89eb16b30fc42479a3b1c11a7b9b3fd88c043490
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39 {
40         struct ath10k_skb_rxcb *rxcb;
41
42         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43                 if (rxcb->paddr == paddr)
44                         return ATH10K_RXCB_SKB(rxcb);
45
46         WARN_ON_ONCE(1);
47         return NULL;
48 }
49
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52         struct sk_buff *skb;
53         struct ath10k_skb_rxcb *rxcb;
54         struct hlist_node *n;
55         int i;
56
57         if (htt->rx_ring.in_ord_rx) {
58                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59                         skb = ATH10K_RXCB_SKB(rxcb);
60                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
61                                          skb->len + skb_tailroom(skb),
62                                          DMA_FROM_DEVICE);
63                         hash_del(&rxcb->hlist);
64                         dev_kfree_skb_any(skb);
65                 }
66         } else {
67                 for (i = 0; i < htt->rx_ring.size; i++) {
68                         skb = htt->rx_ring.netbufs_ring[i];
69                         if (!skb)
70                                 continue;
71
72                         rxcb = ATH10K_SKB_RXCB(skb);
73                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
74                                          skb->len + skb_tailroom(skb),
75                                          DMA_FROM_DEVICE);
76                         dev_kfree_skb_any(skb);
77                 }
78         }
79
80         htt->rx_ring.fill_cnt = 0;
81         hash_init(htt->rx_ring.skb_table);
82         memset(htt->rx_ring.netbufs_ring, 0,
83                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85
86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87 {
88         struct htt_rx_desc *rx_desc;
89         struct ath10k_skb_rxcb *rxcb;
90         struct sk_buff *skb;
91         dma_addr_t paddr;
92         int ret = 0, idx;
93
94         /* The Full Rx Reorder firmware has no way of telling the host
95          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96          * To keep things simple make sure ring is always half empty. This
97          * guarantees there'll be no replenishment overruns possible.
98          */
99         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
101         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
102         while (num > 0) {
103                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104                 if (!skb) {
105                         ret = -ENOMEM;
106                         goto fail;
107                 }
108
109                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110                         skb_pull(skb,
111                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112                                  skb->data);
113
114                 /* Clear rx_desc attention word before posting to Rx ring */
115                 rx_desc = (struct htt_rx_desc *)skb->data;
116                 rx_desc->attention.flags = __cpu_to_le32(0);
117
118                 paddr = dma_map_single(htt->ar->dev, skb->data,
119                                        skb->len + skb_tailroom(skb),
120                                        DMA_FROM_DEVICE);
121
122                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123                         dev_kfree_skb_any(skb);
124                         ret = -ENOMEM;
125                         goto fail;
126                 }
127
128                 rxcb = ATH10K_SKB_RXCB(skb);
129                 rxcb->paddr = paddr;
130                 htt->rx_ring.netbufs_ring[idx] = skb;
131                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132                 htt->rx_ring.fill_cnt++;
133
134                 if (htt->rx_ring.in_ord_rx) {
135                         hash_add(htt->rx_ring.skb_table,
136                                  &ATH10K_SKB_RXCB(skb)->hlist,
137                                  (u32)paddr);
138                 }
139
140                 num--;
141                 idx++;
142                 idx &= htt->rx_ring.size_mask;
143         }
144
145 fail:
146         /*
147          * Make sure the rx buffer is updated before available buffer
148          * index to avoid any potential rx ring corruption.
149          */
150         mb();
151         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
152         return ret;
153 }
154
155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156 {
157         lockdep_assert_held(&htt->rx_ring.lock);
158         return __ath10k_htt_rx_ring_fill_n(htt, num);
159 }
160
161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162 {
163         int ret, num_deficit, num_to_fill;
164
165         /* Refilling the whole RX ring buffer proves to be a bad idea. The
166          * reason is RX may take up significant amount of CPU cycles and starve
167          * other tasks, e.g. TX on an ethernet device while acting as a bridge
168          * with ath10k wlan interface. This ended up with very poor performance
169          * once CPU the host system was overwhelmed with RX on ath10k.
170          *
171          * By limiting the number of refills the replenishing occurs
172          * progressively. This in turns makes use of the fact tasklets are
173          * processed in FIFO order. This means actual RX processing can starve
174          * out refilling. If there's not enough buffers on RX ring FW will not
175          * report RX until it is refilled with enough buffers. This
176          * automatically balances load wrt to CPU power.
177          *
178          * This probably comes at a cost of lower maximum throughput but
179          * improves the average and stability. */
180         spin_lock_bh(&htt->rx_ring.lock);
181         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183         num_deficit -= num_to_fill;
184         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185         if (ret == -ENOMEM) {
186                 /*
187                  * Failed to fill it to the desired level -
188                  * we'll start a timer and try again next time.
189                  * As long as enough buffers are left in the ring for
190                  * another A-MPDU rx, no special recovery is needed.
191                  */
192                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
194         } else if (num_deficit > 0) {
195                 tasklet_schedule(&htt->rx_replenish_task);
196         }
197         spin_unlock_bh(&htt->rx_ring.lock);
198 }
199
200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201 {
202         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
203
204         ath10k_htt_rx_msdu_buff_replenish(htt);
205 }
206
207 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
208 {
209         struct ath10k_htt *htt = &ar->htt;
210         int ret;
211
212         spin_lock_bh(&htt->rx_ring.lock);
213         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214                                               htt->rx_ring.fill_cnt));
215         spin_unlock_bh(&htt->rx_ring.lock);
216
217         if (ret)
218                 ath10k_htt_rx_ring_free(htt);
219
220         return ret;
221 }
222
223 void ath10k_htt_rx_free(struct ath10k_htt *htt)
224 {
225         del_timer_sync(&htt->rx_ring.refill_retry_timer);
226         tasklet_kill(&htt->rx_replenish_task);
227         tasklet_kill(&htt->txrx_compl_task);
228
229         skb_queue_purge(&htt->tx_compl_q);
230         skb_queue_purge(&htt->rx_compl_q);
231         skb_queue_purge(&htt->rx_in_ord_compl_q);
232
233         ath10k_htt_rx_ring_free(htt);
234
235         dma_free_coherent(htt->ar->dev,
236                           (htt->rx_ring.size *
237                            sizeof(htt->rx_ring.paddrs_ring)),
238                           htt->rx_ring.paddrs_ring,
239                           htt->rx_ring.base_paddr);
240
241         dma_free_coherent(htt->ar->dev,
242                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
243                           htt->rx_ring.alloc_idx.vaddr,
244                           htt->rx_ring.alloc_idx.paddr);
245
246         kfree(htt->rx_ring.netbufs_ring);
247 }
248
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251         struct ath10k *ar = htt->ar;
252         int idx;
253         struct sk_buff *msdu;
254
255         lockdep_assert_held(&htt->rx_ring.lock);
256
257         if (htt->rx_ring.fill_cnt == 0) {
258                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259                 return NULL;
260         }
261
262         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263         msdu = htt->rx_ring.netbufs_ring[idx];
264         htt->rx_ring.netbufs_ring[idx] = NULL;
265         htt->rx_ring.paddrs_ring[idx] = 0;
266
267         idx++;
268         idx &= htt->rx_ring.size_mask;
269         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270         htt->rx_ring.fill_cnt--;
271
272         dma_unmap_single(htt->ar->dev,
273                          ATH10K_SKB_RXCB(msdu)->paddr,
274                          msdu->len + skb_tailroom(msdu),
275                          DMA_FROM_DEVICE);
276         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277                         msdu->data, msdu->len + skb_tailroom(msdu));
278
279         return msdu;
280 }
281
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284                                    u8 **fw_desc, int *fw_desc_len,
285                                    struct sk_buff_head *amsdu)
286 {
287         struct ath10k *ar = htt->ar;
288         int msdu_len, msdu_chaining = 0;
289         struct sk_buff *msdu;
290         struct htt_rx_desc *rx_desc;
291
292         lockdep_assert_held(&htt->rx_ring.lock);
293
294         for (;;) {
295                 int last_msdu, msdu_len_invalid, msdu_chained;
296
297                 msdu = ath10k_htt_rx_netbuf_pop(htt);
298                 if (!msdu) {
299                         __skb_queue_purge(amsdu);
300                         return -ENOENT;
301                 }
302
303                 __skb_queue_tail(amsdu, msdu);
304
305                 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307                 /* FIXME: we must report msdu payload since this is what caller
308                  *        expects now */
309                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312                 /*
313                  * Sanity check - confirm the HW is finished filling in the
314                  * rx data.
