Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[firefly-linux-kernel-4.4.55.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 /* We need to be able to nest calls to netif_tx_stop_queue(), partly
34  * because of the 2 hardware queues associated with each core queue,
35  * but also so that we can inhibit TX for reasons other than a full
36  * hardware queue. */
37 void efx_stop_queue(struct efx_channel *channel)
38 {
39         struct efx_nic *efx = channel->efx;
40         struct efx_tx_queue *tx_queue = efx_channel_get_tx_queue(channel, 0);
41
42         if (!tx_queue)
43                 return;
44
45         spin_lock_bh(&channel->tx_stop_lock);
46         netif_vdbg(efx, tx_queued, efx->net_dev, "stop TX queue\n");
47
48         atomic_inc(&channel->tx_stop_count);
49         netif_tx_stop_queue(
50                 netdev_get_tx_queue(efx->net_dev,
51                                     tx_queue->queue / EFX_TXQ_TYPES));
52
53         spin_unlock_bh(&channel->tx_stop_lock);
54 }
55
56 /* Decrement core TX queue stop count and wake it if the count is 0 */
57 void efx_wake_queue(struct efx_channel *channel)
58 {
59         struct efx_nic *efx = channel->efx;
60         struct efx_tx_queue *tx_queue = efx_channel_get_tx_queue(channel, 0);
61
62         if (!tx_queue)
63                 return;
64
65         local_bh_disable();
66         if (atomic_dec_and_lock(&channel->tx_stop_count,
67                                 &channel->tx_stop_lock)) {
68                 netif_vdbg(efx, tx_queued, efx->net_dev, "waking TX queue\n");
69                 netif_tx_wake_queue(
70                         netdev_get_tx_queue(efx->net_dev,
71                                             tx_queue->queue / EFX_TXQ_TYPES));
72                 spin_unlock(&channel->tx_stop_lock);
73         }
74         local_bh_enable();
75 }
76
77 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
78                                struct efx_tx_buffer *buffer)
79 {
80         if (buffer->unmap_len) {
81                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
82                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
83                                          buffer->unmap_len);
84                 if (buffer->unmap_single)
85                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
86                                          PCI_DMA_TODEVICE);
87                 else
88                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
89                                        PCI_DMA_TODEVICE);
90                 buffer->unmap_len = 0;
91                 buffer->unmap_single = false;
92         }
93
94         if (buffer->skb) {
95                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
96                 buffer->skb = NULL;
97                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
98                            "TX queue %d transmission id %x complete\n",
99                            tx_queue->queue, tx_queue->read_count);
100         }
101 }
102
103 /**
104  * struct efx_tso_header - a DMA mapped buffer for packet headers
105  * @next: Linked list of free ones.
106  *      The list is protected by the TX queue lock.
107  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
108  * @dma_addr: The DMA address of the header below.
109  *
110  * This controls the memory used for a TSO header.  Use TSOH_DATA()
111  * to find the packet header data.  Use TSOH_SIZE() to calculate the
112  * total size required for a given packet header length.  TSO headers
113  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
114  */
115 struct efx_tso_header {
116         union {
117                 struct efx_tso_header *next;
118                 size_t unmap_len;
119         };
120         dma_addr_t dma_addr;
121 };
122
123 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
124                                struct sk_buff *skb);
125 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
126 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
127                                struct efx_tso_header *tsoh);
128
129 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
130                           struct efx_tx_buffer *buffer)
131 {
132         if (buffer->tsoh) {
133                 if (likely(!buffer->tsoh->unmap_len)) {
134                         buffer->tsoh->next = tx_queue->tso_headers_free;
135                         tx_queue->tso_headers_free = buffer->tsoh;
136                 } else {
137                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
138                 }
139                 buffer->tsoh = NULL;
140         }
141 }
142
143
144 static inline unsigned
145 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
146 {
147         /* Depending on the NIC revision, we can use descriptor
148          * lengths up to 8K or 8K-1.  However, since PCI Express
149          * devices must split read requests at 4K boundaries, there is
150          * little benefit from using descriptors that cross those
151          * boundaries and we keep things simple by not doing so.
152          */
153         unsigned len = (~dma_addr & 0xfff) + 1;
154
155         /* Work around hardware bug for unaligned buffers. */
156         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
157                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
158
159         return len;
160 }
161
162 /*
163  * Add a socket buffer to a TX queue
164  *
165  * This maps all fragments of a socket buffer for DMA and adds them to
166  * the TX queue.  The queue's insert pointer will be incremented by
167  * the number of fragments in the socket buffer.
