Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973         u32 inta, inta_mask, handled = 0;
1974         unsigned long flags;
1975         int rc = 0;
1976
1977         spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979         inta = ipw_read32(priv, IPW_INTA_RW);
1980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982         if (inta == 0xFFFFFFFF) {
1983                 /* Hardware disappeared */
1984                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                 /* Only handle the cached INTA values */
1986                 inta = 0;
1987         }
1988         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990         /* Add any cached INTA values that need to be handled */
1991         inta |= priv->isr_inta;
1992
1993         spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995         spin_lock_irqsave(&priv->lock, flags);
1996
1997         /* handle all the justifications for the interrupt */
1998         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                 ipw_rx(priv);
2000                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                 IPW_DEBUG_HC("Command completed.\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                 priv->status &= ~STATUS_HCMD_ACTIVE;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027         }
2028
2029         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033         }
2034
2035         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                 IPW_WARNING("STATUS_CHANGE\n");
2037                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043         }
2044
2045         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                 IPW_WARNING("HOST_CMD_DONE\n");
2047                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048         }
2049
2050         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053         }
2054
2055         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                 IPW_WARNING("PHY_OFF_DONE\n");
2057                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058         }
2059
2060         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                 priv->status |= STATUS_RF_KILL_HW;
2063                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                 wake_up_interruptible(&priv->wait_command_queue);
2065                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                 cancel_delayed_work(&priv->request_scan);
2067                 cancel_delayed_work(&priv->request_direct_scan);
2068                 cancel_delayed_work(&priv->request_passive_scan);
2069                 cancel_delayed_work(&priv->scan_event);
2070                 schedule_work(&priv->link_down);
2071                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073         }
2074
2075         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                 if (priv->error) {
2078                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                 struct ipw_fw_error *error =
2081                                     ipw_alloc_error_log(priv);
2082                                 ipw_dump_error_log(priv, error);
2083                                 kfree(error);
2084                         }
2085                 } else {
2086                         priv->error = ipw_alloc_error_log(priv);
2087                         if (priv->error)
2088                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                         else
2090                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                              "log.\n");
2092                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                 ipw_dump_error_log(priv, priv->error);
2094                 }
2095
2096                 /* XXX: If hardware encryption is for WPA/WPA2,
2097                  * we have to notify the supplicant. */
2098                 if (priv->ieee->sec.encrypt) {
2099                         priv->status &= ~STATUS_ASSOCIATED;
2100                         notify_wx_assoc_event(priv);
2101                 }
2102
2103                 /* Keep the restart process from trying to send host
2104                  * commands by clearing the INIT status bit */
2105                 priv->status &= ~STATUS_INIT;
2106
2107                 /* Cancel currently queued command. */
2108                 priv->status &= ~STATUS_HCMD_ACTIVE;
2109                 wake_up_interruptible(&priv->wait_command_queue);
2110
2111                 schedule_work(&priv->adapter_restart);
2112                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113         }
2114
2115         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                 IPW_ERROR("Parity error\n");
2117                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118         }
2119
2120         if (handled != inta) {
2121                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122         }
2123
2124         spin_unlock_irqrestore(&priv->lock, flags);
2125
2126         /* enable all interrupts */
2127         ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133         switch (cmd) {
2134                 IPW_CMD(HOST_COMPLETE);
2135                 IPW_CMD(POWER_DOWN);
2136                 IPW_CMD(SYSTEM_CONFIG);
2137                 IPW_CMD(MULTICAST_ADDRESS);
2138                 IPW_CMD(SSID);
2139                 IPW_CMD(ADAPTER_ADDRESS);
2140                 IPW_CMD(PORT_TYPE);
2141                 IPW_CMD(RTS_THRESHOLD);
2142                 IPW_CMD(FRAG_THRESHOLD);
2143                 IPW_CMD(POWER_MODE);
2144                 IPW_CMD(WEP_KEY);
2145                 IPW_CMD(TGI_TX_KEY);
2146                 IPW_CMD(SCAN_REQUEST);
2147                 IPW_CMD(SCAN_REQUEST_EXT);
2148                 IPW_CMD(ASSOCIATE);
2149                 IPW_CMD(SUPPORTED_RATES);
2150                 IPW_CMD(SCAN_ABORT);
2151                 IPW_CMD(TX_FLUSH);
2152                 IPW_CMD(QOS_PARAMETERS);
2153                 IPW_CMD(DINO_CONFIG);
2154                 IPW_CMD(RSN_CAPABILITIES);
2155                 IPW_CMD(RX_KEY);
2156                 IPW_CMD(CARD_DISABLE);
2157                 IPW_CMD(SEED_NUMBER);
2158                 IPW_CMD(TX_POWER);
2159                 IPW_CMD(COUNTRY_INFO);
2160                 IPW_CMD(AIRONET_INFO);
2161                 IPW_CMD(AP_TX_POWER);
2162                 IPW_CMD(CCKM_INFO);
2163                 IPW_CMD(CCX_VER_INFO);
2164                 IPW_CMD(SET_CALIBRATION);
2165                 IPW_CMD(SENSITIVITY_CALIB);
2166                 IPW_CMD(RETRY_LIMIT);
2167                 IPW_CMD(IPW_PRE_POWER_DOWN);
2168                 IPW_CMD(VAP_BEACON_TEMPLATE);
2169                 IPW_CMD(VAP_DTIM_PERIOD);
2170                 IPW_CMD(EXT_SUPPORTED_RATES);
2171                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                 IPW_CMD(VAP_QUIET_INTERVALS);
2173                 IPW_CMD(VAP_CHANNEL_SWITCH);
2174                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                 IPW_CMD(VAP_CF_PARAM_SET);
2177                 IPW_CMD(VAP_SET_BEACONING_STATE);
2178                 IPW_CMD(MEASUREMENT);
2179                 IPW_CMD(POWER_CAPABILITY);
2180                 IPW_CMD(SUPPORTED_CHANNELS);
2181                 IPW_CMD(TPC_REPORT);
2182                 IPW_CMD(WME_INFO);
2183                 IPW_CMD(PRODUCTION_COMMAND);
2184         default:
2185                 return "UNKNOWN";
2186         }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193         int rc = 0;
2194         unsigned long flags;
2195         unsigned long now, end;
2196
2197         spin_lock_irqsave(&priv->lock, flags);
2198         if (priv->status & STATUS_HCMD_ACTIVE) {
2199                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 spin_unlock_irqrestore(&priv->lock, flags);
2202                 return -EAGAIN;
2203         }
2204
2205         priv->status |= STATUS_HCMD_ACTIVE;
2206
2207         if (priv->cmdlog) {
2208                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                        cmd->len);
2213                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214         }
2215
2216         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                      priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221         if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223         else
2224 #endif
2225                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228         if (rc) {
2229                 priv->status &= ~STATUS_HCMD_ACTIVE;
2230                 IPW_ERROR("Failed to send %s: Reason %d\n",
2231                           get_cmd_string(cmd->cmd), rc);
2232                 spin_unlock_irqrestore(&priv->lock, flags);
2233                 goto exit;
2234         }
2235         spin_unlock_irqrestore(&priv->lock, flags);
2236
2237         now = jiffies;
2238         end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                               !(priv->
2242                                                 status & STATUS_HCMD_ACTIVE),
2243                                               end - now);
2244         if (rc < 0) {
2245                 now = jiffies;
2246                 if (time_before(now, end))
2247                         goto again;
2248                 rc = 0;
2249         }
2250
2251         if (rc == 0) {
2252                 spin_lock_irqsave(&priv->lock, flags);
2253                 if (priv->status & STATUS_HCMD_ACTIVE) {
2254                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                   get_cmd_string(cmd->cmd));
2256                         priv->status &= ~STATUS_HCMD_ACTIVE;
2257                         spin_unlock_irqrestore(&priv->lock, flags);
2258                         rc = -EIO;
2259                         goto exit;
2260                 }
2261                 spin_unlock_irqrestore(&priv->lock, flags);
2262         } else
2263                 rc = 0;
2264
2265         if (priv->status & STATUS_RF_KILL_HW) {
2266                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                           get_cmd_string(cmd->cmd));
2268                 rc = -EIO;
2269                 goto exit;
2270         }
2271
2272       exit:
2273         if (priv->cmdlog) {
2274                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                 priv->cmdlog_pos %= priv->cmdlog_len;
2276         }
2277         return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282         struct host_cmd cmd = {
2283                 .cmd = command,
2284         };
2285
2286         return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                             void *data)
2291 {
2292         struct host_cmd cmd = {
2293                 .cmd = command,
2294                 .len = len,
2295                 .param = data,
2296         };
2297
2298         return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303         if (!priv) {
2304                 IPW_ERROR("Invalid args\n");
2305                 return -1;
2306         }
2307
2308         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                 sizeof(priv->sys_config),
2315                                 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320         if (!priv || !ssid) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331         if (!priv || !mac) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                        priv->net_dev->name, mac);
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344         struct ipw_priv *priv = adapter;
2345
2346         if (priv->status & STATUS_RF_KILL_MASK)
2347                 return;
2348
2349         ipw_down(priv);
2350
2351         if (priv->assoc_network &&
2352             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                 ipw_remove_current_network(priv);
2354
2355         if (ipw_up(priv)) {
2356                 IPW_ERROR("Failed to up device\n");
2357                 return;
2358         }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363         struct ipw_priv *priv =
2364                 container_of(work, struct ipw_priv, adapter_restart);
2365         mutex_lock(&priv->mutex);
2366         ipw_adapter_restart(priv);
2367         mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376         struct ipw_priv *priv = data;
2377
2378         if (priv->status & STATUS_SCAN_ABORTING) {
2379                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                                "adapter after (%dms).\n",
2381                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                 schedule_work(&priv->adapter_restart);
2383         } else if (priv->status & STATUS_SCANNING) {
2384                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                                "after (%dms).\n",
2386                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                 ipw_abort_scan(priv);
2388                 schedule_delayed_work(&priv->scan_check, HZ);
2389         }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394         struct ipw_priv *priv =
2395                 container_of(work, struct ipw_priv, scan_check.work);
2396         mutex_lock(&priv->mutex);
2397         ipw_scan_check(priv);
2398         mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                      struct ipw_scan_request_ext *request)
2403 {
2404         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410         if (!priv) {
2411                 IPW_ERROR("Invalid args\n");
2412                 return -1;
2413         }
2414
2415         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420         struct ipw_sensitivity_calib calib = {
2421                 .beacon_rssi_raw = cpu_to_le16(sens),
2422         };
2423
2424         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429                               struct ipw_associate *associate)
2430 {
2431         if (!priv || !associate) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                     struct ipw_supported_rates *rates)
2442 {
2443         if (!priv || !rates) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454         u32 val;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         get_random_bytes(&val, sizeof(val));
2462
2463         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468         __le32 v = cpu_to_le32(phy_off);
2469         if (!priv) {
2470                 IPW_ERROR("Invalid args\n");
2471                 return -1;
2472         }
2473
2474         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479         if (!priv || !power) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490         struct ipw_tx_power tx_power;
2491         s8 max_power;
2492         int i;
2493
2494         memset(&tx_power, 0, sizeof(tx_power));
2495
2496         /* configure device for 'G' band */
2497         tx_power.ieee_mode = IPW_G_MODE;
2498         tx_power.num_channels = geo->bg_channels;
2499         for (i = 0; i < geo->bg_channels; i++) {
2500                 max_power = geo->bg[i].max_power;
2501                 tx_power.channels_tx_power[i].channel_number =
2502                     geo->bg[i].channel;
2503                 tx_power.channels_tx_power[i].tx_power = max_power ?
2504                     min(max_power, priv->tx_power) : priv->tx_power;
2505         }
2506         if (ipw_send_tx_power(priv, &tx_power))
2507                 return -EIO;
2508
2509         /* configure device to also handle 'B' band */
2510         tx_power.ieee_mode = IPW_B_MODE;
2511         if (ipw_send_tx_power(priv, &tx_power))
2512                 return -EIO;
2513
2514         /* configure device to also handle 'A' band */
2515         if (priv->ieee->abg_true) {
2516                 tx_power.ieee_mode = IPW_A_MODE;
2517                 tx_power.num_channels = geo->a_channels;
2518                 for (i = 0; i < tx_power.num_channels; i++) {
2519                         max_power = geo->a[i].max_power;
2520                         tx_power.channels_tx_power[i].channel_number =
2521                             geo->a[i].channel;
2522                         tx_power.channels_tx_power[i].tx_power = max_power ?
2523                             min(max_power, priv->tx_power) : priv->tx_power;
2524                 }
2525                 if (ipw_send_tx_power(priv, &tx_power))
2526                         return -EIO;
2527         }
2528         return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533         struct ipw_rts_threshold rts_threshold = {
2534                 .rts_threshold = cpu_to_le16(rts),
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548         struct ipw_frag_threshold frag_threshold = {
2549                 .frag_threshold = cpu_to_le16(frag),
2550         };
2551
2552         if (!priv) {
2553                 IPW_ERROR("Invalid args\n");
2554                 return -1;
2555         }
2556
2557         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563         __le32 param;
2564
2565         if (!priv) {
2566                 IPW_ERROR("Invalid args\n");
2567                 return -1;
2568         }
2569
2570         /* If on battery, set to 3, if AC set to CAM, else user
2571          * level */
2572         switch (mode) {
2573         case IPW_POWER_BATTERY:
2574                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                 break;
2576         case IPW_POWER_AC:
2577                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                 break;
2579         default:
2580                 param = cpu_to_le32(mode);
2581                 break;
2582         }
2583
2584         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590         struct ipw_retry_limit retry_limit = {
2591                 .short_retry_limit = slimit,
2592                 .long_retry_limit = llimit
2593         };
2594
2595         if (!priv) {
2596                 IPW_ERROR("Invalid args\n");
2597                 return -1;
2598         }
2599
2600         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                 &retry_limit);
2602 }
2603
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626         /* the eeprom requires some time to complete the operation */
2627         udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, 0);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642         eeprom_write_reg(priv, EEPROM_BIT_CS);
2643         eeprom_write_reg(priv, 0);
2644         eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650         int d = (bit ? EEPROM_BIT_DI : 0);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658         int i;
2659
2660         eeprom_cs(priv);
2661         eeprom_write_bit(priv, 1);
2662         eeprom_write_bit(priv, op & 2);
2663         eeprom_write_bit(priv, op & 1);
2664         for (i = 7; i >= 0; i--) {
2665                 eeprom_write_bit(priv, addr & (1 << i));
2666         }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672         int i;
2673         u16 r = 0;
2674
2675         /* Send READ Opcode */
2676         eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678         /* Send dummy bit */
2679         eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681         /* Read the byte off the eeprom one bit at a time */
2682         for (i = 0; i < 16; i++) {
2683                 u32 data = 0;
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688         }
2689
2690         /* Send another dummy bit */
2691         eeprom_write_reg(priv, 0);
2692         eeprom_disable_cs(priv);
2693
2694         return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703
2704 /*
2705  * Either the device driver (i.e. the host) or the firmware can
2706  * load eeprom data into the designated region in SRAM.  If neither
2707  * happens then the FW will shutdown with a fatal error.
2708  *
2709  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2710  * bit needs region of shared SRAM needs to be non-zero.
2711  */
2712 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2713 {
2714         int i;
2715         __le16 *eeprom = (__le16 *) priv->eeprom;
2716
2717         IPW_DEBUG_TRACE(">>\n");
2718
2719         /* read entire contents of eeprom into private buffer */
2720         for (i = 0; i < 128; i++)
2721                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2722
2723         /*
2724            If the data looks correct, then copy it to our private
2725            copy.  Otherwise let the firmware know to perform the operation
2726            on its own.
2727          */
2728         if (priv->eeprom[EEPROM_VERSION] != 0) {
2729                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2730
2731                 /* write the eeprom data to sram */
2732                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2733                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2734
2735                 /* Do not load eeprom data on fatal error or suspend */
2736                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2737         } else {
2738                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2739
2740                 /* Load eeprom data on fatal error or suspend */
2741                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2742         }
2743
2744         IPW_DEBUG_TRACE("<<\n");
2745 }
2746
2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2748 {
2749         count >>= 2;
2750         if (!count)
2751                 return;
2752         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2753         while (count--)
2754                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2755 }
2756
2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2758 {
2759         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2760                         CB_NUMBER_OF_ELEMENTS_SMALL *
2761                         sizeof(struct command_block));
2762 }
2763
2764 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2765 {                               /* start dma engine but no transfers yet */
2766
2767         IPW_DEBUG_FW(">> :\n");
2768
2769         /* Start the dma */
2770         ipw_fw_dma_reset_command_blocks(priv);
2771
2772         /* Write CB base address */
2773         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2774
2775         IPW_DEBUG_FW("<< :\n");
2776         return 0;
2777 }
2778
2779 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2780 {
2781         u32 control = 0;
2782
2783         IPW_DEBUG_FW(">> :\n");
2784
2785         /* set the Stop and Abort bit */
2786         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2787         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2788         priv->sram_desc.last_cb_index = 0;
2789
2790         IPW_DEBUG_FW("<<\n");
2791 }
2792
2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2794                                           struct command_block *cb)
2795 {
2796         u32 address =
2797             IPW_SHARED_SRAM_DMA_CONTROL +
2798             (sizeof(struct command_block) * index);
2799         IPW_DEBUG_FW(">> :\n");
2800
2801         ipw_write_indirect(priv, address, (u8 *) cb,
2802                            (int)sizeof(struct command_block));
2803
2804         IPW_DEBUG_FW("<< :\n");
2805         return 0;
2806
2807 }
2808
2809 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2810 {
2811         u32 control = 0;
2812         u32 index = 0;
2813
2814         IPW_DEBUG_FW(">> :\n");
2815
2816         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2817                 ipw_fw_dma_write_command_block(priv, index,
2818                                                &priv->sram_desc.cb_list[index]);
2819
2820         /* Enable the DMA in the CSR register */
2821         ipw_clear_bit(priv, IPW_RESET_REG,
2822                       IPW_RESET_REG_MASTER_DISABLED |
2823                       IPW_RESET_REG_STOP_MASTER);
2824
2825         /* Set the Start bit. */
2826         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2827         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2828
2829         IPW_DEBUG_FW("<< :\n");
2830         return 0;
2831 }
2832
2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2834 {
2835         u32 address;
2836         u32 register_value = 0;
2837         u32 cb_fields_address = 0;
2838
2839         IPW_DEBUG_FW(">> :\n");
2840         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2841         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2842
2843         /* Read the DMA Controlor register */
2844         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2845         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2846
2847         /* Print the CB values */
2848         cb_fields_address = address;
2849         register_value = ipw_read_reg32(priv, cb_fields_address);
2850         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2851
2852         cb_fields_address += sizeof(u32);
2853         register_value = ipw_read_reg32(priv, cb_fields_address);
2854         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2855
2856         cb_fields_address += sizeof(u32);
2857         register_value = ipw_read_reg32(priv, cb_fields_address);
2858         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2859                           register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2864
2865         IPW_DEBUG_FW(">> :\n");
2866 }
2867
2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2869 {
2870         u32 current_cb_address = 0;
2871         u32 current_cb_index = 0;
2872
2873         IPW_DEBUG_FW("<< :\n");
2874         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2875
2876         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2877             sizeof(struct command_block);
2878
2879         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880                           current_cb_index, current_cb_address);
2881
2882         IPW_DEBUG_FW(">> :\n");
2883         return current_cb_index;
2884
2885 }
2886
2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2888                                         u32 src_address,
2889                                         u32 dest_address,
2890                                         u32 length,
2891                                         int interrupt_enabled, int is_last)
2892 {
2893
2894         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2895             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2896             CB_DEST_SIZE_LONG;
2897         struct command_block *cb;
2898         u32 last_cb_element = 0;
2899
2900         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901                           src_address, dest_address, length);
2902
2903         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2904                 return -1;
2905
2906         last_cb_element = priv->sram_desc.last_cb_index;
2907         cb = &priv->sram_desc.cb_list[last_cb_element];
2908         priv->sram_desc.last_cb_index++;
2909
2910         /* Calculate the new CB control word */
2911         if (interrupt_enabled)
2912                 control |= CB_INT_ENABLED;
2913
2914         if (is_last)
2915                 control |= CB_LAST_VALID;
2916
2917         control |= length;
2918
2919         /* Calculate the CB Element's checksum value */
2920         cb->status = control ^ src_address ^ dest_address;
2921
2922         /* Copy the Source and Destination addresses */
2923         cb->dest_addr = dest_address;
2924         cb->source_addr = src_address;
2925
2926         /* Copy the Control Word last */
2927         cb->control = control;
2928
2929         return 0;
2930 }
2931
2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2933                                  int nr, u32 dest_address, u32 len)
2934 {
2935         int ret, i;
2936         u32 size;
2937
2938         IPW_DEBUG_FW(">>\n");
2939         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940                           nr, dest_address, len);
2941
2942         for (i = 0; i < nr; i++) {
2943                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2944                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2945                                                    dest_address +
2946                                                    i * CB_MAX_LENGTH, size,
2947                                                    0, 0);
2948                 if (ret) {
2949                         IPW_DEBUG_FW_INFO(": Failed\n");
2950                         return -1;
2951                 } else
2952                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2953         }
2954
2955         IPW_DEBUG_FW("<<\n");
2956         return 0;
2957 }
2958
2959 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2960 {
2961         u32 current_index = 0, previous_index;
2962         u32 watchdog = 0;
2963
2964         IPW_DEBUG_FW(">> :\n");
2965
2966         current_index = ipw_fw_dma_command_block_index(priv);
2967         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968                           (int)priv->sram_desc.last_cb_index);
2969
2970         while (current_index < priv->sram_desc.last_cb_index) {
2971                 udelay(50);
2972                 previous_index = current_index;
2973                 current_index = ipw_fw_dma_command_block_index(priv);
2974
2975                 if (previous_index < current_index) {
2976                         watchdog = 0;
2977                         continue;
2978                 }
2979                 if (++watchdog > 400) {
2980                         IPW_DEBUG_FW_INFO("Timeout\n");
2981                         ipw_fw_dma_dump_command_block(priv);
2982                         ipw_fw_dma_abort(priv);
2983                         return -1;
2984                 }
2985         }
2986
2987         ipw_fw_dma_abort(priv);
2988
2989         /*Disable the DMA in the CSR register */
2990         ipw_set_bit(priv, IPW_RESET_REG,
2991                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2992
2993         IPW_DEBUG_FW("<< dmaWaitSync\n");
2994         return 0;
2995 }
2996
2997 static void ipw_remove_current_network(struct ipw_priv *priv)
2998 {
2999         struct list_head *element, *safe;
3000         struct libipw_network *network = NULL;
3001         unsigned long flags;
3002
3003         spin_lock_irqsave(&priv->ieee->lock, flags);
3004         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3005                 network = list_entry(element, struct libipw_network, list);
3006                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3007                         list_del(element);
3008                         list_add_tail(&network->list,
3009                                       &priv->ieee->network_free_list);
3010                 }
3011         }
3012         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3013 }
3014
3015 /**
3016  * Check that card is still alive.