315                  * If the HW and SW are working correctly, then it's guaranteed
316                  * that the HW's MAC DMA is done before this point in the SW.
317                  * To prevent the case that we handle a stale Rx descriptor,
318                  * just assert for now until we have a way to recover.
319                  */
320                 if (!(__le32_to_cpu(rx_desc->attention.flags)
321                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
322                         __skb_queue_purge(amsdu);
323                         return -EIO;
324                 }
325
326                 /*
327                  * Copy the FW rx descriptor for this MSDU from the rx
328                  * indication message into the MSDU's netbuf. HL uses the
329                  * same rx indication message definition as LL, and simply
330                  * appends new info (fields from the HW rx desc, and the
331                  * MSDU payload itself). So, the offset into the rx
332                  * indication message only has to account for the standard
333                  * offset of the per-MSDU FW rx desc info within the
334                  * message, and how many bytes of the per-MSDU FW rx desc
335                  * info have already been consumed. (And the endianness of
336                  * the host, since for a big-endian host, the rx ind
337                  * message contents, including the per-MSDU rx desc bytes,
338                  * were byteswapped during upload.)
339                  */
340                 if (*fw_desc_len > 0) {
341                         rx_desc->fw_desc.info0 = **fw_desc;
342                         /*
343                          * The target is expected to only provide the basic
344                          * per-MSDU rx descriptors. Just to be sure, verify
345                          * that the target has not attached extension data
346                          * (e.g. LRO flow ID).
347                          */
348
349                         /* or more, if there's extension data */
350                         (*fw_desc)++;
351                         (*fw_desc_len)--;
352                 } else {
353                         /*
354                          * When an oversized AMSDU happened, FW will lost
355                          * some of MSDU status - in this case, the FW
356                          * descriptors provided will be less than the
357                          * actual MSDUs inside this MPDU. Mark the FW
358                          * descriptors so that it will still deliver to
359                          * upper stack, if no CRC error for this MPDU.
360                          *
361                          * FIX THIS - the FW descriptors are actually for
362                          * MSDUs in the end of this A-MSDU instead of the
363                          * beginning.
364                          */
365                         rx_desc->fw_desc.info0 = 0;
366                 }
367
368                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
372                               RX_MSDU_START_INFO0_MSDU_LENGTH);
373                 msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375                 if (msdu_len_invalid)
376                         msdu_len = 0;
377
378                 skb_trim(msdu, 0);
379                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380                 msdu_len -= msdu->len;
381
382                 /* Note: Chained buffers do not contain rx descriptor */
383                 while (msdu_chained--) {
384                         msdu = ath10k_htt_rx_netbuf_pop(htt);
385                         if (!msdu) {
386                                 __skb_queue_purge(amsdu);
387                                 return -ENOENT;
388                         }
389
390                         __skb_queue_tail(amsdu, msdu);
391                         skb_trim(msdu, 0);
392                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393                         msdu_len -= msdu->len;
394                         msdu_chaining = 1;
395                 }
396
397                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
398                                 RX_MSDU_END_INFO0_LAST_MSDU;
399
400                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
401                                          sizeof(*rx_desc) - sizeof(u32));
402
403                 if (last_msdu)
404                         break;
405         }
406
407         if (skb_queue_empty(amsdu))
408                 msdu_chaining = -1;
409
410         /*
411          * Don't refill the ring yet.
412          *
413          * First, the elements popped here are still in use - it is not
414          * safe to overwrite them until the matching call to
415          * mpdu_desc_list_next. Second, for efficiency it is preferable to
416          * refill the rx ring with 1 PPDU's worth of rx buffers (something
417          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418          * (something like 3 buffers). Consequently, we'll rely on the txrx
419          * SW to tell us when it is done pulling all the PPDU's rx buffers
420          * out of the rx ring, and then refill it just once.
421          */
422
423         return msdu_chaining;
424 }
425
426 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427 {
428         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
429
430         ath10k_htt_rx_msdu_buff_replenish(htt);
431 }
432
433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434                                                u32 paddr)
435 {
436         struct ath10k *ar = htt->ar;
437         struct ath10k_skb_rxcb *rxcb;
438         struct sk_buff *msdu;
439
440         lockdep_assert_held(&htt->rx_ring.lock);
441
442         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443         if (!msdu)
444                 return NULL;
445
446         rxcb = ATH10K_SKB_RXCB(msdu);
447         hash_del(&rxcb->hlist);
448         htt->rx_ring.fill_cnt--;
449
450         dma_unmap_single(htt->ar->dev, rxcb->paddr,
451                          msdu->len + skb_tailroom(msdu),
452                          DMA_FROM_DEVICE);
453         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454                         msdu->data, msdu->len + skb_tailroom(msdu));
455
456         return msdu;
457 }
458
459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460                                         struct htt_rx_in_ord_ind *ev,
461                                         struct sk_buff_head *list)
462 {
463         struct ath10k *ar = htt->ar;
464         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465         struct htt_rx_desc *rxd;
466         struct sk_buff *msdu;
467         int msdu_count;
468         bool is_offload;
469         u32 paddr;
470
471         lockdep_assert_held(&htt->rx_ring.lock);
472
473         msdu_count = __le16_to_cpu(ev->msdu_count);
474         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476         while (msdu_count--) {
477                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480                 if (!msdu) {
481                         __skb_queue_purge(list);
482                         return -ENOENT;
483                 }
484
485                 __skb_queue_tail(list, msdu);
486
487                 if (!is_offload) {
488                         rxd = (void *)msdu->data;
489
490                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492                         skb_put(msdu, sizeof(*rxd));
493                         skb_pull(msdu, sizeof(*rxd));
494                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496                         if (!(__le32_to_cpu(rxd->attention.flags) &
497                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
498                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499                                 return -EIO;
500                         }
501                 }
502
503                 msdu_desc++;
504         }
505
506         return 0;
507 }
508
509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
510 {
511         struct ath10k *ar = htt->ar;
512         dma_addr_t paddr;
513         void *vaddr;
514         size_t size;
515         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
517         htt->rx_confused = false;
518
519         /* XXX: The fill level could be changed during runtime in response to
520          * the host processing latency. Is this really worth it?
