sfc: Allow shared pages to be recycled
[firefly-linux-kernel-4.4.55.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH  8
27
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
30
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS  64u
33
34 /*
35  * rx_alloc_method - RX buffer allocation method
36  *
37  * This driver supports two methods for allocating and using RX buffers:
38  * each RX buffer may be backed by an skb or by an order-n page.
39  *
40  * When LRO is in use then the second method has a lower overhead,
41  * since we don't have to allocate then free skbs on reassembled frames.
42  *
43  * Values:
44  *   - RX_ALLOC_METHOD_AUTO = 0
45  *   - RX_ALLOC_METHOD_SKB  = 1
46  *   - RX_ALLOC_METHOD_PAGE = 2
47  *
48  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49  * controlled by the parameters below.
50  *
51  *   - Since pushing and popping descriptors are separated by the rx_queue
52  *     size, so the watermarks should be ~rxd_size.
53  *   - The performance win by using page-based allocation for LRO is less
54  *     than the performance hit of using page-based allocation of non-LRO,
55  *     so the watermarks should reflect this.
56  *
57  * Per channel we maintain a single variable, updated by each channel:
58  *
59  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60  *                      RX_ALLOC_FACTOR_SKB)
61  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62  * limits the hysteresis), and update the allocation strategy:
63  *
64  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
66  */
67 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68
69 #define RX_ALLOC_LEVEL_LRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_LRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
73
74 /* This is the percentage fill level below which new RX descriptors
75  * will be added to the RX descriptor ring.
76  */
77 static unsigned int rx_refill_threshold = 90;
78
79 /* This is the percentage fill level to which an RX queue will be refilled
80  * when the "RX refill threshold" is reached.
81  */
82 static unsigned int rx_refill_limit = 95;
83
84 /*
85  * RX maximum head room required.
86  *
87  * This must be at least 1 to prevent overflow and at least 2 to allow
88  * pipelined receives.
89  */
90 #define EFX_RXD_HEAD_ROOM 2
91
92 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
93 {
94         /* Offset is always within one page, so we don't need to consider
95          * the page order.
96          */
97         return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101         return PAGE_SIZE << efx->rx_buffer_order;
102 }
103
104 /**
105  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
106  *
107  * @rx_queue:           Efx RX queue
108  *
109  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
110  * struct efx_rx_buffer for each one. Return a negative error code or 0
111  * on success. May fail having only inserted fewer than EFX_RX_BATCH
112  * buffers.
113  */
114 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
115 {
116         struct efx_nic *efx = rx_queue->efx;
117         struct net_device *net_dev = efx->net_dev;
118         struct efx_rx_buffer *rx_buf;
119         int skb_len = efx->rx_buffer_len;
120         unsigned index, count;
121
122         for (count = 0; count < EFX_RX_BATCH; ++count) {
123                 index = rx_queue->added_count & EFX_RXQ_MASK;
124                 rx_buf = efx_rx_buffer(rx_queue, index);
125
126                 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
127                 if (unlikely(!rx_buf->skb))
128                         return -ENOMEM;
129                 rx_buf->page = NULL;
130
131                 /* Adjust the SKB for padding and checksum */
132                 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
133                 rx_buf->len = skb_len - NET_IP_ALIGN;
134                 rx_buf->data = (char *)rx_buf->skb->data;
135                 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
136
137                 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
138                                                   rx_buf->data, rx_buf->len,
139                                                   PCI_DMA_FROMDEVICE);
140                 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
141                                                    rx_buf->dma_addr))) {
142                         dev_kfree_skb_any(rx_buf->skb);
143                         rx_buf->skb = NULL;
144                         return -EIO;
145                 }
146
147                 ++rx_queue->added_count;
148                 ++rx_queue->alloc_skb_count;
149         }
150
151         return 0;
152 }
153
154 /**
155  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
156  *
157  * @rx_queue:           Efx RX queue
158  *
159  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
160  * and populates struct efx_rx_buffers for each one. Return a negative error
161  * code or 0 on success. If a single page can be split between two buffers,
162  * then the page will either be inserted fully, or not at at all.
