure and
6801  *  initlaization of the device private variable is done. Also the swapper
6802  *  control register is initialized to enable read and write into the I/O
6803  *  registers of the device.
6804  *  Return value:
6805  *  returns 0 on success and negative on failure.
6806  */
6807
6808 static int __devinit
6809 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6810 {
6811         struct s2io_nic *sp;
6812         struct net_device *dev;
6813         int i, j, ret;
6814         int dma_flag = FALSE;
6815         u32 mac_up, mac_down;
6816         u64 val64 = 0, tmp64 = 0;
6817         struct XENA_dev_config __iomem *bar0 = NULL;
6818         u16 subid;
6819         struct mac_info *mac_control;
6820         struct config_param *config;
6821         int mode;
6822         u8 dev_intr_type = intr_type;
6823
6824         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6825                 return ret;
6826
6827         if ((ret = pci_enable_device(pdev))) {
6828                 DBG_PRINT(ERR_DBG,
6829                           "s2io_init_nic: pci_enable_device failed\n");
6830                 return ret;
6831         }
6832
6833         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6834                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6835                 dma_flag = TRUE;
6836                 if (pci_set_consistent_dma_mask
6837                     (pdev, DMA_64BIT_MASK)) {
6838                         DBG_PRINT(ERR_DBG,
6839                                   "Unable to obtain 64bit DMA for \
6840                                         consistent allocations\n");
6841                         pci_disable_device(pdev);
6842                         return -ENOMEM;
6843                 }
6844         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6845                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6846         } else {
6847                 pci_disable_device(pdev);
6848                 return -ENOMEM;
6849         }
6850         if (dev_intr_type != MSI_X) {
6851                 if (pci_request_regions(pdev, s2io_driver_name)) {
6852                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6853                         pci_disable_device(pdev);
6854                         return -ENODEV;
6855                 }
6856         }
6857         else {
6858                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6859                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6860                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6861                         pci_disable_device(pdev);
6862                         return -ENODEV;
6863                 }
6864                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6865                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6866                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6867                         release_mem_region(pci_resource_start(pdev, 0),
6868                                    pci_resource_len(pdev, 0));
6869                         pci_disable_device(pdev);
6870                         return -ENODEV;
6871                 }
6872         }
6873
6874         dev = alloc_etherdev(sizeof(struct s2io_nic));
6875         if (dev == NULL) {
6876                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6877                 pci_disable_device(pdev);
6878                 pci_release_regions(pdev);
6879                 return -ENODEV;
6880         }
6881
6882         pci_set_master(pdev);
6883         pci_set_drvdata(pdev, dev);
6884         SET_MODULE_OWNER(dev);
6885         SET_NETDEV_DEV(dev, &pdev->dev);
6886
6887         /*  Private member variable initialized to s2io NIC structure */
6888         sp = dev->priv;
6889         memset(sp, 0, sizeof(struct s2io_nic));
6890         sp->dev = dev;
6891         sp->pdev = pdev;
6892         sp->high_dma_flag = dma_flag;
6893         sp->device_enabled_once = FALSE;
6894         if (rx_ring_mode == 1)
6895                 sp->rxd_mode = RXD_MODE_1;
6896         if (rx_ring_mode == 2)
6897                 sp->rxd_mode = RXD_MODE_3B;
6898         if (rx_ring_mode == 3)
6899                 sp->rxd_mode = RXD_MODE_3A;
6900
6901         sp->intr_type = dev_intr_type;
6902
6903         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6904                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6905                 sp->device_type = XFRAME_II_DEVICE;
6906         else
6907                 sp->device_type = XFRAME_I_DEVICE;
6908
6909         sp->lro = lro;
6910
6911         /* Initialize some PCI/PCI-X fields of the NIC. */
6912         s2io_init_pci(sp);
6913
6914         /*
6915          * Setting the device configuration parameters.
6916          * Most of these parameters can be specified by the user during
6917          * module insertion as they are module loadable parameters. If
6918          * these parameters are not not specified during load time, they
6919          * are initialized with default values.
