7e463fb19fb94997631f83b495d5698572e0d1c3
[firefly-linux-kernel-4.4.55.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer)
35 {
36         if (buffer->unmap_len) {
37                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39                                          buffer->unmap_len);
40                 if (buffer->unmap_single)
41                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42                                          PCI_DMA_TODEVICE);
43                 else
44                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45                                        PCI_DMA_TODEVICE);
46                 buffer->unmap_len = 0;
47                 buffer->unmap_single = false;
48         }
49
50         if (buffer->skb) {
51                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52                 buffer->skb = NULL;
53                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54                            "TX queue %d transmission id %x complete\n",
55                            tx_queue->queue, tx_queue->read_count);
56         }
57 }
58
59 /**
60  * struct efx_tso_header - a DMA mapped buffer for packet headers
61  * @next: Linked list of free ones.
62  *      The list is protected by the TX queue lock.
63  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64  * @dma_addr: The DMA address of the header below.
65  *
66  * This controls the memory used for a TSO header.  Use TSOH_DATA()
67  * to find the packet header data.  Use TSOH_SIZE() to calculate the
68  * total size required for a given packet header length.  TSO headers
69  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70  */
71 struct efx_tso_header {
72         union {
73                 struct efx_tso_header *next;
74                 size_t unmap_len;
75         };
76         dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80                                struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83                                struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86                           struct efx_tx_buffer *buffer)
87 {
88         if (buffer->tsoh) {
89                 if (likely(!buffer->tsoh->unmap_len)) {
90                         buffer->tsoh->next = tx_queue->tso_headers_free;
91                         tx_queue->tso_headers_free = buffer->tsoh;
92                 } else {
93                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94                 }
95                 buffer->tsoh = NULL;
96         }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103         /* Depending on the NIC revision, we can use descriptor
104          * lengths up to 8K or 8K-1.  However, since PCI Express
105          * devices must split read requests at 4K boundaries, there is
106          * little benefit from using descriptors that cross those
107          * boundaries and we keep things simple by not doing so.
108          */
109         unsigned len = (~dma_addr & 0xfff) + 1;
110
111         /* Work around hardware bug for unaligned buffers. */
112         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115         return len;
116 }
117
118 /*
119  * Add a socket buffer to a TX queue
120  *
121  * This maps all fragments of a socket buffer for DMA and adds them to
122  * the TX queue.  The queue's insert pointer will be incremented by
123  * the number of fragments in the socket buffer.
124  *
125  * If any DMA mapping fails, any mapped fragments will be unmapped,
126  * the queue's insert pointer will be restored to its original value.
127  *
128  * This function is split out from efx_hard_start_xmit to allow the
129  * loopback test to direct packets via specific TX queues.
130  *
131  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132  * You must hold netif_tx_lock() to call this function.
133  */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136         struct efx_nic *efx = tx_queue->efx;
137         struct pci_dev *pci_dev = efx->pci_dev;
138         struct efx_tx_buffer *buffer;
139         skb_frag_t *fragment;
140         struct page *page;
141         int page_offset;
142         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143         dma_addr_t dma_addr, unmap_addr = 0;
144         unsigned int dma_len;
145         bool unmap_single;
146         int q_space, i = 0;
147         netdev_tx_t rc = NETDEV_TX_OK;
148
149         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
151         if (skb_shinfo(skb)->gso_size)
152                 return efx_enqueue_skb_tso(tx_queue, skb);
153
154         /* Get size of the initial fragment */
155         len = skb_headlen(skb);
156
157         /* Pad if necessary */
158         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159                 EFX_BUG_ON_PARANOID(skb->data_len);
160                 len = 32 + 1;
161                 if (skb_pad(skb, len - skb->len))
162                         return NETDEV_TX_OK;
163         }
164
165         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166         q_space = efx->txq_entries - 1 - fill_level;
167
168         /* Map for DMA.  Use pci_map_single rather than pci_map_page
169          * since this is more efficient on machines with sparse
170          * memory.
