sfc: Handle serious errors in exactly one interrupt handler
[firefly-linux-kernel-4.4.55.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
30
31 /* Hardware control for SFC4000 (aka Falcon). */
32
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35  * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39 /* Default flash device: Atmel AT25F1024
40  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
46
47 /**************************************************************************
48  *
49  * I2C bus - this is a bit-bashing interface using GPIO pins
50  * Note that it uses the output enables to tristate the outputs
51  * SDA is the data pin and SCL is the clock
52  *
53  **************************************************************************
54  */
55 static void falcon_setsda(void *data, int state)
56 {
57         struct efx_nic *efx = (struct efx_nic *)data;
58         efx_oword_t reg;
59
60         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
63 }
64
65 static void falcon_setscl(void *data, int state)
66 {
67         struct efx_nic *efx = (struct efx_nic *)data;
68         efx_oword_t reg;
69
70         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
73 }
74
75 static int falcon_getsda(void *data)
76 {
77         struct efx_nic *efx = (struct efx_nic *)data;
78         efx_oword_t reg;
79
80         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
82 }
83
84 static int falcon_getscl(void *data)
85 {
86         struct efx_nic *efx = (struct efx_nic *)data;
87         efx_oword_t reg;
88
89         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
91 }
92
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94         .setsda         = falcon_setsda,
95         .setscl         = falcon_setscl,
96         .getsda         = falcon_getsda,
97         .getscl         = falcon_getscl,
98         .udelay         = 5,
99         /* Wait up to 50 ms for slave to let us pull SCL high */
100         .timeout        = DIV_ROUND_UP(HZ, 20),
101 };
102
103 static void falcon_push_irq_moderation(struct efx_channel *channel)
104 {
105         efx_dword_t timer_cmd;
106         struct efx_nic *efx = channel->efx;
107
108         /* Set timer register */
109         if (channel->irq_moderation) {
110                 EFX_POPULATE_DWORD_2(timer_cmd,
111                                      FRF_AB_TC_TIMER_MODE,
112                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
113                                      FRF_AB_TC_TIMER_VAL,
114                                      channel->irq_moderation - 1);
115         } else {
116                 EFX_POPULATE_DWORD_2(timer_cmd,
117                                      FRF_AB_TC_TIMER_MODE,
118                                      FFE_BB_TIMER_MODE_DIS,
119                                      FRF_AB_TC_TIMER_VAL, 0);
120         }
121         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123                                channel->channel);
124 }
125
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
127
128 static void falcon_prepare_flush(struct efx_nic *efx)
129 {
130         falcon_deconfigure_mac_wrapper(efx);
131
132         /* Wait for the tx and rx fifo's to get to the next packet boundary
133          * (~1ms without back-pressure), then to drain the remainder of the
134          * fifo's at data path speeds (negligible), with a healthy margin. */
135         msleep(10);
136 }
137
138 /* Acknowledge a legacy interrupt from Falcon
139  *
140  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
141  *
142  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143  * BIU. Interrupt acknowledge is read sensitive so must write instead
144  * (then read to ensure the BIU collector is flushed)
145  *
146  * NB most hardware supports MSI interrupts
147  */
148 inline void falcon_irq_ack_a1(struct efx_nic *efx)
149 {
150         efx_dword_t reg;
151
152         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
155 }
156
157
158 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
159 {
160         struct efx_nic *efx = dev_id;
161         efx_oword_t *int_ker = efx->irq_status.addr;
162         struct efx_channel *channel;
163         int syserr;
164         int queues;
165
166         /* Check to see if this is our interrupt.  If it isn't, we
167          * exit without having touched the hardware.
168          */
169         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
171                           raw_smp_processor_id());
172                 return IRQ_NONE;
173         }
174         efx->last_irq_cpu = raw_smp_processor_id();
175         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
176                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
177
178         /* Determine interrupting queues, clear interrupt status
179          * register and acknowledge the device interrupt.
180          */
181         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
182         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
183
184         /* Check to see if we have a serious error condition */
185         if (queues & (1U << efx->fatal_irq_level)) {
186                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
187                 if (unlikely(syserr))
188                         return efx_nic_fatal_interrupt(efx);
189         }
190
191         EFX_ZERO_OWORD(*int_ker);
192         wmb(); /* Ensure the vector is cleared before interrupt ack */
193         falcon_irq_ack_a1(efx);
194
195         /* Schedule processing of any interrupting queues */
196         channel = &efx->channel[0];
197         while (queues) {
198                 if (queues & 0x01)
199                         efx_schedule_channel(channel);
200                 channel++;
201                 queues >>= 1;
202         }
203
204         return IRQ_HANDLED;
205 }
206 /**************************************************************************
207  *
208  * EEPROM/flash
209  *
210  **************************************************************************
211  */
212
213 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
214
215 static int falcon_spi_poll(struct efx_nic *efx)
216 {
217         efx_oword_t reg;
218         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
219         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
220 }
221
222 /* Wait for SPI command completion */
223 static int falcon_spi_wait(struct efx_nic *efx)
224 {
225         /* Most commands will finish quickly, so we start polling at
226          * very short intervals.  Sometimes the command may have to
227          * wait for VPD or expansion ROM access outside of our
228          * control, so we allow up to 100 ms. */
229         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
230         int i;
231
232         for (i = 0; i < 10; i++) {
233                 if (!falcon_spi_poll(efx))
234                         return 0;
235                 udelay(10);
236         }
237
238         for (;;) {
239                 if (!falcon_spi_poll(efx))
240                         return 0;
241                 if (time_after_eq(jiffies, timeout)) {
242                         EFX_ERR(efx, "timed out waiting for SPI\n");
243                         return -ETIMEDOUT;
244                 }
245                 schedule_timeout_uninterruptible(1);
246         }
247 }
248
249 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
250                    unsigned int command, int address,
251                    const void *in, void *out, size_t len)
252 {
253         bool addressed = (address >= 0);
254         bool reading = (out != NULL);
255         efx_oword_t reg;
256         int rc;
257
258         /* Input validation */
259         if (len > FALCON_SPI_MAX_LEN)
260                 return -EINVAL;
261         BUG_ON(!mutex_is_locked(&efx->spi_lock));
262
263         /* Check that previous command is not still running */
264         rc = falcon_spi_poll(efx);
265         if (rc)
266                 return rc;
267
268         /* Program address register, if we have an address */
269         if (addressed) {
270                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
271                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
272         }
273
274         /* Program data register, if we have data */
275         if (in != NULL) {
276                 memcpy(&reg, in, len);
277                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
278         }
279
280         /* Issue read/write command */
281         EFX_POPULATE_OWORD_7(reg,
282                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
283                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