3017  * Reads debug register from domain0.
3018  * If card is present, pre-defined value should
3019  * be found there.
3020  *
3021  * @param priv
3022  * @return 1 if card is present, 0 otherwise
3023  */
3024 static inline int ipw_alive(struct ipw_priv *priv)
3025 {
3026         return ipw_read32(priv, 0x90) == 0xd55555d5;
3027 }
3028
3029 /* timeout in msec, attempted in 10-msec quanta */
3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3031                                int timeout)
3032 {
3033         int i = 0;
3034
3035         do {
3036                 if ((ipw_read32(priv, addr) & mask) == mask)
3037                         return i;
3038                 mdelay(10);
3039                 i += 10;
3040         } while (i < timeout);
3041
3042         return -ETIME;
3043 }
3044
3045 /* These functions load the firmware and micro code for the operation of
3046  * the ipw hardware.  It assumes the buffer has all the bits for the
3047  * image and the caller is handling the memory allocation and clean up.
3048  */
3049
3050 static int ipw_stop_master(struct ipw_priv *priv)
3051 {
3052         int rc;
3053
3054         IPW_DEBUG_TRACE(">>\n");
3055         /* stop master. typical delay - 0 */
3056         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3057
3058         /* timeout is in msec, polled in 10-msec quanta */
3059         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3060                           IPW_RESET_REG_MASTER_DISABLED, 100);
3061         if (rc < 0) {
3062                 IPW_ERROR("wait for stop master failed after 100ms\n");
3063                 return -1;
3064         }
3065
3066         IPW_DEBUG_INFO("stop master %dms\n", rc);
3067
3068         return rc;
3069 }
3070
3071 static void ipw_arc_release(struct ipw_priv *priv)
3072 {
3073         IPW_DEBUG_TRACE(">>\n");
3074         mdelay(5);
3075
3076         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3077
3078         /* no one knows timing, for safety add some delay */
3079         mdelay(5);
3080 }
3081
3082 struct fw_chunk {
3083         __le32 address;
3084         __le32 length;
3085 };
3086
3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3088 {
3089         int rc = 0, i, addr;
3090         u8 cr = 0;
3091         __le16 *image;
3092
3093         image = (__le16 *) data;
3094
3095         IPW_DEBUG_TRACE(">>\n");
3096
3097         rc = ipw_stop_master(priv);
3098
3099         if (rc < 0)
3100                 return rc;
3101
3102         for (addr = IPW_SHARED_LOWER_BOUND;
3103              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3104                 ipw_write32(priv, addr, 0);
3105         }
3106
3107         /* no ucode (yet) */
3108         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3109         /* destroy DMA queues */
3110         /* reset sequence */
3111
3112         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3113         ipw_arc_release(priv);
3114         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3115         mdelay(1);
3116
3117         /* reset PHY */
3118         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3119         mdelay(1);
3120
3121         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3122         mdelay(1);
3123
3124         /* enable ucode store */
3125         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3126         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3127         mdelay(1);
3128
3129         /* write ucode */
3130         /**
3131          * @bug
3132          * Do NOT set indirect address register once and then
3133          * store data to indirect data register in the loop.
3134          * It seems very reasonable, but in this case DINO do not
3135          * accept ucode. It is essential to set address each time.
3136          */
3137         /* load new ipw uCode */
3138         for (i = 0; i < len / 2; i++)
3139                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3140                                 le16_to_cpu(image[i]));
3141
3142         /* enable DINO */
3143         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3145
3146         /* this is where the igx / win driver deveates from the VAP driver. */
3147
3148         /* wait for alive response */
3149         for (i = 0; i < 100; i++) {
3150                 /* poll for incoming data */
3151                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3152                 if (cr & DINO_RXFIFO_DATA)
3153                         break;
3154                 mdelay(1);
3155         }
3156
3157         if (cr & DINO_RXFIFO_DATA) {
3158                 /* alive_command_responce size is NOT multiple of 4 */
3159                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3160
3161                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3162                         response_buffer[i] =
3163                             cpu_to_le32(ipw_read_reg32(priv,
3164                                                        IPW_BASEBAND_RX_FIFO_READ));
3165                 memcpy(&priv->dino_alive, response_buffer,
3166                        sizeof(priv->dino_alive));
3167                 if (priv->dino_alive.alive_command == 1
3168                     && priv->dino_alive.ucode_valid == 1) {
3169                         rc = 0;
3170                         IPW_DEBUG_INFO
3171                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172                              "of %02d/%02d/%02d %02d:%02d\n",
3173                              priv->dino_alive.software_revision,
3174                              priv->dino_alive.software_revision,
3175                              priv->dino_alive.device_identifier,
3176                              priv->dino_alive.device_identifier,
3177                              priv->dino_alive.time_stamp[0],
3178                              priv->dino_alive.time_stamp[1],
3179                              priv->dino_alive.time_stamp[2],
3180                              priv->dino_alive.time_stamp[3],
3181                              priv->dino_alive.time_stamp[4]);
3182                 } else {
3183                         IPW_DEBUG_INFO("Microcode is not alive\n");
3184                         rc = -EINVAL;
3185                 }
3186         } else {
3187                 IPW_DEBUG_INFO("No alive response from DINO\n");
3188                 rc = -ETIME;
3189         }
3190
3191         /* disable DINO, otherwise for some reason
3192            firmware have problem getting alive resp. */
3193         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3194
3195         return rc;
3196 }
3197
3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3199 {
3200         int ret = -1;
3201         int offset = 0;
3202         struct fw_chunk *chunk;
3203         int total_nr = 0;
3204         int i;
3205         struct pci_pool *pool;
3206         void **virts;
3207         dma_addr_t *phys;
3208
3209         IPW_DEBUG_TRACE("<< :\n");
3210
3211         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3212                         GFP_KERNEL);
3213         if (!virts)
3214                 return -ENOMEM;
3215
3216         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3217                         GFP_KERNEL);
3218         if (!phys) {
3219                 kfree(virts);
3220                 return -ENOMEM;
3221         }
3222         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3223         if (!pool) {
3224                 IPW_ERROR("pci_pool_create failed\n");
3225                 kfree(phys);
3226                 kfree(virts);
3227                 return -ENOMEM;
3228         }
3229
3230         /* Start the Dma */
3231         ret = ipw_fw_dma_enable(priv);
3232
3233         /* the DMA is already ready this would be a bug. */
3234         BUG_ON(priv->sram_desc.last_cb_index > 0);
3235
3236         do {
3237                 u32 chunk_len;
3238                 u8 *start;
3239                 int size;
3240                 int nr = 0;
3241
3242                 chunk = (struct fw_chunk *)(data + offset);
3243                 offset += sizeof(struct fw_chunk);
3244                 chunk_len = le32_to_cpu(chunk->length);
3245                 start = data + offset;
3246
3247                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3248                 for (i = 0; i < nr; i++) {
3249                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3250                                                          &phys[total_nr]);
3251                         if (!virts[total_nr]) {
3252                                 ret = -ENOMEM;
3253                                 goto out;
3254                         }
3255                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3256                                      CB_MAX_LENGTH);
3257                         memcpy(virts[total_nr], start, size);
3258                         start += size;
3259                         total_nr++;
3260                         /* We don't support fw chunk larger than 64*8K */
3261                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3262                 }
3263
3264                 /* build DMA packet and queue up for sending */
3265                 /* dma to chunk->address, the chunk->length bytes from data +
3266                  * offeset*/
3267                 /* Dma loading */
3268                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3269                                             nr, le32_to_cpu(chunk->address),
3270                                             chunk_len);
3271                 if (ret) {
3272                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3273                         goto out;
3274                 }
3275
3276                 offset += chunk_len;
3277         } while (offset < len);
3278
3279         /* Run the DMA and wait for the answer */
3280         ret = ipw_fw_dma_kick(priv);
3281         if (ret) {
3282                 IPW_ERROR("dmaKick Failed\n");
3283                 goto out;
3284         }
3285
3286         ret = ipw_fw_dma_wait(priv);
3287         if (ret) {
3288                 IPW_ERROR("dmaWaitSync Failed\n");
3289                 goto out;
3290         }
3291  out:
3292         for (i = 0; i < total_nr; i++)
3293                 pci_pool_free(pool, virts[i], phys[i]);
3294
3295         pci_pool_destroy(pool);
3296         kfree(phys);
3297         kfree(virts);
3298
3299         return ret;
3300 }
3301
3302 /* stop nic */
3303 static int ipw_stop_nic(struct ipw_priv *priv)
3304 {
3305         int rc = 0;
3306
3307         /* stop */
3308         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3309
3310         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3311                           IPW_RESET_REG_MASTER_DISABLED, 500);
3312         if (rc < 0) {
3313                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3314                 return rc;
3315         }
3316
3317         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3318
3319         return rc;
3320 }
3321
3322 static void ipw_start_nic(struct ipw_priv *priv)
3323 {
3324         IPW_DEBUG_TRACE(">>\n");
3325
3326         /* prvHwStartNic  release ARC */
3327         ipw_clear_bit(priv, IPW_RESET_REG,
3328                       IPW_RESET_REG_MASTER_DISABLED |
3329                       IPW_RESET_REG_STOP_MASTER |
3330                       CBD_RESET_REG_PRINCETON_RESET);
3331
3332         /* enable power management */
3333         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3334                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3335
3336         IPW_DEBUG_TRACE("<<\n");
3337 }
3338
3339 static int ipw_init_nic(struct ipw_priv *priv)
3340 {
3341         int rc;
3342
3343         IPW_DEBUG_TRACE(">>\n");
3344         /* reset */
3345         /*prvHwInitNic */
3346         /* set "initialization complete" bit to move adapter to D0 state */
3347         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3348
3349         /* low-level PLL activation */
3350         ipw_write32(priv, IPW_READ_INT_REGISTER,
3351                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3352
3353         /* wait for clock stabilization */
3354         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3355                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3356         if (rc < 0)
3357                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3358
3359         /* assert SW reset */
3360         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3361
3362         udelay(10);
3363
3364         /* set "initialization complete" bit to move adapter to D0 state */
3365         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3366
3367         IPW_DEBUG_TRACE(">>\n");
3368         return 0;
3369 }
3370
3371 /* Call this function from process context, it will sleep in request_firmware.
3372  * Probe is an ok place to call this from.
3373  */
3374 static int ipw_reset_nic(struct ipw_priv *priv)
3375 {
3376         int rc = 0;
3377         unsigned long flags;
3378
3379         IPW_DEBUG_TRACE(">>\n");
3380
3381         rc = ipw_init_nic(priv);
3382
3383         spin_lock_irqsave(&priv->lock, flags);
3384         /* Clear the 'host command active' bit... */
3385         priv->status &= ~STATUS_HCMD_ACTIVE;
3386         wake_up_interruptible(&priv->wait_command_queue);
3387         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3388         wake_up_interruptible(&priv->wait_state);
3389         spin_unlock_irqrestore(&priv->lock, flags);
3390
3391         IPW_DEBUG_TRACE("<<\n");
3392         return rc;
3393 }
3394
3395
3396 struct ipw_fw {
3397         __le32 ver;
3398         __le32 boot_size;
3399         __le32 ucode_size;
3400         __le32 fw_size;
3401         u8 data[0];
3402 };
3403
3404 static int ipw_get_fw(struct ipw_priv *priv,
3405                       const struct firmware **raw, const char *name)
3406 {
3407         struct ipw_fw *fw;
3408         int rc;
3409
3410         /* ask firmware_class module to get the boot firmware off disk */
3411         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3412         if (rc < 0) {
3413                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3414                 return rc;
3415         }
3416
3417         if ((*raw)->size < sizeof(*fw)) {
3418                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3419                 return -EINVAL;
3420         }
3421
3422         fw = (void *)(*raw)->data;
3423
3424         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3425             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3426                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3427                           name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3432                        name,
3433                        le32_to_cpu(fw->ver) >> 16,
3434                        le32_to_cpu(fw->ver) & 0xff,
3435                        (*raw)->size - sizeof(*fw));
3436         return 0;
3437 }
3438
3439 #define IPW_RX_BUF_SIZE (3000)
3440
3441 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3442                                       struct ipw_rx_queue *rxq)
3443 {
3444         unsigned long flags;
3445         int i;
3446
3447         spin_lock_irqsave(&rxq->lock, flags);
3448
3449         INIT_LIST_HEAD(&rxq->rx_free);
3450         INIT_LIST_HEAD(&rxq->rx_used);
3451
3452         /* Fill the rx_used queue with _all_ of the Rx buffers */
3453         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3454                 /* In the reset function, these buffers may have been allocated
3455                  * to an SKB, so we need to unmap and free potential storage */
3456                 if (rxq->pool[i].skb != NULL) {
3457                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3458                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3459                         dev_kfree_skb(rxq->pool[i].skb);
3460                         rxq->pool[i].skb = NULL;
3461                 }
3462                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3463         }
3464
3465         /* Set us so that we have processed and used all buffers, but have
3466          * not restocked the Rx queue with fresh buffers */
3467         rxq->read = rxq->write = 0;
3468         rxq->free_count = 0;
3469         spin_unlock_irqrestore(&rxq->lock, flags);
3470 }
3471
3472 #ifdef CONFIG_PM
3473 static int fw_loaded = 0;
3474 static const struct firmware *raw = NULL;
3475
3476 static void free_firmware(void)
3477 {
3478         if (fw_loaded) {
3479                 release_firmware(raw);
3480                 raw = NULL;
3481                 fw_loaded = 0;
3482         }
3483 }
3484 #else
3485 #define free_firmware() do {} while (0)
3486 #endif
3487
3488 static int ipw_load(struct ipw_priv *priv)
3489 {
3490 #ifndef CONFIG_PM
3491         const struct firmware *raw = NULL;
3492 #endif
3493         struct ipw_fw *fw;
3494         u8 *boot_img, *ucode_img, *fw_img;
3495         u8 *name = NULL;
3496         int rc = 0, retries = 3;
3497
3498         switch (priv->ieee->iw_mode) {
3499         case IW_MODE_ADHOC:
3500                 name = "ipw2200-ibss.fw";
3501                 break;
3502 #ifdef CONFIG_IPW2200_MONITOR
3503         case IW_MODE_MONITOR:
3504                 name = "ipw2200-sniffer.fw";
3505                 break;
3506 #endif
3507         case IW_MODE_INFRA:
3508                 name = "ipw2200-bss.fw";
3509                 break;
3510         }
3511
3512         if (!name) {
3513                 rc = -EINVAL;
3514                 goto error;
3515         }
3516
3517 #ifdef CONFIG_PM
3518         if (!fw_loaded) {
3519 #endif
3520                 rc = ipw_get_fw(priv, &raw, name);
3521                 if (rc < 0)
3522                         goto error;
3523 #ifdef CONFIG_PM
3524         }
3525 #endif
3526
3527         fw = (void *)raw->data;
3528         boot_img = &fw->data[0];
3529         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3530         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3531                            le32_to_cpu(fw->ucode_size)];
3532
3533         if (rc < 0)
3534                 goto error;
3535
3536         if (!priv->rxq)
3537                 priv->rxq = ipw_rx_queue_alloc(priv);
3538         else
3539                 ipw_rx_queue_reset(priv, priv->rxq);
3540         if (!priv->rxq) {
3541                 IPW_ERROR("Unable to initialize Rx queue\n");
3542                 goto error;
3543         }
3544
3545       retry:
3546         /* Ensure interrupts are disabled */
3547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3548         priv->status &= ~STATUS_INT_ENABLED;
3549
3550         /* ack pending interrupts */
3551         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3552
3553         ipw_stop_nic(priv);
3554
3555         rc = ipw_reset_nic(priv);
3556         if (rc < 0) {
3557                 IPW_ERROR("Unable to reset NIC\n");
3558                 goto error;
3559         }
3560
3561         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3562                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3563
3564         /* DMA the initial boot firmware into the device */
3565         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3566         if (rc < 0) {
3567                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3568                 goto error;
3569         }
3570
3571         /* kick start the device */
3572         ipw_start_nic(priv);
3573
3574         /* wait for the device to finish its initial startup sequence */
3575         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577         if (rc < 0) {
3578                 IPW_ERROR("device failed to boot initial fw image\n");
3579                 goto error;
3580         }
3581         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3582
3583         /* ack fw init done interrupt */
3584         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585
3586         /* DMA the ucode into the device */
3587         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3588         if (rc < 0) {
3589                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3590                 goto error;
3591         }
3592
3593         /* stop nic */
3594         ipw_stop_nic(priv);
3595
3596         /* DMA bss firmware into the device */
3597         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3598         if (rc < 0) {
3599                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3600                 goto error;
3601         }
3602 #ifdef CONFIG_PM
3603         fw_loaded = 1;
3604 #endif
3605
3606         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3607
3608         rc = ipw_queue_reset(priv);
3609         if (rc < 0) {
3610                 IPW_ERROR("Unable to initialize queues\n");
3611                 goto error;
3612         }
3613
3614         /* Ensure interrupts are disabled */
3615         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3616         /* ack pending interrupts */
3617         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3618
3619         /* kick start the device */
3620         ipw_start_nic(priv);
3621
3622         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3623                 if (retries > 0) {
3624                         IPW_WARNING("Parity error.  Retrying init.\n");
3625                         retries--;
3626                         goto retry;
3627                 }
3628
3629                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3630                 rc = -EIO;
3631                 goto error;
3632         }
3633
3634         /* wait for the device */
3635         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3636                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3637         if (rc < 0) {
3638                 IPW_ERROR("device failed to start within 500ms\n");
3639                 goto error;
3640         }
3641         IPW_DEBUG_INFO("device response after %dms\n", rc);
3642
3643         /* ack fw init done interrupt */
3644         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3645
3646         /* read eeprom data and initialize the eeprom region of sram */
3647         priv->eeprom_delay = 1;
3648         ipw_eeprom_init_sram(priv);
3649
3650         /* enable interrupts */
3651         ipw_enable_interrupts(priv);
3652
3653         /* Ensure our queue has valid packets */
3654         ipw_rx_queue_replenish(priv);
3655
3656         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3657
3658         /* ack pending interrupts */
3659         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3660
3661 #ifndef CONFIG_PM
3662         release_firmware(raw);
3663 #endif
3664         return 0;
3665
3666       error:
3667         if (priv->rxq) {
3668                 ipw_rx_queue_free(priv, priv->rxq);
3669                 priv->rxq = NULL;
3670         }
3671         ipw_tx_queue_free(priv);
3672         release_firmware(raw);
3673 #ifdef CONFIG_PM
3674         fw_loaded = 0;
3675         raw = NULL;
3676 #endif
3677
3678         return rc;
3679 }
3680
3681 /**
3682  * DMA services
3683  *
3684  * Theory of operation
3685  *
3686  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3687  * 2 empty entries always kept in the buffer to protect from overflow.
3688  *
3689  * For Tx queue, there are low mark and high mark limits. If, after queuing
3690  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3691  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3692  * Tx queue resumed.
3693  *
3694  * The IPW operates with six queues, one receive queue in the device's
3695  * sram, one transmit queue for sending commands to the device firmware,
3696  * and four transmit queues for data.
3697  *
3698  * The four transmit queues allow for performing quality of service (qos)
3699  * transmissions as per the 802.11 protocol.  Currently Linux does not
3700  * provide a mechanism to the user for utilizing prioritized queues, so
3701  * we only utilize the first data transmit queue (queue1).
3702  */
3703
3704 /**
3705  * Driver allocates buffers of this size for Rx
3706  */
3707
3708 /**
3709  * ipw_rx_queue_space - Return number of free slots available in queue.
3710  */
3711 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3712 {
3713         int s = q->read - q->write;
3714         if (s <= 0)
3715                 s += RX_QUEUE_SIZE;
3716         /* keep some buffer to not confuse full and empty queue */
3717         s -= 2;
3718         if (s < 0)
3719                 s = 0;
3720         return s;
3721 }
3722
3723 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3724 {
3725         int s = q->last_used - q->first_empty;
3726         if (s <= 0)
3727                 s += q->n_bd;
3728         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3729         if (s < 0)
3730                 s = 0;
3731         return s;
3732 }
3733
3734 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3735 {
3736         return (++index == n_bd) ? 0 : index;
3737 }
3738
3739 /**
3740  * Initialize common DMA queue structure
3741  *
3742  * @param q                queue to init
3743  * @param count            Number of BD's to allocate. Should be power of 2
3744  * @param read_register    Address for 'read' register
3745  *                         (not offset within BAR, full address)
3746  * @param write_register   Address for 'write' register
3747  *                         (not offset within BAR, full address)
3748  * @param base_register    Address for 'base' register
3749  *                         (not offset within BAR, full address)
3750  * @param size             Address for 'size' register
3751  *                         (not offset within BAR, full address)
3752  */
3753 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3754                            int count, u32 read, u32 write, u32 base, u32 size)
3755 {
3756         q->n_bd = count;
3757
3758         q->low_mark = q->n_bd / 4;
3759         if (q->low_mark < 4)
3760                 q->low_mark = 4;
3761
3762         q->high_mark = q->n_bd / 8;
3763         if (q->high_mark < 2)
3764                 q->high_mark = 2;
3765
3766         q->first_empty = q->last_used = 0;
3767         q->reg_r = read;
3768         q->reg_w = write;
3769
3770         ipw_write32(priv, base, q->dma_addr);
3771         ipw_write32(priv, size, count);
3772         ipw_write32(priv, read, 0);
3773         ipw_write32(priv, write, 0);
3774
3775         _ipw_read32(priv, 0x90);
3776 }
3777
3778 static int ipw_queue_tx_init(struct ipw_priv *priv,
3779                              struct clx2_tx_queue *q,
3780                              int count, u32 read, u32 write, u32 base, u32 size)
3781 {
3782         struct pci_dev *dev = priv->pci_dev;
3783
3784         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3785         if (!q->txb) {
3786                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3787                 return -ENOMEM;
3788         }
3789
3790         q->bd =
3791             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3792         if (!q->bd) {
3793                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3794                           sizeof(q->bd[0]) * count);
3795                 kfree(q->txb);
3796                 q->txb = NULL;
3797                 return -ENOMEM;
3798         }
3799
3800         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3801         return 0;
3802 }
3803
3804 /**
3805  * Free one TFD, those at index [txq->q.last_used].