171          */
172         unmap_single = true;
173         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175         /* Process all fragments */
176         while (1) {
177                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178                         goto pci_err;
179
180                 /* Store fields for marking in the per-fragment final
181                  * descriptor */
182                 unmap_len = len;
183                 unmap_addr = dma_addr;
184
185                 /* Add to TX queue, splitting across DMA boundaries */
186                 do {
187                         if (unlikely(q_space-- <= 0)) {
188                                 /* It might be that completions have
189                                  * happened since the xmit path last
190                                  * checked.  Update the xmit path's
191                                  * copy of read_count.
192                                  */
193                                 netif_tx_stop_queue(tx_queue->core_txq);
194                                 /* This memory barrier protects the
195                                  * change of queue state from the access
196                                  * of read_count. */
197                                 smp_mb();
198                                 tx_queue->old_read_count =
199                                         ACCESS_ONCE(tx_queue->read_count);
200                                 fill_level = (tx_queue->insert_count
201                                               - tx_queue->old_read_count);
202                                 q_space = efx->txq_entries - 1 - fill_level;
203                                 if (unlikely(q_space-- <= 0)) {
204                                         rc = NETDEV_TX_BUSY;
205                                         goto unwind;
206                                 }
207                                 smp_mb();
208                                 netif_tx_start_queue(tx_queue->core_txq);
209                         }
210
211                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212                         buffer = &tx_queue->buffer[insert_ptr];
213                         efx_tsoh_free(tx_queue, buffer);
214                         EFX_BUG_ON_PARANOID(buffer->tsoh);
215                         EFX_BUG_ON_PARANOID(buffer->skb);
216                         EFX_BUG_ON_PARANOID(buffer->len);
217                         EFX_BUG_ON_PARANOID(!buffer->continuation);
218                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220                         dma_len = efx_max_tx_len(efx, dma_addr);
221                         if (likely(dma_len >= len))
222                                 dma_len = len;
223
224                         /* Fill out per descriptor fields */
225                         buffer->len = dma_len;
226                         buffer->dma_addr = dma_addr;
227                         len -= dma_len;
228                         dma_addr += dma_len;
229                         ++tx_queue->insert_count;
230                 } while (len);
231
232                 /* Transfer ownership of the unmapping to the final buffer */
233                 buffer->unmap_single = unmap_single;
234                 buffer->unmap_len = unmap_len;
235                 unmap_len = 0;
236
237                 /* Get address and size of next fragment */
238                 if (i >= skb_shinfo(skb)->nr_frags)
239                         break;
240                 fragment = &skb_shinfo(skb)->frags[i];
241                 len = fragment->size;
242                 page = fragment->page;
243                 page_offset = fragment->page_offset;
244                 i++;
245                 /* Map for DMA */
246                 unmap_single = false;
247                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
248                                         PCI_DMA_TODEVICE);
249         }
250
251         /* Transfer ownership of the skb to the final buffer */
252         buffer->skb = skb;
253         buffer->continuation = false;
254
255         /* Pass off to hardware */
256         efx_nic_push_buffers(tx_queue);
257
258         return NETDEV_TX_OK;
259
260  pci_err:
261         netif_err(efx, tx_err, efx->net_dev,
262                   " TX queue %d could not map skb with %d bytes %d "
263                   "fragments for DMA\n", tx_queue->queue, skb->len,
264                   skb_shinfo(skb)->nr_frags + 1);
265
266         /* Mark the packet as transmitted, and free the SKB ourselves */
267         dev_kfree_skb_any(skb);
268
269  unwind:
270         /* Work backwards until we hit the original insert pointer value */
271         while (tx_queue->insert_count != tx_queue->write_count) {
272                 --tx_queue->insert_count;
273                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274                 buffer = &tx_queue->buffer[insert_ptr];
275                 efx_dequeue_buffer(tx_queue, buffer);
276                 buffer->len = 0;
277         }
278
279         /* Free the fragment we were mid-way through pushing */
280         if (unmap_len) {
281                 if (unmap_single)
282                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
283                                          PCI_DMA_TODEVICE);
284                 else
285                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
286                                        PCI_DMA_TODEVICE);
287         }
288
289         return rc;
290 }
291
292 /* Remove packets from the TX queue
293  *
294  * This removes packets from the TX queue, up to and including the
295  * specified index.