168  *
169  * If any DMA mapping fails, any mapped fragments will be unmapped,
170  * the queue's insert pointer will be restored to its original value.
171  *
172  * This function is split out from efx_hard_start_xmit to allow the
173  * loopback test to direct packets via specific TX queues.
174  *
175  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
176  * You must hold netif_tx_lock() to call this function.
177  */
178 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
179 {
180         struct efx_nic *efx = tx_queue->efx;
181         struct pci_dev *pci_dev = efx->pci_dev;
182         struct efx_tx_buffer *buffer;
183         skb_frag_t *fragment;
184         struct page *page;
185         int page_offset;
186         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
187         dma_addr_t dma_addr, unmap_addr = 0;
188         unsigned int dma_len;
189         bool unmap_single;
190         int q_space, i = 0;
191         netdev_tx_t rc = NETDEV_TX_OK;
192
193         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
194
195         if (skb_shinfo(skb)->gso_size)
196                 return efx_enqueue_skb_tso(tx_queue, skb);
197
198         /* Get size of the initial fragment */
199         len = skb_headlen(skb);
200
201         /* Pad if necessary */
202         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
203                 EFX_BUG_ON_PARANOID(skb->data_len);
204                 len = 32 + 1;
205                 if (skb_pad(skb, len - skb->len))
206                         return NETDEV_TX_OK;
207         }
208
209         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
210         q_space = efx->txq_entries - 1 - fill_level;
211
212         /* Map for DMA.  Use pci_map_single rather than pci_map_page
213          * since this is more efficient on machines with sparse
214          * memory.
215          */
216         unmap_single = true;
217         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
218
219         /* Process all fragments */
220         while (1) {
221                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
222                         goto pci_err;
223
224                 /* Store fields for marking in the per-fragment final
225                  * descriptor */
226                 unmap_len = len;
227                 unmap_addr = dma_addr;
228
229                 /* Add to TX queue, splitting across DMA boundaries */
230                 do {
231                         if (unlikely(q_space-- <= 0)) {
232                                 /* It might be that completions have
233                                  * happened since the xmit path last
234                                  * checked.  Update the xmit path's
235                                  * copy of read_count.
236                                  */
237                                 ++tx_queue->stopped;
238                                 /* This memory barrier protects the
239                                  * change of stopped from the access
240                                  * of read_count. */
241                                 smp_mb();
242                                 tx_queue->old_read_count =
243                                         *(volatile unsigned *)
244                                         &tx_queue->read_count;
245                                 fill_level = (tx_queue->insert_count
246                                               - tx_queue->old_read_count);
247                                 q_space = efx->txq_entries - 1 - fill_level;
248                                 if (unlikely(q_space-- <= 0))
249                                         goto stop;
250                                 smp_mb();
251                                 --tx_queue->stopped;
252                         }
253
254                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
255                         buffer = &tx_queue->buffer[insert_ptr];
256                         efx_tsoh_free(tx_queue, buffer);
257                         EFX_BUG_ON_PARANOID(buffer->tsoh);
258                         EFX_BUG_ON_PARANOID(buffer->skb);
259                         EFX_BUG_ON_PARANOID(buffer->len);
260                         EFX_BUG_ON_PARANOID(!buffer->continuation);
261                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
262
263                         dma_len = efx_max_tx_len(efx, dma_addr);
264                         if (likely(dma_len >= len))
265                                 dma_len = len;
266
267                         /* Fill out per descriptor fields */
268                         buffer->len = dma_len;
269                         buffer->dma_addr = dma_addr;
270                         len -= dma_len;
271                         dma_addr += dma_len;
272                         ++tx_queue->insert_count;
273                 } while (len);
274
275                 /* Transfer ownership of the unmapping to the final buffer */
276                 buffer->unmap_single = unmap_single;
277                 buffer->unmap_len = unmap_len;
278                 unmap_len = 0;
279
280                 /* Get address and size of next fragment */
281                 if (i >= skb_shinfo(skb)->nr_frags)
282                         break;
283                 fragment = &skb_shinfo(skb)->frags[i];
284                 len = fragment->size;
285                 page = fragment->page;
286                 page_offset = fragment->page_offset;
287                 i++;
288                 /* Map for DMA */
