1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
64 * Define this if using the driver with the zero-copy patch
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
106 static int rx_copybreak /* = 0 */;
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #define DMA_BURST_SIZE 64
113 #define DMA_BURST_SIZE 128
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
125 /* Operational parameters that are set at compile time. */
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
140 #define RX_Q_ENTRIES Rx256QEntries
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
149 * We need a much better method to determine if dma_addr_t is 64-bit.
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || (defined(CONFIG_MIPS) && ((defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR)) || defined(CONFIG_64BIT))) || (defined(__powerpc64__) || defined(CONFIG_PHYS_64BIT))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
177 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
178 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
180 /* These identify the driver base version and may not be removed. */
181 static const char version[] __devinitconst =
182 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
183 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
185 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187 MODULE_LICENSE("GPL");
188 MODULE_VERSION(DRV_VERSION);
189 MODULE_FIRMWARE(FIRMWARE_RX);
190 MODULE_FIRMWARE(FIRMWARE_TX);
192 module_param(max_interrupt_work, int, 0);
193 module_param(mtu, int, 0);
194 module_param(debug, int, 0);
195 module_param(rx_copybreak, int, 0);
196 module_param(intr_latency, int, 0);
197 module_param(small_frames, int, 0);
198 module_param_array(options, int, NULL, 0);
199 module_param_array(full_duplex, int, NULL, 0);
200 module_param(enable_hw_cksum, int, 0);
201 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202 MODULE_PARM_DESC(mtu, "MTU (all boards)");
203 MODULE_PARM_DESC(debug, "Debug level (0-6)");
204 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
214 I. Board Compatibility
216 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
218 II. Board-specific settings
220 III. Driver operation
224 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225 ring sizes are set fixed by the hardware, but may optionally be wrapped
226 earlier by the END bit in the descriptor.
227 This driver uses that hardware queue size for the Rx ring, where a large
228 number of entries has no ill effect beyond increases the potential backlog.
229 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230 disables the queue layer priority ordering and we have no mechanism to
231 utilize the hardware two-level priority queue. When modifying the
232 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
235 IIIb/c. Transmit/Receive Structure
237 See the Adaptec manual for the many possible structures, and options for
238 each structure. There are far too many to document all of them here.
240 For transmit this driver uses type 0/1 transmit descriptors (depending
241 on the 32/64 bitness of the architecture), and relies on automatic
242 minimum-length padding. It does not use the completion queue
243 consumer index, but instead checks for non-zero status entries.
245 For receive this driver uses type 2/3 receive descriptors. The driver
246 allocates full frame size skbuffs for the Rx ring buffers, so all frames
247 should fit in a single descriptor. The driver does not use the completion
248 queue consumer index, but instead checks for non-zero status entries.
250 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251 is allocated and the frame is copied to the new skbuff. When the incoming
252 frame is larger, the skbuff is passed directly up the protocol stack.
253 Buffers consumed this way are replaced by newly allocated skbuffs in a later
256 A notable aspect of operation is that unaligned buffers are not permitted by
257 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258 isn't longword aligned, which may cause problems on some machine
259 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260 the frame into a new skbuff unconditionally. Copied frames are put into the
261 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
263 IIId. Synchronization
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and interrupt handling software.
270 The send packet thread has partial control over the Tx ring and the netif_queue
271 status. If the number of free Tx slots in the ring falls below a certain number
272 (currently hardcoded to 4), it signals the upper layer to stop the queue.
274 The interrupt handler has exclusive control over the Rx ring and records stats
275 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277 number of free Tx slow is above the threshold, it signals the upper layer to
284 The Adaptec Starfire manuals, available only from Adaptec.
285 http://www.scyld.com/expert/100mbps.html
286 http://www.scyld.com/expert/NWay.html
290 - StopOnPerr is broken, don't enable
291 - Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
298 enum chip_capability_flags {CanHaveMII=1, };
304 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
305 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
308 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
310 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
311 static const struct chip_info {
314 } netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
319 /* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
327 enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
351 enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
372 /* Bits in the RxFilterMode register. */
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
380 /* Bits in the TxMode register */
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
387 /* Bits in the TxDescCtrl register. */
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
399 /* Bits in the RxDescQCtrl register. */
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
412 /* Bits in the RxDMACtrl register. */
413 enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
428 /* Bits in the RxCompletionAddr register */
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
437 /* Bits in the TxCompletionAddr register */
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
446 /* Bits in the GenCtrl register */
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
452 /* Bits in the IntrTimerCtrl register */
453 enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
459 /* The Rx and Tx buffer descriptors. */
460 struct starfire_rx_desc {