521          */
522         htt->rx_ring.size = HTT_RX_RING_SIZE;
523         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524         htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
526         if (!is_power_of_2(htt->rx_ring.size)) {
527                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
528                 return -EINVAL;
529         }
530
531         htt->rx_ring.netbufs_ring =
532                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
533                         GFP_KERNEL);
534         if (!htt->rx_ring.netbufs_ring)
535                 goto err_netbuf;
536
537         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
540         if (!vaddr)
541                 goto err_dma_ring;
542
543         htt->rx_ring.paddrs_ring = vaddr;
544         htt->rx_ring.base_paddr = paddr;
545
546         vaddr = dma_alloc_coherent(htt->ar->dev,
547                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
548                                    &paddr, GFP_DMA);
549         if (!vaddr)
550                 goto err_dma_idx;
551
552         htt->rx_ring.alloc_idx.vaddr = vaddr;
553         htt->rx_ring.alloc_idx.paddr = paddr;
554         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
555         *htt->rx_ring.alloc_idx.vaddr = 0;
556
557         /* Initialize the Rx refill retry timer */
558         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560         spin_lock_init(&htt->rx_ring.lock);
561
562         htt->rx_ring.fill_cnt = 0;
563         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564         hash_init(htt->rx_ring.skb_table);
565
566         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567                      (unsigned long)htt);
568
569         skb_queue_head_init(&htt->tx_compl_q);
570         skb_queue_head_init(&htt->rx_compl_q);
571         skb_queue_head_init(&htt->rx_in_ord_compl_q);
572
573         tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574                      (unsigned long)htt);
575
576         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
577                    htt->rx_ring.size, htt->rx_ring.fill_level);
578         return 0;
579
580 err_dma_idx:
581         dma_free_coherent(htt->ar->dev,
582                           (htt->rx_ring.size *
583                            sizeof(htt->rx_ring.paddrs_ring)),
584                           htt->rx_ring.paddrs_ring,
585                           htt->rx_ring.base_paddr);
586 err_dma_ring:
587         kfree(htt->rx_ring.netbufs_ring);
588 err_netbuf:
589         return -ENOMEM;
590 }
591
592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593                                           enum htt_rx_mpdu_encrypt_type type)
594 {
595         switch (type) {
596         case HTT_RX_MPDU_ENCRYPT_NONE:
597                 return 0;
598         case HTT_RX_MPDU_ENCRYPT_WEP40:
599         case HTT_RX_MPDU_ENCRYPT_WEP104:
600                 return IEEE80211_WEP_IV_LEN;
601         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
602         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
603                 return IEEE80211_TKIP_IV_LEN;
604         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
605                 return IEEE80211_CCMP_HDR_LEN;
606         case HTT_RX_MPDU_ENCRYPT_WEP128:
607         case HTT_RX_MPDU_ENCRYPT_WAPI:
608                 break;
609         }
610
611         ath10k_warn(ar, "unsupported encryption type %d\n", type);
612         return 0;
613 }
614
615 #define MICHAEL_MIC_LEN 8
616
617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618                                          enum htt_rx_mpdu_encrypt_type type)
619 {
620         switch (type) {
621         case HTT_RX_MPDU_ENCRYPT_NONE:
622                 return 0;
623         case HTT_RX_MPDU_ENCRYPT_WEP40:
624         case HTT_RX_MPDU_ENCRYPT_WEP104:
625                 return IEEE80211_WEP_ICV_LEN;
626         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
628                 return IEEE80211_TKIP_ICV_LEN;
629         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
630                 return IEEE80211_CCMP_MIC_LEN;
631         case HTT_RX_MPDU_ENCRYPT_WEP128:
632         case HTT_RX_MPDU_ENCRYPT_WAPI:
633                 break;
634         }
635
636         ath10k_warn(ar, "unsupported encryption type %d\n", type);
637         return 0;
638 }
639
640 struct amsdu_subframe_hdr {
641         u8 dst[ETH_ALEN];
642         u8 src[ETH_ALEN];
643         __be16 len;
644 } __packed;
645
646 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
647                                   struct ieee80211_rx_status *status,
648                                   struct htt_rx_desc *rxd)
649 {
650         struct ieee80211_supported_band *sband;
651         u8 cck, rate, bw, sgi, mcs, nss;
652         u8 preamble = 0;
653         u32 info1, info2, info3;
654
655         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
656         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
657         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
658
659         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
660
661         switch (preamble) {
662         case HTT_RX_LEGACY:
663                 /* To get legacy rate index band is required. Since band can't
664                  * be undefined check if freq is non-zero.
665                  */
666                 if (!status->freq)
667                         return;
668
669                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
670                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
671                 rate &= ~RX_PPDU_START_RATE_FLAG;
672
673                 sband = &ar->mac.sbands[status->band];
674                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate);
675                 break;
676         case HTT_RX_HT:
677         case HTT_RX_HT_WITH_TXBF:
678                 /* HT-SIG - Table 20-11 in info2 and info3 */
679                 mcs = info2 & 0x1F;
680                 nss = mcs >> 3;
681                 bw = (info2 >> 7) & 1;
682                 sgi = (info3 >> 7) & 1;
683
684                 status->rate_idx = mcs;
685                 status->flag |= RX_FLAG_HT;
686                 if (sgi)
687                         status->flag |= RX_FLAG_SHORT_GI;
688                 if (bw)
689                         status->flag |= RX_FLAG_40MHZ;
690                 break;
691         case HTT_RX_VHT:
692         case HTT_RX_VHT_WITH_TXBF:
693                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
694                    TODO check this */
695                 mcs = (info3 >> 4) & 0x0F;
696                 nss = ((info2 >> 10) & 0x07) + 1;
697                 bw = info2 & 3;
698                 sgi = info3 & 1;
699
700                 status->rate_idx = mcs;
701                 status->vht_nss = nss;
702
703                 if (sgi)
704                         status->flag |= RX_FLAG_SHORT_GI;
705
706                 switch (bw) {
707                 /* 20MHZ */
708                 case 0:
709                         break;
710                 /* 40MHZ */
711                 case 1:
712                         status->flag |= RX_FLAG_40MHZ;
713                         break;
714                 /* 80MHZ */
715                 case 2:
716                         status->vht_flag |= RX_VHT_FLAG_80MHZ;
717                 }
718
719                 status->flag |= RX_FLAG_VHT;
720                 break;
721         default:
722                 break;
723         }
724 }
725
726 static struct ieee80211_channel *
727 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
728 {
729         struct ath10k_peer *peer;
730         struct ath10k_vif *arvif;
731         struct cfg80211_chan_def def;
732         u16 peer_id;
733
734         lockdep_assert_held(&ar->data_lock);
735
736         if (!rxd)
737                 return NULL;
738
739         if (rxd->attention.flags &
740             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
741                 return NULL;
742
743         if (!(rxd->msdu_end.info0 &
744               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
745                 return NULL;
746
747         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
748                      RX_MPDU_START_INFO0_PEER_IDX);
749
750         peer = ath10k_peer_find_by_id(ar, peer_id);
751         if (!peer)
752                 return NULL;
753
754         arvif = ath10k_get_arvif(ar, peer->vdev_id);
755         if (WARN_ON_ONCE(!arvif))
756                 return NULL;
757
758         if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
759                 return NULL;
760
761         return def.chan;
762 }
763
764 static struct ieee80211_channel *
765 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
766 {
767         struct ath10k_vif *arvif;
768         struct cfg80211_chan_def def;
769
770         lockdep_assert_held(&ar->data_lock);
771
772         list_for_each_entry(arvif, &ar->arvifs, list) {
773                 if (arvif->vdev_id == vdev_id &&
774                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
775                         return def.chan;
776         }
777
778         return NULL;
779 }
780
781 static void
782 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
783                               struct ieee80211_chanctx_conf *conf,
784                               void *data)
785 {
786         struct cfg80211_chan_def *def = data;
787
788         *def = conf->def;
789 }
790
791 static struct ieee80211_channel *
792 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
793 {
794         struct cfg80211_chan_def def = {};
795
796         ieee80211_iter_chan_contexts_atomic(ar->hw,
797                                             ath10k_htt_rx_h_any_chan_iter,
798                                             &def);
799
800         return def.chan;
801 }
802
803 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
804                                     struct ieee80211_rx_status *status,
805                                     struct htt_rx_desc *rxd,
806                                     u32 vdev_id)
807 {
808         struct ieee80211_channel *ch;
809
810         spin_lock_bh(&ar->data_lock);
811         ch = ar->scan_channel;
812         if (!ch)
813                 ch = ar->rx_channel;
814         if (!ch)
815                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
816         if (!ch)
817                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
818         if (!ch)
819                 ch = ath10k_htt_rx_h_any_channel(ar);
820         spin_unlock_bh(&ar->data_lock);
821
822         if (!ch)
823                 return false;
824
825         status->band = ch->band;
826         status->freq = ch->center_freq;
827
828         return true;
829 }
830
831 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
832                                    struct ieee80211_rx_status *status,
833                                    struct htt_rx_desc *rxd)
834 {
835         /* FIXME: Get real NF */
836         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
837                          rxd->ppdu_start.rssi_comb;
838         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
839 }
840
841 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
842                                     struct ieee80211_rx_status *status,
843                                     struct htt_rx_desc *rxd)
844 {
845         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
846          * means all prior MSDUs in a PPDU are reported to mac80211 without the
847          * TSF. Is it worth holding frames until end of PPDU is known?