284                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
285                              FRF_AB_EE_SPI_HCMD_READ, reading,
286                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
287                              FRF_AB_EE_SPI_HCMD_ADBCNT,
288                              (addressed ? spi->addr_len : 0),
289                              FRF_AB_EE_SPI_HCMD_ENC, command);
290         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
291
292         /* Wait for read/write to complete */
293         rc = falcon_spi_wait(efx);
294         if (rc)
295                 return rc;
296
297         /* Read data */
298         if (out != NULL) {
299                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
300                 memcpy(out, &reg, len);
301         }
302
303         return 0;
304 }
305
306 static size_t
307 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
308 {
309         return min(FALCON_SPI_MAX_LEN,
310                    (spi->block_size - (start & (spi->block_size - 1))));
311 }
312
313 static inline u8
314 efx_spi_munge_command(const struct efx_spi_device *spi,
315                       const u8 command, const unsigned int address)
316 {
317         return command | (((address >> 8) & spi->munge_address) << 3);
318 }
319
320 /* Wait up to 10 ms for buffered write completion */
321 int
322 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
323 {
324         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
325         u8 status;
326         int rc;
327
328         for (;;) {
329                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
330                                     &status, sizeof(status));
331                 if (rc)
332                         return rc;
333                 if (!(status & SPI_STATUS_NRDY))
334                         return 0;
335                 if (time_after_eq(jiffies, timeout)) {
336                         EFX_ERR(efx, "SPI write timeout on device %d"
337                                 " last status=0x%02x\n",
338                                 spi->device_id, status);
339                         return -ETIMEDOUT;
340                 }
341                 schedule_timeout_uninterruptible(1);
342         }
343 }
344
345 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
346                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
347 {
348         size_t block_len, pos = 0;
349         unsigned int command;
350         int rc = 0;
351
352         while (pos < len) {
353                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
354
355                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
356                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
357                                     buffer + pos, block_len);
358                 if (rc)
359                         break;
360                 pos += block_len;
361
362                 /* Avoid locking up the system */
363                 cond_resched();
364                 if (signal_pending(current)) {
365                         rc = -EINTR;
366                         break;
367                 }
368         }
369
370         if (retlen)
371                 *retlen = pos;
372         return rc;
373 }
374
375 int
376 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
377                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
378 {
379         u8 verify_buffer[FALCON_SPI_MAX_LEN];
380         size_t block_len, pos = 0;
381         unsigned int command;
382         int rc = 0;
383
384         while (pos < len) {
385                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
386                 if (rc)
387                         break;
388
389                 block_len = min(len - pos,
390                                 falcon_spi_write_limit(spi, start + pos));
391                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
392                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
393                                     buffer + pos, NULL, block_len);
394                 if (rc)
395                         break;
396
397                 rc = falcon_spi_wait_write(efx, spi);
398                 if (rc)
399                         break;
400
401                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
402                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
403                                     NULL, verify_buffer, block_len);
404                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
405                         rc = -EIO;
406                         break;
407                 }
408
409                 pos += block_len;
410
411                 /* Avoid locking up the system */
412                 cond_resched();
413                 if (signal_pending(current)) {
414                         rc = -EINTR;
415                         break;
416                 }
417         }
418
419         if (retlen)
420                 *retlen = pos;
421         return rc;
422 }
423
424 /**************************************************************************
425  *
426  * MAC wrapper
427  *
428  **************************************************************************
429  */
430
431 static void falcon_push_multicast_hash(struct efx_nic *efx)
432 {
433         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
434
435         WARN_ON(!mutex_is_locked(&efx->mac_lock));
436
437         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
438         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
439 }
440
441 static void falcon_reset_macs(struct efx_nic *efx)
442 {
443         struct falcon_nic_data *nic_data = efx->nic_data;
444         efx_oword_t reg, mac_ctrl;
445         int count;
446
447         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
448                 /* It's not safe to use GLB_CTL_REG to reset the
449                  * macs, so instead use the internal MAC resets
450                  */
451                 if (!EFX_IS10G(efx)) {
452                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
453                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
454                         udelay(1000);
455
456                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
457                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
458                         udelay(1000);
459                         return;
460                 } else {
461                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
462                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
463
464                         for (count = 0; count < 10000; count++) {
465                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
466                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
467                                     0)
468                                         return;
469                                 udelay(10);
470                         }
471
472                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
473                 }
474         }
475
476         /* Mac stats will fail whist the TX fifo is draining */
477         WARN_ON(nic_data->stats_disable_count == 0);
478
479         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
480         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
481         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
482
483         efx_reado(efx, &reg, FR_AB_GLB_CTL);
484         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
485         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
486         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
487         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
488
489         count = 0;
490         while (1) {
491                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
492                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
493                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
494                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
495                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
496                                 count);
497                         break;
498                 }
499                 if (count > 20) {
500                         EFX_ERR(efx, "MAC reset failed\n");
501                         break;
502                 }
503                 count++;
504                 udelay(10);
505         }
506
507         /* Ensure the correct MAC is selected before statistics
508          * are re-enabled by the caller */
509         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
