5bc5f5fdff57db9a2d6460c004680dcfec58c10f
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ofdm_trig_low = 200;
338         ah->config.ofdm_trig_high = 500;
339         ah->config.cck_trig_high = 200;
340         ah->config.cck_trig_low = 100;
341         ah->config.enable_ani = 1;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349                 ah->config.ht_enable = 1;
350         else
351                 ah->config.ht_enable = 0;
352
353         ah->config.rx_intr_mitigation = true;
354
355         /*
356          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358          * This means we use it for all AR5416 devices, and the few
359          * minor PCI AR9280 devices out there.
360          *
361          * Serialization is required because these devices do not handle
362          * well the case of two concurrent reads/writes due to the latency
363          * involved. During one read/write another read/write can be issued
364          * on another CPU while the previous read/write may still be working
365          * on our hardware, if we hit this case the hardware poops in a loop.
366          * We prevent this by serializing reads and writes.
367          *
368          * This issue is not present on PCI-Express devices or pre-AR5416
369          * devices (legacy, 802.11abg).
370          */
371         if (num_possible_cpus() > 1)
372                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373 }
374 EXPORT_SYMBOL(ath9k_hw_init);
375
376 static void ath9k_hw_init_defaults(struct ath_hw *ah)
377 {
378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380         regulatory->country_code = CTRY_DEFAULT;
381         regulatory->power_limit = MAX_RATE_POWER;
382         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384         ah->hw_version.magic = AR5416_MAGIC;
385         ah->hw_version.subvendorid = 0;
386
387         ah->ah_flags = 0;
388         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390         if (!AR_SREV_9100(ah))
391                 ah->ah_flags = AH_USE_EEPROM;
392
393         ah->atim_window = 0;
394         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395         ah->beacon_interval = 100;
396         ah->enable_32kHz_clock = DONT_USE_32KHZ;
397         ah->slottime = (u32) -1;
398         ah->globaltxtimeout = (u32) -1;
399         ah->power_mode = ATH9K_PM_UNDEFINED;
400 }
401
402 static int ath9k_hw_rf_claim(struct ath_hw *ah)
403 {
404         u32 val;
405
406         REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408         val = ath9k_hw_get_radiorev(ah);
409         switch (val & AR_RADIO_SREV_MAJOR) {
410         case 0:
411                 val = AR_RAD5133_SREV_MAJOR;
412                 break;
413         case AR_RAD5133_SREV_MAJOR:
414         case AR_RAD5122_SREV_MAJOR:
415         case AR_RAD2133_SREV_MAJOR:
416         case AR_RAD2122_SREV_MAJOR:
417                 break;
418         default:
419                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420                           "Radio Chip Rev 0x%02X not supported\n",
421                           val & AR_RADIO_SREV_MAJOR);
422                 return -EOPNOTSUPP;
423         }
424
425         ah->hw_version.analog5GhzRev = val;
426
427         return 0;
428 }
429
430 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431 {
432         struct ath_common *common = ath9k_hw_common(ah);
433         u32 sum;
434         int i;
435         u16 eeval;
436
437         sum = 0;
438         for (i = 0; i < 3; i++) {
439                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440                 sum += eeval;
441                 common->macaddr[2 * i] = eeval >> 8;
442                 common->macaddr[2 * i + 1] = eeval & 0xff;
443         }
444         if (sum == 0 || sum == 0xffff * 3)
445                 return -EADDRNOTAVAIL;
446
447         return 0;
448 }
449
450 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451 {
452         u32 rxgain_type;
453
454         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_13db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_backoff_23db_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465                 else
466                         INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         } else {
470                 INIT_INI_ARRAY(&ah->iniModesRxGain,
471                         ar9280Modes_original_rxgain_9280_2,
472                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473         }
474 }
475
476 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477 {
478         u32 txgain_type;
479
480         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_high_power_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487                 else
488                         INIT_INI_ARRAY(&ah->iniModesTxGain,
489                         ar9280Modes_original_tx_gain_9280_2,
490                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         } else {
492                 INIT_INI_ARRAY(&ah->iniModesTxGain,
493                 ar9280Modes_original_tx_gain_9280_2,
494                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495         }
496 }
497
498 static int ath9k_hw_post_init(struct ath_hw *ah)
499 {
500         int ecode;
501
502         if (!AR_SREV_9271(ah)) {
503                 if (!ath9k_hw_chip_test(ah))
504                         return -ENODEV;
505         }
506
507         ecode = ath9k_hw_rf_claim(ah);
508         if (ecode != 0)
509                 return ecode;
510
511         ecode = ath9k_hw_eeprom_init(ah);
512         if (ecode != 0)
513                 return ecode;
514
515         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
516                   "Eeprom VER: %d, REV: %d\n",
517                   ah->eep_ops->get_eeprom_ver(ah),
518                   ah->eep_ops->get_eeprom_rev(ah));
519
520         if (!AR_SREV_9280_10_OR_LATER(ah)) {
521                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
522                 if (ecode) {
523                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
524                                   "Failed allocating banks for "
525                                   "external radio\n");
526                         return ecode;
527                 }
528         }
529
530         if (!AR_SREV_9100(ah)) {
531                 ath9k_hw_ani_setup(ah);
532                 ath9k_hw_ani_init(ah);
533         }
534
535         return 0;
536 }
537
538 static bool ath9k_hw_devid_supported(u16 devid)
539 {
540         switch (devid) {
541         case AR5416_DEVID_PCI:
542         case AR5416_DEVID_PCIE:
543         case AR5416_AR9100_DEVID:
544         case AR9160_DEVID_PCI:
545         case AR9280_DEVID_PCI:
546         case AR9280_DEVID_PCIE:
547         case AR9285_DEVID_PCIE:
548         case AR5416_DEVID_AR9287_PCI:
549         case AR5416_DEVID_AR9287_PCIE:
550         case AR9271_USB:
551         case AR2427_DEVID_PCIE:
552                 return true;
553         default:
554                 break;
555         }
556         return false;
557 }
558
559 static bool ath9k_hw_macversion_supported(u32 macversion)
560 {
561         switch (macversion) {
562         case AR_SREV_VERSION_5416_PCI:
563         case AR_SREV_VERSION_5416_PCIE:
564         case AR_SREV_VERSION_9160:
565         case AR_SREV_VERSION_9100:
566         case AR_SREV_VERSION_9280:
567         case AR_SREV_VERSION_9285:
568         case AR_SREV_VERSION_9287:
569         case AR_SREV_VERSION_9271:
570                 return true;
571         default:
572                 break;
573         }
574         return false;
575 }
576
577 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
578 {
579         if (AR_SREV_9160_10_OR_LATER(ah)) {
580                 if (AR_SREV_9280_10_OR_LATER(ah)) {
581                         ah->iq_caldata.calData = &iq_cal_single_sample;
582                         ah->adcgain_caldata.calData =
583                                 &adc_gain_cal_single_sample;
584                         ah->adcdc_caldata.calData =
585                                 &adc_dc_cal_single_sample;
586                         ah->adcdc_calinitdata.calData =
587                                 &adc_init_dc_cal;
588                 } else {
589                         ah->iq_caldata.calData = &iq_cal_multi_sample;
590                         ah->adcgain_caldata.calData =
591                                 &adc_gain_cal_multi_sample;
592                         ah->adcdc_caldata.calData =
593                                 &adc_dc_cal_multi_sample;
594                         ah->adcdc_calinitdata.calData =
595                                 &adc_init_dc_cal;
596                 }
597                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
598         }
599 }
600
601 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
602 {
603         if (AR_SREV_9271(ah)) {
604                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
605                                ARRAY_SIZE(ar9271Modes_9271), 6);
606                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
607                                ARRAY_SIZE(ar9271Common_9271), 2);
608                 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
609                                ar9271Common_normal_cck_fir_coeff_9271,
610                                ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
611                 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
612                                ar9271Common_japan_2484_cck_fir_coeff_9271,
613                                ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
614                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
615                                ar9271Modes_9271_1_0_only,
616                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
617                 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
618                                ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
619                 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
620                                ar9271Modes_high_power_tx_gain_9271,
621                                ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
622                 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
623                                ar9271Modes_normal_power_tx_gain_9271,
624                                ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
625                 return;
626         }
627
628         if (AR_SREV_9287_11_OR_LATER(ah)) {
629                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
630                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
631                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
632                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
633                 if (ah->config.pcie_clock_req)
634                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
635                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
636                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
637                 else
638                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
639                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
640                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
641                                         2);
642         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
643                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
644                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
645                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
646                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
647
648                 if (ah->config.pcie_clock_req)
649                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
650                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
651                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
652                 else
653                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
654                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
655                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
656                                   2);
657         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
658
659
660                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
661                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
662                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
663                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
664
665                 if (ah->config.pcie_clock_req) {
666                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
667                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
668                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
669                 } else {
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
672                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
673                                   2);
674                 }
675         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
676                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
677                                ARRAY_SIZE(ar9285Modes_9285), 6);
678                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
679                                ARRAY_SIZE(ar9285Common_9285), 2);
680
681                 if (ah->config.pcie_clock_req) {
682                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
683                         ar9285PciePhy_clkreq_off_L1_9285,
684                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
685                 } else {
686                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
687                         ar9285PciePhy_clkreq_always_on_L1_9285,
688                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
689                 }
690         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
691                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
692                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
693                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
694                                ARRAY_SIZE(ar9280Common_9280_2), 2);
695
696                 if (ah->config.pcie_clock_req) {
697                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
698                                ar9280PciePhy_clkreq_off_L1_9280,
699                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
700                 } else {
701                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
702                                ar9280PciePhy_clkreq_always_on_L1_9280,
703                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
704                 }
705                 INIT_INI_ARRAY(&ah->iniModesAdditional,
706                                ar9280Modes_fast_clock_9280_2,
707                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
708         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
709                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
710                                ARRAY_SIZE(ar9280Modes_9280), 6);
711                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
712                                ARRAY_SIZE(ar9280Common_9280), 2);
713         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
714                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
715                                ARRAY_SIZE(ar5416Modes_9160), 6);
716                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
717                                ARRAY_SIZE(ar5416Common_9160), 2);
718                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
719                                ARRAY_SIZE(ar5416Bank0_9160), 2);
720                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
721                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
722                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
723                                ARRAY_SIZE(ar5416Bank1_9160), 2);
724                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
725                                ARRAY_SIZE(ar5416Bank2_9160), 2);
726                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
727                                ARRAY_SIZE(ar5416Bank3_9160), 3);
728                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
729                                ARRAY_SIZE(ar5416Bank6_9160), 3);
730                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
731                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
732                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
733                                ARRAY_SIZE(ar5416Bank7_9160), 2);
734                 if (AR_SREV_9160_11(ah)) {
735                         INIT_INI_ARRAY(&ah->iniAddac,
736                                        ar5416Addac_91601_1,
737                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
738                 } else {
739                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
740                                        ARRAY_SIZE(ar5416Addac_9160), 2);
741                 }
742         } else if (AR_SREV_9100_OR_LATER(ah)) {
743                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
744                                ARRAY_SIZE(ar5416Modes_9100), 6);
745                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
746                                ARRAY_SIZE(ar5416Common_9100), 2);
747                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
748                                ARRAY_SIZE(ar5416Bank0_9100), 2);
749                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
750                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
751                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
752                                ARRAY_SIZE(ar5416Bank1_9100), 2);
753                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
754                                ARRAY_SIZE(ar5416Bank2_9100), 2);
755                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
756                                ARRAY_SIZE(ar5416Bank3_9100), 3);
757                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
758                                ARRAY_SIZE(ar5416Bank6_9100), 3);
759                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
760                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
761                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