163  */
164 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
165 {
166         struct efx_nic *efx = rx_queue->efx;
167         struct efx_rx_buffer *rx_buf;
168         struct page *page;
169         void *page_addr;
170         struct efx_rx_page_state *state;
171         dma_addr_t dma_addr;
172         unsigned index, count;
173
174         /* We can split a page between two buffers */
175         BUILD_BUG_ON(EFX_RX_BATCH & 1);
176
177         for (count = 0; count < EFX_RX_BATCH; ++count) {
178                 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
179                                    efx->rx_buffer_order);
180                 if (unlikely(page == NULL))
181                         return -ENOMEM;
182                 dma_addr = pci_map_page(efx->pci_dev, page, 0,
183                                         efx_rx_buf_size(efx),
184                                         PCI_DMA_FROMDEVICE);
185                 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
186                         __free_pages(page, efx->rx_buffer_order);
187                         return -EIO;
188                 }
189                 page_addr = page_address(page);
190                 state = page_addr;
191                 state->refcnt = 0;
192                 state->dma_addr = dma_addr;
193
194                 page_addr += sizeof(struct efx_rx_page_state);
195                 dma_addr += sizeof(struct efx_rx_page_state);
196
197         split:
198                 index = rx_queue->added_count & EFX_RXQ_MASK;
199                 rx_buf = efx_rx_buffer(rx_queue, index);
200                 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
201                 rx_buf->skb = NULL;
202                 rx_buf->page = page;
203                 rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
204                 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
205                 ++rx_queue->added_count;
206                 ++rx_queue->alloc_page_count;
207                 ++state->refcnt;
208
209                 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
210                         /* Use the second half of the page */
211                         get_page(page);
212                         dma_addr += (PAGE_SIZE >> 1);
213                         page_addr += (PAGE_SIZE >> 1);
214                         ++count;
215                         goto split;
216                 }
217         }
218
219         return 0;
220 }
221
222 static void efx_unmap_rx_buffer(struct efx_nic *efx,
223                                 struct efx_rx_buffer *rx_buf)
224 {
225         if (rx_buf->page) {
226                 struct efx_rx_page_state *state;
227
228                 EFX_BUG_ON_PARANOID(rx_buf->skb);
229
230                 state = page_address(rx_buf->page);
231                 if (--state->refcnt == 0) {
232                         pci_unmap_page(efx->pci_dev,
233                                        state->dma_addr,
234                                        efx_rx_buf_size(efx),
235                                        PCI_DMA_FROMDEVICE);
236                 }
237         } else if (likely(rx_buf->skb)) {
238                 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
239                                  rx_buf->len, PCI_DMA_FROMDEVICE);
240         }
241 }
242
243 static void efx_free_rx_buffer(struct efx_nic *efx,
244                                struct efx_rx_buffer *rx_buf)
245 {
246         if (rx_buf->page) {
247                 __free_pages(rx_buf->page, efx->rx_buffer_order);
248                 rx_buf->page = NULL;
249         } else if (likely(rx_buf->skb)) {
250                 dev_kfree_skb_any(rx_buf->skb);
251                 rx_buf->skb = NULL;
252         }
253 }
254
255 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
256                                struct efx_rx_buffer *rx_buf)
257 {
258         efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
259         efx_free_rx_buffer(rx_queue->efx, rx_buf);
260 }
261
262 /* Attempt to resurrect the other receive buffer that used to share this page,
263  * which had previously been passed up to the kernel and freed. */
264 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
265                                     struct efx_rx_buffer *rx_buf)
266 {
267         struct efx_rx_page_state *state = page_address(rx_buf->page);
268         struct efx_rx_buffer *new_buf;
269         unsigned fill_level, index;
270
271         /* +1 because efx_rx_packet() incremented removed_count. +1 because
272          * we'd like to insert an additional descriptor whilst leaving
273          * EFX_RXD_HEAD_ROOM for the non-recycle path */
274         fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
275         if (unlikely(fill_level >= EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM)) {
276                 /* We could place "state" on a list, and drain the list in
277                  * efx_fast_push_rx_descriptors(). For now, this will do. */
278                 return;
279         }
280
281         ++state->refcnt;
282         get_page(rx_buf->page);
283
284         index = rx_queue->added_count & EFX_RXQ_MASK;
285         new_buf = efx_rx_buffer(rx_queue, index);
286         new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
287         new_buf->skb = NULL;
288         new_buf->page = rx_buf->page;
289         new_buf->data = (void *)
290                 ((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
291         new_buf->len = rx_buf->len;
292         ++rx_queue->added_count;
293 }
294
295 /* Recycle the given rx buffer directly back into the rx_queue. There is
296  * always room to add this buffer, because we've just popped a buffer. */
297 static void efx_recycle_rx_buffer(struct efx_channel *channel,
298                                   struct efx_rx_buffer *rx_buf)
299 {
300         struct efx_nic *efx = channel->efx;
301         struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
302         struct efx_rx_buffer *new_buf;
303         unsigned index;
304
305         if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
306             page_count(rx_buf->page) == 1)
307                 efx_resurrect_rx_buffer(rx_queue, rx_buf);
308
309         index = rx_queue->added_count & EFX_RXQ_MASK;
310         new_buf = efx_rx_buffer(rx_queue, index);
311
312         memcpy(new_buf, rx_buf, sizeof(*new_buf));
313         rx_buf->page = NULL;
314         rx_buf->skb = NULL;
315         ++rx_queue->added_count;
316 }
317
318 /**
319  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
320  * @rx_queue:           RX descriptor queue
321  * This will aim to fill the RX descriptor queue up to
322  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
323  * memory to do so, a slow fill will be scheduled.
