ipw2x00: simplify scan_event handling
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_PASSIVE_SCAN;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IBSS;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187                                                  scan_event.work);
2188         union iwreq_data wrqu;
2189
2190         wrqu.data.length = 0;
2191         wrqu.data.flags = 0;
2192         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197         IPW_DEBUG_SCAN("scan complete\n");
2198         /* Age the scan results... */
2199         priv->ieee->scans++;
2200         priv->status &= ~STATUS_SCANNING;
2201
2202         /* Only userspace-requested scan completion events go out immediately */
2203         if (!priv->user_requested_scan) {
2204                 schedule_delayed_work(&priv->scan_event,
2205                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2206         } else {
2207                 priv->user_requested_scan = 0;
2208                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209         }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215         int status;
2216         void (*cb) (struct ipw2100_priv * priv, u32 status);
2217         char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222         int status;
2223         void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif                          /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229         IPW_DEBUG_SCAN("Scanning...\n");
2230         priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246         IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251         int i;
2252
2253         if (status == IPW_STATE_SCANNING &&
2254             priv->status & STATUS_ASSOCIATED &&
2255             !(priv->status & STATUS_SCANNING)) {
2256                 IPW_DEBUG_INFO("Scan detected while associated, with "
2257                                "no scan request.  Restarting firmware.\n");
2258
2259                 /* Wake up any sleeping jobs */
2260                 schedule_reset(priv);
2261         }
2262
2263         for (i = 0; status_handlers[i].status != -1; i++) {
2264                 if (status == status_handlers[i].status) {
2265                         IPW_DEBUG_NOTIF("Status change: %s\n",
2266                                         status_handlers[i].name);
2267                         if (status_handlers[i].cb)
2268                                 status_handlers[i].cb(priv, status);
2269                         priv->wstats.status = status;
2270                         return;
2271                 }
2272         }
2273
2274         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278                                     struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283                              command_types[cmd->host_command_reg],
2284                              cmd->host_command_reg);
2285         }
2286 #endif
2287         if (cmd->host_command_reg == HOST_COMPLETE)
2288                 priv->status |= STATUS_ENABLED;
2289
2290         if (cmd->host_command_reg == CARD_DISABLE)
2291                 priv->status &= ~STATUS_ENABLED;
2292
2293         priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295         wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300         "COMMAND_STATUS_VAL",
2301         "STATUS_CHANGE_VAL",
2302         "P80211_DATA_VAL",
2303         "P8023_DATA_VAL",
2304         "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309                                     struct ipw2100_rx_packet *packet)
2310 {
2311         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312         if (!packet->skb)
2313                 return -ENOMEM;
2314
2315         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317                                           sizeof(struct ipw2100_rx),
2318                                           PCI_DMA_FROMDEVICE);
2319         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320          *       dma_addr */
2321
2322         return 0;
2323 }
2324
2325 #define SEARCH_ERROR   0xffffffff
2326 #define SEARCH_FAIL    0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334         int i;
2335         if (!priv->snapshot[0])
2336                 return;
2337         for (i = 0; i < 0x30; i++)
2338                 kfree(priv->snapshot[i]);
2339         priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345         int i;
2346         if (priv->snapshot[0])
2347                 return 1;
2348         for (i = 0; i < 0x30; i++) {
2349                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350                 if (!priv->snapshot[i]) {
2351                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352                                        "buffer %d\n", priv->net_dev->name, i);
2353                         while (i > 0)
2354                                 kfree(priv->snapshot[--i]);
2355                         priv->snapshot[0] = NULL;
2356                         return 0;
2357                 }
2358         }
2359
2360         return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364                                     size_t len, int mode)
2365 {
2366         u32 i, j;
2367         u32 tmp;
2368         u8 *s, *d;
2369         u32 ret;
2370
2371         s = in_buf;
2372         if (mode == SEARCH_SNAPSHOT) {
2373                 if (!ipw2100_snapshot_alloc(priv))
2374                         mode = SEARCH_DISCARD;
2375         }
2376
2377         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378                 read_nic_dword(priv->net_dev, i, &tmp);
2379                 if (mode == SEARCH_SNAPSHOT)
2380                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381                 if (ret == SEARCH_FAIL) {
2382                         d = (u8 *) & tmp;
2383                         for (j = 0; j < 4; j++) {
2384                                 if (*s != *d) {
2385                                         s = in_buf;
2386                                         continue;
2387                                 }
2388
2389                                 s++;
2390                                 d++;
2391
2392                                 if ((s - in_buf) == len)
2393                                         ret = (i + j) - len + 1;
2394                         }
2395                 } else if (mode == SEARCH_DISCARD)
2396                         return ret;
2397         }
2398
2399         return ret;
2400 }
2401 #endif
2402
2403 /*
2404  *
2405  * 0) Disconnect the SKB from the firmware (just unmap)
2406  * 1) Pack the ETH header into the SKB
2407  * 2) Pass the SKB to the network stack
2408  *
2409  * When packet is provided by the firmware, it contains the following:
2410  *
2411  * .  libipw_hdr
2412  * .  libipw_snap_hdr
2413  *
2414  * The size of the constructed ethernet
2415  *
2416  */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424         struct ipw2100_status *status = &priv->status_queue.drv[i];
2425         u32 match, reg;
2426         int j;
2427 #endif
2428
2429         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430                        i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433         /* Halt the firmware so we can get a good image */
2434         write_register(priv->net_dev, IPW_REG_RESET_REG,
2435                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436         j = 5;
2437         do {
2438                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442                         break;
2443         } while (j--);
2444
2445         match = ipw2100_match_buf(priv, (u8 *) status,
2446                                   sizeof(struct ipw2100_status),
2447                                   SEARCH_SNAPSHOT);
2448         if (match < SEARCH_SUCCESS)
2449                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450                                "offset 0x%06X, length %d:\n",
2451                                priv->net_dev->name, match,
2452                                sizeof(struct ipw2100_status));
2453         else
2454                 IPW_DEBUG_INFO("%s: No DMA status match in "
2455                                "Firmware.\n", priv->net_dev->name);
2456
2457         printk_buf((u8 *) priv->status_queue.drv,
2458                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462         priv->net_dev->stats.rx_errors++;
2463         schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467                           struct libipw_rx_stats *stats)
2468 {
2469         struct net_device *dev = priv->net_dev;
2470         struct ipw2100_status *status = &priv->status_queue.drv[i];
2471         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473         IPW_DEBUG_RX("Handler...\n");
2474
2475         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477                                "  Dropping.\n",
2478                                dev->name,
2479                                status->frame_size, skb_tailroom(packet->skb));
2480                 dev->stats.rx_errors++;
2481                 return;
2482         }
2483
2484         if (unlikely(!netif_running(dev))) {
2485                 dev->stats.rx_errors++;
2486                 priv->wstats.discard.misc++;
2487                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488                 return;
2489         }
2490
2491         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492                      !(priv->status & STATUS_ASSOCIATED))) {
2493                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494                 priv->wstats.discard.misc++;
2495                 return;
2496         }
2497
2498         pci_unmap_single(priv->pci_dev,
2499                          packet->dma_addr,
2500                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502         skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505         /* Make a copy of the frame so we can dump it to the logs if
2506          * libipw_rx fails */
2507         skb_copy_from_linear_data(packet->skb, packet_data,
2508                                   min_t(u32, status->frame_size,
2509                                              IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515                                dev->name);
2516                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518                 dev->stats.rx_errors++;
2519
2520                 /* libipw_rx failed, so it didn't free the SKB */
2521                 dev_kfree_skb_any(packet->skb);
2522                 packet->skb = NULL;
2523         }
2524
2525         /* We need to allocate a new SKB and attach it to the RDB. */
2526         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527                 printk(KERN_WARNING DRV_NAME ": "
2528                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2529                        "adapter.\n", dev->name);
2530                 /* TODO: schedule adapter shutdown */
2531                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532         }
2533
2534         /* Update the RDB entry */
2535         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541                    struct libipw_rx_stats *stats)
2542 {
2543         struct net_device *dev = priv->net_dev;
2544         struct ipw2100_status *status = &priv->status_queue.drv[i];
2545         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547         /* Magic struct that slots into the radiotap header -- no reason
2548          * to build this manually element by element, we can write it much
2549          * more efficiently than we can parse it. ORDER MATTERS HERE */
2550         struct ipw_rt_hdr {
2551                 struct ieee80211_radiotap_header rt_hdr;
2552                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553         } *ipw_rt;
2554
2555         IPW_DEBUG_RX("Handler...\n");
2556
2557         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558                                 sizeof(struct ipw_rt_hdr))) {
2559                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560                                "  Dropping.\n",
2561                                dev->name,
2562                                status->frame_size,
2563                                skb_tailroom(packet->skb));
2564                 dev->stats.rx_errors++;
2565                 return;
2566         }
2567
2568         if (unlikely(!netif_running(dev))) {
2569                 dev->stats.rx_errors++;
2570                 priv->wstats.discard.misc++;
2571                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572                 return;
2573         }
2574
2575         if (unlikely(priv->config & CFG_CRC_CHECK &&
2576                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2578                 dev->stats.rx_errors++;
2579                 return;
2580         }
2581
2582         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585                 packet->skb->data, status->frame_size);
2586
2587         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600                 dev->stats.rx_errors++;
2601
2602                 /* libipw_rx failed, so it didn't free the SKB */
2603                 dev_kfree_skb_any(packet->skb);
2604                 packet->skb = NULL;
2605         }
2606
2607         /* We need to allocate a new SKB and attach it to the RDB. */
2608         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609                 IPW_DEBUG_WARNING(
2610                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2611                         "adapter.\n", dev->name);
2612                 /* TODO: schedule adapter shutdown */
2613                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614         }
2615
2616         /* Update the RDB entry */
2617         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624         struct ipw2100_status *status = &priv->status_queue.drv[i];
2625         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628         switch (frame_type) {
2629         case COMMAND_STATUS_VAL:
2630                 return (status->frame_size != sizeof(u->rx_data.command));
2631         case STATUS_CHANGE_VAL:
2632                 return (status->frame_size != sizeof(u->rx_data.status));
2633         case HOST_NOTIFICATION_VAL:
2634                 return (status->frame_size < sizeof(u->rx_data.notification));
2635         case P80211_DATA_VAL:
2636         case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638                 return 0;
2639 #else
2640                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641                 case IEEE80211_FTYPE_MGMT:
2642                 case IEEE80211_FTYPE_CTL:
2643                         return 0;
2644                 case IEEE80211_FTYPE_DATA:
2645                         return (status->frame_size >
2646                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647                 }
2648 #endif
2649         }
2650
2651         return 1;
2652 }
2653
2654 /*
2655  * ipw2100 interrupts are disabled at this point, and the ISR
2656  * is the only code that calls this method.  So, we do not need
2657  * to play with any locks.
2658  *
2659  * RX Queue works as follows:
2660  *
2661  * Read index - firmware places packet in entry identified by the
2662  *              Read index and advances Read index.  In this manner,
2663  *              Read index will always point to the next packet to
2664  *              be filled--but not yet valid.
2665  *
2666  * Write index - driver fills this entry with an unused RBD entry.
2667  *               This entry has not filled by the firmware yet.
2668  *
2669  * In between the W and R indexes are the RBDs that have been received
2670  * but not yet processed.
2671  *
2672  * The process of handling packets will start at WRITE + 1 and advance
2673  * until it reaches the READ index.
2674  *
2675  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676  *
2677  */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681         struct ipw2100_status_queue *sq = &priv->status_queue;
2682         struct ipw2100_rx_packet *packet;
2683         u16 frame_type;
2684         u32 r, w, i, s;
2685         struct ipw2100_rx *u;
2686         struct libipw_rx_stats stats = {
2687                 .mac_time = jiffies,
2688         };
2689
2690         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693         if (r >= rxq->entries) {
2694                 IPW_DEBUG_RX("exit - bad read index\n");
2695                 return;
2696         }
2697
2698         i = (rxq->next + 1) % rxq->entries;
2699         s = i;
2700         while (i != r) {
2701                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702                    r, rxq->next, i); */
2703
2704                 packet = &priv->rx_buffers[i];
2705
2706                 /* Sync the DMA for the RX buffer so CPU is sure to get
2707                  * the correct values */
2708                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709                                             sizeof(struct ipw2100_rx),
2710                                             PCI_DMA_FROMDEVICE);
2711
2712                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713                         ipw2100_corruption_detected(priv, i);
2714                         goto increment;
2715                 }
2716
2717                 u = packet->rxp;
2718                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720                 stats.len = sq->drv[i].frame_size;
2721
2722                 stats.mask = 0;
2723                 if (stats.rssi != 0)
2724                         stats.mask |= LIBIPW_STATMASK_RSSI;
2725                 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728                              priv->net_dev->name, frame_types[frame_type],
2729                              stats.len);
2730
2731                 switch (frame_type) {
2732                 case COMMAND_STATUS_VAL:
2733                         /* Reset Rx watchdog */
2734                         isr_rx_complete_command(priv, &u->rx_data.command);
2735                         break;
2736
2737                 case STATUS_CHANGE_VAL:
2738                         isr_status_change(priv, u->rx_data.status);
2739                         break;
2740
2741                 case P80211_DATA_VAL:
2742                 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745                                 isr_rx_monitor(priv, i, &stats);
2746                                 break;
2747                         }
2748 #endif
2749                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2750                                 break;
2751                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752                         case IEEE80211_FTYPE_MGMT:
2753                                 libipw_rx_mgt(priv->ieee,
2754                                                  &u->rx_data.header, &stats);
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_CTL:
2758                                 break;
2759
2760                         case IEEE80211_FTYPE_DATA:
2761                                 isr_rx(priv, i, &stats);
2762                                 break;
2763
2764                         }
2765                         break;
2766                 }
2767
2768               increment:
2769                 /* clear status field associated with this RBD */
2770                 rxq->drv[i].status.info.field = 0;
2771
2772                 i = (i + 1) % rxq->entries;
2773         }
2774
2775         if (i != s) {
2776                 /* backtrack one entry, wrapping to end if at 0 */
2777                 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779                 write_register(priv->net_dev,
2780                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781         }
2782 }
2783
2784 /*
2785  * __ipw2100_tx_process
2786  *
2787  * This routine will determine whether the next packet on
2788  * the fw_pend_list has been processed by the firmware yet.
2789  *
2790  * If not, then it does nothing and returns.
2791  *
2792  * If so, then it removes the item from the fw_pend_list, frees
2793  * any associated storage, and places the item back on the
2794  * free list of its source (either msg_free_list or tx_free_list)
2795  *
2796  * TX Queue works as follows:
2797  *
2798  * Read index - points to the next TBD that the firmware will
2799  *              process.  The firmware will read the data, and once
2800  *              done processing, it will advance the Read index.
2801  *
2802  * Write index - driver fills this entry with an constructed TBD
2803  *               entry.  The Write index is not advanced until the
2804  *               packet has been configured.
2805  *
2806  * In between the W and R indexes are the TBDs that have NOT been
2807  * processed.  Lagging behind the R index are packets that have
2808  * been processed but have not been freed by the driver.
2809  *
2810  * In order to free old storage, an internal index will be maintained
2811  * that points to the next packet to be freed.  When all used
2812  * packets have been freed, the oldest index will be the same as the
2813  * firmware's read index.
2814  *
2815  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816  *
2817  * Because the TBD structure can not contain arbitrary data, the
2818  * driver must keep an internal queue of cached allocations such that
2819  * it can put that data back into the tx_free_list and msg_free_list
2820  * for use by future command and data packets.
2821  *
2822  */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826         struct ipw2100_bd *tbd;
2827         struct list_head *element;
2828         struct ipw2100_tx_packet *packet;
2829         int descriptors_used;
2830         int e, i;
2831         u32 r, w, frag_num = 0;
2832
2833         if (list_empty(&priv->fw_pend_list))
2834                 return 0;
2835
2836         element = priv->fw_pend_list.next;
2837
2838         packet = list_entry(element, struct ipw2100_tx_packet, list);
2839         tbd = &txq->drv[packet->index];
2840
2841         /* Determine how many TBD entries must be finished... */
2842         switch (packet->type) {
2843         case COMMAND:
2844                 /* COMMAND uses only one slot; don't advance */
2845                 descriptors_used = 1;
2846                 e = txq->oldest;
2847                 break;
2848
2849         case DATA:
2850                 /* DATA uses two slots; advance and loop position. */
2851                 descriptors_used = tbd->num_fragments;
2852                 frag_num = tbd->num_fragments - 1;
2853                 e = txq->oldest + frag_num;
2854                 e %= txq->entries;
2855                 break;
2856
2857         default:
2858                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859                        priv->net_dev->name);
2860                 return 0;
2861         }
2862
2863         /* if the last TBD is not done by NIC yet, then packet is
2864          * not ready to be released.
2865          *
2866          */
2867         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868                       &r);
2869         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870                       &w);
2871         if (w != txq->next)
2872                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873                        priv->net_dev->name);
2874
2875         /*
2876          * txq->next is the index of the last packet written txq->oldest is
2877          * the index of the r is the index of the next packet to be read by
2878          * firmware
2879          */
2880
2881         /*
2882          * Quick graphic to help you visualize the following
2883          * if / else statement
2884          *
2885          * ===>|                     s---->|===============
2886          *                               e>|
2887          * | a | b | c | d | e | f | g | h | i | j | k | l
2888          *       r---->|
2889          *               w
2890          *
2891          * w - updated by driver
2892          * r - updated by firmware
2893          * s - start of oldest BD entry (txq->oldest)
2894          * e - end of oldest BD entry
2895          *
2896          */
2897         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899                 return 0;
2900         }
2901
2902         list_del(element);
2903         DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906         {
2907                 i = txq->oldest;
2908                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909                              &txq->drv[i],
2910                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913                 if (packet->type == DATA) {
2914                         i = (i + 1) % txq->entries;
2915
2916                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917                                      &txq->drv[i],
2918                                      (u32) (txq->nic + i *
2919                                             sizeof(struct ipw2100_bd)),
2920                                      (u32) txq->drv[i].host_addr,
2921                                      txq->drv[i].buf_length);
2922                 }
2923         }
2924 #endif
2925
2926         switch (packet->type) {
2927         case DATA:
2928                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2930                                "Expecting DATA TBD but pulled "
2931                                "something else: ids %d=%d.\n",
2932                                priv->net_dev->name, txq->oldest, packet->index);
2933
2934                 /* DATA packet; we have to unmap and free the SKB */
2935                 for (i = 0; i < frag_num; i++) {
2936                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939                                      (packet->index + 1 + i) % txq->entries,
2940                                      tbd->host_addr, tbd->buf_length);
2941
2942                         pci_unmap_single(priv->pci_dev,
2943                                          tbd->host_addr,
2944                                          tbd->buf_length, PCI_DMA_TODEVICE);
2945                 }
2946
2947                 libipw_txb_free(packet->info.d_struct.txb);
2948                 packet->info.d_struct.txb = NULL;
2949
2950                 list_add_tail(element, &priv->tx_free_list);
2951                 INC_STAT(&priv->tx_free_stat);
2952
2953                 /* We have a free slot in the Tx queue, so wake up the
2954                  * transmit layer if it is stopped. */
2955                 if (priv->status & STATUS_ASSOCIATED)
2956                         netif_wake_queue(priv->net_dev);
2957
2958                 /* A packet was processed by the hardware, so update the
2959                  * watchdog */
2960                 priv->net_dev->trans_start = jiffies;
2961
2962                 break;
2963
2964         case COMMAND:
2965                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2967                                "Expecting COMMAND TBD but pulled "
2968                                "something else: ids %d=%d.\n",
2969                                priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972                 if (packet->info.c_struct.cmd->host_command_reg <
2973                     ARRAY_SIZE(command_types))
2974                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975                                      command_types[packet->info.c_struct.cmd->
2976                                                    host_command_reg],
2977                                      packet->info.c_struct.cmd->
2978                                      host_command_reg,
2979                                      packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982                 list_add_tail(element, &priv->msg_free_list);
2983                 INC_STAT(&priv->msg_free_stat);
2984                 break;
2985         }
2986
2987         /* advance oldest used TBD pointer to start of next entry */
2988         txq->oldest = (e + 1) % txq->entries;
2989         /* increase available TBDs number */
2990         txq->available += descriptors_used;
2991         SET_STAT(&priv->txq_stat, txq->available);
2992
2993         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2994                      jiffies - packet->jiffy_start);
2995
2996         return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001         int i = 0;
3002
3003         while (__ipw2100_tx_process(priv) && i < 200)
3004                 i++;
3005
3006         if (i == 200) {
3007                 printk(KERN_WARNING DRV_NAME ": "
3008                        "%s: Driver is running slow (%d iters).\n",
3009                        priv->net_dev->name, i);
3010         }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020
3021         while (!list_empty(&priv->msg_pend_list)) {
3022                 /* if there isn't enough space in TBD queue, then
3023                  * don't stuff a new one in.
3024                  * NOTE: 3 are needed as a command will take one,
3025                  *       and there is a minimum of 2 that must be
3026                  *       maintained between the r and w indexes
3027                  */
3028                 if (txq->available <= 3) {
3029                         IPW_DEBUG_TX("no room in tx_queue\n");
3030                         break;
3031                 }
3032
3033                 element = priv->msg_pend_list.next;
3034                 list_del(element);
3035                 DEC_STAT(&priv->msg_pend_stat);
3036
3037                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040                              &txq->drv[txq->next],
3041                              (u32) (txq->nic + txq->next *
3042                                       sizeof(struct ipw2100_bd)));
3043
3044                 packet->index = txq->next;
3045
3046                 tbd = &txq->drv[txq->next];
3047
3048                 /* initialize TBD */
3049                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051                 /* not marking number of fragments causes problems
3052                  * with f/w debug version */
3053                 tbd->num_fragments = 1;
3054                 tbd->status.info.field =
3055                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3056                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058                 /* update TBD queue counters */
3059                 txq->next++;
3060                 txq->next %= txq->entries;
3061                 txq->available--;
3062                 DEC_STAT(&priv->txq_stat);
3063
3064                 list_add_tail(element, &priv->fw_pend_list);
3065                 INC_STAT(&priv->fw_pend_stat);
3066         }
3067
3068         if (txq->next != next) {
3069                 /* kick off the DMA by notifying firmware the
3070                  * write index has moved; make sure TBD stores are sync'd */
3071                 wmb();
3072                 write_register(priv->net_dev,
3073                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074                                txq->next);
3075         }
3076 }
3077
3078 /*
3079  * ipw2100_tx_send_data
3080  *
3081  */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084         struct list_head *element;
3085         struct ipw2100_tx_packet *packet;
3086         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087         struct ipw2100_bd *tbd;
3088         int next = txq->next;
3089         int i = 0;
3090         struct ipw2100_data_header *ipw_hdr;
3091         struct libipw_hdr_3addr *hdr;
3092
3093         while (!list_empty(&priv->tx_pend_list)) {
3094                 /* if there isn't enough space in TBD queue, then
3095                  * don't stuff a new one in.
