978b4d91f93114bfb64a73211fd38808906502dc
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define SKB_CB_ATHBUF(__skb)    (*((struct ath_buf **)__skb->cb))
21
22 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
23 {
24         return sc->ps_enabled &&
25                (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
26 }
27
28 static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
29                                              struct ieee80211_hdr *hdr)
30 {
31         struct ieee80211_hw *hw = sc->pri_wiphy->hw;
32         int i;
33
34         spin_lock_bh(&sc->wiphy_lock);
35         for (i = 0; i < sc->num_sec_wiphy; i++) {
36                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
37                 if (aphy == NULL)
38                         continue;
39                 if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
40                     == 0) {
41                         hw = aphy->hw;
42                         break;
43                 }
44         }
45         spin_unlock_bh(&sc->wiphy_lock);
46         return hw;
47 }
48
49 /*
50  * Setup and link descriptors.
51  *
52  * 11N: we can no longer afford to self link the last descriptor.
53  * MAC acknowledges BA status as long as it copies frames to host
54  * buffer (or rx fifo). This can incorrectly acknowledge packets
55  * to a sender if last desc is self-linked.
56  */
57 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
58 {
59         struct ath_hw *ah = sc->sc_ah;
60         struct ath_common *common = ath9k_hw_common(ah);
61         struct ath_desc *ds;
62         struct sk_buff *skb;
63
64         ATH_RXBUF_RESET(bf);
65
66         ds = bf->bf_desc;
67         ds->ds_link = 0; /* link to null */
68         ds->ds_data = bf->bf_buf_addr;
69
70         /* virtual addr of the beginning of the buffer. */
71         skb = bf->bf_mpdu;
72         BUG_ON(skb == NULL);
73         ds->ds_vdata = skb->data;
74
75         /*
76          * setup rx descriptors. The rx_bufsize here tells the hardware
77          * how much data it can DMA to us and that we are prepared
78          * to process
79          */
80         ath9k_hw_setuprxdesc(ah, ds,
81                              common->rx_bufsize,
82                              0);
83
84         if (sc->rx.rxlink == NULL)
85                 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
86         else
87                 *sc->rx.rxlink = bf->bf_daddr;
88
89         sc->rx.rxlink = &ds->ds_link;
90         ath9k_hw_rxena(ah);
91 }
92
93 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
94 {
95         /* XXX block beacon interrupts */
96         ath9k_hw_setantenna(sc->sc_ah, antenna);
97         sc->rx.defant = antenna;
98         sc->rx.rxotherant = 0;
99 }
100
101 static void ath_opmode_init(struct ath_softc *sc)
102 {
103         struct ath_hw *ah = sc->sc_ah;
104         struct ath_common *common = ath9k_hw_common(ah);
105
106         u32 rfilt, mfilt[2];
107
108         /* configure rx filter */
109         rfilt = ath_calcrxfilter(sc);
110         ath9k_hw_setrxfilter(ah, rfilt);
111
112         /* configure bssid mask */
113         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
114                 ath_hw_setbssidmask(common);
115
116         /* configure operational mode */
117         ath9k_hw_setopmode(ah);
118
119         /* Handle any link-level address change. */
120         ath9k_hw_setmac(ah, common->macaddr);
121
122         /* calculate and install multicast filter */
123         mfilt[0] = mfilt[1] = ~0;
124         ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
125 }
126
127 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
128                                  enum ath9k_rx_qtype qtype)
129 {
130         struct ath_hw *ah = sc->sc_ah;
131         struct ath_rx_edma *rx_edma;
132         struct sk_buff *skb;
133         struct ath_buf *bf;
134
135         rx_edma = &sc->rx.rx_edma[qtype];
136         if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
137                 return false;
138
139         bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
140         list_del_init(&bf->list);
141
142         skb = bf->bf_mpdu;
143
144         ATH_RXBUF_RESET(bf);
145         memset(skb->data, 0, ah->caps.rx_status_len);
146         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
147                                 ah->caps.rx_status_len, DMA_TO_DEVICE);
148
149         SKB_CB_ATHBUF(skb) = bf;
150         ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
151         skb_queue_tail(&rx_edma->rx_fifo, skb);
152
153         return true;
154 }
155
156 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
157                                   enum ath9k_rx_qtype qtype, int size)
158 {
159         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
160         u32 nbuf = 0;
161
162         if (list_empty(&sc->rx.rxbuf)) {
163                 ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
164                 return;
165         }
166
167         while (!list_empty(&sc->rx.rxbuf)) {
168                 nbuf++;
169
170                 if (!ath_rx_edma_buf_link(sc, qtype))
171                         break;
172
173                 if (nbuf >= size)
174                         break;
175         }
176 }
177
178 static void ath_rx_remove_buffer(struct ath_softc *sc,
179                                  enum ath9k_rx_qtype qtype)
180 {
181         struct ath_buf *bf;
182         struct ath_rx_edma *rx_edma;
183         struct sk_buff *skb;
184
185         rx_edma = &sc->rx.rx_edma[qtype];
186
187         while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
188                 bf = SKB_CB_ATHBUF(skb);
189                 BUG_ON(!bf);
190                 list_add_tail(&bf->list, &sc->rx.rxbuf);
191         }
192 }
193
194 static void ath_rx_edma_cleanup(struct ath_softc *sc)
195 {
196         struct ath_buf *bf;
197
198         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
199         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
200
201         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