461 netdrv_addr_t rxaddr;
464 RxDescValid=1, RxDescEndRing=2,
467 /* Completion queue entry. */
468 struct short_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
471 struct basic_rx_done_desc {
472 __le32 status; /* Low 16 bits is length. */
476 struct csum_rx_done_desc {
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
481 struct full_rx_done_desc {
482 __le32 status; /* Low 16 bits is length. */
486 __le16 csum; /* partial checksum */
489 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
491 typedef struct full_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType3
493 #else /* not VLAN_SUPPORT */
494 typedef struct csum_rx_done_desc rx_done_desc;
495 #define RxComplType RxComplType2
496 #endif /* not VLAN_SUPPORT */
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
502 /* Type 1 Tx descriptor. */
503 struct starfire_tx_desc_1 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
508 /* Type 2 Tx descriptor. */
509 struct starfire_tx_desc_2 {
510 __le32 status; /* Upper bits are status, lower 16 length. */
516 typedef struct starfire_tx_desc_2 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType2
518 #else /* not ADDR_64BITS */
519 typedef struct starfire_tx_desc_1 starfire_tx_desc;
520 #define TX_DESC_TYPE TxDescType1
521 #endif /* not ADDR_64BITS */
522 #define TX_DESC_SPACING TxDescSpaceUnlim
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
529 struct tx_done_desc {
530 __le32 status; /* timestamp, index. */
532 __le32 intrstatus; /* interrupt status */
536 struct rx_ring_info {
540 struct tx_ring_info {
543 unsigned int used_slots;
547 struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
563 struct napi_struct napi;
564 struct net_device *dev;
565 struct pci_dev *pci_dev;
567 struct vlan_group *vlgrp;
570 dma_addr_t queue_mem_dma;
571 size_t queue_mem_size;
573 /* Frequently used values: keep some adjacent for cache effect. */
575 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
576 unsigned int cur_tx, dirty_tx, reap_tx;
577 unsigned int rx_buf_sz; /* Based on MTU+slack. */
578 /* These values keep track of the transceiver/media in use. */
579 int speed100; /* Set if speed == 100MBit. */
583 /* MII transceiver section. */
584 struct mii_if_info mii_if; /* MII lib hooks/info */
585 int phy_cnt; /* MII device addresses. */
586 unsigned char phys[PHY_CNT]; /* MII device addresses. */
591 static int mdio_read(struct net_device *dev, int phy_id, int location);
592 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
593 static int netdev_open(struct net_device *dev);
594 static void check_duplex(struct net_device *dev);
595 static void tx_timeout(struct net_device *dev);
596 static void init_ring(struct net_device *dev);
597 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
598 static irqreturn_t intr_handler(int irq, void *dev_instance);
599 static void netdev_error(struct net_device *dev, int intr_status);
600 static int __netdev_rx(struct net_device *dev, int *quota);
601 static int netdev_poll(struct napi_struct *napi, int budget);
602 static void refill_rx_ring(struct net_device *dev);
603 static void netdev_error(struct net_device *dev, int intr_status);
604 static void set_rx_mode(struct net_device *dev);
605 static struct net_device_stats *get_stats(struct net_device *dev);
606 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
607 static int netdev_close(struct net_device *dev);
608 static void netdev_media_change(struct net_device *dev);
609 static const struct ethtool_ops ethtool_ops;
613 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
615 struct netdev_private *np = netdev_priv(dev);
617 spin_lock(&np->lock);
619 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
622 spin_unlock(&np->lock);
625 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
627 struct netdev_private *np = netdev_priv(dev);
629 spin_lock(&np->lock);
631 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
633 spin_unlock(&np->lock);
636 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
638 struct netdev_private *np = netdev_priv(dev);
640 spin_lock(&np->lock);
642 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
643 vlan_group_set_device(np->vlgrp, vid, NULL);
645 spin_unlock(&np->lock);
647 #endif /* VLAN_SUPPORT */
650 static const struct net_device_ops netdev_ops = {
651 .ndo_open = netdev_open,
652 .ndo_stop = netdev_close,
653 .ndo_start_xmit = start_tx,
654 .ndo_tx_timeout = tx_timeout,
655 .ndo_get_stats = get_stats,
656 .ndo_set_multicast_list = &set_rx_mode,
657 .ndo_do_ioctl = netdev_ioctl,
658 .ndo_change_mtu = eth_change_mtu,
659 .ndo_set_mac_address = eth_mac_addr,
660 .ndo_validate_addr = eth_validate_addr,
662 .ndo_vlan_rx_register = netdev_vlan_rx_register,
663 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
664 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
668 static int __devinit starfire_init_one(struct pci_dev *pdev,
669 const struct pci_device_id *ent)
671 struct netdev_private *np;
672 int i, irq, option, chip_idx = ent->driver_data;
673 struct net_device *dev;
674 static int card_idx = -1;
677 int drv_flags, io_size;
680 /* when built into the kernel, we only print version if device is found */
682 static int printed_version;
683 if (!printed_version++)
689 if (pci_enable_device (pdev))
692 ioaddr = pci_resource_start(pdev, 0);
693 io_size = pci_resource_len(pdev, 0);
694 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
695 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
699 dev = alloc_etherdev(sizeof(*np));
701 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
704 SET_NETDEV_DEV(dev, &pdev->dev);
708 if (pci_request_regions (pdev, DRV_NAME)) {
709 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
710 goto err_out_free_netdev;
713 base = ioremap(ioaddr, io_size);
715 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
716 card_idx, io_size, ioaddr);
717 goto err_out_free_res;
720 pci_set_master(pdev);
722 /* enable MWI -- it vastly improves Rx performance on sparc64 */
723 pci_try_set_mwi(pdev);
726 /* Starfire can do TCP/UDP checksumming */
728 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
729 #endif /* ZEROCOPY */
732 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
733 #endif /* VLAN_RX_KILL_VID */
735 dev->features |= NETIF_F_HIGHDMA;
736 #endif /* ADDR_64BITS */
738 /* Serial EEPROM reads are hidden by the hardware. */
739 for (i = 0; i < 6; i++)
740 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
742 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
744 for (i = 0; i < 0x20; i++)
746 (unsigned int)readb(base + EEPROMCtrl + i),
747 i % 16 != 15 ? " " : "\n");