3096                  * NOTE: 4 are needed as a data will take two,
3097                  *       and there is a minimum of 2 that must be
3098                  *       maintained between the r and w indexes
3099                  */
3100                 element = priv->tx_pend_list.next;
3101                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104                              IPW_MAX_BDS)) {
3105                         /* TODO: Support merging buffers if more than
3106                          * IPW_MAX_BDS are used */
3107                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3108                                        "Increase fragmentation level.\n",
3109                                        priv->net_dev->name);
3110                 }
3111
3112                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113                         IPW_DEBUG_TX("no room in tx_queue\n");
3114                         break;
3115                 }
3116
3117                 list_del(element);
3118                 DEC_STAT(&priv->tx_pend_stat);
3119
3120                 tbd = &txq->drv[txq->next];
3121
3122                 packet->index = txq->next;
3123
3124                 ipw_hdr = packet->info.d_struct.data;
3125                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126                     fragments[0]->data;
3127
3128                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3130                            Addr3 = DA */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135                            Addr3 = BSSID */
3136                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138                 }
3139
3140                 ipw_hdr->host_command_reg = SEND;
3141                 ipw_hdr->host_command_reg1 = 0;
3142
3143                 /* For now we only support host based encryption */
3144                 ipw_hdr->needs_encryption = 0;
3145                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146                 if (packet->info.d_struct.txb->nr_frags > 1)
3147                         ipw_hdr->fragment_size =
3148                             packet->info.d_struct.txb->frag_size -
3149                             LIBIPW_3ADDR_LEN;
3150                 else
3151                         ipw_hdr->fragment_size = 0;
3152
3153                 tbd->host_addr = packet->info.d_struct.data_phys;
3154                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156                 tbd->status.info.field =
3157                     IPW_BD_STATUS_TX_FRAME_802_3 |
3158                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159                 txq->next++;
3160                 txq->next %= txq->entries;
3161
3162                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163                              packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165                 if (packet->info.d_struct.txb->nr_frags > 1)
3166                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167                                        packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171                         tbd = &txq->drv[txq->next];
3172                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3173                                 tbd->status.info.field =
3174                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176                         else
3177                                 tbd->status.info.field =
3178                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3179                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181                         tbd->buf_length = packet->info.d_struct.txb->
3182                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184                         tbd->host_addr = pci_map_single(priv->pci_dev,
3185                                                         packet->info.d_struct.
3186                                                         txb->fragments[i]->
3187                                                         data +
3188                                                         LIBIPW_3ADDR_LEN,
3189                                                         tbd->buf_length,
3190                                                         PCI_DMA_TODEVICE);
3191
3192                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193                                      txq->next, tbd->host_addr,
3194                                      tbd->buf_length);
3195
3196                         pci_dma_sync_single_for_device(priv->pci_dev,
3197                                                        tbd->host_addr,
3198                                                        tbd->buf_length,
3199                                                        PCI_DMA_TODEVICE);
3200
3201                         txq->next++;
3202                         txq->next %= txq->entries;
3203                 }
3204
3205                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206                 SET_STAT(&priv->txq_stat, txq->available);
3207
3208                 list_add_tail(element, &priv->fw_pend_list);
3209                 INC_STAT(&priv->fw_pend_stat);
3210         }
3211
3212         if (txq->next != next) {
3213                 /* kick off the DMA by notifying firmware the
3214                  * write index has moved; make sure TBD stores are sync'd */
3215                 write_register(priv->net_dev,
3216                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217                                txq->next);
3218         }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223         struct net_device *dev = priv->net_dev;
3224         unsigned long flags;
3225         u32 inta, tmp;
3226
3227         spin_lock_irqsave(&priv->low_lock, flags);
3228         ipw2100_disable_interrupts(priv);
3229
3230         read_register(dev, IPW_REG_INTA, &inta);
3231
3232         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235         priv->in_isr++;
3236         priv->interrupts++;
3237
3238         /* We do not loop and keep polling for more interrupts as this
3239          * is frowned upon and doesn't play nicely with other potentially
3240          * chained IRQs */
3241         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244         if (inta & IPW2100_INTA_FATAL_ERROR) {
3245                 printk(KERN_WARNING DRV_NAME
3246                        ": Fatal interrupt. Scheduling firmware restart.\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252                                priv->net_dev->name, priv->fatal_error);
3253
3254                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256                                priv->net_dev->name, tmp);
3257
3258                 /* Wake up any sleeping jobs */
3259                 schedule_reset(priv);
3260         }
3261
3262         if (inta & IPW2100_INTA_PARITY_ERROR) {
3263                 printk(KERN_ERR DRV_NAME
3264                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265                 priv->inta_other++;
3266                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267         }
3268
3269         if (inta & IPW2100_INTA_RX_TRANSFER) {
3270                 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272                 priv->rx_interrupts++;
3273
3274                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276                 __ipw2100_rx_process(priv);
3277                 __ipw2100_tx_complete(priv);
3278         }
3279
3280         if (inta & IPW2100_INTA_TX_TRANSFER) {
3281                 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283                 priv->tx_interrupts++;
3284
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287                 __ipw2100_tx_complete(priv);
3288                 ipw2100_tx_send_commands(priv);
3289                 ipw2100_tx_send_data(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_COMPLETE) {
3293                 IPW_DEBUG_ISR("TX complete\n");
3294                 priv->inta_other++;
3295                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301                 /* ipw2100_handle_event(dev); */
3302                 priv->inta_other++;
3303                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304         }
3305
3306         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307                 IPW_DEBUG_ISR("FW init done interrupt\n");
3308                 priv->inta_other++;
3309
3310                 read_register(dev, IPW_REG_INTA, &tmp);
3311                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312                            IPW2100_INTA_PARITY_ERROR)) {
3313                         write_register(dev, IPW_REG_INTA,
3314                                        IPW2100_INTA_FATAL_ERROR |
3315                                        IPW2100_INTA_PARITY_ERROR);
3316                 }
3317
3318                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319         }
3320
3321         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322                 IPW_DEBUG_ISR("Status change interrupt\n");
3323                 priv->inta_other++;
3324                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325         }
3326
3327         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329                 priv->inta_other++;
3330                 write_register(dev, IPW_REG_INTA,
3331                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332         }
3333
3334         priv->in_isr--;
3335         ipw2100_enable_interrupts(priv);
3336
3337         spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339         IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344         struct ipw2100_priv *priv = data;
3345         u32 inta, inta_mask;
3346
3347         if (!data)
3348                 return IRQ_NONE;
3349
3350         spin_lock(&priv->low_lock);
3351
3352         /* We check to see if we should be ignoring interrupts before
3353          * we touch the hardware.  During ucode load if we try and handle
3354          * an interrupt we can cause keyboard problems as well as cause
3355          * the ucode to fail to initialize */
3356         if (!(priv->status & STATUS_INT_ENABLED)) {
3357                 /* Shared IRQ */
3358                 goto none;
3359         }
3360
3361         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364         if (inta == 0xFFFFFFFF) {
3365                 /* Hardware disappeared */
3366                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367                 goto none;
3368         }
3369
3370         inta &= IPW_INTERRUPT_MASK;
3371
3372         if (!(inta & inta_mask)) {
3373                 /* Shared interrupt */
3374                 goto none;
3375         }
3376
3377         /* We disable the hardware interrupt here just to prevent unneeded
3378          * calls to be made.  We disable this again within the actual
3379          * work tasklet, so if another part of the code re-enables the
3380          * interrupt, that is fine */
3381         ipw2100_disable_interrupts(priv);
3382
3383         tasklet_schedule(&priv->irq_tasklet);
3384         spin_unlock(&priv->low_lock);
3385
3386         return IRQ_HANDLED;
3387       none:
3388         spin_unlock(&priv->low_lock);
3389         return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393                               struct net_device *dev, int pri)
3394 {
3395         struct ipw2100_priv *priv = libipw_priv(dev);
3396         struct list_head *element;
3397         struct ipw2100_tx_packet *packet;
3398         unsigned long flags;
3399
3400         spin_lock_irqsave(&priv->low_lock, flags);
3401
3402         if (!(priv->status & STATUS_ASSOCIATED)) {
3403                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404                 priv->net_dev->stats.tx_carrier_errors++;
3405                 netif_stop_queue(dev);
3406                 goto fail_unlock;
3407         }
3408
3409         if (list_empty(&priv->tx_free_list))
3410                 goto fail_unlock;
3411
3412         element = priv->tx_free_list.next;
3413         packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415         packet->info.d_struct.txb = txb;
3416
3417         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420         packet->jiffy_start = jiffies;
3421
3422         list_del(element);
3423         DEC_STAT(&priv->tx_free_stat);
3424
3425         list_add_tail(element, &priv->tx_pend_list);
3426         INC_STAT(&priv->tx_pend_stat);
3427
3428         ipw2100_tx_send_data(priv);
3429
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434         netif_stop_queue(dev);
3435         spin_unlock_irqrestore(&priv->low_lock, flags);
3436         return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441         int i, j, err = -EINVAL;
3442         void *v;
3443         dma_addr_t p;
3444
3445         priv->msg_buffers =
3446             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447                     GFP_KERNEL);
3448         if (!priv->msg_buffers)
3449                 return -ENOMEM;
3450
3451         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452                 v = pci_alloc_consistent(priv->pci_dev,
3453                                          sizeof(struct ipw2100_cmd_header), &p);
3454                 if (!v) {
3455                         printk(KERN_ERR DRV_NAME ": "
3456                                "%s: PCI alloc failed for msg "
3457                                "buffers.\n", priv->net_dev->name);
3458                         err = -ENOMEM;
3459                         break;
3460                 }
3461
3462                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3463
3464                 priv->msg_buffers[i].type = COMMAND;
3465                 priv->msg_buffers[i].info.c_struct.cmd =
3466                     (struct ipw2100_cmd_header *)v;
3467                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3468         }
3469
3470         if (i == IPW_COMMAND_POOL_SIZE)
3471                 return 0;
3472
3473         for (j = 0; j < i; j++) {
3474                 pci_free_consistent(priv->pci_dev,
3475                                     sizeof(struct ipw2100_cmd_header),
3476                                     priv->msg_buffers[j].info.c_struct.cmd,
3477                                     priv->msg_buffers[j].info.c_struct.
3478                                     cmd_phys);
3479         }
3480
3481         kfree(priv->msg_buffers);
3482         priv->msg_buffers = NULL;
3483
3484         return err;
3485 }
3486
3487 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3488 {
3489         int i;
3490
3491         INIT_LIST_HEAD(&priv->msg_free_list);
3492         INIT_LIST_HEAD(&priv->msg_pend_list);
3493
3494         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3495                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3496         SET_STAT(&priv->msg_free_stat, i);
3497
3498         return 0;
3499 }
3500
3501 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3502 {
3503         int i;
3504
3505         if (!priv->msg_buffers)
3506                 return;
3507
3508         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3509                 pci_free_consistent(priv->pci_dev,
3510                                     sizeof(struct ipw2100_cmd_header),
3511                                     priv->msg_buffers[i].info.c_struct.cmd,
3512                                     priv->msg_buffers[i].info.c_struct.
3513                                     cmd_phys);
3514         }
3515
3516         kfree(priv->msg_buffers);
3517         priv->msg_buffers = NULL;
3518 }
3519
3520 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3521                         char *buf)
3522 {
3523         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3524         char *out = buf;
3525         int i, j;
3526         u32 val;
3527
3528         for (i = 0; i < 16; i++) {
3529                 out += sprintf(out, "[%08X] ", i * 16);
3530                 for (j = 0; j < 16; j += 4) {
3531                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3532                         out += sprintf(out, "%08X ", val);
3533                 }
3534                 out += sprintf(out, "\n");
3535         }
3536
3537         return out - buf;
3538 }
3539
3540 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3541
3542 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3543                         char *buf)
3544 {
3545         struct ipw2100_priv *p = dev_get_drvdata(d);
3546         return sprintf(buf, "0x%08x\n", (int)p->config);
3547 }
3548
3549 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3550
3551 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3552                            char *buf)
3553 {
3554         struct ipw2100_priv *p = dev_get_drvdata(d);
3555         return sprintf(buf, "0x%08x\n", (int)p->status);
3556 }
3557
3558 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3559
3560 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3561                                char *buf)
3562 {
3563         struct ipw2100_priv *p = dev_get_drvdata(d);
3564         return sprintf(buf, "0x%08x\n", (int)p->capability);
3565 }
3566
3567 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3568
3569 #define IPW2100_REG(x) { IPW_ ##x, #x }
3570 static const struct {
3571         u32 addr;
3572         const char *name;
3573 } hw_data[] = {
3574 IPW2100_REG(REG_GP_CNTRL),
3575             IPW2100_REG(REG_GPIO),
3576             IPW2100_REG(REG_INTA),
3577             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3578 #define IPW2100_NIC(x, s) { x, #x, s }
3579 static const struct {
3580         u32 addr;
3581         const char *name;
3582         size_t size;
3583 } nic_data[] = {
3584 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3585             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3586 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3587 static const struct {
3588         u8 index;
3589         const char *name;
3590         const char *desc;
3591 } ord_data[] = {
3592 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3593             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3594                                 "successful Host Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_DIR_DATA,
3596                                 "successful Directed Tx's (MSDU)"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA1,
3598                                 "successful Directed Tx's (MSDU) @ 1MB"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA2,
3600                                 "successful Directed Tx's (MSDU) @ 2MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3602                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3603             IPW2100_ORD(STAT_TX_DIR_DATA11,
3604                                 "successful Directed Tx's (MSDU) @ 11MB"),
3605             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3606                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3608                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3610                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3611             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3612                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3613             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3614             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3615             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3616             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3617             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3618             IPW2100_ORD(STAT_TX_ASSN_RESP,
3619                                 "successful Association response Tx's"),
3620             IPW2100_ORD(STAT_TX_REASSN,
3621                                 "successful Reassociation Tx's"),
3622             IPW2100_ORD(STAT_TX_REASSN_RESP,
3623                                 "successful Reassociation response Tx's"),
3624             IPW2100_ORD(STAT_TX_PROBE,
3625                                 "probes successfully transmitted"),
3626             IPW2100_ORD(STAT_TX_PROBE_RESP,
3627                                 "probe responses successfully transmitted"),
3628             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3629             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3630             IPW2100_ORD(STAT_TX_DISASSN,
3631                                 "successful Disassociation TX"),
3632             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3633             IPW2100_ORD(STAT_TX_DEAUTH,
3634                                 "successful Deauthentication TX"),
3635             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3636                                 "Total successful Tx data bytes"),
3637             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3638             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3639             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3640             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3642             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3643             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3644                                 "times max tries in a hop failed"),
3645             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3646                                 "times disassociation failed"),
3647             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3648             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3649             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3654                                 "directed packets at 5.5MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3656             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3658                                 "nondirected packets at 1MB"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3660                                 "nondirected packets at 2MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3662                                 "nondirected packets at 5.5MB"),
3663             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3664                                 "nondirected packets at 11MB"),
3665             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3666             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3667                                                                     "Rx CTS"),
3668             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3669             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3670             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3671             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3672             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3673             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3674             IPW2100_ORD(STAT_RX_REASSN_RESP,
3675                                 "Reassociation response Rx's"),
3676             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3677             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3678             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3679             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3680             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3681             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3682             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3683             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3684                                 "Total rx data bytes received"),
3685             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3690             IPW2100_ORD(STAT_RX_DUPLICATE1,
3691                                 "duplicate rx packets at 1MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE2,
3693                                 "duplicate rx packets at 2MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3695                                 "duplicate rx packets at 5.5MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE11,
3697                                 "duplicate rx packets at 11MB"),
3698             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3699             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3700             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3701             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3702             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3703                                 "rx frames with invalid protocol"),
3704             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3705             IPW2100_ORD(STAT_RX_NO_BUFFER,
3706                                 "rx frames rejected due to no buffer"),
3707             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3708                                 "rx frames dropped due to missing fragment"),
3709             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3710                                 "rx frames dropped due to non-sequential fragment"),
3711             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3712                                 "rx frames dropped due to unmatched 1st frame"),
3713             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3714                                 "rx frames dropped due to uncompleted frame"),
3715             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3716                                 "ICV errors during decryption"),
3717             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3718             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3719             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3720                                 "poll response timeouts"),
3721             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3722                                 "timeouts waiting for last {broad,multi}cast pkt"),
3723             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3724             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3725             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3726             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3727             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3728                                 "current calculation of % missed beacons"),
3729             IPW2100_ORD(STAT_PERCENT_RETRIES,
3730                                 "current calculation of % missed tx retries"),
3731             IPW2100_ORD(ASSOCIATED_AP_PTR,
3732                                 "0 if not associated, else pointer to AP table entry"),
3733             IPW2100_ORD(AVAILABLE_AP_CNT,
3734                                 "AP's decsribed in the AP table"),
3735             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3736             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3737             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3738             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3739                                 "failures due to response fail"),
3740             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3741             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3742             IPW2100_ORD(STAT_ROAM_INHIBIT,
3743                                 "times roaming was inhibited due to activity"),
3744             IPW2100_ORD(RSSI_AT_ASSN,
3745                                 "RSSI of associated AP at time of association"),
3746             IPW2100_ORD(STAT_ASSN_CAUSE1,
3747                                 "reassociation: no probe response or TX on hop"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE2,
3749                                 "reassociation: poor tx/rx quality"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE3,
3751                                 "reassociation: tx/rx quality (excessive AP load"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE4,
3753                                 "reassociation: AP RSSI level"),
3754             IPW2100_ORD(STAT_ASSN_CAUSE5,
3755                                 "reassociations due to load leveling"),
3756             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3757             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3758                                 "times authentication response failed"),
3759             IPW2100_ORD(STATION_TABLE_CNT,
3760                                 "entries in association table"),
3761             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3762             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3763             IPW2100_ORD(COUNTRY_CODE,
3764                                 "IEEE country code as recv'd from beacon"),
3765             IPW2100_ORD(COUNTRY_CHANNELS,
3766                                 "channels supported by country"),
3767             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3768             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3769             IPW2100_ORD(ANTENNA_DIVERSITY,
3770                                 "TRUE if antenna diversity is disabled"),
3771             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3772             IPW2100_ORD(OUR_FREQ,
3773                                 "current radio freq lower digits - channel ID"),
3774             IPW2100_ORD(RTC_TIME, "current RTC time"),
3775             IPW2100_ORD(PORT_TYPE, "operating mode"),
3776             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3777             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3778             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3779             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3780             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3781             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3782             IPW2100_ORD(CAPABILITIES,
3783                                 "Management frame capability field"),
3784             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3785             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3786             IPW2100_ORD(RTS_THRESHOLD,