324  *
325  * The caller must provide serialisation (none is used here). In practise,
326  * this means this function must run from the NAPI handler, or be called
327  * when NAPI is disabled.
328  */
329 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
330 {
331         struct efx_channel *channel = rx_queue->channel;
332         unsigned fill_level;
333         int space, rc = 0;
334
335         /* Calculate current fill level, and exit if we don't need to fill */
336         fill_level = (rx_queue->added_count - rx_queue->removed_count);
337         EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
338         if (fill_level >= rx_queue->fast_fill_trigger)
339                 goto out;
340
341         /* Record minimum fill level */
342         if (unlikely(fill_level < rx_queue->min_fill)) {
343                 if (fill_level)
344                         rx_queue->min_fill = fill_level;
345         }
346
347         space = rx_queue->fast_fill_limit - fill_level;
348         if (space < EFX_RX_BATCH)
349                 goto out;
350
351         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
352                   " level %d to level %d using %s allocation\n",
353                   rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
354                   channel->rx_alloc_push_pages ? "page" : "skb");
355
356         do {
357                 if (channel->rx_alloc_push_pages)
358                         rc = efx_init_rx_buffers_page(rx_queue);
359                 else
360                         rc = efx_init_rx_buffers_skb(rx_queue);
361                 if (unlikely(rc)) {
362                         /* Ensure that we don't leave the rx queue empty */
363                         if (rx_queue->added_count == rx_queue->removed_count)
364                                 efx_schedule_slow_fill(rx_queue);
365                         goto out;
366                 }
367         } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
368
369         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
370                   "to level %d\n", rx_queue->queue,
371                   rx_queue->added_count - rx_queue->removed_count);
372
373  out:
374         if (rx_queue->notified_count != rx_queue->added_count)
375                 efx_nic_notify_rx_desc(rx_queue);
376 }
377
378 void efx_rx_slow_fill(unsigned long context)
379 {
380         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
381         struct efx_channel *channel = rx_queue->channel;
382
383         /* Post an event to cause NAPI to run and refill the queue */
384         efx_nic_generate_fill_event(channel);
385         ++rx_queue->slow_fill_count;
386 }
387
388 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
389                                      struct efx_rx_buffer *rx_buf,
390                                      int len, bool *discard,
391                                      bool *leak_packet)
392 {
393         struct efx_nic *efx = rx_queue->efx;
394         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
395
396         if (likely(len <= max_len))
397                 return;
398
399         /* The packet must be discarded, but this is only a fatal error
400          * if the caller indicated it was
401          */
402         *discard = true;
403
404         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
405                 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
406                            "RX event (0x%x > 0x%x+0x%x). Leaking\n",
407                            rx_queue->queue, len, max_len,
408                            efx->type->rx_buffer_padding);
409                 /* If this buffer was skb-allocated, then the meta
410                  * data at the end of the skb will be trashed. So
411                  * we have no choice but to leak the fragment.