510 }
511
512 void falcon_drain_tx_fifo(struct efx_nic *efx)
513 {
514         efx_oword_t reg;
515
516         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
517             (efx->loopback_mode != LOOPBACK_NONE))
518                 return;
519
520         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
521         /* There is no point in draining more than once */
522         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
523                 return;
524
525         falcon_reset_macs(efx);
526 }
527
528 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
529 {
530         efx_oword_t reg;
531
532         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
533                 return;
534
535         /* Isolate the MAC -> RX */
536         efx_reado(efx, &reg, FR_AZ_RX_CFG);
537         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
538         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
539
540         /* Isolate TX -> MAC */
541         falcon_drain_tx_fifo(efx);
542 }
543
544 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
545 {
546         struct efx_link_state *link_state = &efx->link_state;
547         efx_oword_t reg;
548         int link_speed;
549
550         switch (link_state->speed) {
551         case 10000: link_speed = 3; break;
552         case 1000:  link_speed = 2; break;
553         case 100:   link_speed = 1; break;
554         default:    link_speed = 0; break;
555         }
556         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
557          * as advertised.  Disable to ensure packets are not
558          * indefinitely held and TX queue can be flushed at any point
559          * while the link is down. */
560         EFX_POPULATE_OWORD_5(reg,
561                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
562                              FRF_AB_MAC_BCAD_ACPT, 1,
563                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
564                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
565                              FRF_AB_MAC_SPEED, link_speed);
566         /* On B0, MAC backpressure can be disabled and packets get
567          * discarded. */
568         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
569                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
570                                     !link_state->up);
571         }
572
573         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
574
575         /* Restore the multicast hash registers. */
576         falcon_push_multicast_hash(efx);
577
578         efx_reado(efx, &reg, FR_AZ_RX_CFG);
579         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
580          * initialisation but it may read back as 0) */
581         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
582         /* Unisolate the MAC -> RX */
583         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
584                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
585         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
586 }
587
588 static void falcon_stats_request(struct efx_nic *efx)
589 {
590         struct falcon_nic_data *nic_data = efx->nic_data;
591         efx_oword_t reg;
592
593         WARN_ON(nic_data->stats_pending);
594         WARN_ON(nic_data->stats_disable_count);
595
596         if (nic_data->stats_dma_done == NULL)
597                 return; /* no mac selected */
598
599         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
600         nic_data->stats_pending = true;
601         wmb(); /* ensure done flag is clear */
602
603         /* Initiate DMA transfer of stats */
604         EFX_POPULATE_OWORD_2(reg,
605                              FRF_AB_MAC_STAT_DMA_CMD, 1,
606                              FRF_AB_MAC_STAT_DMA_ADR,
607                              efx->stats_buffer.dma_addr);
608         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
609
610         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
611 }
612
613 static void falcon_stats_complete(struct efx_nic *efx)
614 {
615         struct falcon_nic_data *nic_data = efx->nic_data;
616
617         if (!nic_data->stats_pending)
618                 return;
619
620         nic_data->stats_pending = 0;
621         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
622                 rmb(); /* read the done flag before the stats */
623                 efx->mac_op->update_stats(efx);
624         } else {
625                 EFX_ERR(efx, "timed out waiting for statistics\n");
626         }
627 }
628
629 static void falcon_stats_timer_func(unsigned long context)
630 {
631         struct efx_nic *efx = (struct efx_nic *)context;
632         struct falcon_nic_data *nic_data = efx->nic_data;
633
634         spin_lock(&efx->stats_lock);
635
636         falcon_stats_complete(efx);
637         if (nic_data->stats_disable_count == 0)
638                 falcon_stats_request(efx);
639
640         spin_unlock(&efx->stats_lock);
641 }
642
643 static void falcon_switch_mac(struct efx_nic *efx);
644
645 static bool falcon_loopback_link_poll(struct efx_nic *efx)
646 {
647         struct efx_link_state old_state = efx->link_state;
648
649         WARN_ON(!mutex_is_locked(&efx->mac_lock));
650         WARN_ON(!LOOPBACK_INTERNAL(efx));
651
652         efx->link_state.fd = true;
653         efx->link_state.fc = efx->wanted_fc;
654         efx->link_state.up = true;
655
656         if (efx->loopback_mode == LOOPBACK_GMAC)
657                 efx->link_state.speed = 1000;
658         else
659                 efx->link_state.speed = 10000;
660
661         return !efx_link_state_equal(&efx->link_state, &old_state);
662 }
663
664 static int falcon_reconfigure_port(struct efx_nic *efx)
665 {
666         int rc;
667
668         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
669
670         /* Poll the PHY link state *before* reconfiguring it. This means we
671          * will pick up the correct speed (in loopback) to select the correct
672          * MAC.
673          */
674         if (LOOPBACK_INTERNAL(efx))
675                 falcon_loopback_link_poll(efx);
676         else
677                 efx->phy_op->poll(efx);
678
679         falcon_stop_nic_stats(efx);
680         falcon_deconfigure_mac_wrapper(efx);
681
682         falcon_switch_mac(efx);
683
684         efx->phy_op->reconfigure(efx);
685         rc = efx->mac_op->reconfigure(efx);
686         BUG_ON(rc);
687
688         falcon_start_nic_stats(efx);
689
690         /* Synchronise efx->link_state with the kernel */
691         efx_link_status_changed(efx);
692
693         return 0;
694 }
695
696 /**************************************************************************
697  *
698  * PHY access via GMII
699  *
700  **************************************************************************
701  */
702
703 /* Wait for GMII access to complete */
704 static int falcon_gmii_wait(struct efx_nic *efx)
705 {
706         efx_oword_t md_stat;
707         int count;
708
709         /* wait upto 50ms - taken max from datasheet */
710         for (count = 0; count < 5000; count++) {
711                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
712                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
713                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
714                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
715                                 EFX_ERR(efx, "error from GMII access "
716                                         EFX_OWORD_FMT"\n",
717                                         EFX_OWORD_VAL(md_stat));
718                                 return -EIO;
719                         }
720                         return 0;
721                 }
722                 udelay(10);
723         }
724         EFX_ERR(efx, "timed out waiting for GMII\n");
725         return -ETIMEDOUT;
726 }
727
728 /* Write an MDIO register of a PHY connected to Falcon. */
729 static int falcon_mdio_write(struct net_device *net_dev,
730                              int prtad, int devad, u16 addr, u16 value)
731 {
732         struct efx_nic *efx = netdev_priv(net_dev);
733         efx_oword_t reg;
734         int rc;
735
736         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
737                     prtad, devad, addr, value);
738
739         mutex_lock(&efx->mdio_lock);
740
741         /* Check MDIO not currently being accessed */
742         rc = falcon_gmii_wait(efx);
743         if (rc)
744                 goto out;
745
746         /* Write the address/ID register */
747         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
748         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
749