3787                                 "Min packet length for RTS handshaking"),
3788             IPW2100_ORD(INT_MODE, "International mode"),
3789             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3790                                 "protocol frag threshold"),
3791             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3792                                 "EEPROM offset in SRAM"),
3793             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3794                                 "EEPROM size in SRAM"),
3795             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3796             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3797                                 "EEPROM IBSS 11b channel set"),
3798             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3799             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3800             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3801             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3802             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3803
3804 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3805                               char *buf)
3806 {
3807         int i;
3808         struct ipw2100_priv *priv = dev_get_drvdata(d);
3809         struct net_device *dev = priv->net_dev;
3810         char *out = buf;
3811         u32 val = 0;
3812
3813         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3814
3815         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3816                 read_register(dev, hw_data[i].addr, &val);
3817                 out += sprintf(out, "%30s [%08X] : %08X\n",
3818                                hw_data[i].name, hw_data[i].addr, val);
3819         }
3820
3821         return out - buf;
3822 }
3823
3824 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3825
3826 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3827                              char *buf)
3828 {
3829         struct ipw2100_priv *priv = dev_get_drvdata(d);
3830         struct net_device *dev = priv->net_dev;
3831         char *out = buf;
3832         int i;
3833
3834         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3835
3836         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3837                 u8 tmp8;
3838                 u16 tmp16;
3839                 u32 tmp32;
3840
3841                 switch (nic_data[i].size) {
3842                 case 1:
3843                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3844                         out += sprintf(out, "%30s [%08X] : %02X\n",
3845                                        nic_data[i].name, nic_data[i].addr,
3846                                        tmp8);
3847                         break;
3848                 case 2:
3849                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3850                         out += sprintf(out, "%30s [%08X] : %04X\n",
3851                                        nic_data[i].name, nic_data[i].addr,
3852                                        tmp16);
3853                         break;
3854                 case 4:
3855                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3856                         out += sprintf(out, "%30s [%08X] : %08X\n",
3857                                        nic_data[i].name, nic_data[i].addr,
3858                                        tmp32);
3859                         break;
3860                 }
3861         }
3862         return out - buf;
3863 }
3864
3865 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3866
3867 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3868                            char *buf)
3869 {
3870         struct ipw2100_priv *priv = dev_get_drvdata(d);
3871         struct net_device *dev = priv->net_dev;
3872         static unsigned long loop = 0;
3873         int len = 0;
3874         u32 buffer[4];
3875         int i;
3876         char line[81];
3877
3878         if (loop >= 0x30000)
3879                 loop = 0;
3880
3881         /* sysfs provides us PAGE_SIZE buffer */
3882         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3883
3884                 if (priv->snapshot[0])
3885                         for (i = 0; i < 4; i++)
3886                                 buffer[i] =
3887                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3888                 else
3889                         for (i = 0; i < 4; i++)
3890                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3891
3892                 if (priv->dump_raw)
3893                         len += sprintf(buf + len,
3894                                        "%c%c%c%c"
3895                                        "%c%c%c%c"
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c",
3898                                        ((u8 *) buffer)[0x0],
3899                                        ((u8 *) buffer)[0x1],
3900                                        ((u8 *) buffer)[0x2],
3901                                        ((u8 *) buffer)[0x3],
3902                                        ((u8 *) buffer)[0x4],
3903                                        ((u8 *) buffer)[0x5],
3904                                        ((u8 *) buffer)[0x6],
3905                                        ((u8 *) buffer)[0x7],
3906                                        ((u8 *) buffer)[0x8],
3907                                        ((u8 *) buffer)[0x9],
3908                                        ((u8 *) buffer)[0xa],
3909                                        ((u8 *) buffer)[0xb],
3910                                        ((u8 *) buffer)[0xc],
3911                                        ((u8 *) buffer)[0xd],
3912                                        ((u8 *) buffer)[0xe],
3913                                        ((u8 *) buffer)[0xf]);
3914                 else
3915                         len += sprintf(buf + len, "%s\n",
3916                                        snprint_line(line, sizeof(line),
3917                                                     (u8 *) buffer, 16, loop));
3918                 loop += 16;
3919         }
3920
3921         return len;
3922 }
3923
3924 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3925                             const char *buf, size_t count)
3926 {
3927         struct ipw2100_priv *priv = dev_get_drvdata(d);
3928         struct net_device *dev = priv->net_dev;
3929         const char *p = buf;
3930
3931         (void)dev;              /* kill unused-var warning for debug-only code */
3932
3933         if (count < 1)
3934                 return count;
3935
3936         if (p[0] == '1' ||
3937             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3938                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3939                                dev->name);
3940                 priv->dump_raw = 1;
3941
3942         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3943                                    tolower(p[1]) == 'f')) {
3944                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3945                                dev->name);
3946                 priv->dump_raw = 0;
3947
3948         } else if (tolower(p[0]) == 'r') {
3949                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3950                 ipw2100_snapshot_free(priv);
3951
3952         } else
3953                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3954                                "reset = clear memory snapshot\n", dev->name);
3955
3956         return count;
3957 }
3958
3959 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3960
3961 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3962                              char *buf)
3963 {
3964         struct ipw2100_priv *priv = dev_get_drvdata(d);
3965         u32 val = 0;
3966         int len = 0;
3967         u32 val_len;
3968         static int loop = 0;
3969
3970         if (priv->status & STATUS_RF_KILL_MASK)
3971                 return 0;
3972
3973         if (loop >= ARRAY_SIZE(ord_data))
3974                 loop = 0;
3975
3976         /* sysfs provides us PAGE_SIZE buffer */
3977         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3978                 val_len = sizeof(u32);
3979
3980                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3981                                         &val_len))
3982                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3983                                        ord_data[loop].index,
3984                                        ord_data[loop].desc);
3985                 else
3986                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3987                                        ord_data[loop].index, val,
3988                                        ord_data[loop].desc);
3989                 loop++;
3990         }
3991
3992         return len;
3993 }
3994
3995 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3996
3997 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3998                           char *buf)
3999 {
4000         struct ipw2100_priv *priv = dev_get_drvdata(d);
4001         char *out = buf;
4002
4003         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4004                        priv->interrupts, priv->tx_interrupts,
4005                        priv->rx_interrupts, priv->inta_other);
4006         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4007         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4008 #ifdef CONFIG_IPW2100_DEBUG
4009         out += sprintf(out, "packet mismatch image: %s\n",
4010                        priv->snapshot[0] ? "YES" : "NO");
4011 #endif
4012
4013         return out - buf;
4014 }
4015
4016 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4017
4018 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4019 {
4020         int err;
4021
4022         if (mode == priv->ieee->iw_mode)
4023                 return 0;
4024
4025         err = ipw2100_disable_adapter(priv);
4026         if (err) {
4027                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4028                        priv->net_dev->name, err);
4029                 return err;
4030         }
4031
4032         switch (mode) {
4033         case IW_MODE_INFRA:
4034                 priv->net_dev->type = ARPHRD_ETHER;
4035                 break;
4036         case IW_MODE_ADHOC:
4037                 priv->net_dev->type = ARPHRD_ETHER;
4038                 break;
4039 #ifdef CONFIG_IPW2100_MONITOR
4040         case IW_MODE_MONITOR:
4041                 priv->last_mode = priv->ieee->iw_mode;
4042                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4043                 break;
4044 #endif                          /* CONFIG_IPW2100_MONITOR */
4045         }
4046
4047         priv->ieee->iw_mode = mode;
4048
4049 #ifdef CONFIG_PM
4050         /* Indicate ipw2100_download_firmware download firmware
4051          * from disk instead of memory. */
4052         ipw2100_firmware.version = 0;
4053 #endif
4054
4055         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4056         priv->reset_backoff = 0;
4057         schedule_reset(priv);
4058
4059         return 0;
4060 }
4061
4062 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4063                               char *buf)
4064 {
4065         struct ipw2100_priv *priv = dev_get_drvdata(d);
4066         int len = 0;
4067
4068 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4069
4070         if (priv->status & STATUS_ASSOCIATED)
4071                 len += sprintf(buf + len, "connected: %lu\n",
4072                                get_seconds() - priv->connect_start);
4073         else
4074                 len += sprintf(buf + len, "not connected\n");
4075
4076         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4077         DUMP_VAR(status, "08lx");
4078         DUMP_VAR(config, "08lx");
4079         DUMP_VAR(capability, "08lx");
4080
4081         len +=
4082             sprintf(buf + len, "last_rtc: %lu\n",
4083                     (unsigned long)priv->last_rtc);
4084
4085         DUMP_VAR(fatal_error, "d");
4086         DUMP_VAR(stop_hang_check, "d");
4087         DUMP_VAR(stop_rf_kill, "d");
4088         DUMP_VAR(messages_sent, "d");
4089
4090         DUMP_VAR(tx_pend_stat.value, "d");
4091         DUMP_VAR(tx_pend_stat.hi, "d");
4092
4093         DUMP_VAR(tx_free_stat.value, "d");
4094         DUMP_VAR(tx_free_stat.lo, "d");
4095
4096         DUMP_VAR(msg_free_stat.value, "d");
4097         DUMP_VAR(msg_free_stat.lo, "d");
4098
4099         DUMP_VAR(msg_pend_stat.value, "d");
4100         DUMP_VAR(msg_pend_stat.hi, "d");
4101
4102         DUMP_VAR(fw_pend_stat.value, "d");
4103         DUMP_VAR(fw_pend_stat.hi, "d");
4104
4105         DUMP_VAR(txq_stat.value, "d");
4106         DUMP_VAR(txq_stat.lo, "d");
4107
4108         DUMP_VAR(ieee->scans, "d");
4109         DUMP_VAR(reset_backoff, "d");
4110
4111         return len;
4112 }
4113
4114 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4115
4116 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4117                             char *buf)
4118 {
4119         struct ipw2100_priv *priv = dev_get_drvdata(d);
4120         char essid[IW_ESSID_MAX_SIZE + 1];
4121         u8 bssid[ETH_ALEN];
4122         u32 chan = 0;
4123         char *out = buf;
4124         unsigned int length;
4125         int ret;
4126
4127         if (priv->status & STATUS_RF_KILL_MASK)
4128                 return 0;
4129
4130         memset(essid, 0, sizeof(essid));
4131         memset(bssid, 0, sizeof(bssid));
4132
4133         length = IW_ESSID_MAX_SIZE;
4134         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4135         if (ret)
4136                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4137                                __LINE__);
4138
4139         length = sizeof(bssid);
4140         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4141                                   bssid, &length);
4142         if (ret)
4143                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144                                __LINE__);
4145
4146         length = sizeof(u32);
4147         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4148         if (ret)
4149                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150                                __LINE__);
4151
4152         out += sprintf(out, "ESSID: %s\n", essid);
4153         out += sprintf(out, "BSSID:   %pM\n", bssid);
4154         out += sprintf(out, "Channel: %d\n", chan);
4155
4156         return out - buf;
4157 }
4158
4159 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4160
4161 #ifdef CONFIG_IPW2100_DEBUG
4162 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4163 {
4164         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4165 }
4166
4167 static ssize_t store_debug_level(struct device_driver *d,
4168                                  const char *buf, size_t count)
4169 {
4170         char *p = (char *)buf;
4171         u32 val;
4172
4173         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4174                 p++;
4175                 if (p[0] == 'x' || p[0] == 'X')
4176                         p++;
4177                 val = simple_strtoul(p, &p, 16);
4178         } else
4179                 val = simple_strtoul(p, &p, 10);
4180         if (p == buf)
4181                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4182         else
4183                 ipw2100_debug_level = val;
4184
4185         return strnlen(buf, count);
4186 }
4187
4188 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4189                    store_debug_level);
4190 #endif                          /* CONFIG_IPW2100_DEBUG */
4191
4192 static ssize_t show_fatal_error(struct device *d,
4193                                 struct device_attribute *attr, char *buf)
4194 {
4195         struct ipw2100_priv *priv = dev_get_drvdata(d);
4196         char *out = buf;
4197         int i;
4198
4199         if (priv->fatal_error)
4200                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4201         else
4202                 out += sprintf(out, "0\n");
4203
4204         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4205                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4206                                         IPW2100_ERROR_QUEUE])
4207                         continue;
4208
4209                 out += sprintf(out, "%d. 0x%08X\n", i,
4210                                priv->fatal_errors[(priv->fatal_index - i) %
4211                                                   IPW2100_ERROR_QUEUE]);
4212         }
4213
4214         return out - buf;
4215 }
4216
4217 static ssize_t store_fatal_error(struct device *d,
4218                                  struct device_attribute *attr, const char *buf,
4219                                  size_t count)
4220 {
4221         struct ipw2100_priv *priv = dev_get_drvdata(d);
4222         schedule_reset(priv);
4223         return count;
4224 }
4225
4226 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4227                    store_fatal_error);
4228
4229 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4230                              char *buf)
4231 {
4232         struct ipw2100_priv *priv = dev_get_drvdata(d);
4233         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4234 }
4235
4236 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4237                               const char *buf, size_t count)
4238 {
4239         struct ipw2100_priv *priv = dev_get_drvdata(d);
4240         struct net_device *dev = priv->net_dev;
4241         char buffer[] = "00000000";
4242         unsigned long len =
4243             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4244         unsigned long val;
4245         char *p = buffer;
4246
4247         (void)dev;              /* kill unused-var warning for debug-only code */
4248
4249         IPW_DEBUG_INFO("enter\n");
4250
4251         strncpy(buffer, buf, len);
4252         buffer[len] = 0;
4253
4254         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4255                 p++;
4256                 if (p[0] == 'x' || p[0] == 'X')
4257                         p++;
4258                 val = simple_strtoul(p, &p, 16);
4259         } else
4260                 val = simple_strtoul(p, &p, 10);
4261         if (p == buffer) {
4262                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4263         } else {
4264                 priv->ieee->scan_age = val;
4265                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4266         }
4267
4268         IPW_DEBUG_INFO("exit\n");
4269         return len;
4270 }
4271
4272 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4273
4274 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4275                             char *buf)
4276 {
4277         /* 0 - RF kill not enabled
4278            1 - SW based RF kill active (sysfs)
4279            2 - HW based RF kill active
4280            3 - Both HW and SW baed RF kill active */
4281         struct ipw2100_priv *priv = dev_get_drvdata(d);
4282         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4283             (rf_kill_active(priv) ? 0x2 : 0x0);
4284         return sprintf(buf, "%i\n", val);
4285 }
4286
4287 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4288 {
4289         if ((disable_radio ? 1 : 0) ==
4290             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4291                 return 0;
4292
4293         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4294                           disable_radio ? "OFF" : "ON");
4295
4296         mutex_lock(&priv->action_mutex);
4297
4298         if (disable_radio) {
4299                 priv->status |= STATUS_RF_KILL_SW;
4300                 ipw2100_down(priv);
4301         } else {
4302                 priv->status &= ~STATUS_RF_KILL_SW;
4303                 if (rf_kill_active(priv)) {
4304                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4305                                           "disabled by HW switch\n");
4306                         /* Make sure the RF_KILL check timer is running */
4307                         priv->stop_rf_kill = 0;
4308                         mod_delayed_work(system_wq, &priv->rf_kill,
4309                                          round_jiffies_relative(HZ));
4310                 } else
4311                         schedule_reset(priv);
4312         }
4313
4314         mutex_unlock(&priv->action_mutex);
4315         return 1;
4316 }
4317
4318 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4319                              const char *buf, size_t count)
4320 {
4321         struct ipw2100_priv *priv = dev_get_drvdata(d);
4322         ipw_radio_kill_sw(priv, buf[0] == '1');
4323         return count;
4324 }
4325
4326 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4327
4328 static struct attribute *ipw2100_sysfs_entries[] = {
4329         &dev_attr_hardware.attr,
4330         &dev_attr_registers.attr,
4331         &dev_attr_ordinals.attr,
4332         &dev_attr_pci.attr,
4333         &dev_attr_stats.attr,
4334         &dev_attr_internals.attr,
4335         &dev_attr_bssinfo.attr,
4336         &dev_attr_memory.attr,
4337         &dev_attr_scan_age.attr,
4338         &dev_attr_fatal_error.attr,
4339         &dev_attr_rf_kill.attr,
4340         &dev_attr_cfg.attr,
4341         &dev_attr_status.attr,
4342         &dev_attr_capability.attr,
4343         NULL,
4344 };
4345
4346 static struct attribute_group ipw2100_attribute_group = {
4347         .attrs = ipw2100_sysfs_entries,
4348 };
4349
4350 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4351 {
4352         struct ipw2100_status_queue *q = &priv->status_queue;
4353
4354         IPW_DEBUG_INFO("enter\n");
4355
4356         q->size = entries * sizeof(struct ipw2100_status);
4357         q->drv =
4358             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4359                                                           q->size, &q->nic);
4360         if (!q->drv) {
4361                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4362                 return -ENOMEM;
4363         }
4364
4365         memset(q->drv, 0, q->size);
4366
4367         IPW_DEBUG_INFO("exit\n");
4368
4369         return 0;
4370 }
4371
4372 static void status_queue_free(struct ipw2100_priv *priv)
4373 {
4374         IPW_DEBUG_INFO("enter\n");
4375
4376         if (priv->status_queue.drv) {
4377                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4378                                     priv->status_queue.drv,
4379                                     priv->status_queue.nic);
4380                 priv->status_queue.drv = NULL;
4381         }
4382
4383         IPW_DEBUG_INFO("exit\n");
4384 }
4385
4386 static int bd_queue_allocate(struct ipw2100_priv *priv,
4387                              struct ipw2100_bd_queue *q, int entries)
4388 {
4389         IPW_DEBUG_INFO("enter\n");
4390
4391         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4392
4393         q->entries = entries;
4394         q->size = entries * sizeof(struct ipw2100_bd);
4395         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4396         if (!q->drv) {
4397                 IPW_DEBUG_INFO
4398                     ("can't allocate shared memory for buffer descriptors\n");
4399                 return -ENOMEM;
4400         }
4401         memset(q->drv, 0, q->size);
4402
4403         IPW_DEBUG_INFO("exit\n");
4404
4405         return 0;
4406 }
4407
4408 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4409 {
4410         IPW_DEBUG_INFO("enter\n");
4411
4412         if (!q)
4413                 return;
4414
4415         if (q->drv) {
4416                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4417                 q->drv = NULL;
4418         }
4419
4420         IPW_DEBUG_INFO("exit\n");
4421 }
4422
4423 static void bd_queue_initialize(struct ipw2100_priv *priv,
4424                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4425                                 u32 r, u32 w)
4426 {
4427         IPW_DEBUG_INFO("enter\n");
4428
4429         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4430                        (u32) q->nic);
4431
4432         write_register(priv->net_dev, base, q->nic);
4433         write_register(priv->net_dev, size, q->entries);
4434         write_register(priv->net_dev, r, q->oldest);
4435         write_register(priv->net_dev, w, q->next);
4436
4437         IPW_DEBUG_INFO("exit\n");
4438 }
4439
4440 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4441 {
4442         priv->stop_rf_kill = 1;
4443         priv->stop_hang_check = 1;
4444         cancel_delayed_work_sync(&priv->reset_work);
4445         cancel_delayed_work_sync(&priv->security_work);
4446         cancel_delayed_work_sync(&priv->wx_event_work);
4447         cancel_delayed_work_sync(&priv->hang_check);
4448         cancel_delayed_work_sync(&priv->rf_kill);
4449         cancel_delayed_work_sync(&priv->scan_event);
4450 }
4451
4452 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4453 {
4454         int i, j, err = -EINVAL;
4455         void *v;
4456         dma_addr_t p;
4457
4458         IPW_DEBUG_INFO("enter\n");
4459
4460         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4461         if (err) {
4462                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4463                                 priv->net_dev->name);
4464                 return err;
4465         }
4466
4467         priv->tx_buffers =
4468             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4469                     GFP_ATOMIC);
4470         if (!priv->tx_buffers) {
4471                 printk(KERN_ERR DRV_NAME
4472                        ": %s: alloc failed form tx buffers.\n",
4473                        priv->net_dev->name);
4474                 bd_queue_free(priv, &priv->tx_queue);
4475                 return -ENOMEM;
4476         }
4477
4478         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4479                 v = pci_alloc_consistent(priv->pci_dev,
4480                                          sizeof(struct ipw2100_data_header),
4481                                          &p);
4482                 if (!v) {
4483                         printk(KERN_ERR DRV_NAME
4484                                ": %s: PCI alloc failed for tx " "buffers.\n",
4485                                priv->net_dev->name);
4486                         err = -ENOMEM;
4487                         break;
4488                 }
4489
4490                 priv->tx_buffers[i].type = DATA;
4491                 priv->tx_buffers[i].info.d_struct.data =
4492                     (struct ipw2100_data_header *)v;
4493                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4494                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4495         }
4496
4497         if (i == TX_PENDED_QUEUE_LENGTH)
4498                 return 0;
4499
4500         for (j = 0; j < i; j++) {
4501                 pci_free_consistent(priv->pci_dev,
4502                                     sizeof(struct ipw2100_data_header),
4503                                     priv->tx_buffers[j].info.d_struct.data,
4504                                     priv->tx_buffers[j].info.d_struct.
4505                                     data_phys);
4506         }
4507
4508         kfree(priv->tx_buffers);
4509         priv->tx_buffers = NULL;
4510
4511         return err;
4512 }
4513
4514 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4515 {
4516         int i;
4517
4518         IPW_DEBUG_INFO("enter\n");
4519
4520         /*
4521          * reinitialize packet info lists
4522          */
4523         INIT_LIST_HEAD(&priv->fw_pend_list);
4524         INIT_STAT(&priv->fw_pend_stat);
4525
4526         /*
4527          * reinitialize lists
4528          */
4529         INIT_LIST_HEAD(&priv->tx_pend_list);
4530         INIT_LIST_HEAD(&priv->tx_free_list);
4531         INIT_STAT(&priv->tx_pend_stat);
4532         INIT_STAT(&priv->tx_free_stat);
4533
4534         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4535                 /* We simply drop any SKBs that have been queued for
4536                  * transmit */
4537                 if (priv->tx_buffers[i].info.d_struct.txb) {
4538                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4539                                            txb);
4540                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4541                 }
4542
4543                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4544         }
4545
4546         SET_STAT(&priv->tx_free_stat, i);
4547
4548         priv->tx_queue.oldest = 0;
4549         priv->tx_queue.available = priv->tx_queue.entries;
4550         priv->tx_queue.next = 0;
4551         INIT_STAT(&priv->txq_stat);
4552         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4553
4554         bd_queue_initialize(priv, &priv->tx_queue,
4555                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4556                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4557                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4558                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4559
4560         IPW_DEBUG_INFO("exit\n");
4561
4562 }
4563
4564 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4565 {
4566         int i;
4567
4568         IPW_DEBUG_INFO("enter\n");
4569
4570         bd_queue_free(priv, &priv->tx_queue);
4571
4572         if (!priv->tx_buffers)
4573                 return;
4574
4575         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4576                 if (priv->tx_buffers[i].info.d_struct.txb) {
4577                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4578                                            txb);
4579                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4580                 }
4581                 if (priv->tx_buffers[i].info.d_struct.data)
4582                         pci_free_consistent(priv->pci_dev,
4583                                             sizeof(struct ipw2100_data_header),
4584                                             priv->tx_buffers[i].info.d_struct.
4585                                             data,
4586                                             priv->tx_buffers[i].info.d_struct.