3806  * Do NOT advance any indexes
3807  *
3808  * @param dev
3809  * @param txq
3810  */
3811 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3812                                   struct clx2_tx_queue *txq)
3813 {
3814         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3815         struct pci_dev *dev = priv->pci_dev;
3816         int i;
3817
3818         /* classify bd */
3819         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3820                 /* nothing to cleanup after for host commands */
3821                 return;
3822
3823         /* sanity check */
3824         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3825                 IPW_ERROR("Too many chunks: %i\n",
3826                           le32_to_cpu(bd->u.data.num_chunks));
3827                 /** @todo issue fatal error, it is quite serious situation */
3828                 return;
3829         }
3830
3831         /* unmap chunks if any */
3832         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3833                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3834                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3835                                  PCI_DMA_TODEVICE);
3836                 if (txq->txb[txq->q.last_used]) {
3837                         libipw_txb_free(txq->txb[txq->q.last_used]);
3838                         txq->txb[txq->q.last_used] = NULL;
3839                 }
3840         }
3841 }
3842
3843 /**
3844  * Deallocate DMA queue.
3845  *
3846  * Empty queue by removing and destroying all BD's.
3847  * Free all buffers.
3848  *
3849  * @param dev
3850  * @param q
3851  */
3852 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3853 {
3854         struct clx2_queue *q = &txq->q;
3855         struct pci_dev *dev = priv->pci_dev;
3856
3857         if (q->n_bd == 0)
3858                 return;
3859
3860         /* first, empty all BD's */
3861         for (; q->first_empty != q->last_used;
3862              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3863                 ipw_queue_tx_free_tfd(priv, txq);
3864         }
3865
3866         /* free buffers belonging to queue itself */
3867         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3868                             q->dma_addr);
3869         kfree(txq->txb);
3870
3871         /* 0 fill whole structure */
3872         memset(txq, 0, sizeof(*txq));
3873 }
3874
3875 /**
3876  * Destroy all DMA queues and structures
3877  *
3878  * @param priv
3879  */
3880 static void ipw_tx_queue_free(struct ipw_priv *priv)
3881 {
3882         /* Tx CMD queue */
3883         ipw_queue_tx_free(priv, &priv->txq_cmd);
3884
3885         /* Tx queues */
3886         ipw_queue_tx_free(priv, &priv->txq[0]);
3887         ipw_queue_tx_free(priv, &priv->txq[1]);
3888         ipw_queue_tx_free(priv, &priv->txq[2]);
3889         ipw_queue_tx_free(priv, &priv->txq[3]);
3890 }
3891
3892 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3893 {
3894         /* First 3 bytes are manufacturer */
3895         bssid[0] = priv->mac_addr[0];
3896         bssid[1] = priv->mac_addr[1];
3897         bssid[2] = priv->mac_addr[2];
3898
3899         /* Last bytes are random */
3900         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3901
3902         bssid[0] &= 0xfe;       /* clear multicast bit */
3903         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3904 }
3905
3906 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3907 {
3908         struct ipw_station_entry entry;
3909         int i;
3910
3911         for (i = 0; i < priv->num_stations; i++) {
3912                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3913                         /* Another node is active in network */
3914                         priv->missed_adhoc_beacons = 0;
3915                         if (!(priv->config & CFG_STATIC_CHANNEL))
3916                                 /* when other nodes drop out, we drop out */
3917                                 priv->config &= ~CFG_ADHOC_PERSIST;
3918
3919                         return i;
3920                 }
3921         }
3922
3923         if (i == MAX_STATIONS)
3924                 return IPW_INVALID_STATION;
3925
3926         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3927
3928         entry.reserved = 0;
3929         entry.support_mode = 0;
3930         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3931         memcpy(priv->stations[i], bssid, ETH_ALEN);
3932         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3933                          &entry, sizeof(entry));
3934         priv->num_stations++;
3935
3936         return i;
3937 }
3938
3939 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3940 {
3941         int i;
3942
3943         for (i = 0; i < priv->num_stations; i++)
3944                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3945                         return i;
3946
3947         return IPW_INVALID_STATION;
3948 }
3949
3950 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3951 {
3952         int err;
3953
3954         if (priv->status & STATUS_ASSOCIATING) {
3955                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3956                 schedule_work(&priv->disassociate);
3957                 return;
3958         }
3959
3960         if (!(priv->status & STATUS_ASSOCIATED)) {
3961                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3962                 return;
3963         }
3964
3965         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3966                         "on channel %d.\n",
3967                         priv->assoc_request.bssid,
3968                         priv->assoc_request.channel);
3969
3970         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3971         priv->status |= STATUS_DISASSOCIATING;
3972
3973         if (quiet)
3974                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3975         else
3976                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3977
3978         err = ipw_send_associate(priv, &priv->assoc_request);
3979         if (err) {
3980                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3981                              "failed.\n");
3982                 return;
3983         }
3984
3985 }
3986
3987 static int ipw_disassociate(void *data)
3988 {
3989         struct ipw_priv *priv = data;
3990         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3991                 return 0;
3992         ipw_send_disassociate(data, 0);
3993         netif_carrier_off(priv->net_dev);
3994         return 1;
3995 }
3996
3997 static void ipw_bg_disassociate(struct work_struct *work)
3998 {
3999         struct ipw_priv *priv =
4000                 container_of(work, struct ipw_priv, disassociate);
4001         mutex_lock(&priv->mutex);
4002         ipw_disassociate(priv);
4003         mutex_unlock(&priv->mutex);
4004 }
4005
4006 static void ipw_system_config(struct work_struct *work)
4007 {
4008         struct ipw_priv *priv =
4009                 container_of(work, struct ipw_priv, system_config);
4010
4011 #ifdef CONFIG_IPW2200_PROMISCUOUS
4012         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4013                 priv->sys_config.accept_all_data_frames = 1;
4014                 priv->sys_config.accept_non_directed_frames = 1;
4015                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4016                 priv->sys_config.accept_all_mgmt_frames = 1;
4017         }
4018 #endif
4019
4020         ipw_send_system_config(priv);
4021 }
4022
4023 struct ipw_status_code {
4024         u16 status;
4025         const char *reason;
4026 };
4027
4028 static const struct ipw_status_code ipw_status_codes[] = {
4029         {0x00, "Successful"},
4030         {0x01, "Unspecified failure"},
4031         {0x0A, "Cannot support all requested capabilities in the "
4032          "Capability information field"},
4033         {0x0B, "Reassociation denied due to inability to confirm that "
4034          "association exists"},
4035         {0x0C, "Association denied due to reason outside the scope of this "
4036          "standard"},
4037         {0x0D,
4038          "Responding station does not support the specified authentication "
4039          "algorithm"},
4040         {0x0E,
4041          "Received an Authentication frame with authentication sequence "
4042          "transaction sequence number out of expected sequence"},
4043         {0x0F, "Authentication rejected because of challenge failure"},
4044         {0x10, "Authentication rejected due to timeout waiting for next "
4045          "frame in sequence"},
4046         {0x11, "Association denied because AP is unable to handle additional "
4047          "associated stations"},
4048         {0x12,
4049          "Association denied due to requesting station not supporting all "
4050          "of the datarates in the BSSBasicServiceSet Parameter"},
4051         {0x13,
4052          "Association denied due to requesting station not supporting "
4053          "short preamble operation"},
4054         {0x14,
4055          "Association denied due to requesting station not supporting "
4056          "PBCC encoding"},
4057         {0x15,
4058          "Association denied due to requesting station not supporting "
4059          "channel agility"},
4060         {0x19,
4061          "Association denied due to requesting station not supporting "
4062          "short slot operation"},
4063         {0x1A,
4064          "Association denied due to requesting station not supporting "
4065          "DSSS-OFDM operation"},
4066         {0x28, "Invalid Information Element"},
4067         {0x29, "Group Cipher is not valid"},
4068         {0x2A, "Pairwise Cipher is not valid"},
4069         {0x2B, "AKMP is not valid"},
4070         {0x2C, "Unsupported RSN IE version"},
4071         {0x2D, "Invalid RSN IE Capabilities"},
4072         {0x2E, "Cipher suite is rejected per security policy"},
4073 };
4074
4075 static const char *ipw_get_status_code(u16 status)
4076 {
4077         int i;
4078         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4079                 if (ipw_status_codes[i].status == (status & 0xff))
4080                         return ipw_status_codes[i].reason;
4081         return "Unknown status value.";
4082 }
4083
4084 static void inline average_init(struct average *avg)
4085 {
4086         memset(avg, 0, sizeof(*avg));
4087 }
4088
4089 #define DEPTH_RSSI 8
4090 #define DEPTH_NOISE 16
4091 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4092 {
4093         return ((depth-1)*prev_avg +  val)/depth;
4094 }
4095
4096 static void average_add(struct average *avg, s16 val)
4097 {
4098         avg->sum -= avg->entries[avg->pos];
4099         avg->sum += val;
4100         avg->entries[avg->pos++] = val;
4101         if (unlikely(avg->pos == AVG_ENTRIES)) {
4102                 avg->init = 1;
4103                 avg->pos = 0;
4104         }
4105 }
4106
4107 static s16 average_value(struct average *avg)
4108 {
4109         if (!unlikely(avg->init)) {
4110                 if (avg->pos)
4111                         return avg->sum / avg->pos;
4112                 return 0;
4113         }
4114
4115         return avg->sum / AVG_ENTRIES;
4116 }
4117
4118 static void ipw_reset_stats(struct ipw_priv *priv)
4119 {
4120         u32 len = sizeof(u32);
4121
4122         priv->quality = 0;
4123
4124         average_init(&priv->average_missed_beacons);
4125         priv->exp_avg_rssi = -60;
4126         priv->exp_avg_noise = -85 + 0x100;
4127
4128         priv->last_rate = 0;
4129         priv->last_missed_beacons = 0;
4130         priv->last_rx_packets = 0;
4131         priv->last_tx_packets = 0;
4132         priv->last_tx_failures = 0;
4133
4134         /* Firmware managed, reset only when NIC is restarted, so we have to
4135          * normalize on the current value */
4136         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4137                         &priv->last_rx_err, &len);
4138         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4139                         &priv->last_tx_failures, &len);
4140
4141         /* Driver managed, reset with each association */
4142         priv->missed_adhoc_beacons = 0;
4143         priv->missed_beacons = 0;
4144         priv->tx_packets = 0;
4145         priv->rx_packets = 0;
4146
4147 }
4148
4149 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4150 {
4151         u32 i = 0x80000000;
4152         u32 mask = priv->rates_mask;
4153         /* If currently associated in B mode, restrict the maximum
4154          * rate match to B rates */
4155         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4156                 mask &= LIBIPW_CCK_RATES_MASK;
4157
4158         /* TODO: Verify that the rate is supported by the current rates
4159          * list. */
4160
4161         while (i && !(mask & i))
4162                 i >>= 1;
4163         switch (i) {
4164         case LIBIPW_CCK_RATE_1MB_MASK:
4165                 return 1000000;
4166         case LIBIPW_CCK_RATE_2MB_MASK:
4167                 return 2000000;
4168         case LIBIPW_CCK_RATE_5MB_MASK:
4169                 return 5500000;
4170         case LIBIPW_OFDM_RATE_6MB_MASK:
4171                 return 6000000;
4172         case LIBIPW_OFDM_RATE_9MB_MASK:
4173                 return 9000000;
4174         case LIBIPW_CCK_RATE_11MB_MASK:
4175                 return 11000000;
4176         case LIBIPW_OFDM_RATE_12MB_MASK:
4177                 return 12000000;
4178         case LIBIPW_OFDM_RATE_18MB_MASK:
4179                 return 18000000;
4180         case LIBIPW_OFDM_RATE_24MB_MASK:
4181                 return 24000000;
4182         case LIBIPW_OFDM_RATE_36MB_MASK:
4183                 return 36000000;
4184         case LIBIPW_OFDM_RATE_48MB_MASK:
4185                 return 48000000;
4186         case LIBIPW_OFDM_RATE_54MB_MASK:
4187                 return 54000000;
4188         }
4189
4190         if (priv->ieee->mode == IEEE_B)
4191                 return 11000000;
4192         else
4193                 return 54000000;
4194 }
4195
4196 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4197 {
4198         u32 rate, len = sizeof(rate);
4199         int err;
4200
4201         if (!(priv->status & STATUS_ASSOCIATED))
4202                 return 0;
4203
4204         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4205                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4206                                       &len);
4207                 if (err) {
4208                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4209                         return 0;
4210                 }
4211         } else
4212                 return ipw_get_max_rate(priv);
4213
4214         switch (rate) {
4215         case IPW_TX_RATE_1MB:
4216                 return 1000000;
4217         case IPW_TX_RATE_2MB:
4218                 return 2000000;
4219         case IPW_TX_RATE_5MB:
4220                 return 5500000;
4221         case IPW_TX_RATE_6MB:
4222                 return 6000000;
4223         case IPW_TX_RATE_9MB:
4224                 return 9000000;
4225         case IPW_TX_RATE_11MB:
4226                 return 11000000;
4227         case IPW_TX_RATE_12MB:
4228                 return 12000000;
4229         case IPW_TX_RATE_18MB:
4230                 return 18000000;
4231         case IPW_TX_RATE_24MB:
4232                 return 24000000;
4233         case IPW_TX_RATE_36MB:
4234                 return 36000000;
4235         case IPW_TX_RATE_48MB:
4236                 return 48000000;
4237         case IPW_TX_RATE_54MB:
4238                 return 54000000;
4239         }
4240
4241         return 0;
4242 }
4243
4244 #define IPW_STATS_INTERVAL (2 * HZ)
4245 static void ipw_gather_stats(struct ipw_priv *priv)
4246 {
4247         u32 rx_err, rx_err_delta, rx_packets_delta;
4248         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4249         u32 missed_beacons_percent, missed_beacons_delta;
4250         u32 quality = 0;
4251         u32 len = sizeof(u32);
4252         s16 rssi;
4253         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4254             rate_quality;
4255         u32 max_rate;
4256
4257         if (!(priv->status & STATUS_ASSOCIATED)) {
4258                 priv->quality = 0;
4259                 return;
4260         }
4261
4262         /* Update the statistics */
4263         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4264                         &priv->missed_beacons, &len);
4265         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4266         priv->last_missed_beacons = priv->missed_beacons;
4267         if (priv->assoc_request.beacon_interval) {
4268                 missed_beacons_percent = missed_beacons_delta *
4269                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4270                     (IPW_STATS_INTERVAL * 10);
4271         } else {
4272                 missed_beacons_percent = 0;
4273         }
4274         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4275
4276         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4277         rx_err_delta = rx_err - priv->last_rx_err;
4278         priv->last_rx_err = rx_err;
4279
4280         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4281         tx_failures_delta = tx_failures - priv->last_tx_failures;
4282         priv->last_tx_failures = tx_failures;
4283
4284         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4285         priv->last_rx_packets = priv->rx_packets;
4286
4287         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4288         priv->last_tx_packets = priv->tx_packets;
4289
4290         /* Calculate quality based on the following:
4291          *
4292          * Missed beacon: 100% = 0, 0% = 70% missed
4293          * Rate: 60% = 1Mbs, 100% = Max
4294          * Rx and Tx errors represent a straight % of total Rx/Tx
4295          * RSSI: 100% = > -50,  0% = < -80
4296          * Rx errors: 100% = 0, 0% = 50% missed
4297          *
4298          * The lowest computed quality is used.
4299          *
4300          */
4301 #define BEACON_THRESHOLD 5
4302         beacon_quality = 100 - missed_beacons_percent;
4303         if (beacon_quality < BEACON_THRESHOLD)
4304                 beacon_quality = 0;
4305         else
4306                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4307                     (100 - BEACON_THRESHOLD);
4308         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4309                         beacon_quality, missed_beacons_percent);
4310
4311         priv->last_rate = ipw_get_current_rate(priv);
4312         max_rate = ipw_get_max_rate(priv);
4313         rate_quality = priv->last_rate * 40 / max_rate + 60;
4314         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4315                         rate_quality, priv->last_rate / 1000000);
4316
4317         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4318                 rx_quality = 100 - (rx_err_delta * 100) /
4319                     (rx_packets_delta + rx_err_delta);
4320         else
4321                 rx_quality = 100;
4322         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4323                         rx_quality, rx_err_delta, rx_packets_delta);
4324
4325         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4326                 tx_quality = 100 - (tx_failures_delta * 100) /
4327                     (tx_packets_delta + tx_failures_delta);
4328         else
4329                 tx_quality = 100;
4330         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4331                         tx_quality, tx_failures_delta, tx_packets_delta);
4332
4333         rssi = priv->exp_avg_rssi;
4334         signal_quality =
4335             (100 *
4336              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4337              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4338              (priv->ieee->perfect_rssi - rssi) *
4339              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4340               62 * (priv->ieee->perfect_rssi - rssi))) /
4341             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4342              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4343         if (signal_quality > 100)
4344                 signal_quality = 100;
4345         else if (signal_quality < 1)
4346                 signal_quality = 0;
4347
4348         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4349                         signal_quality, rssi);
4350
4351         quality = min(rx_quality, signal_quality);
4352         quality = min(tx_quality, quality);
4353         quality = min(rate_quality, quality);
4354         quality = min(beacon_quality, quality);
4355         if (quality == beacon_quality)
4356                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4357                                 quality);
4358         if (quality == rate_quality)
4359                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4360                                 quality);
4361         if (quality == tx_quality)
4362                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4363                                 quality);
4364         if (quality == rx_quality)
4365                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4366                                 quality);
4367         if (quality == signal_quality)
4368                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4369                                 quality);
4370
4371         priv->quality = quality;
4372
4373         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4374 }
4375
4376 static void ipw_bg_gather_stats(struct work_struct *work)
4377 {
4378         struct ipw_priv *priv =
4379                 container_of(work, struct ipw_priv, gather_stats.work);
4380         mutex_lock(&priv->mutex);
4381         ipw_gather_stats(priv);
4382         mutex_unlock(&priv->mutex);
4383 }
4384
4385 /* Missed beacon behavior:
4386  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4387  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4388  * Above disassociate threshold, give up and stop scanning.
4389  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4390 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4391                                             int missed_count)
4392 {
4393         priv->notif_missed_beacons = missed_count;
4394
4395         if (missed_count > priv->disassociate_threshold &&
4396             priv->status & STATUS_ASSOCIATED) {
4397                 /* If associated and we've hit the missed
4398                  * beacon threshold, disassociate, turn
4399                  * off roaming, and abort any active scans */
4400                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4401                           IPW_DL_STATE | IPW_DL_ASSOC,
4402                           "Missed beacon: %d - disassociate\n", missed_count);
4403                 priv->status &= ~STATUS_ROAMING;
4404                 if (priv->status & STATUS_SCANNING) {
4405                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4406                                   IPW_DL_STATE,
4407                                   "Aborting scan with missed beacon.\n");
4408                         schedule_work(&priv->abort_scan);
4409                 }
4410
4411                 schedule_work(&priv->disassociate);
4412                 return;
4413         }
4414
4415         if (priv->status & STATUS_ROAMING) {
4416                 /* If we are currently roaming, then just
4417                  * print a debug statement... */
4418                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4419                           "Missed beacon: %d - roam in progress\n",
4420                           missed_count);
4421                 return;
4422         }
4423
4424         if (roaming &&
4425             (missed_count > priv->roaming_threshold &&
4426              missed_count <= priv->disassociate_threshold)) {
4427                 /* If we are not already roaming, set the ROAM
4428                  * bit in the status and kick off a scan.
4429                  * This can happen several times before we reach
4430                  * disassociate_threshold. */
4431                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4432                           "Missed beacon: %d - initiate "
4433                           "roaming\n", missed_count);
4434                 if (!(priv->status & STATUS_ROAMING)) {
4435                         priv->status |= STATUS_ROAMING;
4436                         if (!(priv->status & STATUS_SCANNING))
4437                                 schedule_delayed_work(&priv->request_scan, 0);
4438                 }
4439                 return;
4440         }
4441
4442         if (priv->status & STATUS_SCANNING &&
4443             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4444                 /* Stop scan to keep fw from getting
4445                  * stuck (only if we aren't roaming --
4446                  * otherwise we'll never scan more than 2 or 3
4447                  * channels..) */
4448                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4449                           "Aborting scan with missed beacon.\n");
4450                 schedule_work(&priv->abort_scan);
4451         }
4452
4453         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4454 }
4455
4456 static void ipw_scan_event(struct work_struct *work)
4457 {
4458         union iwreq_data wrqu;
4459
4460         struct ipw_priv *priv =
4461                 container_of(work, struct ipw_priv, scan_event.work);
4462
4463         wrqu.data.length = 0;
4464         wrqu.data.flags = 0;
4465         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4466 }
4467
4468 static void handle_scan_event(struct ipw_priv *priv)
4469 {
4470         /* Only userspace-requested scan completion events go out immediately */
4471         if (!priv->user_requested_scan) {
4472                 if (!delayed_work_pending(&priv->scan_event))
4473                         schedule_delayed_work(&priv->scan_event,
4474                                               round_jiffies_relative(msecs_to_jiffies(4000)));
4475         } else {
4476                 union iwreq_data wrqu;
4477
4478                 priv->user_requested_scan = 0;
4479                 cancel_delayed_work(&priv->scan_event);
4480
4481                 wrqu.data.length = 0;
4482                 wrqu.data.flags = 0;
4483                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4484         }
4485 }
4486
4487 /**
4488  * Handle host notification packet.