762                                ARRAY_SIZE(ar5416Bank7_9100), 2);
763                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
764                                ARRAY_SIZE(ar5416Addac_9100), 2);
765         } else {
766                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
767                                ARRAY_SIZE(ar5416Modes), 6);
768                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
769                                ARRAY_SIZE(ar5416Common), 2);
770                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
771                                ARRAY_SIZE(ar5416Bank0), 2);
772                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
773                                ARRAY_SIZE(ar5416BB_RfGain), 3);
774                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
775                                ARRAY_SIZE(ar5416Bank1), 2);
776                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
777                                ARRAY_SIZE(ar5416Bank2), 2);
778                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
779                                ARRAY_SIZE(ar5416Bank3), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
781                                ARRAY_SIZE(ar5416Bank6), 3);
782                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
783                                ARRAY_SIZE(ar5416Bank6TPC), 3);
784                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
785                                ARRAY_SIZE(ar5416Bank7), 2);
786                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
787                                ARRAY_SIZE(ar5416Addac), 2);
788         }
789 }
790
791 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
792 {
793         if (AR_SREV_9287_11_OR_LATER(ah))
794                 INIT_INI_ARRAY(&ah->iniModesRxGain,
795                 ar9287Modes_rx_gain_9287_1_1,
796                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
797         else if (AR_SREV_9287_10(ah))
798                 INIT_INI_ARRAY(&ah->iniModesRxGain,
799                 ar9287Modes_rx_gain_9287_1_0,
800                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
801         else if (AR_SREV_9280_20(ah))
802                 ath9k_hw_init_rxgain_ini(ah);
803
804         if (AR_SREV_9287_11_OR_LATER(ah)) {
805                 INIT_INI_ARRAY(&ah->iniModesTxGain,
806                 ar9287Modes_tx_gain_9287_1_1,
807                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
808         } else if (AR_SREV_9287_10(ah)) {
809                 INIT_INI_ARRAY(&ah->iniModesTxGain,
810                 ar9287Modes_tx_gain_9287_1_0,
811                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
812         } else if (AR_SREV_9280_20(ah)) {
813                 ath9k_hw_init_txgain_ini(ah);
814         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
815                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
816
817                 /* txgain table */
818                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
819                         INIT_INI_ARRAY(&ah->iniModesTxGain,
820                         ar9285Modes_high_power_tx_gain_9285_1_2,
821                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
822                 } else {
823                         INIT_INI_ARRAY(&ah->iniModesTxGain,
824                         ar9285Modes_original_tx_gain_9285_1_2,
825                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
826                 }
827
828         }
829 }
830
831 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
832 {
833         u32 i, j;
834
835         if (ah->hw_version.devid == AR9280_DEVID_PCI) {
836
837                 /* EEPROM Fixup */
838                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
839                         u32 reg = INI_RA(&ah->iniModes, i, 0);
840
841                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
842                                 u32 val = INI_RA(&ah->iniModes, i, j);
843
844                                 INI_RA(&ah->iniModes, i, j) =
845                                         ath9k_hw_ini_fixup(ah,
846                                                            &ah->eeprom.def,
847                                                            reg, val);
848                         }
849                 }
850         }
851 }
852
853 int ath9k_hw_init(struct ath_hw *ah)
854 {
855         struct ath_common *common = ath9k_hw_common(ah);
856         int r = 0;
857
858         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
859                 ath_print(common, ATH_DBG_FATAL,
860                           "Unsupported device ID: 0x%0x\n",
861                           ah->hw_version.devid);
862                 return -EOPNOTSUPP;
863         }
864
865         ath9k_hw_init_defaults(ah);
866         ath9k_hw_init_config(ah);
867
868         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
869                 ath_print(common, ATH_DBG_FATAL,
870                           "Couldn't reset chip\n");
871                 return -EIO;
872         }
873
874         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
875                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
876                 return -EIO;
877         }
878
879         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
880                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
881                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
882                         ah->config.serialize_regmode =
883                                 SER_REG_MODE_ON;
884                 } else {
885                         ah->config.serialize_regmode =
886                                 SER_REG_MODE_OFF;
887                 }
888         }
889
890         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
891                 ah->config.serialize_regmode);
892
893         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
894                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
895         else
896                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
897
898         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
899                 ath_print(common, ATH_DBG_FATAL,
900                           "Mac Chip Rev 0x%02x.%x is not supported by "
901                           "this driver\n", ah->hw_version.macVersion,
902                           ah->hw_version.macRev);
903                 return -EOPNOTSUPP;
904         }
905
906         if (AR_SREV_9100(ah)) {
907                 ah->iq_caldata.calData = &iq_cal_multi_sample;
908                 ah->supp_cals = IQ_MISMATCH_CAL;
909                 ah->is_pciexpress = false;
910         }
911
912         if (AR_SREV_9271(ah))
913                 ah->is_pciexpress = false;
914
915         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
916
917         ath9k_hw_init_cal_settings(ah);
918
919         ah->ani_function = ATH9K_ANI_ALL;
920         if (AR_SREV_9280_10_OR_LATER(ah)) {
921                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
922                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
923                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
924         } else {
925                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
926                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
927         }
928
929         ath9k_hw_init_mode_regs(ah);
930
931         if (ah->is_pciexpress)
932                 ath9k_hw_configpcipowersave(ah, 0, 0);
933         else
934                 ath9k_hw_disablepcie(ah);
935
936         /* Support for Japan ch.14 (2484) spread */
937         if (AR_SREV_9287_11_OR_LATER(ah)) {
938                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
939                        ar9287Common_normal_cck_fir_coeff_92871_1,
940                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
941                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
942                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
943                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
944         }
945
946         r = ath9k_hw_post_init(ah);
947         if (r)
948                 return r;
949
950         ath9k_hw_init_mode_gain_regs(ah);
951         r = ath9k_hw_fill_cap_info(ah);
952         if (r)
953                 return r;
954
955         ath9k_hw_init_eeprom_fix(ah);
956
957         r = ath9k_hw_init_macaddr(ah);
958         if (r) {
959                 ath_print(common, ATH_DBG_FATAL,
960                           "Failed to initialize MAC address\n");
961                 return r;
962         }
963
964         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
965                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
966         else
967                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
968
969         ath9k_init_nfcal_hist_buffer(ah);
970
971         common->state = ATH_HW_INITIALIZED;
972
973         return 0;
974 }
975
976 static void ath9k_hw_init_bb(struct ath_hw *ah,
977                              struct ath9k_channel *chan)
978 {
979         u32 synthDelay;
980
981         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
982         if (IS_CHAN_B(chan))
983                 synthDelay = (4 * synthDelay) / 22;
984         else
985                 synthDelay /= 10;
986
987         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
988
989         udelay(synthDelay + BASE_ACTIVATE_DELAY);
990 }
991
992 static void ath9k_hw_init_qos(struct ath_hw *ah)
993 {
994         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
995         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
996
997         REG_WRITE(ah, AR_QOS_NO_ACK,
998                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
999                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1000                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1001
1002         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1003         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1004         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1005         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1006         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1007 }
1008
1009 static void ath9k_hw_init_pll(struct ath_hw *ah,
1010                               struct ath9k_channel *chan)
1011 {
1012         u32 pll;
1013
1014         if (AR_SREV_9100(ah)) {
1015                 if (chan && IS_CHAN_5GHZ(chan))
1016                         pll = 0x1450;
1017                 else
1018                         pll = 0x1458;
1019         } else {
1020                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1021                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1022
1023                         if (chan && IS_CHAN_HALF_RATE(chan))
1024                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1025                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1026                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1027
1028                         if (chan && IS_CHAN_5GHZ(chan)) {
1029                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1030
1031
1032                                 if (AR_SREV_9280_20(ah)) {
1033                                         if (((chan->channel % 20) == 0)
1034                                             || ((chan->channel % 10) == 0))
1035                                                 pll = 0x2850;
1036                                         else
1037                                                 pll = 0x142c;
1038                                 }
1039                         } else {
1040                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1041                         }
1042
1043                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1044
1045                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1046
1047                         if (chan && IS_CHAN_HALF_RATE(chan))
1048                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1049                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1050                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1051
1052                         if (chan && IS_CHAN_5GHZ(chan))
1053                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1054                         else
1055                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1056                 } else {
1057                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1058
1059                         if (chan && IS_CHAN_HALF_RATE(chan))
1060                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1061                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1062                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1063
1064                         if (chan && IS_CHAN_5GHZ(chan))
1065                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1066                         else
1067                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1068                 }
1069         }
1070         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1071
1072         /* Switch the core clock for ar9271 to 117Mhz */
1073         if (AR_SREV_9271(ah)) {
1074                 udelay(500);
1075                 REG_WRITE(ah, 0x50040, 0x304);
1076         }
1077
1078         udelay(RTC_PLL_SETTLE_DELAY);
1079
1080         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1081 }
1082
1083 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1084 {
1085         int rx_chainmask, tx_chainmask;
1086
1087         rx_chainmask = ah->rxchainmask;
1088         tx_chainmask = ah->txchainmask;
1089
1090         switch (rx_chainmask) {
1091         case 0x5:
1092                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1093                             AR_PHY_SWAP_ALT_CHAIN);
1094         case 0x3:
1095                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1096                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1097                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1098                         break;
1099                 }
1100         case 0x1:
1101         case 0x2:
1102         case 0x7:
1103                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1104                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1105                 break;
1106         default:
1107                 break;
1108         }
1109
1110         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1111         if (tx_chainmask == 0x5) {
1112                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1113                             AR_PHY_SWAP_ALT_CHAIN);
1114         }
1115         if (AR_SREV_9100(ah))
1116                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1117                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1118 }
1119
1120 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1121                                           enum nl80211_iftype opmode)
1122 {
1123         ah->mask_reg = AR_IMR_TXERR |
1124                 AR_IMR_TXURN |
1125                 AR_IMR_RXERR |
1126                 AR_IMR_RXORN |
1127                 AR_IMR_BCNMISC;
1128
1129         if (ah->config.rx_intr_mitigation)
1130                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1131         else
1132                 ah->mask_reg |= AR_IMR_RXOK;
1133
1134         ah->mask_reg |= AR_IMR_TXOK;
1135
1136         if (opmode == NL80211_IFTYPE_AP)
1137                 ah->mask_reg |= AR_IMR_MIB;
1138
1139         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1140         ah->imrs2_reg |= AR_IMR_S2_GTT;
1141         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1142
1143         if (!AR_SREV_9100(ah)) {
1144                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1145                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1146                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1147         }
1148 }
1149
1150 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1151 {
1152         u32 val = ath9k_hw_mac_to_clks(ah, us);
1153         val = min(val, (u32) 0xFFFF);
1154         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1155 }
1156
1157 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1158 {
1159         u32 val = ath9k_hw_mac_to_clks(ah, us);
1160         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1161         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1162 }
1163
1164 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1165 {
1166         u32 val = ath9k_hw_mac_to_clks(ah, us);
1167         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1168         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1169 }
1170
1171 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1172 {
1173         if (tu > 0xFFFF) {
1174                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1175                           "bad global tx timeout %u\n", tu);
1176                 ah->globaltxtimeout = (u32) -1;
1177                 return false;
1178         } else {
1179                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1180                 ah->globaltxtimeout = tu;
1181                 return true;
1182         }
1183 }
1184
1185 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1186 {
1187         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1188         int acktimeout;
1189         int slottime;
1190         int sifstime;
1191
1192         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1193                   ah->misc_mode);
1194
1195         if (ah->misc_mode != 0)
1196                 REG_WRITE(ah, AR_PCU_MISC,
1197                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1198
1199         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1200                 sifstime = 16;
1201         else
1202                 sifstime = 10;
1203
1204         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1205         slottime = ah->slottime + 3 * ah->coverage_class;
1206         acktimeout = slottime + sifstime;
1207
1208         /*
1209          * Workaround for early ACK timeouts, add an offset to match the
1210          * initval's 64us ack timeout value.
1211          * This was initially only meant to work around an issue with delayed
1212          * BA frames in some implementations, but it has been found to fix ACK
1213          * timeout issues in other cases as well.