296  */
297 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
298                                 unsigned int index)
299 {
300         struct efx_nic *efx = tx_queue->efx;
301         unsigned int stop_index, read_ptr;
302
303         stop_index = (index + 1) & tx_queue->ptr_mask;
304         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
305
306         while (read_ptr != stop_index) {
307                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
308                 if (unlikely(buffer->len == 0)) {
309                         netif_err(efx, tx_err, efx->net_dev,
310                                   "TX queue %d spurious TX completion id %x\n",
311                                   tx_queue->queue, read_ptr);
312                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
313                         return;
314                 }
315
316                 efx_dequeue_buffer(tx_queue, buffer);
317                 buffer->continuation = true;
318                 buffer->len = 0;
319
320                 ++tx_queue->read_count;
321                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
322         }
323 }
324
325 /* Initiate a packet transmission.  We use one channel per CPU
326  * (sharing when we have more CPUs than channels).  On Falcon, the TX
327  * completion events will be directed back to the CPU that transmitted
328  * the packet, which should be cache-efficient.
329  *
330  * Context: non-blocking.
331  * Note that returning anything other than NETDEV_TX_OK will cause the
332  * OS to free the skb.
333  */
334 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
335                                       struct net_device *net_dev)
336 {
337         struct efx_nic *efx = netdev_priv(net_dev);
338         struct efx_tx_queue *tx_queue;
339
340         if (unlikely(efx->port_inhibited))
341                 return NETDEV_TX_BUSY;
342
343         tx_queue = efx_get_tx_queue(efx, skb_get_queue_mapping(skb),
344                                     skb->ip_summed == CHECKSUM_PARTIAL ?
345                                     EFX_TXQ_TYPE_OFFLOAD : 0);
346
347         return efx_enqueue_skb(tx_queue, skb);
348 }
349
350 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
351 {
352         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
353         tx_queue->core_txq = netdev_get_tx_queue(
354                 tx_queue->efx->net_dev, tx_queue->queue / EFX_TXQ_TYPES);
355 }
356
357 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
358 {
359         unsigned fill_level;
360         struct efx_nic *efx = tx_queue->efx;
361
362         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
363
364         efx_dequeue_buffers(tx_queue, index);
365
366         /* See if we need to restart the netif queue.  This barrier
367          * separates the update of read_count from the test of the
368          * queue state. */
369         smp_mb();
370         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
371             likely(efx->port_enabled)) {
372                 fill_level = tx_queue->insert_count - tx_queue->read_count;
373                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
374                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
375                         netif_tx_wake_queue(tx_queue->core_txq);
376                 }
377         }
378
379         /* Check whether the hardware queue is now empty */
380         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
381                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
382                 if (tx_queue->read_count == tx_queue->old_write_count) {
383                         smp_mb();
384                         tx_queue->empty_read_count =
385                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
386                 }
387         }
388 }
389
390 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
391 {
392         struct efx_nic *efx = tx_queue->efx;
393         unsigned int entries;
394         int i, rc;
395
396         /* Create the smallest power-of-two aligned ring */
397         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
398         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
399         tx_queue->ptr_mask = entries - 1;
400
401         netif_dbg(efx, probe, efx->net_dev,
402                   "creating TX queue %d size %#x mask %#x\n",
403                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
404
405         /* Allocate software ring */
406         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
407                                    GFP_KERNEL);
408         if (!tx_queue->buffer)
409                 return -ENOMEM;
410         for (i = 0; i <= tx_queue->ptr_mask; ++i)
411                 tx_queue->buffer[i].continuation = true;
412
413         /* Allocate hardware ring */
414         rc = efx_nic_probe_tx(tx_queue);
415         if (rc)
416                 goto fail;
417
418         return 0;
419
420  fail:
421         kfree(tx_queue->buffer);
422         tx_queue->buffer = NULL;
423         return rc;
424 }
425
426 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
427 {
428         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
429                   "initialising TX queue %d\n", tx_queue->queue);
430
431         tx_queue->insert_count = 0;
432         tx_queue->write_count = 0;
433         tx_queue->old_write_count = 0;
434         tx_queue->read_count = 0;
435         tx_queue->old_read_count = 0;
436         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
437
438         /* Set up TX descriptor ring */
439         efx_nic_init_tx(tx_queue);
440 }
441
442 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
443 {
444         struct efx_tx_buffer *buffer;
445
446         if (!tx_queue->buffer)
447                 return;
448
449         /* Free any buffers left in the ring */
450         while (tx_queue->read_count != tx_queue->write_count) {
451                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
452                 efx_dequeue_buffer(tx_queue, buffer);
453                 buffer->continuation = true;
454                 buffer->len = 0;
455
456                 ++tx_queue->read_count;
457         }
458 }
459
460 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
461 {
462         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
463                   "shutting down TX queue %d\n", tx_queue->queue);
464
465         /* Flush TX queue, remove descriptor ring */
466         efx_nic_fini_tx(tx_queue);
467
468         efx_release_tx_buffers(tx_queue);
469
470         /* Free up TSO header cache */
471         efx_fini_tso(tx_queue);
472 }
473
474 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
475 {
476         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
477                   "destroying TX queue %d\n", tx_queue->queue);
478         efx_nic_remove_tx(tx_queue);
479
480         kfree(tx_queue->buffer);
481         tx_queue->buffer = NULL;
482 }
483
484
485 /* Efx TCP segmentation acceleration.