750 /* Issue soft reset */
751 writel(MiiSoftReset, base + TxMode);
753 writel(0, base + TxMode);
755 /* Reset the chip to erase previous misconfiguration. */
756 writel(1, base + PCIDeviceConfig);
758 while (--boguscnt > 0) {
760 if ((readl(base + PCIDeviceConfig) & 1) == 0)
764 printk("%s: chipset reset never completed!\n", dev->name);
765 /* wait a little longer */
768 dev->base_addr = (unsigned long)base;
771 np = netdev_priv(dev);
774 spin_lock_init(&np->lock);
775 pci_set_drvdata(pdev, dev);
779 np->mii_if.dev = dev;
780 np->mii_if.mdio_read = mdio_read;
781 np->mii_if.mdio_write = mdio_write;
782 np->mii_if.phy_id_mask = 0x1f;
783 np->mii_if.reg_num_mask = 0x1f;
785 drv_flags = netdrv_tbl[chip_idx].drv_flags;
787 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
789 option = dev->mem_start;
791 /* The lower four bits are the media type. */
793 np->mii_if.full_duplex = 1;
795 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
796 np->mii_if.full_duplex = 1;
798 if (np->mii_if.full_duplex)
799 np->mii_if.force_media = 1;
801 np->mii_if.force_media = 0;
804 /* timer resolution is 128 * 0.8us */
805 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
806 Timer10X | EnableIntrMasking;
808 if (small_frames > 0) {
809 np->intr_timer_ctrl |= SmallFrameBypass;
810 switch (small_frames) {
812 np->intr_timer_ctrl |= SmallFrame64;
815 np->intr_timer_ctrl |= SmallFrame128;
818 np->intr_timer_ctrl |= SmallFrame256;
821 np->intr_timer_ctrl |= SmallFrame512;
822 if (small_frames > 512)
823 printk("Adjusting small_frames down to 512\n");
828 dev->netdev_ops = &netdev_ops;
829 dev->watchdog_timeo = TX_TIMEOUT;
830 SET_ETHTOOL_OPS(dev, ðtool_ops);
832 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
837 if (register_netdev(dev))
838 goto err_out_cleardev;
840 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
841 dev->name, netdrv_tbl[chip_idx].name, base,
844 if (drv_flags & CanHaveMII) {
845 int phy, phy_idx = 0;
847 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
848 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
851 while (--boguscnt > 0)
852 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
855 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
858 mii_status = mdio_read(dev, phy, MII_BMSR);
859 if (mii_status != 0) {
860 np->phys[phy_idx++] = phy;
861 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
862 printk(KERN_INFO "%s: MII PHY found at address %d, status "
863 "%#4.4x advertising %#4.4x.\n",
864 dev->name, phy, mii_status, np->mii_if.advertising);
865 /* there can be only one PHY on-board */
869 np->phy_cnt = phy_idx;
871 np->mii_if.phy_id = np->phys[0];
873 memset(&np->mii_if, 0, sizeof(np->mii_if));
876 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
877 dev->name, enable_hw_cksum ? "enabled" : "disabled");
881 pci_set_drvdata(pdev, NULL);
884 pci_release_regions (pdev);
891 /* Read the MII Management Data I/O (MDIO) interfaces. */
892 static int mdio_read(struct net_device *dev, int phy_id, int location)
894 struct netdev_private *np = netdev_priv(dev);
895 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
896 int result, boguscnt=1000;
897 /* ??? Should we add a busy-wait here? */
899 result = readl(mdio_addr);
900 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
903 if ((result & 0xffff) == 0xffff)
905 return result & 0xffff;
909 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
911 struct netdev_private *np = netdev_priv(dev);
912 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
913 writel(value, mdio_addr);
914 /* The busy-wait will occur before a read. */
918 static int netdev_open(struct net_device *dev)
920 const struct firmware *fw_rx, *fw_tx;
921 const __be32 *fw_rx_data, *fw_tx_data;
922 struct netdev_private *np = netdev_priv(dev);
923 void __iomem *ioaddr = np->base;
925 size_t tx_size, rx_size;
926 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
928 /* Do we ever need to reset the chip??? */
930 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
934 /* Disable the Rx and Tx, and reset the chip. */
935 writel(0, ioaddr + GenCtrl);
936 writel(1, ioaddr + PCIDeviceConfig);
938 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
939 dev->name, dev->irq);
941 /* Allocate the various queues. */
942 if (!np->queue_mem) {
943 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
944 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
945 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
946 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
947 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
948 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
949 if (np->queue_mem == NULL) {
950 free_irq(dev->irq, dev);
954 np->tx_done_q = np->queue_mem;
955 np->tx_done_q_dma = np->queue_mem_dma;
956 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
957 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
958 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
959 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
960 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
961 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
964 /* Start with no carrier, it gets adjusted later */
965 netif_carrier_off(dev);
967 /* Set the size of the Rx buffers. */
968 writel((np->rx_buf_sz << RxBufferLenShift) |
969 (0 << RxMinDescrThreshShift) |
970 RxPrefetchMode | RxVariableQ |
972 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
974 ioaddr + RxDescQCtrl);
976 /* Set up the Rx DMA controller. */
977 writel(RxChecksumIgnore |
978 (0 << RxEarlyIntThreshShift) |
979 (6 << RxHighPrioThreshShift) |
980 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
983 /* Set Tx descriptor */
984 writel((2 << TxHiPriFIFOThreshShift) |
985 (0 << TxPadLenShift) |
986 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
987 TX_DESC_Q_ADDR_SIZE |
988 TX_DESC_SPACING | TX_DESC_TYPE,
989 ioaddr + TxDescCtrl);
991 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
992 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
993 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
994 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
995 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
997 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
998 writel(np->rx_done_q_dma |
1000 (0 << RxComplThreshShift),
1001 ioaddr + RxCompletionAddr);
1004 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1006 /* Fill both the Tx SA register and the Rx perfect filter. */
1007 for (i = 0; i < 6; i++)
1008 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1009 /* The first entry is special because it bypasses the VLAN filter.