4587                                             data_phys);
4588         }
4589
4590         kfree(priv->tx_buffers);
4591         priv->tx_buffers = NULL;
4592
4593         IPW_DEBUG_INFO("exit\n");
4594 }
4595
4596 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4597 {
4598         int i, j, err = -EINVAL;
4599
4600         IPW_DEBUG_INFO("enter\n");
4601
4602         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4603         if (err) {
4604                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4605                 return err;
4606         }
4607
4608         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4609         if (err) {
4610                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4611                 bd_queue_free(priv, &priv->rx_queue);
4612                 return err;
4613         }
4614
4615         /*
4616          * allocate packets
4617          */
4618         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4619                                    sizeof(struct ipw2100_rx_packet),
4620                                    GFP_KERNEL);
4621         if (!priv->rx_buffers) {
4622                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4623
4624                 bd_queue_free(priv, &priv->rx_queue);
4625
4626                 status_queue_free(priv);
4627
4628                 return -ENOMEM;
4629         }
4630
4631         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4632                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4633
4634                 err = ipw2100_alloc_skb(priv, packet);
4635                 if (unlikely(err)) {
4636                         err = -ENOMEM;
4637                         break;
4638                 }
4639
4640                 /* The BD holds the cache aligned address */
4641                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4642                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4643                 priv->status_queue.drv[i].status_fields = 0;
4644         }
4645
4646         if (i == RX_QUEUE_LENGTH)
4647                 return 0;
4648
4649         for (j = 0; j < i; j++) {
4650                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4651                                  sizeof(struct ipw2100_rx_packet),
4652                                  PCI_DMA_FROMDEVICE);
4653                 dev_kfree_skb(priv->rx_buffers[j].skb);
4654         }
4655
4656         kfree(priv->rx_buffers);
4657         priv->rx_buffers = NULL;
4658
4659         bd_queue_free(priv, &priv->rx_queue);
4660
4661         status_queue_free(priv);
4662
4663         return err;
4664 }
4665
4666 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4667 {
4668         IPW_DEBUG_INFO("enter\n");
4669
4670         priv->rx_queue.oldest = 0;
4671         priv->rx_queue.available = priv->rx_queue.entries - 1;
4672         priv->rx_queue.next = priv->rx_queue.entries - 1;
4673
4674         INIT_STAT(&priv->rxq_stat);
4675         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4676
4677         bd_queue_initialize(priv, &priv->rx_queue,
4678                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4679                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4680                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4681                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4682
4683         /* set up the status queue */
4684         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4685                        priv->status_queue.nic);
4686
4687         IPW_DEBUG_INFO("exit\n");
4688 }
4689
4690 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4691 {
4692         int i;
4693
4694         IPW_DEBUG_INFO("enter\n");
4695
4696         bd_queue_free(priv, &priv->rx_queue);
4697         status_queue_free(priv);
4698
4699         if (!priv->rx_buffers)
4700                 return;
4701
4702         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4703                 if (priv->rx_buffers[i].rxp) {
4704                         pci_unmap_single(priv->pci_dev,
4705                                          priv->rx_buffers[i].dma_addr,
4706                                          sizeof(struct ipw2100_rx),
4707                                          PCI_DMA_FROMDEVICE);
4708                         dev_kfree_skb(priv->rx_buffers[i].skb);
4709                 }
4710         }
4711
4712         kfree(priv->rx_buffers);
4713         priv->rx_buffers = NULL;
4714
4715         IPW_DEBUG_INFO("exit\n");
4716 }
4717
4718 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4719 {
4720         u32 length = ETH_ALEN;
4721         u8 addr[ETH_ALEN];
4722
4723         int err;
4724
4725         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4726         if (err) {
4727                 IPW_DEBUG_INFO("MAC address read failed\n");
4728                 return -EIO;
4729         }
4730
4731         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4732         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4733
4734         return 0;
4735 }
4736
4737 /********************************************************************
4738  *
4739  * Firmware Commands
4740  *
4741  ********************************************************************/
4742
4743 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4744 {
4745         struct host_command cmd = {
4746                 .host_command = ADAPTER_ADDRESS,
4747                 .host_command_sequence = 0,
4748                 .host_command_length = ETH_ALEN
4749         };
4750         int err;
4751
4752         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4753
4754         IPW_DEBUG_INFO("enter\n");
4755
4756         if (priv->config & CFG_CUSTOM_MAC) {
4757                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4758                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4759         } else
4760                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4761                        ETH_ALEN);
4762
4763         err = ipw2100_hw_send_command(priv, &cmd);
4764
4765         IPW_DEBUG_INFO("exit\n");
4766         return err;
4767 }
4768
4769 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4770                                  int batch_mode)
4771 {
4772         struct host_command cmd = {
4773                 .host_command = PORT_TYPE,
4774                 .host_command_sequence = 0,
4775                 .host_command_length = sizeof(u32)
4776         };
4777         int err;
4778
4779         switch (port_type) {
4780         case IW_MODE_INFRA:
4781                 cmd.host_command_parameters[0] = IPW_BSS;
4782                 break;
4783         case IW_MODE_ADHOC:
4784                 cmd.host_command_parameters[0] = IPW_IBSS;
4785                 break;
4786         }
4787
4788         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4789                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4790
4791         if (!batch_mode) {
4792                 err = ipw2100_disable_adapter(priv);
4793                 if (err) {
4794                         printk(KERN_ERR DRV_NAME
4795                                ": %s: Could not disable adapter %d\n",
4796                                priv->net_dev->name, err);
4797                         return err;
4798                 }
4799         }
4800
4801         /* send cmd to firmware */
4802         err = ipw2100_hw_send_command(priv, &cmd);
4803
4804         if (!batch_mode)
4805                 ipw2100_enable_adapter(priv);
4806
4807         return err;
4808 }
4809
4810 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4811                                int batch_mode)
4812 {
4813         struct host_command cmd = {
4814                 .host_command = CHANNEL,
4815                 .host_command_sequence = 0,
4816                 .host_command_length = sizeof(u32)
4817         };
4818         int err;
4819
4820         cmd.host_command_parameters[0] = channel;
4821
4822         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4823
4824         /* If BSS then we don't support channel selection */
4825         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4826                 return 0;
4827
4828         if ((channel != 0) &&
4829             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4830                 return -EINVAL;
4831
4832         if (!batch_mode) {
4833                 err = ipw2100_disable_adapter(priv);
4834                 if (err)
4835                         return err;
4836         }
4837
4838         err = ipw2100_hw_send_command(priv, &cmd);
4839         if (err) {
4840                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4841                 return err;
4842         }
4843
4844         if (channel)
4845                 priv->config |= CFG_STATIC_CHANNEL;
4846         else
4847                 priv->config &= ~CFG_STATIC_CHANNEL;
4848
4849         priv->channel = channel;
4850
4851         if (!batch_mode) {
4852                 err = ipw2100_enable_adapter(priv);
4853                 if (err)
4854                         return err;
4855         }
4856
4857         return 0;
4858 }
4859
4860 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4861 {
4862         struct host_command cmd = {
4863                 .host_command = SYSTEM_CONFIG,
4864                 .host_command_sequence = 0,
4865                 .host_command_length = 12,
4866         };
4867         u32 ibss_mask, len = sizeof(u32);
4868         int err;
4869
4870         /* Set system configuration */
4871
4872         if (!batch_mode) {
4873                 err = ipw2100_disable_adapter(priv);
4874                 if (err)
4875                         return err;
4876         }
4877
4878         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4879                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4880
4881         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4882             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4883
4884         if (!(priv->config & CFG_LONG_PREAMBLE))
4885                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4886
4887         err = ipw2100_get_ordinal(priv,
4888                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4889                                   &ibss_mask, &len);
4890         if (err)
4891                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4892
4893         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4894         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4895
4896         /* 11b only */
4897         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4898
4899         err = ipw2100_hw_send_command(priv, &cmd);
4900         if (err)
4901                 return err;
4902
4903 /* If IPv6 is configured in the kernel then we don't want to filter out all
4904  * of the multicast packets as IPv6 needs some. */
4905 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4906         cmd.host_command = ADD_MULTICAST;
4907         cmd.host_command_sequence = 0;
4908         cmd.host_command_length = 0;
4909
4910         ipw2100_hw_send_command(priv, &cmd);
4911 #endif
4912         if (!batch_mode) {
4913                 err = ipw2100_enable_adapter(priv);
4914                 if (err)
4915                         return err;
4916         }
4917
4918         return 0;
4919 }
4920
4921 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4922                                 int batch_mode)
4923 {
4924         struct host_command cmd = {
4925                 .host_command = BASIC_TX_RATES,
4926                 .host_command_sequence = 0,
4927                 .host_command_length = 4
4928         };
4929         int err;
4930
4931         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4932
4933         if (!batch_mode) {
4934                 err = ipw2100_disable_adapter(priv);
4935                 if (err)
4936                         return err;
4937         }
4938
4939         /* Set BASIC TX Rate first */
4940         ipw2100_hw_send_command(priv, &cmd);
4941
4942         /* Set TX Rate */
4943         cmd.host_command = TX_RATES;
4944         ipw2100_hw_send_command(priv, &cmd);
4945
4946         /* Set MSDU TX Rate */
4947         cmd.host_command = MSDU_TX_RATES;
4948         ipw2100_hw_send_command(priv, &cmd);
4949
4950         if (!batch_mode) {
4951                 err = ipw2100_enable_adapter(priv);
4952                 if (err)
4953                         return err;
4954         }
4955
4956         priv->tx_rates = rate;
4957
4958         return 0;
4959 }
4960
4961 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4962 {
4963         struct host_command cmd = {
4964                 .host_command = POWER_MODE,
4965                 .host_command_sequence = 0,
4966                 .host_command_length = 4
4967         };
4968         int err;
4969
4970         cmd.host_command_parameters[0] = power_level;
4971
4972         err = ipw2100_hw_send_command(priv, &cmd);
4973         if (err)
4974                 return err;
4975
4976         if (power_level == IPW_POWER_MODE_CAM)
4977                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4978         else
4979                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4980
4981 #ifdef IPW2100_TX_POWER
4982         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4983                 /* Set beacon interval */
4984                 cmd.host_command = TX_POWER_INDEX;
4985                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4986
4987                 err = ipw2100_hw_send_command(priv, &cmd);
4988                 if (err)
4989                         return err;
4990         }
4991 #endif
4992
4993         return 0;
4994 }
4995
4996 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4997 {
4998         struct host_command cmd = {
4999                 .host_command = RTS_THRESHOLD,
5000                 .host_command_sequence = 0,
5001                 .host_command_length = 4
5002         };
5003         int err;
5004
5005         if (threshold & RTS_DISABLED)
5006                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5007         else
5008                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5009
5010         err = ipw2100_hw_send_command(priv, &cmd);
5011         if (err)
5012                 return err;
5013
5014         priv->rts_threshold = threshold;
5015
5016         return 0;
5017 }
5018
5019 #if 0
5020 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5021                                         u32 threshold, int batch_mode)
5022 {
5023         struct host_command cmd = {
5024                 .host_command = FRAG_THRESHOLD,
5025                 .host_command_sequence = 0,
5026                 .host_command_length = 4,
5027                 .host_command_parameters[0] = 0,
5028         };
5029         int err;
5030
5031         if (!batch_mode) {
5032                 err = ipw2100_disable_adapter(priv);
5033                 if (err)
5034                         return err;
5035         }
5036
5037         if (threshold == 0)
5038                 threshold = DEFAULT_FRAG_THRESHOLD;
5039         else {
5040                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5041                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5042         }
5043
5044         cmd.host_command_parameters[0] = threshold;
5045
5046         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5047
5048         err = ipw2100_hw_send_command(priv, &cmd);
5049
5050         if (!batch_mode)
5051                 ipw2100_enable_adapter(priv);
5052
5053         if (!err)
5054                 priv->frag_threshold = threshold;
5055
5056         return err;
5057 }
5058 #endif
5059
5060 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5061 {
5062         struct host_command cmd = {
5063                 .host_command = SHORT_RETRY_LIMIT,
5064                 .host_command_sequence = 0,
5065                 .host_command_length = 4
5066         };
5067         int err;
5068
5069         cmd.host_command_parameters[0] = retry;
5070
5071         err = ipw2100_hw_send_command(priv, &cmd);
5072         if (err)
5073                 return err;
5074
5075         priv->short_retry_limit = retry;
5076
5077         return 0;
5078 }
5079
5080 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5081 {
5082         struct host_command cmd = {
5083                 .host_command = LONG_RETRY_LIMIT,
5084                 .host_command_sequence = 0,
5085                 .host_command_length = 4
5086         };
5087         int err;
5088
5089         cmd.host_command_parameters[0] = retry;
5090
5091         err = ipw2100_hw_send_command(priv, &cmd);
5092         if (err)
5093                 return err;
5094
5095         priv->long_retry_limit = retry;
5096
5097         return 0;
5098 }
5099
5100 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5101                                        int batch_mode)
5102 {
5103         struct host_command cmd = {
5104                 .host_command = MANDATORY_BSSID,
5105                 .host_command_sequence = 0,
5106                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5107         };
5108         int err;
5109
5110 #ifdef CONFIG_IPW2100_DEBUG
5111         if (bssid != NULL)
5112                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5113         else
5114                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5115 #endif
5116         /* if BSSID is empty then we disable mandatory bssid mode */
5117         if (bssid != NULL)
5118                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5119
5120         if (!batch_mode) {
5121                 err = ipw2100_disable_adapter(priv);
5122                 if (err)
5123                         return err;
5124         }
5125
5126         err = ipw2100_hw_send_command(priv, &cmd);
5127
5128         if (!batch_mode)
5129                 ipw2100_enable_adapter(priv);
5130
5131         return err;
5132 }
5133
5134 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5135 {
5136         struct host_command cmd = {
5137                 .host_command = DISASSOCIATION_BSSID,
5138                 .host_command_sequence = 0,
5139                 .host_command_length = ETH_ALEN
5140         };
5141         int err;
5142         int len;
5143
5144         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5145
5146         len = ETH_ALEN;
5147         /* The Firmware currently ignores the BSSID and just disassociates from
5148          * the currently associated AP -- but in the off chance that a future
5149          * firmware does use the BSSID provided here, we go ahead and try and
5150          * set it to the currently associated AP's BSSID */
5151         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5152
5153         err = ipw2100_hw_send_command(priv, &cmd);
5154
5155         return err;
5156 }
5157
5158 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5159                               struct ipw2100_wpa_assoc_frame *, int)
5160     __attribute__ ((unused));
5161
5162 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5163                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5164                               int batch_mode)
5165 {
5166         struct host_command cmd = {
5167                 .host_command = SET_WPA_IE,
5168                 .host_command_sequence = 0,
5169                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5170         };
5171         int err;
5172
5173         IPW_DEBUG_HC("SET_WPA_IE\n");
5174
5175         if (!batch_mode) {
5176                 err = ipw2100_disable_adapter(priv);
5177                 if (err)
5178                         return err;
5179         }
5180
5181         memcpy(cmd.host_command_parameters, wpa_frame,
5182                sizeof(struct ipw2100_wpa_assoc_frame));
5183
5184         err = ipw2100_hw_send_command(priv, &cmd);
5185
5186         if (!batch_mode) {
5187                 if (ipw2100_enable_adapter(priv))
5188                         err = -EIO;
5189         }
5190
5191         return err;
5192 }
5193
5194 struct security_info_params {
5195         u32 allowed_ciphers;
5196         u16 version;
5197         u8 auth_mode;
5198         u8 replay_counters_number;
5199         u8 unicast_using_group;
5200 } __packed;
5201
5202 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5203                                             int auth_mode,
5204                                             int security_level,
5205                                             int unicast_using_group,
5206                                             int batch_mode)
5207 {
5208         struct host_command cmd = {
5209                 .host_command = SET_SECURITY_INFORMATION,
5210                 .host_command_sequence = 0,
5211                 .host_command_length = sizeof(struct security_info_params)
5212         };
5213         struct security_info_params *security =
5214             (struct security_info_params *)&cmd.host_command_parameters;
5215         int err;
5216         memset(security, 0, sizeof(*security));
5217
5218         /* If shared key AP authentication is turned on, then we need to
5219          * configure the firmware to try and use it.
5220          *
5221          * Actual data encryption/decryption is handled by the host. */
5222         security->auth_mode = auth_mode;
5223         security->unicast_using_group = unicast_using_group;
5224
5225         switch (security_level) {
5226         default:
5227         case SEC_LEVEL_0:
5228                 security->allowed_ciphers = IPW_NONE_CIPHER;
5229                 break;
5230         case SEC_LEVEL_1:
5231                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5232                     IPW_WEP104_CIPHER;
5233                 break;
5234         case SEC_LEVEL_2:
5235                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5236                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5237                 break;
5238         case SEC_LEVEL_2_CKIP:
5239                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5240                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5241                 break;
5242         case SEC_LEVEL_3:
5243                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5244                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5245                 break;
5246         }
5247
5248         IPW_DEBUG_HC
5249             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5250              security->auth_mode, security->allowed_ciphers, security_level);
5251
5252         security->replay_counters_number = 0;
5253
5254         if (!batch_mode) {
5255                 err = ipw2100_disable_adapter(priv);
5256                 if (err)
5257                         return err;
5258         }
5259
5260         err = ipw2100_hw_send_command(priv, &cmd);
5261
5262         if (!batch_mode)
5263                 ipw2100_enable_adapter(priv);
5264
5265         return err;
5266 }
5267
5268 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5269 {
5270         struct host_command cmd = {
5271                 .host_command = TX_POWER_INDEX,
5272                 .host_command_sequence = 0,
5273                 .host_command_length = 4
5274         };
5275         int err = 0;
5276         u32 tmp = tx_power;
5277
5278         if (tx_power != IPW_TX_POWER_DEFAULT)
5279                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5280                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5281
5282         cmd.host_command_parameters[0] = tmp;
5283
5284         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5285                 err = ipw2100_hw_send_command(priv, &cmd);
5286         if (!err)
5287                 priv->tx_power = tx_power;
5288
5289         return 0;
5290 }
5291
5292 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5293                                             u32 interval, int batch_mode)
5294 {
5295         struct host_command cmd = {
5296                 .host_command = BEACON_INTERVAL,
5297                 .host_command_sequence = 0,
5298                 .host_command_length = 4
5299         };
5300         int err;
5301
5302         cmd.host_command_parameters[0] = interval;
5303
5304         IPW_DEBUG_INFO("enter\n");
5305
5306         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5307                 if (!batch_mode) {
5308                         err = ipw2100_disable_adapter(priv);
5309                         if (err)
5310                                 return err;
5311                 }
5312
5313                 ipw2100_hw_send_command(priv, &cmd);
5314
5315                 if (!batch_mode) {
5316                         err = ipw2100_enable_adapter(priv);
5317                         if (err)
5318                                 return err;
5319                 }
5320         }
5321
5322         IPW_DEBUG_INFO("exit\n");
5323
5324         return 0;
5325 }
5326
5327 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5328 {
5329         ipw2100_tx_initialize(priv);
5330         ipw2100_rx_initialize(priv);
5331         ipw2100_msg_initialize(priv);
5332 }
5333
5334 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5335 {
5336         ipw2100_tx_free(priv);
5337         ipw2100_rx_free(priv);
5338         ipw2100_msg_free(priv);
5339 }
5340
5341 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5342 {
5343         if (ipw2100_tx_allocate(priv) ||
5344             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5345                 goto fail;
5346
5347         return 0;
5348
5349       fail:
5350         ipw2100_tx_free(priv);
5351         ipw2100_rx_free(priv);
5352         ipw2100_msg_free(priv);
5353         return -ENOMEM;
5354 }
5355
5356 #define IPW_PRIVACY_CAPABLE 0x0008
5357
5358 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5359                                  int batch_mode)
5360 {
5361         struct host_command cmd = {
5362                 .host_command = WEP_FLAGS,
5363                 .host_command_sequence = 0,
5364                 .host_command_length = 4
5365         };
5366         int err;
5367
5368         cmd.host_command_parameters[0] = flags;
5369
5370         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5371
5372         if (!batch_mode) {
5373                 err = ipw2100_disable_adapter(priv);
5374                 if (err) {
5375                         printk(KERN_ERR DRV_NAME
5376                                ": %s: Could not disable adapter %d\n",
5377                                priv->net_dev->name, err);
5378                         return err;
5379                 }
5380         }
5381
5382         /* send cmd to firmware */
5383         err = ipw2100_hw_send_command(priv, &cmd);
5384
5385         if (!batch_mode)
5386                 ipw2100_enable_adapter(priv);
5387
5388         return err;
5389 }
5390
5391 struct ipw2100_wep_key {
5392         u8 idx;
5393         u8 len;
5394         u8 key[13];
5395 };
5396
5397 /* Macros to ease up priting WEP keys */
5398 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5399 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5400 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5401 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5402
5403 /**
5404  * Set a the wep key
5405  *
5406  * @priv: struct to work on
5407  * @idx: index of the key we want to set
5408  * @key: ptr to the key data to set
5409  * @len: length of the buffer at @key
5410  * @batch_mode: FIXME perform the operation in batch mode, not
5411  *              disabling the device.
5412  *
5413  * @returns 0 if OK, < 0 errno code on error.
5414  *
5415  * Fill out a command structure with the new wep key, length an
5416  * index and send it down the wire.
5417  */
5418 static int ipw2100_set_key(struct ipw2100_priv *priv,
5419                            int idx, char *key, int len, int batch_mode)
5420 {
5421         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5422         struct host_command cmd = {
5423                 .host_command = WEP_KEY_INFO,
5424                 .host_command_sequence = 0,
5425                 .host_command_length = sizeof(struct ipw2100_wep_key),
5426         };
5427         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5428         int err;
5429
5430         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5431                      idx, keylen, len);
5432
5433         /* NOTE: We don't check cached values in case the firmware was reset
5434          * or some other problem is occurring.  If the user is setting the key,
5435          * then we push the change */
5436
5437         wep_key->idx = idx;
5438         wep_key->len = keylen;
5439
5440         if (keylen) {
5441                 memcpy(wep_key->key, key, len);
5442                 memset(wep_key->key + len, 0, keylen - len);
5443         }
5444
5445         /* Will be optimized out on debug not being configured in */
5446         if (keylen == 0)
5447                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5448                               priv->net_dev->name, wep_key->idx);
5449         else if (keylen == 5)
5450                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5451                               priv->net_dev->name, wep_key->idx, wep_key->len,
5452                               WEP_STR_64(wep_key->key));
5453         else
5454                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5455                               "\n",
5456                               priv->net_dev->name, wep_key->idx, wep_key->len,
5457                               WEP_STR_128(wep_key->key));
5458
5459         if (!batch_mode) {
5460                 err = ipw2100_disable_adapter(priv);
5461                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5462                 if (err) {
5463                         printk(KERN_ERR DRV_NAME
5464                                ": %s: Could not disable adapter %d\n",
5465                                priv->net_dev->name, err);
5466                         return err;
5467                 }
5468         }
5469
5470         /* send cmd to firmware */
5471         err = ipw2100_hw_send_command(priv, &cmd);
5472
5473         if (!batch_mode) {
5474                 int err2 = ipw2100_enable_adapter(priv);
5475                 if (err == 0)
5476                         err = err2;
5477         }
5478         return err;
5479 }
5480
5481 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5482                                  int idx, int batch_mode)
5483 {
5484         struct host_command cmd = {
5485                 .host_command = WEP_KEY_INDEX,
5486                 .host_command_sequence = 0,
5487                 .host_command_length = 4,
5488                 .host_command_parameters = {idx},
5489         };
5490         int err;
5491
5492         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5493
5494         if (idx < 0 || idx > 3)
5495                 return -EINVAL;
5496
5497         if (!batch_mode) {
5498                 err = ipw2100_disable_adapter(priv);
5499                 if (err) {
5500                         printk(KERN_ERR DRV_NAME
5501                                ": %s: Could not disable adapter %d\n",
5502                                priv->net_dev->name, err);
5503                         return err;
5504                 }
5505         }
5506
5507         /* send cmd to firmware */
5508         err = ipw2100_hw_send_command(priv, &cmd);
5509
5510         if (!batch_mode)
5511                 ipw2100_enable_adapter(priv);
5512
5513         return err;
5514 }
5515
5516 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5517 {
5518         int i, err, auth_mode, sec_level, use_group;
5519
5520         if (!(priv->status & STATUS_RUNNING))
5521                 return 0;
5522
5523         if (!batch_mode) {
5524                 err = ipw2100_disable_adapter(priv);
5525                 if (err)
5526                         return err;
5527         }
5528
5529         if (!priv->ieee->sec.enabled) {
5530                 err =
5531                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5532                                                      SEC_LEVEL_0, 0, 1);
5533         } else {
5534                 auth_mode = IPW_AUTH_OPEN;
5535                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5536                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5537                                 auth_mode = IPW_AUTH_SHARED;
5538                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5539                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5540                 }
5541
5542                 sec_level = SEC_LEVEL_0;
5543                 if (priv->ieee->sec.flags & SEC_LEVEL)
5544                         sec_level = priv->ieee->sec.level;
5545
5546                 use_group = 0;
5547                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5548                         use_group = priv->ieee->sec.unicast_uses_group;
5549
5550                 err =
5551                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5552                                                      use_group, 1);
5553         }
5554
5555         if (err)
5556                 goto exit;
5557
5558         if (priv->ieee->sec.enabled) {
5559                 for (i = 0; i < 4; i++) {
5560                         if (!(priv->ieee->sec.flags & (1 << i))) {
5561                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5562                                 priv->ieee->sec.key_sizes[i] = 0;
5563                         } else {
5564                                 err = ipw2100_set_key(priv, i,
5565                                                       priv->ieee->sec.keys[i],
5566                                                       priv->ieee->sec.
5567                                                       key_sizes[i], 1);
5568                                 if (err)
5569                                         goto exit;
5570                         }
5571                 }
5572
5573                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5574         }
5575
5576         /* Always enable privacy so the Host can filter WEP packets if
5577          * encrypted data is sent up */
5578         err =
5579             ipw2100_set_wep_flags(priv,
5580                                   priv->ieee->sec.