202                 if (bf->bf_mpdu)
203                         dev_kfree_skb_any(bf->bf_mpdu);
204         }
205
206         INIT_LIST_HEAD(&sc->rx.rxbuf);
207
208         kfree(sc->rx.rx_bufptr);
209         sc->rx.rx_bufptr = NULL;
210 }
211
212 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
213 {
214         skb_queue_head_init(&rx_edma->rx_fifo);
215         skb_queue_head_init(&rx_edma->rx_buffers);
216         rx_edma->rx_fifo_hwsize = size;
217 }
218
219 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
220 {
221         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
222         struct ath_hw *ah = sc->sc_ah;
223         struct sk_buff *skb;
224         struct ath_buf *bf;
225         int error = 0, i;
226         u32 size;
227
228
229         common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
230                                      ah->caps.rx_status_len,
231                                      min(common->cachelsz, (u16)64));
232
233         ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
234                                     ah->caps.rx_status_len);
235
236         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
237                                ah->caps.rx_lp_qdepth);
238         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
239                                ah->caps.rx_hp_qdepth);
240
241         size = sizeof(struct ath_buf) * nbufs;
242         bf = kzalloc(size, GFP_KERNEL);
243         if (!bf)
244                 return -ENOMEM;
245
246         INIT_LIST_HEAD(&sc->rx.rxbuf);
247         sc->rx.rx_bufptr = bf;
248
249         for (i = 0; i < nbufs; i++, bf++) {
250                 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
251                 if (!skb) {
252                         error = -ENOMEM;
253                         goto rx_init_fail;
254                 }
255
256                 memset(skb->data, 0, common->rx_bufsize);
257                 bf->bf_mpdu = skb;
258
259                 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
260                                                  common->rx_bufsize,
261                                                  DMA_BIDIRECTIONAL);
262                 if (unlikely(dma_mapping_error(sc->dev,
263                                                 bf->bf_buf_addr))) {
264                                 dev_kfree_skb_any(skb);
265                                 bf->bf_mpdu = NULL;
266                                 ath_print(common, ATH_DBG_FATAL,
267                                         "dma_mapping_error() on RX init\n");
268                                 error = -ENOMEM;
269                                 goto rx_init_fail;
270                 }
271
272                 list_add_tail(&bf->list, &sc->rx.rxbuf);
273         }
274
275         return 0;
276
277 rx_init_fail:
278         ath_rx_edma_cleanup(sc);
279         return error;
280 }
281
282 static void ath_edma_start_recv(struct ath_softc *sc)
283 {
284         spin_lock_bh(&sc->rx.rxbuflock);
285
286         ath9k_hw_rxena(sc->sc_ah);
287
288         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
289                               sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
290
291         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
292                               sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
293
294         spin_unlock_bh(&sc->rx.rxbuflock);
295
296         ath_opmode_init(sc);
297
298         ath9k_hw_startpcureceive(sc->sc_ah);
299 }
300
301 static void ath_edma_stop_recv(struct ath_softc *sc)
302 {
303         spin_lock_bh(&sc->rx.rxbuflock);
304         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
305         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
306         spin_unlock_bh(&sc->rx.rxbuflock);
307 }
308
309 int ath_rx_init(struct ath_softc *sc, int nbufs)
310 {
311         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
312         struct sk_buff *skb;
313         struct ath_buf *bf;
314         int error = 0;
315
316         spin_lock_init(&sc->rx.rxflushlock);
317         sc->sc_flags &= ~SC_OP_RXFLUSH;
318         spin_lock_init(&sc->rx.rxbuflock);
319
320         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
321                 return ath_rx_edma_init(sc, nbufs);
322         } else {
323                 common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
324                                 min(common->cachelsz, (u16)64));
325
326                 ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
327                                 common->cachelsz, common->rx_bufsize);
328
329                 /* Initialize rx descriptors */
330
331                 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
332                                 "rx", nbufs, 1, 0);
333                 if (error != 0) {
334                         ath_print(common, ATH_DBG_FATAL,
335                                   "failed to allocate rx descriptors: %d\n",
336                                   error);
337                         goto err;
338                 }
339
340                 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
341                         skb = ath_rxbuf_alloc(common, common->rx_bufsize,
342                                               GFP_KERNEL);
343                         if (skb == NULL) {
344                                 error = -ENOMEM;
345                                 goto err;
346                         }
347
348                         bf->bf_mpdu = skb;
349                         bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
350                                         common->rx_bufsize,
351                                         DMA_FROM_DEVICE);
352                         if (unlikely(dma_mapping_error(sc->dev,
353                                                         bf->bf_buf_addr))) {
354                                 dev_kfree_skb_any(skb);
355                                 bf->bf_mpdu = NULL;
356                                 ath_print(common, ATH_DBG_FATAL,