486  *
487  * Why?  Because by doing it here in the driver we can go significantly
488  * faster than the GSO.
489  *
490  * Requires TX checksum offload support.
491  */
492
493 /* Number of bytes inserted at the start of a TSO header buffer,
494  * similar to NET_IP_ALIGN.
495  */
496 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
497 #define TSOH_OFFSET     0
498 #else
499 #define TSOH_OFFSET     NET_IP_ALIGN
500 #endif
501
502 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
503
504 /* Total size of struct efx_tso_header, buffer and padding */
505 #define TSOH_SIZE(hdr_len)                                      \
506         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
507
508 /* Size of blocks on free list.  Larger blocks must be allocated from
509  * the heap.
510  */
511 #define TSOH_STD_SIZE           128
512
513 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
514 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
515 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
516 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
517 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
518
519 /**
520  * struct tso_state - TSO state for an SKB
521  * @out_len: Remaining length in current segment
522  * @seqnum: Current sequence number
523  * @ipv4_id: Current IPv4 ID, host endian
524  * @packet_space: Remaining space in current packet
525  * @dma_addr: DMA address of current position
526  * @in_len: Remaining length in current SKB fragment
527  * @unmap_len: Length of SKB fragment
528  * @unmap_addr: DMA address of SKB fragment
529  * @unmap_single: DMA single vs page mapping flag
530  * @protocol: Network protocol (after any VLAN header)
531  * @header_len: Number of bytes of header
532  * @full_packet_size: Number of bytes to put in each outgoing segment
533  *
534  * The state used during segmentation.  It is put into this data structure
535  * just to make it easy to pass into inline functions.
536  */
537 struct tso_state {
538         /* Output position */
539         unsigned out_len;
540         unsigned seqnum;
541         unsigned ipv4_id;
542         unsigned packet_space;
543
544         /* Input position */
545         dma_addr_t dma_addr;
546         unsigned in_len;
547         unsigned unmap_len;
548         dma_addr_t unmap_addr;
549         bool unmap_single;
550
551         __be16 protocol;
552         unsigned header_len;
553         int full_packet_size;
554 };
555
556
557 /*
558  * Verify that our various assumptions about sk_buffs and the conditions
559  * under which TSO will be attempted hold true.  Return the protocol number.