1214          */
1215         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1216                 acktimeout += 64 - sifstime - ah->slottime;
1217
1218         ath9k_hw_setslottime(ah, slottime);
1219         ath9k_hw_set_ack_timeout(ah, acktimeout);
1220         ath9k_hw_set_cts_timeout(ah, acktimeout);
1221         if (ah->globaltxtimeout != (u32) -1)
1222                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1223 }
1224 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1225
1226 void ath9k_hw_deinit(struct ath_hw *ah)
1227 {
1228         struct ath_common *common = ath9k_hw_common(ah);
1229
1230         if (common->state <= ATH_HW_INITIALIZED)
1231                 goto free_hw;
1232
1233         if (!AR_SREV_9100(ah))
1234                 ath9k_hw_ani_disable(ah);
1235
1236         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1237
1238 free_hw:
1239         if (!AR_SREV_9280_10_OR_LATER(ah))
1240                 ath9k_hw_rf_free_ext_banks(ah);
1241         kfree(ah);
1242         ah = NULL;
1243 }
1244 EXPORT_SYMBOL(ath9k_hw_deinit);
1245
1246 /*******/
1247 /* INI */
1248 /*******/
1249
1250 static void ath9k_hw_override_ini(struct ath_hw *ah,
1251                                   struct ath9k_channel *chan)
1252 {
1253         u32 val;
1254
1255         /*
1256          * Set the RX_ABORT and RX_DIS and clear if off only after
1257          * RXE is set for MAC. This prevents frames with corrupted
1258          * descriptor status.
1259          */
1260         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1261
1262         if (AR_SREV_9280_10_OR_LATER(ah)) {
1263                 val = REG_READ(ah, AR_PCU_MISC_MODE2);
1264
1265                 if (!AR_SREV_9271(ah))
1266                         val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1267
1268                 if (AR_SREV_9287_10_OR_LATER(ah))
1269                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1270
1271                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1272         }
1273
1274         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1275             AR_SREV_9280_10_OR_LATER(ah))
1276                 return;
1277         /*
1278          * Disable BB clock gating
1279          * Necessary to avoid issues on AR5416 2.0
1280          */
1281         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1282
1283         /*
1284          * Disable RIFS search on some chips to avoid baseband
1285          * hang issues.
1286          */
1287         if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1288                 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1289                 val &= ~AR_PHY_RIFS_INIT_DELAY;
1290                 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1291         }
1292 }
1293
1294 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1295                               struct ar5416_eeprom_def *pEepData,
1296                               u32 reg, u32 value)
1297 {
1298         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1299         struct ath_common *common = ath9k_hw_common(ah);
1300
1301         switch (ah->hw_version.devid) {
1302         case AR9280_DEVID_PCI:
1303                 if (reg == 0x7894) {
1304                         ath_print(common, ATH_DBG_EEPROM,
1305                                 "ini VAL: %x  EEPROM: %x\n", value,
1306                                 (pBase->version & 0xff));
1307
1308                         if ((pBase->version & 0xff) > 0x0a) {
1309                                 ath_print(common, ATH_DBG_EEPROM,
1310                                           "PWDCLKIND: %d\n",
1311                                           pBase->pwdclkind);
1312                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1313                                 value |= AR_AN_TOP2_PWDCLKIND &
1314                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1315                         } else {
1316                                 ath_print(common, ATH_DBG_EEPROM,
1317                                           "PWDCLKIND Earlier Rev\n");
1318                         }
1319
1320                         ath_print(common, ATH_DBG_EEPROM,
1321                                   "final ini VAL: %x\n", value);
1322                 }
1323                 break;
1324         }
1325
1326         return value;
1327 }
1328
1329 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1330                               struct ar5416_eeprom_def *pEepData,
1331                               u32 reg, u32 value)
1332 {
1333         if (ah->eep_map == EEP_MAP_4KBITS)
1334                 return value;
1335         else
1336                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1337 }
1338
1339 static void ath9k_olc_init(struct ath_hw *ah)
1340 {
1341         u32 i;
1342
1343         if (OLC_FOR_AR9287_10_LATER) {
1344                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1345                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1346                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1347                                 AR9287_AN_TXPC0_TXPCMODE,
1348                                 AR9287_AN_TXPC0_TXPCMODE_S,
1349                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1350                 udelay(100);
1351         } else {
1352                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1353                         ah->originalGain[i] =
1354                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1355                                                 AR_PHY_TX_GAIN);
1356                 ah->PDADCdelta = 0;
1357         }
1358 }
1359
1360 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1361                               struct ath9k_channel *chan)
1362 {
1363         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1364
1365         if (IS_CHAN_B(chan))
1366                 ctl |= CTL_11B;
1367         else if (IS_CHAN_G(chan))
1368                 ctl |= CTL_11G;
1369         else
1370                 ctl |= CTL_11A;
1371
1372         return ctl;
1373 }
1374
1375 static int ath9k_hw_process_ini(struct ath_hw *ah,
1376                                 struct ath9k_channel *chan)
1377 {
1378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1379         int i, regWrites = 0;
1380         struct ieee80211_channel *channel = chan->chan;
1381         u32 modesIndex, freqIndex;
1382
1383         switch (chan->chanmode) {
1384         case CHANNEL_A:
1385         case CHANNEL_A_HT20:
1386                 modesIndex = 1;
1387                 freqIndex = 1;
1388                 break;
1389         case CHANNEL_A_HT40PLUS:
1390         case CHANNEL_A_HT40MINUS:
1391                 modesIndex = 2;
1392                 freqIndex = 1;
1393                 break;
1394         case CHANNEL_G:
1395         case CHANNEL_G_HT20:
1396         case CHANNEL_B:
1397                 modesIndex = 4;
1398                 freqIndex = 2;
1399                 break;
1400         case CHANNEL_G_HT40PLUS:
1401         case CHANNEL_G_HT40MINUS:
1402                 modesIndex = 3;
1403                 freqIndex = 2;
1404                 break;
1405
1406         default:
1407                 return -EINVAL;
1408         }
1409
1410         /* Set correct baseband to analog shift setting to access analog chips */
1411         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1412
1413         /* Write ADDAC shifts */
1414         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1415         ah->eep_ops->set_addac(ah, chan);
1416
1417         if (AR_SREV_5416_22_OR_LATER(ah)) {
1418                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1419         } else {
1420                 struct ar5416IniArray temp;
1421                 u32 addacSize =
1422                         sizeof(u32) * ah->iniAddac.ia_rows *
1423                         ah->iniAddac.ia_columns;
1424
1425                 /* For AR5416 2.0/2.1 */
1426                 memcpy(ah->addac5416_21,
1427                        ah->iniAddac.ia_array, addacSize);
1428
1429                 /* override CLKDRV value at [row, column] = [31, 1] */
1430                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1431
1432                 temp.ia_array = ah->addac5416_21;
1433                 temp.ia_columns = ah->iniAddac.ia_columns;
1434                 temp.ia_rows = ah->iniAddac.ia_rows;
1435                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1436         }
1437
1438         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1439
1440         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1441                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1442                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1443
1444                 REG_WRITE(ah, reg, val);
1445
1446                 if (reg >= 0x7800 && reg < 0x78a0
1447                     && ah->config.analog_shiftreg) {
1448                         udelay(100);
1449                 }
1450
1451                 DO_DELAY(regWrites);
1452         }
1453
1454         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1455                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1456
1457         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1458             AR_SREV_9287_10_OR_LATER(ah))
1459                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1460
1461         if (AR_SREV_9271_10(ah))
1462                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1463                                 modesIndex, regWrites);
1464
1465         /* Write common array parameters */
1466         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1467                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1468                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1469
1470                 REG_WRITE(ah, reg, val);
1471
1472                 if (reg >= 0x7800 && reg < 0x78a0
1473                     && ah->config.analog_shiftreg) {
1474                         udelay(100);
1475                 }
1476
1477                 DO_DELAY(regWrites);
1478         }
1479
1480         if (AR_SREV_9271(ah)) {
1481                 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1482                         REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1483                                         modesIndex, regWrites);
1484                 else
1485                         REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1486                                         modesIndex, regWrites);
1487         }
1488
1489         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1490
1491         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1492                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1493                                 regWrites);
1494         }
1495
1496         ath9k_hw_override_ini(ah, chan);
1497         ath9k_hw_set_regs(ah, chan);
1498         ath9k_hw_init_chain_masks(ah);
1499
1500         if (OLC_FOR_AR9280_20_LATER)
1501                 ath9k_olc_init(ah);
1502
1503         /* Set TX power */
1504         ah->eep_ops->set_txpower(ah, chan,
1505                                  ath9k_regd_get_ctl(regulatory, chan),
1506                                  channel->max_antenna_gain * 2,
1507                                  channel->max_power * 2,
1508                                  min((u32) MAX_RATE_POWER,
1509                                  (u32) regulatory->power_limit));
1510
1511         /* Write analog registers */
1512         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1513                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1514                           "ar5416SetRfRegs failed\n");
1515                 return -EIO;
1516         }
1517
1518         return 0;
1519 }
1520
1521 /****************************************/
1522 /* Reset and Channel Switching Routines */
1523 /****************************************/
1524
1525 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1526 {
1527         u32 rfMode = 0;
1528
1529         if (chan == NULL)
1530                 return;
1531
1532         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1533                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1534
1535         if (!AR_SREV_9280_10_OR_LATER(ah))
1536                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1537                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1538
1539         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1540                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1541
1542         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1543 }
1544
1545 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1546 {
1547         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1548 }
1549
1550 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1551 {
1552         u32 regval;
1553
1554         /*
1555          * set AHB_MODE not to do cacheline prefetches
1556         */
1557         regval = REG_READ(ah, AR_AHB_MODE);
1558         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1559
1560         /*
1561          * let mac dma reads be in 128 byte chunks
1562          */
1563         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1564         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1565
1566         /*
1567          * Restore TX Trigger Level to its pre-reset value.
1568          * The initial value depends on whether aggregation is enabled, and is
1569          * adjusted whenever underruns are detected.
1570          */
1571         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1572
1573         /*
1574          * let mac dma writes be in 128 byte chunks
1575          */
1576         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1577         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1578
1579         /*
1580          * Setup receive FIFO threshold to hold off TX activities
1581          */
1582         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1583
1584         /*
1585          * reduce the number of usable entries in PCU TXBUF to avoid
1586          * wrap around issues.
1587          */
1588         if (AR_SREV_9285(ah)) {
1589                 /* For AR9285 the number of Fifos are reduced to half.