357                                           "dma_mapping_error() on RX init\n");
358                                 error = -ENOMEM;
359                                 goto err;
360                         }
361                         bf->bf_dmacontext = bf->bf_buf_addr;
362                 }
363                 sc->rx.rxlink = NULL;
364         }
365
366 err:
367         if (error)
368                 ath_rx_cleanup(sc);
369
370         return error;
371 }
372
373 void ath_rx_cleanup(struct ath_softc *sc)
374 {
375         struct ath_hw *ah = sc->sc_ah;
376         struct ath_common *common = ath9k_hw_common(ah);
377         struct sk_buff *skb;
378         struct ath_buf *bf;
379
380         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
381                 ath_rx_edma_cleanup(sc);
382                 return;
383         } else {
384                 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
385                         skb = bf->bf_mpdu;
386                         if (skb) {
387                                 dma_unmap_single(sc->dev, bf->bf_buf_addr,
388                                                 common->rx_bufsize,
389                                                 DMA_FROM_DEVICE);
390                                 dev_kfree_skb(skb);
391                         }
392                 }
393
394                 if (sc->rx.rxdma.dd_desc_len != 0)
395                         ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
396         }
397 }
398
399 /*
400  * Calculate the receive filter according to the
401  * operating mode and state:
402  *
403  * o always accept unicast, broadcast, and multicast traffic
404  * o maintain current state of phy error reception (the hal
405  *   may enable phy error frames for noise immunity work)
406  * o probe request frames are accepted only when operating in
407  *   hostap, adhoc, or monitor modes
408  * o enable promiscuous mode according to the interface state
409  * o accept beacons:
410  *   - when operating in adhoc mode so the 802.11 layer creates
411  *     node table entries for peers,
412  *   - when operating in station mode for collecting rssi data when
413  *     the station is otherwise quiet, or
414  *   - when operating as a repeater so we see repeater-sta beacons
415  *   - when scanning
416  */
417
418 u32 ath_calcrxfilter(struct ath_softc *sc)
419 {
420 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
421
422         u32 rfilt;
423
424         rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
425                 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
426                 | ATH9K_RX_FILTER_MCAST;
427
428         /* If not a STA, enable processing of Probe Requests */
429         if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
430                 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
431
432         /*
433          * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
434          * mode interface or when in monitor mode. AP mode does not need this
435          * since it receives all in-BSS frames anyway.
436          */
437         if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
438              (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
439             (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
440                 rfilt |= ATH9K_RX_FILTER_PROM;
441
442         if (sc->rx.rxfilter & FIF_CONTROL)
443                 rfilt |= ATH9K_RX_FILTER_CONTROL;
444
445         if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
446             !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
447                 rfilt |= ATH9K_RX_FILTER_MYBEACON;
448         else
449                 rfilt |= ATH9K_RX_FILTER_BEACON;
450
451         if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
452             AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
453             (sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
454             (sc->rx.rxfilter & FIF_PSPOLL))
455                 rfilt |= ATH9K_RX_FILTER_PSPOLL;
456
457         if (conf_is_ht(&sc->hw->conf))
458                 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
459
460         if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
461                 /* TODO: only needed if more than one BSSID is in use in
462                  * station/adhoc mode */
463                 /* The following may also be needed for other older chips */
464                 if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
465                         rfilt |= ATH9K_RX_FILTER_PROM;
466                 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
467         }
468
469         return rfilt;
470
471 #undef RX_FILTER_PRESERVE
472 }
473
474 int ath_startrecv(struct ath_softc *sc)
475 {
476         struct ath_hw *ah = sc->sc_ah;
477         struct ath_buf *bf, *tbf;
478
479         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
480                 ath_edma_start_recv(sc);
481                 return 0;
482         }
483
484         spin_lock_bh(&sc->rx.rxbuflock);
485         if (list_empty(&sc->rx.rxbuf))
486                 goto start_recv;
487
488         sc->rx.rxlink = NULL;
489         list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
490                 ath_rx_buf_link(sc, bf);
491         }
492
493         /* We could have deleted elements so the list may be empty now */
494         if (list_empty(&sc->rx.rxbuf))
495                 goto start_recv;
496
497         bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
498         ath9k_hw_putrxbuf(ah, bf->bf_daddr);
499         ath9k_hw_rxena(ah);
500
501 start_recv:
502         spin_unlock_bh(&sc->rx.rxbuflock);
503         ath_opmode_init(sc);
504         ath9k_hw_startpcureceive(ah);
505
506         return 0;
507 }
508
509 bool ath_stoprecv(struct ath_softc *sc)
510 {
511         struct ath_hw *ah = sc->sc_ah;
512         bool stopped;
513
514         ath9k_hw_stoppcurecv(ah);
515         ath9k_hw_setrxfilter(ah, 0);
516         stopped = ath9k_hw_stopdmarecv(ah);
517
518         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
519                 ath_edma_stop_recv(sc);