6920          */
6921         mac_control = &sp->mac_control;
6922         config = &sp->config;
6923
6924         /* Tx side parameters. */
6925         config->tx_fifo_num = tx_fifo_num;
6926         for (i = 0; i < MAX_TX_FIFOS; i++) {
6927                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6928                 config->tx_cfg[i].fifo_priority = i;
6929         }
6930
6931         /* mapping the QoS priority to the configured fifos */
6932         for (i = 0; i < MAX_TX_FIFOS; i++)
6933                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6934
6935         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6936         for (i = 0; i < config->tx_fifo_num; i++) {
6937                 config->tx_cfg[i].f_no_snoop =
6938                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6939                 if (config->tx_cfg[i].fifo_len < 65) {
6940                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6941                         break;
6942                 }
6943         }
6944         /* + 2 because one Txd for skb->data and one Txd for UFO */
6945         config->max_txds = MAX_SKB_FRAGS + 2;
6946
6947         /* Rx side parameters. */
6948         config->rx_ring_num = rx_ring_num;
6949         for (i = 0; i < MAX_RX_RINGS; i++) {
6950                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6951                     (rxd_count[sp->rxd_mode] + 1);
6952                 config->rx_cfg[i].ring_priority = i;
6953         }
6954
6955         for (i = 0; i < rx_ring_num; i++) {
6956                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6957                 config->rx_cfg[i].f_no_snoop =
6958                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6959         }
6960
6961         /*  Setting Mac Control parameters */
6962         mac_control->rmac_pause_time = rmac_pause_time;
6963         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6964         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6965
6966
6967         /* Initialize Ring buffer parameters. */
6968         for (i = 0; i < config->rx_ring_num; i++)
6969                 atomic_set(&sp->rx_bufs_left[i], 0);
6970
6971         /* Initialize the number of ISRs currently running */
6972         atomic_set(&sp->isr_cnt, 0);
6973
6974         /*  initialize the shared memory used by the NIC and the host */
6975         if (init_shared_mem(sp)) {
6976                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6977                           dev->name);
6978                 ret = -ENOMEM;
6979                 goto mem_alloc_failed;
6980         }
6981
6982         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6983                                      pci_resource_len(pdev, 0));
6984         if (!sp->bar0) {
6985                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6986                           dev->name);
6987                 ret = -ENOMEM;
6988                 goto bar0_remap_failed;
6989         }
6990
6991         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6992                                      pci_resource_len(pdev, 2));
6993         if (!sp->bar1) {
6994                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6995                           dev->name);
6996                 ret = -ENOMEM;
6997                 goto bar1_remap_failed;
6998         }
6999
7000         dev->irq = pdev->irq;
7001         dev->base_addr = (unsigned long) sp->bar0;
7002
7003         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7004         for (j = 0; j < MAX_TX_FIFOS; j++) {
7005                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7006                     (sp->bar1 + (j * 0x00020000));
7007         }
7008
7009         /*  Driver entry points */
7010         dev->open = &s2io_open;
7011         dev->stop = &s2io_close;
7012         dev->hard_start_xmit = &s2io_xmit;
7013         dev->get_stats = &s2io_get_stats;
7014         dev->set_multicast_list = &s2io_set_multicast;
7015         dev->do_ioctl = &s2io_ioctl;
7016         dev->change_mtu = &s2io_change_mtu;
7017         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7018         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7019         dev->vlan_rx_register = s2io_vlan_rx_register;
7020         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7021
7022         /*
7023          * will use eth_mac_addr() for  dev->set_mac_address
7024          * mac address will be set every time dev->open() is called
7025          */
7026         dev->poll = s2io_poll;
7027         dev->weight = 32;
7028
7029 #ifdef CONFIG_NET_POLL_CONTROLLER
7030         dev->poll_controller = s2io_netpoll;
7031 #endif
7032
7033         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7034         if (sp->high_dma_flag == TRUE)
7035                 dev->features |= NETIF_F_HIGHDMA;
7036         dev->features |= NETIF_F_TSO;
7037         dev->features |= NETIF_F_TSO6;
7038         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7039                 dev->features |= NETIF_F_UFO;
7040                 dev->features |= NETIF_F_HW_CSUM;
7041         }
7042
7043         dev->tx_timeout = &s2io_tx_watchdog;
7044         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7045         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7046         INIT_WORK(&sp->set_link_task, s2io_set_link);
7047
7048         pci_save_state(sp->pdev);
7049
7050         /* Setting swapper control on the NIC, for proper reset operation */
7051         if (s2io_set_swapper(sp)) {
7052                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7053                           dev->name);
7054                 ret = -EAGAIN;
7055                 goto set_swap_failed;
7056         }
7057
7058         /* Verify if the Herc works on the slot its placed into */
7059         if (sp->device_type & XFRAME_II_DEVICE) {
7060                 mode = s2io_verify_pci_mode(sp);
7061                 if (mode < 0) {
7062                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7063                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7064                         ret = -EBADSLT;
7065                         goto set_swap_failed;
7066                 }
7067         }
7068
7069         /* Not needed for Herc */
7070         if (sp->device_type & XFRAME_I_DEVICE) {
7071                 /*
7072                  * Fix for all "FFs" MAC address problems observed on
7073                  * Alpha platforms
7074                  */
7075                 fix_mac_address(sp);
7076                 s2io_reset(sp);
7077         }
7078
7079         /*
7080          * MAC address initialization.