412                  */
413                 *leak_packet = (rx_buf->skb != NULL);
414                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
415         } else {
416                 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
417                            "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
418         }
419
420         rx_queue->channel->n_rx_overlength++;
421 }
422
423 /* Pass a received packet up through the generic LRO stack
424  *
425  * Handles driverlink veto, and passes the fragment up via
426  * the appropriate LRO method
427  */
428 static void efx_rx_packet_lro(struct efx_channel *channel,
429                               struct efx_rx_buffer *rx_buf,
430                               bool checksummed)
431 {
432         struct napi_struct *napi = &channel->napi_str;
433         gro_result_t gro_result;
434
435         /* Pass the skb/page into the LRO engine */
436         if (rx_buf->page) {
437                 struct page *page = rx_buf->page;
438                 struct sk_buff *skb;
439
440                 EFX_BUG_ON_PARANOID(rx_buf->skb);
441                 rx_buf->page = NULL;
442
443                 skb = napi_get_frags(napi);
444                 if (!skb) {
445                         put_page(page);
446                         return;
447                 }
448
449                 skb_shinfo(skb)->frags[0].page = page;
450                 skb_shinfo(skb)->frags[0].page_offset =
451                         efx_rx_buf_offset(rx_buf);
452                 skb_shinfo(skb)->frags[0].size = rx_buf->len;
453                 skb_shinfo(skb)->nr_frags = 1;
454
455                 skb->len = rx_buf->len;
456                 skb->data_len = rx_buf->len;
457                 skb->truesize += rx_buf->len;
458                 skb->ip_summed =
459                         checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
460
461                 skb_record_rx_queue(skb, channel->channel);
462
463                 gro_result = napi_gro_frags(napi);
464         } else {
465                 struct sk_buff *skb = rx_buf->skb;
466
467                 EFX_BUG_ON_PARANOID(!skb);
468                 EFX_BUG_ON_PARANOID(!checksummed);
469                 rx_buf->skb = NULL;
470
471                 gro_result = napi_gro_receive(napi, skb);
472         }
473
474         if (gro_result == GRO_NORMAL) {
475                 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
476         } else if (gro_result != GRO_DROP) {
477                 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
478                 channel->irq_mod_score += 2;
479         }
480 }
481
482 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
483                    unsigned int len, bool checksummed, bool discard)
484 {
485         struct efx_nic *efx = rx_queue->efx;
486         struct efx_channel *channel = rx_queue->channel;
487         struct efx_rx_buffer *rx_buf;
488         bool leak_packet = false;
489
490         rx_buf = efx_rx_buffer(rx_queue, index);
491         EFX_BUG_ON_PARANOID(!rx_buf->data);
492         EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
493         EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
494
495         /* This allows the refill path to post another buffer.
496          * EFX_RXD_HEAD_ROOM ensures that the slot we are using
497          * isn't overwritten yet.
498          */
499         rx_queue->removed_count++;
500
501         /* Validate the length encoded in the event vs the descriptor pushed */
502         efx_rx_packet__check_len(rx_queue, rx_buf, len,
503                                  &discard, &leak_packet);
504
505         EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
506                   rx_queue->queue, index,
507                   (unsigned long long)rx_buf->dma_addr, len,
508                   (checksummed ? " [SUMMED]" : ""),
509                   (discard ? " [DISCARD]" : ""));
510
511         /* Discard packet, if instructed to do so */
512         if (unlikely(discard)) {
513                 if (unlikely(leak_packet))
514                         channel->n_skbuff_leaks++;
515                 else
516                         efx_recycle_rx_buffer(channel, rx_buf);
517
518                 /* Don't hold off the previous receive */
519                 rx_buf = NULL;
520                 goto out;
521         }
522
523         /* Release card resources - assumes all RX buffers consumed in-order
524          * per RX queue
525          */
526         efx_unmap_rx_buffer(efx, rx_buf);
527
528         /* Prefetch nice and early so data will (hopefully) be in cache by
529          * the time we look at it.
530          */
531         prefetch(rx_buf->data);
532
533         /* Pipeline receives so that we give time for packet headers to be
534          * prefetched into cache.