289                 unmap_single = false;
290                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
291                                         PCI_DMA_TODEVICE);
292         }
293
294         /* Transfer ownership of the skb to the final buffer */
295         buffer->skb = skb;
296         buffer->continuation = false;
297
298         /* Pass off to hardware */
299         efx_nic_push_buffers(tx_queue);
300
301         return NETDEV_TX_OK;
302
303  pci_err:
304         netif_err(efx, tx_err, efx->net_dev,
305                   " TX queue %d could not map skb with %d bytes %d "
306                   "fragments for DMA\n", tx_queue->queue, skb->len,
307                   skb_shinfo(skb)->nr_frags + 1);
308
309         /* Mark the packet as transmitted, and free the SKB ourselves */
310         dev_kfree_skb_any(skb);
311         goto unwind;
312
313  stop:
314         rc = NETDEV_TX_BUSY;
315
316         if (tx_queue->stopped == 1)
317                 efx_stop_queue(tx_queue->channel);
318
319  unwind:
320         /* Work backwards until we hit the original insert pointer value */
321         while (tx_queue->insert_count != tx_queue->write_count) {
322                 --tx_queue->insert_count;
323                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
324                 buffer = &tx_queue->buffer[insert_ptr];
325                 efx_dequeue_buffer(tx_queue, buffer);
326                 buffer->len = 0;
327         }
328
329         /* Free the fragment we were mid-way through pushing */
330         if (unmap_len) {
331                 if (unmap_single)
332                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
333                                          PCI_DMA_TODEVICE);
334                 else
335                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
336                                        PCI_DMA_TODEVICE);
337         }
338
339         return rc;
340 }
341
342 /* Remove packets from the TX queue
343  *
344  * This removes packets from the TX queue, up to and including the
345  * specified index.
346  */
347 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
348                                 unsigned int index)
349 {
350         struct efx_nic *efx = tx_queue->efx;
351         unsigned int stop_index, read_ptr;
352
353         stop_index = (index + 1) & tx_queue->ptr_mask;
354         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
355
356         while (read_ptr != stop_index) {
357                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
358                 if (unlikely(buffer->len == 0)) {
359                         netif_err(efx, tx_err, efx->net_dev,
360                                   "TX queue %d spurious TX completion id %x\n",
361                                   tx_queue->queue, read_ptr);
362                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
363                         return;
364                 }
365
366                 efx_dequeue_buffer(tx_queue, buffer);
367                 buffer->continuation = true;
368                 buffer->len = 0;
369
370                 ++tx_queue->read_count;
371                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
372         }
373 }
374
375 /* Initiate a packet transmission.  We use one channel per CPU
376  * (sharing when we have more CPUs than channels).  On Falcon, the TX
377  * completion events will be directed back to the CPU that transmitted
378  * the packet, which should be cache-efficient.
379  *
380  * Context: non-blocking.
381  * Note that returning anything other than NETDEV_TX_OK will cause the
382  * OS to free the skb.
383  */
384 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
385                                       struct net_device *net_dev)
386 {
387         struct efx_nic *efx = netdev_priv(net_dev);
388         struct efx_tx_queue *tx_queue;
389
390         if (unlikely(efx->port_inhibited))
391                 return NETDEV_TX_BUSY;
392
393         tx_queue = efx_get_tx_queue(efx, skb_get_queue_mapping(skb),
394                                     skb->ip_summed == CHECKSUM_PARTIAL ?
395                                     EFX_TXQ_TYPE_OFFLOAD : 0);
396
397         return efx_enqueue_skb(tx_queue, skb);
398 }
399
400 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
401 {
402         unsigned fill_level;
403         struct efx_nic *efx = tx_queue->efx;
404         struct netdev_queue *queue;
405
406         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
407
408         efx_dequeue_buffers(tx_queue, index);
409
410         /* See if we need to restart the netif queue.  This barrier
411          * separates the update of read_count from the test of
412          * stopped. */
413         smp_mb();
414         if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
415                 fill_level = tx_queue->insert_count - tx_queue->read_count;
416                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
417                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
418
419                         /* Do this under netif_tx_lock(), to avoid racing
420                          * with efx_xmit(). */
421                         queue = netdev_get_tx_queue(
422                                 efx->net_dev,
423                                 tx_queue->queue / EFX_TXQ_TYPES);
424                         __netif_tx_lock(queue, smp_processor_id());
425                         if (tx_queue->stopped) {