1011 writew(0, ioaddr + PerfFilterTable);
1012 writew(0, ioaddr + PerfFilterTable + 4);
1013 writew(0, ioaddr + PerfFilterTable + 8);
1014 for (i = 1; i < 16; i++) {
1015 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1016 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1017 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1018 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1019 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1022 /* Initialize other registers. */
1023 /* Configure the PCI bus bursts and FIFO thresholds. */
1024 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1025 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1027 writel(np->tx_mode, ioaddr + TxMode);
1028 np->tx_threshold = 4;
1029 writel(np->tx_threshold, ioaddr + TxThreshold);
1031 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1033 napi_enable(&np->napi);
1035 netif_start_queue(dev);
1038 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1041 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1044 /* Enable GPIO interrupts on link change */
1045 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1047 /* Set the interrupt mask */
1048 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1049 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1050 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1051 ioaddr + IntrEnable);
1052 /* Enable PCI interrupts. */
1053 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1054 ioaddr + PCIDeviceConfig);
1057 /* Set VLAN type to 802.1q */
1058 writel(ETH_P_8021Q, ioaddr + VlanType);
1059 #endif /* VLAN_SUPPORT */
1061 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1063 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1067 if (fw_rx->size % 4) {
1068 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1069 fw_rx->size, FIRMWARE_RX);
1073 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1075 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1079 if (fw_tx->size % 4) {
1080 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1081 fw_tx->size, FIRMWARE_TX);
1085 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1086 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1087 rx_size = fw_rx->size / 4;
1088 tx_size = fw_tx->size / 4;
1090 /* Load Rx/Tx firmware into the frame processors */
1091 for (i = 0; i < rx_size; i++)
1092 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1093 for (i = 0; i < tx_size; i++)
1094 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1095 if (enable_hw_cksum)
1096 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1097 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1099 /* Enable the Rx and Tx units only. */
1100 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1103 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1107 release_firmware(fw_tx);
1109 release_firmware(fw_rx);
1117 static void check_duplex(struct net_device *dev)
1119 struct netdev_private *np = netdev_priv(dev);
1121 int silly_count = 1000;
1123 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1124 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1126 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1129 printk("%s: MII reset failed!\n", dev->name);
1133 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1135 if (!np->mii_if.force_media) {
1136 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1138 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1140 reg0 |= BMCR_SPEED100;
1141 if (np->mii_if.full_duplex)
1142 reg0 |= BMCR_FULLDPLX;
1143 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1145 np->speed100 ? "100" : "10",
1146 np->mii_if.full_duplex ? "full" : "half");
1148 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1152 static void tx_timeout(struct net_device *dev)
1154 struct netdev_private *np = netdev_priv(dev);
1155 void __iomem *ioaddr = np->base;
1158 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1159 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1161 /* Perhaps we should reinitialize the hardware here. */
1164 * Stop and restart the interface.
1165 * Cheat and increase the debug level temporarily.
1173 /* Trigger an immediate transmit demand. */
1175 dev->trans_start = jiffies; /* prevent tx timeout */
1176 dev->stats.tx_errors++;
1177 netif_wake_queue(dev);
1181 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1182 static void init_ring(struct net_device *dev)
1184 struct netdev_private *np = netdev_priv(dev);
1187 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1188 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1190 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1192 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1193 for (i = 0; i < RX_RING_SIZE; i++) {
1194 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1195 np->rx_info[i].skb = skb;
1198 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1199 skb->dev = dev; /* Mark as being used by this device. */
1200 /* Grrr, we cannot offset to correctly align the IP header. */
1201 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1203 writew(i - 1, np->base + RxDescQIdx);
1204 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1206 /* Clear the remainder of the Rx buffer ring. */
1207 for ( ; i < RX_RING_SIZE; i++) {
1208 np->rx_ring[i].rxaddr = 0;
1209 np->rx_info[i].skb = NULL;
1210 np->rx_info[i].mapping = 0;
1212 /* Mark the last entry as wrapping the ring. */
1213 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1215 /* Clear the completion rings. */
1216 for (i = 0; i < DONE_Q_SIZE; i++) {
1217 np->rx_done_q[i].status = 0;
1218 np->tx_done_q[i].status = 0;
1221 for (i = 0; i < TX_RING_SIZE; i++)
1222 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1226 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1228 struct netdev_private *np = netdev_priv(dev);
1234 * be cautious here, wrapping the queue has weird semantics
1235 * and we may not have enough slots even when it seems we do.