750         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
751                              FRF_AB_MD_DEV_ADR, devad);
752         efx_writeo(efx, &reg, FR_AB_MD_ID);
753
754         /* Write data */
755         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
756         efx_writeo(efx, &reg, FR_AB_MD_TXD);
757
758         EFX_POPULATE_OWORD_2(reg,
759                              FRF_AB_MD_WRC, 1,
760                              FRF_AB_MD_GC, 0);
761         efx_writeo(efx, &reg, FR_AB_MD_CS);
762
763         /* Wait for data to be written */
764         rc = falcon_gmii_wait(efx);
765         if (rc) {
766                 /* Abort the write operation */
767                 EFX_POPULATE_OWORD_2(reg,
768                                      FRF_AB_MD_WRC, 0,
769                                      FRF_AB_MD_GC, 1);
770                 efx_writeo(efx, &reg, FR_AB_MD_CS);
771                 udelay(10);
772         }
773
774 out:
775         mutex_unlock(&efx->mdio_lock);
776         return rc;
777 }
778
779 /* Read an MDIO register of a PHY connected to Falcon. */
780 static int falcon_mdio_read(struct net_device *net_dev,
781                             int prtad, int devad, u16 addr)
782 {
783         struct efx_nic *efx = netdev_priv(net_dev);
784         efx_oword_t reg;
785         int rc;
786
787         mutex_lock(&efx->mdio_lock);
788
789         /* Check MDIO not currently being accessed */
790         rc = falcon_gmii_wait(efx);
791         if (rc)
792                 goto out;
793
794         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
795         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
796
797         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
798                              FRF_AB_MD_DEV_ADR, devad);
799         efx_writeo(efx, &reg, FR_AB_MD_ID);
800
801         /* Request data to be read */
802         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
803         efx_writeo(efx, &reg, FR_AB_MD_CS);
804
805         /* Wait for data to become available */
806         rc = falcon_gmii_wait(efx);
807         if (rc == 0) {
808                 efx_reado(efx, &reg, FR_AB_MD_RXD);
809                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
810                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
811                             prtad, devad, addr, rc);
812         } else {
813                 /* Abort the read operation */
814                 EFX_POPULATE_OWORD_2(reg,
815                                      FRF_AB_MD_RIC, 0,
816                                      FRF_AB_MD_GC, 1);
817                 efx_writeo(efx, &reg, FR_AB_MD_CS);
818
819                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
820                         prtad, devad, addr, rc);
821         }
822
823 out:
824         mutex_unlock(&efx->mdio_lock);
825         return rc;
826 }
827
828 static void falcon_clock_mac(struct efx_nic *efx)
829 {
830         unsigned strap_val;
831         efx_oword_t nic_stat;
832
833         /* Configure the NIC generated MAC clock correctly */
834         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
835         strap_val = EFX_IS10G(efx) ? 5 : 3;
836         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
837                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
838                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
839                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
840         } else {
841                 /* Falcon A1 does not support 1G/10G speed switching
842                  * and must not be used with a PHY that does. */
843                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
844                        strap_val);
845         }
846 }
847
848 static void falcon_switch_mac(struct efx_nic *efx)
849 {
850         struct efx_mac_operations *old_mac_op = efx->mac_op;
851         struct falcon_nic_data *nic_data = efx->nic_data;
852         unsigned int stats_done_offset;
853
854         WARN_ON(!mutex_is_locked(&efx->mac_lock));
855         WARN_ON(nic_data->stats_disable_count == 0);
856
857         efx->mac_op = (EFX_IS10G(efx) ?
858                        &falcon_xmac_operations : &falcon_gmac_operations);
859
860         if (EFX_IS10G(efx))
861                 stats_done_offset = XgDmaDone_offset;
862         else
863                 stats_done_offset = GDmaDone_offset;
864         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
865
866         if (old_mac_op == efx->mac_op)
867                 return;
868
869         falcon_clock_mac(efx);
870
871         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
872         /* Not all macs support a mac-level link state */
873         efx->xmac_poll_required = false;
874         falcon_reset_macs(efx);
875 }
876
877 /* This call is responsible for hooking in the MAC and PHY operations */
878 static int falcon_probe_port(struct efx_nic *efx)
879 {
880         int rc;
881
882         switch (efx->phy_type) {
883         case PHY_TYPE_SFX7101:
884                 efx->phy_op = &falcon_sfx7101_phy_ops;
885                 break;
886         case PHY_TYPE_SFT9001A:
887         case PHY_TYPE_SFT9001B:
888                 efx->phy_op = &falcon_sft9001_phy_ops;
889                 break;
890         case PHY_TYPE_QT2022C2:
891         case PHY_TYPE_QT2025C:
892                 efx->phy_op = &falcon_qt202x_phy_ops;
893                 break;
894         default:
895                 EFX_ERR(efx, "Unknown PHY type %d\n",
896                         efx->phy_type);
897                 return -ENODEV;
898         }
899
900         /* Fill out MDIO structure and loopback modes */
901         efx->mdio.mdio_read = falcon_mdio_read;
902         efx->mdio.mdio_write = falcon_mdio_write;
903         rc = efx->phy_op->probe(efx);
904         if (rc != 0)
905                 return rc;
906
907         /* Initial assumption */
908         efx->link_state.speed = 10000;
909         efx->link_state.fd = true;
910
911         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
912         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
913                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
914         else
915                 efx->wanted_fc = EFX_FC_RX;
916         if (efx->mdio.mmds & MDIO_DEVS_AN)
917                 efx->wanted_fc |= EFX_FC_AUTO;
918
919         /* Allocate buffer for stats */
920         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
921                                   FALCON_MAC_STATS_SIZE);
922         if (rc)
923                 return rc;
924         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
925                 (u64)efx->stats_buffer.dma_addr,
926                 efx->stats_buffer.addr,
927                 (u64)virt_to_phys(efx->stats_buffer.addr));
928
929         return 0;
930 }
931
932 static void falcon_remove_port(struct efx_nic *efx)
933 {
934         efx->phy_op->remove(efx);
935         efx_nic_free_buffer(efx, &efx->stats_buffer);
936 }
937
938 /**************************************************************************
939  *
940  * Falcon test code
941  *
942  **************************************************************************/
943
944 static int
945 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
946 {
947         struct falcon_nvconfig *nvconfig;
948         struct efx_spi_device *spi;
949         void *region;
950         int rc, magic_num, struct_ver;
951         __le16 *word, *limit;
952         u32 csum;
953
954         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
955         if (!spi)
956                 return -EINVAL;
957
958         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
959         if (!region)
960                 return -ENOMEM;
961         nvconfig = region + FALCON_NVCONFIG_OFFSET;
962
963         mutex_lock(&efx->spi_lock);
964         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
965         mutex_unlock(&efx->spi_lock);
966         if (rc) {
967                 EFX_ERR(efx, "Failed to read %s\n",
968                         efx->spi_flash ? "flash" : "EEPROM");
969                 rc = -EIO;
970                 goto out;
971         }
972
973         magic_num = le16_to_cpu(nvconfig->board_magic_num);
974         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
975
976         rc = -EINVAL;
977         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
978                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
979                 goto out;
980         }
981         if (struct_ver < 2) {
982                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
983                 goto out;
984         } else if (struct_ver < 4) {