7081          * For now only one mac address will be read and used.
7082          */
7083         bar0 = sp->bar0;
7084         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7085             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7086         writeq(val64, &bar0->rmac_addr_cmd_mem);
7087         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7088                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7089         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7090         mac_down = (u32) tmp64;
7091         mac_up = (u32) (tmp64 >> 32);
7092
7093         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7094
7095         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7096         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7097         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7098         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7099         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7100         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7101
7102         /*  Set the factory defined MAC address initially   */
7103         dev->addr_len = ETH_ALEN;
7104         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7105
7106         /* reset Nic and bring it to known state */
7107         s2io_reset(sp);
7108
7109         /*
7110          * Initialize the tasklet status and link state flags
7111          * and the card state parameter
7112          */
7113         atomic_set(&(sp->card_state), 0);
7114         sp->tasklet_status = 0;
7115         sp->link_state = 0;
7116
7117         /* Initialize spinlocks */
7118         spin_lock_init(&sp->tx_lock);
7119
7120         if (!napi)
7121                 spin_lock_init(&sp->put_lock);
7122         spin_lock_init(&sp->rx_lock);
7123
7124         /*
7125          * SXE-002: Configure link and activity LED to init state
7126          * on driver load.
7127          */
7128         subid = sp->pdev->subsystem_device;
7129         if ((subid & 0xFF) >= 0x07) {
7130                 val64 = readq(&bar0->gpio_control);
7131                 val64 |= 0x0000800000000000ULL;
7132                 writeq(val64, &bar0->gpio_control);
7133                 val64 = 0x0411040400000000ULL;
7134                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7135                 val64 = readq(&bar0->gpio_control);
7136         }
7137
7138         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7139
7140         if (register_netdev(dev)) {
7141                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7142                 ret = -ENODEV;
7143                 goto register_failed;
7144         }
7145         s2io_vpd_read(sp);
7146         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7147         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7148                   sp->product_name, get_xena_rev_id(sp->pdev));
7149         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7150                   s2io_driver_version);
7151         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7152                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7153                           sp->def_mac_addr[0].mac_addr[0],
7154                           sp->def_mac_addr[0].mac_addr[1],
7155                           sp->def_mac_addr[0].mac_addr[2],
7156                           sp->def_mac_addr[0].mac_addr[3],
7157                           sp->def_mac_addr[0].mac_addr[4],
7158                           sp->def_mac_addr[0].mac_addr[5]);
7159         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7160         if (sp->device_type & XFRAME_II_DEVICE) {
7161                 mode = s2io_print_pci_mode(sp);
7162                 if (mode < 0) {
7163                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7164                         ret = -EBADSLT;
7165                         unregister_netdev(dev);
7166                         goto set_swap_failed;
7167                 }
7168         }
7169         switch(sp->rxd_mode) {
7170                 case RXD_MODE_1:
7171                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7172                                                 dev->name);
7173                     break;
7174                 case RXD_MODE_3B:
7175                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7176                                                 dev->name);
7177                     break;
7178                 case RXD_MODE_3A:
7179                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7180                                                 dev->name);
7181                     break;
7182         }
7183
7184         if (napi)
7185                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7186         switch(sp->intr_type) {
7187                 case INTA:
7188                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7189                     break;
7190                 case MSI:
7191                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7192                     break;
7193                 case MSI_X:
7194                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7195                     break;
7196         }
7197         if (sp->lro)
7198                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7199                           dev->name);
7200         if (ufo)
7201                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7202                                         " enabled\n", dev->name);
7203         /* Initialize device name */
7204         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7205
7206         /* Initialize bimodal Interrupts */
7207         sp->config.bimodal = bimodal;
7208         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7209                 sp->config.bimodal = 0;
7210                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7211                         dev->name);
7212         }
7213
7214         /*
7215          * Make Link state as off at this point, when the Link change
7216          * interrupt comes the state will be automatically changed to
7217          * the right state.