1237 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1238 netif_stop_queue(dev);
1239 return NETDEV_TX_BUSY;
1242 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1243 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1244 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1245 return NETDEV_TX_OK;
1247 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1249 entry = np->cur_tx % TX_RING_SIZE;
1250 for (i = 0; i < skb_num_frags(skb); i++) {
1255 np->tx_info[entry].skb = skb;
1257 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1258 status |= TxRingWrap;
1262 status |= TxDescIntr;
1265 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1267 dev->stats.tx_compressed++;
1269 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1271 np->tx_info[entry].mapping =
1272 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1274 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1275 status |= this_frag->size;
1276 np->tx_info[entry].mapping =
1277 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1280 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1281 np->tx_ring[entry].status = cpu_to_le32(status);
1283 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1284 dev->name, np->cur_tx, np->dirty_tx,
1287 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1288 np->cur_tx += np->tx_info[entry].used_slots;
1291 np->tx_info[entry].used_slots = 1;
1292 np->cur_tx += np->tx_info[entry].used_slots;
1295 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1296 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1300 /* Non-x86: explicitly flush descriptor cache lines here. */
1301 /* Ensure all descriptors are written back before the transmit is
1305 /* Update the producer index. */
1306 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1308 /* 4 is arbitrary, but should be ok */
1309 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1310 netif_stop_queue(dev);
1312 return NETDEV_TX_OK;
1316 /* The interrupt handler does all of the Rx thread work and cleans up
1317 after the Tx thread. */
1318 static irqreturn_t intr_handler(int irq, void *dev_instance)
1320 struct net_device *dev = dev_instance;
1321 struct netdev_private *np = netdev_priv(dev);
1322 void __iomem *ioaddr = np->base;
1323 int boguscnt = max_interrupt_work;
1329 u32 intr_status = readl(ioaddr + IntrClear);
1332 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1333 dev->name, intr_status);
1335 if (intr_status == 0 || intr_status == (u32) -1)
1340 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1343 if (likely(napi_schedule_prep(&np->napi))) {
1344 __napi_schedule(&np->napi);
1345 enable = readl(ioaddr + IntrEnable);
1346 enable &= ~(IntrRxDone | IntrRxEmpty);
1347 writel(enable, ioaddr + IntrEnable);
1348 /* flush PCI posting buffers */
1349 readl(ioaddr + IntrEnable);
1351 /* Paranoia check */
1352 enable = readl(ioaddr + IntrEnable);
1353 if (enable & (IntrRxDone | IntrRxEmpty)) {
1355 "%s: interrupt while in poll!\n",
1357 enable &= ~(IntrRxDone | IntrRxEmpty);
1358 writel(enable, ioaddr + IntrEnable);
1363 /* Scavenge the skbuff list based on the Tx-done queue.
1364 There are redundant checks here that may be cleaned up
1365 after the driver has proven to be reliable. */
1366 consumer = readl(ioaddr + TxConsumerIdx);
1368 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1369 dev->name, consumer);
1371 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1373 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1374 dev->name, np->dirty_tx, np->tx_done, tx_status);
1375 if ((tx_status & 0xe0000000) == 0xa0000000) {
1376 dev->stats.tx_packets++;
1377 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1378 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1379 struct sk_buff *skb = np->tx_info[entry].skb;
1380 np->tx_info[entry].skb = NULL;
1381 pci_unmap_single(np->pci_dev,
1382 np->tx_info[entry].mapping,
1383 skb_first_frag_len(skb),
1385 np->tx_info[entry].mapping = 0;
1386 np->dirty_tx += np->tx_info[entry].used_slots;
1387 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1390 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1391 pci_unmap_single(np->pci_dev,
1392 np->tx_info[entry].mapping,
1393 skb_shinfo(skb)->frags[i].size,
1400 dev_kfree_skb_irq(skb);
1402 np->tx_done_q[np->tx_done].status = 0;
1403 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1405 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1407 if (netif_queue_stopped(dev) &&
1408 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1409 /* The ring is no longer full, wake the queue. */
1410 netif_wake_queue(dev);
1413 /* Stats overflow */
1414 if (intr_status & IntrStatsMax)
1417 /* Media change interrupt. */
1418 if (intr_status & IntrLinkChange)
1419 netdev_media_change(dev);
1421 /* Abnormal error summary/uncommon events handlers. */
1422 if (intr_status & IntrAbnormalSummary)
1423 netdev_error(dev, intr_status);
1425 if (--boguscnt < 0) {
1427 printk(KERN_WARNING "%s: Too much work at interrupt, "
1429 dev->name, intr_status);
1435 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1436 dev->name, (int) readl(ioaddr + IntrStatus));
1437 return IRQ_RETVAL(handled);
1442 * This routine is logically part of the interrupt/poll handler, but separated
1443 * for clarity and better register allocation.