520         else
521                 sc->rx.rxlink = NULL;
522
523         return stopped;
524 }
525
526 void ath_flushrecv(struct ath_softc *sc)
527 {
528         spin_lock_bh(&sc->rx.rxflushlock);
529         sc->sc_flags |= SC_OP_RXFLUSH;
530         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
531                 ath_rx_tasklet(sc, 1, true);
532         ath_rx_tasklet(sc, 1, false);
533         sc->sc_flags &= ~SC_OP_RXFLUSH;
534         spin_unlock_bh(&sc->rx.rxflushlock);
535 }
536
537 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
538 {
539         /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
540         struct ieee80211_mgmt *mgmt;
541         u8 *pos, *end, id, elen;
542         struct ieee80211_tim_ie *tim;
543
544         mgmt = (struct ieee80211_mgmt *)skb->data;
545         pos = mgmt->u.beacon.variable;
546         end = skb->data + skb->len;
547
548         while (pos + 2 < end) {
549                 id = *pos++;
550                 elen = *pos++;
551                 if (pos + elen > end)
552                         break;
553
554                 if (id == WLAN_EID_TIM) {
555                         if (elen < sizeof(*tim))
556                                 break;
557                         tim = (struct ieee80211_tim_ie *) pos;
558                         if (tim->dtim_count != 0)
559                                 break;
560                         return tim->bitmap_ctrl & 0x01;
561                 }
562
563                 pos += elen;
564         }
565
566         return false;
567 }
568
569 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
570 {
571         struct ieee80211_mgmt *mgmt;
572         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
573
574         if (skb->len < 24 + 8 + 2 + 2)
575                 return;
576
577         mgmt = (struct ieee80211_mgmt *)skb->data;
578         if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
579                 return; /* not from our current AP */
580
581         sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
582
583         if (sc->ps_flags & PS_BEACON_SYNC) {
584                 sc->ps_flags &= ~PS_BEACON_SYNC;
585                 ath_print(common, ATH_DBG_PS,
586                           "Reconfigure Beacon timers based on "
587                           "timestamp from the AP\n");
588                 ath_beacon_config(sc, NULL);
589         }
590
591         if (ath_beacon_dtim_pending_cab(skb)) {
592                 /*
593                  * Remain awake waiting for buffered broadcast/multicast
594                  * frames. If the last broadcast/multicast frame is not
595                  * received properly, the next beacon frame will work as
596                  * a backup trigger for returning into NETWORK SLEEP state,
597                  * so we are waiting for it as well.
598                  */
599                 ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
600                           "buffered broadcast/multicast frame(s)\n");
601                 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
602                 return;
603         }
604
605         if (sc->ps_flags & PS_WAIT_FOR_CAB) {
606                 /*
607                  * This can happen if a broadcast frame is dropped or the AP
608                  * fails to send a frame indicating that all CAB frames have
609                  * been delivered.
610                  */
611                 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
612                 ath_print(common, ATH_DBG_PS,
613                           "PS wait for CAB frames timed out\n");
614         }
615 }
616
617 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
618 {
619         struct ieee80211_hdr *hdr;
620         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
621
622         hdr = (struct ieee80211_hdr *)skb->data;
623
624         /* Process Beacon and CAB receive in PS state */
625         if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
626             && ieee80211_is_beacon(hdr->frame_control))
627                 ath_rx_ps_beacon(sc, skb);
628         else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
629                  (ieee80211_is_data(hdr->frame_control) ||
630                   ieee80211_is_action(hdr->frame_control)) &&
631                  is_multicast_ether_addr(hdr->addr1) &&
632                  !ieee80211_has_moredata(hdr->frame_control)) {
633                 /*
634                  * No more broadcast/multicast frames to be received at this
635                  * point.
636                  */
637                 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
638                 ath_print(common, ATH_DBG_PS,
639                           "All PS CAB frames received, back to sleep\n");
640         } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
641                    !is_multicast_ether_addr(hdr->addr1) &&
642                    !ieee80211_has_morefrags(hdr->frame_control)) {
643                 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
644                 ath_print(common, ATH_DBG_PS,
645                           "Going back to sleep after having received "
646                           "PS-Poll data (0x%lx)\n",
647                         sc->ps_flags & (PS_WAIT_FOR_BEACON |
648                                         PS_WAIT_FOR_CAB |
649                                         PS_WAIT_FOR_PSPOLL_DATA |
650                                         PS_WAIT_FOR_TX_ACK));
651         }
652 }
653
654 static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
655                                     struct ath_softc *sc, struct sk_buff *skb,
656                                     struct ieee80211_rx_status *rxs)
657 {
658         struct ieee80211_hdr *hdr;
659
660         hdr = (struct ieee80211_hdr *)skb->data;
661
662         /* Send the frame to mac80211 */
663         if (is_multicast_ether_addr(hdr->addr1)) {
664                 int i;
665                 /*
666                  * Deliver broadcast/multicast frames to all suitable
667                  * virtual wiphys.