560  */
561 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
562 {
563         __be16 protocol = skb->protocol;
564
565         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
566                             protocol);
567         if (protocol == htons(ETH_P_8021Q)) {
568                 /* Find the encapsulated protocol; reset network header
569                  * and transport header based on that. */
570                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
571                 protocol = veh->h_vlan_encapsulated_proto;
572                 skb_set_network_header(skb, sizeof(*veh));
573                 if (protocol == htons(ETH_P_IP))
574                         skb_set_transport_header(skb, sizeof(*veh) +
575                                                  4 * ip_hdr(skb)->ihl);
576                 else if (protocol == htons(ETH_P_IPV6))
577                         skb_set_transport_header(skb, sizeof(*veh) +
578                                                  sizeof(struct ipv6hdr));
579         }
580
581         if (protocol == htons(ETH_P_IP)) {
582                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
583         } else {
584                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
585                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
586         }
587         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
588                              + (tcp_hdr(skb)->doff << 2u)) >
589                             skb_headlen(skb));
590
591         return protocol;
592 }
593
594
595 /*
596  * Allocate a page worth of efx_tso_header structures, and string them
597  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
598  */
599 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
600 {
601
602         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
603         struct efx_tso_header *tsoh;
604         dma_addr_t dma_addr;
605         u8 *base_kva, *kva;
606
607         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
608         if (base_kva == NULL) {
609                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
610                           "Unable to allocate page for TSO headers\n");
611                 return -ENOMEM;
612         }
613
614         /* pci_alloc_consistent() allocates pages. */
615         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
616
617         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
618                 tsoh = (struct efx_tso_header *)kva;
619                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
620                 tsoh->next = tx_queue->tso_headers_free;
621                 tx_queue->tso_headers_free = tsoh;
622         }
623
624         return 0;
625 }
626
627
628 /* Free up a TSO header, and all others in the same page. */
629 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
630                                 struct efx_tso_header *tsoh,
631                                 struct pci_dev *pci_dev)
632 {
633         struct efx_tso_header **p;
634         unsigned long base_kva;
635         dma_addr_t base_dma;
636
637         base_kva = (unsigned long)tsoh & PAGE_MASK;
638         base_dma = tsoh->dma_addr & PAGE_MASK;
639
640         p = &tx_queue->tso_headers_free;
641         while (*p != NULL) {
642                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
643                         *p = (*p)->next;
644                 else
645                         p = &(*p)->next;
646         }
647
648         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
649 }
650
651 static struct efx_tso_header *
652 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
653 {
654         struct efx_tso_header *tsoh;
655
656         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
657         if (unlikely(!tsoh))
658                 return NULL;
659
660         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
661                                         TSOH_BUFFER(tsoh), header_len,
662                                         PCI_DMA_TODEVICE);
663         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
664                                            tsoh->dma_addr))) {
665                 kfree(tsoh);
666                 return NULL;
667         }
668
669         tsoh->unmap_len = header_len;
670         return tsoh;
671 }
672
673 static void
674 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
675 {
676         pci_unmap_single(tx_queue->efx->pci_dev,
677                          tsoh->dma_addr, tsoh->unmap_len,
678                          PCI_DMA_TODEVICE);
679         kfree(tsoh);
680 }
681
682 /**
683  * efx_tx_queue_insert - push descriptors onto the TX queue
684  * @tx_queue:           Efx TX queue
685  * @dma_addr:           DMA address of fragment
686  * @len:                Length of fragment
687  * @final_buffer:       The final buffer inserted into the queue
688  *
689  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
690  * @tx_queue full.
691  */
692 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
693                                dma_addr_t dma_addr, unsigned len,
694                                struct efx_tx_buffer **final_buffer)
695 {
696         struct efx_tx_buffer *buffer;
697         struct efx_nic *efx = tx_queue->efx;
698         unsigned dma_len, fill_level, insert_ptr;
699         int q_space;
700
701         EFX_BUG_ON_PARANOID(len <= 0);
702
703         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
704         /* -1 as there is no way to represent all descriptors used */
705         q_space = efx->txq_entries - 1 - fill_level;
706
707         while (1) {
708                 if (unlikely(q_space-- <= 0)) {
709                         /* It might be that completions have happened
710                          * since the xmit path last checked.  Update
711                          * the xmit path's copy of read_count.