7218          */
7219         netif_carrier_off(dev);
7220
7221         return 0;
7222
7223       register_failed:
7224       set_swap_failed:
7225         iounmap(sp->bar1);
7226       bar1_remap_failed:
7227         iounmap(sp->bar0);
7228       bar0_remap_failed:
7229       mem_alloc_failed:
7230         free_shared_mem(sp);
7231         pci_disable_device(pdev);
7232         if (dev_intr_type != MSI_X)
7233                 pci_release_regions(pdev);
7234         else {
7235                 release_mem_region(pci_resource_start(pdev, 0),
7236                         pci_resource_len(pdev, 0));
7237                 release_mem_region(pci_resource_start(pdev, 2),
7238                         pci_resource_len(pdev, 2));
7239         }
7240         pci_set_drvdata(pdev, NULL);
7241         free_netdev(dev);
7242
7243         return ret;
7244 }
7245
7246 /**
7247  * s2io_rem_nic - Free the PCI device
7248  * @pdev: structure containing the PCI related information of the device.
7249  * Description: This function is called by the Pci subsystem to release a
7250  * PCI device and free up all resource held up by the device. This could
7251  * be in response to a Hot plug event or when the driver is to be removed
7252  * from memory.
7253  */
7254
7255 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7256 {
7257         struct net_device *dev =
7258             (struct net_device *) pci_get_drvdata(pdev);
7259         struct s2io_nic *sp;
7260
7261         if (dev == NULL) {
7262                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7263                 return;
7264         }
7265
7266         flush_scheduled_work();
7267
7268         sp = dev->priv;
7269         unregister_netdev(dev);
7270
7271         free_shared_mem(sp);
7272         iounmap(sp->bar0);
7273         iounmap(sp->bar1);
7274         if (sp->intr_type != MSI_X)
7275                 pci_release_regions(pdev);
7276         else {
7277                 release_mem_region(pci_resource_start(pdev, 0),
7278                         pci_resource_len(pdev, 0));
7279                 release_mem_region(pci_resource_start(pdev, 2),
7280                         pci_resource_len(pdev, 2));
7281         }
7282         pci_set_drvdata(pdev, NULL);
7283         free_netdev(dev);
7284         pci_disable_device(pdev);
7285 }
7286
7287 /**
7288  * s2io_starter - Entry point for the driver
7289  * Description: This function is the entry point for the driver. It verifies
7290  * the module loadable parameters and initializes PCI configuration space.