668                  */
669                 /* TODO: filter based on channel configuration */
670                 for (i = 0; i < sc->num_sec_wiphy; i++) {
671                         struct ath_wiphy *aphy = sc->sec_wiphy[i];
672                         struct sk_buff *nskb;
673                         if (aphy == NULL)
674                                 continue;
675                         nskb = skb_copy(skb, GFP_ATOMIC);
676                         if (!nskb)
677                                 continue;
678                         ieee80211_rx(aphy->hw, nskb);
679                 }
680                 ieee80211_rx(sc->hw, skb);
681         } else
682                 /* Deliver unicast frames based on receiver address */
683                 ieee80211_rx(hw, skb);
684 }
685
686 static bool ath_edma_get_buffers(struct ath_softc *sc,
687                                  enum ath9k_rx_qtype qtype)
688 {
689         struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
690         struct ath_hw *ah = sc->sc_ah;
691         struct ath_common *common = ath9k_hw_common(ah);
692         struct sk_buff *skb;
693         struct ath_buf *bf;
694         int ret;
695
696         skb = skb_peek(&rx_edma->rx_fifo);
697         if (!skb)
698                 return false;
699
700         bf = SKB_CB_ATHBUF(skb);
701         BUG_ON(!bf);
702
703         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
704                                 common->rx_bufsize, DMA_FROM_DEVICE);
705
706         ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
707         if (ret == -EINPROGRESS)
708                 return false;
709
710         __skb_unlink(skb, &rx_edma->rx_fifo);
711         if (ret == -EINVAL) {
712                 /* corrupt descriptor, skip this one and the following one */
713                 list_add_tail(&bf->list, &sc->rx.rxbuf);
714                 ath_rx_edma_buf_link(sc, qtype);
715                 skb = skb_peek(&rx_edma->rx_fifo);
716                 if (!skb)
717                         return true;
718
719                 bf = SKB_CB_ATHBUF(skb);
720                 BUG_ON(!bf);
721
722                 __skb_unlink(skb, &rx_edma->rx_fifo);
723                 list_add_tail(&bf->list, &sc->rx.rxbuf);
724                 ath_rx_edma_buf_link(sc, qtype);
725                 return true;
726         }
727         skb_queue_tail(&rx_edma->rx_buffers, skb);
728
729         return true;
730 }
731
732 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
733                                                 struct ath_rx_status *rs,
734                                                 enum ath9k_rx_qtype qtype)
735 {
736         struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
737         struct sk_buff *skb;
738         struct ath_buf *bf;
739
740         while (ath_edma_get_buffers(sc, qtype));
741         skb = __skb_dequeue(&rx_edma->rx_buffers);
742         if (!skb)
743                 return NULL;
744
745         bf = SKB_CB_ATHBUF(skb);
746         ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
747         return bf;
748 }
749
750 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
751                                            struct ath_rx_status *rs)
752 {
753         struct ath_hw *ah = sc->sc_ah;
754         struct ath_common *common = ath9k_hw_common(ah);
755         struct ath_desc *ds;
756         struct ath_buf *bf;
757         int ret;
758
759         if (list_empty(&sc->rx.rxbuf)) {
760                 sc->rx.rxlink = NULL;
761                 return NULL;
762         }
763
764         bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
765         ds = bf->bf_desc;
766
767         /*
768          * Must provide the virtual address of the current
769          * descriptor, the physical address, and the virtual
770          * address of the next descriptor in the h/w chain.
771          * This allows the HAL to look ahead to see if the
772          * hardware is done with a descriptor by checking the
773          * done bit in the following descriptor and the address
774          * of the current descriptor the DMA engine is working
775          * on.  All this is necessary because of our use of
776          * a self-linked list to avoid rx overruns.
777          */
778         ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
779         if (ret == -EINPROGRESS) {
780                 struct ath_rx_status trs;
781                 struct ath_buf *tbf;
782                 struct ath_desc *tds;
783
784                 memset(&trs, 0, sizeof(trs));
785                 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
786                         sc->rx.rxlink = NULL;
787                         return NULL;
788                 }
789
790                 tbf = list_entry(bf->list.next, struct ath_buf, list);
791
792                 /*
793                  * On some hardware the descriptor status words could
794                  * get corrupted, including the done bit. Because of
795                  * this, check if the next descriptor's done bit is
796                  * set or not.
797                  *
798                  * If the next descriptor's done bit is set, the current
799                  * descriptor has been corrupted. Force s/w to discard
800                  * this descriptor and continue...