426                                 tx_queue->stopped = 0;
427                                 efx_wake_queue(tx_queue->channel);
428                         }
429                         __netif_tx_unlock(queue);
430                 }
431         }
432 }
433
434 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
435 {
436         struct efx_nic *efx = tx_queue->efx;
437         unsigned int entries;
438         int i, rc;
439
440         /* Create the smallest power-of-two aligned ring */
441         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
442         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
443         tx_queue->ptr_mask = entries - 1;
444
445         netif_dbg(efx, probe, efx->net_dev,
446                   "creating TX queue %d size %#x mask %#x\n",
447                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
448
449         /* Allocate software ring */
450         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
451                                    GFP_KERNEL);
452         if (!tx_queue->buffer)
453                 return -ENOMEM;
454         for (i = 0; i <= tx_queue->ptr_mask; ++i)
455                 tx_queue->buffer[i].continuation = true;
456
457         /* Allocate hardware ring */
458         rc = efx_nic_probe_tx(tx_queue);
459         if (rc)
460                 goto fail;
461
462         return 0;
463
464  fail:
465         kfree(tx_queue->buffer);
466         tx_queue->buffer = NULL;
467         return rc;
468 }
469
470 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
471 {
472         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
473                   "initialising TX queue %d\n", tx_queue->queue);
474
475         tx_queue->insert_count = 0;
476         tx_queue->write_count = 0;
477         tx_queue->read_count = 0;
478         tx_queue->old_read_count = 0;
479         BUG_ON(tx_queue->stopped);
480
481         /* Set up TX descriptor ring */
482         efx_nic_init_tx(tx_queue);
483 }
484
485 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
486 {
487         struct efx_tx_buffer *buffer;
488
489         if (!tx_queue->buffer)
490                 return;
491
492         /* Free any buffers left in the ring */
493         while (tx_queue->read_count != tx_queue->write_count) {
494                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
495                 efx_dequeue_buffer(tx_queue, buffer);
496                 buffer->continuation = true;
497                 buffer->len = 0;
498
499                 ++tx_queue->read_count;
500         }
501 }
502
503 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
504 {
505         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
506                   "shutting down TX queue %d\n", tx_queue->queue);
507
508         /* Flush TX queue, remove descriptor ring */
509         efx_nic_fini_tx(tx_queue);
510
511         efx_release_tx_buffers(tx_queue);
512
513         /* Free up TSO header cache */
514         efx_fini_tso(tx_queue);
515
516         /* Release queue's stop on port, if any */
517         if (tx_queue->stopped) {
518                 tx_queue->stopped = 0;
519                 efx_wake_queue(tx_queue->channel);
520         }
521 }
522
523 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
524 {
525         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
526                   "destroying TX queue %d\n", tx_queue->queue);
527         efx_nic_remove_tx(tx_queue);
528
529         kfree(tx_queue->buffer);
530         tx_queue->buffer = NULL;
531 }
532
533
534 /* Efx TCP segmentation acceleration.
535  *
536  * Why?  Because by doing it here in the driver we can go significantly
537  * faster than the GSO.
538  *
539  * Requires TX checksum offload support.
540  */
541
542 /* Number of bytes inserted at the start of a TSO header buffer,
543  * similar to NET_IP_ALIGN.
544  */
545 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
546 #define TSOH_OFFSET     0
547 #else
548 #define TSOH_OFFSET     NET_IP_ALIGN
549 #endif
550
551 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
552
553 /* Total size of struct efx_tso_header, buffer and padding */
554 #define TSOH_SIZE(hdr_len)                                      \
555         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
556
557 /* Size of blocks on free list.  Larger blocks must be allocated from
558  * the heap.
559  */
560 #define TSOH_STD_SIZE           128
561
562 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
563 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
564 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
565 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
566 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
567
568 /**
569  * struct tso_state - TSO state for an SKB
570  * @out_len: Remaining length in current segment
571  * @seqnum: Current sequence number
572  * @ipv4_id: Current IPv4 ID, host endian
573  * @packet_space: Remaining space in current packet
574  * @dma_addr: DMA address of current position
575  * @in_len: Remaining length in current SKB fragment
576  * @unmap_len: Length of SKB fragment
577  * @unmap_addr: DMA address of SKB fragment
578  * @unmap_single: DMA single vs page mapping flag
579  * @protocol: Network protocol (after any VLAN header)
580  * @header_len: Number of bytes of header
581  * @full_packet_size: Number of bytes to put in each outgoing segment
582  *
583  * The state used during segmentation.  It is put into this data structure
584  * just to make it easy to pass into inline functions.