7291  */
7292
7293 int __init s2io_starter(void)
7294 {
7295         return pci_register_driver(&s2io_driver);
7296 }
7297
7298 /**
7299  * s2io_closer - Cleanup routine for the driver
7300  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7301  */
7302
7303 static __exit void s2io_closer(void)
7304 {
7305         pci_unregister_driver(&s2io_driver);
7306         DBG_PRINT(INIT_DBG, "cleanup done\n");
7307 }
7308
7309 module_init(s2io_starter);
7310 module_exit(s2io_closer);
7311
7312 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7313                 struct tcphdr **tcp, struct RxD_t *rxdp)
7314 {
7315         int ip_off;
7316         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7317
7318         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7319                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7320                           __FUNCTION__);
7321                 return -1;
7322         }
7323
7324         /* TODO:
7325          * By default the VLAN field in the MAC is stripped by the card, if this
7326          * feature is turned off in rx_pa_cfg register, then the ip_off field
7327          * has to be shifted by a further 2 bytes
7328          */
7329         switch (l2_type) {
7330                 case 0: /* DIX type */
7331                 case 4: /* DIX type with VLAN */
7332                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7333                         break;
7334                 /* LLC, SNAP etc are considered non-mergeable */
7335                 default:
7336                         return -1;
7337         }
7338
7339         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7340         ip_len = (u8)((*ip)->ihl);
7341         ip_len <<= 2;
7342         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7343
7344         return 0;
7345 }
7346
7347 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7348                                   struct tcphdr *tcp)
7349 {
7350         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7351         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7352            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7353                 return -1;
7354         return 0;
7355 }
7356
7357 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7358 {
7359         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7360 }
7361
7362 static void initiate_new_session(struct lro *lro, u8 *l2h,
7363                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7364 {
7365         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7366         lro->l2h = l2h;
7367         lro->iph = ip;
7368         lro->tcph = tcp;
7369         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7370         lro->tcp_ack = ntohl(tcp->ack_seq);
7371         lro->sg_num = 1;
7372         lro->total_len = ntohs(ip->tot_len);
7373         lro->frags_len = 0;
7374         /*
7375          * check if we saw TCP timestamp. Other consistency checks have
7376          * already been done.
7377          */
7378         if (tcp->doff == 8) {
7379                 u32 *ptr;
7380                 ptr = (u32 *)(tcp+1);
7381                 lro->saw_ts = 1;
7382                 lro->cur_tsval = *(ptr+1);
7383                 lro->cur_tsecr = *(ptr+2);
7384         }
7385         lro->in_use = 1;
7386 }
7387
7388 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7389 {
7390         struct iphdr *ip = lro->iph;
7391         struct tcphdr *tcp = lro->tcph;
7392         __sum16 nchk;
7393         struct stat_block *statinfo = sp->mac_control.stats_info;
7394         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7395
7396         /* Update L3 header */
7397         ip->tot_len = htons(lro->total_len);
7398         ip->check = 0;
7399         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7400         ip->check = nchk;
7401
7402         /* Update L4 header */
7403         tcp->ack_seq = lro->tcp_ack;
7404         tcp->window = lro->window;
7405
7406         /* Update tsecr field if this session has timestamps enabled */
7407         if (lro->saw_ts) {
7408                 u32 *ptr = (u32 *)(tcp + 1);
7409                 *(ptr+2) = lro->cur_tsecr;
7410         }
7411
7412         /* Update counters required for calculation of
7413          * average no. of packets aggregated.
7414          */
7415         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7416         statinfo->sw_stat.num_aggregations++;
7417 }
7418
7419 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7420                 struct tcphdr *tcp, u32 l4_pyld)
7421 {
7422         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7423         lro->total_len += l4_pyld;
7424         lro->frags_len += l4_pyld;
7425         lro->tcp_next_seq += l4_pyld;
7426         lro->sg_num++;
7427
7428         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7429         lro->tcp_ack = tcp->ack_seq;
7430         lro->window = tcp->window;
7431
7432         if (lro->saw_ts) {
7433                 u32 *ptr;
7434                 /* Update tsecr and tsval from this packet */
7435                 ptr = (u32 *) (tcp + 1);
7436                 lro->cur_tsval = *(ptr + 1);
7437                 lro->cur_tsecr = *(ptr + 2);
7438         }
7439 }
7440
7441 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7442                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7443 {
7444         u8 *ptr;
7445
7446         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7447
7448         if (!tcp_pyld_len) {
7449                 /* Runt frame or a pure ack */
7450                 return -1;
7451         }
7452
7453         if (ip->ihl != 5) /* IP has options */
7454                 return -1;
7455
7456         /* If we see CE codepoint in IP header, packet is not mergeable */
7457         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7458                 return -1;
7459
7460         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7461         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7462                                     tcp->ece || tcp->cwr || !tcp->ack) {
7463                 /*
7464                  * Currently recognize only the ack control word and
7465                  * any other control field being set would result in
7466                  * flushing the LRO session
7467                  */
7468                 return -1;
7469         }
7470
7471         /*
7472          * Allow only one TCP timestamp option. Don't aggregate if
7473          * any other options are detected.