1445 static int __netdev_rx(struct net_device *dev, int *quota)
1447 struct netdev_private *np = netdev_priv(dev);
1451 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1452 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1453 struct sk_buff *skb;
1456 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1459 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1460 if (!(desc_status & RxOK)) {
1461 /* There was an error. */
1463 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1464 dev->stats.rx_errors++;
1465 if (desc_status & RxFIFOErr)
1466 dev->stats.rx_fifo_errors++;
1470 if (*quota <= 0) { /* out of rx quota */
1476 pkt_len = desc_status; /* Implicitly Truncate */
1477 entry = (desc_status >> 16) & 0x7ff;
1480 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1481 /* Check if the packet is long enough to accept without copying
1482 to a minimally-sized skbuff. */
1483 if (pkt_len < rx_copybreak &&
1484 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1485 skb_reserve(skb, 2); /* 16 byte align the IP header */
1486 pci_dma_sync_single_for_cpu(np->pci_dev,
1487 np->rx_info[entry].mapping,
1488 pkt_len, PCI_DMA_FROMDEVICE);
1489 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1490 pci_dma_sync_single_for_device(np->pci_dev,
1491 np->rx_info[entry].mapping,
1492 pkt_len, PCI_DMA_FROMDEVICE);
1493 skb_put(skb, pkt_len);
1495 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1496 skb = np->rx_info[entry].skb;
1497 skb_put(skb, pkt_len);
1498 np->rx_info[entry].skb = NULL;
1499 np->rx_info[entry].mapping = 0;
1501 #ifndef final_version /* Remove after testing. */
1502 /* You will want this info for the initial debug. */
1504 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1505 skb->data, skb->data + 6,
1506 skb->data[12], skb->data[13]);
1510 skb->protocol = eth_type_trans(skb, dev);
1513 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1515 if (le16_to_cpu(desc->status2) & 0x0100) {
1516 skb->ip_summed = CHECKSUM_UNNECESSARY;
1517 dev->stats.rx_compressed++;
1520 * This feature doesn't seem to be working, at least
1521 * with the two firmware versions I have. If the GFP sees
1522 * an IP fragment, it either ignores it completely, or reports
1523 * "bad checksum" on it.
1525 * Maybe I missed something -- corrections are welcome.
1526 * Until then, the printk stays. :-) -Ion
1528 else if (le16_to_cpu(desc->status2) & 0x0040) {
1529 skb->ip_summed = CHECKSUM_COMPLETE;
1530 skb->csum = le16_to_cpu(desc->csum);
1531 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1534 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1535 u16 vlid = le16_to_cpu(desc->vlanid);
1538 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1542 * vlan_hwaccel_rx expects a packet with the VLAN tag
1545 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1547 #endif /* VLAN_SUPPORT */
1548 netif_receive_skb(skb);
1549 dev->stats.rx_packets++;
1554 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1557 if (*quota == 0) { /* out of rx quota */
1561 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1564 refill_rx_ring(dev);
1566 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1567 retcode, np->rx_done, desc_status);
1571 static int netdev_poll(struct napi_struct *napi, int budget)
1573 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1574 struct net_device *dev = np->dev;
1576 void __iomem *ioaddr = np->base;
1580 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1582 if (__netdev_rx(dev, "a))
1585 intr_status = readl(ioaddr + IntrStatus);
1586 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1588 napi_complete(napi);
1589 intr_status = readl(ioaddr + IntrEnable);
1590 intr_status |= IntrRxDone | IntrRxEmpty;
1591 writel(intr_status, ioaddr + IntrEnable);
1595 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1598 /* Restart Rx engine if stopped. */
1599 return budget - quota;
1602 static void refill_rx_ring(struct net_device *dev)
1604 struct netdev_private *np = netdev_priv(dev);
1605 struct sk_buff *skb;
1608 /* Refill the Rx ring buffers. */
1609 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1610 entry = np->dirty_rx % RX_RING_SIZE;
1611 if (np->rx_info[entry].skb == NULL) {
1612 skb = dev_alloc_skb(np->rx_buf_sz);
1613 np->rx_info[entry].skb = skb;
1615 break; /* Better luck next round. */
1616 np->rx_info[entry].mapping =
1617 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1618 skb->dev = dev; /* Mark as being used by this device. */
1619 np->rx_ring[entry].rxaddr =
1620 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1622 if (entry == RX_RING_SIZE - 1)
1623 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1626 writew(entry, np->base + RxDescQIdx);
1630 static void netdev_media_change(struct net_device *dev)
1632 struct netdev_private *np = netdev_priv(dev);
1633 void __iomem *ioaddr = np->base;
1634 u16 reg0, reg1, reg4, reg5;
1636 u32 new_intr_timer_ctrl;
1638 /* reset status first */
1639 mdio_read(dev, np->phys[0], MII_BMCR);
1640 mdio_read(dev, np->phys[0], MII_BMSR);
1642 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1643 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1645 if (reg1 & BMSR_LSTATUS) {
1647 if (reg0 & BMCR_ANENABLE) {
1648 /* autonegotiation is enabled */
1649 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1650 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1651 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1653 np->mii_if.full_duplex = 1;
1654 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1656 np->mii_if.full_duplex = 0;