848          *
849          * FIXME: Can we get/compute 64bit TSF?
850          */
851         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
852         status->flag |= RX_FLAG_MACTIME_END;
853 }
854
855 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
856                                  struct sk_buff_head *amsdu,
857                                  struct ieee80211_rx_status *status,
858                                  u32 vdev_id)
859 {
860         struct sk_buff *first;
861         struct htt_rx_desc *rxd;
862         bool is_first_ppdu;
863         bool is_last_ppdu;
864
865         if (skb_queue_empty(amsdu))
866                 return;
867
868         first = skb_peek(amsdu);
869         rxd = (void *)first->data - sizeof(*rxd);
870
871         is_first_ppdu = !!(rxd->attention.flags &
872                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
873         is_last_ppdu = !!(rxd->attention.flags &
874                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
875
876         if (is_first_ppdu) {
877                 /* New PPDU starts so clear out the old per-PPDU status. */
878                 status->freq = 0;
879                 status->rate_idx = 0;
880                 status->vht_nss = 0;
881                 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
882                 status->flag &= ~(RX_FLAG_HT |
883                                   RX_FLAG_VHT |
884                                   RX_FLAG_SHORT_GI |
885                                   RX_FLAG_40MHZ |
886                                   RX_FLAG_MACTIME_END);
887                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
888
889                 ath10k_htt_rx_h_signal(ar, status, rxd);
890                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
891                 ath10k_htt_rx_h_rates(ar, status, rxd);
892         }
893
894         if (is_last_ppdu)
895                 ath10k_htt_rx_h_mactime(ar, status, rxd);
896 }
897
898 static const char * const tid_to_ac[] = {
899         "BE",
900         "BK",
901         "BK",
902         "BE",
903         "VI",
904         "VI",
905         "VO",
906         "VO",
907 };
908
909 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
910 {
911         u8 *qc;
912         int tid;
913
914         if (!ieee80211_is_data_qos(hdr->frame_control))
915                 return "";
916
917         qc = ieee80211_get_qos_ctl(hdr);
918         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
919         if (tid < 8)
920                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
921         else
922                 snprintf(out, size, "tid %d", tid);
923
924         return out;
925 }
926
927 static void ath10k_process_rx(struct ath10k *ar,
928                               struct ieee80211_rx_status *rx_status,
929                               struct sk_buff *skb)
930 {
931         struct ieee80211_rx_status *status;
932         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
933         char tid[32];
934
935         status = IEEE80211_SKB_RXCB(skb);
936         *status = *rx_status;
937
938         ath10k_dbg(ar, ATH10K_DBG_DATA,
939                    "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
940                    skb,
941                    skb->len,
942                    ieee80211_get_SA(hdr),
943                    ath10k_get_tid(hdr, tid, sizeof(tid)),
944                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
945                                                         "mcast" : "ucast",
946                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
947                    status->flag == 0 ? "legacy" : "",
948                    status->flag & RX_FLAG_HT ? "ht" : "",
949                    status->flag & RX_FLAG_VHT ? "vht" : "",
950                    status->flag & RX_FLAG_40MHZ ? "40" : "",
951                    status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
952                    status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
953                    status->rate_idx,
954                    status->vht_nss,
955                    status->freq,
956                    status->band, status->flag,
957                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
958                    !!(status->flag & RX_FLAG_MMIC_ERROR),
959                    !!(status->flag & RX_FLAG_AMSDU_MORE));
960         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
961                         skb->data, skb->len);
962         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
963         trace_ath10k_rx_payload(ar, skb->data, skb->len);
964
965         ieee80211_rx(ar->hw, skb);
966 }
967
968 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
969                                       struct ieee80211_hdr *hdr)
970 {
971         int len = ieee80211_hdrlen(hdr->frame_control);
972
973         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
974                       ar->fw_features))
975                 len = round_up(len, 4);
976
977         return len;
978 }
979
980 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
981                                         struct sk_buff *msdu,
982                                         struct ieee80211_rx_status *status,
983                                         enum htt_rx_mpdu_encrypt_type enctype,
984                                         bool is_decrypted)
985 {
986         struct ieee80211_hdr *hdr;
987         struct htt_rx_desc *rxd;
988         size_t hdr_len;
989         size_t crypto_len;
990         bool is_first;
991         bool is_last;
992
993         rxd = (void *)msdu->data - sizeof(*rxd);
994         is_first = !!(rxd->msdu_end.info0 &
995                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
996         is_last = !!(rxd->msdu_end.info0 &
997                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
998
999         /* Delivered decapped frame:
1000          * [802.11 header]
1001          * [crypto param] <-- can be trimmed if !fcs_err &&
1002          *                    !decrypt_err && !peer_idx_invalid
1003          * [amsdu header] <-- only if A-MSDU
1004          * [rfc1042/llc]
1005          * [payload]
1006          * [FCS] <-- at end, needs to be trimmed
1007          */
1008
1009         /* This probably shouldn't happen but warn just in case */
1010         if (unlikely(WARN_ON_ONCE(!is_first)))
1011                 return;
1012
1013         /* This probably shouldn't happen but warn just in case */
1014         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1015                 return;
1016
1017         skb_trim(msdu, msdu->len - FCS_LEN);
1018
1019         /* In most cases this will be true for sniffed frames. It makes sense
1020          * to deliver them as-is without stripping the crypto param. This would
1021          * also make sense for software based decryption (which is not
1022          * implemented in ath10k).
1023          *
1024          * If there's no error then the frame is decrypted. At least that is
1025          * the case for frames that come in via fragmented rx indication.
1026          */
1027         if (!is_decrypted)
1028                 return;
1029
1030         /* The payload is decrypted so strip crypto params. Start from tail
1031          * since hdr is used to compute some stuff.
1032          */
1033
1034         hdr = (void *)msdu->data;
1035
1036         /* Tail */
1037         skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
1038
1039         /* MMIC */
1040         if (!ieee80211_has_morefrags(hdr->frame_control) &&
1041             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1042                 skb_trim(msdu, msdu->len - 8);
1043
1044         /* Head */
1045         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1046         crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1047
1048         memmove((void *)msdu->data + crypto_len,
1049                 (void *)msdu->data, hdr_len);
1050         skb_pull(msdu, crypto_len);
1051 }
1052
1053 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1054                                           struct sk_buff *msdu,
1055                                           struct ieee80211_rx_status *status,
1056                                           const u8 first_hdr[64])
1057 {
1058         struct ieee80211_hdr *hdr;
1059         size_t hdr_len;
1060         u8 da[ETH_ALEN];
1061         u8 sa[ETH_ALEN];
1062
1063         /* Delivered decapped frame:
1064          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1065          * [rfc1042/llc]
1066          *
1067          * Note: The nwifi header doesn't have QoS Control and is
1068          * (always?) a 3addr frame.
1069          *
1070          * Note2: There's no A-MSDU subframe header. Even if it's part
1071          * of an A-MSDU.