585  */
586 struct tso_state {
587         /* Output position */
588         unsigned out_len;
589         unsigned seqnum;
590         unsigned ipv4_id;
591         unsigned packet_space;
592
593         /* Input position */
594         dma_addr_t dma_addr;
595         unsigned in_len;
596         unsigned unmap_len;
597         dma_addr_t unmap_addr;
598         bool unmap_single;
599
600         __be16 protocol;
601         unsigned header_len;
602         int full_packet_size;
603 };
604
605
606 /*
607  * Verify that our various assumptions about sk_buffs and the conditions
608  * under which TSO will be attempted hold true.  Return the protocol number.
609  */
610 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
611 {
612         __be16 protocol = skb->protocol;
613
614         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
615                             protocol);
616         if (protocol == htons(ETH_P_8021Q)) {
617                 /* Find the encapsulated protocol; reset network header
618                  * and transport header based on that. */
619                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
620                 protocol = veh->h_vlan_encapsulated_proto;
621                 skb_set_network_header(skb, sizeof(*veh));
622                 if (protocol == htons(ETH_P_IP))
623                         skb_set_transport_header(skb, sizeof(*veh) +
624                                                  4 * ip_hdr(skb)->ihl);
625                 else if (protocol == htons(ETH_P_IPV6))
626                         skb_set_transport_header(skb, sizeof(*veh) +
627                                                  sizeof(struct ipv6hdr));
628         }
629
630         if (protocol == htons(ETH_P_IP)) {
631                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
632         } else {
633                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
634                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
635         }
636         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
637                              + (tcp_hdr(skb)->doff << 2u)) >
638                             skb_headlen(skb));
639
640         return protocol;
641 }
642
643
644 /*
645  * Allocate a page worth of efx_tso_header structures, and string them
646  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
647  */
648 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
649 {
650
651         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
652         struct efx_tso_header *tsoh;
653         dma_addr_t dma_addr;
654         u8 *base_kva, *kva;
655
656         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
657         if (base_kva == NULL) {
658                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
659                           "Unable to allocate page for TSO headers\n");
660                 return -ENOMEM;
661         }
662
663         /* pci_alloc_consistent() allocates pages. */
664         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
665
666         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
667                 tsoh = (struct efx_tso_header *)kva;
668                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
669                 tsoh->next = tx_queue->tso_headers_free;
670                 tx_queue->tso_headers_free = tsoh;
671         }
672
673         return 0;
674 }
675
676
677 /* Free up a TSO header, and all others in the same page. */
678 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
679                                 struct efx_tso_header *tsoh,
680                                 struct pci_dev *pci_dev)
681 {
682         struct efx_tso_header **p;
683         unsigned long base_kva;
684         dma_addr_t base_dma;
685
686         base_kva = (unsigned long)tsoh & PAGE_MASK;
687         base_dma = tsoh->dma_addr & PAGE_MASK;
688
689         p = &tx_queue->tso_headers_free;
690         while (*p != NULL) {
691                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
692                         *p = (*p)->next;
693                 else
694                         p = &(*p)->next;
695         }
696
697         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
698 }
699
700 static struct efx_tso_header *
701 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
702 {
703         struct efx_tso_header *tsoh;
704
705         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
706         if (unlikely(!tsoh))
707                 return NULL;
708
709         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
710                                         TSOH_BUFFER(tsoh), header_len,
711                                         PCI_DMA_TODEVICE);
712         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
713                                            tsoh->dma_addr))) {
714                 kfree(tsoh);
715                 return NULL;
716         }
717
718         tsoh->unmap_len = header_len;
719         return tsoh;
720 }
721
722 static void
723 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
724 {
725         pci_unmap_single(tx_queue->efx->pci_dev,
726                          tsoh->dma_addr, tsoh->unmap_len,
727                          PCI_DMA_TODEVICE);
728         kfree(tsoh);
729 }
730
731 /**
732  * efx_tx_queue_insert - push descriptors onto the TX queue
733  * @tx_queue:           Efx TX queue
734  * @dma_addr:           DMA address of fragment
735  * @len:                Length of fragment
736  * @final_buffer:       The final buffer inserted into the queue
737  *
738  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
739  * @tx_queue full.
740  */
741 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
742                                dma_addr_t dma_addr, unsigned len,
743                                struct efx_tx_buffer **final_buffer)
744 {
745         struct efx_tx_buffer *buffer;
746         struct efx_nic *efx = tx_queue->efx;
747         unsigned dma_len, fill_level, insert_ptr;
748         int q_space;
749
750         EFX_BUG_ON_PARANOID(len <= 0);
751
752         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
753         /* -1 as there is no way to represent all descriptors used */
754         q_space = efx->txq_entries - 1 - fill_level;
755
756         while (1) {
757                 if (unlikely(q_space-- <= 0)) {
758                         /* It might be that completions have happened
759                          * since the xmit path last checked.  Update
760                          * the xmit path's copy of read_count.