1590                  * So set the usable tx buf size also to half to
1591                  * avoid data/delimiter underruns
1592                  */
1593                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1594                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1595         } else if (!AR_SREV_9271(ah)) {
1596                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1597                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1598         }
1599 }
1600
1601 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1602 {
1603         u32 val;
1604
1605         val = REG_READ(ah, AR_STA_ID1);
1606         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1607         switch (opmode) {
1608         case NL80211_IFTYPE_AP:
1609                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1610                           | AR_STA_ID1_KSRCH_MODE);
1611                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1612                 break;
1613         case NL80211_IFTYPE_ADHOC:
1614         case NL80211_IFTYPE_MESH_POINT:
1615                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1616                           | AR_STA_ID1_KSRCH_MODE);
1617                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1618                 break;
1619         case NL80211_IFTYPE_STATION:
1620         case NL80211_IFTYPE_MONITOR:
1621                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1622                 break;
1623         }
1624 }
1625
1626 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1627                                                  u32 coef_scaled,
1628                                                  u32 *coef_mantissa,
1629                                                  u32 *coef_exponent)
1630 {
1631         u32 coef_exp, coef_man;
1632
1633         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1634                 if ((coef_scaled >> coef_exp) & 0x1)
1635                         break;
1636
1637         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1638
1639         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1640
1641         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1642         *coef_exponent = coef_exp - 16;
1643 }
1644
1645 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1646                                      struct ath9k_channel *chan)
1647 {
1648         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1649         u32 clockMhzScaled = 0x64000000;
1650         struct chan_centers centers;
1651
1652         if (IS_CHAN_HALF_RATE(chan))
1653                 clockMhzScaled = clockMhzScaled >> 1;
1654         else if (IS_CHAN_QUARTER_RATE(chan))
1655                 clockMhzScaled = clockMhzScaled >> 2;
1656
1657         ath9k_hw_get_channel_centers(ah, chan, &centers);
1658         coef_scaled = clockMhzScaled / centers.synth_center;
1659
1660         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1661                                       &ds_coef_exp);
1662
1663         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1664                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1665         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1666                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1667
1668         coef_scaled = (9 * coef_scaled) / 10;
1669
1670         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1671                                       &ds_coef_exp);
1672
1673         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1674                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1675         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1676                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1677 }
1678
1679 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1680 {
1681         u32 rst_flags;
1682         u32 tmpReg;
1683
1684         if (AR_SREV_9100(ah)) {
1685                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1686                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1687                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1688                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1689                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1690         }
1691
1692         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1693                   AR_RTC_FORCE_WAKE_ON_INT);
1694
1695         if (AR_SREV_9100(ah)) {
1696                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1697                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1698         } else {
1699                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1700                 if (tmpReg &
1701                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1702                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1703                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1704                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1705                 } else {
1706                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1707                 }
1708
1709                 rst_flags = AR_RTC_RC_MAC_WARM;
1710                 if (type == ATH9K_RESET_COLD)
1711                         rst_flags |= AR_RTC_RC_MAC_COLD;
1712         }
1713
1714         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1715         udelay(50);
1716
1717         REG_WRITE(ah, AR_RTC_RC, 0);
1718         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1719                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1720                           "RTC stuck in MAC reset\n");
1721                 return false;
1722         }
1723
1724         if (!AR_SREV_9100(ah))
1725                 REG_WRITE(ah, AR_RC, 0);
1726
1727         if (AR_SREV_9100(ah))
1728                 udelay(50);
1729
1730         return true;
1731 }
1732
1733 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1734 {
1735         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1736                   AR_RTC_FORCE_WAKE_ON_INT);
1737
1738         if (!AR_SREV_9100(ah))
1739                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1740
1741         REG_WRITE(ah, AR_RTC_RESET, 0);
1742         udelay(2);
1743
1744         if (!AR_SREV_9100(ah))
1745                 REG_WRITE(ah, AR_RC, 0);
1746
1747         REG_WRITE(ah, AR_RTC_RESET, 1);
1748
1749         if (!ath9k_hw_wait(ah,
1750                            AR_RTC_STATUS,
1751                            AR_RTC_STATUS_M,
1752                            AR_RTC_STATUS_ON,
1753                            AH_WAIT_TIMEOUT)) {
1754                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1755                           "RTC not waking up\n");
1756                 return false;
1757         }
1758
1759         ath9k_hw_read_revisions(ah);
1760
1761         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1762 }
1763
1764 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1765 {
1766         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1767                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1768
1769         switch (type) {
1770         case ATH9K_RESET_POWER_ON:
1771                 return ath9k_hw_set_reset_power_on(ah);
1772         case ATH9K_RESET_WARM:
1773         case ATH9K_RESET_COLD:
1774                 return ath9k_hw_set_reset(ah, type);
1775         default:
1776                 return false;
1777         }
1778 }
1779
1780 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1781 {
1782         u32 phymode;
1783         u32 enableDacFifo = 0;
1784
1785         if (AR_SREV_9285_10_OR_LATER(ah))
1786                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1787                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1788
1789         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1790                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1791
1792         if (IS_CHAN_HT40(chan)) {
1793                 phymode |= AR_PHY_FC_DYN2040_EN;
1794
1795                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1796                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1797                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1798
1799         }
1800         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1801
1802         ath9k_hw_set11nmac2040(ah);
1803
1804         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1805         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1806 }
1807
1808 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1809                                 struct ath9k_channel *chan)
1810 {
1811         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1812                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1813                         return false;
1814         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1815                 return false;
1816
1817         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1818                 return false;
1819
1820         ah->chip_fullsleep = false;
1821         ath9k_hw_init_pll(ah, chan);
1822         ath9k_hw_set_rfmode(ah, chan);
1823
1824         return true;
1825 }
1826
1827 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1828                                     struct ath9k_channel *chan)
1829 {
1830         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1831         struct ath_common *common = ath9k_hw_common(ah);
1832         struct ieee80211_channel *channel = chan->chan;
1833         u32 synthDelay, qnum;
1834         int r;
1835
1836         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1837                 if (ath9k_hw_numtxpending(ah, qnum)) {
1838                         ath_print(common, ATH_DBG_QUEUE,
1839                                   "Transmit frames pending on "
1840                                   "queue %d\n", qnum);
1841                         return false;
1842                 }
1843         }
1844
1845         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1846         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1847                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1848                 ath_print(common, ATH_DBG_FATAL,
1849                           "Could not kill baseband RX\n");
1850                 return false;
1851         }
1852
1853         ath9k_hw_set_regs(ah, chan);
1854
1855         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1856         if (r) {
1857                 ath_print(common, ATH_DBG_FATAL,
1858                           "Failed to set channel\n");
1859                 return false;
1860         }
1861
1862         ah->eep_ops->set_txpower(ah, chan,
1863                              ath9k_regd_get_ctl(regulatory, chan),
1864                              channel->max_antenna_gain * 2,
1865                              channel->max_power * 2,
1866                              min((u32) MAX_RATE_POWER,
1867                              (u32) regulatory->power_limit));
1868
1869         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1870         if (IS_CHAN_B(chan))
1871                 synthDelay = (4 * synthDelay) / 22;
1872         else
1873                 synthDelay /= 10;
1874
1875         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1876
1877         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1878
1879         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1880                 ath9k_hw_set_delta_slope(ah, chan);
1881
1882         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1883
1884         if (!chan->oneTimeCalsDone)
1885                 chan->oneTimeCalsDone = true;
1886
1887         return true;
1888 }
1889
1890 static void ath9k_enable_rfkill(struct ath_hw *ah)
1891 {
1892         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1893                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1894
1895         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1896                     AR_GPIO_INPUT_MUX2_RFSILENT);
1897
1898         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1899         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1900 }
1901
1902 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1903                     bool bChannelChange)
1904 {
1905         struct ath_common *common = ath9k_hw_common(ah);
1906         u32 saveLedState;
1907         struct ath9k_channel *curchan = ah->curchan;
1908         u32 saveDefAntenna;
1909         u32 macStaId1;
1910         u64 tsf = 0;
1911         int i, rx_chainmask, r;
1912
1913         ah->txchainmask = common->tx_chainmask;
1914         ah->rxchainmask = common->rx_chainmask;
1915
1916         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1917                 return -EIO;
1918
1919         if (curchan && !ah->chip_fullsleep)
1920                 ath9k_hw_getnf(ah, curchan);
1921
1922         if (bChannelChange &&
1923             (ah->chip_fullsleep != true) &&
1924             (ah->curchan != NULL) &&
1925             (chan->channel != ah->curchan->channel) &&
1926             ((chan->channelFlags & CHANNEL_ALL) ==
1927              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1928              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1929              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1930
1931                 if (ath9k_hw_channel_change(ah, chan)) {
1932                         ath9k_hw_loadnf(ah, ah->curchan);
1933                         ath9k_hw_start_nfcal(ah);
1934                         return 0;
1935                 }
1936         }
1937
1938         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1939         if (saveDefAntenna == 0)
1940                 saveDefAntenna = 1;
1941
1942         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1943
1944         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1945         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1946                 tsf = ath9k_hw_gettsf64(ah);
1947
1948         saveLedState = REG_READ(ah, AR_CFG_LED) &
1949                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1950                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1951
1952         ath9k_hw_mark_phy_inactive(ah);
1953
1954         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1955                 REG_WRITE(ah,
1956                           AR9271_RESET_POWER_DOWN_CONTROL,
1957                           AR9271_RADIO_RF_RST);
1958                 udelay(50);
1959         }
1960
1961         if (!ath9k_hw_chip_reset(ah, chan)) {
1962                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1963                 return -EINVAL;
1964         }
1965
1966         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1967                 ah->htc_reset_init = false;
1968                 REG_WRITE(ah,
1969                           AR9271_RESET_POWER_DOWN_CONTROL,
1970                           AR9271_GATE_MAC_CTL);
1971                 udelay(50);
1972         }
1973
1974         /* Restore TSF */
1975         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1976                 ath9k_hw_settsf64(ah, tsf);
1977
1978         if (AR_SREV_9280_10_OR_LATER(ah))
1979                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1980
1981         if (AR_SREV_9287_12_OR_LATER(ah)) {
1982                 /* Enable ASYNC FIFO */
1983                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1984                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1985                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
1986                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1987                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1988                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1989                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1990         }
1991         r = ath9k_hw_process_ini(ah, chan);
1992         if (r)
1993                 return r;
1994
1995         /* Setup MFP options for CCMP */
1996         if (AR_SREV_9280_20_OR_LATER(ah)) {
1997                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1998                  * frames when constructing CCMP AAD. */
1999                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2000                               0xc7ff);
2001                 ah->sw_mgmt_crypto = false;
2002         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2003                 /* Disable hardware crypto for management frames */
2004                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2005                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2006                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2007                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2008                 ah->sw_mgmt_crypto = true;
2009         } else
2010                 ah->sw_mgmt_crypto = true;
2011
2012         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2013                 ath9k_hw_set_delta_slope(ah, chan);
2014
2015         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2016         ah->eep_ops->set_board_values(ah, chan);
2017
2018         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2019         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2020                   | macStaId1
2021                   | AR_STA_ID1_RTS_USE_DEF
2022                   | (ah->config.