801                  */
802
803                 tds = tbf->bf_desc;
804                 ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
805                 if (ret == -EINPROGRESS)
806                         return NULL;
807         }
808
809         if (!bf->bf_mpdu)
810                 return bf;
811
812         /*
813          * Synchronize the DMA transfer with CPU before
814          * 1. accessing the frame
815          * 2. requeueing the same buffer to h/w
816          */
817         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
818                         common->rx_bufsize,
819                         DMA_FROM_DEVICE);
820
821         return bf;
822 }
823
824 /* Assumes you've already done the endian to CPU conversion */
825 static bool ath9k_rx_accept(struct ath_common *common,
826                             struct ieee80211_hdr *hdr,
827                             struct ieee80211_rx_status *rxs,
828                             struct ath_rx_status *rx_stats,
829                             bool *decrypt_error)
830 {
831         struct ath_hw *ah = common->ah;
832         __le16 fc;
833
834         fc = hdr->frame_control;
835
836         if (!rx_stats->rs_datalen)
837                 return false;
838         /*
839          * rs_status follows rs_datalen so if rs_datalen is too large
840          * we can take a hint that hardware corrupted it, so ignore
841          * those frames.
842          */
843         if (rx_stats->rs_datalen > common->rx_bufsize)
844                 return false;
845
846         /*
847          * rs_more indicates chained descriptors which can be used
848          * to link buffers together for a sort of scatter-gather
849          * operation.
850          * reject the frame, we don't support scatter-gather yet and
851          * the frame is probably corrupt anyway
852          */
853         if (rx_stats->rs_more)
854                 return false;
855
856         /*
857          * The rx_stats->rs_status will not be set until the end of the
858          * chained descriptors so it can be ignored if rs_more is set. The
859          * rs_more will be false at the last element of the chained
860          * descriptors.
861          */
862         if (rx_stats->rs_status != 0) {
863                 if (rx_stats->rs_status & ATH9K_RXERR_CRC)
864                         rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
865                 if (rx_stats->rs_status & ATH9K_RXERR_PHY)
866                         return false;
867
868                 if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) {
869                         *decrypt_error = true;
870                 } else if (rx_stats->rs_status & ATH9K_RXERR_MIC) {
871                         if (ieee80211_is_ctl(fc))
872                                 /*
873                                  * Sometimes, we get invalid
874                                  * MIC failures on valid control frames.
875                                  * Remove these mic errors.
876                                  */
877                                 rx_stats->rs_status &= ~ATH9K_RXERR_MIC;
878                         else
879                                 rxs->flag |= RX_FLAG_MMIC_ERROR;
880                 }
881                 /*
882                  * Reject error frames with the exception of
883                  * decryption and MIC failures. For monitor mode,
884                  * we also ignore the CRC error.
885                  */
886                 if (ah->opmode == NL80211_IFTYPE_MONITOR) {
887                         if (rx_stats->rs_status &
888                             ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
889                               ATH9K_RXERR_CRC))
890                                 return false;
891                 } else {
892                         if (rx_stats->rs_status &
893                             ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
894                                 return false;
895                         }
896                 }
897         }
898         return true;
899 }
900
901 static int ath9k_process_rate(struct ath_common *common,
902                               struct ieee80211_hw *hw,
903                               struct ath_rx_status *rx_stats,
904                               struct ieee80211_rx_status *rxs)
905 {
906         struct ieee80211_supported_band *sband;
907         enum ieee80211_band band;
908         unsigned int i = 0;
909
910         band = hw->conf.channel->band;
911         sband = hw->wiphy->bands[band];
912
913         if (rx_stats->rs_rate & 0x80) {
914                 /* HT rate */
915                 rxs->flag |= RX_FLAG_HT;
916                 if (rx_stats->rs_flags & ATH9K_RX_2040)
917                         rxs->flag |= RX_FLAG_40MHZ;
918                 if (rx_stats->rs_flags & ATH9K_RX_GI)
919                         rxs->flag |= RX_FLAG_SHORT_GI;
920                 rxs->rate_idx = rx_stats->rs_rate & 0x7f;
921                 return 0;
922         }
923
924         for (i = 0; i < sband->n_bitrates; i++) {
925                 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
926                         rxs->rate_idx = i;
927                         return 0;
928                 }
929                 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
930                         rxs->flag |= RX_FLAG_SHORTPRE;
931                         rxs->rate_idx = i;
932                         return 0;
933                 }
934         }
935
936         /*
937          * No valid hardware bitrate found -- we should not get here
938          * because hardware has already validated this frame as OK.
939          */
940         ath_print(common, ATH_DBG_XMIT, "unsupported hw bitrate detected "
941                   "0x%02x using 1 Mbit\n", rx_stats->rs_rate);
942
943         return -EINVAL;
944 }
945
946 static void ath9k_process_rssi(struct ath_common *common,
947                                struct ieee80211_hw *hw,
948                                struct ieee80211_hdr *hdr,
949                                struct ath_rx_status *rx_stats)
950 {
951         struct ath_hw *ah = common->ah;
952         struct ieee80211_sta *sta;
953         struct ath_node *an;
954         int last_rssi = ATH_RSSI_DUMMY_MARKER;
955         __le16 fc;
956
957         fc = hdr->frame_control;
958
959         rcu_read_lock();
960         /*
961          * XXX: use ieee80211_find_sta! This requires quite a bit of work
962          * under the current ath9k virtual wiphy implementation as we have
963          * no way of tying a vif to wiphy. Typically vifs are attached to
964          * at least one sdata of a wiphy on mac80211 but with ath9k virtual
965          * wiphy you'd have to iterate over every wiphy and each sdata.