712                          */
713                         netif_tx_stop_queue(tx_queue->core_txq);
714                         /* This memory barrier protects the change of
715                          * queue state from the access of read_count. */
716                         smp_mb();
717                         tx_queue->old_read_count =
718                                 ACCESS_ONCE(tx_queue->read_count);
719                         fill_level = (tx_queue->insert_count
720                                       - tx_queue->old_read_count);
721                         q_space = efx->txq_entries - 1 - fill_level;
722                         if (unlikely(q_space-- <= 0)) {
723                                 *final_buffer = NULL;
724                                 return 1;
725                         }
726                         smp_mb();
727                         netif_tx_start_queue(tx_queue->core_txq);
728                 }
729
730                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
731                 buffer = &tx_queue->buffer[insert_ptr];
732                 ++tx_queue->insert_count;
733
734                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
735                                     tx_queue->read_count >=
736                                     efx->txq_entries);
737
738                 efx_tsoh_free(tx_queue, buffer);
739                 EFX_BUG_ON_PARANOID(buffer->len);
740                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
741                 EFX_BUG_ON_PARANOID(buffer->skb);
742                 EFX_BUG_ON_PARANOID(!buffer->continuation);
743                 EFX_BUG_ON_PARANOID(buffer->tsoh);
744
745                 buffer->dma_addr = dma_addr;
746
747                 dma_len = efx_max_tx_len(efx, dma_addr);
748
749                 /* If there is enough space to send then do so */
750                 if (dma_len >= len)
751                         break;
752
753                 buffer->len = dma_len; /* Don't set the other members */
754                 dma_addr += dma_len;
755                 len -= dma_len;
756         }
757
758         EFX_BUG_ON_PARANOID(!len);
759         buffer->len = len;
760         *final_buffer = buffer;
761         return 0;
762 }
763
764
765 /*
766  * Put a TSO header into the TX queue.
767  *
768  * This is special-cased because we know that it is small enough to fit in
769  * a single fragment, and we know it doesn't cross a page boundary.  It
770  * also allows us to not worry about end-of-packet etc.
771  */
772 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
773                                struct efx_tso_header *tsoh, unsigned len)
774 {
775         struct efx_tx_buffer *buffer;
776
777         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
778         efx_tsoh_free(tx_queue, buffer);
779         EFX_BUG_ON_PARANOID(buffer->len);
780         EFX_BUG_ON_PARANOID(buffer->unmap_len);
781         EFX_BUG_ON_PARANOID(buffer->skb);
782         EFX_BUG_ON_PARANOID(!buffer->continuation);
783         EFX_BUG_ON_PARANOID(buffer->tsoh);
784         buffer->len = len;
785         buffer->dma_addr = tsoh->dma_addr;
786         buffer->tsoh = tsoh;
787
788         ++tx_queue->insert_count;
789 }
790
791
792 /* Remove descriptors put into a tx_queue. */
793 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
794 {
795         struct efx_tx_buffer *buffer;
796         dma_addr_t unmap_addr;
797
798         /* Work backwards until we hit the original insert pointer value */
799         while (tx_queue->insert_count != tx_queue->write_count) {
800                 --tx_queue->insert_count;
801                 buffer = &tx_queue->buffer[tx_queue->insert_count &
802                                            tx_queue->ptr_mask];
803                 efx_tsoh_free(tx_queue, buffer);
804                 EFX_BUG_ON_PARANOID(buffer->skb);
805                 if (buffer->unmap_len) {
806                         unmap_addr = (buffer->dma_addr + buffer->len -
807                                       buffer->unmap_len);
808                         if (buffer->unmap_single)
809                                 pci_unmap_single(tx_queue->efx->pci_dev,
810                                                  unmap_addr, buffer->unmap_len,
811                                                  PCI_DMA_TODEVICE);
812                         else
813                                 pci_unmap_page(tx_queue->efx->pci_dev,
814                                                unmap_addr, buffer->unmap_len,
815                                                PCI_DMA_TODEVICE);
816                         buffer->unmap_len = 0;
817                 }
818                 buffer->len = 0;
819                 buffer->continuation = true;
820         }
821 }
822
823
824 /* Parse the SKB header and initialise state. */
825 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
826 {
827         /* All ethernet/IP/TCP headers combined size is TCP header size
828          * plus offset of TCP header relative to start of packet.