1072          */
1073
1074         /* pull decapped header and copy SA & DA */
1075         hdr = (struct ieee80211_hdr *)msdu->data;
1076         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1077         ether_addr_copy(da, ieee80211_get_DA(hdr));
1078         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1079         skb_pull(msdu, hdr_len);
1080
1081         /* push original 802.11 header */
1082         hdr = (struct ieee80211_hdr *)first_hdr;
1083         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1084         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1085
1086         /* original 802.11 header has a different DA and in
1087          * case of 4addr it may also have different SA
1088          */
1089         hdr = (struct ieee80211_hdr *)msdu->data;
1090         ether_addr_copy(ieee80211_get_DA(hdr), da);
1091         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1092 }
1093
1094 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1095                                           struct sk_buff *msdu,
1096                                           enum htt_rx_mpdu_encrypt_type enctype)
1097 {
1098         struct ieee80211_hdr *hdr;
1099         struct htt_rx_desc *rxd;
1100         size_t hdr_len, crypto_len;
1101         void *rfc1042;
1102         bool is_first, is_last, is_amsdu;
1103
1104         rxd = (void *)msdu->data - sizeof(*rxd);
1105         hdr = (void *)rxd->rx_hdr_status;
1106
1107         is_first = !!(rxd->msdu_end.info0 &
1108                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1109         is_last = !!(rxd->msdu_end.info0 &
1110                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1111         is_amsdu = !(is_first && is_last);
1112
1113         rfc1042 = hdr;
1114
1115         if (is_first) {
1116                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1117                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1118
1119                 rfc1042 += round_up(hdr_len, 4) +
1120                            round_up(crypto_len, 4);
1121         }
1122
1123         if (is_amsdu)
1124                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1125
1126         return rfc1042;
1127 }
1128
1129 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1130                                         struct sk_buff *msdu,
1131                                         struct ieee80211_rx_status *status,
1132                                         const u8 first_hdr[64],
1133                                         enum htt_rx_mpdu_encrypt_type enctype)
1134 {
1135         struct ieee80211_hdr *hdr;
1136         struct ethhdr *eth;
1137         size_t hdr_len;
1138         void *rfc1042;
1139         u8 da[ETH_ALEN];
1140         u8 sa[ETH_ALEN];
1141
1142         /* Delivered decapped frame:
1143          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1144          * [payload]
1145          */
1146
1147         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1148         if (WARN_ON_ONCE(!rfc1042))
1149                 return;
1150
1151         /* pull decapped header and copy SA & DA */
1152         eth = (struct ethhdr *)msdu->data;
1153         ether_addr_copy(da, eth->h_dest);
1154         ether_addr_copy(sa, eth->h_source);
1155         skb_pull(msdu, sizeof(struct ethhdr));
1156
1157         /* push rfc1042/llc/snap */
1158         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1159                sizeof(struct rfc1042_hdr));
1160
1161         /* push original 802.11 header */
1162         hdr = (struct ieee80211_hdr *)first_hdr;
1163         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1164         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1165
1166         /* original 802.11 header has a different DA and in
1167          * case of 4addr it may also have different SA
1168          */
1169         hdr = (struct ieee80211_hdr *)msdu->data;
1170         ether_addr_copy(ieee80211_get_DA(hdr), da);
1171         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1172 }
1173
1174 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1175                                          struct sk_buff *msdu,
1176                                          struct ieee80211_rx_status *status,
1177                                          const u8 first_hdr[64])
1178 {
1179         struct ieee80211_hdr *hdr;
1180         size_t hdr_len;
1181
1182         /* Delivered decapped frame:
1183          * [amsdu header] <-- replaced with 802.11 hdr
1184          * [rfc1042/llc]
1185          * [payload]
1186          */
1187
1188         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1189
1190         hdr = (struct ieee80211_hdr *)first_hdr;
1191         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1192         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1193 }
1194
1195 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1196                                     struct sk_buff *msdu,
1197                                     struct ieee80211_rx_status *status,
1198                                     u8 first_hdr[64],
1199                                     enum htt_rx_mpdu_encrypt_type enctype,
1200                                     bool is_decrypted)
1201 {
1202         struct htt_rx_desc *rxd;
1203         enum rx_msdu_decap_format decap;
1204         struct ieee80211_hdr *hdr;
1205
1206         /* First msdu's decapped header:
1207          * [802.11 header] <-- padded to 4 bytes long
1208          * [crypto param] <-- padded to 4 bytes long
1209          * [amsdu header] <-- only if A-MSDU
1210          * [rfc1042/llc]
1211          *
1212          * Other (2nd, 3rd, ..) msdu's decapped header:
1213          * [amsdu header] <-- only if A-MSDU
1214          * [rfc1042/llc]
1215          */
1216
1217         rxd = (void *)msdu->data - sizeof(*rxd);
1218         hdr = (void *)rxd->rx_hdr_status;
1219         decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1220                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1221
1222         switch (decap) {
1223         case RX_MSDU_DECAP_RAW:
1224                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1225                                             is_decrypted);
1226                 break;
1227         case RX_MSDU_DECAP_NATIVE_WIFI:
1228                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1229                 break;
1230         case RX_MSDU_DECAP_ETHERNET2_DIX:
1231                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1232                 break;
1233         case RX_MSDU_DECAP_8023_SNAP_LLC:
1234                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1235                 break;
1236         }
1237 }
1238
1239 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1240 {
1241         struct htt_rx_desc *rxd;
1242         u32 flags, info;
1243         bool is_ip4, is_ip6;
1244         bool is_tcp, is_udp;
1245         bool ip_csum_ok, tcpudp_csum_ok;
1246
1247         rxd = (void *)skb->data - sizeof(*rxd);
1248         flags = __le32_to_cpu(rxd->attention.flags);
1249         info = __le32_to_cpu(rxd->msdu_start.info1);
1250
1251         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1252         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1253         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1254         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1255         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1256         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1257
1258         if (!is_ip4 && !is_ip6)
1259                 return CHECKSUM_NONE;
1260         if (!is_tcp && !is_udp)
1261                 return CHECKSUM_NONE;
1262         if (!ip_csum_ok)
1263                 return CHECKSUM_NONE;
1264         if (!tcpudp_csum_ok)
1265                 return CHECKSUM_NONE;
1266
1267         return CHECKSUM_UNNECESSARY;
1268 }
1269
1270 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1271 {
1272         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1273 }
1274
1275 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1276                                  struct sk_buff_head *amsdu,
1277                                  struct ieee80211_rx_status *status)
1278 {
1279         struct sk_buff *first;
1280         struct sk_buff *last;
1281         struct sk_buff *msdu;
1282         struct htt_rx_desc *rxd;
1283         struct ieee80211_hdr *hdr;
1284         enum htt_rx_mpdu_encrypt_type enctype;
1285         u8 first_hdr[64];
1286         u8 *qos;
1287         size_t hdr_len;
1288         bool has_fcs_err;
1289         bool has_crypto_err;
1290         bool has_tkip_err;
1291         bool has_peer_idx_invalid;
1292         bool is_decrypted;
1293         u32 attention;
1294
1295         if (skb_queue_empty(amsdu))
1296                 return;
1297
1298         first = skb_peek(amsdu);
1299         rxd = (void *)first->data - sizeof(*rxd);
1300
1301         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1302                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1303
1304         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1305          * decapped header. It'll be used for undecapping of each MSDU.
1306          */
1307         hdr = (void *)rxd->rx_hdr_status;
1308         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1309         memcpy(first_hdr, hdr, hdr_len);
1310
1311         /* Each A-MSDU subframe will use the original header as the base and be
1312          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1313          */
1314         hdr = (void *)first_hdr;
1315         qos = ieee80211_get_qos_ctl(hdr);
1316         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1317
1318         /* Some attention flags are valid only in the last MSDU. */
1319         last = skb_peek_tail(amsdu);
1320         rxd = (void *)last->data - sizeof(*rxd);
1321         attention = __le32_to_cpu(rxd->attention.flags);
1322
1323         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1324         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1325         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1326         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1327
1328         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1329          * e.g. due to fcs error, missing peer or invalid key data it will
1330          * report the frame as raw.