966          */
967         sta = ieee80211_find_sta_by_hw(hw, hdr->addr2);
968         if (sta) {
969                 an = (struct ath_node *) sta->drv_priv;
970                 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD &&
971                    !rx_stats->rs_moreaggr)
972                         ATH_RSSI_LPF(an->last_rssi, rx_stats->rs_rssi);
973                 last_rssi = an->last_rssi;
974         }
975         rcu_read_unlock();
976
977         if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
978                 rx_stats->rs_rssi = ATH_EP_RND(last_rssi,
979                                               ATH_RSSI_EP_MULTIPLIER);
980         if (rx_stats->rs_rssi < 0)
981                 rx_stats->rs_rssi = 0;
982
983         /* Update Beacon RSSI, this is used by ANI. */
984         if (ieee80211_is_beacon(fc))
985                 ah->stats.avgbrssi = rx_stats->rs_rssi;
986 }
987
988 /*
989  * For Decrypt or Demic errors, we only mark packet status here and always push
990  * up the frame up to let mac80211 handle the actual error case, be it no
991  * decryption key or real decryption error. This let us keep statistics there.
992  */
993 static int ath9k_rx_skb_preprocess(struct ath_common *common,
994                                    struct ieee80211_hw *hw,
995                                    struct ieee80211_hdr *hdr,
996                                    struct ath_rx_status *rx_stats,
997                                    struct ieee80211_rx_status *rx_status,
998                                    bool *decrypt_error)
999 {
1000         struct ath_hw *ah = common->ah;
1001
1002         memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
1003
1004         /*
1005          * everything but the rate is checked here, the rate check is done
1006          * separately to avoid doing two lookups for a rate for each frame.
1007          */
1008         if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
1009                 return -EINVAL;
1010
1011         ath9k_process_rssi(common, hw, hdr, rx_stats);
1012
1013         if (ath9k_process_rate(common, hw, rx_stats, rx_status))
1014                 return -EINVAL;
1015
1016         rx_status->mactime = ath9k_hw_extend_tsf(ah, rx_stats->rs_tstamp);
1017         rx_status->band = hw->conf.channel->band;
1018         rx_status->freq = hw->conf.channel->center_freq;
1019         rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi;
1020         rx_status->antenna = rx_stats->rs_antenna;
1021         rx_status->flag |= RX_FLAG_TSFT;
1022
1023         return 0;
1024 }
1025
1026 static void ath9k_rx_skb_postprocess(struct ath_common *common,
1027                                      struct sk_buff *skb,
1028                                      struct ath_rx_status *rx_stats,
1029                                      struct ieee80211_rx_status *rxs,
1030                                      bool decrypt_error)
1031 {
1032         struct ath_hw *ah = common->ah;
1033         struct ieee80211_hdr *hdr;
1034         int hdrlen, padpos, padsize;
1035         u8 keyix;
1036         __le16 fc;
1037
1038         /* see if any padding is done by the hw and remove it */
1039         hdr = (struct ieee80211_hdr *) skb->data;
1040         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1041         fc = hdr->frame_control;
1042         padpos = ath9k_cmn_padpos(hdr->frame_control);
1043
1044         /* The MAC header is padded to have 32-bit boundary if the
1045          * packet payload is non-zero. The general calculation for
1046          * padsize would take into account odd header lengths:
1047          * padsize = (4 - padpos % 4) % 4; However, since only
1048          * even-length headers are used, padding can only be 0 or 2
1049          * bytes and we can optimize this a bit. In addition, we must
1050          * not try to remove padding from short control frames that do
1051          * not have payload. */
1052         padsize = padpos & 3;
1053         if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1054                 memmove(skb->data + padsize, skb->data, padpos);
1055                 skb_pull(skb, padsize);
1056         }
1057
1058         keyix = rx_stats->rs_keyix;
1059
1060         if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1061             ieee80211_has_protected(fc)) {
1062                 rxs->flag |= RX_FLAG_DECRYPTED;
1063         } else if (ieee80211_has_protected(fc)
1064                    && !decrypt_error && skb->len >= hdrlen + 4) {
1065                 keyix = skb->data[hdrlen + 3] >> 6;
1066
1067                 if (test_bit(keyix, common->keymap))
1068                         rxs->flag |= RX_FLAG_DECRYPTED;
1069         }
1070         if (ah->sw_mgmt_crypto &&
1071             (rxs->flag & RX_FLAG_DECRYPTED) &&
1072             ieee80211_is_mgmt(fc))
1073                 /* Use software decrypt for management frames. */
1074                 rxs->flag &= ~RX_FLAG_DECRYPTED;
1075 }
1076
1077 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1078 {
1079         struct ath_buf *bf;
1080         struct sk_buff *skb = NULL, *requeue_skb;
1081         struct ieee80211_rx_status *rxs;
1082         struct ath_hw *ah = sc->sc_ah;
1083         struct ath_common *common = ath9k_hw_common(ah);
1084         /*
1085          * The hw can techncically differ from common->hw when using ath9k
1086          * virtual wiphy so to account for that we iterate over the active
1087          * wiphys and find the appropriate wiphy and therefore hw.