7474          */
7475         if (tcp->doff != 5 && tcp->doff != 8)
7476                 return -1;
7477
7478         if (tcp->doff == 8) {
7479                 ptr = (u8 *)(tcp + 1);
7480                 while (*ptr == TCPOPT_NOP)
7481                         ptr++;
7482                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7483                         return -1;
7484
7485                 /* Ensure timestamp value increases monotonically */
7486                 if (l_lro)
7487                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7488                                 return -1;
7489
7490                 /* timestamp echo reply should be non-zero */
7491                 if (*((u32 *)(ptr+6)) == 0)
7492                         return -1;
7493         }
7494
7495         return 0;
7496 }
7497
7498 static int
7499 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7500                       struct RxD_t *rxdp, struct s2io_nic *sp)
7501 {
7502         struct iphdr *ip;
7503         struct tcphdr *tcph;
7504         int ret = 0, i;
7505
7506         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7507                                          rxdp))) {
7508                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7509                           ip->saddr, ip->daddr);
7510         } else {
7511                 return ret;
7512         }
7513
7514         tcph = (struct tcphdr *)*tcp;
7515         *tcp_len = get_l4_pyld_length(ip, tcph);
7516         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7517                 struct lro *l_lro = &sp->lro0_n[i];
7518                 if (l_lro->in_use) {
7519                         if (check_for_socket_match(l_lro, ip, tcph))
7520                                 continue;
7521                         /* Sock pair matched */
7522                         *lro = l_lro;
7523
7524                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7525                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7526                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7527                                           (*lro)->tcp_next_seq,
7528                                           ntohl(tcph->seq));
7529
7530                                 sp->mac_control.stats_info->
7531                                    sw_stat.outof_sequence_pkts++;
7532                                 ret = 2;
7533                                 break;
7534                         }
7535
7536                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7537                                 ret = 1; /* Aggregate */
7538                         else
7539                                 ret = 2; /* Flush both */
7540                         break;
7541                 }
7542         }
7543
7544         if (ret == 0) {
7545                 /* Before searching for available LRO objects,
7546                  * check if the pkt is L3/L4 aggregatable. If not
7547                  * don't create new LRO session. Just send this
7548                  * packet up.
7549                  */
7550                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7551                         return 5;
7552                 }
7553
7554                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7555                         struct lro *l_lro = &sp->lro0_n[i];
7556                         if (!(l_lro->in_use)) {
7557                                 *lro = l_lro;
7558                                 ret = 3; /* Begin anew */
7559                                 break;
7560                         }
7561                 }
7562         }
7563
7564         if (ret == 0) { /* sessions exceeded */
7565                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7566                           __FUNCTION__);
7567                 *lro = NULL;
7568                 return ret;
7569         }
7570
7571         switch (ret) {
7572                 case 3:
7573                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7574                         break;
7575                 case 2:
7576                         update_L3L4_header(sp, *lro);
7577                         break;
7578                 case 1:
7579                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7580                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7581                                 update_L3L4_header(sp, *lro);
7582                                 ret = 4; /* Flush the LRO */
7583                         }
7584                         break;
7585                 default:
7586                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7587                                 __FUNCTION__);
7588                         break;
7589         }
7590
7591         return ret;
7592 }
7593
7594 static void clear_lro_session(struct lro *lro)
7595 {
7596         static u16 lro_struct_size = sizeof(struct lro);
7597
7598         memset(lro, 0, lro_struct_size);
7599 }
7600
7601 static void queue_rx_frame(struct sk_buff *skb)
7602 {
7603         struct net_device *dev = skb->dev;
7604
7605         skb->protocol = eth_type_trans(skb, dev);
7606         if (napi)
7607                 netif_receive_skb(skb);
7608         else
7609                 netif_rx(skb);
7610 }
7611
7612 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7613                            struct sk_buff *skb,
7614                            u32 tcp_len)
7615 {
7616         struct sk_buff *first = lro->parent;
7617
7618         first->len += tcp_len;
7619         first->data_len = lro->frags_len;
7620         skb_pull(skb, (skb->len - tcp_len));
7621         if (skb_shinfo(first)->frag_list)
7622                 lro->last_frag->next = skb;
7623         else
7624                 skb_shinfo(first)->frag_list = skb;
7625         first->truesize += skb->truesize;
7626         lro->last_frag = skb;
7627         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7628         return;
7629 }