985                 word = &nvconfig->board_magic_num;
986                 limit = (__le16 *) (nvconfig + 1);
987         } else {
988                 word = region;
989                 limit = region + FALCON_NVCONFIG_END;
990         }
991         for (csum = 0; word < limit; ++word)
992                 csum += le16_to_cpu(*word);
993
994         if (~csum & 0xffff) {
995                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
996                 goto out;
997         }
998
999         rc = 0;
1000         if (nvconfig_out)
1001                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1002
1003  out:
1004         kfree(region);
1005         return rc;
1006 }
1007
1008 static int falcon_test_nvram(struct efx_nic *efx)
1009 {
1010         return falcon_read_nvram(efx, NULL);
1011 }
1012
1013 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1014         { FR_AZ_ADR_REGION,
1015           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1016         { FR_AZ_RX_CFG,
1017           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1018         { FR_AZ_TX_CFG,
1019           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1020         { FR_AZ_TX_RESERVED,
1021           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1022         { FR_AB_MAC_CTRL,
1023           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1024         { FR_AZ_SRM_TX_DC_CFG,
1025           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1026         { FR_AZ_RX_DC_CFG,
1027           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1028         { FR_AZ_RX_DC_PF_WM,
1029           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1030         { FR_BZ_DP_CTRL,
1031           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1032         { FR_AB_GM_CFG2,
1033           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1034         { FR_AB_GMF_CFG0,
1035           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1036         { FR_AB_XM_GLB_CFG,
1037           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1038         { FR_AB_XM_TX_CFG,
1039           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1040         { FR_AB_XM_RX_CFG,
1041           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1042         { FR_AB_XM_RX_PARAM,
1043           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1044         { FR_AB_XM_FC,
1045           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1046         { FR_AB_XM_ADR_LO,
1047           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1048         { FR_AB_XX_SD_CTL,
1049           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1050 };
1051
1052 static int falcon_b0_test_registers(struct efx_nic *efx)
1053 {
1054         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1055                                       ARRAY_SIZE(falcon_b0_register_tests));
1056 }
1057
1058 /**************************************************************************
1059  *
1060  * Device reset
1061  *
1062  **************************************************************************
1063  */
1064
1065 /* Resets NIC to known state.  This routine must be called in process
1066  * context and is allowed to sleep. */
1067 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1068 {
1069         struct falcon_nic_data *nic_data = efx->nic_data;
1070         efx_oword_t glb_ctl_reg_ker;
1071         int rc;
1072
1073         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
1074
1075         /* Initiate device reset */
1076         if (method == RESET_TYPE_WORLD) {
1077                 rc = pci_save_state(efx->pci_dev);
1078                 if (rc) {
1079                         EFX_ERR(efx, "failed to backup PCI state of primary "
1080                                 "function prior to hardware reset\n");
1081                         goto fail1;
1082                 }
1083                 if (efx_nic_is_dual_func(efx)) {
1084                         rc = pci_save_state(nic_data->pci_dev2);
1085                         if (rc) {
1086                                 EFX_ERR(efx, "failed to backup PCI state of "
1087                                         "secondary function prior to "
1088                                         "hardware reset\n");
1089                                 goto fail2;
1090                         }
1091                 }
1092
1093                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1094                                      FRF_AB_EXT_PHY_RST_DUR,
1095                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1096                                      FRF_AB_SWRST, 1);
1097         } else {
1098                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1099                                      /* exclude PHY from "invisible" reset */
1100                                      FRF_AB_EXT_PHY_RST_CTL,
1101                                      method == RESET_TYPE_INVISIBLE,
1102                                      /* exclude EEPROM/flash and PCIe */
1103                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1104                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1105                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1106                                      FRF_AB_EE_RST_CTL, 1,
1107                                      FRF_AB_EXT_PHY_RST_DUR,
1108                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1109                                      FRF_AB_SWRST, 1);
1110         }
1111         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1112
1113         EFX_LOG(efx, "waiting for hardware reset\n");
1114         schedule_timeout_uninterruptible(HZ / 20);
1115
1116         /* Restore PCI configuration if needed */
1117         if (method == RESET_TYPE_WORLD) {
1118                 if (efx_nic_is_dual_func(efx)) {
1119                         rc = pci_restore_state(nic_data->pci_dev2);
1120                         if (rc) {
1121                                 EFX_ERR(efx, "failed to restore PCI config for "
1122                                         "the secondary function\n");
1123                                 goto fail3;
1124                         }
1125                 }
1126                 rc = pci_restore_state(efx->pci_dev);
1127                 if (rc) {
1128                         EFX_ERR(efx, "failed to restore PCI config for the "
1129                                 "primary function\n");
1130                         goto fail4;
1131                 }
1132                 EFX_LOG(efx, "successfully restored PCI config\n");
1133         }
1134
1135         /* Assert that reset complete */
1136         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1137         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1138                 rc = -ETIMEDOUT;
1139                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
1140                 goto fail5;
1141         }
1142         EFX_LOG(efx, "hardware reset complete\n");
1143
1144         return 0;
1145
1146         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1147 fail2:
1148 fail3:
1149         pci_restore_state(efx->pci_dev);
1150 fail1:
1151 fail4:
1152 fail5:
1153         return rc;
1154 }
1155
1156 static void falcon_monitor(struct efx_nic *efx)
1157 {
1158         bool link_changed;
1159         int rc;
1160
1161         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1162
1163         rc = falcon_board(efx)->type->monitor(efx);
1164         if (rc) {
1165                 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1166                         (rc == -ERANGE) ? "reported fault" : "failed");
1167                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1168                 rc = __efx_reconfigure_port(efx);
1169                 WARN_ON(rc);
1170         }
1171
1172         if (LOOPBACK_INTERNAL(efx))
1173                 link_changed = falcon_loopback_link_poll(efx);
1174         else
1175                 link_changed = efx->phy_op->poll(efx);
1176
1177         if (link_changed) {
1178                 falcon_stop_nic_stats(efx);
1179                 falcon_deconfigure_mac_wrapper(efx);
1180
1181                 falcon_switch_mac(efx);
1182                 rc = efx->mac_op->reconfigure(efx);
1183                 BUG_ON(rc);
1184
1185                 falcon_start_nic_stats(efx);
1186
1187                 efx_link_status_changed(efx);
1188         }
1189
1190         if (EFX_IS10G(efx))
1191                 falcon_poll_xmac(efx);
1192 }
1193
1194 /* Zeroes out the SRAM contents.  This routine must be called in
1195  * process context and is allowed to sleep.