4489  * Called from interrupt routine
4490  */
4491 static void ipw_rx_notification(struct ipw_priv *priv,
4492                                        struct ipw_rx_notification *notif)
4493 {
4494         DECLARE_SSID_BUF(ssid);
4495         u16 size = le16_to_cpu(notif->size);
4496
4497         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4498
4499         switch (notif->subtype) {
4500         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4501                         struct notif_association *assoc = &notif->u.assoc;
4502
4503                         switch (assoc->state) {
4504                         case CMAS_ASSOCIATED:{
4505                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4506                                                   IPW_DL_ASSOC,
4507                                                   "associated: '%s' %pM\n",
4508                                                   print_ssid(ssid, priv->essid,
4509                                                              priv->essid_len),
4510                                                   priv->bssid);
4511
4512                                         switch (priv->ieee->iw_mode) {
4513                                         case IW_MODE_INFRA:
4514                                                 memcpy(priv->ieee->bssid,
4515                                                        priv->bssid, ETH_ALEN);
4516                                                 break;
4517
4518                                         case IW_MODE_ADHOC:
4519                                                 memcpy(priv->ieee->bssid,
4520                                                        priv->bssid, ETH_ALEN);
4521
4522                                                 /* clear out the station table */
4523                                                 priv->num_stations = 0;
4524
4525                                                 IPW_DEBUG_ASSOC
4526                                                     ("queueing adhoc check\n");
4527                                                 schedule_delayed_work(
4528                                                         &priv->adhoc_check,
4529                                                         le16_to_cpu(priv->
4530                                                         assoc_request.
4531                                                         beacon_interval));
4532                                                 break;
4533                                         }
4534
4535                                         priv->status &= ~STATUS_ASSOCIATING;
4536                                         priv->status |= STATUS_ASSOCIATED;
4537                                         schedule_work(&priv->system_config);
4538
4539 #ifdef CONFIG_IPW2200_QOS
4540 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4541                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4542                                         if ((priv->status & STATUS_AUTH) &&
4543                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4544                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4545                                                 if ((sizeof
4546                                                      (struct
4547                                                       libipw_assoc_response)
4548                                                      <= size)
4549                                                     && (size <= 2314)) {
4550                                                         struct
4551                                                         libipw_rx_stats
4552                                                             stats = {
4553                                                                 .len = size - 1,
4554                                                         };
4555
4556                                                         IPW_DEBUG_QOS
4557                                                             ("QoS Associate "
4558                                                              "size %d\n", size);
4559                                                         libipw_rx_mgt(priv->
4560                                                                          ieee,
4561                                                                          (struct
4562                                                                           libipw_hdr_4addr
4563                                                                           *)
4564                                                                          &notif->u.raw, &stats);
4565                                                 }
4566                                         }
4567 #endif
4568
4569                                         schedule_work(&priv->link_up);
4570
4571                                         break;
4572                                 }
4573
4574                         case CMAS_AUTHENTICATED:{
4575                                         if (priv->
4576                                             status & (STATUS_ASSOCIATED |
4577                                                       STATUS_AUTH)) {
4578                                                 struct notif_authenticate *auth
4579                                                     = &notif->u.auth;
4580                                                 IPW_DEBUG(IPW_DL_NOTIF |
4581                                                           IPW_DL_STATE |
4582                                                           IPW_DL_ASSOC,
4583                                                           "deauthenticated: '%s' "
4584                                                           "%pM"
4585                                                           ": (0x%04X) - %s\n",
4586                                                           print_ssid(ssid,
4587                                                                      priv->
4588                                                                      essid,
4589                                                                      priv->
4590                                                                      essid_len),
4591                                                           priv->bssid,
4592                                                           le16_to_cpu(auth->status),
4593                                                           ipw_get_status_code
4594                                                           (le16_to_cpu
4595                                                            (auth->status)));
4596
4597                                                 priv->status &=
4598                                                     ~(STATUS_ASSOCIATING |
4599                                                       STATUS_AUTH |
4600                                                       STATUS_ASSOCIATED);
4601
4602                                                 schedule_work(&priv->link_down);
4603                                                 break;
4604                                         }
4605
4606                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607                                                   IPW_DL_ASSOC,
4608                                                   "authenticated: '%s' %pM\n",
4609                                                   print_ssid(ssid, priv->essid,
4610                                                              priv->essid_len),
4611                                                   priv->bssid);
4612                                         break;
4613                                 }
4614
4615                         case CMAS_INIT:{
4616                                         if (priv->status & STATUS_AUTH) {
4617                                                 struct
4618                                                     libipw_assoc_response
4619                                                 *resp;
4620                                                 resp =
4621                                                     (struct
4622                                                      libipw_assoc_response
4623                                                      *)&notif->u.raw;
4624                                                 IPW_DEBUG(IPW_DL_NOTIF |
4625                                                           IPW_DL_STATE |
4626                                                           IPW_DL_ASSOC,
4627                                                           "association failed (0x%04X): %s\n",
4628                                                           le16_to_cpu(resp->status),
4629                                                           ipw_get_status_code
4630                                                           (le16_to_cpu
4631                                                            (resp->status)));
4632                                         }
4633
4634                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635                                                   IPW_DL_ASSOC,
4636                                                   "disassociated: '%s' %pM\n",
4637                                                   print_ssid(ssid, priv->essid,
4638                                                              priv->essid_len),
4639                                                   priv->bssid);
4640
4641                                         priv->status &=
4642                                             ~(STATUS_DISASSOCIATING |
4643                                               STATUS_ASSOCIATING |
4644                                               STATUS_ASSOCIATED | STATUS_AUTH);
4645                                         if (priv->assoc_network
4646                                             && (priv->assoc_network->
4647                                                 capability &
4648                                                 WLAN_CAPABILITY_IBSS))
4649                                                 ipw_remove_current_network
4650                                                     (priv);
4651
4652                                         schedule_work(&priv->link_down);
4653
4654                                         break;
4655                                 }
4656
4657                         case CMAS_RX_ASSOC_RESP:
4658                                 break;
4659
4660                         default:
4661                                 IPW_ERROR("assoc: unknown (%d)\n",
4662                                           assoc->state);
4663                                 break;
4664                         }
4665
4666                         break;
4667                 }
4668
4669         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4670                         struct notif_authenticate *auth = &notif->u.auth;
4671                         switch (auth->state) {
4672                         case CMAS_AUTHENTICATED:
4673                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4674                                           "authenticated: '%s' %pM\n",
4675                                           print_ssid(ssid, priv->essid,
4676                                                      priv->essid_len),
4677                                           priv->bssid);
4678                                 priv->status |= STATUS_AUTH;
4679                                 break;
4680
4681                         case CMAS_INIT:
4682                                 if (priv->status & STATUS_AUTH) {
4683                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684                                                   IPW_DL_ASSOC,
4685                                                   "authentication failed (0x%04X): %s\n",
4686                                                   le16_to_cpu(auth->status),
4687                                                   ipw_get_status_code(le16_to_cpu
4688                                                                       (auth->
4689                                                                        status)));
4690                                 }
4691                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692                                           IPW_DL_ASSOC,
4693                                           "deauthenticated: '%s' %pM\n",
4694                                           print_ssid(ssid, priv->essid,
4695                                                      priv->essid_len),
4696                                           priv->bssid);
4697
4698                                 priv->status &= ~(STATUS_ASSOCIATING |
4699                                                   STATUS_AUTH |
4700                                                   STATUS_ASSOCIATED);
4701
4702                                 schedule_work(&priv->link_down);
4703                                 break;
4704
4705                         case CMAS_TX_AUTH_SEQ_1:
4706                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4708                                 break;
4709                         case CMAS_RX_AUTH_SEQ_2:
4710                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4712                                 break;
4713                         case CMAS_AUTH_SEQ_1_PASS:
4714                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4716                                 break;
4717                         case CMAS_AUTH_SEQ_1_FAIL:
4718                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4720                                 break;
4721                         case CMAS_TX_AUTH_SEQ_3:
4722                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4724                                 break;
4725                         case CMAS_RX_AUTH_SEQ_4:
4726                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4727                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4728                                 break;
4729                         case CMAS_AUTH_SEQ_2_PASS:
4730                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4732                                 break;
4733                         case CMAS_AUTH_SEQ_2_FAIL:
4734                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4735                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4736                                 break;
4737                         case CMAS_TX_ASSOC:
4738                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4739                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4740                                 break;
4741                         case CMAS_RX_ASSOC_RESP:
4742                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4743                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4744
4745                                 break;
4746                         case CMAS_ASSOCIATED:
4747                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4748                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4749                                 break;
4750                         default:
4751                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4752                                                 auth->state);
4753                                 break;
4754                         }
4755                         break;
4756                 }
4757
4758         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4759                         struct notif_channel_result *x =
4760                             &notif->u.channel_result;
4761
4762                         if (size == sizeof(*x)) {
4763                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4764                                                x->channel_num);
4765                         } else {
4766                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4767                                                "(should be %zd)\n",
4768                                                size, sizeof(*x));
4769                         }
4770                         break;
4771                 }
4772
4773         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4774                         struct notif_scan_complete *x = &notif->u.scan_complete;
4775                         if (size == sizeof(*x)) {
4776                                 IPW_DEBUG_SCAN
4777                                     ("Scan completed: type %d, %d channels, "
4778                                      "%d status\n", x->scan_type,
4779                                      x->num_channels, x->status);
4780                         } else {
4781                                 IPW_ERROR("Scan completed of wrong size %d "
4782                                           "(should be %zd)\n",
4783                                           size, sizeof(*x));
4784                         }
4785
4786                         priv->status &=
4787                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4788
4789                         wake_up_interruptible(&priv->wait_state);
4790                         cancel_delayed_work(&priv->scan_check);
4791
4792                         if (priv->status & STATUS_EXIT_PENDING)
4793                                 break;
4794
4795                         priv->ieee->scans++;
4796
4797 #ifdef CONFIG_IPW2200_MONITOR
4798                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4799                                 priv->status |= STATUS_SCAN_FORCED;
4800                                 schedule_delayed_work(&priv->request_scan, 0);
4801                                 break;
4802                         }
4803                         priv->status &= ~STATUS_SCAN_FORCED;
4804 #endif                          /* CONFIG_IPW2200_MONITOR */
4805
4806                         /* Do queued direct scans first */
4807                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4808                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4809
4810                         if (!(priv->status & (STATUS_ASSOCIATED |
4811                                               STATUS_ASSOCIATING |
4812                                               STATUS_ROAMING |
4813                                               STATUS_DISASSOCIATING)))
4814                                 schedule_work(&priv->associate);
4815                         else if (priv->status & STATUS_ROAMING) {
4816                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4817                                         /* If a scan completed and we are in roam mode, then
4818                                          * the scan that completed was the one requested as a
4819                                          * result of entering roam... so, schedule the
4820                                          * roam work */
4821                                         schedule_work(&priv->roam);
4822                                 else
4823                                         /* Don't schedule if we aborted the scan */
4824                                         priv->status &= ~STATUS_ROAMING;
4825                         } else if (priv->status & STATUS_SCAN_PENDING)
4826                                 schedule_delayed_work(&priv->request_scan, 0);
4827                         else if (priv->config & CFG_BACKGROUND_SCAN
4828                                  && priv->status & STATUS_ASSOCIATED)
4829                                 schedule_delayed_work(&priv->request_scan,
4830                                                       round_jiffies_relative(HZ));
4831
4832                         /* Send an empty event to user space.
4833                          * We don't send the received data on the event because
4834                          * it would require us to do complex transcoding, and
4835                          * we want to minimise the work done in the irq handler
4836                          * Use a request to extract the data.
4837                          * Also, we generate this even for any scan, regardless
4838                          * on how the scan was initiated. User space can just
4839                          * sync on periodic scan to get fresh data...
4840                          * Jean II */
4841                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4842                                 handle_scan_event(priv);
4843                         break;
4844                 }
4845
4846         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4847                         struct notif_frag_length *x = &notif->u.frag_len;
4848
4849                         if (size == sizeof(*x))
4850                                 IPW_ERROR("Frag length: %d\n",
4851                                           le16_to_cpu(x->frag_length));
4852                         else
4853                                 IPW_ERROR("Frag length of wrong size %d "
4854                                           "(should be %zd)\n",
4855                                           size, sizeof(*x));
4856                         break;
4857                 }
4858
4859         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4860                         struct notif_link_deterioration *x =
4861                             &notif->u.link_deterioration;
4862
4863                         if (size == sizeof(*x)) {
4864                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4865                                         "link deterioration: type %d, cnt %d\n",
4866                                         x->silence_notification_type,
4867                                         x->silence_count);
4868                                 memcpy(&priv->last_link_deterioration, x,
4869                                        sizeof(*x));
4870                         } else {
4871                                 IPW_ERROR("Link Deterioration of wrong size %d "
4872                                           "(should be %zd)\n",
4873                                           size, sizeof(*x));
4874                         }
4875                         break;
4876                 }
4877
4878         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4879                         IPW_ERROR("Dino config\n");
4880                         if (priv->hcmd
4881                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4882                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4883
4884                         break;
4885                 }
4886
4887         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4888                         struct notif_beacon_state *x = &notif->u.beacon_state;
4889                         if (size != sizeof(*x)) {
4890                                 IPW_ERROR
4891                                     ("Beacon state of wrong size %d (should "
4892                                      "be %zd)\n", size, sizeof(*x));
4893                                 break;
4894                         }
4895
4896                         if (le32_to_cpu(x->state) ==
4897                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4898                                 ipw_handle_missed_beacon(priv,
4899                                                          le32_to_cpu(x->
4900                                                                      number));
4901
4902                         break;
4903                 }
4904
4905         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4906                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4907                         if (size == sizeof(*x)) {
4908                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4909                                           "0x%02x station %d\n",
4910                                           x->key_state, x->security_type,
4911                                           x->station_index);
4912                                 break;
4913                         }
4914
4915                         IPW_ERROR
4916                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4917                              size, sizeof(*x));
4918                         break;
4919                 }
4920
4921         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4922                         struct notif_calibration *x = &notif->u.calibration;
4923
4924                         if (size == sizeof(*x)) {
4925                                 memcpy(&priv->calib, x, sizeof(*x));
4926                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4927                                 break;
4928                         }
4929
4930                         IPW_ERROR
4931                             ("Calibration of wrong size %d (should be %zd)\n",
4932                              size, sizeof(*x));
4933                         break;
4934                 }
4935
4936         case HOST_NOTIFICATION_NOISE_STATS:{
4937                         if (size == sizeof(u32)) {
4938                                 priv->exp_avg_noise =
4939                                     exponential_average(priv->exp_avg_noise,
4940                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4941                                     DEPTH_NOISE);
4942                                 break;
4943                         }
4944
4945                         IPW_ERROR
4946                             ("Noise stat is wrong size %d (should be %zd)\n",
4947                              size, sizeof(u32));
4948                         break;
4949                 }
4950
4951         default:
4952                 IPW_DEBUG_NOTIF("Unknown notification: "
4953                                 "subtype=%d,flags=0x%2x,size=%d\n",
4954                                 notif->subtype, notif->flags, size);
4955         }
4956 }
4957
4958 /**
4959  * Destroys all DMA structures and initialise them again
4960  *
4961  * @param priv
4962  * @return error code
4963  */
4964 static int ipw_queue_reset(struct ipw_priv *priv)
4965 {
4966         int rc = 0;
4967         /** @todo customize queue sizes */
4968         int nTx = 64, nTxCmd = 8;
4969         ipw_tx_queue_free(priv);
4970         /* Tx CMD queue */
4971         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4972                                IPW_TX_CMD_QUEUE_READ_INDEX,
4973                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4974                                IPW_TX_CMD_QUEUE_BD_BASE,
4975                                IPW_TX_CMD_QUEUE_BD_SIZE);
4976         if (rc) {
4977                 IPW_ERROR("Tx Cmd queue init failed\n");
4978                 goto error;
4979         }
4980         /* Tx queue(s) */
4981         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4982                                IPW_TX_QUEUE_0_READ_INDEX,
4983                                IPW_TX_QUEUE_0_WRITE_INDEX,
4984                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4985         if (rc) {
4986                 IPW_ERROR("Tx 0 queue init failed\n");
4987                 goto error;
4988         }
4989         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4990                                IPW_TX_QUEUE_1_READ_INDEX,
4991                                IPW_TX_QUEUE_1_WRITE_INDEX,
4992                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4993         if (rc) {
4994                 IPW_ERROR("Tx 1 queue init failed\n");
4995                 goto error;
4996         }
4997         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4998                                IPW_TX_QUEUE_2_READ_INDEX,
4999                                IPW_TX_QUEUE_2_WRITE_INDEX,
5000                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5001         if (rc) {
5002                 IPW_ERROR("Tx 2 queue init failed\n");
5003                 goto error;
5004         }
5005         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5006                                IPW_TX_QUEUE_3_READ_INDEX,
5007                                IPW_TX_QUEUE_3_WRITE_INDEX,
5008                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5009         if (rc) {
5010                 IPW_ERROR("Tx 3 queue init failed\n");
5011                 goto error;
5012         }
5013         /* statistics */
5014         priv->rx_bufs_min = 0;
5015         priv->rx_pend_max = 0;
5016         return rc;
5017
5018       error:
5019         ipw_tx_queue_free(priv);
5020         return rc;
5021 }
5022
5023 /**
5024  * Reclaim Tx queue entries no more used by NIC.
5025  *
5026  * When FW advances 'R' index, all entries between old and
5027  * new 'R' index need to be reclaimed. As result, some free space
5028  * forms. If there is enough free space (> low mark), wake Tx queue.
5029  *
5030  * @note Need to protect against garbage in 'R' index
5031  * @param priv
5032  * @param txq
5033  * @param qindex
5034  * @return Number of used entries remains in the queue
5035  */
5036 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5037                                 struct clx2_tx_queue *txq, int qindex)
5038 {
5039         u32 hw_tail;
5040         int used;
5041         struct clx2_queue *q = &txq->q;
5042
5043         hw_tail = ipw_read32(priv, q->reg_r);
5044         if (hw_tail >= q->n_bd) {
5045                 IPW_ERROR
5046                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5047                      hw_tail, q->n_bd);
5048                 goto done;
5049         }
5050         for (; q->last_used != hw_tail;
5051              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5052                 ipw_queue_tx_free_tfd(priv, txq);
5053                 priv->tx_packets++;
5054         }
5055       done:
5056         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5057             (qindex >= 0))
5058                 netif_wake_queue(priv->net_dev);
5059         used = q->first_empty - q->last_used;
5060         if (used < 0)
5061                 used += q->n_bd;
5062
5063         return used;
5064 }
5065
5066 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5067                              int len, int sync)
5068 {
5069         struct clx2_tx_queue *txq = &priv->txq_cmd;
5070         struct clx2_queue *q = &txq->q;
5071         struct tfd_frame *tfd;
5072
5073         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5074                 IPW_ERROR("No space for Tx\n");
5075                 return -EBUSY;
5076         }
5077
5078         tfd = &txq->bd[q->first_empty];
5079         txq->txb[q->first_empty] = NULL;
5080
5081         memset(tfd, 0, sizeof(*tfd));
5082         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5083         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5084         priv->hcmd_seq++;
5085         tfd->u.cmd.index = hcmd;
5086         tfd->u.cmd.length = len;
5087         memcpy(tfd->u.cmd.payload, buf, len);
5088         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5089         ipw_write32(priv, q->reg_w, q->first_empty);
5090         _ipw_read32(priv, 0x90);
5091
5092         return 0;
5093 }
5094
5095 /*
5096  * Rx theory of operation
5097  *
5098  * The host allocates 32 DMA target addresses and passes the host address
5099  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5100  * 0 to 31
5101  *
5102  * Rx Queue Indexes
5103  * The host/firmware share two index registers for managing the Rx buffers.
5104  *
5105  * The READ index maps to the first position that the firmware may be writing
5106  * to -- the driver can read up to (but not including) this position and get
5107  * good data.
5108  * The READ index is managed by the firmware once the card is enabled.
5109  *
5110  * The WRITE index maps to the last position the driver has read from -- the
5111  * position preceding WRITE is the last slot the firmware can place a packet.
5112  *
5113  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5114  * WRITE = READ.
5115  *
5116  * During initialization the host sets up the READ queue position to the first
5117  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5118  *
5119  * When the firmware places a packet in a buffer it will advance the READ index
5120  * and fire the RX interrupt.  The driver can then query the READ index and
5121  * process as many packets as possible, moving the WRITE index forward as it
5122  * resets the Rx queue buffers with new memory.
5123  *
5124  * The management in the driver is as follows:
5125  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5126  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5127  *   to replensish the ipw->rxq->rx_free.
5128  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5129  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5130  *   'processed' and 'read' driver indexes as well)
5131  * + A received packet is processed and handed to the kernel network stack,
5132  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5133  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5134  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5135  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5136  *   were enough free buffers and RX_STALLED is set it is cleared.
5137  *
5138  *
5139  * Driver sequence:
5140  *
5141  * ipw_rx_queue_alloc()       Allocates rx_free
5142  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5143  *                            ipw_rx_queue_restock
5144  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5145  *                            queue, updates firmware pointers, and updates
5146  *                            the WRITE index.  If insufficient rx_free buffers
5147  *                            are available, schedules ipw_rx_queue_replenish
5148  *
5149  * -- enable interrupts --
5150  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5151  *                            READ INDEX, detaching the SKB from the pool.
5152  *                            Moves the packet buffer from queue to rx_used.
5153  *                            Calls ipw_rx_queue_restock to refill any empty
5154  *                            slots.
5155  * ...
5156  *
5157  */
5158
5159 /*
5160  * If there are slots in the RX queue that  need to be restocked,
5161  * and we have free pre-allocated buffers, fill the ranks as much
5162  * as we can pulling from rx_free.
5163  *
5164  * This moves the 'write' index forward to catch up with 'processed', and
5165  * also updates the memory address in the firmware to reference the new
5166  * target buffer.