1331          */
1332         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1333                         !has_fcs_err &&
1334                         !has_crypto_err &&
1335                         !has_peer_idx_invalid);
1336
1337         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1338         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1339                           RX_FLAG_MMIC_ERROR |
1340                           RX_FLAG_DECRYPTED |
1341                           RX_FLAG_IV_STRIPPED |
1342                           RX_FLAG_MMIC_STRIPPED);
1343
1344         if (has_fcs_err)
1345                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1346
1347         if (has_tkip_err)
1348                 status->flag |= RX_FLAG_MMIC_ERROR;
1349
1350         if (is_decrypted)
1351                 status->flag |= RX_FLAG_DECRYPTED |
1352                                 RX_FLAG_IV_STRIPPED |
1353                                 RX_FLAG_MMIC_STRIPPED;
1354
1355         skb_queue_walk(amsdu, msdu) {
1356                 ath10k_htt_rx_h_csum_offload(msdu);
1357                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1358                                         is_decrypted);
1359
1360                 /* Undecapping involves copying the original 802.11 header back
1361                  * to sk_buff. If frame is protected and hardware has decrypted
1362                  * it then remove the protected bit.
1363                  */
1364                 if (!is_decrypted)
1365                         continue;
1366
1367                 hdr = (void *)msdu->data;
1368                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1369         }
1370 }
1371
1372 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1373                                     struct sk_buff_head *amsdu,
1374                                     struct ieee80211_rx_status *status)
1375 {
1376         struct sk_buff *msdu;
1377
1378         while ((msdu = __skb_dequeue(amsdu))) {
1379                 /* Setup per-MSDU flags */
1380                 if (skb_queue_empty(amsdu))
1381                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1382                 else
1383                         status->flag |= RX_FLAG_AMSDU_MORE;
1384
1385                 ath10k_process_rx(ar, status, msdu);
1386         }
1387 }
1388
1389 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1390 {
1391         struct sk_buff *skb, *first;
1392         int space;
1393         int total_len = 0;
1394
1395         /* TODO:  Might could optimize this by using
1396          * skb_try_coalesce or similar method to
1397          * decrease copying, or maybe get mac80211 to
1398          * provide a way to just receive a list of
1399          * skb?
1400          */
1401
1402         first = __skb_dequeue(amsdu);
1403
1404         /* Allocate total length all at once. */
1405         skb_queue_walk(amsdu, skb)
1406                 total_len += skb->len;
1407
1408         space = total_len - skb_tailroom(first);
1409         if ((space > 0) &&
1410             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1411                 /* TODO:  bump some rx-oom error stat */
1412                 /* put it back together so we can free the
1413                  * whole list at once.
1414                  */
1415                 __skb_queue_head(amsdu, first);
1416                 return -1;
1417         }
1418
1419         /* Walk list again, copying contents into
1420          * msdu_head
1421          */
1422         while ((skb = __skb_dequeue(amsdu))) {
1423                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1424                                           skb->len);
1425                 dev_kfree_skb_any(skb);
1426         }
1427
1428         __skb_queue_head(amsdu, first);
1429         return 0;
1430 }
1431
1432 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1433                                     struct sk_buff_head *amsdu,
1434                                     bool chained)
1435 {
1436         struct sk_buff *first;
1437         struct htt_rx_desc *rxd;
1438         enum rx_msdu_decap_format decap;
1439
1440         first = skb_peek(amsdu);
1441         rxd = (void *)first->data - sizeof(*rxd);
1442         decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1443                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1444
1445         if (!chained)
1446                 return;
1447
1448         /* FIXME: Current unchaining logic can only handle simple case of raw
1449          * msdu chaining. If decapping is other than raw the chaining may be
1450          * more complex and this isn't handled by the current code. Don't even
1451          * try re-constructing such frames - it'll be pretty much garbage.
1452          */
1453         if (decap != RX_MSDU_DECAP_RAW ||
1454             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1455                 __skb_queue_purge(amsdu);
1456                 return;
1457         }
1458
1459         ath10k_unchain_msdu(amsdu);
1460 }
1461
1462 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1463                                         struct sk_buff_head *amsdu,
1464                                         struct ieee80211_rx_status *rx_status)
1465 {
1466         struct sk_buff *msdu;
1467         struct htt_rx_desc *rxd;
1468         bool is_mgmt;
1469         bool has_fcs_err;
1470
1471         msdu = skb_peek(amsdu);
1472         rxd = (void *)msdu->data - sizeof(*rxd);
1473
1474         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1475          * invalid/dangerous frames.
1476          */
1477
1478         if (!rx_status->freq) {
1479                 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1480                 return false;
1481         }
1482
1483         is_mgmt = !!(rxd->attention.flags &
1484                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1485         has_fcs_err = !!(rxd->attention.flags &
1486                          __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1487
1488         /* Management frames are handled via WMI events. The pros of such
1489          * approach is that channel is explicitly provided in WMI events
1490          * whereas HTT doesn't provide channel information for Rxed frames.
1491          *
1492          * However some firmware revisions don't report corrupted frames via
1493          * WMI so don't drop them.
1494          */
1495         if (is_mgmt && !has_fcs_err) {
1496                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1497                 return false;
1498         }
1499
1500         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1501                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1502                 return false;
1503         }
1504
1505         return true;
1506 }
1507
1508 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1509                                    struct sk_buff_head *amsdu,
1510                                    struct ieee80211_rx_status *rx_status)
1511 {
1512         if (skb_queue_empty(amsdu))
1513                 return;
1514
1515         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1516                 return;
1517
1518         __skb_queue_purge(amsdu);
1519 }
1520
1521 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1522                                   struct htt_rx_indication *rx)
1523 {
1524         struct ath10k *ar = htt->ar;
1525         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1526         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1527         struct sk_buff_head amsdu;
1528         int num_mpdu_ranges;
1529         int fw_desc_len;
1530         u8 *fw_desc;
1531         int i, ret, mpdu_count = 0;
1532
1533         lockdep_assert_held(&htt->rx_ring.lock);
1534
1535         if (htt->rx_confused)
1536                 return;
1537
1538         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1539         fw_desc = (u8 *)&rx->fw_desc;
1540
1541         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1542                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1543         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1544
1545         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1546                         rx, sizeof(*rx) +
1547                         (sizeof(struct htt_rx_indication_mpdu_range) *
1548                                 num_mpdu_ranges));
1549
1550         for (i = 0; i < num_mpdu_ranges; i++)
1551                 mpdu_count += mpdu_ranges[i].mpdu_count;
1552
1553         while (mpdu_count--) {
1554                 __skb_queue_head_init(&amsdu);
1555                 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1556                                               &fw_desc_len, &amsdu);
1557                 if (ret < 0) {
1558                         ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1559                         __skb_queue_purge(&amsdu);
1560                         /* FIXME: It's probably a good idea to reboot the
1561                          * device instead of leaving it inoperable.