1196  */
1197 static int falcon_reset_sram(struct efx_nic *efx)
1198 {
1199         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1200         int count;
1201
1202         /* Set the SRAM wake/sleep GPIO appropriately. */
1203         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1204         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1205         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1206         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1207
1208         /* Initiate SRAM reset */
1209         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1210                              FRF_AZ_SRM_INIT_EN, 1,
1211                              FRF_AZ_SRM_NB_SZ, 0);
1212         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1213
1214         /* Wait for SRAM reset to complete */
1215         count = 0;
1216         do {
1217                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
1218
1219                 /* SRAM reset is slow; expect around 16ms */
1220                 schedule_timeout_uninterruptible(HZ / 50);
1221
1222                 /* Check for reset complete */
1223                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1224                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1225                         EFX_LOG(efx, "SRAM reset complete\n");
1226
1227                         return 0;
1228                 }
1229         } while (++count < 20); /* wait upto 0.4 sec */
1230
1231         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
1232         return -ETIMEDOUT;
1233 }
1234
1235 static int falcon_spi_device_init(struct efx_nic *efx,
1236                                   struct efx_spi_device **spi_device_ret,
1237                                   unsigned int device_id, u32 device_type)
1238 {
1239         struct efx_spi_device *spi_device;
1240
1241         if (device_type != 0) {
1242                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1243                 if (!spi_device)
1244                         return -ENOMEM;
1245                 spi_device->device_id = device_id;
1246                 spi_device->size =
1247                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1248                 spi_device->addr_len =
1249                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1250                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1251                                              spi_device->addr_len == 1);
1252                 spi_device->erase_command =
1253                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1254                 spi_device->erase_size =
1255                         1 << SPI_DEV_TYPE_FIELD(device_type,
1256                                                 SPI_DEV_TYPE_ERASE_SIZE);
1257                 spi_device->block_size =
1258                         1 << SPI_DEV_TYPE_FIELD(device_type,
1259                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1260         } else {
1261                 spi_device = NULL;
1262         }
1263
1264         kfree(*spi_device_ret);
1265         *spi_device_ret = spi_device;
1266         return 0;
1267 }
1268
1269 static void falcon_remove_spi_devices(struct efx_nic *efx)
1270 {
1271         kfree(efx->spi_eeprom);
1272         efx->spi_eeprom = NULL;
1273         kfree(efx->spi_flash);
1274         efx->spi_flash = NULL;
1275 }
1276
1277 /* Extract non-volatile configuration */
1278 static int falcon_probe_nvconfig(struct efx_nic *efx)
1279 {
1280         struct falcon_nvconfig *nvconfig;
1281         int board_rev;
1282         int rc;
1283
1284         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1285         if (!nvconfig)
1286                 return -ENOMEM;
1287
1288         rc = falcon_read_nvram(efx, nvconfig);
1289         if (rc == -EINVAL) {
1290                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
1291                 efx->phy_type = PHY_TYPE_NONE;
1292                 efx->mdio.prtad = MDIO_PRTAD_NONE;
1293                 board_rev = 0;
1294                 rc = 0;
1295         } else if (rc) {
1296                 goto fail1;
1297         } else {
1298                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1299                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1300
1301                 efx->phy_type = v2->port0_phy_type;
1302                 efx->mdio.prtad = v2->port0_phy_addr;
1303                 board_rev = le16_to_cpu(v2->board_revision);
1304
1305                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1306                         rc = falcon_spi_device_init(
1307                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1308                                 le32_to_cpu(v3->spi_device_type
1309                                             [FFE_AB_SPI_DEVICE_FLASH]));
1310                         if (rc)
1311                                 goto fail2;
1312                         rc = falcon_spi_device_init(
1313                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1314                                 le32_to_cpu(v3->spi_device_type
1315                                             [FFE_AB_SPI_DEVICE_EEPROM]));
1316                         if (rc)
1317                                 goto fail2;
1318                 }
1319         }
1320
1321         /* Read the MAC addresses */
1322         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1323
1324         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
1325
1326         falcon_probe_board(efx, board_rev);
1327
1328         kfree(nvconfig);
1329         return 0;
1330
1331  fail2:
1332         falcon_remove_spi_devices(efx);
1333  fail1:
1334         kfree(nvconfig);
1335         return rc;
1336 }
1337
1338 /* Probe all SPI devices on the NIC */
1339 static void falcon_probe_spi_devices(struct efx_nic *efx)
1340 {
1341         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1342         int boot_dev;
1343
1344         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1345         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1346         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1347
1348         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1349                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1350                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1351                 EFX_LOG(efx, "Booted from %s\n",
1352                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
1353         } else {
1354                 /* Disable VPD and set clock dividers to safe
1355                  * values for initial programming. */
1356                 boot_dev = -1;
1357                 EFX_LOG(efx, "Booted from internal ASIC settings;"
1358                         " setting SPI config\n");
1359                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1360                                      /* 125 MHz / 7 ~= 20 MHz */
1361                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1362                                      /* 125 MHz / 63 ~= 2 MHz */
1363                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1364                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1365         }
1366
1367         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1368                 falcon_spi_device_init(efx, &efx->spi_flash,
1369                                        FFE_AB_SPI_DEVICE_FLASH,
1370                                        default_flash_type);
1371         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1372                 falcon_spi_device_init(efx, &efx->spi_eeprom,
1373                                        FFE_AB_SPI_DEVICE_EEPROM,
1374                                        large_eeprom_type);
1375 }
1376
1377 static int falcon_probe_nic(struct efx_nic *efx)
1378 {
1379         struct falcon_nic_data *nic_data;
1380         struct falcon_board *board;
1381         int rc;
1382
1383         /* Allocate storage for hardware specific data */
1384         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1385         if (!nic_data)
1386                 return -ENOMEM;
1387         efx->nic_data = nic_data;
1388
1389         rc = -ENODEV;
1390
1391         if (efx_nic_fpga_ver(efx) != 0) {
1392                 EFX_ERR(efx, "Falcon FPGA not supported\n");
1393                 goto fail1;
1394         }
1395
1396         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1397                 efx_oword_t nic_stat;
1398                 struct pci_dev *dev;
1399                 u8 pci_rev = efx->pci_dev->revision;
1400
1401                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1402                         EFX_ERR(efx, "Falcon rev A0 not supported\n");
1403                         goto fail1;
1404                 }
1405                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1406                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1407                         EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