5167  */
5168 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5169 {
5170         struct ipw_rx_queue *rxq = priv->rxq;
5171         struct list_head *element;
5172         struct ipw_rx_mem_buffer *rxb;
5173         unsigned long flags;
5174         int write;
5175
5176         spin_lock_irqsave(&rxq->lock, flags);
5177         write = rxq->write;
5178         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5179                 element = rxq->rx_free.next;
5180                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5181                 list_del(element);
5182
5183                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5184                             rxb->dma_addr);
5185                 rxq->queue[rxq->write] = rxb;
5186                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5187                 rxq->free_count--;
5188         }
5189         spin_unlock_irqrestore(&rxq->lock, flags);
5190
5191         /* If the pre-allocated buffer pool is dropping low, schedule to
5192          * refill it */
5193         if (rxq->free_count <= RX_LOW_WATERMARK)
5194                 schedule_work(&priv->rx_replenish);
5195
5196         /* If we've added more space for the firmware to place data, tell it */
5197         if (write != rxq->write)
5198                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5199 }
5200
5201 /*
5202  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5203  * Also restock the Rx queue via ipw_rx_queue_restock.
5204  *
5205  * This is called as a scheduled work item (except for during intialization)
5206  */
5207 static void ipw_rx_queue_replenish(void *data)
5208 {
5209         struct ipw_priv *priv = data;
5210         struct ipw_rx_queue *rxq = priv->rxq;
5211         struct list_head *element;
5212         struct ipw_rx_mem_buffer *rxb;
5213         unsigned long flags;
5214
5215         spin_lock_irqsave(&rxq->lock, flags);
5216         while (!list_empty(&rxq->rx_used)) {
5217                 element = rxq->rx_used.next;
5218                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5219                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5220                 if (!rxb->skb) {
5221                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5222                                priv->net_dev->name);
5223                         /* We don't reschedule replenish work here -- we will
5224                          * call the restock method and if it still needs
5225                          * more buffers it will schedule replenish */
5226                         break;
5227                 }
5228                 list_del(element);
5229
5230                 rxb->dma_addr =
5231                     pci_map_single(priv->pci_dev, rxb->skb->data,
5232                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5233
5234                 list_add_tail(&rxb->list, &rxq->rx_free);
5235                 rxq->free_count++;
5236         }
5237         spin_unlock_irqrestore(&rxq->lock, flags);
5238
5239         ipw_rx_queue_restock(priv);
5240 }
5241
5242 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5243 {
5244         struct ipw_priv *priv =
5245                 container_of(work, struct ipw_priv, rx_replenish);
5246         mutex_lock(&priv->mutex);
5247         ipw_rx_queue_replenish(priv);
5248         mutex_unlock(&priv->mutex);
5249 }
5250
5251 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5252  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5253  * This free routine walks the list of POOL entries and if SKB is set to
5254  * non NULL it is unmapped and freed
5255  */
5256 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5257 {
5258         int i;
5259
5260         if (!rxq)
5261                 return;
5262
5263         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5264                 if (rxq->pool[i].skb != NULL) {
5265                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5266                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5267                         dev_kfree_skb(rxq->pool[i].skb);
5268                 }
5269         }
5270
5271         kfree(rxq);
5272 }
5273
5274 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5275 {
5276         struct ipw_rx_queue *rxq;
5277         int i;
5278
5279         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5280         if (unlikely(!rxq)) {
5281                 IPW_ERROR("memory allocation failed\n");
5282                 return NULL;
5283         }
5284         spin_lock_init(&rxq->lock);
5285         INIT_LIST_HEAD(&rxq->rx_free);
5286         INIT_LIST_HEAD(&rxq->rx_used);
5287
5288         /* Fill the rx_used queue with _all_ of the Rx buffers */
5289         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5290                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5291
5292         /* Set us so that we have processed and used all buffers, but have
5293          * not restocked the Rx queue with fresh buffers */
5294         rxq->read = rxq->write = 0;
5295         rxq->free_count = 0;
5296
5297         return rxq;
5298 }
5299
5300 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5301 {
5302         rate &= ~LIBIPW_BASIC_RATE_MASK;
5303         if (ieee_mode == IEEE_A) {
5304                 switch (rate) {
5305                 case LIBIPW_OFDM_RATE_6MB:
5306                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5307                             1 : 0;
5308                 case LIBIPW_OFDM_RATE_9MB:
5309                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5310                             1 : 0;
5311                 case LIBIPW_OFDM_RATE_12MB:
5312                         return priv->
5313                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5314                 case LIBIPW_OFDM_RATE_18MB:
5315                         return priv->
5316                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5317                 case LIBIPW_OFDM_RATE_24MB:
5318                         return priv->
5319                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5320                 case LIBIPW_OFDM_RATE_36MB:
5321                         return priv->
5322                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5323                 case LIBIPW_OFDM_RATE_48MB:
5324                         return priv->
5325                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5326                 case LIBIPW_OFDM_RATE_54MB:
5327                         return priv->
5328                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5329                 default:
5330                         return 0;
5331                 }
5332         }
5333
5334         /* B and G mixed */
5335         switch (rate) {
5336         case LIBIPW_CCK_RATE_1MB:
5337                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5338         case LIBIPW_CCK_RATE_2MB:
5339                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5340         case LIBIPW_CCK_RATE_5MB:
5341                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5342         case LIBIPW_CCK_RATE_11MB:
5343                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5344         }
5345
5346         /* If we are limited to B modulations, bail at this point */
5347         if (ieee_mode == IEEE_B)
5348                 return 0;
5349
5350         /* G */
5351         switch (rate) {
5352         case LIBIPW_OFDM_RATE_6MB:
5353                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5354         case LIBIPW_OFDM_RATE_9MB:
5355                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5356         case LIBIPW_OFDM_RATE_12MB:
5357                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5358         case LIBIPW_OFDM_RATE_18MB:
5359                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5360         case LIBIPW_OFDM_RATE_24MB:
5361                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5362         case LIBIPW_OFDM_RATE_36MB:
5363                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5364         case LIBIPW_OFDM_RATE_48MB:
5365                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5366         case LIBIPW_OFDM_RATE_54MB:
5367                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5368         }
5369
5370         return 0;
5371 }
5372
5373 static int ipw_compatible_rates(struct ipw_priv *priv,
5374                                 const struct libipw_network *network,
5375                                 struct ipw_supported_rates *rates)
5376 {
5377         int num_rates, i;
5378
5379         memset(rates, 0, sizeof(*rates));
5380         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5381         rates->num_rates = 0;
5382         for (i = 0; i < num_rates; i++) {
5383                 if (!ipw_is_rate_in_mask(priv, network->mode,
5384                                          network->rates[i])) {
5385
5386                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5387                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5388                                                "rate %02X\n",
5389                                                network->rates[i]);
5390                                 rates->supported_rates[rates->num_rates++] =
5391                                     network->rates[i];
5392                                 continue;
5393                         }
5394
5395                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5396                                        network->rates[i], priv->rates_mask);
5397                         continue;
5398                 }
5399
5400                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5401         }
5402
5403         num_rates = min(network->rates_ex_len,
5404                         (u8) (IPW_MAX_RATES - num_rates));
5405         for (i = 0; i < num_rates; i++) {
5406                 if (!ipw_is_rate_in_mask(priv, network->mode,
5407                                          network->rates_ex[i])) {
5408                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5409                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5410                                                "rate %02X\n",
5411                                                network->rates_ex[i]);
5412                                 rates->supported_rates[rates->num_rates++] =
5413                                     network->rates[i];
5414                                 continue;
5415                         }
5416
5417                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5418                                        network->rates_ex[i], priv->rates_mask);
5419                         continue;
5420                 }
5421
5422                 rates->supported_rates[rates->num_rates++] =
5423                     network->rates_ex[i];
5424         }
5425
5426         return 1;
5427 }
5428
5429 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5430                                   const struct ipw_supported_rates *src)
5431 {
5432         u8 i;
5433         for (i = 0; i < src->num_rates; i++)
5434                 dest->supported_rates[i] = src->supported_rates[i];
5435         dest->num_rates = src->num_rates;
5436 }
5437
5438 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5439  * mask should ever be used -- right now all callers to add the scan rates are
5440  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5441 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5442                                    u8 modulation, u32 rate_mask)
5443 {
5444         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5445             LIBIPW_BASIC_RATE_MASK : 0;
5446
5447         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5448                 rates->supported_rates[rates->num_rates++] =
5449                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5450
5451         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5452                 rates->supported_rates[rates->num_rates++] =
5453                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5454
5455         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5456                 rates->supported_rates[rates->num_rates++] = basic_mask |
5457                     LIBIPW_CCK_RATE_5MB;
5458
5459         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5460                 rates->supported_rates[rates->num_rates++] = basic_mask |
5461                     LIBIPW_CCK_RATE_11MB;
5462 }
5463
5464 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5465                                     u8 modulation, u32 rate_mask)
5466 {
5467         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5468             LIBIPW_BASIC_RATE_MASK : 0;
5469
5470         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5471                 rates->supported_rates[rates->num_rates++] = basic_mask |
5472                     LIBIPW_OFDM_RATE_6MB;
5473
5474         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5475                 rates->supported_rates[rates->num_rates++] =
5476                     LIBIPW_OFDM_RATE_9MB;
5477
5478         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5479                 rates->supported_rates[rates->num_rates++] = basic_mask |
5480                     LIBIPW_OFDM_RATE_12MB;
5481
5482         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5483                 rates->supported_rates[rates->num_rates++] =
5484                     LIBIPW_OFDM_RATE_18MB;
5485
5486         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5487                 rates->supported_rates[rates->num_rates++] = basic_mask |
5488                     LIBIPW_OFDM_RATE_24MB;
5489
5490         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5491                 rates->supported_rates[rates->num_rates++] =
5492                     LIBIPW_OFDM_RATE_36MB;
5493
5494         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5495                 rates->supported_rates[rates->num_rates++] =
5496                     LIBIPW_OFDM_RATE_48MB;
5497
5498         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5499                 rates->supported_rates[rates->num_rates++] =
5500                     LIBIPW_OFDM_RATE_54MB;
5501 }
5502
5503 struct ipw_network_match {
5504         struct libipw_network *network;
5505         struct ipw_supported_rates rates;
5506 };
5507
5508 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5509                                   struct ipw_network_match *match,
5510                                   struct libipw_network *network,
5511                                   int roaming)
5512 {
5513         struct ipw_supported_rates rates;
5514         DECLARE_SSID_BUF(ssid);
5515
5516         /* Verify that this network's capability is compatible with the
5517          * current mode (AdHoc or Infrastructure) */
5518         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5519              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5520                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5521                                 "capability mismatch.\n",
5522                                 print_ssid(ssid, network->ssid,
5523                                            network->ssid_len),
5524                                 network->bssid);
5525                 return 0;
5526         }
5527
5528         if (unlikely(roaming)) {
5529                 /* If we are roaming, then ensure check if this is a valid
5530                  * network to try and roam to */
5531                 if ((network->ssid_len != match->network->ssid_len) ||
5532                     memcmp(network->ssid, match->network->ssid,
5533                            network->ssid_len)) {
5534                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535                                         "because of non-network ESSID.\n",
5536                                         print_ssid(ssid, network->ssid,
5537                                                    network->ssid_len),
5538                                         network->bssid);
5539                         return 0;
5540                 }
5541         } else {
5542                 /* If an ESSID has been configured then compare the broadcast
5543                  * ESSID to ours */
5544                 if ((priv->config & CFG_STATIC_ESSID) &&
5545                     ((network->ssid_len != priv->essid_len) ||
5546                      memcmp(network->ssid, priv->essid,
5547                             min(network->ssid_len, priv->essid_len)))) {
5548                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5549
5550                         strncpy(escaped,
5551                                 print_ssid(ssid, network->ssid,
5552                                            network->ssid_len),
5553                                 sizeof(escaped));
5554                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5555                                         "because of ESSID mismatch: '%s'.\n",
5556                                         escaped, network->bssid,
5557                                         print_ssid(ssid, priv->essid,
5558                                                    priv->essid_len));
5559                         return 0;
5560                 }
5561         }
5562
5563         /* If the old network rate is better than this one, don't bother
5564          * testing everything else. */
5565
5566         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5567                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5568                                 "current network.\n",
5569                                 print_ssid(ssid, match->network->ssid,
5570                                            match->network->ssid_len));
5571                 return 0;
5572         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5573                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5574                                 "current network.\n",
5575                                 print_ssid(ssid, match->network->ssid,
5576                                            match->network->ssid_len));
5577                 return 0;
5578         }
5579
5580         /* Now go through and see if the requested network is valid... */
5581         if (priv->ieee->scan_age != 0 &&
5582             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5583                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5584                                 "because of age: %ums.\n",
5585                                 print_ssid(ssid, network->ssid,
5586                                            network->ssid_len),
5587                                 network->bssid,
5588                                 jiffies_to_msecs(jiffies -
5589                                                  network->last_scanned));
5590                 return 0;
5591         }
5592
5593         if ((priv->config & CFG_STATIC_CHANNEL) &&
5594             (network->channel != priv->channel)) {
5595                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5596                                 "because of channel mismatch: %d != %d.\n",
5597                                 print_ssid(ssid, network->ssid,
5598                                            network->ssid_len),
5599                                 network->bssid,
5600                                 network->channel, priv->channel);
5601                 return 0;
5602         }
5603
5604         /* Verify privacy compatibility */
5605         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5606             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5607                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5608                                 "because of privacy mismatch: %s != %s.\n",
5609                                 print_ssid(ssid, network->ssid,
5610                                            network->ssid_len),
5611                                 network->bssid,
5612                                 priv->
5613                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5614                                 network->
5615                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5616                                 "off");
5617                 return 0;
5618         }
5619
5620         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5621                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5622                                 "because of the same BSSID match: %pM"
5623                                 ".\n", print_ssid(ssid, network->ssid,
5624                                                   network->ssid_len),
5625                                 network->bssid,
5626                                 priv->bssid);
5627                 return 0;
5628         }
5629
5630         /* Filter out any incompatible freq / mode combinations */
5631         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5632                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633                                 "because of invalid frequency/mode "
5634                                 "combination.\n",
5635                                 print_ssid(ssid, network->ssid,
5636                                            network->ssid_len),
5637                                 network->bssid);
5638                 return 0;
5639         }
5640
5641         /* Ensure that the rates supported by the driver are compatible with
5642          * this AP, including verification of basic rates (mandatory) */
5643         if (!ipw_compatible_rates(priv, network, &rates)) {
5644                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5645                                 "because configured rate mask excludes "
5646                                 "AP mandatory rate.\n",
5647                                 print_ssid(ssid, network->ssid,
5648                                            network->ssid_len),
5649                                 network->bssid);
5650                 return 0;
5651         }
5652
5653         if (rates.num_rates == 0) {
5654                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5655                                 "because of no compatible rates.\n",
5656                                 print_ssid(ssid, network->ssid,
5657                                            network->ssid_len),
5658                                 network->bssid);
5659                 return 0;
5660         }
5661
5662         /* TODO: Perform any further minimal comparititive tests.  We do not
5663          * want to put too much policy logic here; intelligent scan selection
5664          * should occur within a generic IEEE 802.11 user space tool.  */
5665
5666         /* Set up 'new' AP to this network */
5667         ipw_copy_rates(&match->rates, &rates);
5668         match->network = network;
5669         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5670                         print_ssid(ssid, network->ssid, network->ssid_len),
5671                         network->bssid);
5672
5673         return 1;
5674 }
5675
5676 static void ipw_merge_adhoc_network(struct work_struct *work)
5677 {
5678         DECLARE_SSID_BUF(ssid);
5679         struct ipw_priv *priv =
5680                 container_of(work, struct ipw_priv, merge_networks);
5681         struct libipw_network *network = NULL;
5682         struct ipw_network_match match = {
5683                 .network = priv->assoc_network
5684         };
5685
5686         if ((priv->status & STATUS_ASSOCIATED) &&
5687             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5688                 /* First pass through ROAM process -- look for a better
5689                  * network */
5690                 unsigned long flags;
5691
5692                 spin_lock_irqsave(&priv->ieee->lock, flags);
5693                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5694                         if (network != priv->assoc_network)
5695                                 ipw_find_adhoc_network(priv, &match, network,
5696                                                        1);
5697                 }
5698                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5699
5700                 if (match.network == priv->assoc_network) {
5701                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5702                                         "merge to.\n");
5703                         return;
5704                 }
5705
5706                 mutex_lock(&priv->mutex);
5707                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5708                         IPW_DEBUG_MERGE("remove network %s\n",
5709                                         print_ssid(ssid, priv->essid,
5710                                                    priv->essid_len));
5711                         ipw_remove_current_network(priv);
5712                 }
5713
5714                 ipw_disassociate(priv);
5715                 priv->assoc_network = match.network;
5716                 mutex_unlock(&priv->mutex);
5717                 return;
5718         }
5719 }
5720
5721 static int ipw_best_network(struct ipw_priv *priv,
5722                             struct ipw_network_match *match,
5723                             struct libipw_network *network, int roaming)
5724 {
5725         struct ipw_supported_rates rates;
5726         DECLARE_SSID_BUF(ssid);
5727
5728         /* Verify that this network's capability is compatible with the
5729          * current mode (AdHoc or Infrastructure) */
5730         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5731              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5732             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5733              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5734                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5735                                 "capability mismatch.\n",
5736                                 print_ssid(ssid, network->ssid,
5737                                            network->ssid_len),
5738                                 network->bssid);
5739                 return 0;
5740         }
5741
5742         if (unlikely(roaming)) {
5743                 /* If we are roaming, then ensure check if this is a valid
5744                  * network to try and roam to */
5745                 if ((network->ssid_len != match->network->ssid_len) ||
5746                     memcmp(network->ssid, match->network->ssid,
5747                            network->ssid_len)) {
5748                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5749                                         "because of non-network ESSID.\n",
5750                                         print_ssid(ssid, network->ssid,
5751                                                    network->ssid_len),
5752                                         network->bssid);
5753                         return 0;
5754                 }
5755         } else {
5756                 /* If an ESSID has been configured then compare the broadcast
5757                  * ESSID to ours */
5758                 if ((priv->config & CFG_STATIC_ESSID) &&
5759                     ((network->ssid_len != priv->essid_len) ||
5760                      memcmp(network->ssid, priv->essid,
5761                             min(network->ssid_len, priv->essid_len)))) {
5762                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5763                         strncpy(escaped,
5764                                 print_ssid(ssid, network->ssid,
5765                                            network->ssid_len),
5766                                 sizeof(escaped));
5767                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5768                                         "because of ESSID mismatch: '%s'.\n",
5769                                         escaped, network->bssid,
5770                                         print_ssid(ssid, priv->essid,
5771                                                    priv->essid_len));
5772                         return 0;
5773                 }
5774         }
5775
5776         /* If the old network rate is better than this one, don't bother
5777          * testing everything else. */
5778         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5779                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5780                 strncpy(escaped,
5781                         print_ssid(ssid, network->ssid, network->ssid_len),
5782                         sizeof(escaped));
5783                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5784                                 "'%s (%pM)' has a stronger signal.\n",
5785                                 escaped, network->bssid,
5786                                 print_ssid(ssid, match->network->ssid,
5787                                            match->network->ssid_len),
5788                                 match->network->bssid);
5789                 return 0;
5790         }
5791
5792         /* If this network has already had an association attempt within the
5793          * last 3 seconds, do not try and associate again... */
5794         if (network->last_associate &&
5795             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5796                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797                                 "because of storming (%ums since last "
5798                                 "assoc attempt).\n",
5799                                 print_ssid(ssid, network->ssid,
5800                                            network->ssid_len),
5801                                 network->bssid,
5802                                 jiffies_to_msecs(jiffies -
5803                                                  network->last_associate));
5804                 return 0;
5805         }
5806
5807         /* Now go through and see if the requested network is valid... */
5808         if (priv->ieee->scan_age != 0 &&
5809             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5810                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811                                 "because of age: %ums.\n",
5812                                 print_ssid(ssid, network->ssid,
5813                                            network->ssid_len),
5814                                 network->bssid,
5815                                 jiffies_to_msecs(jiffies -
5816                                                  network->last_scanned));
5817                 return 0;
5818         }
5819
5820         if ((priv->config & CFG_STATIC_CHANNEL) &&
5821             (network->channel != priv->channel)) {
5822                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5823                                 "because of channel mismatch: %d != %d.\n",
5824                                 print_ssid(ssid, network->ssid,
5825                                            network->ssid_len),
5826                                 network->bssid,
5827                                 network->channel, priv->channel);
5828                 return 0;
5829         }
5830
5831         /* Verify privacy compatibility */
5832         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5833             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5834                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5835                                 "because of privacy mismatch: %s != %s.\n",
5836                                 print_ssid(ssid, network->ssid,
5837                                            network->ssid_len),
5838                                 network->bssid,
5839                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5840                                 "off",
5841                                 network->capability &
5842                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5843                 return 0;
5844         }
5845
5846         if ((priv->config & CFG_STATIC_BSSID) &&
5847             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5848                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5849                                 "because of BSSID mismatch: %pM.\n",
5850                                 print_ssid(ssid, network->ssid,
5851                                            network->ssid_len),
5852                                 network->bssid, priv->bssid);
5853                 return 0;
5854         }
5855
5856         /* Filter out any incompatible freq / mode combinations */
5857         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5858                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5859                                 "because of invalid frequency/mode "
5860                                 "combination.\n",
5861                                 print_ssid(ssid, network->ssid,
5862                                            network->ssid_len),
5863                                 network->bssid);
5864                 return 0;
5865         }
5866
5867         /* Filter out invalid channel in current GEO */
5868         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5869                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870                                 "because of invalid channel in current GEO\n",
5871                                 print_ssid(ssid, network->ssid,
5872                                            network->ssid_len),
5873                                 network->bssid);
5874                 return 0;
5875         }
5876
5877         /* Ensure that the rates supported by the driver are compatible with
5878          * this AP, including verification of basic rates (mandatory) */
5879         if (!ipw_compatible_rates(priv, network, &rates)) {
5880                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881                                 "because configured rate mask excludes "
5882                                 "AP mandatory rate.\n",
5883                                 print_ssid(ssid, network->ssid,
5884                                            network->ssid_len),
5885                                 network->bssid);
5886                 return 0;
5887         }
5888
5889         if (rates.num_rates == 0) {
5890                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5891                                 "because of no compatible rates.\n",
5892                                 print_ssid(ssid, network->ssid,
5893                                            network->ssid_len),
5894                                 network->bssid);
5895                 return 0;
5896         }
5897
5898         /* TODO: Perform any further minimal comparititive tests.  We do not
5899          * want to put too much policy logic here; intelligent scan selection
5900          * should occur within a generic IEEE 802.11 user space tool.  */
5901
5902         /* Set up 'new' AP to this network */
5903         ipw_copy_rates(&match->rates, &rates);
5904         match->network = network;
5905
5906         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5907                         print_ssid(ssid, network->ssid, network->ssid_len),
5908                         network->bssid);
5909
5910         return 1;
5911 }
5912
5913 static void ipw_adhoc_create(struct ipw_priv *priv,
5914                              struct libipw_network *network)
5915 {
5916         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5917         int i;
5918
5919         /*
5920          * For the purposes of scanning, we can set our wireless mode
5921          * to trigger scans across combinations of bands, but when it
5922          * comes to creating a new ad-hoc network, we have tell the FW
5923          * exactly which band to use.