2023                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2024                   | ah->sta_id1_defaults);
2025         ath9k_hw_set_operating_mode(ah, ah->opmode);
2026
2027         ath_hw_setbssidmask(common);
2028
2029         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2030
2031         ath9k_hw_write_associd(ah);
2032
2033         REG_WRITE(ah, AR_ISR, ~0);
2034
2035         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2036
2037         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2038         if (r)
2039                 return r;
2040
2041         for (i = 0; i < AR_NUM_DCU; i++)
2042                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2043
2044         ah->intr_txqs = 0;
2045         for (i = 0; i < ah->caps.total_queues; i++)
2046                 ath9k_hw_resettxqueue(ah, i);
2047
2048         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2049         ath9k_hw_init_qos(ah);
2050
2051         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2052                 ath9k_enable_rfkill(ah);
2053
2054         ath9k_hw_init_global_settings(ah);
2055
2056         if (AR_SREV_9287_12_OR_LATER(ah)) {
2057                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2058                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2059                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2060                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2061                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2062                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2063
2064                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2065                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2066
2067                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2068                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2069                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2070                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2071         }
2072         if (AR_SREV_9287_12_OR_LATER(ah)) {
2073                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2074                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2075         }
2076
2077         REG_WRITE(ah, AR_STA_ID1,
2078                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2079
2080         ath9k_hw_set_dma(ah);
2081
2082         REG_WRITE(ah, AR_OBS, 8);
2083
2084         if (ah->config.rx_intr_mitigation) {
2085                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2086                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2087         }
2088
2089         ath9k_hw_init_bb(ah, chan);
2090
2091         if (!ath9k_hw_init_cal(ah, chan))
2092                 return -EIO;
2093
2094         rx_chainmask = ah->rxchainmask;
2095         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2096                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2097                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2098         }
2099
2100         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2101
2102         /*
2103          * For big endian systems turn on swapping for descriptors
2104          */
2105         if (AR_SREV_9100(ah)) {
2106                 u32 mask;
2107                 mask = REG_READ(ah, AR_CFG);
2108                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2109                         ath_print(common, ATH_DBG_RESET,
2110                                 "CFG Byte Swap Set 0x%x\n", mask);
2111                 } else {
2112                         mask =
2113                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2114                         REG_WRITE(ah, AR_CFG, mask);
2115                         ath_print(common, ATH_DBG_RESET,
2116                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2117                 }
2118         } else {
2119                 /* Configure AR9271 target WLAN */
2120                 if (AR_SREV_9271(ah))
2121                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2122 #ifdef __BIG_ENDIAN
2123                 else
2124                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2125 #endif
2126         }
2127
2128         if (ah->btcoex_hw.enabled)
2129                 ath9k_hw_btcoex_enable(ah);
2130
2131         return 0;
2132 }
2133 EXPORT_SYMBOL(ath9k_hw_reset);
2134
2135 /************************/
2136 /* Key Cache Management */
2137 /************************/
2138
2139 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2140 {
2141         u32 keyType;
2142
2143         if (entry >= ah->caps.keycache_size) {
2144                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2145                           "keychache entry %u out of range\n", entry);
2146                 return false;
2147         }
2148
2149         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2150
2151         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2152         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2153         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2154         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2155         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2156         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2157         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2158         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2159
2160         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2161                 u16 micentry = entry + 64;
2162
2163                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2164                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2165                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2166                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2167
2168         }
2169
2170         return true;
2171 }
2172 EXPORT_SYMBOL(ath9k_hw_keyreset);
2173
2174 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2175 {
2176         u32 macHi, macLo;
2177
2178         if (entry >= ah->caps.keycache_size) {
2179                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2180                           "keychache entry %u out of range\n", entry);
2181                 return false;
2182         }
2183
2184         if (mac != NULL) {
2185                 macHi = (mac[5] << 8) | mac[4];
2186                 macLo = (mac[3] << 24) |
2187                         (mac[2] << 16) |
2188                         (mac[1] << 8) |
2189                         mac[0];
2190                 macLo >>= 1;
2191                 macLo |= (macHi & 1) << 31;
2192                 macHi >>= 1;
2193         } else {
2194                 macLo = macHi = 0;
2195         }
2196         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2197         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2198
2199         return true;
2200 }
2201 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2202
2203 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2204                                  const struct ath9k_keyval *k,
2205                                  const u8 *mac)
2206 {
2207         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2208         struct ath_common *common = ath9k_hw_common(ah);
2209         u32 key0, key1, key2, key3, key4;
2210         u32 keyType;
2211
2212         if (entry >= pCap->keycache_size) {
2213                 ath_print(common, ATH_DBG_FATAL,
2214                           "keycache entry %u out of range\n", entry);
2215                 return false;
2216         }
2217
2218         switch (k->kv_type) {
2219         case ATH9K_CIPHER_AES_OCB:
2220                 keyType = AR_KEYTABLE_TYPE_AES;
2221                 break;
2222         case ATH9K_CIPHER_AES_CCM:
2223                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2224                         ath_print(common, ATH_DBG_ANY,
2225                                   "AES-CCM not supported by mac rev 0x%x\n",
2226                                   ah->hw_version.macRev);
2227                         return false;
2228                 }
2229                 keyType = AR_KEYTABLE_TYPE_CCM;
2230                 break;
2231         case ATH9K_CIPHER_TKIP:
2232                 keyType = AR_KEYTABLE_TYPE_TKIP;
2233                 if (ATH9K_IS_MIC_ENABLED(ah)
2234                     && entry + 64 >= pCap->keycache_size) {
2235                         ath_print(common, ATH_DBG_ANY,
2236                                   "entry %u inappropriate for TKIP\n", entry);
2237                         return false;
2238                 }
2239                 break;
2240         case ATH9K_CIPHER_WEP:
2241                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2242                         ath_print(common, ATH_DBG_ANY,
2243                                   "WEP key length %u too small\n", k->kv_len);
2244                         return false;
2245                 }
2246                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2247                         keyType = AR_KEYTABLE_TYPE_40;
2248                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2249                         keyType = AR_KEYTABLE_TYPE_104;
2250                 else
2251                         keyType = AR_KEYTABLE_TYPE_128;
2252                 break;
2253         case ATH9K_CIPHER_CLR:
2254                 keyType = AR_KEYTABLE_TYPE_CLR;
2255                 break;
2256         default:
2257                 ath_print(common, ATH_DBG_FATAL,
2258                           "cipher %u not supported\n", k->kv_type);
2259                 return false;
2260         }
2261
2262         key0 = get_unaligned_le32(k->kv_val + 0);
2263         key1 = get_unaligned_le16(k->kv_val + 4);
2264         key2 = get_unaligned_le32(k->kv_val + 6);
2265         key3 = get_unaligned_le16(k->kv_val + 10);
2266         key4 = get_unaligned_le32(k->kv_val + 12);
2267         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2268                 key4 &= 0xff;
2269
2270         /*
2271          * Note: Key cache registers access special memory area that requires
2272          * two 32-bit writes to actually update the values in the internal
2273          * memory. Consequently, the exact order and pairs used here must be
2274          * maintained.
2275          */
2276
2277         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2278                 u16 micentry = entry + 64;
2279
2280                 /*
2281                  * Write inverted key[47:0] first to avoid Michael MIC errors
2282                  * on frames that could be sent or received at the same time.
2283                  * The correct key will be written in the end once everything
2284                  * else is ready.
2285                  */
2286                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2287                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2288
2289                 /* Write key[95:48] */
2290                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2291                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2292
2293                 /* Write key[127:96] and key type */
2294                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2295                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2296
2297                 /* Write MAC address for the entry */
2298                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2299
2300                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2301                         /*
2302                          * TKIP uses two key cache entries:
2303                          * Michael MIC TX/RX keys in the same key cache entry
2304                          * (idx = main index + 64):
2305                          * key0 [31:0] = RX key [31:0]
2306                          * key1 [15:0] = TX key [31:16]
2307                          * key1 [31:16] = reserved
2308                          * key2 [31:0] = RX key [63:32]
2309                          * key3 [15:0] = TX key [15:0]
2310                          * key3 [31:16] = reserved
2311                          * key4 [31:0] = TX key [63:32]
2312                          */
2313                         u32 mic0, mic1, mic2, mic3, mic4;
2314
2315                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2316                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2317                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2318                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2319                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2320
2321                         /* Write RX[31:0] and TX[31:16] */
2322                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2323                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2324
2325                         /* Write RX[63:32] and TX[15:0] */
2326                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2327                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2328
2329                         /* Write TX[63:32] and keyType(reserved) */
2330                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2331                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2332                                   AR_KEYTABLE_TYPE_CLR);
2333
2334                 } else {
2335                         /*
2336                          * TKIP uses four key cache entries (two for group
2337                          * keys):
2338                          * Michael MIC TX/RX keys are in different key cache
2339                          * entries (idx = main index + 64 for TX and
2340                          * main index + 32 + 96 for RX):
2341                          * key0 [31:0] = TX/RX MIC key [31:0]
2342                          * key1 [31:0] = reserved
2343                          * key2 [31:0] = TX/RX MIC key [63:32]
2344                          * key3 [31:0] = reserved
2345                          * key4 [31:0] = reserved
2346                          *
2347                          * Upper layer code will call this function separately
2348                          * for TX and RX keys when these registers offsets are
2349                          * used.
2350                          */
2351                         u32 mic0, mic2;
2352
2353                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2354                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2355
2356                         /* Write MIC key[31:0] */
2357                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2358                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2359
2360                         /* Write MIC key[63:32] */
2361                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2362                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2363
2364                         /* Write TX[63:32] and keyType(reserved) */
2365                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2366                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2367                                   AR_KEYTABLE_TYPE_CLR);
2368                 }
2369
2370                 /* MAC address registers are reserved for the MIC entry */
2371                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2372                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2373
2374                 /*
2375                  * Write the correct (un-inverted) key[47:0] last to enable
2376                  * TKIP now that all other registers are set with correct
2377                  * values.
2378                  */
2379                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2380                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2381         } else {
2382                 /* Write key[47:0] */
2383                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2384                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2385
2386                 /* Write key[95:48] */
2387                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2388                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2389
2390                 /* Write key[127:96] and key type */
2391                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2392                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2393
2394                 /* Write MAC address for the entry */
2395                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2396         }
2397
2398         return true;
2399 }
2400 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2401
2402 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2403 {
2404         if (entry < ah->caps.keycache_size) {
2405                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2406                 if (val & AR_KEYTABLE_VALID)
2407                         return true;
2408         }
2409         return false;
2410 }
2411 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2412
2413 /******************************/
2414 /* Power Management (Chipset) */
2415 /******************************/
2416
2417 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2418 {
2419         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2420         if (setChip) {
2421                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2422                             AR_RTC_FORCE_WAKE_EN);
2423                 if (!AR_SREV_9100(ah))
2424                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2425
2426                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2427                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2428                                     AR_RTC_RESET_EN);
2429         }
2430 }
2431
2432 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2433 {
2434         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2435         if (setChip) {
2436                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2437
2438                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2439                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2440                                   AR_RTC_FORCE_WAKE_ON_INT);
2441                 } else {
2442                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2443                                     AR_RTC_FORCE_WAKE_EN);
2444                 }
2445         }
2446 }
2447
2448 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2449 {
2450         u32 val;
2451         int i;
2452
2453         if (setChip) {
2454                 if ((REG_READ(ah, AR_RTC_STATUS) &
2455                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2456                         if (ath9k_hw_set_reset_reg(ah,
2457                                            ATH9K_RESET_POWER_ON) != true) {
2458                                 return false;
2459                         }
2460                         ath9k_hw_init_pll(ah, NULL);
2461                 }
2462                 if (AR_SREV_9100(ah))
2463                         REG_SET_BIT(ah, AR_RTC_RESET,
2464                                     AR_RTC_RESET_EN);
2465
2466                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2467                             AR_RTC_FORCE_WAKE_EN);
2468                 udelay(50);
2469
2470                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2471                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2472                         if (val == AR_RTC_STATUS_ON)
2473                                 break;
2474                         udelay(50);
2475                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2476                                     AR_RTC_FORCE_WAKE_EN);
2477                 }
2478                 if (i == 0) {
2479                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2480                                   "Failed to wakeup in %uus\n",
2481                                   POWER_UP_TIME / 20);
2482                         return false;
2483                 }
2484         }
2485
2486         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2487
2488         return true;
2489 }
2490
2491 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2492 {
2493         struct ath_common *common = ath9k_hw_common(ah);
2494         int status = true, setChip = true;
2495         static const char *modes[] = {
2496                 "AWAKE",
2497                 "FULL-SLEEP",
2498                 "NETWORK SLEEP",
2499                 "UNDEFINED"
2500         };
2501
2502         if (ah->power_mode == mode)
2503                 return status;
2504
2505         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2506                   modes[ah->power_mode], modes[mode]);
2507
2508         switch (mode) {
2509         case ATH9K_PM_AWAKE:
2510                 status = ath9k_hw_set_power_awake(ah, setChip);
2511                 break;
2512         case ATH9K_PM_FULL_SLEEP:
2513                 ath9k_set_power_sleep(ah, setChip);
2514                 ah->chip_fullsleep = true;
2515                 break;
2516         case ATH9K_PM_NETWORK_SLEEP:
2517                 ath9k_set_power_network_sleep(ah, setChip);
2518                 break;
2519         default:
2520                 ath_print(common, ATH_DBG_FATAL,
2521                           "Unknown power mode %u\n", mode);
2522                 return false;
2523         }
2524         ah->power_mode = mode;
2525
2526         return status;
2527 }
2528 EXPORT_SYMBOL(ath9k_hw_setpower);
2529
2530 /*
2531  * Helper for ASPM support.
2532  *
2533  * Disable PLL when in L0s as well as receiver clock when in L1.
2534  * This power saving option must be enabled through the SerDes.
2535  *
2536  * Programming the SerDes must go through the same 288 bit serial shift
2537  * register as the other analog registers.  Hence the 9 writes.