5581                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5582         if (err)
5583                 goto exit;
5584
5585         priv->status &= ~STATUS_SECURITY_UPDATED;
5586
5587       exit:
5588         if (!batch_mode)
5589                 ipw2100_enable_adapter(priv);
5590
5591         return err;
5592 }
5593
5594 static void ipw2100_security_work(struct work_struct *work)
5595 {
5596         struct ipw2100_priv *priv =
5597                 container_of(work, struct ipw2100_priv, security_work.work);
5598
5599         /* If we happen to have reconnected before we get a chance to
5600          * process this, then update the security settings--which causes
5601          * a disassociation to occur */
5602         if (!(priv->status & STATUS_ASSOCIATED) &&
5603             priv->status & STATUS_SECURITY_UPDATED)
5604                 ipw2100_configure_security(priv, 0);
5605 }
5606
5607 static void shim__set_security(struct net_device *dev,
5608                                struct libipw_security *sec)
5609 {
5610         struct ipw2100_priv *priv = libipw_priv(dev);
5611         int i, force_update = 0;
5612
5613         mutex_lock(&priv->action_mutex);
5614         if (!(priv->status & STATUS_INITIALIZED))
5615                 goto done;
5616
5617         for (i = 0; i < 4; i++) {
5618                 if (sec->flags & (1 << i)) {
5619                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5620                         if (sec->key_sizes[i] == 0)
5621                                 priv->ieee->sec.flags &= ~(1 << i);
5622                         else
5623                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5624                                        sec->key_sizes[i]);
5625                         if (sec->level == SEC_LEVEL_1) {
5626                                 priv->ieee->sec.flags |= (1 << i);
5627                                 priv->status |= STATUS_SECURITY_UPDATED;
5628                         } else
5629                                 priv->ieee->sec.flags &= ~(1 << i);
5630                 }
5631         }
5632
5633         if ((sec->flags & SEC_ACTIVE_KEY) &&
5634             priv->ieee->sec.active_key != sec->active_key) {
5635                 if (sec->active_key <= 3) {
5636                         priv->ieee->sec.active_key = sec->active_key;
5637                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5638                 } else
5639                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5640
5641                 priv->status |= STATUS_SECURITY_UPDATED;
5642         }
5643
5644         if ((sec->flags & SEC_AUTH_MODE) &&
5645             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5646                 priv->ieee->sec.auth_mode = sec->auth_mode;
5647                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5648                 priv->status |= STATUS_SECURITY_UPDATED;
5649         }
5650
5651         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5652                 priv->ieee->sec.flags |= SEC_ENABLED;
5653                 priv->ieee->sec.enabled = sec->enabled;
5654                 priv->status |= STATUS_SECURITY_UPDATED;
5655                 force_update = 1;
5656         }
5657
5658         if (sec->flags & SEC_ENCRYPT)
5659                 priv->ieee->sec.encrypt = sec->encrypt;
5660
5661         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5662                 priv->ieee->sec.level = sec->level;
5663                 priv->ieee->sec.flags |= SEC_LEVEL;
5664                 priv->status |= STATUS_SECURITY_UPDATED;
5665         }
5666
5667         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5668                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5669                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5670                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5671                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5672                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5673                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5674                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5675                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5676                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5677
5678 /* As a temporary work around to enable WPA until we figure out why
5679  * wpa_supplicant toggles the security capability of the driver, which
5680  * forces a disassocation with force_update...
5681  *
5682  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5683         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5684                 ipw2100_configure_security(priv, 0);
5685       done:
5686         mutex_unlock(&priv->action_mutex);
5687 }
5688
5689 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5690 {
5691         int err;
5692         int batch_mode = 1;
5693         u8 *bssid;
5694
5695         IPW_DEBUG_INFO("enter\n");
5696
5697         err = ipw2100_disable_adapter(priv);
5698         if (err)
5699                 return err;
5700 #ifdef CONFIG_IPW2100_MONITOR
5701         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5702                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5703                 if (err)
5704                         return err;
5705
5706                 IPW_DEBUG_INFO("exit\n");
5707
5708                 return 0;
5709         }
5710 #endif                          /* CONFIG_IPW2100_MONITOR */
5711
5712         err = ipw2100_read_mac_address(priv);
5713         if (err)
5714                 return -EIO;
5715
5716         err = ipw2100_set_mac_address(priv, batch_mode);
5717         if (err)
5718                 return err;
5719
5720         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5721         if (err)
5722                 return err;
5723
5724         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5725                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5726                 if (err)
5727                         return err;
5728         }
5729
5730         err = ipw2100_system_config(priv, batch_mode);
5731         if (err)
5732                 return err;
5733
5734         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5735         if (err)
5736                 return err;
5737
5738         /* Default to power mode OFF */
5739         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5740         if (err)
5741                 return err;
5742
5743         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5744         if (err)
5745                 return err;
5746
5747         if (priv->config & CFG_STATIC_BSSID)
5748                 bssid = priv->bssid;
5749         else
5750                 bssid = NULL;
5751         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5752         if (err)
5753                 return err;
5754
5755         if (priv->config & CFG_STATIC_ESSID)
5756                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5757                                         batch_mode);
5758         else
5759                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5760         if (err)
5761                 return err;
5762
5763         err = ipw2100_configure_security(priv, batch_mode);
5764         if (err)
5765                 return err;
5766
5767         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5768                 err =
5769                     ipw2100_set_ibss_beacon_interval(priv,
5770                                                      priv->beacon_interval,
5771                                                      batch_mode);
5772                 if (err)
5773                         return err;
5774
5775                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5776                 if (err)
5777                         return err;
5778         }
5779
5780         /*
5781            err = ipw2100_set_fragmentation_threshold(
5782            priv, priv->frag_threshold, batch_mode);
5783            if (err)
5784            return err;
5785          */
5786
5787         IPW_DEBUG_INFO("exit\n");
5788
5789         return 0;
5790 }
5791
5792 /*************************************************************************
5793  *
5794  * EXTERNALLY CALLED METHODS
5795  *
5796  *************************************************************************/
5797
5798 /* This method is called by the network layer -- not to be confused with
5799  * ipw2100_set_mac_address() declared above called by this driver (and this
5800  * method as well) to talk to the firmware */
5801 static int ipw2100_set_address(struct net_device *dev, void *p)
5802 {
5803         struct ipw2100_priv *priv = libipw_priv(dev);
5804         struct sockaddr *addr = p;
5805         int err = 0;
5806
5807         if (!is_valid_ether_addr(addr->sa_data))
5808                 return -EADDRNOTAVAIL;
5809
5810         mutex_lock(&priv->action_mutex);
5811
5812         priv->config |= CFG_CUSTOM_MAC;
5813         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5814
5815         err = ipw2100_set_mac_address(priv, 0);
5816         if (err)
5817                 goto done;
5818
5819         priv->reset_backoff = 0;
5820         mutex_unlock(&priv->action_mutex);
5821         ipw2100_reset_adapter(&priv->reset_work.work);
5822         return 0;
5823
5824       done:
5825         mutex_unlock(&priv->action_mutex);
5826         return err;
5827 }
5828
5829 static int ipw2100_open(struct net_device *dev)
5830 {
5831         struct ipw2100_priv *priv = libipw_priv(dev);
5832         unsigned long flags;
5833         IPW_DEBUG_INFO("dev->open\n");
5834
5835         spin_lock_irqsave(&priv->low_lock, flags);
5836         if (priv->status & STATUS_ASSOCIATED) {
5837                 netif_carrier_on(dev);
5838                 netif_start_queue(dev);
5839         }
5840         spin_unlock_irqrestore(&priv->low_lock, flags);
5841
5842         return 0;
5843 }
5844
5845 static int ipw2100_close(struct net_device *dev)
5846 {
5847         struct ipw2100_priv *priv = libipw_priv(dev);
5848         unsigned long flags;
5849         struct list_head *element;
5850         struct ipw2100_tx_packet *packet;
5851
5852         IPW_DEBUG_INFO("enter\n");
5853
5854         spin_lock_irqsave(&priv->low_lock, flags);
5855
5856         if (priv->status & STATUS_ASSOCIATED)
5857                 netif_carrier_off(dev);
5858         netif_stop_queue(dev);
5859
5860         /* Flush the TX queue ... */
5861         while (!list_empty(&priv->tx_pend_list)) {
5862                 element = priv->tx_pend_list.next;
5863                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5864
5865                 list_del(element);
5866                 DEC_STAT(&priv->tx_pend_stat);
5867
5868                 libipw_txb_free(packet->info.d_struct.txb);
5869                 packet->info.d_struct.txb = NULL;
5870
5871                 list_add_tail(element, &priv->tx_free_list);
5872                 INC_STAT(&priv->tx_free_stat);
5873         }
5874         spin_unlock_irqrestore(&priv->low_lock, flags);
5875
5876         IPW_DEBUG_INFO("exit\n");
5877
5878         return 0;
5879 }
5880
5881 /*
5882  * TODO:  Fix this function... its just wrong
5883  */
5884 static void ipw2100_tx_timeout(struct net_device *dev)
5885 {
5886         struct ipw2100_priv *priv = libipw_priv(dev);
5887
5888         dev->stats.tx_errors++;
5889
5890 #ifdef CONFIG_IPW2100_MONITOR
5891         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5892                 return;
5893 #endif
5894
5895         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5896                        dev->name);
5897         schedule_reset(priv);
5898 }
5899
5900 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5901 {
5902         /* This is called when wpa_supplicant loads and closes the driver
5903          * interface. */
5904         priv->ieee->wpa_enabled = value;
5905         return 0;
5906 }
5907
5908 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5909 {
5910
5911         struct libipw_device *ieee = priv->ieee;
5912         struct libipw_security sec = {
5913                 .flags = SEC_AUTH_MODE,
5914         };
5915         int ret = 0;
5916
5917         if (value & IW_AUTH_ALG_SHARED_KEY) {
5918                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5919                 ieee->open_wep = 0;
5920         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5921                 sec.auth_mode = WLAN_AUTH_OPEN;
5922                 ieee->open_wep = 1;
5923         } else if (value & IW_AUTH_ALG_LEAP) {
5924                 sec.auth_mode = WLAN_AUTH_LEAP;
5925                 ieee->open_wep = 1;
5926         } else
5927                 return -EINVAL;
5928
5929         if (ieee->set_security)
5930                 ieee->set_security(ieee->dev, &sec);
5931         else
5932                 ret = -EOPNOTSUPP;
5933
5934         return ret;
5935 }
5936
5937 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5938                                     char *wpa_ie, int wpa_ie_len)
5939 {
5940
5941         struct ipw2100_wpa_assoc_frame frame;
5942
5943         frame.fixed_ie_mask = 0;
5944
5945         /* copy WPA IE */
5946         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5947         frame.var_ie_len = wpa_ie_len;
5948
5949         /* make sure WPA is enabled */
5950         ipw2100_wpa_enable(priv, 1);
5951         ipw2100_set_wpa_ie(priv, &frame, 0);
5952 }
5953
5954 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5955                                     struct ethtool_drvinfo *info)
5956 {
5957         struct ipw2100_priv *priv = libipw_priv(dev);
5958         char fw_ver[64], ucode_ver[64];
5959
5960         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5961         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5962
5963         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5964         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5965
5966         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5967                  fw_ver, priv->eeprom_version, ucode_ver);
5968
5969         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5970                 sizeof(info->bus_info));
5971 }
5972
5973 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5974 {
5975         struct ipw2100_priv *priv = libipw_priv(dev);
5976         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5977 }
5978
5979 static const struct ethtool_ops ipw2100_ethtool_ops = {
5980         .get_link = ipw2100_ethtool_get_link,
5981         .get_drvinfo = ipw_ethtool_get_drvinfo,
5982 };
5983
5984 static void ipw2100_hang_check(struct work_struct *work)
5985 {
5986         struct ipw2100_priv *priv =
5987                 container_of(work, struct ipw2100_priv, hang_check.work);
5988         unsigned long flags;
5989         u32 rtc = 0xa5a5a5a5;
5990         u32 len = sizeof(rtc);
5991         int restart = 0;
5992
5993         spin_lock_irqsave(&priv->low_lock, flags);
5994
5995         if (priv->fatal_error != 0) {
5996                 /* If fatal_error is set then we need to restart */
5997                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5998                                priv->net_dev->name);
5999
6000                 restart = 1;
6001         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6002                    (rtc == priv->last_rtc)) {
6003                 /* Check if firmware is hung */
6004                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6005                                priv->net_dev->name);
6006
6007                 restart = 1;
6008         }
6009
6010         if (restart) {
6011                 /* Kill timer */
6012                 priv->stop_hang_check = 1;
6013                 priv->hangs++;
6014
6015                 /* Restart the NIC */
6016                 schedule_reset(priv);
6017         }
6018
6019         priv->last_rtc = rtc;
6020
6021         if (!priv->stop_hang_check)
6022                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6023
6024         spin_unlock_irqrestore(&priv->low_lock, flags);
6025 }
6026
6027 static void ipw2100_rf_kill(struct work_struct *work)
6028 {
6029         struct ipw2100_priv *priv =
6030                 container_of(work, struct ipw2100_priv, rf_kill.work);
6031         unsigned long flags;
6032
6033         spin_lock_irqsave(&priv->low_lock, flags);
6034
6035         if (rf_kill_active(priv)) {
6036                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6037                 if (!priv->stop_rf_kill)
6038                         schedule_delayed_work(&priv->rf_kill,
6039                                               round_jiffies_relative(HZ));
6040                 goto exit_unlock;
6041         }
6042
6043         /* RF Kill is now disabled, so bring the device back up */
6044
6045         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6046                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6047                                   "device\n");
6048                 schedule_reset(priv);
6049         } else
6050                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6051                                   "enabled\n");
6052
6053       exit_unlock:
6054         spin_unlock_irqrestore(&priv->low_lock, flags);
6055 }
6056
6057 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6058
6059 static const struct net_device_ops ipw2100_netdev_ops = {
6060         .ndo_open               = ipw2100_open,
6061         .ndo_stop               = ipw2100_close,
6062         .ndo_start_xmit         = libipw_xmit,
6063         .ndo_change_mtu         = libipw_change_mtu,
6064         .ndo_tx_timeout         = ipw2100_tx_timeout,
6065         .ndo_set_mac_address    = ipw2100_set_address,
6066         .ndo_validate_addr      = eth_validate_addr,
6067 };
6068
6069 /* Look into using netdev destructor to shutdown libipw? */
6070
6071 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6072                                                void __iomem * ioaddr)
6073 {
6074         struct ipw2100_priv *priv;
6075         struct net_device *dev;
6076
6077         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6078         if (!dev)
6079                 return NULL;
6080         priv = libipw_priv(dev);
6081         priv->ieee = netdev_priv(dev);
6082         priv->pci_dev = pci_dev;
6083         priv->net_dev = dev;
6084         priv->ioaddr = ioaddr;
6085
6086         priv->ieee->hard_start_xmit = ipw2100_tx;
6087         priv->ieee->set_security = shim__set_security;
6088
6089         priv->ieee->perfect_rssi = -20;
6090         priv->ieee->worst_rssi = -85;
6091
6092         dev->netdev_ops = &ipw2100_netdev_ops;
6093         dev->ethtool_ops = &ipw2100_ethtool_ops;
6094         dev->wireless_handlers = &ipw2100_wx_handler_def;
6095         priv->wireless_data.libipw = priv->ieee;
6096         dev->wireless_data = &priv->wireless_data;
6097         dev->watchdog_timeo = 3 * HZ;
6098         dev->irq = 0;
6099
6100         /* NOTE: We don't use the wireless_handlers hook
6101          * in dev as the system will start throwing WX requests
6102          * to us before we're actually initialized and it just
6103          * ends up causing problems.  So, we just handle
6104          * the WX extensions through the ipw2100_ioctl interface */
6105
6106         /* memset() puts everything to 0, so we only have explicitly set
6107          * those values that need to be something else */
6108
6109         /* If power management is turned on, default to AUTO mode */
6110         priv->power_mode = IPW_POWER_AUTO;
6111
6112 #ifdef CONFIG_IPW2100_MONITOR
6113         priv->config |= CFG_CRC_CHECK;
6114 #endif
6115         priv->ieee->wpa_enabled = 0;
6116         priv->ieee->drop_unencrypted = 0;
6117         priv->ieee->privacy_invoked = 0;
6118         priv->ieee->ieee802_1x = 1;
6119
6120         /* Set module parameters */
6121         switch (network_mode) {
6122         case 1:
6123                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6124                 break;
6125 #ifdef CONFIG_IPW2100_MONITOR
6126         case 2:
6127                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6128                 break;
6129 #endif
6130         default:
6131         case 0:
6132                 priv->ieee->iw_mode = IW_MODE_INFRA;
6133                 break;
6134         }
6135
6136         if (disable == 1)
6137                 priv->status |= STATUS_RF_KILL_SW;
6138
6139         if (channel != 0 &&
6140             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6141                 priv->config |= CFG_STATIC_CHANNEL;
6142                 priv->channel = channel;
6143         }
6144
6145         if (associate)
6146                 priv->config |= CFG_ASSOCIATE;
6147
6148         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6149         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6150         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6151         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6152         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6153         priv->tx_power = IPW_TX_POWER_DEFAULT;
6154         priv->tx_rates = DEFAULT_TX_RATES;
6155
6156         strcpy(priv->nick, "ipw2100");
6157
6158         spin_lock_init(&priv->low_lock);
6159         mutex_init(&priv->action_mutex);
6160         mutex_init(&priv->adapter_mutex);
6161
6162         init_waitqueue_head(&priv->wait_command_queue);
6163
6164         netif_carrier_off(dev);
6165
6166         INIT_LIST_HEAD(&priv->msg_free_list);
6167         INIT_LIST_HEAD(&priv->msg_pend_list);
6168         INIT_STAT(&priv->msg_free_stat);
6169         INIT_STAT(&priv->msg_pend_stat);
6170
6171         INIT_LIST_HEAD(&priv->tx_free_list);
6172         INIT_LIST_HEAD(&priv->tx_pend_list);
6173         INIT_STAT(&priv->tx_free_stat);
6174         INIT_STAT(&priv->tx_pend_stat);
6175
6176         INIT_LIST_HEAD(&priv->fw_pend_list);
6177         INIT_STAT(&priv->fw_pend_stat);
6178
6179         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6180         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6181         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6182         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6183         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6184         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6185
6186         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6187                      ipw2100_irq_tasklet, (unsigned long)priv);
6188
6189         /* NOTE:  We do not start the deferred work for status checks yet */
6190         priv->stop_rf_kill = 1;
6191         priv->stop_hang_check = 1;
6192
6193         return dev;
6194 }
6195
6196 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6197                                 const struct pci_device_id *ent)
6198 {
6199         void __iomem *ioaddr;
6200         struct net_device *dev = NULL;
6201         struct ipw2100_priv *priv = NULL;
6202         int err = 0;
6203         int registered = 0;
6204         u32 val;
6205
6206         IPW_DEBUG_INFO("enter\n");
6207
6208         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6209                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6210                 err = -ENODEV;
6211                 goto out;
6212         }
6213
6214         ioaddr = pci_iomap(pci_dev, 0, 0);
6215         if (!ioaddr) {
6216                 printk(KERN_WARNING DRV_NAME
6217                        "Error calling ioremap_nocache.\n");
6218                 err = -EIO;
6219                 goto fail;
6220         }
6221
6222         /* allocate and initialize our net_device */
6223         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6224         if (!dev) {
6225                 printk(KERN_WARNING DRV_NAME
6226                        "Error calling ipw2100_alloc_device.\n");
6227                 err = -ENOMEM;
6228                 goto fail;
6229         }
6230
6231         /* set up PCI mappings for device */
6232         err = pci_enable_device(pci_dev);
6233         if (err) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling pci_enable_device.\n");
6236                 return err;
6237         }
6238
6239         priv = libipw_priv(dev);
6240
6241         pci_set_master(pci_dev);
6242         pci_set_drvdata(pci_dev, priv);
6243
6244         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6245         if (err) {
6246                 printk(KERN_WARNING DRV_NAME
6247                        "Error calling pci_set_dma_mask.\n");
6248                 pci_disable_device(pci_dev);
6249                 return err;
6250         }
6251
6252         err = pci_request_regions(pci_dev, DRV_NAME);
6253         if (err) {
6254                 printk(KERN_WARNING DRV_NAME
6255                        "Error calling pci_request_regions.\n");
6256                 pci_disable_device(pci_dev);
6257                 return err;
6258         }
6259
6260         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6261          * PCI Tx retries from interfering with C3 CPU state */
6262         pci_read_config_dword(pci_dev, 0x40, &val);
6263         if ((val & 0x0000ff00) != 0)
6264                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6265
6266         pci_set_power_state(pci_dev, PCI_D0);
6267
6268         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6269                 printk(KERN_WARNING DRV_NAME
6270                        "Device not found via register read.\n");
6271                 err = -ENODEV;
6272                 goto fail;
6273         }
6274
6275         SET_NETDEV_DEV(dev, &pci_dev->dev);
6276
6277         /* Force interrupts to be shut off on the device */
6278         priv->status |= STATUS_INT_ENABLED;
6279         ipw2100_disable_interrupts(priv);
6280
6281         /* Allocate and initialize the Tx/Rx queues and lists */
6282         if (ipw2100_queues_allocate(priv)) {
6283                 printk(KERN_WARNING DRV_NAME
6284                        "Error calling ipw2100_queues_allocate.\n");
6285                 err = -ENOMEM;
6286                 goto fail;
6287         }
6288         ipw2100_queues_initialize(priv);
6289
6290         err = request_irq(pci_dev->irq,
6291                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6292         if (err) {
6293                 printk(KERN_WARNING DRV_NAME
6294                        "Error calling request_irq: %d.\n", pci_dev->irq);
6295                 goto fail;
6296         }
6297         dev->irq = pci_dev->irq;
6298
6299         IPW_DEBUG_INFO("Attempting to register device...\n");
6300
6301         printk(KERN_INFO DRV_NAME
6302                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6303
6304         err = ipw2100_up(priv, 1);
6305         if (err)
6306                 goto fail;
6307
6308         err = ipw2100_wdev_init(dev);
6309         if (err)
6310                 goto fail;
6311         registered = 1;
6312
6313         /* Bring up the interface.  Pre 0.46, after we registered the
6314          * network device we would call ipw2100_up.  This introduced a race
6315          * condition with newer hotplug configurations (network was coming
6316          * up and making calls before the device was initialized).