5924          *
5925          * We also have the possibility of an invalid channel for the
5926          * chossen band.  Attempting to create a new ad-hoc network
5927          * with an invalid channel for wireless mode will trigger a
5928          * FW fatal error.
5929          *
5930          */
5931         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5932         case LIBIPW_52GHZ_BAND:
5933                 network->mode = IEEE_A;
5934                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5935                 BUG_ON(i == -1);
5936                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5937                         IPW_WARNING("Overriding invalid channel\n");
5938                         priv->channel = geo->a[0].channel;
5939                 }
5940                 break;
5941
5942         case LIBIPW_24GHZ_BAND:
5943                 if (priv->ieee->mode & IEEE_G)
5944                         network->mode = IEEE_G;
5945                 else
5946                         network->mode = IEEE_B;
5947                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5948                 BUG_ON(i == -1);
5949                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5950                         IPW_WARNING("Overriding invalid channel\n");
5951                         priv->channel = geo->bg[0].channel;
5952                 }
5953                 break;
5954
5955         default:
5956                 IPW_WARNING("Overriding invalid channel\n");
5957                 if (priv->ieee->mode & IEEE_A) {
5958                         network->mode = IEEE_A;
5959                         priv->channel = geo->a[0].channel;
5960                 } else if (priv->ieee->mode & IEEE_G) {
5961                         network->mode = IEEE_G;
5962                         priv->channel = geo->bg[0].channel;
5963                 } else {
5964                         network->mode = IEEE_B;
5965                         priv->channel = geo->bg[0].channel;
5966                 }
5967                 break;
5968         }
5969
5970         network->channel = priv->channel;
5971         priv->config |= CFG_ADHOC_PERSIST;
5972         ipw_create_bssid(priv, network->bssid);
5973         network->ssid_len = priv->essid_len;
5974         memcpy(network->ssid, priv->essid, priv->essid_len);
5975         memset(&network->stats, 0, sizeof(network->stats));
5976         network->capability = WLAN_CAPABILITY_IBSS;
5977         if (!(priv->config & CFG_PREAMBLE_LONG))
5978                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5979         if (priv->capability & CAP_PRIVACY_ON)
5980                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5981         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5982         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5983         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5984         memcpy(network->rates_ex,
5985                &priv->rates.supported_rates[network->rates_len],
5986                network->rates_ex_len);
5987         network->last_scanned = 0;
5988         network->flags = 0;
5989         network->last_associate = 0;
5990         network->time_stamp[0] = 0;
5991         network->time_stamp[1] = 0;
5992         network->beacon_interval = 100; /* Default */
5993         network->listen_interval = 10;  /* Default */
5994         network->atim_window = 0;       /* Default */
5995         network->wpa_ie_len = 0;
5996         network->rsn_ie_len = 0;
5997 }
5998
5999 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6000 {
6001         struct ipw_tgi_tx_key key;
6002
6003         if (!(priv->ieee->sec.flags & (1 << index)))
6004                 return;
6005
6006         key.key_id = index;
6007         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6008         key.security_type = type;
6009         key.station_index = 0;  /* always 0 for BSS */
6010         key.flags = 0;
6011         /* 0 for new key; previous value of counter (after fatal error) */
6012         key.tx_counter[0] = cpu_to_le32(0);
6013         key.tx_counter[1] = cpu_to_le32(0);
6014
6015         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6016 }
6017
6018 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6019 {
6020         struct ipw_wep_key key;
6021         int i;
6022
6023         key.cmd_id = DINO_CMD_WEP_KEY;
6024         key.seq_num = 0;
6025
6026         /* Note: AES keys cannot be set for multiple times.
6027          * Only set it at the first time. */
6028         for (i = 0; i < 4; i++) {
6029                 key.key_index = i | type;
6030                 if (!(priv->ieee->sec.flags & (1 << i))) {
6031                         key.key_size = 0;
6032                         continue;
6033                 }
6034
6035                 key.key_size = priv->ieee->sec.key_sizes[i];
6036                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6037
6038                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6039         }
6040 }
6041
6042 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6043 {
6044         if (priv->ieee->host_encrypt)
6045                 return;
6046
6047         switch (level) {
6048         case SEC_LEVEL_3:
6049                 priv->sys_config.disable_unicast_decryption = 0;
6050                 priv->ieee->host_decrypt = 0;
6051                 break;
6052         case SEC_LEVEL_2:
6053                 priv->sys_config.disable_unicast_decryption = 1;
6054                 priv->ieee->host_decrypt = 1;
6055                 break;
6056         case SEC_LEVEL_1:
6057                 priv->sys_config.disable_unicast_decryption = 0;
6058                 priv->ieee->host_decrypt = 0;
6059                 break;
6060         case SEC_LEVEL_0:
6061                 priv->sys_config.disable_unicast_decryption = 1;
6062                 break;
6063         default:
6064                 break;
6065         }
6066 }
6067
6068 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6069 {
6070         if (priv->ieee->host_encrypt)
6071                 return;
6072
6073         switch (level) {
6074         case SEC_LEVEL_3:
6075                 priv->sys_config.disable_multicast_decryption = 0;
6076                 break;
6077         case SEC_LEVEL_2:
6078                 priv->sys_config.disable_multicast_decryption = 1;
6079                 break;
6080         case SEC_LEVEL_1:
6081                 priv->sys_config.disable_multicast_decryption = 0;
6082                 break;
6083         case SEC_LEVEL_0:
6084                 priv->sys_config.disable_multicast_decryption = 1;
6085                 break;
6086         default:
6087                 break;
6088         }
6089 }
6090
6091 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6092 {
6093         switch (priv->ieee->sec.level) {
6094         case SEC_LEVEL_3:
6095                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6096                         ipw_send_tgi_tx_key(priv,
6097                                             DCT_FLAG_EXT_SECURITY_CCM,
6098                                             priv->ieee->sec.active_key);
6099
6100                 if (!priv->ieee->host_mc_decrypt)
6101                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6102                 break;
6103         case SEC_LEVEL_2:
6104                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6105                         ipw_send_tgi_tx_key(priv,
6106                                             DCT_FLAG_EXT_SECURITY_TKIP,
6107                                             priv->ieee->sec.active_key);
6108                 break;
6109         case SEC_LEVEL_1:
6110                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6111                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6112                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6113                 break;
6114         case SEC_LEVEL_0:
6115         default:
6116                 break;
6117         }
6118 }
6119
6120 static void ipw_adhoc_check(void *data)
6121 {
6122         struct ipw_priv *priv = data;
6123
6124         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6125             !(priv->config & CFG_ADHOC_PERSIST)) {
6126                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6127                           IPW_DL_STATE | IPW_DL_ASSOC,
6128                           "Missed beacon: %d - disassociate\n",
6129                           priv->missed_adhoc_beacons);
6130                 ipw_remove_current_network(priv);
6131                 ipw_disassociate(priv);
6132                 return;
6133         }
6134
6135         schedule_delayed_work(&priv->adhoc_check,
6136                               le16_to_cpu(priv->assoc_request.beacon_interval));
6137 }
6138
6139 static void ipw_bg_adhoc_check(struct work_struct *work)
6140 {
6141         struct ipw_priv *priv =
6142                 container_of(work, struct ipw_priv, adhoc_check.work);
6143         mutex_lock(&priv->mutex);
6144         ipw_adhoc_check(priv);
6145         mutex_unlock(&priv->mutex);
6146 }
6147
6148 static void ipw_debug_config(struct ipw_priv *priv)
6149 {
6150         DECLARE_SSID_BUF(ssid);
6151         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6152                        "[CFG 0x%08X]\n", priv->config);
6153         if (priv->config & CFG_STATIC_CHANNEL)
6154                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6155         else
6156                 IPW_DEBUG_INFO("Channel unlocked.\n");
6157         if (priv->config & CFG_STATIC_ESSID)
6158                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6159                                print_ssid(ssid, priv->essid, priv->essid_len));
6160         else
6161                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6162         if (priv->config & CFG_STATIC_BSSID)
6163                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6164         else
6165                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6166         if (priv->capability & CAP_PRIVACY_ON)
6167                 IPW_DEBUG_INFO("PRIVACY on\n");
6168         else
6169                 IPW_DEBUG_INFO("PRIVACY off\n");
6170         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6171 }
6172
6173 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6174 {
6175         /* TODO: Verify that this works... */
6176         struct ipw_fixed_rate fr;
6177         u32 reg;
6178         u16 mask = 0;
6179         u16 new_tx_rates = priv->rates_mask;
6180
6181         /* Identify 'current FW band' and match it with the fixed
6182          * Tx rates */
6183
6184         switch (priv->ieee->freq_band) {
6185         case LIBIPW_52GHZ_BAND: /* A only */
6186                 /* IEEE_A */
6187                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6188                         /* Invalid fixed rate mask */
6189                         IPW_DEBUG_WX
6190                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6191                         new_tx_rates = 0;
6192                         break;
6193                 }
6194
6195                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6196                 break;
6197
6198         default:                /* 2.4Ghz or Mixed */
6199                 /* IEEE_B */
6200                 if (mode == IEEE_B) {
6201                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6202                                 /* Invalid fixed rate mask */
6203                                 IPW_DEBUG_WX
6204                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6205                                 new_tx_rates = 0;
6206                         }
6207                         break;
6208                 }
6209
6210                 /* IEEE_G */
6211                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6212                                     LIBIPW_OFDM_RATES_MASK)) {
6213                         /* Invalid fixed rate mask */
6214                         IPW_DEBUG_WX
6215                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6216                         new_tx_rates = 0;
6217                         break;
6218                 }
6219
6220                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6221                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6222                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6223                 }
6224
6225                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6226                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6227                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6228                 }
6229
6230                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6231                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6232                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6233                 }
6234
6235                 new_tx_rates |= mask;
6236                 break;
6237         }
6238
6239         fr.tx_rates = cpu_to_le16(new_tx_rates);
6240
6241         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6242         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6243 }
6244
6245 static void ipw_abort_scan(struct ipw_priv *priv)
6246 {
6247         int err;
6248
6249         if (priv->status & STATUS_SCAN_ABORTING) {
6250                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6251                 return;
6252         }
6253         priv->status |= STATUS_SCAN_ABORTING;
6254
6255         err = ipw_send_scan_abort(priv);
6256         if (err)
6257                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6258 }
6259
6260 static void ipw_add_scan_channels(struct ipw_priv *priv,
6261                                   struct ipw_scan_request_ext *scan,
6262                                   int scan_type)
6263 {
6264         int channel_index = 0;
6265         const struct libipw_geo *geo;
6266         int i;
6267
6268         geo = libipw_get_geo(priv->ieee);
6269
6270         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6271                 int start = channel_index;
6272                 for (i = 0; i < geo->a_channels; i++) {
6273                         if ((priv->status & STATUS_ASSOCIATED) &&
6274                             geo->a[i].channel == priv->channel)
6275                                 continue;
6276                         channel_index++;
6277                         scan->channels_list[channel_index] = geo->a[i].channel;
6278                         ipw_set_scan_type(scan, channel_index,
6279                                           geo->a[i].
6280                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6281                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6282                                           scan_type);
6283                 }
6284
6285                 if (start != channel_index) {
6286                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6287                             (channel_index - start);
6288                         channel_index++;
6289                 }
6290         }
6291
6292         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6293                 int start = channel_index;
6294                 if (priv->config & CFG_SPEED_SCAN) {
6295                         int index;
6296                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6297                                 /* nop out the list */
6298                                 [0] = 0
6299                         };
6300
6301                         u8 channel;
6302                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6303                                 channel =
6304                                     priv->speed_scan[priv->speed_scan_pos];
6305                                 if (channel == 0) {
6306                                         priv->speed_scan_pos = 0;
6307                                         channel = priv->speed_scan[0];
6308                                 }
6309                                 if ((priv->status & STATUS_ASSOCIATED) &&
6310                                     channel == priv->channel) {
6311                                         priv->speed_scan_pos++;
6312                                         continue;
6313                                 }
6314
6315                                 /* If this channel has already been
6316                                  * added in scan, break from loop
6317                                  * and this will be the first channel
6318                                  * in the next scan.
6319                                  */
6320                                 if (channels[channel - 1] != 0)
6321                                         break;
6322
6323                                 channels[channel - 1] = 1;
6324                                 priv->speed_scan_pos++;
6325                                 channel_index++;
6326                                 scan->channels_list[channel_index] = channel;
6327                                 index =
6328                                     libipw_channel_to_index(priv->ieee, channel);
6329                                 ipw_set_scan_type(scan, channel_index,
6330                                                   geo->bg[index].
6331                                                   flags &
6332                                                   LIBIPW_CH_PASSIVE_ONLY ?
6333                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6334                                                   : scan_type);
6335                         }
6336                 } else {
6337                         for (i = 0; i < geo->bg_channels; i++) {
6338                                 if ((priv->status & STATUS_ASSOCIATED) &&
6339                                     geo->bg[i].channel == priv->channel)
6340                                         continue;
6341                                 channel_index++;
6342                                 scan->channels_list[channel_index] =
6343                                     geo->bg[i].channel;
6344                                 ipw_set_scan_type(scan, channel_index,
6345                                                   geo->bg[i].
6346                                                   flags &
6347                                                   LIBIPW_CH_PASSIVE_ONLY ?
6348                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6349                                                   : scan_type);
6350                         }
6351                 }
6352
6353                 if (start != channel_index) {
6354                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6355                             (channel_index - start);
6356                 }
6357         }
6358 }
6359
6360 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6361 {
6362         /* staying on passive channels longer than the DTIM interval during a
6363          * scan, while associated, causes the firmware to cancel the scan
6364          * without notification. Hence, don't stay on passive channels longer
6365          * than the beacon interval.
6366          */
6367         if (priv->status & STATUS_ASSOCIATED
6368             && priv->assoc_network->beacon_interval > 10)
6369                 return priv->assoc_network->beacon_interval - 10;
6370         else
6371                 return 120;
6372 }
6373
6374 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6375 {
6376         struct ipw_scan_request_ext scan;
6377         int err = 0, scan_type;
6378
6379         if (!(priv->status & STATUS_INIT) ||
6380             (priv->status & STATUS_EXIT_PENDING))
6381                 return 0;
6382
6383         mutex_lock(&priv->mutex);
6384
6385         if (direct && (priv->direct_scan_ssid_len == 0)) {
6386                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6387                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6388                 goto done;
6389         }
6390
6391         if (priv->status & STATUS_SCANNING) {
6392                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6393                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6394                                         STATUS_SCAN_PENDING;
6395                 goto done;
6396         }
6397
6398         if (!(priv->status & STATUS_SCAN_FORCED) &&
6399             priv->status & STATUS_SCAN_ABORTING) {
6400                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6401                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6402                                         STATUS_SCAN_PENDING;
6403                 goto done;
6404         }
6405
6406         if (priv->status & STATUS_RF_KILL_MASK) {
6407                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6408                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6409                                         STATUS_SCAN_PENDING;
6410                 goto done;
6411         }
6412
6413         memset(&scan, 0, sizeof(scan));
6414         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6415
6416         if (type == IW_SCAN_TYPE_PASSIVE) {
6417                 IPW_DEBUG_WX("use passive scanning\n");
6418                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6419                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6420                         cpu_to_le16(ipw_passive_dwell_time(priv));
6421                 ipw_add_scan_channels(priv, &scan, scan_type);
6422                 goto send_request;
6423         }
6424
6425         /* Use active scan by default. */
6426         if (priv->config & CFG_SPEED_SCAN)
6427                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6428                         cpu_to_le16(30);
6429         else
6430                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6431                         cpu_to_le16(20);
6432
6433         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6434                 cpu_to_le16(20);
6435
6436         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6437                 cpu_to_le16(ipw_passive_dwell_time(priv));
6438         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6439
6440 #ifdef CONFIG_IPW2200_MONITOR
6441         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6442                 u8 channel;
6443                 u8 band = 0;
6444
6445                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6446                 case LIBIPW_52GHZ_BAND:
6447                         band = (u8) (IPW_A_MODE << 6) | 1;
6448                         channel = priv->channel;
6449                         break;
6450
6451                 case LIBIPW_24GHZ_BAND:
6452                         band = (u8) (IPW_B_MODE << 6) | 1;
6453                         channel = priv->channel;
6454                         break;
6455
6456                 default:
6457                         band = (u8) (IPW_B_MODE << 6) | 1;
6458                         channel = 9;
6459                         break;
6460                 }
6461
6462                 scan.channels_list[0] = band;
6463                 scan.channels_list[1] = channel;
6464                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6465
6466                 /* NOTE:  The card will sit on this channel for this time
6467                  * period.  Scan aborts are timing sensitive and frequently
6468                  * result in firmware restarts.  As such, it is best to
6469                  * set a small dwell_time here and just keep re-issuing
6470                  * scans.  Otherwise fast channel hopping will not actually
6471                  * hop channels.