761                          */
762                         ++tx_queue->stopped;
763                         /* This memory barrier protects the change of
764                          * stopped from the access of read_count. */
765                         smp_mb();
766                         tx_queue->old_read_count =
767                                 *(volatile unsigned *)&tx_queue->read_count;
768                         fill_level = (tx_queue->insert_count
769                                       - tx_queue->old_read_count);
770                         q_space = efx->txq_entries - 1 - fill_level;
771                         if (unlikely(q_space-- <= 0)) {
772                                 *final_buffer = NULL;
773                                 return 1;
774                         }
775                         smp_mb();
776                         --tx_queue->stopped;
777                 }
778
779                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
780                 buffer = &tx_queue->buffer[insert_ptr];
781                 ++tx_queue->insert_count;
782
783                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
784                                     tx_queue->read_count >=
785                                     efx->txq_entries);
786
787                 efx_tsoh_free(tx_queue, buffer);
788                 EFX_BUG_ON_PARANOID(buffer->len);
789                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
790                 EFX_BUG_ON_PARANOID(buffer->skb);
791                 EFX_BUG_ON_PARANOID(!buffer->continuation);
792                 EFX_BUG_ON_PARANOID(buffer->tsoh);
793
794                 buffer->dma_addr = dma_addr;
795
796                 dma_len = efx_max_tx_len(efx, dma_addr);
797
798                 /* If there is enough space to send then do so */
799                 if (dma_len >= len)
800                         break;
801
802                 buffer->len = dma_len; /* Don't set the other members */
803                 dma_addr += dma_len;
804                 len -= dma_len;
805         }
806
807         EFX_BUG_ON_PARANOID(!len);
808         buffer->len = len;
809         *final_buffer = buffer;
810         return 0;
811 }
812
813
814 /*
815  * Put a TSO header into the TX queue.
816  *
817  * This is special-cased because we know that it is small enough to fit in
818  * a single fragment, and we know it doesn't cross a page boundary.  It
819  * also allows us to not worry about end-of-packet etc.
820  */
821 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
822                                struct efx_tso_header *tsoh, unsigned len)
823 {
824         struct efx_tx_buffer *buffer;
825
826         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
827         efx_tsoh_free(tx_queue, buffer);
828         EFX_BUG_ON_PARANOID(buffer->len);
829         EFX_BUG_ON_PARANOID(buffer->unmap_len);
830         EFX_BUG_ON_PARANOID(buffer->skb);
831         EFX_BUG_ON_PARANOID(!buffer->continuation);
832         EFX_BUG_ON_PARANOID(buffer->tsoh);
833         buffer->len = len;
834         buffer->dma_addr = tsoh->dma_addr;
835         buffer->tsoh = tsoh;
836
837         ++tx_queue->insert_count;
838 }
839
840
841 /* Remove descriptors put into a tx_queue. */
842 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
843 {
844         struct efx_tx_buffer *buffer;
845         dma_addr_t unmap_addr;
846
847         /* Work backwards until we hit the original insert pointer value */
848         while (tx_queue->insert_count != tx_queue->write_count) {
849                 --tx_queue->insert_count;
850                 buffer = &tx_queue->buffer[tx_queue->insert_count &
851                                            tx_queue->ptr_mask];
852                 efx_tsoh_free(tx_queue, buffer);
853                 EFX_BUG_ON_PARANOID(buffer->skb);
854                 if (buffer->unmap_len) {
855                         unmap_addr = (buffer->dma_addr + buffer->len -
856                                       buffer->unmap_len);
857                         if (buffer->unmap_single)
858                                 pci_unmap_single(tx_queue->efx->pci_dev,
859                                                  unmap_addr, buffer->unmap_len,
860                                                  PCI_DMA_TODEVICE);
861                         else
862                                 pci_unmap_page(tx_queue->efx->pci_dev,
863                                                unmap_addr, buffer->unmap_len,
864                                                PCI_DMA_TODEVICE);
865                         buffer->unmap_len = 0;
866                 }
867                 buffer->len = 0;
868                 buffer->continuation = true;
869         }
870 }
871
872
873 /* Parse the SKB header and initialise state. */
874 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
875 {
876         /* All ethernet/IP/TCP headers combined size is TCP header size
877          * plus offset of TCP header relative to start of packet.