829          */
830         st->header_len = ((tcp_hdr(skb)->doff << 2u)
831                           + PTR_DIFF(tcp_hdr(skb), skb->data));
832         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
833
834         if (st->protocol == htons(ETH_P_IP))
835                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
836         else
837                 st->ipv4_id = 0;
838         st->seqnum = ntohl(tcp_hdr(skb)->seq);
839
840         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
841         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
842         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
843
844         st->packet_space = st->full_packet_size;
845         st->out_len = skb->len - st->header_len;
846         st->unmap_len = 0;
847         st->unmap_single = false;
848 }
849
850 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
851                             skb_frag_t *frag)
852 {
853         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
854                                       frag->page_offset, frag->size,
855                                       PCI_DMA_TODEVICE);
856         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
857                 st->unmap_single = false;
858                 st->unmap_len = frag->size;
859                 st->in_len = frag->size;
860                 st->dma_addr = st->unmap_addr;
861                 return 0;
862         }
863         return -ENOMEM;
864 }
865
866 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
867                                  const struct sk_buff *skb)
868 {
869         int hl = st->header_len;
870         int len = skb_headlen(skb) - hl;
871
872         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
873                                         len, PCI_DMA_TODEVICE);
874         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
875                 st->unmap_single = true;
876                 st->unmap_len = len;
877                 st->in_len = len;
878                 st->dma_addr = st->unmap_addr;
879                 return 0;
880         }
881         return -ENOMEM;
882 }
883
884
885 /**
886  * tso_fill_packet_with_fragment - form descriptors for the current fragment
887  * @tx_queue:           Efx TX queue
888  * @skb:                Socket buffer
889  * @st:                 TSO state
890  *
891  * Form descriptors for the current fragment, until we reach the end
892  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
893  * space in @tx_queue.
894  */
895 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
896                                          const struct sk_buff *skb,
897                                          struct tso_state *st)
898 {
899         struct efx_tx_buffer *buffer;
900         int n, end_of_packet, rc;
901
902         if (st->in_len == 0)
903                 return 0;
904         if (st->packet_space == 0)
905                 return 0;
906
907         EFX_BUG_ON_PARANOID(st->in_len <= 0);
908         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
909
910         n = min(st->in_len, st->packet_space);
911
912         st->packet_space -= n;
913         st->out_len -= n;
914         st->in_len -= n;
915
916         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
917         if (likely(rc == 0)) {
918                 if (st->out_len == 0)
919                         /* Transfer ownership of the skb */
920                         buffer->skb = skb;
921
922                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
923                 buffer->continuation = !end_of_packet;
924
925                 if (st->in_len == 0) {
926                         /* Transfer ownership of the pci mapping */
927                         buffer->unmap_len = st->unmap_len;
928                         buffer->unmap_single = st->unmap_single;
929                         st->unmap_len = 0;
930                 }
931         }
932
933         st->dma_addr += n;
934         return rc;
935 }
936
937
938 /**
939  * tso_start_new_packet - generate a new header and prepare for the new packet
940  * @tx_queue:           Efx TX queue
941  * @skb:                Socket buffer
942  * @st:                 TSO state
943  *
944  * Generate a new header and prepare for the new packet.  Return 0 on
945  * success, or -1 if failed to alloc header.
946  */
947 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
948                                 const struct sk_buff *skb,
949                                 struct tso_state *st)
950 {
951         struct efx_tso_header *tsoh;
952         struct tcphdr *tsoh_th;
953         unsigned ip_length;
954         u8 *header;
955
956         /* Allocate a DMA-mapped header buffer. */
957         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
958                 if (tx_queue->tso_headers_free == NULL) {
959                         if (efx_tsoh_block_alloc(tx_queue))
960                                 return -1;
961                 }
962                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
963                 tsoh = tx_queue->tso_headers_free;
964                 tx_queue->tso_headers_free = tsoh->next;
965                 tsoh->unmap_len = 0;
966         } else {
967                 tx_queue->tso_long_headers++;
968                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
969                 if (unlikely(!tsoh))
970                         return -1;
971         }
972
973         header = TSOH_BUFFER(tsoh);
974         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
975
976         /* Copy and update the headers. */
977         memcpy(header, skb->data, st->header_len);
978
979         tsoh_th->seq = htonl(st->seqnum);
980         st->seqnum += skb_shinfo(skb)->gso_size;
981         if (st->out_len > skb_shinfo(skb)->gso_size) {
982                 /* This packet will not finish the TSO burst. */
983                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
984                 tsoh_th->fin = 0;
985                 tsoh_th->psh = 0;
986         } else {
987                 /* This packet will be the last in the TSO burst. */
988                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
989                 tsoh_th->fin = tcp_hdr(skb)->fin;
990                 tsoh_th->psh = tcp_hdr(skb)->psh;
991         }
992
993         if (st->protocol == htons(ETH_P_IP)) {
994                 struct iphdr *tsoh_iph =
995                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
996
997                 tsoh_iph->tot_len = htons(ip_length);
998
999                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1000                 tsoh_iph->id = htons(st->ipv4_id);
1001                 st->ipv4_id++;
1002         } else {
1003                 struct ipv6hdr *tsoh_iph =
1004                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1005
1006                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1007         }
1008
1009         st->packet_space = skb_shinfo(skb)->gso_size;
1010         ++tx_queue->tso_packets;
1011
1012         /* Form a descriptor for this header. */
1013         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1014
1015         return 0;
1016 }
1017
1018
1019 /**
1020  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1021  * @tx_queue:           Efx TX queue
1022  * @skb:                Socket buffer
1023  *
1024  * Context: You must hold netif_tx_lock() to call this function.