6472                  *
6473                  * TODO: Move SPEED SCAN support to all modes and bands */
6474                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6475                         cpu_to_le16(2000);
6476         } else {
6477 #endif                          /* CONFIG_IPW2200_MONITOR */
6478                 /* Honor direct scans first, otherwise if we are roaming make
6479                  * this a direct scan for the current network.  Finally,
6480                  * ensure that every other scan is a fast channel hop scan */
6481                 if (direct) {
6482                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6483                                             priv->direct_scan_ssid_len);
6484                         if (err) {
6485                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6486                                              "failed\n");
6487                                 goto done;
6488                         }
6489
6490                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6491                 } else if ((priv->status & STATUS_ROAMING)
6492                            || (!(priv->status & STATUS_ASSOCIATED)
6493                                && (priv->config & CFG_STATIC_ESSID)
6494                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6495                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6496                         if (err) {
6497                                 IPW_DEBUG_HC("Attempt to send SSID command "
6498                                              "failed.\n");
6499                                 goto done;
6500                         }
6501
6502                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6503                 } else
6504                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6505
6506                 ipw_add_scan_channels(priv, &scan, scan_type);
6507 #ifdef CONFIG_IPW2200_MONITOR
6508         }
6509 #endif
6510
6511 send_request:
6512         err = ipw_send_scan_request_ext(priv, &scan);
6513         if (err) {
6514                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6515                 goto done;
6516         }
6517
6518         priv->status |= STATUS_SCANNING;
6519         if (direct) {
6520                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6521                 priv->direct_scan_ssid_len = 0;
6522         } else
6523                 priv->status &= ~STATUS_SCAN_PENDING;
6524
6525         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6526 done:
6527         mutex_unlock(&priv->mutex);
6528         return err;
6529 }
6530
6531 static void ipw_request_passive_scan(struct work_struct *work)
6532 {
6533         struct ipw_priv *priv =
6534                 container_of(work, struct ipw_priv, request_passive_scan.work);
6535         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6536 }
6537
6538 static void ipw_request_scan(struct work_struct *work)
6539 {
6540         struct ipw_priv *priv =
6541                 container_of(work, struct ipw_priv, request_scan.work);
6542         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6543 }
6544
6545 static void ipw_request_direct_scan(struct work_struct *work)
6546 {
6547         struct ipw_priv *priv =
6548                 container_of(work, struct ipw_priv, request_direct_scan.work);
6549         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6550 }
6551
6552 static void ipw_bg_abort_scan(struct work_struct *work)
6553 {
6554         struct ipw_priv *priv =
6555                 container_of(work, struct ipw_priv, abort_scan);
6556         mutex_lock(&priv->mutex);
6557         ipw_abort_scan(priv);
6558         mutex_unlock(&priv->mutex);
6559 }
6560
6561 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6562 {
6563         /* This is called when wpa_supplicant loads and closes the driver
6564          * interface. */
6565         priv->ieee->wpa_enabled = value;
6566         return 0;
6567 }
6568
6569 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6570 {
6571         struct libipw_device *ieee = priv->ieee;
6572         struct libipw_security sec = {
6573                 .flags = SEC_AUTH_MODE,
6574         };
6575         int ret = 0;
6576
6577         if (value & IW_AUTH_ALG_SHARED_KEY) {
6578                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6579                 ieee->open_wep = 0;
6580         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6581                 sec.auth_mode = WLAN_AUTH_OPEN;
6582                 ieee->open_wep = 1;
6583         } else if (value & IW_AUTH_ALG_LEAP) {
6584                 sec.auth_mode = WLAN_AUTH_LEAP;
6585                 ieee->open_wep = 1;
6586         } else
6587                 return -EINVAL;
6588
6589         if (ieee->set_security)
6590                 ieee->set_security(ieee->dev, &sec);
6591         else
6592                 ret = -EOPNOTSUPP;
6593
6594         return ret;
6595 }
6596
6597 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6598                                 int wpa_ie_len)
6599 {
6600         /* make sure WPA is enabled */
6601         ipw_wpa_enable(priv, 1);
6602 }
6603
6604 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6605                             char *capabilities, int length)
6606 {
6607         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6608
6609         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6610                                 capabilities);
6611 }
6612
6613 /*
6614  * WE-18 support
6615  */
6616
6617 /* SIOCSIWGENIE */
6618 static int ipw_wx_set_genie(struct net_device *dev,
6619                             struct iw_request_info *info,
6620                             union iwreq_data *wrqu, char *extra)
6621 {
6622         struct ipw_priv *priv = libipw_priv(dev);
6623         struct libipw_device *ieee = priv->ieee;
6624         u8 *buf;
6625         int err = 0;
6626
6627         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6628             (wrqu->data.length && extra == NULL))
6629                 return -EINVAL;
6630
6631         if (wrqu->data.length) {
6632                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6633                 if (buf == NULL) {
6634                         err = -ENOMEM;
6635                         goto out;
6636                 }
6637
6638                 kfree(ieee->wpa_ie);
6639                 ieee->wpa_ie = buf;
6640                 ieee->wpa_ie_len = wrqu->data.length;
6641         } else {
6642                 kfree(ieee->wpa_ie);
6643                 ieee->wpa_ie = NULL;
6644                 ieee->wpa_ie_len = 0;
6645         }
6646
6647         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6648       out:
6649         return err;
6650 }
6651
6652 /* SIOCGIWGENIE */
6653 static int ipw_wx_get_genie(struct net_device *dev,
6654                             struct iw_request_info *info,
6655                             union iwreq_data *wrqu, char *extra)
6656 {
6657         struct ipw_priv *priv = libipw_priv(dev);
6658         struct libipw_device *ieee = priv->ieee;
6659         int err = 0;
6660
6661         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6662                 wrqu->data.length = 0;
6663                 goto out;
6664         }
6665
6666         if (wrqu->data.length < ieee->wpa_ie_len) {
6667                 err = -E2BIG;
6668                 goto out;
6669         }
6670
6671         wrqu->data.length = ieee->wpa_ie_len;
6672         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6673
6674       out:
6675         return err;
6676 }
6677
6678 static int wext_cipher2level(int cipher)
6679 {
6680         switch (cipher) {
6681         case IW_AUTH_CIPHER_NONE:
6682                 return SEC_LEVEL_0;
6683         case IW_AUTH_CIPHER_WEP40:
6684         case IW_AUTH_CIPHER_WEP104:
6685                 return SEC_LEVEL_1;
6686         case IW_AUTH_CIPHER_TKIP:
6687                 return SEC_LEVEL_2;
6688         case IW_AUTH_CIPHER_CCMP:
6689                 return SEC_LEVEL_3;
6690         default:
6691                 return -1;
6692         }
6693 }
6694
6695 /* SIOCSIWAUTH */
6696 static int ipw_wx_set_auth(struct net_device *dev,
6697                            struct iw_request_info *info,
6698                            union iwreq_data *wrqu, char *extra)
6699 {
6700         struct ipw_priv *priv = libipw_priv(dev);
6701         struct libipw_device *ieee = priv->ieee;
6702         struct iw_param *param = &wrqu->param;
6703         struct lib80211_crypt_data *crypt;
6704         unsigned long flags;
6705         int ret = 0;
6706
6707         switch (param->flags & IW_AUTH_INDEX) {
6708         case IW_AUTH_WPA_VERSION:
6709                 break;
6710         case IW_AUTH_CIPHER_PAIRWISE:
6711                 ipw_set_hw_decrypt_unicast(priv,
6712                                            wext_cipher2level(param->value));
6713                 break;
6714         case IW_AUTH_CIPHER_GROUP:
6715                 ipw_set_hw_decrypt_multicast(priv,
6716                                              wext_cipher2level(param->value));
6717                 break;
6718         case IW_AUTH_KEY_MGMT:
6719                 /*
6720                  * ipw2200 does not use these parameters
6721                  */
6722                 break;
6723
6724         case IW_AUTH_TKIP_COUNTERMEASURES:
6725                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6726                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6727                         break;
6728
6729                 flags = crypt->ops->get_flags(crypt->priv);
6730
6731                 if (param->value)
6732                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6733                 else
6734                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6735
6736                 crypt->ops->set_flags(flags, crypt->priv);
6737
6738                 break;
6739
6740         case IW_AUTH_DROP_UNENCRYPTED:{
6741                         /* HACK:
6742                          *
6743                          * wpa_supplicant calls set_wpa_enabled when the driver
6744                          * is loaded and unloaded, regardless of if WPA is being
6745                          * used.  No other calls are made which can be used to
6746                          * determine if encryption will be used or not prior to
6747                          * association being expected.  If encryption is not being
6748                          * used, drop_unencrypted is set to false, else true -- we
6749                          * can use this to determine if the CAP_PRIVACY_ON bit should
6750                          * be set.
6751                          */
6752                         struct libipw_security sec = {
6753                                 .flags = SEC_ENABLED,
6754                                 .enabled = param->value,
6755                         };
6756                         priv->ieee->drop_unencrypted = param->value;
6757                         /* We only change SEC_LEVEL for open mode. Others
6758                          * are set by ipw_wpa_set_encryption.
6759                          */
6760                         if (!param->value) {
6761                                 sec.flags |= SEC_LEVEL;
6762                                 sec.level = SEC_LEVEL_0;
6763                         } else {
6764                                 sec.flags |= SEC_LEVEL;
6765                                 sec.level = SEC_LEVEL_1;
6766                         }
6767                         if (priv->ieee->set_security)
6768                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6769                         break;
6770                 }
6771
6772         case IW_AUTH_80211_AUTH_ALG:
6773                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6774                 break;
6775
6776         case IW_AUTH_WPA_ENABLED:
6777                 ret = ipw_wpa_enable(priv, param->value);
6778                 ipw_disassociate(priv);
6779                 break;
6780
6781         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6782                 ieee->ieee802_1x = param->value;
6783                 break;
6784
6785         case IW_AUTH_PRIVACY_INVOKED:
6786                 ieee->privacy_invoked = param->value;
6787                 break;
6788
6789         default:
6790                 return -EOPNOTSUPP;
6791         }
6792         return ret;
6793 }
6794
6795 /* SIOCGIWAUTH */
6796 static int ipw_wx_get_auth(struct net_device *dev,
6797                            struct iw_request_info *info,
6798                            union iwreq_data *wrqu, char *extra)
6799 {
6800         struct ipw_priv *priv = libipw_priv(dev);
6801         struct libipw_device *ieee = priv->ieee;
6802         struct lib80211_crypt_data *crypt;
6803         struct iw_param *param = &wrqu->param;
6804         int ret = 0;
6805
6806         switch (param->flags & IW_AUTH_INDEX) {
6807         case IW_AUTH_WPA_VERSION:
6808         case IW_AUTH_CIPHER_PAIRWISE:
6809         case IW_AUTH_CIPHER_GROUP:
6810         case IW_AUTH_KEY_MGMT:
6811                 /*
6812                  * wpa_supplicant will control these internally
6813                  */
6814                 ret = -EOPNOTSUPP;
6815                 break;
6816
6817         case IW_AUTH_TKIP_COUNTERMEASURES:
6818                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6819                 if (!crypt || !crypt->ops->get_flags)
6820                         break;
6821
6822                 param->value = (crypt->ops->get_flags(crypt->priv) &
6823                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6824
6825                 break;
6826
6827         case IW_AUTH_DROP_UNENCRYPTED:
6828                 param->value = ieee->drop_unencrypted;
6829                 break;
6830
6831         case IW_AUTH_80211_AUTH_ALG:
6832                 param->value = ieee->sec.auth_mode;
6833                 break;
6834
6835         case IW_AUTH_WPA_ENABLED:
6836                 param->value = ieee->wpa_enabled;
6837                 break;
6838
6839         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6840                 param->value = ieee->ieee802_1x;
6841                 break;
6842
6843         case IW_AUTH_ROAMING_CONTROL:
6844         case IW_AUTH_PRIVACY_INVOKED:
6845                 param->value = ieee->privacy_invoked;
6846                 break;
6847
6848         default:
6849                 return -EOPNOTSUPP;
6850         }
6851         return 0;
6852 }
6853
6854 /* SIOCSIWENCODEEXT */
6855 static int ipw_wx_set_encodeext(struct net_device *dev,
6856                                 struct iw_request_info *info,
6857                                 union iwreq_data *wrqu, char *extra)
6858 {
6859         struct ipw_priv *priv = libipw_priv(dev);
6860         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6861
6862         if (hwcrypto) {
6863                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6864                         /* IPW HW can't build TKIP MIC,
6865                            host decryption still needed */
6866                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6867                                 priv->ieee->host_mc_decrypt = 1;
6868                         else {
6869                                 priv->ieee->host_encrypt = 0;
6870                                 priv->ieee->host_encrypt_msdu = 1;
6871                                 priv->ieee->host_decrypt = 1;
6872                         }
6873                 } else {
6874                         priv->ieee->host_encrypt = 0;
6875                         priv->ieee->host_encrypt_msdu = 0;
6876                         priv->ieee->host_decrypt = 0;
6877                         priv->ieee->host_mc_decrypt = 0;
6878                 }
6879         }
6880
6881         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6882 }
6883
6884 /* SIOCGIWENCODEEXT */
6885 static int ipw_wx_get_encodeext(struct net_device *dev,
6886                                 struct iw_request_info *info,
6887                                 union iwreq_data *wrqu, char *extra)
6888 {
6889         struct ipw_priv *priv = libipw_priv(dev);
6890         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6891 }
6892
6893 /* SIOCSIWMLME */
6894 static int ipw_wx_set_mlme(struct net_device *dev,
6895                            struct iw_request_info *info,
6896                            union iwreq_data *wrqu, char *extra)
6897 {
6898         struct ipw_priv *priv = libipw_priv(dev);
6899         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6900         __le16 reason;
6901
6902         reason = cpu_to_le16(mlme->reason_code);
6903
6904         switch (mlme->cmd) {
6905         case IW_MLME_DEAUTH:
6906                 /* silently ignore */
6907                 break;
6908
6909         case IW_MLME_DISASSOC:
6910                 ipw_disassociate(priv);
6911                 break;
6912
6913         default:
6914                 return -EOPNOTSUPP;
6915         }
6916         return 0;
6917 }
6918
6919 #ifdef CONFIG_IPW2200_QOS
6920
6921 /* QoS */
6922 /*
6923 * get the modulation type of the current network or
6924 * the card current mode
6925 */
6926 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6927 {
6928         u8 mode = 0;
6929
6930         if (priv->status & STATUS_ASSOCIATED) {
6931                 unsigned long flags;
6932
6933                 spin_lock_irqsave(&priv->ieee->lock, flags);
6934                 mode = priv->assoc_network->mode;
6935                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6936         } else {
6937                 mode = priv->ieee->mode;
6938         }
6939         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6940         return mode;
6941 }
6942
6943 /*
6944 * Handle management frame beacon and probe response
6945 */
6946 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6947                                          int active_network,
6948                                          struct libipw_network *network)
6949 {
6950         u32 size = sizeof(struct libipw_qos_parameters);
6951
6952         if (network->capability & WLAN_CAPABILITY_IBSS)
6953                 network->qos_data.active = network->qos_data.supported;
6954
6955         if (network->flags & NETWORK_HAS_QOS_MASK) {
6956                 if (active_network &&
6957                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6958                         network->qos_data.active = network->qos_data.supported;
6959
6960                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6961                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6962                     (network->qos_data.old_param_count !=
6963                      network->qos_data.param_count)) {
6964                         network->qos_data.old_param_count =
6965                             network->qos_data.param_count;
6966                         schedule_work(&priv->qos_activate);
6967                         IPW_DEBUG_QOS("QoS parameters change call "
6968                                       "qos_activate\n");
6969                 }
6970         } else {
6971                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6972                         memcpy(&network->qos_data.parameters,
6973                                &def_parameters_CCK, size);
6974                 else
6975                         memcpy(&network->qos_data.parameters,
6976                                &def_parameters_OFDM, size);
6977
6978                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6979                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6980                         schedule_work(&priv->qos_activate);
6981                 }
6982
6983                 network->qos_data.active = 0;
6984                 network->qos_data.supported = 0;
6985         }
6986         if ((priv->status & STATUS_ASSOCIATED) &&
6987             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6988                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6989                         if (network->capability & WLAN_CAPABILITY_IBSS)
6990                                 if ((network->ssid_len ==
6991                                      priv->assoc_network->ssid_len) &&
6992                                     !memcmp(network->ssid,
6993                                             priv->assoc_network->ssid,
6994                                             network->ssid_len)) {
6995                                         schedule_work(&priv->merge_networks);
6996                                 }
6997         }
6998
6999         return 0;
7000 }
7001
7002 /*
7003 * This function set up the firmware to support QoS. It sends
7004 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7005 */
7006 static int ipw_qos_activate(struct ipw_priv *priv,
7007                             struct libipw_qos_data *qos_network_data)
7008 {
7009         int err;
7010         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7011         struct libipw_qos_parameters *active_one = NULL;
7012         u32 size = sizeof(struct libipw_qos_parameters);
7013         u32 burst_duration;
7014         int i;
7015         u8 type;
7016
7017         type = ipw_qos_current_mode(priv);
7018
7019         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7020         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7021         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7022         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7023
7024         if (qos_network_data == NULL) {
7025                 if (type == IEEE_B) {
7026                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7027                         active_one = &def_parameters_CCK;
7028                 } else
7029                         active_one = &def_parameters_OFDM;
7030
7031                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7032                 burst_duration = ipw_qos_get_burst_duration(priv);
7033                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7034                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7035                             cpu_to_le16(burst_duration);
7036         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7037                 if (type == IEEE_B) {
7038                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7039                                       type);
7040                         if (priv->qos_data.qos_enable == 0)
7041                                 active_one = &def_parameters_CCK;
7042                         else
7043                                 active_one = priv->qos_data.def_qos_parm_CCK;
7044                 } else {
7045                         if (priv->qos_data.qos_enable == 0)
7046                                 active_one = &def_parameters_OFDM;
7047                         else
7048                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7049                 }
7050                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7051         } else {
7052                 unsigned long flags;
7053                 int active;
7054
7055                 spin_lock_irqsave(&priv->ieee->lock, flags);
7056                 active_one = &(qos_network_data->parameters);
7057                 qos_network_data->old_param_count =
7058                     qos_network_data->param_count;
7059                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7060                 active = qos_network_data->supported;
7061                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7062
7063                 if (active == 0) {
7064                         burst_duration = ipw_qos_get_burst_duration(priv);
7065                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7066                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7067                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7068                 }
7069         }
7070
7071         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7072         err = ipw_send_qos_params_command(priv,
7073                                           (struct libipw_qos_parameters *)
7074                                           &(qos_parameters[0]));
7075         if (err)
7076                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7077
7078         return err;
7079 }
7080
7081 /*
7082 * send IPW_CMD_WME_INFO to the firmware
7083 */
7084 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7085 {
7086         int ret = 0;
7087         struct libipw_qos_information_element qos_info;
7088
7089         if (priv == NULL)
7090                 return -1;
7091
7092         qos_info.elementID = QOS_ELEMENT_ID;
7093         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7094
7095         qos_info.version = QOS_VERSION_1;
7096         qos_info.ac_info = 0;
7097
7098         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7099         qos_info.qui_type = QOS_OUI_TYPE;
7100         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7101
7102         ret = ipw_send_qos_info_command(priv, &qos_info);
7103         if (ret != 0) {
7104                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7105         }
7106         return ret;
7107 }
7108
7109 /*
7110 * Set the QoS parameter with the association request structure
7111 */
7112 static int ipw_qos_association(struct ipw_priv *priv,
7113                                struct libipw_network *network)
7114 {
7115         int err = 0;
7116         struct libipw_qos_data *qos_data = NULL;
7117         struct libipw_qos_data ibss_data = {
7118                 .supported = 1,
7119                 .active = 1,
7120         };
7121
7122         switch (priv->ieee->iw_mode) {
7123         case IW_MODE_ADHOC:
7124                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7125
7126                 qos_data = &ibss_data;
7127                 break;
7128
7129         case IW_MODE_INFRA:
7130                 qos_data = &network->qos_data;
7131                 break;
7132
7133         default:
7134                 BUG();
7135                 break;
7136         }
7137
7138         err = ipw_qos_activate(priv, qos_data);
7139         if (err) {
7140                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7141                 return err;
7142         }
7143
7144         if (priv->qos_data.qos_enable && qos_data->supported) {
7145                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7146                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7147                 return ipw_qos_set_info_element(priv);
7148         }
7149
7150         return 0;
7151 }
7152
7153 /*
7154 * handling the beaconing responses. if we get different QoS setting
7155 * off the network from the associated setting, adjust the QoS
7156 * setting
7157 */
7158 static int ipw_qos_association_resp(struct ipw_priv *priv,
7159                                     struct libipw_network *network)
7160 {
7161         int ret = 0;
7162         unsigned long flags;
7163         u32 size = sizeof(struct libipw_qos_parameters);
7164         int set_qos_param = 0;
7165
7166         if ((priv == NULL) || (network == NULL) ||
7167             (priv->assoc_network == NULL))
7168                 return ret;
7169
7170         if (!(priv->status & STATUS_ASSOCIATED))
7171                 return ret;
7172
7173         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7174                 return ret;
7175
7176         spin_lock_irqsave(&priv->ieee->lock, flags);
7177         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7178                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7179                        sizeof(struct libipw_qos_data));
7180                 priv->assoc_network->qos_data.active = 1;
7181                 if ((network->qos_data.old_param_count !=
7182                      network->qos_data.param_count)) {
7183                         set_qos_param = 1;
7184                         network->qos_data.old_param_count =
7185                             network->qos_data.param_count;
7186                 }
7187
7188         } else {
7189                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7190                         memcpy(&priv->assoc_network->qos_data.parameters,
7191                                &def_parameters_CCK, size);
7192                 else
7193                         memcpy(&priv->assoc_network->qos_data.parameters,
7194                                &def_parameters_OFDM, size);
7195                 priv->assoc_network->qos_data.active = 0;
7196                 priv->assoc_network->qos_data.supported = 0;
7197                 set_qos_param = 1;
7198         }
7199
7200         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7201
7202         if (set_qos_param == 1)
7203                 schedule_work(&priv->qos_activate);
7204
7205         return ret;
7206 }
7207
7208 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7209 {
7210         u32 ret = 0;
7211
7212         if ((priv == NULL))
7213                 return 0;
7214
7215         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7216                 ret = priv->qos_data.burst_duration_CCK;
7217         else
7218                 ret = priv->qos_data.burst_duration_OFDM;
7219
7220         return ret;
7221 }
7222
7223 /*
7224 * Initialize the setting of QoS global
7225 */
7226 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7227                          int burst_enable, u32 burst_duration_CCK,
7228                          u32 burst_duration_OFDM)
7229 {
7230         priv->qos_data.qos_enable = enable;
7231
7232         if (priv->qos_data.qos_enable) {
7233                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7234                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7235                 IPW_DEBUG_QOS("QoS is enabled\n");
7236         } else {
7237                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7238                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7239                 IPW_DEBUG_QOS("QoS is not enabled\n");
7240         }
7241
7242         priv->qos_data.burst_enable = burst_enable;
7243
7244         if (burst_enable) {
7245                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7246                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7247         } else {
7248                 priv->qos_data.burst_duration_CCK = 0;
7249                 priv->qos_data.burst_duration_OFDM = 0;
7250         }
7251 }
7252
7253 /*
7254 * map the packet priority to the right TX Queue
7255 */
7256 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7257 {
7258         if (priority > 7 || !priv->qos_data.qos_enable)
7259                 priority = 0;
7260
7261         return from_priority_to_tx_queue[priority] - 1;
7262 }
7263
7264 static int ipw_is_qos_active(struct net_device *dev,
7265                              struct sk_buff *skb)
7266 {
7267         struct ipw_priv *priv = libipw_priv(dev);
7268         struct libipw_qos_data *qos_data = NULL;
7269         int active, supported;
7270         u8 *daddr = skb->data + ETH_ALEN;
7271         int unicast = !is_multicast_ether_addr(daddr);
7272
7273         if (!(priv->status & STATUS_ASSOCIATED))
7274                 return 0;
7275
7276         qos_data = &priv->assoc_network->qos_data;
7277
7278         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7279                 if (unicast == 0)
7280                         qos_data->active = 0;
7281                 else
7282                         qos_data->active = qos_data->supported;
7283         }
7284         active = qos_data->active;
7285         supported = qos_data->supported;
7286         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7287                       "unicast %d\n",
7288                       priv->qos_data.qos_enable, active, supported, unicast);
7289         if (active && priv->qos_data.qos_enable)
7290                 return 1;
7291
7292         return 0;
7293
7294 }
7295 /*
7296 * add QoS parameter to the TX command
7297 */
7298 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7299                                         u16 priority,
7300                                         struct tfd_data *tfd)
7301 {
7302         int tx_queue_id = 0;
7303
7304
7305         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7306         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7307
7308         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7309                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7310                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7311         }
7312         return 0;
7313 }
7314
7315 /*
7316 * background support to run QoS activate functionality
7317 */
7318 static void ipw_bg_qos_activate(struct work_struct *work)
7319 {
7320         struct ipw_priv *priv =
7321                 container_of(work, struct ipw_priv, qos_activate);
7322
7323         mutex_lock(&priv->mutex);
7324
7325         if (priv->status & STATUS_ASSOCIATED)
7326                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7327
7328         mutex_unlock(&priv->mutex);
7329 }
7330
7331 static int ipw_handle_probe_response(struct net_device *dev,
7332                                      struct libipw_probe_response *resp,
7333                                      struct libipw_network *network)
7334 {
7335         struct ipw_priv *priv = libipw_priv(dev);
7336         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7337                               (network == priv->assoc_network));
7338
7339         ipw_qos_handle_probe_response(priv, active_network, network);
7340
7341         return 0;
7342 }
7343
7344 static int ipw_handle_beacon(struct net_device *dev,
7345                              struct libipw_beacon *resp,
7346                              struct libipw_network *network)
7347 {
7348         struct ipw_priv *priv = libipw_priv(dev);
7349         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7350                               (network == priv->assoc_network));
7351
7352         ipw_qos_handle_probe_response(priv, active_network, network);
7353
7354         return 0;
7355 }
7356
7357 static int ipw_handle_assoc_response(struct net_device *dev,
7358                                      struct libipw_assoc_response *resp,
7359                                      struct libipw_network *network)
7360 {
7361         struct ipw_priv *priv = libipw_priv(dev);
7362         ipw_qos_association_resp(priv, network);
7363         return 0;
7364 }
7365
7366 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7367                                        *qos_param)
7368 {
7369         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7370                                 sizeof(*qos_param) * 3, qos_param);
7371 }
7372
7373 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7374                                      *qos_param)
7375 {
7376         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7377                                 qos_param);
7378 }
7379
7380 #endif                          /* CONFIG_IPW2200_QOS */
7381
7382 static int ipw_associate_network(struct ipw_priv *priv,
7383                                  struct libipw_network *network,
7384                                  struct ipw_supported_rates *rates, int roaming)
7385 {
7386         int err;
7387         DECLARE_SSID_BUF(ssid);
7388
7389         if (priv->config & CFG_FIXED_RATE)
7390                 ipw_set_fixed_rate(priv, network->mode);
7391
7392         if (!(priv->config & CFG_STATIC_ESSID)) {
7393                 priv->essid_len = min(network->ssid_len,
7394                                       (u8) IW_ESSID_MAX_SIZE);
7395                 memcpy(priv->essid, network->ssid, priv->essid_len);
7396         }
7397
7398         network->last_associate = jiffies;
7399
7400         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7401         priv->assoc_request.channel = network->channel;
7402         priv->assoc_request.auth_key = 0;
7403
7404         if ((priv->capability & CAP_PRIVACY_ON) &&
7405             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7406                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7407                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7408
7409                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7410                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7411
7412         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7413                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7414                 priv->assoc_request.auth_type = AUTH_LEAP;
7415         else
7416                 priv->assoc_request.auth_type = AUTH_OPEN;
7417
7418         if (priv->ieee->wpa_ie_len) {
7419                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7420                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7421                                  priv->ieee->wpa_ie_len);
7422         }
7423
7424         /*
7425          * It is valid for our ieee device to support multiple modes, but
7426          * when it comes to associating to a given network we have to choose
7427          * just one mode.