1408                         goto fail1;
1409                 }
1410                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1411                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
1412                         goto fail1;
1413                 }
1414
1415                 dev = pci_dev_get(efx->pci_dev);
1416                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1417                                              dev))) {
1418                         if (dev->bus == efx->pci_dev->bus &&
1419                             dev->devfn == efx->pci_dev->devfn + 1) {
1420                                 nic_data->pci_dev2 = dev;
1421                                 break;
1422                         }
1423                 }
1424                 if (!nic_data->pci_dev2) {
1425                         EFX_ERR(efx, "failed to find secondary function\n");
1426                         rc = -ENODEV;
1427                         goto fail2;
1428                 }
1429         }
1430
1431         /* Now we can reset the NIC */
1432         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1433         if (rc) {
1434                 EFX_ERR(efx, "failed to reset NIC\n");
1435                 goto fail3;
1436         }
1437
1438         /* Allocate memory for INT_KER */
1439         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1440         if (rc)
1441                 goto fail4;
1442         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1443
1444         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
1445                 (u64)efx->irq_status.dma_addr,
1446                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
1447
1448         falcon_probe_spi_devices(efx);
1449
1450         /* Read in the non-volatile configuration */
1451         rc = falcon_probe_nvconfig(efx);
1452         if (rc)
1453                 goto fail5;
1454
1455         /* Initialise I2C adapter */
1456         board = falcon_board(efx);
1457         board->i2c_adap.owner = THIS_MODULE;
1458         board->i2c_data = falcon_i2c_bit_operations;
1459         board->i2c_data.data = efx;
1460         board->i2c_adap.algo_data = &board->i2c_data;
1461         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1462         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1463                 sizeof(board->i2c_adap.name));
1464         rc = i2c_bit_add_bus(&board->i2c_adap);
1465         if (rc)
1466                 goto fail5;
1467
1468         rc = falcon_board(efx)->type->init(efx);
1469         if (rc) {
1470                 EFX_ERR(efx, "failed to initialise board\n");
1471                 goto fail6;
1472         }
1473
1474         nic_data->stats_disable_count = 1;
1475         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1476                     (unsigned long)efx);
1477
1478         return 0;
1479
1480  fail6:
1481         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1482         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1483  fail5:
1484         falcon_remove_spi_devices(efx);
1485         efx_nic_free_buffer(efx, &efx->irq_status);
1486  fail4:
1487  fail3:
1488         if (nic_data->pci_dev2) {
1489                 pci_dev_put(nic_data->pci_dev2);
1490                 nic_data->pci_dev2 = NULL;
1491         }
1492  fail2:
1493  fail1:
1494         kfree(efx->nic_data);
1495         return rc;
1496 }
1497
1498 static void falcon_init_rx_cfg(struct efx_nic *efx)
1499 {
1500         /* Prior to Siena the RX DMA engine will split each frame at
1501          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1502          * be so large that that never happens. */
1503         const unsigned huge_buf_size = (3 * 4096) >> 5;
1504         /* RX control FIFO thresholds (32 entries) */
1505         const unsigned ctrl_xon_thr = 20;
1506         const unsigned ctrl_xoff_thr = 25;
1507         /* RX data FIFO thresholds (256-byte units; size varies) */
1508         int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1509         int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1510         efx_oword_t reg;
1511
1512         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1513         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1514                 /* Data FIFO size is 5.5K */
1515                 if (data_xon_thr < 0)
1516                         data_xon_thr = 512 >> 8;
1517                 if (data_xoff_thr < 0)
1518                         data_xoff_thr = 2048 >> 8;
1519                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1520                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1521                                     huge_buf_size);
1522                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1523                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1524                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1525                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1526         } else {
1527                 /* Data FIFO size is 80K; register fields moved */
1528                 if (data_xon_thr < 0)
1529                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1530                 if (data_xoff_thr < 0)
1531                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1532                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1533                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1534                                     huge_buf_size);
1535                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1536                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1537                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1538                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1539                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1540         }
1541         /* Always enable XOFF signal from RX FIFO.  We enable
1542          * or disable transmission of pause frames at the MAC. */
1543         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1544         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1545 }
1546
1547 /* This call performs hardware-specific global initialisation, such as
1548  * defining the descriptor cache sizes and number of RSS channels.
1549  * It does not set up any buffers, descriptor rings or event queues.
1550  */
1551 static int falcon_init_nic(struct efx_nic *efx)
1552 {
1553         efx_oword_t temp;
1554         int rc;
1555
1556         /* Use on-chip SRAM */
1557         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1558         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1559         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1560
1561         /* Set the source of the GMAC clock */
1562         if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1563                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1564                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1565                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1566         }
1567
1568         /* Select the correct MAC */
1569         falcon_clock_mac(efx);
1570
1571         rc = falcon_reset_sram(efx);
1572         if (rc)
1573                 return rc;
1574
1575         /* Clear the parity enables on the TX data fifos as
1576          * they produce false parity errors because of timing issues
1577          */
1578         if (EFX_WORKAROUND_5129(efx)) {
1579                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1580                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1581                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1582         }
1583
1584         if (EFX_WORKAROUND_7244(efx)) {
1585                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1586                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1587                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1588                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1589                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1590                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1591         }
1592
1593         /* XXX This is documented only for Falcon A0/A1 */
1594         /* Setup RX.  Wait for descriptor is broken and must
1595          * be disabled.  RXDP recovery shouldn't be needed, but is.
1596          */
1597         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1598         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1599         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1600         if (EFX_WORKAROUND_5583(efx))
1601                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1602         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1603
1604         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1605          * descriptors (which is bad).