1025  *
1026  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1027  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1028  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1029  */
1030 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1031                                struct sk_buff *skb)
1032 {
1033         struct efx_nic *efx = tx_queue->efx;
1034         int frag_i, rc, rc2 = NETDEV_TX_OK;
1035         struct tso_state state;
1036
1037         /* Find the packet protocol and sanity-check it */
1038         state.protocol = efx_tso_check_protocol(skb);
1039
1040         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1041
1042         tso_start(&state, skb);
1043
1044         /* Assume that skb header area contains exactly the headers, and
1045          * all payload is in the frag list.
1046          */
1047         if (skb_headlen(skb) == state.header_len) {
1048                 /* Grab the first payload fragment. */
1049                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1050                 frag_i = 0;
1051                 rc = tso_get_fragment(&state, efx,
1052                                       skb_shinfo(skb)->frags + frag_i);
1053                 if (rc)
1054                         goto mem_err;
1055         } else {
1056                 rc = tso_get_head_fragment(&state, efx, skb);
1057                 if (rc)
1058                         goto mem_err;
1059                 frag_i = -1;
1060         }
1061
1062         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1063                 goto mem_err;
1064
1065         while (1) {
1066                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1067                 if (unlikely(rc)) {
1068                         rc2 = NETDEV_TX_BUSY;
1069                         goto unwind;
1070                 }
1071
1072                 /* Move onto the next fragment? */
1073                 if (state.in_len == 0) {
1074                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1075                                 /* End of payload reached. */
1076                                 break;
1077                         rc = tso_get_fragment(&state, efx,
1078                                               skb_shinfo(skb)->frags + frag_i);
1079                         if (rc)
1080                                 goto mem_err;
1081                 }
1082
1083                 /* Start at new packet? */
1084                 if (state.packet_space == 0 &&
1085                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1086                         goto mem_err;
1087         }
1088
1089         /* Pass off to hardware */
1090         efx_nic_push_buffers(tx_queue);
1091
1092         tx_queue->tso_bursts++;
1093         return NETDEV_TX_OK;
1094
1095  mem_err:
1096         netif_err(efx, tx_err, efx->net_dev,
1097                   "Out of memory for TSO headers, or PCI mapping error\n");
1098         dev_kfree_skb_any(skb);
1099
1100  unwind:
1101         /* Free the DMA mapping we were in the process of writing out */
1102         if (state.unmap_len) {
1103                 if (state.unmap_single)
1104                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1105                                          state.unmap_len, PCI_DMA_TODEVICE);
1106                 else
1107                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1108                                        state.unmap_len, PCI_DMA_TODEVICE);
1109         }
1110
1111         efx_enqueue_unwind(tx_queue);
1112         return rc2;
1113 }
1114
1115
1116 /*
1117  * Free up all TSO datastructures associated with tx_queue. This
1118  * routine should be called only once the tx_queue is both empty and
1119  * will no longer be used.
1120  */
1121 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1122 {
1123         unsigned i;
1124
1125         if (tx_queue->buffer) {
1126                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1127                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1128         }
1129
1130         while (tx_queue->tso_headers_free != NULL)
1131                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1132                                     tx_queue->efx->pci_dev);
1133 }