1657 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1659 np->mii_if.full_duplex = 1;
1662 np->mii_if.full_duplex = 0;
1665 /* autonegotiation is disabled */
1666 if (reg0 & BMCR_SPEED100)
1670 if (reg0 & BMCR_FULLDPLX)
1671 np->mii_if.full_duplex = 1;
1673 np->mii_if.full_duplex = 0;
1675 netif_carrier_on(dev);
1676 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1678 np->speed100 ? "100" : "10",
1679 np->mii_if.full_duplex ? "full" : "half");
1681 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1682 if (np->mii_if.full_duplex)
1683 new_tx_mode |= FullDuplex;
1684 if (np->tx_mode != new_tx_mode) {
1685 np->tx_mode = new_tx_mode;
1686 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1688 writel(np->tx_mode, ioaddr + TxMode);
1691 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1693 new_intr_timer_ctrl |= Timer10X;
1694 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1695 np->intr_timer_ctrl = new_intr_timer_ctrl;
1696 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1699 netif_carrier_off(dev);
1700 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1705 static void netdev_error(struct net_device *dev, int intr_status)
1707 struct netdev_private *np = netdev_priv(dev);
1709 /* Came close to underrunning the Tx FIFO, increase threshold. */
1710 if (intr_status & IntrTxDataLow) {
1711 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1712 writel(++np->tx_threshold, np->base + TxThreshold);
1713 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1714 dev->name, np->tx_threshold * 16);
1716 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1718 if (intr_status & IntrRxGFPDead) {
1719 dev->stats.rx_fifo_errors++;
1720 dev->stats.rx_errors++;
1722 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1723 dev->stats.tx_fifo_errors++;
1724 dev->stats.tx_errors++;
1726 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1727 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1728 dev->name, intr_status);
1732 static struct net_device_stats *get_stats(struct net_device *dev)
1734 struct netdev_private *np = netdev_priv(dev);
1735 void __iomem *ioaddr = np->base;
1737 /* This adapter architecture needs no SMP locks. */
1738 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1739 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1740 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1741 dev->stats.tx_aborted_errors =
1742 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1743 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1744 dev->stats.collisions =
1745 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1747 /* The chip only need report frame silently dropped. */
1748 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1749 writew(0, ioaddr + RxDMAStatus);
1750 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1751 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1752 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1753 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1759 static void set_rx_mode(struct net_device *dev)
1761 struct netdev_private *np = netdev_priv(dev);
1762 void __iomem *ioaddr = np->base;
1763 u32 rx_mode = MinVLANPrio;
1764 struct netdev_hw_addr *ha;
1768 rx_mode |= VlanMode;
1771 void __iomem *filter_addr = ioaddr + HashTable + 8;
1772 for (i = 0; i < VLAN_VID_MASK; i++) {
1773 if (vlan_group_get_device(np->vlgrp, i)) {
1774 if (vlan_count >= 32)
1776 writew(i, filter_addr);
1781 if (i == VLAN_VID_MASK) {
1782 rx_mode |= PerfectFilterVlan;
1783 while (vlan_count < 32) {
1784 writew(0, filter_addr);
1790 #endif /* VLAN_SUPPORT */
1792 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1793 rx_mode |= AcceptAll;
1794 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1795 (dev->flags & IFF_ALLMULTI)) {
1796 /* Too many to match, or accept all multicasts. */
1797 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1798 } else if (netdev_mc_count(dev) <= 14) {
1799 /* Use the 16 element perfect filter, skip first two entries. */
1800 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1802 netdev_for_each_mc_addr(ha, dev) {
1803 eaddrs = (__be16 *) ha->addr;
1804 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1806 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1808 eaddrs = (__be16 *)dev->dev_addr;
1809 i = netdev_mc_count(dev) + 2;
1811 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1812 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1813 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1815 rx_mode |= AcceptBroadcast|PerfectFilter;
1817 /* Must use a multicast hash table. */
1818 void __iomem *filter_addr;
1820 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1822 memset(mc_filter, 0, sizeof(mc_filter));
1823 netdev_for_each_mc_addr(ha, dev) {
1824 /* The chip uses the upper 9 CRC bits
1825 as index into the hash table */
1826 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1827 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1829 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1831 /* Clear the perfect filter list, skip first two entries. */
1832 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1833 eaddrs = (__be16 *)dev->dev_addr;
1834 for (i = 2; i < 16; i++) {
1835 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1836 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1837 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1839 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1840 writew(mc_filter[i], filter_addr);
1841 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1843 writel(rx_mode, ioaddr + RxFilterMode);