1606          */
1607         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1608         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1609         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1610
1611         falcon_init_rx_cfg(efx);
1612
1613         /* Set destination of both TX and RX Flush events */
1614         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1615                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1616                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1617         }
1618
1619         efx_nic_init_common(efx);
1620
1621         return 0;
1622 }
1623
1624 static void falcon_remove_nic(struct efx_nic *efx)
1625 {
1626         struct falcon_nic_data *nic_data = efx->nic_data;
1627         struct falcon_board *board = falcon_board(efx);
1628         int rc;
1629
1630         board->type->fini(efx);
1631
1632         /* Remove I2C adapter and clear it in preparation for a retry */
1633         rc = i2c_del_adapter(&board->i2c_adap);
1634         BUG_ON(rc);
1635         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1636
1637         falcon_remove_spi_devices(efx);
1638         efx_nic_free_buffer(efx, &efx->irq_status);
1639
1640         falcon_reset_hw(efx, RESET_TYPE_ALL);
1641
1642         /* Release the second function after the reset */
1643         if (nic_data->pci_dev2) {
1644                 pci_dev_put(nic_data->pci_dev2);
1645                 nic_data->pci_dev2 = NULL;
1646         }
1647
1648         /* Tear down the private nic state */
1649         kfree(efx->nic_data);
1650         efx->nic_data = NULL;
1651 }
1652
1653 static void falcon_update_nic_stats(struct efx_nic *efx)
1654 {
1655         struct falcon_nic_data *nic_data = efx->nic_data;
1656         efx_oword_t cnt;
1657
1658         if (nic_data->stats_disable_count)
1659                 return;
1660
1661         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1662         efx->n_rx_nodesc_drop_cnt +=
1663                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1664
1665         if (nic_data->stats_pending &&
1666             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1667                 nic_data->stats_pending = false;
1668                 rmb(); /* read the done flag before the stats */
1669                 efx->mac_op->update_stats(efx);
1670         }
1671 }
1672
1673 void falcon_start_nic_stats(struct efx_nic *efx)
1674 {
1675         struct falcon_nic_data *nic_data = efx->nic_data;
1676
1677         spin_lock_bh(&efx->stats_lock);
1678         if (--nic_data->stats_disable_count == 0)
1679                 falcon_stats_request(efx);
1680         spin_unlock_bh(&efx->stats_lock);
1681 }
1682
1683 void falcon_stop_nic_stats(struct efx_nic *efx)
1684 {
1685         struct falcon_nic_data *nic_data = efx->nic_data;
1686         int i;
1687
1688         might_sleep();
1689
1690         spin_lock_bh(&efx->stats_lock);
1691         ++nic_data->stats_disable_count;
1692         spin_unlock_bh(&efx->stats_lock);
1693
1694         del_timer_sync(&nic_data->stats_timer);
1695
1696         /* Wait enough time for the most recent transfer to
1697          * complete. */
1698         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1699                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1700                         break;
1701                 msleep(1);
1702         }
1703
1704         spin_lock_bh(&efx->stats_lock);
1705         falcon_stats_complete(efx);
1706         spin_unlock_bh(&efx->stats_lock);
1707 }
1708
1709 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1710 {
1711         falcon_board(efx)->type->set_id_led(efx, mode);
1712 }
1713
1714 /**************************************************************************
1715  *
1716  * Wake on LAN
1717  *
1718  **************************************************************************
1719  */
1720
1721 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1722 {
1723         wol->supported = 0;
1724         wol->wolopts = 0;
1725         memset(&wol->sopass, 0, sizeof(wol->sopass));
1726 }
1727
1728 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1729 {
1730         if (type != 0)
1731                 return -EINVAL;
1732         return 0;
1733 }
1734
1735 /**************************************************************************
1736  *
1737  * Revision-dependent attributes used by efx.c and nic.c
1738  *
1739  **************************************************************************
1740  */
1741
1742 struct efx_nic_type falcon_a1_nic_type = {
1743         .probe = falcon_probe_nic,
1744         .remove = falcon_remove_nic,
1745         .init = falcon_init_nic,
1746         .fini = efx_port_dummy_op_void,
1747         .monitor = falcon_monitor,
1748         .reset = falcon_reset_hw,
1749         .probe_port = falcon_probe_port,
1750         .remove_port = falcon_remove_port,
1751         .prepare_flush = falcon_prepare_flush,
1752         .update_stats = falcon_update_nic_stats,
1753         .start_stats = falcon_start_nic_stats,
1754         .stop_stats = falcon_stop_nic_stats,
1755         .set_id_led = falcon_set_id_led,
1756         .push_irq_moderation = falcon_push_irq_moderation,
1757         .push_multicast_hash = falcon_push_multicast_hash,
1758         .reconfigure_port = falcon_reconfigure_port,
1759         .get_wol = falcon_get_wol,
1760         .set_wol = falcon_set_wol,
1761         .resume_wol = efx_port_dummy_op_void,
1762         .test_nvram = falcon_test_nvram,
1763         .default_mac_ops = &falcon_xmac_operations,
1764
1765         .revision = EFX_REV_FALCON_A1,
1766         .mem_map_size = 0x20000,
1767         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1768         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1769         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1770         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1771         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1772         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1773         .rx_buffer_padding = 0x24,
1774         .max_interrupt_mode = EFX_INT_MODE_MSI,
1775         .phys_addr_channels = 4,
1776         .tx_dc_base = 0x130000,
1777         .rx_dc_base = 0x100000,
1778         .offload_features = NETIF_F_IP_CSUM,
1779         .reset_world_flags = ETH_RESET_IRQ,
1780 };
1781
1782 struct efx_nic_type falcon_b0_nic_type = {
1783         .probe = falcon_probe_nic,
1784         .remove = falcon_remove_nic,
1785         .init = falcon_init_nic,
1786         .fini = efx_port_dummy_op_void,
1787         .monitor = falcon_monitor,
1788         .reset = falcon_reset_hw,
1789         .probe_port = falcon_probe_port,
1790         .remove_port = falcon_remove_port,
1791         .prepare_flush = falcon_prepare_flush,
1792         .update_stats = falcon_update_nic_stats,
1793         .start_stats = falcon_start_nic_stats,
1794         .stop_stats = falcon_stop_nic_stats,
1795         .set_id_led = falcon_set_id_led,
1796         .push_irq_moderation = falcon_push_irq_moderation,
1797         .push_multicast_hash = falcon_push_multicast_hash,
1798         .reconfigure_port = falcon_reconfigure_port,
1799         .get_wol = falcon_get_wol,
1800         .set_wol = falcon_set_wol,
1801         .resume_wol = efx_port_dummy_op_void,
1802         .test_registers = falcon_b0_test_registers,
1803         .test_nvram = falcon_test_nvram,
1804         .default_mac_ops = &falcon_xmac_operations,
1805
1806         .revision = EFX_REV_FALCON_B0,
1807         /* Map everything up to and including the RSS indirection
1808          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1809          * requires that they not be mapped.  */
1810         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1811                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1812                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1813         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1814         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1815         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1816         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1817         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1818         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1819         .rx_buffer_padding = 0,
1820         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1821         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1822                                    * interrupt handler only supports 32
1823                                    * channels */
1824         .tx_dc_base = 0x130000,
1825         .rx_dc_base = 0x100000,
1826         .offload_features = NETIF_F_IP_CSUM,
1827         .reset_world_flags = ETH_RESET_IRQ,
1828 };
1829