6317          */
6318         err = register_netdev(dev);
6319         if (err) {
6320                 printk(KERN_WARNING DRV_NAME
6321                        "Error calling register_netdev.\n");
6322                 goto fail;
6323         }
6324         registered = 2;
6325
6326         mutex_lock(&priv->action_mutex);
6327
6328         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6329
6330         /* perform this after register_netdev so that dev->name is set */
6331         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6332         if (err)
6333                 goto fail_unlock;
6334
6335         /* If the RF Kill switch is disabled, go ahead and complete the
6336          * startup sequence */
6337         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6338                 /* Enable the adapter - sends HOST_COMPLETE */
6339                 if (ipw2100_enable_adapter(priv)) {
6340                         printk(KERN_WARNING DRV_NAME
6341                                ": %s: failed in call to enable adapter.\n",
6342                                priv->net_dev->name);
6343                         ipw2100_hw_stop_adapter(priv);
6344                         err = -EIO;
6345                         goto fail_unlock;
6346                 }
6347
6348                 /* Start a scan . . . */
6349                 ipw2100_set_scan_options(priv);
6350                 ipw2100_start_scan(priv);
6351         }
6352
6353         IPW_DEBUG_INFO("exit\n");
6354
6355         priv->status |= STATUS_INITIALIZED;
6356
6357         mutex_unlock(&priv->action_mutex);
6358 out:
6359         return err;
6360
6361       fail_unlock:
6362         mutex_unlock(&priv->action_mutex);
6363       fail:
6364         if (dev) {
6365                 if (registered >= 2)
6366                         unregister_netdev(dev);
6367
6368                 if (registered) {
6369                         wiphy_unregister(priv->ieee->wdev.wiphy);
6370                         kfree(priv->ieee->bg_band.channels);
6371                 }
6372
6373                 ipw2100_hw_stop_adapter(priv);
6374
6375                 ipw2100_disable_interrupts(priv);
6376
6377                 if (dev->irq)
6378                         free_irq(dev->irq, priv);
6379
6380                 ipw2100_kill_works(priv);
6381
6382                 /* These are safe to call even if they weren't allocated */
6383                 ipw2100_queues_free(priv);
6384                 sysfs_remove_group(&pci_dev->dev.kobj,
6385                                    &ipw2100_attribute_group);
6386
6387                 free_libipw(dev, 0);
6388                 pci_set_drvdata(pci_dev, NULL);
6389         }
6390
6391         pci_iounmap(pci_dev, ioaddr);
6392
6393         pci_release_regions(pci_dev);
6394         pci_disable_device(pci_dev);
6395         goto out;
6396 }
6397
6398 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6399 {
6400         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6401         struct net_device *dev = priv->net_dev;
6402
6403         mutex_lock(&priv->action_mutex);
6404
6405         priv->status &= ~STATUS_INITIALIZED;
6406
6407         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6408
6409 #ifdef CONFIG_PM
6410         if (ipw2100_firmware.version)
6411                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6412 #endif
6413         /* Take down the hardware */
6414         ipw2100_down(priv);
6415
6416         /* Release the mutex so that the network subsystem can
6417          * complete any needed calls into the driver... */
6418         mutex_unlock(&priv->action_mutex);
6419
6420         /* Unregister the device first - this results in close()
6421          * being called if the device is open.  If we free storage
6422          * first, then close() will crash.
6423          * FIXME: remove the comment above. */
6424         unregister_netdev(dev);
6425
6426         ipw2100_kill_works(priv);
6427
6428         ipw2100_queues_free(priv);
6429
6430         /* Free potential debugging firmware snapshot */
6431         ipw2100_snapshot_free(priv);
6432
6433         free_irq(dev->irq, priv);
6434
6435         pci_iounmap(pci_dev, priv->ioaddr);
6436
6437         /* wiphy_unregister needs to be here, before free_libipw */
6438         wiphy_unregister(priv->ieee->wdev.wiphy);
6439         kfree(priv->ieee->bg_band.channels);
6440         free_libipw(dev, 0);
6441
6442         pci_release_regions(pci_dev);
6443         pci_disable_device(pci_dev);
6444
6445         IPW_DEBUG_INFO("exit\n");
6446 }
6447
6448 #ifdef CONFIG_PM
6449 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6450 {
6451         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6452         struct net_device *dev = priv->net_dev;
6453
6454         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6455
6456         mutex_lock(&priv->action_mutex);
6457         if (priv->status & STATUS_INITIALIZED) {
6458                 /* Take down the device; powers it off, etc. */
6459                 ipw2100_down(priv);
6460         }
6461
6462         /* Remove the PRESENT state of the device */
6463         netif_device_detach(dev);
6464
6465         pci_save_state(pci_dev);
6466         pci_disable_device(pci_dev);
6467         pci_set_power_state(pci_dev, PCI_D3hot);
6468
6469         priv->suspend_at = get_seconds();
6470
6471         mutex_unlock(&priv->action_mutex);
6472
6473         return 0;
6474 }
6475
6476 static int ipw2100_resume(struct pci_dev *pci_dev)
6477 {
6478         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6479         struct net_device *dev = priv->net_dev;
6480         int err;
6481         u32 val;
6482
6483         if (IPW2100_PM_DISABLED)
6484                 return 0;
6485
6486         mutex_lock(&priv->action_mutex);
6487
6488         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6489
6490         pci_set_power_state(pci_dev, PCI_D0);
6491         err = pci_enable_device(pci_dev);
6492         if (err) {
6493                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6494                        dev->name);
6495                 mutex_unlock(&priv->action_mutex);
6496                 return err;
6497         }
6498         pci_restore_state(pci_dev);
6499
6500         /*
6501          * Suspend/Resume resets the PCI configuration space, so we have to
6502          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6503          * from interfering with C3 CPU state. pci_restore_state won't help
6504          * here since it only restores the first 64 bytes pci config header.
6505          */
6506         pci_read_config_dword(pci_dev, 0x40, &val);
6507         if ((val & 0x0000ff00) != 0)
6508                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6509
6510         /* Set the device back into the PRESENT state; this will also wake
6511          * the queue of needed */
6512         netif_device_attach(dev);
6513
6514         priv->suspend_time = get_seconds() - priv->suspend_at;
6515
6516         /* Bring the device back up */
6517         if (!(priv->status & STATUS_RF_KILL_SW))
6518                 ipw2100_up(priv, 0);
6519
6520         mutex_unlock(&priv->action_mutex);
6521
6522         return 0;
6523 }
6524 #endif
6525
6526 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6527 {
6528         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6529
6530         /* Take down the device; powers it off, etc. */
6531         ipw2100_down(priv);
6532
6533         pci_disable_device(pci_dev);
6534 }
6535
6536 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6537
6538 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6539         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6540         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6541         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6544         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6546         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6548         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6549         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6550         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6551         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6552
6553         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6554         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6555         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6556         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6557         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6558
6559         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6560         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6561         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6562         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6563         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6564         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6565         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6566
6567         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6568
6569         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6570         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6571         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6572         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6573         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6574         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6575         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6576
6577         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6578         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6579         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6580         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6581         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6582         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6583
6584         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6585         {0,},
6586 };
6587
6588 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6589
6590 static struct pci_driver ipw2100_pci_driver = {
6591         .name = DRV_NAME,
6592         .id_table = ipw2100_pci_id_table,
6593         .probe = ipw2100_pci_init_one,
6594         .remove = ipw2100_pci_remove_one,
6595 #ifdef CONFIG_PM
6596         .suspend = ipw2100_suspend,
6597         .resume = ipw2100_resume,
6598 #endif
6599         .shutdown = ipw2100_shutdown,
6600 };
6601
6602 /**
6603  * Initialize the ipw2100 driver/module
6604  *
6605  * @returns 0 if ok, < 0 errno node con error.
6606  *
6607  * Note: we cannot init the /proc stuff until the PCI driver is there,
6608  * or we risk an unlikely race condition on someone accessing
6609  * uninitialized data in the PCI dev struct through /proc.
6610  */
6611 static int __init ipw2100_init(void)
6612 {
6613         int ret;
6614
6615         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6616         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6617
6618         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6619                            PM_QOS_DEFAULT_VALUE);
6620
6621         ret = pci_register_driver(&ipw2100_pci_driver);
6622         if (ret)
6623                 goto out;
6624
6625 #ifdef CONFIG_IPW2100_DEBUG
6626         ipw2100_debug_level = debug;
6627         ret = driver_create_file(&ipw2100_pci_driver.driver,
6628                                  &driver_attr_debug_level);
6629 #endif
6630
6631 out:
6632         return ret;
6633 }
6634
6635 /**
6636  * Cleanup ipw2100 driver registration
6637  */
6638 static void __exit ipw2100_exit(void)
6639 {
6640         /* FIXME: IPG: check that we have no instances of the devices open */
6641 #ifdef CONFIG_IPW2100_DEBUG
6642         driver_remove_file(&ipw2100_pci_driver.driver,
6643                            &driver_attr_debug_level);
6644 #endif
6645         pci_unregister_driver(&ipw2100_pci_driver);
6646         pm_qos_remove_request(&ipw2100_pm_qos_req);
6647 }
6648
6649 module_init(ipw2100_init);
6650 module_exit(ipw2100_exit);
6651
6652 static int ipw2100_wx_get_name(struct net_device *dev,
6653                                struct iw_request_info *info,
6654                                union iwreq_data *wrqu, char *extra)
6655 {
6656         /*
6657          * This can be called at any time.  No action lock required
6658          */
6659
6660         struct ipw2100_priv *priv = libipw_priv(dev);
6661         if (!(priv->status & STATUS_ASSOCIATED))
6662                 strcpy(wrqu->name, "unassociated");
6663         else
6664                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6665
6666         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6667         return 0;
6668 }
6669
6670 static int ipw2100_wx_set_freq(struct net_device *dev,
6671                                struct iw_request_info *info,
6672                                union iwreq_data *wrqu, char *extra)
6673 {
6674         struct ipw2100_priv *priv = libipw_priv(dev);
6675         struct iw_freq *fwrq = &wrqu->freq;
6676         int err = 0;
6677
6678         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6679                 return -EOPNOTSUPP;
6680
6681         mutex_lock(&priv->action_mutex);
6682         if (!(priv->status & STATUS_INITIALIZED)) {
6683                 err = -EIO;
6684                 goto done;
6685         }
6686
6687         /* if setting by freq convert to channel */
6688         if (fwrq->e == 1) {
6689                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6690                         int f = fwrq->m / 100000;
6691                         int c = 0;
6692
6693                         while ((c < REG_MAX_CHANNEL) &&
6694                                (f != ipw2100_frequencies[c]))
6695                                 c++;
6696
6697                         /* hack to fall through */
6698                         fwrq->e = 0;
6699                         fwrq->m = c + 1;
6700                 }
6701         }
6702
6703         if (fwrq->e > 0 || fwrq->m > 1000) {
6704                 err = -EOPNOTSUPP;
6705                 goto done;
6706         } else {                /* Set the channel */
6707                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6708                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6709         }
6710
6711       done:
6712         mutex_unlock(&priv->action_mutex);
6713         return err;
6714 }
6715
6716 static int ipw2100_wx_get_freq(struct net_device *dev,
6717                                struct iw_request_info *info,
6718                                union iwreq_data *wrqu, char *extra)
6719 {
6720         /*
6721          * This can be called at any time.  No action lock required
6722          */
6723
6724         struct ipw2100_priv *priv = libipw_priv(dev);
6725
6726         wrqu->freq.e = 0;
6727
6728         /* If we are associated, trying to associate, or have a statically
6729          * configured CHANNEL then return that; otherwise return ANY */
6730         if (priv->config & CFG_STATIC_CHANNEL ||
6731             priv->status & STATUS_ASSOCIATED)
6732                 wrqu->freq.m = priv->channel;
6733         else
6734                 wrqu->freq.m = 0;
6735
6736         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6737         return 0;
6738
6739 }
6740
6741 static int ipw2100_wx_set_mode(struct net_device *dev,
6742                                struct iw_request_info *info,
6743                                union iwreq_data *wrqu, char *extra)
6744 {
6745         struct ipw2100_priv *priv = libipw_priv(dev);
6746         int err = 0;
6747
6748         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6749
6750         if (wrqu->mode == priv->ieee->iw_mode)
6751                 return 0;
6752
6753         mutex_lock(&priv->action_mutex);
6754         if (!(priv->status & STATUS_INITIALIZED)) {
6755                 err = -EIO;
6756                 goto done;
6757         }
6758
6759         switch (wrqu->mode) {
6760 #ifdef CONFIG_IPW2100_MONITOR
6761         case IW_MODE_MONITOR:
6762                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6763                 break;
6764 #endif                          /* CONFIG_IPW2100_MONITOR */
6765         case IW_MODE_ADHOC:
6766                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6767                 break;
6768         case IW_MODE_INFRA:
6769         case IW_MODE_AUTO:
6770         default:
6771                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6772                 break;
6773         }
6774
6775       done:
6776         mutex_unlock(&priv->action_mutex);
6777         return err;
6778 }
6779
6780 static int ipw2100_wx_get_mode(struct net_device *dev,
6781                                struct iw_request_info *info,
6782                                union iwreq_data *wrqu, char *extra)
6783 {
6784         /*
6785          * This can be called at any time.  No action lock required
6786          */
6787
6788         struct ipw2100_priv *priv = libipw_priv(dev);
6789
6790         wrqu->mode = priv->ieee->iw_mode;
6791         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6792
6793         return 0;
6794 }
6795
6796 #define POWER_MODES 5
6797
6798 /* Values are in microsecond */
6799 static const s32 timeout_duration[POWER_MODES] = {
6800         350000,
6801         250000,
6802         75000,
6803         37000,
6804         25000,
6805 };
6806
6807 static const s32 period_duration[POWER_MODES] = {
6808         400000,
6809         700000,
6810         1000000,
6811         1000000,
6812         1000000
6813 };
6814
6815 static int ipw2100_wx_get_range(struct net_device *dev,
6816                                 struct iw_request_info *info,
6817                                 union iwreq_data *wrqu, char *extra)
6818 {
6819         /*
6820          * This can be called at any time.  No action lock required
6821          */
6822
6823         struct ipw2100_priv *priv = libipw_priv(dev);
6824         struct iw_range *range = (struct iw_range *)extra;
6825         u16 val;
6826         int i, level;
6827
6828         wrqu->data.length = sizeof(*range);
6829         memset(range, 0, sizeof(*range));
6830
6831         /* Let's try to keep this struct in the same order as in
6832          * linux/include/wireless.h
6833          */
6834
6835         /* TODO: See what values we can set, and remove the ones we can't
6836          * set, or fill them with some default data.
6837          */
6838
6839         /* ~5 Mb/s real (802.11b) */
6840         range->throughput = 5 * 1000 * 1000;
6841
6842 //      range->sensitivity;     /* signal level threshold range */
6843
6844         range->max_qual.qual = 100;
6845         /* TODO: Find real max RSSI and stick here */
6846         range->max_qual.level = 0;
6847         range->max_qual.noise = 0;
6848         range->max_qual.updated = 7;    /* Updated all three */
6849
6850         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6851         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6852         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6853         range->avg_qual.noise = 0;
6854         range->avg_qual.updated = 7;    /* Updated all three */
6855
6856         range->num_bitrates = RATE_COUNT;
6857
6858         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6859                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6860         }
6861
6862         range->min_rts = MIN_RTS_THRESHOLD;
6863         range->max_rts = MAX_RTS_THRESHOLD;
6864         range->min_frag = MIN_FRAG_THRESHOLD;
6865         range->max_frag = MAX_FRAG_THRESHOLD;
6866
6867         range->min_pmp = period_duration[0];    /* Minimal PM period */
6868         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6869         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6870         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6871
6872         /* How to decode max/min PM period */
6873         range->pmp_flags = IW_POWER_PERIOD;
6874         /* How to decode max/min PM period */
6875         range->pmt_flags = IW_POWER_TIMEOUT;
6876         /* What PM options are supported */
6877         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6878
6879         range->encoding_size[0] = 5;
6880         range->encoding_size[1] = 13;   /* Different token sizes */
6881         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6882         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6883 //      range->encoding_login_index;            /* token index for login token */
6884
6885         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6886                 range->txpower_capa = IW_TXPOW_DBM;
6887                 range->num_txpower = IW_MAX_TXPOWER;
6888                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6889                      i < IW_MAX_TXPOWER;
6890                      i++, level -=
6891                      ((IPW_TX_POWER_MAX_DBM -
6892                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6893                         range->txpower[i] = level / 16;
6894         } else {
6895                 range->txpower_capa = 0;
6896                 range->num_txpower = 0;
6897         }
6898
6899         /* Set the Wireless Extension versions */
6900         range->we_version_compiled = WIRELESS_EXT;
6901         range->we_version_source = 18;
6902
6903 //      range->retry_capa;      /* What retry options are supported */
6904 //      range->retry_flags;     /* How to decode max/min retry limit */
6905 //      range->r_time_flags;    /* How to decode max/min retry life */
6906 //      range->min_retry;       /* Minimal number of retries */
6907 //      range->max_retry;       /* Maximal number of retries */
6908 //      range->min_r_time;      /* Minimal retry lifetime */
6909 //      range->max_r_time;      /* Maximal retry lifetime */
6910
6911         range->num_channels = FREQ_COUNT;
6912
6913         val = 0;
6914         for (i = 0; i < FREQ_COUNT; i++) {
6915                 // TODO: Include only legal frequencies for some countries
6916 //              if (local->channel_mask & (1 << i)) {
6917                 range->freq[val].i = i + 1;
6918                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6919                 range->freq[val].e = 1;
6920                 val++;
6921 //              }
6922                 if (val == IW_MAX_FREQUENCIES)
6923                         break;
6924         }
6925         range->num_frequency = val;
6926
6927         /* Event capability (kernel + driver) */
6928         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6929                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6930         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6931
6932         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6933                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6934
6935         IPW_DEBUG_WX("GET Range\n");
6936
6937         return 0;
6938 }
6939
6940 static int ipw2100_wx_set_wap(struct net_device *dev,
6941                               struct iw_request_info *info,
6942                               union iwreq_data *wrqu, char *extra)
6943 {
6944         struct ipw2100_priv *priv = libipw_priv(dev);
6945         int err = 0;
6946
6947         // sanity checks
6948         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6949                 return -EINVAL;
6950
6951         mutex_lock(&priv->action_mutex);
6952         if (!(priv->status & STATUS_INITIALIZED)) {
6953                 err = -EIO;
6954                 goto done;
6955         }
6956
6957         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6958             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6959                 /* we disable mandatory BSSID association */
6960                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6961                 priv->config &= ~CFG_STATIC_BSSID;
6962                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6963                 goto done;
6964         }
6965
6966         priv->config |= CFG_STATIC_BSSID;
6967         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6968
6969         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6970
6971         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6972
6973       done:
6974         mutex_unlock(&priv->action_mutex);
6975         return err;
6976 }
6977
6978 static int ipw2100_wx_get_wap(struct net_device *dev,
6979                               struct iw_request_info *info,
6980                               union iwreq_data *wrqu, char *extra)
6981 {
6982         /*
6983          * This can be called at any time.  No action lock required
6984          */
6985
6986         struct ipw2100_priv *priv = libipw_priv(dev);
6987
6988         /* If we are associated, trying to associate, or have a statically
6989          * configured BSSID then return that; otherwise return ANY */
6990         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6991                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6992                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6993         } else
6994                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6995
6996         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6997         return 0;
6998 }
6999
7000 static int ipw2100_wx_set_essid(struct net_device *dev,
7001                                 struct iw_request_info *info,
7002                                 union iwreq_data *wrqu, char *extra)
7003 {
7004         struct ipw2100_priv *priv = libipw_priv(dev);
7005         char *essid = "";       /* ANY */
7006         int length = 0;
7007         int err = 0;