878          */
879         st->header_len = ((tcp_hdr(skb)->doff << 2u)
880                           + PTR_DIFF(tcp_hdr(skb), skb->data));
881         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
882
883         if (st->protocol == htons(ETH_P_IP))
884                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
885         else
886                 st->ipv4_id = 0;
887         st->seqnum = ntohl(tcp_hdr(skb)->seq);
888
889         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
890         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
891         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
892
893         st->packet_space = st->full_packet_size;
894         st->out_len = skb->len - st->header_len;
895         st->unmap_len = 0;
896         st->unmap_single = false;
897 }
898
899 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
900                             skb_frag_t *frag)
901 {
902         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
903                                       frag->page_offset, frag->size,
904                                       PCI_DMA_TODEVICE);
905         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
906                 st->unmap_single = false;
907                 st->unmap_len = frag->size;
908                 st->in_len = frag->size;
909                 st->dma_addr = st->unmap_addr;
910                 return 0;
911         }
912         return -ENOMEM;
913 }
914
915 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
916                                  const struct sk_buff *skb)
917 {
918         int hl = st->header_len;
919         int len = skb_headlen(skb) - hl;
920
921         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
922                                         len, PCI_DMA_TODEVICE);
923         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
924                 st->unmap_single = true;
925                 st->unmap_len = len;
926                 st->in_len = len;
927                 st->dma_addr = st->unmap_addr;
928                 return 0;
929         }
930         return -ENOMEM;
931 }
932
933
934 /**
935  * tso_fill_packet_with_fragment - form descriptors for the current fragment
936  * @tx_queue:           Efx TX queue
937  * @skb:                Socket buffer
938  * @st:                 TSO state
939  *
940  * Form descriptors for the current fragment, until we reach the end
941  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
942  * space in @tx_queue.
943  */
944 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
945                                          const struct sk_buff *skb,
946                                          struct tso_state *st)
947 {
948         struct efx_tx_buffer *buffer;
949         int n, end_of_packet, rc;
950
951         if (st->in_len == 0)
952                 return 0;
953         if (st->packet_space == 0)
954                 return 0;
955
956         EFX_BUG_ON_PARANOID(st->in_len <= 0);
957         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
958
959         n = min(st->in_len, st->packet_space);
960
961         st->packet_space -= n;
962         st->out_len -= n;
963         st->in_len -= n;
964
965         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
966         if (likely(rc == 0)) {
967                 if (st->out_len == 0)
968                         /* Transfer ownership of the skb */
969                         buffer->skb = skb;
970
971                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
972                 buffer->continuation = !end_of_packet;
973
974                 if (st->in_len == 0) {
975                         /* Transfer ownership of the pci mapping */
976                         buffer->unmap_len = st->unmap_len;
977                         buffer->unmap_single = st->unmap_single;
978                         st->unmap_len = 0;
979                 }
980         }
981
982         st->dma_addr += n;
983         return rc;
984 }
985
986
987 /**
988  * tso_start_new_packet - generate a new header and prepare for the new packet
989  * @tx_queue:           Efx TX queue
990  * @skb:                Socket buffer
991  * @st:                 TSO state
992  *
993  * Generate a new header and prepare for the new packet.  Return 0 on
994  * success, or -1 if failed to alloc header.
995  */
996 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
997                                 const struct sk_buff *skb,
998                                 struct tso_state *st)
999 {
1000         struct efx_tso_header *tsoh;
1001         struct tcphdr *tsoh_th;
1002         unsigned ip_length;
1003         u8 *header;
1004
1005         /* Allocate a DMA-mapped header buffer. */
1006         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1007                 if (tx_queue->tso_headers_free == NULL) {
1008                         if (efx_tsoh_block_alloc(tx_queue))
1009                                 return -1;
1010                 }
1011                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1012                 tsoh = tx_queue->tso_headers_free;
1013                 tx_queue->tso_headers_free = tsoh->next;
1014                 tsoh->unmap_len = 0;
1015         } else {
1016                 tx_queue->tso_long_headers++;
1017                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1018                 if (unlikely(!tsoh))
1019                         return -1;
1020         }
1021
1022         header = TSOH_BUFFER(tsoh);
1023         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1024
1025         /* Copy and update the headers. */
1026         memcpy(header, skb->data, st->header_len);
1027
1028         tsoh_th->seq = htonl(st->seqnum);
1029         st->seqnum += skb_shinfo(skb)->gso_size;
1030         if (st->out_len > skb_shinfo(skb)->gso_size) {
1031                 /* This packet will not finish the TSO burst. */
1032                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1033                 tsoh_th->fin = 0;
1034                 tsoh_th->psh = 0;
1035         } else {
1036                 /* This packet will be the last in the TSO burst. */
1037                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1038                 tsoh_th->fin = tcp_hdr(skb)->fin;
1039                 tsoh_th->psh = tcp_hdr(skb)->psh;
1040         }
1041
1042         if (st->protocol == htons(ETH_P_IP)) {
1043                 struct iphdr *tsoh_iph =
1044                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1045
1046                 tsoh_iph->tot_len = htons(ip_length);
1047
1048                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1049                 tsoh_iph->id = htons(st->ipv4_id);
1050                 st->ipv4_id++;
1051         } else {
1052                 struct ipv6hdr *tsoh_iph =
1053                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1054
1055                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1056         }
1057
1058         st->packet_space = skb_shinfo(skb)->gso_size;
1059         ++tx_queue->tso_packets;
1060
1061         /* Form a descriptor for this header. */
1062         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1063
1064         return 0;
1065 }
1066
1067
1068 /**
1069  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1070  * @tx_queue:           Efx TX queue
1071  * @skb:                Socket buffer
1072  *
1073  * Context: You must hold netif_tx_lock() to call this function.