2538  */
2539 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2540 {
2541         u8 i;
2542         u32 val;
2543
2544         if (ah->is_pciexpress != true)
2545                 return;
2546
2547         /* Do not touch SerDes registers */
2548         if (ah->config.pcie_powersave_enable == 2)
2549                 return;
2550
2551         /* Nothing to do on restore for 11N */
2552         if (!restore) {
2553                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2554                         /*
2555                          * AR9280 2.0 or later chips use SerDes values from the
2556                          * initvals.h initialized depending on chipset during
2557                          * ath9k_hw_init()
2558                          */
2559                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2560                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2561                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2562                         }
2563                 } else if (AR_SREV_9280(ah) &&
2564                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2565                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2566                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2567
2568                         /* RX shut off when elecidle is asserted */
2569                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2570                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2571                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2572
2573                         /* Shut off CLKREQ active in L1 */
2574                         if (ah->config.pcie_clock_req)
2575                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2576                         else
2577                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2578
2579                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2580                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2581                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2582
2583                         /* Load the new settings */
2584                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2585
2586                 } else {
2587                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2588                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2589
2590                         /* RX shut off when elecidle is asserted */
2591                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2592                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2593                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2594
2595                         /*
2596                          * Ignore ah->ah_config.pcie_clock_req setting for
2597                          * pre-AR9280 11n
2598                          */
2599                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2600
2601                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2602                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2603                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2604
2605                         /* Load the new settings */
2606                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2607                 }
2608
2609                 udelay(1000);
2610
2611                 /* set bit 19 to allow forcing of pcie core into L1 state */
2612                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2613
2614                 /* Several PCIe massages to ensure proper behaviour */
2615                 if (ah->config.pcie_waen) {
2616                         val = ah->config.pcie_waen;
2617                         if (!power_off)
2618                                 val &= (~AR_WA_D3_L1_DISABLE);
2619                 } else {
2620                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2621                             AR_SREV_9287(ah)) {
2622                                 val = AR9285_WA_DEFAULT;
2623                                 if (!power_off)
2624                                         val &= (~AR_WA_D3_L1_DISABLE);
2625                         } else if (AR_SREV_9280(ah)) {
2626                                 /*
2627                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2628                                  * set otherwise card may disappear.
2629                                  */
2630                                 val = AR9280_WA_DEFAULT;
2631                                 if (!power_off)
2632                                         val &= (~AR_WA_D3_L1_DISABLE);
2633                         } else
2634                                 val = AR_WA_DEFAULT;
2635                 }
2636
2637                 REG_WRITE(ah, AR_WA, val);
2638         }
2639
2640         if (power_off) {
2641                 /*
2642                  * Set PCIe workaround bits
2643                  * bit 14 in WA register (disable L1) should only
2644                  * be set when device enters D3 and be cleared
2645                  * when device comes back to D0.
2646                  */
2647                 if (ah->config.pcie_waen) {
2648                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2649                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2650                 } else {
2651                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2652                               AR_SREV_9287(ah)) &&
2653                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2654                             (AR_SREV_9280(ah) &&
2655                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2656                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2657                         }
2658                 }
2659         }
2660 }
2661 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2662
2663 /**********************/
2664 /* Interrupt Handling */
2665 /**********************/
2666
2667 bool ath9k_hw_intrpend(struct ath_hw *ah)
2668 {
2669         u32 host_isr;
2670
2671         if (AR_SREV_9100(ah))
2672                 return true;
2673
2674         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2675         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2676                 return true;
2677
2678         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2679         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2680             && (host_isr != AR_INTR_SPURIOUS))
2681                 return true;
2682
2683         return false;
2684 }
2685 EXPORT_SYMBOL(ath9k_hw_intrpend);
2686
2687 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2688 {
2689         u32 isr = 0;
2690         u32 mask2 = 0;
2691         struct ath9k_hw_capabilities *pCap = &ah->caps;
2692         u32 sync_cause = 0;
2693         bool fatal_int = false;
2694         struct ath_common *common = ath9k_hw_common(ah);
2695
2696         if (!AR_SREV_9100(ah)) {
2697                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2698                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2699                             == AR_RTC_STATUS_ON) {
2700                                 isr = REG_READ(ah, AR_ISR);
2701                         }
2702                 }
2703
2704                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2705                         AR_INTR_SYNC_DEFAULT;
2706
2707                 *masked = 0;
2708
2709                 if (!isr && !sync_cause)
2710                         return false;
2711         } else {
2712                 *masked = 0;
2713                 isr = REG_READ(ah, AR_ISR);
2714         }
2715
2716         if (isr) {
2717                 if (isr & AR_ISR_BCNMISC) {
2718                         u32 isr2;
2719                         isr2 = REG_READ(ah, AR_ISR_S2);
2720                         if (isr2 & AR_ISR_S2_TIM)
2721                                 mask2 |= ATH9K_INT_TIM;
2722                         if (isr2 & AR_ISR_S2_DTIM)
2723                                 mask2 |= ATH9K_INT_DTIM;
2724                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2725                                 mask2 |= ATH9K_INT_DTIMSYNC;
2726                         if (isr2 & (AR_ISR_S2_CABEND))
2727                                 mask2 |= ATH9K_INT_CABEND;
2728                         if (isr2 & AR_ISR_S2_GTT)
2729                                 mask2 |= ATH9K_INT_GTT;
2730                         if (isr2 & AR_ISR_S2_CST)
2731                                 mask2 |= ATH9K_INT_CST;
2732                         if (isr2 & AR_ISR_S2_TSFOOR)
2733                                 mask2 |= ATH9K_INT_TSFOOR;
2734                 }
2735
2736                 isr = REG_READ(ah, AR_ISR_RAC);
2737                 if (isr == 0xffffffff) {
2738                         *masked = 0;
2739                         return false;
2740                 }
2741
2742                 *masked = isr & ATH9K_INT_COMMON;
2743
2744                 if (ah->config.rx_intr_mitigation) {
2745                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2746                                 *masked |= ATH9K_INT_RX;
2747                 }
2748
2749                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2750                         *masked |= ATH9K_INT_RX;
2751                 if (isr &
2752                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2753                      AR_ISR_TXEOL)) {
2754                         u32 s0_s, s1_s;
2755
2756                         *masked |= ATH9K_INT_TX;
2757
2758                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2759                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2760                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2761
2762                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2763                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2764                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2765                 }
2766
2767                 if (isr & AR_ISR_RXORN) {
2768                         ath_print(common, ATH_DBG_INTERRUPT,
2769                                   "receive FIFO overrun interrupt\n");
2770                 }
2771
2772                 if (!AR_SREV_9100(ah)) {
2773                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2774                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2775                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2776                                         *masked |= ATH9K_INT_TIM_TIMER;
2777                         }
2778                 }
2779
2780                 *masked |= mask2;
2781         }
2782
2783         if (AR_SREV_9100(ah))
2784                 return true;
2785
2786         if (isr & AR_ISR_GENTMR) {
2787                 u32 s5_s;
2788
2789                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2790                 if (isr & AR_ISR_GENTMR) {
2791                         ah->intr_gen_timer_trigger =
2792                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2793
2794                         ah->intr_gen_timer_thresh =
2795                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2796
2797                         if (ah->intr_gen_timer_trigger)
2798                                 *masked |= ATH9K_INT_GENTIMER;
2799
2800                 }
2801         }
2802
2803         if (sync_cause) {
2804                 fatal_int =
2805                         (sync_cause &
2806                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2807                         ? true : false;
2808
2809                 if (fatal_int) {
2810                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2811                                 ath_print(common, ATH_DBG_ANY,
2812                                           "received PCI FATAL interrupt\n");
2813                         }
2814                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2815                                 ath_print(common, ATH_DBG_ANY,
2816                                           "received PCI PERR interrupt\n");
2817                         }
2818                         *masked |= ATH9K_INT_FATAL;
2819                 }
2820                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2821                         ath_print(common, ATH_DBG_INTERRUPT,
2822                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2823                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2824                         REG_WRITE(ah, AR_RC, 0);
2825                         *masked |= ATH9K_INT_FATAL;
2826                 }
2827                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2828                         ath_print(common, ATH_DBG_INTERRUPT,
2829                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2830                 }
2831
2832                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2833                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2834         }
2835
2836         return true;
2837 }
2838 EXPORT_SYMBOL(ath9k_hw_getisr);
2839
2840 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2841 {
2842         u32 omask = ah->mask_reg;
2843         u32 mask, mask2;
2844         struct ath9k_hw_capabilities *pCap = &ah->caps;
2845         struct ath_common *common = ath9k_hw_common(ah);
2846
2847         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2848
2849         if (omask & ATH9K_INT_GLOBAL) {
2850                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2851                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2852                 (void) REG_READ(ah, AR_IER);
2853                 if (!AR_SREV_9100(ah)) {
2854                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2855                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2856
2857                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2858                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2859                 }
2860         }
2861
2862         mask = ints & ATH9K_INT_COMMON;
2863         mask2 = 0;
2864
2865         if (ints & ATH9K_INT_TX) {
2866                 if (ah->txok_interrupt_mask)
2867                         mask |= AR_IMR_TXOK;
2868                 if (ah->txdesc_interrupt_mask)
2869                         mask |= AR_IMR_TXDESC;
2870                 if (ah->txerr_interrupt_mask)
2871                         mask |= AR_IMR_TXERR;
2872                 if (ah->txeol_interrupt_mask)
2873                         mask |= AR_IMR_TXEOL;
2874         }
2875         if (ints & ATH9K_INT_RX) {
2876                 mask |= AR_IMR_RXERR;
2877                 if (ah->config.rx_intr_mitigation)
2878                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2879                 else
2880                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2881                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2882                         mask |= AR_IMR_GENTMR;
2883         }
2884
2885         if (ints & (ATH9K_INT_BMISC)) {
2886                 mask |= AR_IMR_BCNMISC;
2887                 if (ints & ATH9K_INT_TIM)
2888                         mask2 |= AR_IMR_S2_TIM;
2889                 if (ints & ATH9K_INT_DTIM)
2890                         mask2 |= AR_IMR_S2_DTIM;
2891                 if (ints & ATH9K_INT_DTIMSYNC)
2892                         mask2 |= AR_IMR_S2_DTIMSYNC;
2893                 if (ints & ATH9K_INT_CABEND)
2894                         mask2 |= AR_IMR_S2_CABEND;
2895                 if (ints & ATH9K_INT_TSFOOR)
2896                         mask2 |= AR_IMR_S2_TSFOOR;
2897         }
2898
2899         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2900                 mask |= AR_IMR_BCNMISC;
2901                 if (ints & ATH9K_INT_GTT)
2902                         mask2 |= AR_IMR_S2_GTT;
2903                 if (ints & ATH9K_INT_CST)
2904                         mask2 |= AR_IMR_S2_CST;
2905         }
2906
2907         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2908         REG_WRITE(ah, AR_IMR, mask);
2909         ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2910                            AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2911                            AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2912         ah->imrs2_reg |= mask2;
2913         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2914         ah->mask_reg = ints;
2915
2916         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2917                 if (ints & ATH9K_INT_TIM_TIMER)
2918                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2919                 else
2920                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2921         }
2922
2923         if (ints & ATH9K_INT_GLOBAL) {
2924                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2925                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2926                 if (!AR_SREV_9100(ah)) {
2927                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2928                                   AR_INTR_MAC_IRQ);
2929                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2930
2931
2932                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2933                                   AR_INTR_SYNC_DEFAULT);
2934                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2935                                   AR_INTR_SYNC_DEFAULT);
2936                 }
2937                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2938                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2939         }
2940
2941         return omask;
2942 }
2943 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2944
2945 /*******************/
2946 /* Beacon Handling */
2947 /*******************/
2948
2949 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2950 {
2951         int flags = 0;
2952
2953         ah->beacon_interval = beacon_period;
2954
2955         switch (ah->opmode) {
2956         case NL80211_IFTYPE_STATION:
2957         case NL80211_IFTYPE_MONITOR:
2958                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2959                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2960                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2961                 flags |= AR_TBTT_TIMER_EN;
2962                 break;
2963         case NL80211_IFTYPE_ADHOC:
2964         case NL80211_IFTYPE_MESH_POINT:
2965                 REG_SET_BIT(ah, AR_TXCFG,
2966                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2967                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2968                           TU_TO_USEC(next_beacon +
2969                                      (ah->atim_window ? ah->
2970                                       atim_window : 1)));
2971                 flags |= AR_NDP_TIMER_EN;
2972         case NL80211_IFTYPE_AP:
2973                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2974                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2975                           TU_TO_USEC(next_beacon -
2976                                      ah->config.
2977                                      dma_beacon_response_time));
2978                 REG_WRITE(ah, AR_NEXT_SWBA,
2979                           TU_TO_USEC(next_beacon -
2980                                      ah->config.