1846 static int check_if_running(struct net_device *dev)
1848 if (!netif_running(dev))
1853 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1855 struct netdev_private *np = netdev_priv(dev);
1856 strcpy(info->driver, DRV_NAME);
1857 strcpy(info->version, DRV_VERSION);
1858 strcpy(info->bus_info, pci_name(np->pci_dev));
1861 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1863 struct netdev_private *np = netdev_priv(dev);
1864 spin_lock_irq(&np->lock);
1865 mii_ethtool_gset(&np->mii_if, ecmd);
1866 spin_unlock_irq(&np->lock);
1870 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1872 struct netdev_private *np = netdev_priv(dev);
1874 spin_lock_irq(&np->lock);
1875 res = mii_ethtool_sset(&np->mii_if, ecmd);
1876 spin_unlock_irq(&np->lock);
1881 static int nway_reset(struct net_device *dev)
1883 struct netdev_private *np = netdev_priv(dev);
1884 return mii_nway_restart(&np->mii_if);
1887 static u32 get_link(struct net_device *dev)
1889 struct netdev_private *np = netdev_priv(dev);
1890 return mii_link_ok(&np->mii_if);
1893 static u32 get_msglevel(struct net_device *dev)
1898 static void set_msglevel(struct net_device *dev, u32 val)
1903 static const struct ethtool_ops ethtool_ops = {
1904 .begin = check_if_running,
1905 .get_drvinfo = get_drvinfo,
1906 .get_settings = get_settings,
1907 .set_settings = set_settings,
1908 .nway_reset = nway_reset,
1909 .get_link = get_link,
1910 .get_msglevel = get_msglevel,
1911 .set_msglevel = set_msglevel,
1914 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1916 struct netdev_private *np = netdev_priv(dev);
1917 struct mii_ioctl_data *data = if_mii(rq);
1920 if (!netif_running(dev))
1923 spin_lock_irq(&np->lock);
1924 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1925 spin_unlock_irq(&np->lock);
1927 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1933 static int netdev_close(struct net_device *dev)
1935 struct netdev_private *np = netdev_priv(dev);
1936 void __iomem *ioaddr = np->base;
1939 netif_stop_queue(dev);
1941 napi_disable(&np->napi);
1944 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1945 dev->name, (int) readl(ioaddr + IntrStatus));
1946 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1947 dev->name, np->cur_tx, np->dirty_tx,
1948 np->cur_rx, np->dirty_rx);
1951 /* Disable interrupts by clearing the interrupt mask. */
1952 writel(0, ioaddr + IntrEnable);
1954 /* Stop the chip's Tx and Rx processes. */
1955 writel(0, ioaddr + GenCtrl);
1956 readl(ioaddr + GenCtrl);
1959 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1960 (long long) np->tx_ring_dma);
1961 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1962 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1963 i, le32_to_cpu(np->tx_ring[i].status),
1964 (long long) dma_to_cpu(np->tx_ring[i].addr),
1965 le32_to_cpu(np->tx_done_q[i].status));
1966 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1967 (long long) np->rx_ring_dma, np->rx_done_q);
1969 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1970 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1971 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1975 free_irq(dev->irq, dev);
1977 /* Free all the skbuffs in the Rx queue. */
1978 for (i = 0; i < RX_RING_SIZE; i++) {
1979 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1980 if (np->rx_info[i].skb != NULL) {
1981 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1982 dev_kfree_skb(np->rx_info[i].skb);
1984 np->rx_info[i].skb = NULL;
1985 np->rx_info[i].mapping = 0;
1987 for (i = 0; i < TX_RING_SIZE; i++) {
1988 struct sk_buff *skb = np->tx_info[i].skb;
1991 pci_unmap_single(np->pci_dev,
1992 np->tx_info[i].mapping,
1993 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1994 np->tx_info[i].mapping = 0;
1996 np->tx_info[i].skb = NULL;
2003 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2005 struct net_device *dev = pci_get_drvdata(pdev);
2007 if (netif_running(dev)) {
2008 netif_device_detach(dev);
2012 pci_save_state(pdev);
2013 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2018 static int starfire_resume(struct pci_dev *pdev)
2020 struct net_device *dev = pci_get_drvdata(pdev);
2022 pci_set_power_state(pdev, PCI_D0);
2023 pci_restore_state(pdev);
2025 if (netif_running(dev)) {
2027 netif_device_attach(dev);
2032 #endif /* CONFIG_PM */
2035 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2037 struct net_device *dev = pci_get_drvdata(pdev);
2038 struct netdev_private *np = netdev_priv(dev);
2042 unregister_netdev(dev);
2045 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2048 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2049 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2050 pci_disable_device(pdev);
2053 pci_release_regions(pdev);
2055 pci_set_drvdata(pdev, NULL);
2056 free_netdev(dev); /* Will also free np!! */
2060 static struct pci_driver starfire_driver = {
2062 .probe = starfire_init_one,
2063 .remove = __devexit_p(starfire_remove_one),
2065 .suspend = starfire_suspend,
2066 .resume = starfire_resume,
2067 #endif /* CONFIG_PM */
2068 .id_table = starfire_pci_tbl,
2072 static int __init starfire_init (void)
2074 /* when a module, this is printed whether or not devices are found in probe */
2078 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2081 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2083 return pci_register_driver(&starfire_driver);
2087 static void __exit starfire_cleanup (void)
2089 pci_unregister_driver (&starfire_driver);
2093 module_init(starfire_init);
2094 module_exit(starfire_cleanup);