7008         DECLARE_SSID_BUF(ssid);
7009
7010         mutex_lock(&priv->action_mutex);
7011         if (!(priv->status & STATUS_INITIALIZED)) {
7012                 err = -EIO;
7013                 goto done;
7014         }
7015
7016         if (wrqu->essid.flags && wrqu->essid.length) {
7017                 length = wrqu->essid.length;
7018                 essid = extra;
7019         }
7020
7021         if (length == 0) {
7022                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7023                 priv->config &= ~CFG_STATIC_ESSID;
7024                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7025                 goto done;
7026         }
7027
7028         length = min(length, IW_ESSID_MAX_SIZE);
7029
7030         priv->config |= CFG_STATIC_ESSID;
7031
7032         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7033                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7034                 err = 0;
7035                 goto done;
7036         }
7037
7038         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7039                      print_ssid(ssid, essid, length), length);
7040
7041         priv->essid_len = length;
7042         memcpy(priv->essid, essid, priv->essid_len);
7043
7044         err = ipw2100_set_essid(priv, essid, length, 0);
7045
7046       done:
7047         mutex_unlock(&priv->action_mutex);
7048         return err;
7049 }
7050
7051 static int ipw2100_wx_get_essid(struct net_device *dev,
7052                                 struct iw_request_info *info,
7053                                 union iwreq_data *wrqu, char *extra)
7054 {
7055         /*
7056          * This can be called at any time.  No action lock required
7057          */
7058
7059         struct ipw2100_priv *priv = libipw_priv(dev);
7060         DECLARE_SSID_BUF(ssid);
7061
7062         /* If we are associated, trying to associate, or have a statically
7063          * configured ESSID then return that; otherwise return ANY */
7064         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7065                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7066                              print_ssid(ssid, priv->essid, priv->essid_len));
7067                 memcpy(extra, priv->essid, priv->essid_len);
7068                 wrqu->essid.length = priv->essid_len;
7069                 wrqu->essid.flags = 1;  /* active */
7070         } else {
7071                 IPW_DEBUG_WX("Getting essid: ANY\n");
7072                 wrqu->essid.length = 0;
7073                 wrqu->essid.flags = 0;  /* active */
7074         }
7075
7076         return 0;
7077 }
7078
7079 static int ipw2100_wx_set_nick(struct net_device *dev,
7080                                struct iw_request_info *info,
7081                                union iwreq_data *wrqu, char *extra)
7082 {
7083         /*
7084          * This can be called at any time.  No action lock required
7085          */
7086
7087         struct ipw2100_priv *priv = libipw_priv(dev);
7088
7089         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7090                 return -E2BIG;
7091
7092         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7093         memset(priv->nick, 0, sizeof(priv->nick));
7094         memcpy(priv->nick, extra, wrqu->data.length);
7095
7096         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7097
7098         return 0;
7099 }
7100
7101 static int ipw2100_wx_get_nick(struct net_device *dev,
7102                                struct iw_request_info *info,
7103                                union iwreq_data *wrqu, char *extra)
7104 {
7105         /*
7106          * This can be called at any time.  No action lock required
7107          */
7108
7109         struct ipw2100_priv *priv = libipw_priv(dev);
7110
7111         wrqu->data.length = strlen(priv->nick);
7112         memcpy(extra, priv->nick, wrqu->data.length);
7113         wrqu->data.flags = 1;   /* active */
7114
7115         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7116
7117         return 0;
7118 }
7119
7120 static int ipw2100_wx_set_rate(struct net_device *dev,
7121                                struct iw_request_info *info,
7122                                union iwreq_data *wrqu, char *extra)
7123 {
7124         struct ipw2100_priv *priv = libipw_priv(dev);
7125         u32 target_rate = wrqu->bitrate.value;
7126         u32 rate;
7127         int err = 0;
7128
7129         mutex_lock(&priv->action_mutex);
7130         if (!(priv->status & STATUS_INITIALIZED)) {
7131                 err = -EIO;
7132                 goto done;
7133         }
7134
7135         rate = 0;
7136
7137         if (target_rate == 1000000 ||
7138             (!wrqu->bitrate.fixed && target_rate > 1000000))
7139                 rate |= TX_RATE_1_MBIT;
7140         if (target_rate == 2000000 ||
7141             (!wrqu->bitrate.fixed && target_rate > 2000000))
7142                 rate |= TX_RATE_2_MBIT;
7143         if (target_rate == 5500000 ||
7144             (!wrqu->bitrate.fixed && target_rate > 5500000))
7145                 rate |= TX_RATE_5_5_MBIT;
7146         if (target_rate == 11000000 ||
7147             (!wrqu->bitrate.fixed && target_rate > 11000000))
7148                 rate |= TX_RATE_11_MBIT;
7149         if (rate == 0)
7150                 rate = DEFAULT_TX_RATES;
7151
7152         err = ipw2100_set_tx_rates(priv, rate, 0);
7153
7154         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7155       done:
7156         mutex_unlock(&priv->action_mutex);
7157         return err;
7158 }
7159
7160 static int ipw2100_wx_get_rate(struct net_device *dev,
7161                                struct iw_request_info *info,
7162                                union iwreq_data *wrqu, char *extra)
7163 {
7164         struct ipw2100_priv *priv = libipw_priv(dev);
7165         int val;
7166         unsigned int len = sizeof(val);
7167         int err = 0;
7168
7169         if (!(priv->status & STATUS_ENABLED) ||
7170             priv->status & STATUS_RF_KILL_MASK ||
7171             !(priv->status & STATUS_ASSOCIATED)) {
7172                 wrqu->bitrate.value = 0;
7173                 return 0;
7174         }
7175
7176         mutex_lock(&priv->action_mutex);
7177         if (!(priv->status & STATUS_INITIALIZED)) {
7178                 err = -EIO;
7179                 goto done;
7180         }
7181
7182         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7183         if (err) {
7184                 IPW_DEBUG_WX("failed querying ordinals.\n");
7185                 goto done;
7186         }
7187
7188         switch (val & TX_RATE_MASK) {
7189         case TX_RATE_1_MBIT:
7190                 wrqu->bitrate.value = 1000000;
7191                 break;
7192         case TX_RATE_2_MBIT:
7193                 wrqu->bitrate.value = 2000000;
7194                 break;
7195         case TX_RATE_5_5_MBIT:
7196                 wrqu->bitrate.value = 5500000;
7197                 break;
7198         case TX_RATE_11_MBIT:
7199                 wrqu->bitrate.value = 11000000;
7200                 break;
7201         default:
7202                 wrqu->bitrate.value = 0;
7203         }
7204
7205         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7206
7207       done:
7208         mutex_unlock(&priv->action_mutex);
7209         return err;
7210 }
7211
7212 static int ipw2100_wx_set_rts(struct net_device *dev,
7213                               struct iw_request_info *info,
7214                               union iwreq_data *wrqu, char *extra)
7215 {
7216         struct ipw2100_priv *priv = libipw_priv(dev);
7217         int value, err;
7218
7219         /* Auto RTS not yet supported */
7220         if (wrqu->rts.fixed == 0)
7221                 return -EINVAL;
7222
7223         mutex_lock(&priv->action_mutex);
7224         if (!(priv->status & STATUS_INITIALIZED)) {
7225                 err = -EIO;
7226                 goto done;
7227         }
7228
7229         if (wrqu->rts.disabled)
7230                 value = priv->rts_threshold | RTS_DISABLED;
7231         else {
7232                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7233                         err = -EINVAL;
7234                         goto done;
7235                 }
7236                 value = wrqu->rts.value;
7237         }
7238
7239         err = ipw2100_set_rts_threshold(priv, value);
7240
7241         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7242       done:
7243         mutex_unlock(&priv->action_mutex);
7244         return err;
7245 }
7246
7247 static int ipw2100_wx_get_rts(struct net_device *dev,
7248                               struct iw_request_info *info,
7249                               union iwreq_data *wrqu, char *extra)
7250 {
7251         /*
7252          * This can be called at any time.  No action lock required
7253          */
7254
7255         struct ipw2100_priv *priv = libipw_priv(dev);
7256
7257         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7258         wrqu->rts.fixed = 1;    /* no auto select */
7259
7260         /* If RTS is set to the default value, then it is disabled */
7261         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7262
7263         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7264
7265         return 0;
7266 }
7267
7268 static int ipw2100_wx_set_txpow(struct net_device *dev,
7269                                 struct iw_request_info *info,
7270                                 union iwreq_data *wrqu, char *extra)
7271 {
7272         struct ipw2100_priv *priv = libipw_priv(dev);
7273         int err = 0, value;
7274         
7275         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7276                 return -EINPROGRESS;
7277
7278         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7279                 return 0;
7280
7281         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7282                 return -EINVAL;
7283
7284         if (wrqu->txpower.fixed == 0)
7285                 value = IPW_TX_POWER_DEFAULT;
7286         else {
7287                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7288                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7289                         return -EINVAL;
7290
7291                 value = wrqu->txpower.value;
7292         }
7293
7294         mutex_lock(&priv->action_mutex);
7295         if (!(priv->status & STATUS_INITIALIZED)) {
7296                 err = -EIO;
7297                 goto done;
7298         }
7299
7300         err = ipw2100_set_tx_power(priv, value);
7301
7302         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7303
7304       done:
7305         mutex_unlock(&priv->action_mutex);
7306         return err;
7307 }
7308
7309 static int ipw2100_wx_get_txpow(struct net_device *dev,
7310                                 struct iw_request_info *info,
7311                                 union iwreq_data *wrqu, char *extra)
7312 {
7313         /*
7314          * This can be called at any time.  No action lock required
7315          */
7316
7317         struct ipw2100_priv *priv = libipw_priv(dev);
7318
7319         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7320
7321         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7322                 wrqu->txpower.fixed = 0;
7323                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7324         } else {
7325                 wrqu->txpower.fixed = 1;
7326                 wrqu->txpower.value = priv->tx_power;
7327         }
7328
7329         wrqu->txpower.flags = IW_TXPOW_DBM;
7330
7331         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7332
7333         return 0;
7334 }
7335
7336 static int ipw2100_wx_set_frag(struct net_device *dev,
7337                                struct iw_request_info *info,
7338                                union iwreq_data *wrqu, char *extra)
7339 {
7340         /*
7341          * This can be called at any time.  No action lock required
7342          */
7343
7344         struct ipw2100_priv *priv = libipw_priv(dev);
7345
7346         if (!wrqu->frag.fixed)
7347                 return -EINVAL;
7348
7349         if (wrqu->frag.disabled) {
7350                 priv->frag_threshold |= FRAG_DISABLED;
7351                 priv->ieee->fts = DEFAULT_FTS;
7352         } else {
7353                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7354                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7355                         return -EINVAL;
7356
7357                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7358                 priv->frag_threshold = priv->ieee->fts;
7359         }
7360
7361         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7362
7363         return 0;
7364 }
7365
7366 static int ipw2100_wx_get_frag(struct net_device *dev,
7367                                struct iw_request_info *info,
7368                                union iwreq_data *wrqu, char *extra)
7369 {
7370         /*
7371          * This can be called at any time.  No action lock required
7372          */
7373
7374         struct ipw2100_priv *priv = libipw_priv(dev);
7375         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7376         wrqu->frag.fixed = 0;   /* no auto select */
7377         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7378
7379         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7380
7381         return 0;
7382 }
7383
7384 static int ipw2100_wx_set_retry(struct net_device *dev,
7385                                 struct iw_request_info *info,
7386                                 union iwreq_data *wrqu, char *extra)
7387 {
7388         struct ipw2100_priv *priv = libipw_priv(dev);
7389         int err = 0;
7390
7391         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7392                 return -EINVAL;
7393
7394         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7395                 return 0;
7396
7397         mutex_lock(&priv->action_mutex);
7398         if (!(priv->status & STATUS_INITIALIZED)) {
7399                 err = -EIO;
7400                 goto done;
7401         }
7402
7403         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7404                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7405                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7406                              wrqu->retry.value);
7407                 goto done;
7408         }
7409
7410         if (wrqu->retry.flags & IW_RETRY_LONG) {
7411                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7412                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7413                              wrqu->retry.value);
7414                 goto done;
7415         }
7416
7417         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7418         if (!err)
7419                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7420
7421         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7422
7423       done:
7424         mutex_unlock(&priv->action_mutex);
7425         return err;
7426 }
7427
7428 static int ipw2100_wx_get_retry(struct net_device *dev,
7429                                 struct iw_request_info *info,
7430                                 union iwreq_data *wrqu, char *extra)
7431 {
7432         /*
7433          * This can be called at any time.  No action lock required
7434          */
7435
7436         struct ipw2100_priv *priv = libipw_priv(dev);
7437
7438         wrqu->retry.disabled = 0;       /* can't be disabled */
7439
7440         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7441                 return -EINVAL;
7442
7443         if (wrqu->retry.flags & IW_RETRY_LONG) {
7444                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7445                 wrqu->retry.value = priv->long_retry_limit;
7446         } else {
7447                 wrqu->retry.flags =
7448                     (priv->short_retry_limit !=
7449                      priv->long_retry_limit) ?
7450                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7451
7452                 wrqu->retry.value = priv->short_retry_limit;
7453         }
7454
7455         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7456
7457         return 0;
7458 }
7459
7460 static int ipw2100_wx_set_scan(struct net_device *dev,
7461                                struct iw_request_info *info,
7462                                union iwreq_data *wrqu, char *extra)
7463 {
7464         struct ipw2100_priv *priv = libipw_priv(dev);
7465         int err = 0;
7466
7467         mutex_lock(&priv->action_mutex);
7468         if (!(priv->status & STATUS_INITIALIZED)) {
7469                 err = -EIO;
7470                 goto done;
7471         }
7472
7473         IPW_DEBUG_WX("Initiating scan...\n");
7474
7475         priv->user_requested_scan = 1;
7476         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7477                 IPW_DEBUG_WX("Start scan failed.\n");
7478
7479                 /* TODO: Mark a scan as pending so when hardware initialized
7480                  *       a scan starts */
7481         }
7482
7483       done:
7484         mutex_unlock(&priv->action_mutex);
7485         return err;
7486 }
7487
7488 static int ipw2100_wx_get_scan(struct net_device *dev,
7489                                struct iw_request_info *info,
7490                                union iwreq_data *wrqu, char *extra)
7491 {
7492         /*
7493          * This can be called at any time.  No action lock required
7494          */
7495
7496         struct ipw2100_priv *priv = libipw_priv(dev);
7497         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7498 }
7499
7500 /*
7501  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7502  */
7503 static int ipw2100_wx_set_encode(struct net_device *dev,
7504                                  struct iw_request_info *info,
7505                                  union iwreq_data *wrqu, char *key)
7506 {
7507         /*
7508          * No check of STATUS_INITIALIZED required
7509          */
7510
7511         struct ipw2100_priv *priv = libipw_priv(dev);
7512         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7513 }
7514
7515 static int ipw2100_wx_get_encode(struct net_device *dev,
7516                                  struct iw_request_info *info,
7517                                  union iwreq_data *wrqu, char *key)
7518 {
7519         /*
7520          * This can be called at any time.  No action lock required
7521          */
7522
7523         struct ipw2100_priv *priv = libipw_priv(dev);
7524         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7525 }
7526
7527 static int ipw2100_wx_set_power(struct net_device *dev,
7528                                 struct iw_request_info *info,
7529                                 union iwreq_data *wrqu, char *extra)
7530 {
7531         struct ipw2100_priv *priv = libipw_priv(dev);
7532         int err = 0;
7533
7534         mutex_lock(&priv->action_mutex);
7535         if (!(priv->status & STATUS_INITIALIZED)) {
7536                 err = -EIO;
7537                 goto done;
7538         }
7539
7540         if (wrqu->power.disabled) {
7541                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7542                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7543                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7544                 goto done;
7545         }
7546
7547         switch (wrqu->power.flags & IW_POWER_MODE) {
7548         case IW_POWER_ON:       /* If not specified */
7549         case IW_POWER_MODE:     /* If set all mask */
7550         case IW_POWER_ALL_R:    /* If explicitly state all */
7551                 break;
7552         default:                /* Otherwise we don't support it */
7553                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7554                              wrqu->power.flags);
7555                 err = -EOPNOTSUPP;
7556                 goto done;
7557         }
7558
7559         /* If the user hasn't specified a power management mode yet, default
7560          * to BATTERY */
7561         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7562         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7563
7564         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7565
7566       done:
7567         mutex_unlock(&priv->action_mutex);
7568         return err;
7569
7570 }
7571
7572 static int ipw2100_wx_get_power(struct net_device *dev,
7573                                 struct iw_request_info *info,
7574                                 union iwreq_data *wrqu, char *extra)
7575 {
7576         /*
7577          * This can be called at any time.  No action lock required
7578          */
7579
7580         struct ipw2100_priv *priv = libipw_priv(dev);
7581
7582         if (!(priv->power_mode & IPW_POWER_ENABLED))
7583                 wrqu->power.disabled = 1;
7584         else {
7585                 wrqu->power.disabled = 0;
7586                 wrqu->power.flags = 0;
7587         }
7588
7589         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7590
7591         return 0;
7592 }
7593
7594 /*
7595  * WE-18 WPA support
7596  */
7597
7598 /* SIOCSIWGENIE */
7599 static int ipw2100_wx_set_genie(struct net_device *dev,
7600                                 struct iw_request_info *info,
7601                                 union iwreq_data *wrqu, char *extra)
7602 {
7603
7604         struct ipw2100_priv *priv = libipw_priv(dev);
7605         struct libipw_device *ieee = priv->ieee;
7606         u8 *buf;
7607
7608         if (!ieee->wpa_enabled)
7609                 return -EOPNOTSUPP;
7610
7611         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7612             (wrqu->data.length && extra == NULL))
7613                 return -EINVAL;
7614
7615         if (wrqu->data.length) {
7616                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7617                 if (buf == NULL)
7618                         return -ENOMEM;
7619
7620                 kfree(ieee->wpa_ie);
7621                 ieee->wpa_ie = buf;
7622                 ieee->wpa_ie_len = wrqu->data.length;
7623         } else {
7624                 kfree(ieee->wpa_ie);
7625                 ieee->wpa_ie = NULL;
7626                 ieee->wpa_ie_len = 0;
7627         }
7628
7629         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7630
7631         return 0;
7632 }
7633
7634 /* SIOCGIWGENIE */
7635 static int ipw2100_wx_get_genie(struct net_device *dev,
7636                                 struct iw_request_info *info,
7637                                 union iwreq_data *wrqu, char *extra)
7638 {
7639         struct ipw2100_priv *priv = libipw_priv(dev);
7640         struct libipw_device *ieee = priv->ieee;
7641
7642         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7643                 wrqu->data.length = 0;
7644                 return 0;
7645         }
7646
7647         if (wrqu->data.length < ieee->wpa_ie_len)
7648                 return -E2BIG;
7649
7650         wrqu->data.length = ieee->wpa_ie_len;
7651         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7652
7653         return 0;
7654 }
7655
7656 /* SIOCSIWAUTH */
7657 static int ipw2100_wx_set_auth(struct net_device *dev,
7658                                struct iw_request_info *info,
7659                                union iwreq_data *wrqu, char *extra)
7660 {
7661         struct ipw2100_priv *priv = libipw_priv(dev);
7662         struct libipw_device *ieee = priv->ieee;
7663         struct iw_param *param = &wrqu->param;
7664         struct lib80211_crypt_data *crypt;
7665         unsigned long flags;
7666         int ret = 0;
7667
7668         switch (param->flags & IW_AUTH_INDEX) {
7669         case IW_AUTH_WPA_VERSION:
7670         case IW_AUTH_CIPHER_PAIRWISE:
7671         case IW_AUTH_CIPHER_GROUP:
7672         case IW_AUTH_KEY_MGMT:
7673                 /*
7674                  * ipw2200 does not use these parameters
7675                  */
7676                 break;
7677
7678         case IW_AUTH_TKIP_COUNTERMEASURES:
7679                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7680                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7681                         break;
7682
7683                 flags = crypt->ops->get_flags(crypt->priv);
7684
7685                 if (param->value)
7686                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7687                 else
7688                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7689
7690                 crypt->ops->set_flags(flags, crypt->priv);
7691
7692                 break;
7693
7694         case IW_AUTH_DROP_UNENCRYPTED:{
7695                         /* HACK:
7696                          *
7697                          * wpa_supplicant calls set_wpa_enabled when the driver
7698                          * is loaded and unloaded, regardless of if WPA is being
7699                          * used.  No other calls are made which can be used to
7700                          * determine if encryption will be used or not prior to
7701                          * association being expected.  If encryption is not being
7702                          * used, drop_unencrypted is set to false, else true -- we
7703                          * can use this to determine if the CAP_PRIVACY_ON bit should
7704                          * be set.
7705                          */
7706                         struct libipw_security sec = {
7707                                 .flags = SEC_ENABLED,
7708                                 .enabled = param->value,
7709                         };
7710                         priv->ieee->drop_unencrypted = param->value;
7711                         /* We only change SEC_LEVEL for open mode. Others
7712                          * are set by ipw_wpa_set_encryption.