2981                                      sw_beacon_response_time));
2982                 flags |=
2983                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2984                 break;
2985         default:
2986                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2987                           "%s: unsupported opmode: %d\n",
2988                           __func__, ah->opmode);
2989                 return;
2990                 break;
2991         }
2992
2993         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2994         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2995         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2996         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2997
2998         beacon_period &= ~ATH9K_BEACON_ENA;
2999         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3000                 ath9k_hw_reset_tsf(ah);
3001         }
3002
3003         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3004 }
3005 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3006
3007 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3008                                     const struct ath9k_beacon_state *bs)
3009 {
3010         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3011         struct ath9k_hw_capabilities *pCap = &ah->caps;
3012         struct ath_common *common = ath9k_hw_common(ah);
3013
3014         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3015
3016         REG_WRITE(ah, AR_BEACON_PERIOD,
3017                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3018         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3019                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3020
3021         REG_RMW_FIELD(ah, AR_RSSI_THR,
3022                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3023
3024         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3025
3026         if (bs->bs_sleepduration > beaconintval)
3027                 beaconintval = bs->bs_sleepduration;
3028
3029         dtimperiod = bs->bs_dtimperiod;
3030         if (bs->bs_sleepduration > dtimperiod)
3031                 dtimperiod = bs->bs_sleepduration;
3032
3033         if (beaconintval == dtimperiod)
3034                 nextTbtt = bs->bs_nextdtim;
3035         else
3036                 nextTbtt = bs->bs_nexttbtt;
3037
3038         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3039         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3040         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3041         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3042
3043         REG_WRITE(ah, AR_NEXT_DTIM,
3044                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3045         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3046
3047         REG_WRITE(ah, AR_SLEEP1,
3048                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3049                   | AR_SLEEP1_ASSUME_DTIM);
3050
3051         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3052                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3053         else
3054                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3055
3056         REG_WRITE(ah, AR_SLEEP2,
3057                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3058
3059         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3060         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3061
3062         REG_SET_BIT(ah, AR_TIMER_MODE,
3063                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3064                     AR_DTIM_TIMER_EN);
3065
3066         /* TSF Out of Range Threshold */
3067         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3068 }
3069 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3070
3071 /*******************/
3072 /* HW Capabilities */
3073 /*******************/
3074
3075 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3076 {
3077         struct ath9k_hw_capabilities *pCap = &ah->caps;
3078         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3079         struct ath_common *common = ath9k_hw_common(ah);
3080         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3081
3082         u16 capField = 0, eeval;
3083
3084         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3085         regulatory->current_rd = eeval;
3086
3087         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3088         if (AR_SREV_9285_10_OR_LATER(ah))
3089                 eeval |= AR9285_RDEXT_DEFAULT;
3090         regulatory->current_rd_ext = eeval;
3091
3092         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3093
3094         if (ah->opmode != NL80211_IFTYPE_AP &&
3095             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3096                 if (regulatory->current_rd == 0x64 ||
3097                     regulatory->current_rd == 0x65)
3098                         regulatory->current_rd += 5;
3099                 else if (regulatory->current_rd == 0x41)
3100                         regulatory->current_rd = 0x43;
3101                 ath_print(common, ATH_DBG_REGULATORY,
3102                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3103         }
3104
3105         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3106         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3107                 ath_print(common, ATH_DBG_FATAL,
3108                           "no band has been marked as supported in EEPROM.\n");
3109                 return -EINVAL;
3110         }
3111
3112         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3113
3114         if (eeval & AR5416_OPFLAGS_11A) {
3115                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3116                 if (ah->config.ht_enable) {
3117                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3118                                 set_bit(ATH9K_MODE_11NA_HT20,
3119                                         pCap->wireless_modes);
3120                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3121                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3122                                         pCap->wireless_modes);
3123                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3124                                         pCap->wireless_modes);
3125                         }
3126                 }
3127         }
3128
3129         if (eeval & AR5416_OPFLAGS_11G) {
3130                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3131                 if (ah->config.ht_enable) {
3132                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3133                                 set_bit(ATH9K_MODE_11NG_HT20,
3134                                         pCap->wireless_modes);
3135                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3136                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3137                                         pCap->wireless_modes);
3138                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3139                                         pCap->wireless_modes);
3140                         }
3141                 }
3142         }
3143
3144         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3145         /*
3146          * For AR9271 we will temporarilly uses the rx chainmax as read from
3147          * the EEPROM.
3148          */
3149         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3150             !(eeval & AR5416_OPFLAGS_11A) &&
3151             !(AR_SREV_9271(ah)))
3152                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3153                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3154         else
3155                 /* Use rx_chainmask from EEPROM. */
3156                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3157
3158         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3159                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3160
3161         pCap->low_2ghz_chan = 2312;
3162         pCap->high_2ghz_chan = 2732;
3163
3164         pCap->low_5ghz_chan = 4920;
3165         pCap->high_5ghz_chan = 6100;
3166
3167         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3168         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3169         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3170
3171         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3172         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3173         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3174
3175         if (ah->config.ht_enable)
3176                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3177         else
3178                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3179
3180         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3181         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3182         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3183         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3184
3185         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3186                 pCap->total_queues =
3187                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3188         else
3189                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3190
3191         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3192                 pCap->keycache_size =
3193                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3194         else
3195                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3196
3197         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3198
3199         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3200                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3201         else
3202                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3203
3204         if (AR_SREV_9271(ah))
3205                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
3206         else if (AR_SREV_9285_10_OR_LATER(ah))
3207                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3208         else if (AR_SREV_9280_10_OR_LATER(ah))
3209                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3210         else
3211                 pCap->num_gpio_pins = AR_NUM_GPIO;
3212
3213         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3214                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3215                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3216         } else {
3217                 pCap->rts_aggr_limit = (8 * 1024);
3218         }
3219
3220         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3221
3222 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3223         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3224         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3225                 ah->rfkill_gpio =
3226                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3227                 ah->rfkill_polarity =
3228                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3229
3230                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3231         }
3232 #endif
3233
3234         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3235
3236         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3237                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3238         else
3239                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3240
3241         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3242                 pCap->reg_cap =
3243                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3244                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3245                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3246                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3247         } else {
3248                 pCap->reg_cap =
3249                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3250                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3251         }
3252
3253         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3254         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3255             AR_SREV_5416(ah))
3256                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3257
3258         pCap->num_antcfg_5ghz =
3259                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3260         pCap->num_antcfg_2ghz =
3261                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3262
3263         if (AR_SREV_9280_10_OR_LATER(ah) &&
3264             ath9k_hw_btcoex_supported(ah)) {
3265                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3266                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3267
3268                 if (AR_SREV_9285(ah)) {
3269                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3270                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3271                 } else {
3272                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3273                 }
3274         } else {
3275                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3276         }
3277
3278         return 0;
3279 }
3280
3281 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3282                             u32 capability, u32 *result)
3283 {
3284         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3285         switch (type) {
3286         case ATH9K_CAP_CIPHER:
3287                 switch (capability) {
3288                 case ATH9K_CIPHER_AES_CCM:
3289                 case ATH9K_CIPHER_AES_OCB:
3290                 case ATH9K_CIPHER_TKIP:
3291                 case ATH9K_CIPHER_WEP:
3292                 case ATH9K_CIPHER_MIC:
3293                 case ATH9K_CIPHER_CLR:
3294                         return true;
3295                 default:
3296                         return false;
3297                 }
3298         case ATH9K_CAP_TKIP_MIC:
3299                 switch (capability) {
3300                 case 0:
3301                         return true;
3302                 case 1:
3303                         return (ah->sta_id1_defaults &
3304                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3305                         false;
3306                 }
3307         case ATH9K_CAP_TKIP_SPLIT:
3308                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3309                         false : true;
3310         case ATH9K_CAP_DIVERSITY:
3311                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3312                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3313                         true : false;
3314         case ATH9K_CAP_MCAST_KEYSRCH:
3315                 switch (capability) {
3316                 case 0:
3317                         return true;
3318                 case 1:
3319                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3320                                 return false;
3321                         } else {
3322                                 return (ah->sta_id1_defaults &
3323                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3324                                         false;
3325                         }
3326                 }
3327                 return false;
3328         case ATH9K_CAP_TXPOW:
3329                 switch (capability) {
3330                 case 0:
3331                         return 0;
3332                 case 1:
3333                         *result = regulatory->power_limit;
3334                         return 0;
3335                 case 2:
3336                         *result = regulatory->max_power_level;
3337                         return 0;
3338                 case 3:
3339                         *result = regulatory->tp_scale;
3340                         return 0;
3341                 }
3342                 return false;
3343         case ATH9K_CAP_DS:
3344                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3345                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3346                         ? false : true;
3347         default:
3348                 return false;
3349         }
3350 }
3351 EXPORT_SYMBOL(ath9k_hw_getcapability);
3352
3353 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3354                             u32 capability, u32 setting, int *status)
3355 {
3356         u32 v;
3357
3358         switch (type) {
3359         case ATH9K_CAP_TKIP_MIC:
3360                 if (setting)
3361                         ah->sta_id1_defaults |=
3362                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3363                 else
3364                         ah->sta_id1_defaults &=
3365                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3366                 return true;
3367         case ATH9K_CAP_DIVERSITY:
3368                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3369                 if (setting)
3370                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3371                 else
3372                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3373                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3374                 return true;
3375         case ATH9K_CAP_MCAST_KEYSRCH:
3376                 if (setting)
3377                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3378                 else
3379                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3380                 return true;
3381         default:
3382                 return false;
3383         }
3384 }
3385 EXPORT_SYMBOL(ath9k_hw_setcapability);
3386
3387 /****************************/
3388 /* GPIO / RFKILL / Antennae */
3389 /****************************/
3390
3391 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3392                                          u32 gpio, u32 type)
3393 {
3394         int addr;
3395         u32 gpio_shift, tmp;
3396
3397         if (gpio > 11)
3398                 addr = AR_GPIO_OUTPUT_MUX3;
3399         else if (gpio > 5)
3400                 addr = AR_GPIO_OUTPUT_MUX2;
3401         else
3402                 addr = AR_GPIO_OUTPUT_MUX1;
3403
3404         gpio_shift = (gpio % 6) * 5;
3405
3406         if (AR_SREV_9280_20_OR_LATER(ah)
3407             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3408                 REG_RMW(ah, addr, (type << gpio_shift),
3409                         (0x1f << gpio_shift));
3410         } else {
3411                 tmp = REG_READ(ah, addr);
3412                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3413                 tmp &= ~(0x1f << gpio_shift);
3414                 tmp |= (type << gpio_shift);
3415                 REG_WRITE(ah, addr, tmp);
3416         }
3417 }
3418
3419 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3420 {
3421         u32 gpio_shift;
3422
3423         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3424
3425         gpio_shift = gpio << 1;
3426
3427         REG_RMW(ah,