1088          */
1089         struct ieee80211_hw *hw = NULL;
1090         struct ieee80211_hdr *hdr;
1091         int retval;
1092         bool decrypt_error = false;
1093         struct ath_rx_status rs;
1094         enum ath9k_rx_qtype qtype;
1095         bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1096         int dma_type;
1097         u8 rx_status_len = ah->caps.rx_status_len;
1098
1099         if (edma)
1100                 dma_type = DMA_BIDIRECTIONAL;
1101         else
1102                 dma_type = DMA_FROM_DEVICE;
1103
1104         qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1105         spin_lock_bh(&sc->rx.rxbuflock);
1106
1107         do {
1108                 /* If handling rx interrupt and flush is in progress => exit */
1109                 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
1110                         break;
1111
1112                 memset(&rs, 0, sizeof(rs));
1113                 if (edma)
1114                         bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1115                 else
1116                         bf = ath_get_next_rx_buf(sc, &rs);
1117
1118                 if (!bf)
1119                         break;
1120
1121                 skb = bf->bf_mpdu;
1122                 if (!skb)
1123                         continue;
1124
1125                 hdr = (struct ieee80211_hdr *) (skb->data + rx_status_len);
1126                 rxs =  IEEE80211_SKB_RXCB(skb);
1127
1128                 hw = ath_get_virt_hw(sc, hdr);
1129
1130                 ath_debug_stat_rx(sc, &rs);
1131
1132                 /*
1133                  * If we're asked to flush receive queue, directly
1134                  * chain it back at the queue without processing it.
1135                  */
1136                 if (flush)
1137                         goto requeue;
1138
1139                 retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1140                                                  rxs, &decrypt_error);
1141                 if (retval)
1142                         goto requeue;
1143
1144                 /* Ensure we always have an skb to requeue once we are done
1145                  * processing the current buffer's skb */
1146                 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1147
1148                 /* If there is no memory we ignore the current RX'd frame,
1149                  * tell hardware it can give us a new frame using the old
1150                  * skb and put it at the tail of the sc->rx.rxbuf list for
1151                  * processing. */
1152                 if (!requeue_skb)
1153                         goto requeue;
1154
1155                 /* Unmap the frame */
1156                 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1157                                  common->rx_bufsize,
1158                                  dma_type);
1159
1160                 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1161                 if (ah->caps.rx_status_len)
1162                         skb_pull(skb, ah->caps.rx_status_len);
1163
1164                 ath9k_rx_skb_postprocess(common, skb, &rs,
1165                                          rxs, decrypt_error);
1166
1167                 /* We will now give hardware our shiny new allocated skb */
1168                 bf->bf_mpdu = requeue_skb;
1169                 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1170                                                  common->rx_bufsize,
1171                                                  dma_type);
1172                 if (unlikely(dma_mapping_error(sc->dev,
1173                           bf->bf_buf_addr))) {
1174                         dev_kfree_skb_any(requeue_skb);
1175                         bf->bf_mpdu = NULL;
1176                         ath_print(common, ATH_DBG_FATAL,
1177                                   "dma_mapping_error() on RX\n");
1178                         ath_rx_send_to_mac80211(hw, sc, skb, rxs);
1179                         break;
1180                 }
1181                 bf->bf_dmacontext = bf->bf_buf_addr;
1182
1183                 /*
1184                  * change the default rx antenna if rx diversity chooses the
1185                  * other antenna 3 times in a row.
1186                  */
1187                 if (sc->rx.defant != rs.rs_antenna) {
1188                         if (++sc->rx.rxotherant >= 3)
1189                                 ath_setdefantenna(sc, rs.rs_antenna);
1190                 } else {
1191                         sc->rx.rxotherant = 0;
1192                 }
1193
1194                 if (unlikely(ath9k_check_auto_sleep(sc) ||
1195                              (sc->ps_flags & (PS_WAIT_FOR_BEACON |
1196                                               PS_WAIT_FOR_CAB |
1197                                               PS_WAIT_FOR_PSPOLL_DATA))))
1198                         ath_rx_ps(sc, skb);
1199
1200                 ath_rx_send_to_mac80211(hw, sc, skb, rxs);
1201
1202 requeue:
1203                 if (edma) {
1204                         list_add_tail(&bf->list, &sc->rx.rxbuf);
1205                         ath_rx_edma_buf_link(sc, qtype);
1206                 } else {
1207                         list_move_tail(&bf->list, &sc->rx.rxbuf);
1208                         ath_rx_buf_link(sc, bf);
1209                 }
1210         } while (1);
1211
1212         spin_unlock_bh(&sc->rx.rxbuflock);
1213
1214         return 0;
1215 }