7713                          */
7714                         if (!param->value) {
7715                                 sec.flags |= SEC_LEVEL;
7716                                 sec.level = SEC_LEVEL_0;
7717                         } else {
7718                                 sec.flags |= SEC_LEVEL;
7719                                 sec.level = SEC_LEVEL_1;
7720                         }
7721                         if (priv->ieee->set_security)
7722                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7723                         break;
7724                 }
7725
7726         case IW_AUTH_80211_AUTH_ALG:
7727                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7728                 break;
7729
7730         case IW_AUTH_WPA_ENABLED:
7731                 ret = ipw2100_wpa_enable(priv, param->value);
7732                 break;
7733
7734         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7735                 ieee->ieee802_1x = param->value;
7736                 break;
7737
7738                 //case IW_AUTH_ROAMING_CONTROL:
7739         case IW_AUTH_PRIVACY_INVOKED:
7740                 ieee->privacy_invoked = param->value;
7741                 break;
7742
7743         default:
7744                 return -EOPNOTSUPP;
7745         }
7746         return ret;
7747 }
7748
7749 /* SIOCGIWAUTH */
7750 static int ipw2100_wx_get_auth(struct net_device *dev,
7751                                struct iw_request_info *info,
7752                                union iwreq_data *wrqu, char *extra)
7753 {
7754         struct ipw2100_priv *priv = libipw_priv(dev);
7755         struct libipw_device *ieee = priv->ieee;
7756         struct lib80211_crypt_data *crypt;
7757         struct iw_param *param = &wrqu->param;
7758         int ret = 0;
7759
7760         switch (param->flags & IW_AUTH_INDEX) {
7761         case IW_AUTH_WPA_VERSION:
7762         case IW_AUTH_CIPHER_PAIRWISE:
7763         case IW_AUTH_CIPHER_GROUP:
7764         case IW_AUTH_KEY_MGMT:
7765                 /*
7766                  * wpa_supplicant will control these internally
7767                  */
7768                 ret = -EOPNOTSUPP;
7769                 break;
7770
7771         case IW_AUTH_TKIP_COUNTERMEASURES:
7772                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7773                 if (!crypt || !crypt->ops->get_flags) {
7774                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7775                                           "crypt not set!\n");
7776                         break;
7777                 }
7778
7779                 param->value = (crypt->ops->get_flags(crypt->priv) &
7780                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7781
7782                 break;
7783
7784         case IW_AUTH_DROP_UNENCRYPTED:
7785                 param->value = ieee->drop_unencrypted;
7786                 break;
7787
7788         case IW_AUTH_80211_AUTH_ALG:
7789                 param->value = priv->ieee->sec.auth_mode;
7790                 break;
7791
7792         case IW_AUTH_WPA_ENABLED:
7793                 param->value = ieee->wpa_enabled;
7794                 break;
7795
7796         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7797                 param->value = ieee->ieee802_1x;
7798                 break;
7799
7800         case IW_AUTH_ROAMING_CONTROL:
7801         case IW_AUTH_PRIVACY_INVOKED:
7802                 param->value = ieee->privacy_invoked;
7803                 break;
7804
7805         default:
7806                 return -EOPNOTSUPP;
7807         }
7808         return 0;
7809 }
7810
7811 /* SIOCSIWENCODEEXT */
7812 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7813                                     struct iw_request_info *info,
7814                                     union iwreq_data *wrqu, char *extra)
7815 {
7816         struct ipw2100_priv *priv = libipw_priv(dev);
7817         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7818 }
7819
7820 /* SIOCGIWENCODEEXT */
7821 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7822                                     struct iw_request_info *info,
7823                                     union iwreq_data *wrqu, char *extra)
7824 {
7825         struct ipw2100_priv *priv = libipw_priv(dev);
7826         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7827 }
7828
7829 /* SIOCSIWMLME */
7830 static int ipw2100_wx_set_mlme(struct net_device *dev,
7831                                struct iw_request_info *info,
7832                                union iwreq_data *wrqu, char *extra)
7833 {
7834         struct ipw2100_priv *priv = libipw_priv(dev);
7835         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7836         __le16 reason;
7837
7838         reason = cpu_to_le16(mlme->reason_code);
7839
7840         switch (mlme->cmd) {
7841         case IW_MLME_DEAUTH:
7842                 // silently ignore
7843                 break;
7844
7845         case IW_MLME_DISASSOC:
7846                 ipw2100_disassociate_bssid(priv);
7847                 break;
7848
7849         default:
7850                 return -EOPNOTSUPP;
7851         }
7852         return 0;
7853 }
7854
7855 /*
7856  *
7857  * IWPRIV handlers
7858  *
7859  */
7860 #ifdef CONFIG_IPW2100_MONITOR
7861 static int ipw2100_wx_set_promisc(struct net_device *dev,
7862                                   struct iw_request_info *info,
7863                                   union iwreq_data *wrqu, char *extra)
7864 {
7865         struct ipw2100_priv *priv = libipw_priv(dev);
7866         int *parms = (int *)extra;
7867         int enable = (parms[0] > 0);
7868         int err = 0;
7869
7870         mutex_lock(&priv->action_mutex);
7871         if (!(priv->status & STATUS_INITIALIZED)) {
7872                 err = -EIO;
7873                 goto done;
7874         }
7875
7876         if (enable) {
7877                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7878                         err = ipw2100_set_channel(priv, parms[1], 0);
7879                         goto done;
7880                 }
7881                 priv->channel = parms[1];
7882                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7883         } else {
7884                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7885                         err = ipw2100_switch_mode(priv, priv->last_mode);
7886         }
7887       done:
7888         mutex_unlock(&priv->action_mutex);
7889         return err;
7890 }
7891
7892 static int ipw2100_wx_reset(struct net_device *dev,
7893                             struct iw_request_info *info,
7894                             union iwreq_data *wrqu, char *extra)
7895 {
7896         struct ipw2100_priv *priv = libipw_priv(dev);
7897         if (priv->status & STATUS_INITIALIZED)
7898                 schedule_reset(priv);
7899         return 0;
7900 }
7901
7902 #endif
7903
7904 static int ipw2100_wx_set_powermode(struct net_device *dev,
7905                                     struct iw_request_info *info,
7906                                     union iwreq_data *wrqu, char *extra)
7907 {
7908         struct ipw2100_priv *priv = libipw_priv(dev);
7909         int err = 0, mode = *(int *)extra;
7910
7911         mutex_lock(&priv->action_mutex);
7912         if (!(priv->status & STATUS_INITIALIZED)) {
7913                 err = -EIO;
7914                 goto done;
7915         }
7916
7917         if ((mode < 0) || (mode > POWER_MODES))
7918                 mode = IPW_POWER_AUTO;
7919
7920         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7921                 err = ipw2100_set_power_mode(priv, mode);
7922       done:
7923         mutex_unlock(&priv->action_mutex);
7924         return err;
7925 }
7926
7927 #define MAX_POWER_STRING 80
7928 static int ipw2100_wx_get_powermode(struct net_device *dev,
7929                                     struct iw_request_info *info,
7930                                     union iwreq_data *wrqu, char *extra)
7931 {
7932         /*
7933          * This can be called at any time.  No action lock required
7934          */
7935
7936         struct ipw2100_priv *priv = libipw_priv(dev);
7937         int level = IPW_POWER_LEVEL(priv->power_mode);
7938         s32 timeout, period;
7939
7940         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7941                 snprintf(extra, MAX_POWER_STRING,
7942                          "Power save level: %d (Off)", level);
7943         } else {
7944                 switch (level) {
7945                 case IPW_POWER_MODE_CAM:
7946                         snprintf(extra, MAX_POWER_STRING,
7947                                  "Power save level: %d (None)", level);
7948                         break;
7949                 case IPW_POWER_AUTO:
7950                         snprintf(extra, MAX_POWER_STRING,
7951                                  "Power save level: %d (Auto)", level);
7952                         break;
7953                 default:
7954                         timeout = timeout_duration[level - 1] / 1000;
7955                         period = period_duration[level - 1] / 1000;
7956                         snprintf(extra, MAX_POWER_STRING,
7957                                  "Power save level: %d "
7958                                  "(Timeout %dms, Period %dms)",
7959                                  level, timeout, period);
7960                 }
7961         }
7962
7963         wrqu->data.length = strlen(extra) + 1;
7964
7965         return 0;
7966 }
7967
7968 static int ipw2100_wx_set_preamble(struct net_device *dev,
7969                                    struct iw_request_info *info,
7970                                    union iwreq_data *wrqu, char *extra)
7971 {
7972         struct ipw2100_priv *priv = libipw_priv(dev);
7973         int err, mode = *(int *)extra;
7974
7975         mutex_lock(&priv->action_mutex);
7976         if (!(priv->status & STATUS_INITIALIZED)) {
7977                 err = -EIO;
7978                 goto done;
7979         }
7980
7981         if (mode == 1)
7982                 priv->config |= CFG_LONG_PREAMBLE;
7983         else if (mode == 0)
7984                 priv->config &= ~CFG_LONG_PREAMBLE;
7985         else {
7986                 err = -EINVAL;
7987                 goto done;
7988         }
7989
7990         err = ipw2100_system_config(priv, 0);
7991
7992       done:
7993         mutex_unlock(&priv->action_mutex);
7994         return err;
7995 }
7996
7997 static int ipw2100_wx_get_preamble(struct net_device *dev,
7998                                    struct iw_request_info *info,
7999                                    union iwreq_data *wrqu, char *extra)
8000 {
8001         /*
8002          * This can be called at any time.  No action lock required
8003          */
8004
8005         struct ipw2100_priv *priv = libipw_priv(dev);
8006
8007         if (priv->config & CFG_LONG_PREAMBLE)
8008                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8009         else
8010                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8011
8012         return 0;
8013 }
8014
8015 #ifdef CONFIG_IPW2100_MONITOR
8016 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8017                                     struct iw_request_info *info,
8018                                     union iwreq_data *wrqu, char *extra)
8019 {
8020         struct ipw2100_priv *priv = libipw_priv(dev);
8021         int err, mode = *(int *)extra;
8022
8023         mutex_lock(&priv->action_mutex);
8024         if (!(priv->status & STATUS_INITIALIZED)) {
8025                 err = -EIO;
8026                 goto done;
8027         }
8028
8029         if (mode == 1)
8030                 priv->config |= CFG_CRC_CHECK;
8031         else if (mode == 0)
8032                 priv->config &= ~CFG_CRC_CHECK;
8033         else {
8034                 err = -EINVAL;
8035                 goto done;
8036         }
8037         err = 0;
8038
8039       done:
8040         mutex_unlock(&priv->action_mutex);
8041         return err;
8042 }
8043
8044 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8045                                     struct iw_request_info *info,
8046                                     union iwreq_data *wrqu, char *extra)
8047 {
8048         /*
8049          * This can be called at any time.  No action lock required
8050          */
8051
8052         struct ipw2100_priv *priv = libipw_priv(dev);
8053
8054         if (priv->config & CFG_CRC_CHECK)
8055                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8056         else
8057                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8058
8059         return 0;
8060 }
8061 #endif                          /* CONFIG_IPW2100_MONITOR */
8062
8063 static iw_handler ipw2100_wx_handlers[] = {
8064         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8065         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8066         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8067         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8068         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8069         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8070         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8071         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8072         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8073         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8074         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8075         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8076         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8077         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8078         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8079         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8080         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8081         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8082         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8083         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8084         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8085         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8086         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8087         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8088         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8089         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8090         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8091         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8092         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8093         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8094         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8095         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8096         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8097         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8098         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8099 };
8100
8101 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8102 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8103 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8104 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8105 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8106 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8107 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8108 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8109
8110 static const struct iw_priv_args ipw2100_private_args[] = {
8111
8112 #ifdef CONFIG_IPW2100_MONITOR
8113         {
8114          IPW2100_PRIV_SET_MONITOR,
8115          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8116         {
8117          IPW2100_PRIV_RESET,
8118          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8119 #endif                          /* CONFIG_IPW2100_MONITOR */
8120
8121         {
8122          IPW2100_PRIV_SET_POWER,
8123          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8124         {
8125          IPW2100_PRIV_GET_POWER,
8126          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8127          "get_power"},
8128         {
8129          IPW2100_PRIV_SET_LONGPREAMBLE,
8130          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8131         {
8132          IPW2100_PRIV_GET_LONGPREAMBLE,
8133          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8134 #ifdef CONFIG_IPW2100_MONITOR
8135         {
8136          IPW2100_PRIV_SET_CRC_CHECK,
8137          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8138         {
8139          IPW2100_PRIV_GET_CRC_CHECK,
8140          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8141 #endif                          /* CONFIG_IPW2100_MONITOR */
8142 };
8143
8144 static iw_handler ipw2100_private_handler[] = {
8145 #ifdef CONFIG_IPW2100_MONITOR
8146         ipw2100_wx_set_promisc,
8147         ipw2100_wx_reset,
8148 #else                           /* CONFIG_IPW2100_MONITOR */
8149         NULL,
8150         NULL,
8151 #endif                          /* CONFIG_IPW2100_MONITOR */
8152         ipw2100_wx_set_powermode,
8153         ipw2100_wx_get_powermode,
8154         ipw2100_wx_set_preamble,
8155         ipw2100_wx_get_preamble,
8156 #ifdef CONFIG_IPW2100_MONITOR
8157         ipw2100_wx_set_crc_check,
8158         ipw2100_wx_get_crc_check,
8159 #else                           /* CONFIG_IPW2100_MONITOR */
8160         NULL,
8161         NULL,
8162 #endif                          /* CONFIG_IPW2100_MONITOR */
8163 };
8164
8165 /*
8166  * Get wireless statistics.
8167  * Called by /proc/net/wireless
8168  * Also called by SIOCGIWSTATS
8169  */
8170 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8171 {
8172         enum {
8173                 POOR = 30,
8174                 FAIR = 60,
8175                 GOOD = 80,
8176                 VERY_GOOD = 90,
8177                 EXCELLENT = 95,
8178                 PERFECT = 100
8179         };
8180         int rssi_qual;
8181         int tx_qual;
8182         int beacon_qual;
8183         int quality;
8184
8185         struct ipw2100_priv *priv = libipw_priv(dev);
8186         struct iw_statistics *wstats;
8187         u32 rssi, tx_retries, missed_beacons, tx_failures;
8188         u32 ord_len = sizeof(u32);
8189
8190         if (!priv)
8191                 return (struct iw_statistics *)NULL;
8192
8193         wstats = &priv->wstats;
8194
8195         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8196          * ipw2100_wx_wireless_stats seems to be called before fw is
8197          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8198          * and associated; if not associcated, the values are all meaningless
8199          * anyway, so set them all to NULL and INVALID */
8200         if (!(priv->status & STATUS_ASSOCIATED)) {
8201                 wstats->miss.beacon = 0;
8202                 wstats->discard.retries = 0;
8203                 wstats->qual.qual = 0;
8204                 wstats->qual.level = 0;
8205                 wstats->qual.noise = 0;
8206                 wstats->qual.updated = 7;
8207                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8208                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8209                 return wstats;
8210         }
8211
8212         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8213                                 &missed_beacons, &ord_len))
8214                 goto fail_get_ordinal;
8215
8216         /* If we don't have a connection the quality and level is 0 */
8217         if (!(priv->status & STATUS_ASSOCIATED)) {
8218                 wstats->qual.qual = 0;
8219                 wstats->qual.level = 0;
8220         } else {
8221                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8222                                         &rssi, &ord_len))
8223                         goto fail_get_ordinal;
8224                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8225                 if (rssi < 10)
8226                         rssi_qual = rssi * POOR / 10;
8227                 else if (rssi < 15)
8228                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8229                 else if (rssi < 20)
8230                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8231                 else if (rssi < 30)
8232                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8233                             10 + GOOD;
8234                 else
8235                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8236                             10 + VERY_GOOD;
8237
8238                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8239                                         &tx_retries, &ord_len))
8240                         goto fail_get_ordinal;
8241
8242                 if (tx_retries > 75)
8243                         tx_qual = (90 - tx_retries) * POOR / 15;
8244                 else if (tx_retries > 70)
8245                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8246                 else if (tx_retries > 65)
8247                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8248                 else if (tx_retries > 50)
8249                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8250                             15 + GOOD;
8251                 else
8252                         tx_qual = (50 - tx_retries) *
8253                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8254
8255                 if (missed_beacons > 50)
8256                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8257                 else if (missed_beacons > 40)
8258                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8259                             10 + POOR;
8260                 else if (missed_beacons > 32)
8261                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8262                             18 + FAIR;
8263                 else if (missed_beacons > 20)
8264                         beacon_qual = (32 - missed_beacons) *
8265                             (VERY_GOOD - GOOD) / 20 + GOOD;
8266                 else
8267                         beacon_qual = (20 - missed_beacons) *
8268                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8269
8270                 quality = min(tx_qual, rssi_qual);
8271                 quality = min(beacon_qual, quality);
8272
8273 #ifdef CONFIG_IPW2100_DEBUG
8274                 if (beacon_qual == quality)
8275                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8276                 else if (tx_qual == quality)
8277                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8278                 else if (quality != 100)
8279                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8280                 else
8281                         IPW_DEBUG_WX("Quality not clamped.\n");
8282 #endif
8283
8284                 wstats->qual.qual = quality;
8285                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8286         }
8287
8288         wstats->qual.noise = 0;
8289         wstats->qual.updated = 7;
8290         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8291
8292         /* FIXME: this is percent and not a # */
8293         wstats->miss.beacon = missed_beacons;
8294
8295         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8296                                 &tx_failures, &ord_len))
8297                 goto fail_get_ordinal;
8298         wstats->discard.retries = tx_failures;
8299
8300         return wstats;
8301
8302       fail_get_ordinal:
8303         IPW_DEBUG_WX("failed querying ordinals.\n");
8304
8305         return (struct iw_statistics *)NULL;
8306 }
8307
8308 static struct iw_handler_def ipw2100_wx_handler_def = {
8309         .standard = ipw2100_wx_handlers,
8310         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8311         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8312         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8313         .private = (iw_handler *) ipw2100_private_handler,
8314         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8315         .get_wireless_stats = ipw2100_wx_wireless_stats,
8316 };
8317
8318 static void ipw2100_wx_event_work(struct work_struct *work)
8319 {
8320         struct ipw2100_priv *priv =
8321                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8322         union iwreq_data wrqu;
8323         unsigned int len = ETH_ALEN;
8324
8325         if (priv->status & STATUS_STOPPING)
8326                 return;
8327
8328         mutex_lock(&priv->action_mutex);
8329
8330         IPW_DEBUG_WX("enter\n");
8331
8332         mutex_unlock(&priv->action_mutex);
8333
8334         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8335
8336         /* Fetch BSSID from the hardware */
8337         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8338             priv->status & STATUS_RF_KILL_MASK ||
8339             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8340                                 &priv->bssid, &len)) {
8341                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8342         } else {
8343                 /* We now have the BSSID, so can finish setting to the full
8344                  * associated state */
8345                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8346                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8347                 priv->status &= ~STATUS_ASSOCIATING;
8348                 priv->status |= STATUS_ASSOCIATED;
8349                 netif_carrier_on(priv->net_dev);
8350                 netif_wake_queue(priv->net_dev);
8351         }
8352
8353         if (!(priv->status & STATUS_ASSOCIATED)) {
8354                 IPW_DEBUG_WX("Configuring ESSID\n");
8355                 mutex_lock(&priv->action_mutex);
8356                 /* This is a disassociation event, so kick the firmware to
8357                  * look for another AP */
8358                 if (priv->config & CFG_STATIC_ESSID)
8359                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8360                                           0);
8361                 else
8362                         ipw2100_set_essid(priv, NULL, 0, 0);
8363                 mutex_unlock(&priv->action_mutex);
8364         }
8365
8366         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8367 }
8368
8369 #define IPW2100_FW_MAJOR_VERSION 1
8370 #define IPW2100_FW_MINOR_VERSION 3
8371
8372 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8373 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8374
8375 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8376                              IPW2100_FW_MAJOR_VERSION)
8377
8378 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8379 "." __stringify(IPW2100_FW_MINOR_VERSION)
8380
8381 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8382
8383 /*
8384
8385 BINARY FIRMWARE HEADER FORMAT
8386
8387 offset      length   desc
8388 0           2        version
8389 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8390 4           4        fw_len
8391 8           4        uc_len
8392 C           fw_len   firmware data
8393 12 + fw_len uc_len   microcode data
8394
8395 */
8396
8397 struct ipw2100_fw_header {
8398         short version;
8399         short mode;
8400         unsigned int fw_size;
8401         unsigned int uc_size;
8402 } __packed;
8403
8404 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8405 {
8406         struct ipw2100_fw_header *h =
8407             (struct ipw2100_fw_header *)fw->fw_entry->data;
8408
8409         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8410                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8411                        "(detected version id of %u). "
8412                        "See Documentation/networking/README.ipw2100\n",
8413                        h->version);
8414                 return 1;
8415         }
8416
8417         fw->version = h->version;
8418         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8419         fw->fw.size = h->fw_size;
8420         fw->uc.data = fw->fw.data + h->fw_size;
8421         fw->uc.size = h->uc_size;
8422
8423         return 0;
8424 }
8425
8426 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8427                                 struct ipw2100_fw *fw)
8428 {
8429         char *fw_name;
8430         int rc;
8431
8432         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8433                        priv->net_dev->name);
8434
8435         switch (priv->ieee->iw_mode) {
8436         case IW_MODE_ADHOC:
8437                 fw_name = IPW2100_FW_NAME("-i");
8438                 break;
8439 #ifdef CONFIG_IPW2100_MONITOR
8440         case IW_MODE_MONITOR:
8441                 fw_name = IPW2100_FW_NAME("-p");
8442                 break;
8443 #endif
8444         case IW_MODE_INFRA:
8445         default:
8446                 fw_name = IPW2100_FW_NAME("");
8447                 break;
8448         }
8449
8450         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8451
8452         if (rc < 0) {
8453                 printk(KERN_ERR DRV_NAME ": "
8454                        "%s: Firmware '%s' not available or load failed.\n",
8455                        priv->net_dev->name, fw_name);
8456                 return rc;
8457         }
8458         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8459                        fw->fw_entry->size);
8460
8461         ipw2100_mod_firmware_load(fw);
8462
8463         return 0;
8464 }
8465
8466 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8467 #ifdef CONFIG_IPW2100_MONITOR
8468 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8469 #endif
8470 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8471
8472 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8473                                      struct ipw2100_fw *fw)
8474 {
8475         fw->version = 0;
8476         release_firmware(fw->fw_entry);
8477         fw->fw_entry = NULL;
8478 }
8479
8480 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8481                                  size_t max)
8482 {
8483         char ver[MAX_FW_VERSION_LEN];
8484         u32 len = MAX_FW_VERSION_LEN;
8485         u32 tmp;
8486         int i;
8487         /* firmware version is an ascii string (max len of 14) */
8488         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8489                 return -EIO;
8490         tmp = max;
8491         if (len >= max)
8492                 len = max - 1;
8493         for (i = 0; i < len; i++)
8494                 buf[i] = ver[i];
8495         buf[i] = '\0';
8496         return tmp;
8497 }
8498
8499 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8500                                     size_t max)
8501 {
8502         u32 ver;
8503         u32 len = sizeof(ver);
8504         /* microcode version is a 32 bit integer */
8505         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8506                 return -EIO;
8507         return snprintf(buf, max, "%08X", ver);
8508 }
8509
8510 /*
8511  * On exit, the firmware will have been freed from the fw list
8512  */
8513 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8514 {
8515         /* firmware is constructed of N contiguous entries, each entry is
8516          * structured as:
8517          *
8518          * offset    sie         desc
8519          * 0         4           address to write to
8520          * 4         2           length of data run
8521          * 6         length      data
8522          */
8523         unsigned int addr;
8524         unsigned short len;
8525
8526         const unsigned char *firmware_data = fw->fw.data;
8527         unsigned int firmware_data_left = fw->fw.size;
8528
8529         while (firmware_data_left > 0) {
8530                 addr = *(u32 *) (firmware_data);
8531                 firmware_data += 4;
8532                 firmware_data_left -= 4;
8533
8534                 len = *(u16 *) (firmware_data);
8535                 firmware_data += 2;
8536                 firmware_data_left -= 2;
8537
8538                 if (len > 32) {
8539                         printk(KERN_ERR DRV_NAME ": "
8540                                "Invalid firmware run-length of %d bytes\n",
8541                                len);
8542                         return -EINVAL;
8543                 }
8544
8545                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8546                 firmware_data += len;
8547                 firmware_data_left -= len;
8548         }
8549
8550         return 0;
8551 }
8552
8553 struct symbol_alive_response {
8554         u8 cmd_id;
8555         u8 seq_num;
8556         u8 ucode_rev;
8557         u8 eeprom_valid;
8558         u16 valid_flags;
8559         u8 IEEE_addr[6];
8560         u16 flags;
8561         u16 pcb_rev;
8562         u16 clock_settle_time;  // 1us LSB
8563         u16 powerup_settle_time;        // 1us LSB
8564         u16 hop_settle_time;    // 1us LSB
8565         u8 date[3];             // month, day, year
8566         u8 time[2];             // hours, minutes
8567         u8 ucode_valid;
8568 };
8569
8570 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8571                                   struct ipw2100_fw *fw)
8572 {
8573         struct net_device *dev = priv->net_dev;
8574         const unsigned char *microcode_data = fw->uc.data;
8575         unsigned int microcode_data_left = fw->uc.size;
8576         void __iomem *reg = priv->ioaddr;
8577
8578         struct symbol_alive_response response;
8579         int i, j;
8580         u8 data;
8581
8582         /* Symbol control */
8583         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8584         readl(reg);
8585         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8586         readl(reg);
8587
8588         /* HW config */
8589         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8590         readl(reg);
8591         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8592         readl(reg);
8593
8594         /* EN_CS_ACCESS bit to reset control store pointer */
8595         write_nic_byte(dev, 0x210000, 0x40);
8596         readl(reg);
8597         write_nic_byte(dev, 0x210000, 0x0);
8598         readl(reg);
8599         write_nic_byte(dev, 0x210000, 0x40);
8600         readl(reg);
8601
8602         /* copy microcode from buffer into Symbol */
8603
8604         while (microcode_data_left > 0) {
8605                 write_nic_byte(dev, 0x210010, *microcode_data++);
8606                 write_nic_byte(dev, 0x210010, *microcode_data++);
8607                 microcode_data_left -= 2;
8608         }
8609
8610         /* EN_CS_ACCESS bit to reset the control store pointer */
8611         write_nic_byte(dev, 0x210000, 0x0);
8612         readl(reg);
8613
8614         /* Enable System (Reg 0)
8615          * first enable causes garbage in RX FIFO */
8616         write_nic_byte(dev, 0x210000, 0x0);
8617         readl(reg);
8618         write_nic_byte(dev, 0x210000, 0x80);
8619         readl(reg);
8620
8621         /* Reset External Baseband Reg */
8622         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8623         readl(reg);
8624         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8625         readl(reg);
8626
8627         /* HW Config (Reg 5) */
8628         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8629         readl(reg);
8630         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8631         readl(reg);
8632
8633         /* Enable System (Reg 0)
8634          * second enable should be OK */
8635         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8636         readl(reg);
8637         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8638
8639         /* check Symbol is enabled - upped this from 5 as it wasn't always
8640          * catching the update */
8641         for (i = 0; i < 10; i++) {
8642                 udelay(10);
8643
8644                 /* check Dino is enabled bit */
8645                 read_nic_byte(dev, 0x210000, &data);
8646                 if (data & 0x1)
8647                         break;
8648         }
8649
8650         if (i == 10) {
8651                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8652                        dev->name);
8653                 return -EIO;
8654         }
8655
8656         /* Get Symbol alive response */
8657         for (i = 0; i < 30; i++) {
8658                 /* Read alive response structure */
8659                 for (j = 0;
8660                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8661                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8662
8663                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8664                         break;
8665                 udelay(10);
8666         }
8667
8668         if (i == 30) {
8669                 printk(KERN_ERR DRV_NAME
8670                        ": %s: No response from Symbol - hw not alive\n",
8671                        dev->name);
8672                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8673                 return -EIO;
8674         }
8675
8676         return 0;
8677 }