3428                 AR_GPIO_OE_OUT,
3429                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3430                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3431 }
3432 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3433
3434 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3435 {
3436 #define MS_REG_READ(x, y) \
3437         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3438
3439         if (gpio >= ah->caps.num_gpio_pins)
3440                 return 0xffffffff;
3441
3442         if (AR_SREV_9271(ah))
3443                 return MS_REG_READ(AR9271, gpio) != 0;
3444         else if (AR_SREV_9287_10_OR_LATER(ah))
3445                 return MS_REG_READ(AR9287, gpio) != 0;
3446         else if (AR_SREV_9285_10_OR_LATER(ah))
3447                 return MS_REG_READ(AR9285, gpio) != 0;
3448         else if (AR_SREV_9280_10_OR_LATER(ah))
3449                 return MS_REG_READ(AR928X, gpio) != 0;
3450         else
3451                 return MS_REG_READ(AR, gpio) != 0;
3452 }
3453 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3454
3455 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3456                          u32 ah_signal_type)
3457 {
3458         u32 gpio_shift;
3459
3460         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3461
3462         gpio_shift = 2 * gpio;
3463
3464         REG_RMW(ah,
3465                 AR_GPIO_OE_OUT,
3466                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3467                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3468 }
3469 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3470
3471 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3472 {
3473         if (AR_SREV_9271(ah))
3474                 val = ~val;
3475
3476         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3477                 AR_GPIO_BIT(gpio));
3478 }
3479 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3480
3481 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3482 {
3483         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3484 }
3485 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3486
3487 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3488 {
3489         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3490 }
3491 EXPORT_SYMBOL(ath9k_hw_setantenna);
3492
3493 /*********************/
3494 /* General Operation */
3495 /*********************/
3496
3497 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3498 {
3499         u32 bits = REG_READ(ah, AR_RX_FILTER);
3500         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3501
3502         if (phybits & AR_PHY_ERR_RADAR)
3503                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3504         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3505                 bits |= ATH9K_RX_FILTER_PHYERR;
3506
3507         return bits;
3508 }
3509 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3510
3511 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3512 {
3513         u32 phybits;
3514
3515         REG_WRITE(ah, AR_RX_FILTER, bits);
3516
3517         phybits = 0;
3518         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3519                 phybits |= AR_PHY_ERR_RADAR;
3520         if (bits & ATH9K_RX_FILTER_PHYERR)
3521                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3522         REG_WRITE(ah, AR_PHY_ERR, phybits);
3523
3524         if (phybits)
3525                 REG_WRITE(ah, AR_RXCFG,
3526                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3527         else
3528                 REG_WRITE(ah, AR_RXCFG,
3529                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3530 }
3531 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3532
3533 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3534 {
3535         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3536                 return false;
3537
3538         ath9k_hw_init_pll(ah, NULL);
3539         return true;
3540 }
3541 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3542
3543 bool ath9k_hw_disable(struct ath_hw *ah)
3544 {
3545         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3546                 return false;
3547
3548         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3549                 return false;
3550
3551         ath9k_hw_init_pll(ah, NULL);
3552         return true;
3553 }
3554 EXPORT_SYMBOL(ath9k_hw_disable);
3555
3556 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3557 {
3558         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3559         struct ath9k_channel *chan = ah->curchan;
3560         struct ieee80211_channel *channel = chan->chan;
3561
3562         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3563
3564         ah->eep_ops->set_txpower(ah, chan,
3565                                  ath9k_regd_get_ctl(regulatory, chan),
3566                                  channel->max_antenna_gain * 2,
3567                                  channel->max_power * 2,
3568                                  min((u32) MAX_RATE_POWER,
3569                                  (u32) regulatory->power_limit));
3570 }
3571 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3572
3573 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3574 {
3575         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3576 }
3577 EXPORT_SYMBOL(ath9k_hw_setmac);
3578
3579 void ath9k_hw_setopmode(struct ath_hw *ah)
3580 {
3581         ath9k_hw_set_operating_mode(ah, ah->opmode);
3582 }
3583 EXPORT_SYMBOL(ath9k_hw_setopmode);
3584
3585 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3586 {
3587         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3588         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3589 }
3590 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3591
3592 void ath9k_hw_write_associd(struct ath_hw *ah)
3593 {
3594         struct ath_common *common = ath9k_hw_common(ah);
3595
3596         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3597         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3598                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3599 }
3600 EXPORT_SYMBOL(ath9k_hw_write_associd);
3601
3602 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3603 {
3604         u64 tsf;
3605
3606         tsf = REG_READ(ah, AR_TSF_U32);
3607         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3608
3609         return tsf;
3610 }
3611 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3612
3613 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3614 {
3615         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3616         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3617 }
3618 EXPORT_SYMBOL(ath9k_hw_settsf64);
3619
3620 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3621 {
3622         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3623                            AH_TSF_WRITE_TIMEOUT))
3624                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3625                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3626
3627         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3628 }
3629 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3630
3631 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3632 {
3633         if (setting)
3634                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3635         else
3636                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3637 }
3638 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3639
3640 /*
3641  *  Extend 15-bit time stamp from rx descriptor to
3642  *  a full 64-bit TSF using the current h/w TSF.
3643 */
3644 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3645 {
3646         u64 tsf;
3647
3648         tsf = ath9k_hw_gettsf64(ah);
3649         if ((tsf & 0x7fff) < rstamp)
3650                 tsf -= 0x8000;
3651         return (tsf & ~0x7fff) | rstamp;
3652 }
3653 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3654
3655 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3656 {
3657         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3658         u32 macmode;
3659
3660         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3661                 macmode = AR_2040_JOINED_RX_CLEAR;
3662         else
3663                 macmode = 0;
3664
3665         REG_WRITE(ah, AR_2040_MODE, macmode);
3666 }
3667
3668 /* HW Generic timers configuration */
3669
3670 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3671 {
3672         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3673         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3674         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3675         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3676         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3677         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3678         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3679         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3680         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3681         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3682                                 AR_NDP2_TIMER_MODE, 0x0002},
3683         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3684                                 AR_NDP2_TIMER_MODE, 0x0004},
3685         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3686                                 AR_NDP2_TIMER_MODE, 0x0008},
3687         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3688                                 AR_NDP2_TIMER_MODE, 0x0010},
3689         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3690                                 AR_NDP2_TIMER_MODE, 0x0020},
3691         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3692                                 AR_NDP2_TIMER_MODE, 0x0040},
3693         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3694                                 AR_NDP2_TIMER_MODE, 0x0080}
3695 };
3696
3697 /* HW generic timer primitives */
3698
3699 /* compute and clear index of rightmost 1 */
3700 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3701 {
3702         u32 b;
3703
3704         b = *mask;
3705         b &= (0-b);
3706         *mask &= ~b;
3707         b *= debruijn32;
3708         b >>= 27;
3709
3710         return timer_table->gen_timer_index[b];
3711 }
3712
3713 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3714 {
3715         return REG_READ(ah, AR_TSF_L32);
3716 }
3717 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3718
3719 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3720                                           void (*trigger)(void *),
3721                                           void (*overflow)(void *),
3722                                           void *arg,
3723                                           u8 timer_index)
3724 {
3725         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3726         struct ath_gen_timer *timer;
3727
3728         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3729
3730         if (timer == NULL) {
3731                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3732                           "Failed to allocate memory"
3733                           "for hw timer[%d]\n", timer_index);
3734                 return NULL;
3735         }
3736
3737         /* allocate a hardware generic timer slot */
3738         timer_table->timers[timer_index] = timer;
3739         timer->index = timer_index;
3740         timer->trigger = trigger;
3741         timer->overflow = overflow;
3742         timer->arg = arg;
3743
3744         return timer;
3745 }
3746 EXPORT_SYMBOL(ath_gen_timer_alloc);
3747
3748 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3749                               struct ath_gen_timer *timer,
3750                               u32 timer_next,
3751                               u32 timer_period)
3752 {
3753         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3754         u32 tsf;
3755
3756         BUG_ON(!timer_period);
3757
3758         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3759
3760         tsf = ath9k_hw_gettsf32(ah);
3761
3762         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3763                   "curent tsf %x period %x"
3764                   "timer_next %x\n", tsf, timer_period, timer_next);
3765
3766         /*
3767          * Pull timer_next forward if the current TSF already passed it
3768          * because of software latency
3769          */
3770         if (timer_next < tsf)
3771                 timer_next = tsf + timer_period;
3772
3773         /*
3774          * Program generic timer registers
3775          */
3776         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3777                  timer_next);
3778         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3779                   timer_period);
3780         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3781                     gen_tmr_configuration[timer->index].mode_mask);
3782
3783         /* Enable both trigger and thresh interrupt masks */
3784         REG_SET_BIT(ah, AR_IMR_S5,
3785                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3786                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3787 }
3788 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3789
3790 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3791 {
3792         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3793
3794         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3795                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3796                 return;
3797         }
3798
3799         /* Clear generic timer enable bits. */
3800         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3801                         gen_tmr_configuration[timer->index].mode_mask);
3802
3803         /* Disable both trigger and thresh interrupt masks */
3804         REG_CLR_BIT(ah, AR_IMR_S5,
3805                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3806                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3807
3808         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3809 }
3810 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3811
3812 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3813 {
3814         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3815
3816         /* free the hardware generic timer slot */
3817         timer_table->timers[timer->index] = NULL;
3818         kfree(timer);
3819 }
3820 EXPORT_SYMBOL(ath_gen_timer_free);
3821
3822 /*
3823  * Generic Timer Interrupts handling
3824  */
3825 void ath_gen_timer_isr(struct ath_hw *ah)
3826 {
3827         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3828         struct ath_gen_timer *timer;
3829         struct ath_common *common = ath9k_hw_common(ah);
3830         u32 trigger_mask, thresh_mask, index;
3831
3832         /* get hardware generic timer interrupt status */
3833         trigger_mask = ah->intr_gen_timer_trigger;
3834         thresh_mask = ah->intr_gen_timer_thresh;
3835         trigger_mask &= timer_table->timer_mask.val;
3836         thresh_mask &= timer_table->timer_mask.val;
3837
3838         trigger_mask &= ~thresh_mask;
3839
3840         while (thresh_mask) {
3841                 index = rightmost_index(timer_table, &thresh_mask);
3842                 timer = timer_table->timers[index];
3843                 BUG_ON(!timer);
3844                 ath_print(common, ATH_DBG_HWTIMER,
3845                           "TSF overflow for Gen timer %d\n", index);
3846                 timer->overflow(timer->arg);
3847         }
3848
3849         while (trigger_mask) {
3850                 index = rightmost_index(timer_table, &trigger_mask);
3851                 timer = timer_table->timers[index];
3852                 BUG_ON(!timer);
3853                 ath_print(common, ATH_DBG_HWTIMER,
3854                           "Gen timer[%d] trigger\n", index);
3855                 timer->trigger(timer->arg);
3856         }
3857 }
3858 EXPORT_SYMBOL(ath_gen_timer_isr);
3859
3860 static struct {
3861         u32 version;
3862         const char * name;
3863 } ath_mac_bb_names[] = {
3864         /* Devices with external radios */
3865         { AR_SREV_VERSION_5416_PCI,     "5416" },
3866         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3867         { AR_SREV_VERSION_9100,         "9100" },
3868         { AR_SREV_VERSION_9160,         "9160" },
3869         /* Single-chip solutions */
3870         { AR_SREV_VERSION_9280,         "9280" },
3871         { AR_SREV_VERSION_9285,         "9285" },
3872         { AR_SREV_VERSION_9287,         "9287" },
3873         { AR_SREV_VERSION_9271,         "9271" },
3874 };
3875
3876 /* For devices with external radios */
3877 static struct {
3878         u16 version;
3879         const char * name;
3880 } ath_rf_names[] = {
3881         { 0,                            "5133" },
3882         { AR_RAD5133_SREV_MAJOR,        "5133" },
3883         { AR_RAD5122_SREV_MAJOR,        "5122" },
3884         { AR_RAD2133_SREV_MAJOR,        "2133" },
3885         { AR_RAD2122_SREV_MAJOR,        "2122" }
3886 };
3887
3888 /*
3889  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3890  */
3891 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3892 {
3893         int i;
3894
3895         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3896                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3897                         return ath_mac_bb_names[i].name;
3898                 }
3899         }
3900
3901         return "????";
3902 }
3903
3904 /*
3905  * Return the RF name. "????" is returned if the RF is unknown.
3906  * Used for devices with external radios.
3907  */
3908 static const char *ath9k_hw_rf_name(u16 rf_version)
3909 {
3910         int i;
3911
3912         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3913                 if (ath_rf_names[i].version == rf_version) {
3914                         return ath_rf_names[i].name;
3915                 }
3916         }
3917
3918         return "????";
3919 }
3920
3921 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3922 {
3923         int used;
3924
3925         /* chipsets >= AR9280 are single-chip */
3926         if (AR_SREV_9280_10_OR_LATER(ah)) {
3927                 used = snprintf(hw_name, len,
3928                                "Atheros AR%s Rev:%x",
3929                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3930                                ah->hw_version.macRev);
3931         }
3932         else {
3933                 used = snprintf(hw_name, len,
3934                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3935                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3936                                ah->hw_version.macRev,
3937                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3938                                                 AR_RADIO_SREV_MAJOR)),
3939                                ah->hw_version.phyRev);
3940         }
3941
3942         hw_name[used] = '\0';
3943 }
3944 EXPORT_SYMBOL(ath9k_hw_name);