535          */
536         rx_buf->len = len;
537 out:
538         if (rx_queue->channel->rx_pkt)
539                 __efx_rx_packet(rx_queue->channel,
540                                 rx_queue->channel->rx_pkt,
541                                 rx_queue->channel->rx_pkt_csummed);
542         rx_queue->channel->rx_pkt = rx_buf;
543         rx_queue->channel->rx_pkt_csummed = checksummed;
544 }
545
546 /* Handle a received packet.  Second half: Touches packet payload. */
547 void __efx_rx_packet(struct efx_channel *channel,
548                      struct efx_rx_buffer *rx_buf, bool checksummed)
549 {
550         struct efx_nic *efx = channel->efx;
551         struct sk_buff *skb;
552
553         /* If we're in loopback test, then pass the packet directly to the
554          * loopback layer, and free the rx_buf here
555          */
556         if (unlikely(efx->loopback_selftest)) {
557                 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
558                 efx_free_rx_buffer(efx, rx_buf);
559                 return;
560         }
561
562         if (rx_buf->skb) {
563                 prefetch(skb_shinfo(rx_buf->skb));
564
565                 skb_put(rx_buf->skb, rx_buf->len);
566
567                 /* Move past the ethernet header. rx_buf->data still points
568                  * at the ethernet header */
569                 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
570                                                        efx->net_dev);
571
572                 skb_record_rx_queue(rx_buf->skb, channel->channel);
573         }
574
575         if (likely(checksummed || rx_buf->page)) {
576                 efx_rx_packet_lro(channel, rx_buf, checksummed);
577                 return;
578         }
579
580         /* We now own the SKB */
581         skb = rx_buf->skb;
582         rx_buf->skb = NULL;
583         EFX_BUG_ON_PARANOID(!skb);
584
585         /* Set the SKB flags */
586         skb->ip_summed = CHECKSUM_NONE;
587
588         /* Pass the packet up */
589         netif_receive_skb(skb);
590
591         /* Update allocation strategy method */
592         channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
593 }
594
595 void efx_rx_strategy(struct efx_channel *channel)
596 {
597         enum efx_rx_alloc_method method = rx_alloc_method;
598
599         /* Only makes sense to use page based allocation if LRO is enabled */
600         if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
601                 method = RX_ALLOC_METHOD_SKB;
602         } else if (method == RX_ALLOC_METHOD_AUTO) {
603                 /* Constrain the rx_alloc_level */
604                 if (channel->rx_alloc_level < 0)
605                         channel->rx_alloc_level = 0;
606                 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
607                         channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
608
609                 /* Decide on the allocation method */
610                 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
611                           RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
612         }
613
614         /* Push the option */
615         channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
616 }
617
618 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
619 {
620         struct efx_nic *efx = rx_queue->efx;
621         unsigned int rxq_size;
622         int rc;
623
624         EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
625
626         /* Allocate RX buffers */
627         rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
628         rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
629         if (!rx_queue->buffer)
630                 return -ENOMEM;
631
632         rc = efx_nic_probe_rx(rx_queue);
633         if (rc) {
634                 kfree(rx_queue->buffer);
635                 rx_queue->buffer = NULL;
636         }
637         return rc;
638 }
639
640 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
641 {
642         unsigned int max_fill, trigger, limit;
643
644         EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
645
646         /* Initialise ptr fields */
647         rx_queue->added_count = 0;
648         rx_queue->notified_count = 0;
649         rx_queue->removed_count = 0;
650         rx_queue->min_fill = -1U;
651         rx_queue->min_overfill = -1U;
652
653         /* Initialise limit fields */
654         max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
655         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
656         limit = max_fill * min(rx_refill_limit, 100U) / 100U;
657
658         rx_queue->max_fill = max_fill;
659         rx_queue->fast_fill_trigger = trigger;
660         rx_queue->fast_fill_limit = limit;
661
662         /* Set up RX descriptor ring */
663         efx_nic_init_rx(rx_queue);
664 }
665
666 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
667 {
668         int i;
669         struct efx_rx_buffer *rx_buf;
670
671         EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
672
673         del_timer_sync(&rx_queue->slow_fill);
674         efx_nic_fini_rx(rx_queue);
675
676         /* Release RX buffers NB start at index 0 not current HW ptr */
677         if (rx_queue->buffer) {
678                 for (i = 0; i <= EFX_RXQ_MASK; i++) {
679                         rx_buf = efx_rx_buffer(rx_queue, i);
680                         efx_fini_rx_buffer(rx_queue, rx_buf);
681                 }
682         }
683 }
684
685 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
686 {
687         EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
688
689         efx_nic_remove_rx(rx_queue);
690
691         kfree(rx_queue->buffer);
692         rx_queue->buffer = NULL;
693 }
694
695
696 module_param(rx_alloc_method, int, 0644);
697 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
698
699 module_param(rx_refill_threshold, uint, 0444);
700 MODULE_PARM_DESC(rx_refill_threshold,
701                  "RX descriptor ring fast/slow fill threshold (%)");
702