1562                          */
1563                         htt->rx_confused = true;
1564                         break;
1565                 }
1566
1567                 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1568                 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1569                 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1570                 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1571                 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1572         }
1573
1574         tasklet_schedule(&htt->rx_replenish_task);
1575 }
1576
1577 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1578                                        struct htt_rx_fragment_indication *frag)
1579 {
1580         struct ath10k *ar = htt->ar;
1581         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1582         struct sk_buff_head amsdu;
1583         int ret;
1584         u8 *fw_desc;
1585         int fw_desc_len;
1586
1587         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1588         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1589
1590         __skb_queue_head_init(&amsdu);
1591
1592         spin_lock_bh(&htt->rx_ring.lock);
1593         ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1594                                       &amsdu);
1595         spin_unlock_bh(&htt->rx_ring.lock);
1596
1597         tasklet_schedule(&htt->rx_replenish_task);
1598
1599         ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1600
1601         if (ret) {
1602                 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1603                             ret);
1604                 __skb_queue_purge(&amsdu);
1605                 return;
1606         }
1607
1608         if (skb_queue_len(&amsdu) != 1) {
1609                 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1610                 __skb_queue_purge(&amsdu);
1611                 return;
1612         }
1613
1614         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1615         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1616         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1617         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1618
1619         if (fw_desc_len > 0) {
1620                 ath10k_dbg(ar, ATH10K_DBG_HTT,
1621                            "expecting more fragmented rx in one indication %d\n",
1622                            fw_desc_len);
1623         }
1624 }
1625
1626 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1627                                        struct sk_buff *skb)
1628 {
1629         struct ath10k_htt *htt = &ar->htt;
1630         struct htt_resp *resp = (struct htt_resp *)skb->data;
1631         struct htt_tx_done tx_done = {};
1632         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1633         __le16 msdu_id;
1634         int i;
1635
1636         lockdep_assert_held(&htt->tx_lock);
1637
1638         switch (status) {
1639         case HTT_DATA_TX_STATUS_NO_ACK:
1640                 tx_done.no_ack = true;
1641                 break;
1642         case HTT_DATA_TX_STATUS_OK:
1643                 tx_done.success = true;
1644                 break;
1645         case HTT_DATA_TX_STATUS_DISCARD:
1646         case HTT_DATA_TX_STATUS_POSTPONE:
1647         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1648                 tx_done.discard = true;
1649                 break;
1650         default:
1651                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1652                 tx_done.discard = true;
1653                 break;
1654         }
1655
1656         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1657                    resp->data_tx_completion.num_msdus);
1658
1659         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1660                 msdu_id = resp->data_tx_completion.msdus[i];
1661                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1662                 ath10k_txrx_tx_unref(htt, &tx_done);
1663         }
1664 }
1665
1666 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1667 {
1668         struct htt_rx_addba *ev = &resp->rx_addba;
1669         struct ath10k_peer *peer;
1670         struct ath10k_vif *arvif;
1671         u16 info0, tid, peer_id;
1672
1673         info0 = __le16_to_cpu(ev->info0);
1674         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1675         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1676
1677         ath10k_dbg(ar, ATH10K_DBG_HTT,
1678                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1679                    tid, peer_id, ev->window_size);
1680
1681         spin_lock_bh(&ar->data_lock);
1682         peer = ath10k_peer_find_by_id(ar, peer_id);
1683         if (!peer) {
1684                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1685                             peer_id);
1686                 spin_unlock_bh(&ar->data_lock);
1687                 return;
1688         }
1689
1690         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1691         if (!arvif) {
1692                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1693                             peer->vdev_id);
1694                 spin_unlock_bh(&ar->data_lock);
1695                 return;
1696         }
1697
1698         ath10k_dbg(ar, ATH10K_DBG_HTT,
1699                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1700                    peer->addr, tid, ev->window_size);
1701
1702         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1703         spin_unlock_bh(&ar->data_lock);
1704 }
1705
1706 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1707 {
1708         struct htt_rx_delba *ev = &resp->rx_delba;
1709         struct ath10k_peer *peer;
1710         struct ath10k_vif *arvif;
1711         u16 info0, tid, peer_id;
1712
1713         info0 = __le16_to_cpu(ev->info0);
1714         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1715         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1716
1717         ath10k_dbg(ar, ATH10K_DBG_HTT,
1718                    "htt rx delba tid %hu peer_id %hu\n",
1719                    tid, peer_id);
1720
1721         spin_lock_bh(&ar->data_lock);
1722         peer = ath10k_peer_find_by_id(ar, peer_id);
1723         if (!peer) {
1724                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1725                             peer_id);
1726                 spin_unlock_bh(&ar->data_lock);
1727                 return;
1728         }
1729
1730         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1731         if (!arvif) {
1732                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1733                             peer->vdev_id);
1734                 spin_unlock_bh(&ar->data_lock);
1735                 return;
1736         }
1737
1738         ath10k_dbg(ar, ATH10K_DBG_HTT,
1739                    "htt rx stop rx ba session sta %pM tid %hu\n",
1740                    peer->addr, tid);
1741
1742         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1743         spin_unlock_bh(&ar->data_lock);
1744 }
1745
1746 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1747                                        struct sk_buff_head *amsdu)
1748 {
1749         struct sk_buff *msdu;
1750         struct htt_rx_desc *rxd;
1751
1752         if (skb_queue_empty(list))
1753                 return -ENOBUFS;
1754
1755         if (WARN_ON(!skb_queue_empty(amsdu)))
1756                 return -EINVAL;
1757
1758         while ((msdu = __skb_dequeue(list))) {
1759                 __skb_queue_tail(amsdu, msdu);
1760
1761                 rxd = (void *)msdu->data - sizeof(*rxd);
1762                 if (rxd->msdu_end.info0 &
1763                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1764                         break;
1765         }
1766
1767         msdu = skb_peek_tail(amsdu);
1768         rxd = (void *)msdu->data - sizeof(*rxd);
1769         if (!(rxd->msdu_end.info0 &
1770               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1771                 skb_queue_splice_init(amsdu, list);
1772                 return -EAGAIN;
1773         }
1774
1775         return 0;
1776 }
1777
1778 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1779                                             struct sk_buff *skb)
1780 {
1781         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1782
1783         if (!ieee80211_has_protected(hdr->frame_control))
1784                 return;
1785
1786         /* Offloaded frames are already decrypted but firmware insists they are
1787          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1788          * will drop the frame.
1789          */
1790
1791         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1792         status->flag |= RX_FLAG_DECRYPTED |
1793                         RX_FLAG_IV_STRIPPED |
1794                         RX_FLAG_MMIC_STRIPPED;
1795 }
1796
1797 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1798                                        struct sk_buff_head *list)
1799 {
1800         struct ath10k_htt *htt = &ar->htt;
1801         struct ieee80211_rx_status *status = &htt->rx_status;
1802         struct htt_rx_offload_msdu *rx;
1803         struct sk_buff *msdu;
1804         size_t offset;
1805
1806         while ((msdu = __skb_dequeue(list))) {
1807                 /* Offloaded frames don't have Rx descriptor. Instead they have
1808                  * a short meta information header.
1809                  */
1810
1811                 rx = (void *)msdu->data;
1812
1813                 skb_put(msdu, sizeof(*rx));
1814                 skb_pull(msdu, sizeof(*rx));
1815
1816                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1817                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1818                         dev_kfree_skb_any(msdu);
1819                         continue;
1820                 }
1821
1822                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1823
1824                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1825                  * actual payload is unaligned. Align the frame.  Otherwise
1826                  * mac80211 complains.  This shouldn't reduce performance much
1827                  * because these offloaded frames are rare.
1828                  */
1829                 offset = 4 - ((unsigned long)msdu->data & 3);
1830                 skb_put(msdu, offset);
1831                 memmove(msdu->data + offset, msdu->data, msdu->len);
1832                 skb_pull(msdu, offset);
1833
1834                 /* FIXME: The frame is NWifi. Re-construct QoS Control
1835                  * if possible later.
1836                  */
1837
1838                 memset(status, 0, sizeof(*status));
1839                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1840
1841                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1842                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1843                 ath10k_process_rx(ar, status, msdu);
1844         }
1845 }
1846
1847 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1848 {
1849         struct ath10k_htt *htt = &ar->htt;
1850         struct htt_resp *resp = (void *)skb->data;
1851         struct ieee80211_rx_status *status = &htt->rx_status;
1852         struct sk_buff_head list;
1853         struct sk_buff_head amsdu;
1854         u16 peer_id;
1855         u16 msdu_count;
1856         u8 vdev_id;
1857         u8 tid;
1858         bool offload;
1859         bool frag;
1860         int ret;
1861
1862         lockdep_assert_held(&htt->rx_ring.lock);
1863
1864         if (htt->rx_confused)
1865                 return;
1866
1867         skb_pull(skb, sizeof(resp->hdr));
1868         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1869
1870         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1871         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1872         vdev_id = resp->rx_in_ord_ind.vdev_id;
1873         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1874         offload = !!(resp->rx_in_ord_ind.info &
1875                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1876         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1877
1878         ath10k_dbg(ar, ATH10K_DBG_HTT,
1879                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1880                    vdev_id, peer_id, tid, offload, frag, msdu_count);
1881
1882         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1883                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1884                 return;
1885         }
1886
1887         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1888          * extracted and processed.