1074  *
1075  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1076  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1077  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1078  */
1079 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1080                                struct sk_buff *skb)
1081 {
1082         struct efx_nic *efx = tx_queue->efx;
1083         int frag_i, rc, rc2 = NETDEV_TX_OK;
1084         struct tso_state state;
1085
1086         /* Find the packet protocol and sanity-check it */
1087         state.protocol = efx_tso_check_protocol(skb);
1088
1089         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1090
1091         tso_start(&state, skb);
1092
1093         /* Assume that skb header area contains exactly the headers, and
1094          * all payload is in the frag list.
1095          */
1096         if (skb_headlen(skb) == state.header_len) {
1097                 /* Grab the first payload fragment. */
1098                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1099                 frag_i = 0;
1100                 rc = tso_get_fragment(&state, efx,
1101                                       skb_shinfo(skb)->frags + frag_i);
1102                 if (rc)
1103                         goto mem_err;
1104         } else {
1105                 rc = tso_get_head_fragment(&state, efx, skb);
1106                 if (rc)
1107                         goto mem_err;
1108                 frag_i = -1;
1109         }
1110
1111         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1112                 goto mem_err;
1113
1114         while (1) {
1115                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1116                 if (unlikely(rc))
1117                         goto stop;
1118
1119                 /* Move onto the next fragment? */
1120                 if (state.in_len == 0) {
1121                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1122                                 /* End of payload reached. */
1123                                 break;
1124                         rc = tso_get_fragment(&state, efx,
1125                                               skb_shinfo(skb)->frags + frag_i);
1126                         if (rc)
1127                                 goto mem_err;
1128                 }
1129
1130                 /* Start at new packet? */
1131                 if (state.packet_space == 0 &&
1132                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1133                         goto mem_err;
1134         }
1135
1136         /* Pass off to hardware */
1137         efx_nic_push_buffers(tx_queue);
1138
1139         tx_queue->tso_bursts++;
1140         return NETDEV_TX_OK;
1141
1142  mem_err:
1143         netif_err(efx, tx_err, efx->net_dev,
1144                   "Out of memory for TSO headers, or PCI mapping error\n");
1145         dev_kfree_skb_any(skb);
1146         goto unwind;
1147
1148  stop:
1149         rc2 = NETDEV_TX_BUSY;
1150
1151         /* Stop the queue if it wasn't stopped before. */
1152         if (tx_queue->stopped == 1)
1153                 efx_stop_queue(tx_queue->channel);
1154
1155  unwind:
1156         /* Free the DMA mapping we were in the process of writing out */
1157         if (state.unmap_len) {
1158                 if (state.unmap_single)
1159                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1160                                          state.unmap_len, PCI_DMA_TODEVICE);
1161                 else
1162                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1163                                        state.unmap_len, PCI_DMA_TODEVICE);
1164         }
1165
1166         efx_enqueue_unwind(tx_queue);
1167         return rc2;
1168 }
1169
1170
1171 /*
1172  * Free up all TSO datastructures associated with tx_queue. This
1173  * routine should be called only once the tx_queue is both empty and
1174  * will no longer be used.
1175  */
1176 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1177 {
1178         unsigned i;
1179
1180         if (tx_queue->buffer) {
1181                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1182                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1183         }
1184
1185         while (tx_queue->tso_headers_free != NULL)
1186                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1187                                     tx_queue->efx->pci_dev);
1188 }