1889          */
1890         __skb_queue_head_init(&list);
1891         ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1892         if (ret < 0) {
1893                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1894                 htt->rx_confused = true;
1895                 return;
1896         }
1897
1898         /* Offloaded frames are very different and need to be handled
1899          * separately.
1900          */
1901         if (offload)
1902                 ath10k_htt_rx_h_rx_offload(ar, &list);
1903
1904         while (!skb_queue_empty(&list)) {
1905                 __skb_queue_head_init(&amsdu);
1906                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1907                 switch (ret) {
1908                 case 0:
1909                         /* Note: The in-order indication may report interleaved
1910                          * frames from different PPDUs meaning reported rx rate
1911                          * to mac80211 isn't accurate/reliable. It's still
1912                          * better to report something than nothing though. This
1913                          * should still give an idea about rx rate to the user.
1914                          */
1915                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1916                         ath10k_htt_rx_h_filter(ar, &amsdu, status);
1917                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1918                         ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1919                         break;
1920                 case -EAGAIN:
1921                         /* fall through */
1922                 default:
1923                         /* Should not happen. */
1924                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1925                         htt->rx_confused = true;
1926                         __skb_queue_purge(&list);
1927                         return;
1928                 }
1929         }
1930
1931         tasklet_schedule(&htt->rx_replenish_task);
1932 }
1933
1934 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1935 {
1936         struct ath10k_htt *htt = &ar->htt;
1937         struct htt_resp *resp = (struct htt_resp *)skb->data;
1938         enum htt_t2h_msg_type type;
1939
1940         /* confirm alignment */
1941         if (!IS_ALIGNED((unsigned long)skb->data, 4))
1942                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1943
1944         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1945                    resp->hdr.msg_type);
1946
1947         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
1948                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
1949                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
1950                 dev_kfree_skb_any(skb);
1951                 return;
1952         }
1953         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
1954
1955         switch (type) {
1956         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1957                 htt->target_version_major = resp->ver_resp.major;
1958                 htt->target_version_minor = resp->ver_resp.minor;
1959                 complete(&htt->target_version_received);
1960                 break;
1961         }
1962         case HTT_T2H_MSG_TYPE_RX_IND:
1963                 spin_lock_bh(&htt->rx_ring.lock);
1964                 __skb_queue_tail(&htt->rx_compl_q, skb);
1965                 spin_unlock_bh(&htt->rx_ring.lock);
1966                 tasklet_schedule(&htt->txrx_compl_task);
1967                 return;
1968         case HTT_T2H_MSG_TYPE_PEER_MAP: {
1969                 struct htt_peer_map_event ev = {
1970                         .vdev_id = resp->peer_map.vdev_id,
1971                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1972                 };
1973                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1974                 ath10k_peer_map_event(htt, &ev);
1975                 break;
1976         }
1977         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1978                 struct htt_peer_unmap_event ev = {
1979                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1980                 };
1981                 ath10k_peer_unmap_event(htt, &ev);
1982                 break;
1983         }
1984         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1985                 struct htt_tx_done tx_done = {};
1986                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1987
1988                 tx_done.msdu_id =
1989                         __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1990
1991                 switch (status) {
1992                 case HTT_MGMT_TX_STATUS_OK:
1993                         tx_done.success = true;
1994                         break;
1995                 case HTT_MGMT_TX_STATUS_RETRY:
1996                         tx_done.no_ack = true;
1997                         break;
1998                 case HTT_MGMT_TX_STATUS_DROP:
1999                         tx_done.discard = true;
2000                         break;
2001                 }
2002
2003                 spin_lock_bh(&htt->tx_lock);
2004                 ath10k_txrx_tx_unref(htt, &tx_done);
2005                 spin_unlock_bh(&htt->tx_lock);
2006                 break;
2007         }
2008         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2009                 spin_lock_bh(&htt->tx_lock);
2010                 __skb_queue_tail(&htt->tx_compl_q, skb);
2011                 spin_unlock_bh(&htt->tx_lock);
2012                 tasklet_schedule(&htt->txrx_compl_task);
2013                 return;
2014         case HTT_T2H_MSG_TYPE_SEC_IND: {
2015                 struct ath10k *ar = htt->ar;
2016                 struct htt_security_indication *ev = &resp->security_indication;
2017
2018                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2019                            "sec ind peer_id %d unicast %d type %d\n",
2020                           __le16_to_cpu(ev->peer_id),
2021                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2022                           MS(ev->flags, HTT_SECURITY_TYPE));
2023                 complete(&ar->install_key_done);
2024                 break;
2025         }
2026         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2027                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2028                                 skb->data, skb->len);
2029                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
2030                 break;
2031         }
2032         case HTT_T2H_MSG_TYPE_TEST:
2033                 break;
2034         case HTT_T2H_MSG_TYPE_STATS_CONF:
2035                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2036                 break;
2037         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2038                 /* Firmware can return tx frames if it's unable to fully
2039                  * process them and suspects host may be able to fix it. ath10k
2040                  * sends all tx frames as already inspected so this shouldn't
2041                  * happen unless fw has a bug.
2042                  */
2043                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2044                 break;
2045         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2046                 ath10k_htt_rx_addba(ar, resp);
2047                 break;
2048         case HTT_T2H_MSG_TYPE_RX_DELBA:
2049                 ath10k_htt_rx_delba(ar, resp);
2050                 break;
2051         case HTT_T2H_MSG_TYPE_PKTLOG: {
2052                 struct ath10k_pktlog_hdr *hdr =
2053                         (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2054
2055                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2056                                         sizeof(*hdr) +
2057                                         __le16_to_cpu(hdr->size));
2058                 break;
2059         }
2060         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2061                 /* Ignore this event because mac80211 takes care of Rx
2062                  * aggregation reordering.
2063                  */
2064                 break;
2065         }
2066         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2067                 spin_lock_bh(&htt->rx_ring.lock);
2068                 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2069                 spin_unlock_bh(&htt->rx_ring.lock);
2070                 tasklet_schedule(&htt->txrx_compl_task);
2071                 return;
2072         }
2073         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2074                 break;
2075         case HTT_T2H_MSG_TYPE_CHAN_CHANGE:
2076                 break;
2077         default:
2078                 ath10k_warn(ar, "htt event (%d) not handled\n",
2079                             resp->hdr.msg_type);
2080                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2081                                 skb->data, skb->len);
2082                 break;
2083         };
2084
2085         /* Free the indication buffer */
2086         dev_kfree_skb_any(skb);
2087 }
2088
2089 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2090 {
2091         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2092         struct ath10k *ar = htt->ar;
2093         struct htt_resp *resp;
2094         struct sk_buff *skb;
2095
2096         spin_lock_bh(&htt->tx_lock);
2097         while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
2098                 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
2099                 dev_kfree_skb_any(skb);
2100         }
2101         spin_unlock_bh(&htt->tx_lock);
2102
2103         spin_lock_bh(&htt->rx_ring.lock);
2104         while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
2105                 resp = (struct htt_resp *)skb->data;
2106                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
2107                 dev_kfree_skb_any(skb);
2108         }
2109
2110         while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2111                 ath10k_htt_rx_in_ord_ind(ar, skb);
2112                 dev_kfree_skb_any(skb);
2113         }
2114         spin_unlock_bh(&htt->rx_ring.lock);
2115 }