7428          */
7429         if (network->mode & priv->ieee->mode & IEEE_A)
7430                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7431         else if (network->mode & priv->ieee->mode & IEEE_G)
7432                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7433         else if (network->mode & priv->ieee->mode & IEEE_B)
7434                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7435
7436         priv->assoc_request.capability = cpu_to_le16(network->capability);
7437         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7438             && !(priv->config & CFG_PREAMBLE_LONG)) {
7439                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7440         } else {
7441                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7442
7443                 /* Clear the short preamble if we won't be supporting it */
7444                 priv->assoc_request.capability &=
7445                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7446         }
7447
7448         /* Clear capability bits that aren't used in Ad Hoc */
7449         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7450                 priv->assoc_request.capability &=
7451                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7452
7453         IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7454                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7455                         roaming ? "Rea" : "A",
7456                         print_ssid(ssid, priv->essid, priv->essid_len),
7457                         network->channel,
7458                         ipw_modes[priv->assoc_request.ieee_mode],
7459                         rates->num_rates,
7460                         (priv->assoc_request.preamble_length ==
7461                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7462                         network->capability &
7463                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7464                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7465                         priv->capability & CAP_PRIVACY_ON ?
7466                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7467                          "(open)") : "",
7468                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7469                         priv->capability & CAP_PRIVACY_ON ?
7470                         '1' + priv->ieee->sec.active_key : '.',
7471                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7472
7473         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7474         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7475             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7476                 priv->assoc_request.assoc_type = HC_IBSS_START;
7477                 priv->assoc_request.assoc_tsf_msw = 0;
7478                 priv->assoc_request.assoc_tsf_lsw = 0;
7479         } else {
7480                 if (unlikely(roaming))
7481                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7482                 else
7483                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7484                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7485                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7486         }
7487
7488         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7489
7490         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7491                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7492                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7493         } else {
7494                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7495                 priv->assoc_request.atim_window = 0;
7496         }
7497
7498         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7499
7500         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7501         if (err) {
7502                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7503                 return err;
7504         }
7505
7506         rates->ieee_mode = priv->assoc_request.ieee_mode;
7507         rates->purpose = IPW_RATE_CONNECT;
7508         ipw_send_supported_rates(priv, rates);
7509
7510         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7511                 priv->sys_config.dot11g_auto_detection = 1;
7512         else
7513                 priv->sys_config.dot11g_auto_detection = 0;
7514
7515         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7516                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7517         else
7518                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7519
7520         err = ipw_send_system_config(priv);
7521         if (err) {
7522                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7523                 return err;
7524         }
7525
7526         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7527         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7528         if (err) {
7529                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7530                 return err;
7531         }
7532
7533         /*
7534          * If preemption is enabled, it is possible for the association
7535          * to complete before we return from ipw_send_associate.  Therefore
7536          * we have to be sure and update our priviate data first.
7537          */
7538         priv->channel = network->channel;
7539         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7540         priv->status |= STATUS_ASSOCIATING;
7541         priv->status &= ~STATUS_SECURITY_UPDATED;
7542
7543         priv->assoc_network = network;
7544
7545 #ifdef CONFIG_IPW2200_QOS
7546         ipw_qos_association(priv, network);
7547 #endif
7548
7549         err = ipw_send_associate(priv, &priv->assoc_request);
7550         if (err) {
7551                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7552                 return err;
7553         }
7554
7555         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7556                   print_ssid(ssid, priv->essid, priv->essid_len),
7557                   priv->bssid);
7558
7559         return 0;
7560 }
7561
7562 static void ipw_roam(void *data)
7563 {
7564         struct ipw_priv *priv = data;
7565         struct libipw_network *network = NULL;
7566         struct ipw_network_match match = {
7567                 .network = priv->assoc_network
7568         };
7569
7570         /* The roaming process is as follows:
7571          *
7572          * 1.  Missed beacon threshold triggers the roaming process by
7573          *     setting the status ROAM bit and requesting a scan.
7574          * 2.  When the scan completes, it schedules the ROAM work
7575          * 3.  The ROAM work looks at all of the known networks for one that
7576          *     is a better network than the currently associated.  If none
7577          *     found, the ROAM process is over (ROAM bit cleared)
7578          * 4.  If a better network is found, a disassociation request is
7579          *     sent.
7580          * 5.  When the disassociation completes, the roam work is again
7581          *     scheduled.  The second time through, the driver is no longer
7582          *     associated, and the newly selected network is sent an
7583          *     association request.
7584          * 6.  At this point ,the roaming process is complete and the ROAM
7585          *     status bit is cleared.
7586          */
7587
7588         /* If we are no longer associated, and the roaming bit is no longer
7589          * set, then we are not actively roaming, so just return */
7590         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7591                 return;
7592
7593         if (priv->status & STATUS_ASSOCIATED) {
7594                 /* First pass through ROAM process -- look for a better
7595                  * network */
7596                 unsigned long flags;
7597                 u8 rssi = priv->assoc_network->stats.rssi;
7598                 priv->assoc_network->stats.rssi = -128;
7599                 spin_lock_irqsave(&priv->ieee->lock, flags);
7600                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7601                         if (network != priv->assoc_network)
7602                                 ipw_best_network(priv, &match, network, 1);
7603                 }
7604                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7605                 priv->assoc_network->stats.rssi = rssi;
7606
7607                 if (match.network == priv->assoc_network) {
7608                         IPW_DEBUG_ASSOC("No better APs in this network to "
7609                                         "roam to.\n");
7610                         priv->status &= ~STATUS_ROAMING;
7611                         ipw_debug_config(priv);
7612                         return;
7613                 }
7614
7615                 ipw_send_disassociate(priv, 1);
7616                 priv->assoc_network = match.network;
7617
7618                 return;
7619         }
7620
7621         /* Second pass through ROAM process -- request association */
7622         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7623         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7624         priv->status &= ~STATUS_ROAMING;
7625 }
7626
7627 static void ipw_bg_roam(struct work_struct *work)
7628 {
7629         struct ipw_priv *priv =
7630                 container_of(work, struct ipw_priv, roam);
7631         mutex_lock(&priv->mutex);
7632         ipw_roam(priv);
7633         mutex_unlock(&priv->mutex);
7634 }
7635
7636 static int ipw_associate(void *data)
7637 {
7638         struct ipw_priv *priv = data;
7639
7640         struct libipw_network *network = NULL;
7641         struct ipw_network_match match = {
7642                 .network = NULL
7643         };
7644         struct ipw_supported_rates *rates;
7645         struct list_head *element;
7646         unsigned long flags;
7647         DECLARE_SSID_BUF(ssid);
7648
7649         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7650                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7651                 return 0;
7652         }
7653
7654         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7655                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7656                                 "progress)\n");
7657                 return 0;
7658         }
7659
7660         if (priv->status & STATUS_DISASSOCIATING) {
7661                 IPW_DEBUG_ASSOC("Not attempting association (in "
7662                                 "disassociating)\n ");
7663                 schedule_work(&priv->associate);
7664                 return 0;
7665         }
7666
7667         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7668                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7669                                 "initialized)\n");
7670                 return 0;
7671         }
7672
7673         if (!(priv->config & CFG_ASSOCIATE) &&
7674             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7675                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7676                 return 0;
7677         }
7678
7679         /* Protect our use of the network_list */
7680         spin_lock_irqsave(&priv->ieee->lock, flags);
7681         list_for_each_entry(network, &priv->ieee->network_list, list)
7682             ipw_best_network(priv, &match, network, 0);
7683
7684         network = match.network;
7685         rates = &match.rates;
7686
7687         if (network == NULL &&
7688             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7689             priv->config & CFG_ADHOC_CREATE &&
7690             priv->config & CFG_STATIC_ESSID &&
7691             priv->config & CFG_STATIC_CHANNEL) {
7692                 /* Use oldest network if the free list is empty */
7693                 if (list_empty(&priv->ieee->network_free_list)) {
7694                         struct libipw_network *oldest = NULL;
7695                         struct libipw_network *target;
7696
7697                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7698                                 if ((oldest == NULL) ||
7699                                     (target->last_scanned < oldest->last_scanned))
7700                                         oldest = target;
7701                         }
7702
7703                         /* If there are no more slots, expire the oldest */
7704                         list_del(&oldest->list);
7705                         target = oldest;
7706                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7707                                         "network list.\n",
7708                                         print_ssid(ssid, target->ssid,
7709                                                    target->ssid_len),
7710                                         target->bssid);
7711                         list_add_tail(&target->list,
7712                                       &priv->ieee->network_free_list);
7713                 }
7714
7715                 element = priv->ieee->network_free_list.next;
7716                 network = list_entry(element, struct libipw_network, list);
7717                 ipw_adhoc_create(priv, network);
7718                 rates = &priv->rates;
7719                 list_del(element);
7720                 list_add_tail(&network->list, &priv->ieee->network_list);
7721         }
7722         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7723
7724         /* If we reached the end of the list, then we don't have any valid
7725          * matching APs */
7726         if (!network) {
7727                 ipw_debug_config(priv);
7728
7729                 if (!(priv->status & STATUS_SCANNING)) {
7730                         if (!(priv->config & CFG_SPEED_SCAN))
7731                                 schedule_delayed_work(&priv->request_scan,
7732                                                       SCAN_INTERVAL);
7733                         else
7734                                 schedule_delayed_work(&priv->request_scan, 0);
7735                 }
7736
7737                 return 0;
7738         }
7739
7740         ipw_associate_network(priv, network, rates, 0);
7741
7742         return 1;
7743 }
7744
7745 static void ipw_bg_associate(struct work_struct *work)
7746 {
7747         struct ipw_priv *priv =
7748                 container_of(work, struct ipw_priv, associate);
7749         mutex_lock(&priv->mutex);
7750         ipw_associate(priv);
7751         mutex_unlock(&priv->mutex);
7752 }
7753
7754 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7755                                       struct sk_buff *skb)
7756 {
7757         struct ieee80211_hdr *hdr;
7758         u16 fc;
7759
7760         hdr = (struct ieee80211_hdr *)skb->data;
7761         fc = le16_to_cpu(hdr->frame_control);
7762         if (!(fc & IEEE80211_FCTL_PROTECTED))
7763                 return;
7764
7765         fc &= ~IEEE80211_FCTL_PROTECTED;
7766         hdr->frame_control = cpu_to_le16(fc);
7767         switch (priv->ieee->sec.level) {
7768         case SEC_LEVEL_3:
7769                 /* Remove CCMP HDR */
7770                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7771                         skb->data + LIBIPW_3ADDR_LEN + 8,
7772                         skb->len - LIBIPW_3ADDR_LEN - 8);
7773                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7774                 break;
7775         case SEC_LEVEL_2:
7776                 break;
7777         case SEC_LEVEL_1:
7778                 /* Remove IV */
7779                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7780                         skb->data + LIBIPW_3ADDR_LEN + 4,
7781                         skb->len - LIBIPW_3ADDR_LEN - 4);
7782                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7783                 break;
7784         case SEC_LEVEL_0:
7785                 break;
7786         default:
7787                 printk(KERN_ERR "Unknown security level %d\n",
7788                        priv->ieee->sec.level);
7789                 break;
7790         }
7791 }
7792
7793 static void ipw_handle_data_packet(struct ipw_priv *priv,
7794                                    struct ipw_rx_mem_buffer *rxb,
7795                                    struct libipw_rx_stats *stats)
7796 {
7797         struct net_device *dev = priv->net_dev;
7798         struct libipw_hdr_4addr *hdr;
7799         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7800
7801         /* We received data from the HW, so stop the watchdog */
7802         dev->trans_start = jiffies;
7803
7804         /* We only process data packets if the
7805          * interface is open */
7806         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7807                      skb_tailroom(rxb->skb))) {
7808                 dev->stats.rx_errors++;
7809                 priv->wstats.discard.misc++;
7810                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7811                 return;
7812         } else if (unlikely(!netif_running(priv->net_dev))) {
7813                 dev->stats.rx_dropped++;
7814                 priv->wstats.discard.misc++;
7815                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7816                 return;
7817         }
7818
7819         /* Advance skb->data to the start of the actual payload */
7820         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7821
7822         /* Set the size of the skb to the size of the frame */
7823         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7824
7825         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7826
7827         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7828         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7829         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7830             (is_multicast_ether_addr(hdr->addr1) ?
7831              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7832                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7833
7834         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7835                 dev->stats.rx_errors++;
7836         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7837                 rxb->skb = NULL;
7838                 __ipw_led_activity_on(priv);
7839         }
7840 }
7841
7842 #ifdef CONFIG_IPW2200_RADIOTAP
7843 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7844                                            struct ipw_rx_mem_buffer *rxb,
7845                                            struct libipw_rx_stats *stats)
7846 {
7847         struct net_device *dev = priv->net_dev;
7848         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7849         struct ipw_rx_frame *frame = &pkt->u.frame;
7850
7851         /* initial pull of some data */
7852         u16 received_channel = frame->received_channel;
7853         u8 antennaAndPhy = frame->antennaAndPhy;
7854         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7855         u16 pktrate = frame->rate;
7856
7857         /* Magic struct that slots into the radiotap header -- no reason
7858          * to build this manually element by element, we can write it much
7859          * more efficiently than we can parse it. ORDER MATTERS HERE */
7860         struct ipw_rt_hdr *ipw_rt;
7861
7862         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7863
7864         /* We received data from the HW, so stop the watchdog */
7865         dev->trans_start = jiffies;
7866
7867         /* We only process data packets if the
7868          * interface is open */
7869         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7870                      skb_tailroom(rxb->skb))) {
7871                 dev->stats.rx_errors++;
7872                 priv->wstats.discard.misc++;
7873                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7874                 return;
7875         } else if (unlikely(!netif_running(priv->net_dev))) {
7876                 dev->stats.rx_dropped++;
7877                 priv->wstats.discard.misc++;
7878                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7879                 return;
7880         }
7881
7882         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7883          * that now */
7884         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7885                 /* FIXME: Should alloc bigger skb instead */
7886                 dev->stats.rx_dropped++;
7887                 priv->wstats.discard.misc++;
7888                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7889                 return;
7890         }
7891
7892         /* copy the frame itself */
7893         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7894                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7895
7896         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7897
7898         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7899         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7900         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7901
7902         /* Big bitfield of all the fields we provide in radiotap */
7903         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7904              (1 << IEEE80211_RADIOTAP_TSFT) |
7905              (1 << IEEE80211_RADIOTAP_FLAGS) |
7906              (1 << IEEE80211_RADIOTAP_RATE) |
7907              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7908              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7909              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7910              (1 << IEEE80211_RADIOTAP_ANTENNA));
7911
7912         /* Zero the flags, we'll add to them as we go */
7913         ipw_rt->rt_flags = 0;
7914         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7915                                frame->parent_tsf[2] << 16 |
7916                                frame->parent_tsf[1] << 8  |
7917                                frame->parent_tsf[0]);
7918
7919         /* Convert signal to DBM */
7920         ipw_rt->rt_dbmsignal = antsignal;
7921         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7922
7923         /* Convert the channel data and set the flags */
7924         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7925         if (received_channel > 14) {    /* 802.11a */
7926                 ipw_rt->rt_chbitmask =
7927                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7928         } else if (antennaAndPhy & 32) {        /* 802.11b */
7929                 ipw_rt->rt_chbitmask =
7930                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7931         } else {                /* 802.11g */
7932                 ipw_rt->rt_chbitmask =
7933                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7934         }
7935
7936         /* set the rate in multiples of 500k/s */
7937         switch (pktrate) {
7938         case IPW_TX_RATE_1MB:
7939                 ipw_rt->rt_rate = 2;
7940                 break;
7941         case IPW_TX_RATE_2MB:
7942                 ipw_rt->rt_rate = 4;
7943                 break;
7944         case IPW_TX_RATE_5MB:
7945                 ipw_rt->rt_rate = 10;
7946                 break;
7947         case IPW_TX_RATE_6MB:
7948                 ipw_rt->rt_rate = 12;
7949                 break;
7950         case IPW_TX_RATE_9MB:
7951                 ipw_rt->rt_rate = 18;
7952                 break;
7953         case IPW_TX_RATE_11MB:
7954                 ipw_rt->rt_rate = 22;
7955                 break;
7956         case IPW_TX_RATE_12MB:
7957                 ipw_rt->rt_rate = 24;
7958                 break;
7959         case IPW_TX_RATE_18MB:
7960                 ipw_rt->rt_rate = 36;
7961                 break;
7962         case IPW_TX_RATE_24MB:
7963                 ipw_rt->rt_rate = 48;
7964                 break;
7965         case IPW_TX_RATE_36MB:
7966                 ipw_rt->rt_rate = 72;
7967                 break;
7968         case IPW_TX_RATE_48MB:
7969                 ipw_rt->rt_rate = 96;
7970                 break;
7971         case IPW_TX_RATE_54MB:
7972                 ipw_rt->rt_rate = 108;
7973                 break;
7974         default:
7975                 ipw_rt->rt_rate = 0;
7976                 break;
7977         }
7978
7979         /* antenna number */
7980         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7981
7982         /* set the preamble flag if we have it */
7983         if ((antennaAndPhy & 64))
7984                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7985
7986         /* Set the size of the skb to the size of the frame */
7987         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7988
7989         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7990
7991         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7992                 dev->stats.rx_errors++;
7993         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7994                 rxb->skb = NULL;
7995                 /* no LED during capture */
7996         }
7997 }
7998 #endif
7999
8000 #ifdef CONFIG_IPW2200_PROMISCUOUS
8001 #define libipw_is_probe_response(fc) \
8002    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8003     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8004
8005 #define libipw_is_management(fc) \
8006    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8007
8008 #define libipw_is_control(fc) \
8009    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8010
8011 #define libipw_is_data(fc) \
8012    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8013
8014 #define libipw_is_assoc_request(fc) \
8015    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8016
8017 #define libipw_is_reassoc_request(fc) \
8018    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8019
8020 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8021                                       struct ipw_rx_mem_buffer *rxb,
8022                                       struct libipw_rx_stats *stats)
8023 {
8024         struct net_device *dev = priv->prom_net_dev;
8025         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8026         struct ipw_rx_frame *frame = &pkt->u.frame;
8027         struct ipw_rt_hdr *ipw_rt;
8028
8029         /* First cache any information we need before we overwrite
8030          * the information provided in the skb from the hardware */
8031         struct ieee80211_hdr *hdr;
8032         u16 channel = frame->received_channel;
8033         u8 phy_flags = frame->antennaAndPhy;
8034         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8035         s8 noise = (s8) le16_to_cpu(frame->noise);
8036         u8 rate = frame->rate;
8037         unsigned short len = le16_to_cpu(pkt->u.frame.length);
8038         struct sk_buff *skb;
8039         int hdr_only = 0;
8040         u16 filter = priv->prom_priv->filter;
8041
8042         /* If the filter is set to not include Rx frames then return */
8043         if (filter & IPW_PROM_NO_RX)
8044                 return;
8045
8046         /* We received data from the HW, so stop the watchdog */
8047         dev->trans_start = jiffies;
8048
8049         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8050                 dev->stats.rx_errors++;
8051                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8052                 return;
8053         }
8054
8055         /* We only process data packets if the interface is open */
8056         if (unlikely(!netif_running(dev))) {
8057                 dev->stats.rx_dropped++;
8058                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8059                 return;
8060         }
8061
8062         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8063          * that now */
8064         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8065                 /* FIXME: Should alloc bigger skb instead */
8066                 dev->stats.rx_dropped++;
8067                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8068                 return;
8069         }
8070
8071         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8072         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8073                 if (filter & IPW_PROM_NO_MGMT)
8074                         return;
8075                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8076                         hdr_only = 1;
8077         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8078                 if (filter & IPW_PROM_NO_CTL)
8079                         return;
8080                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8081                         hdr_only = 1;
8082         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8083                 if (filter & IPW_PROM_NO_DATA)
8084                         return;
8085                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8086                         hdr_only = 1;
8087         }
8088
8089         /* Copy the SKB since this is for the promiscuous side */
8090         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8091         if (skb == NULL) {
8092                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8093                 return;
8094         }
8095
8096         /* copy the frame data to write after where the radiotap header goes */
8097         ipw_rt = (void *)skb->data;
8098
8099         if (hdr_only)
8100                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8101
8102         memcpy(ipw_rt->payload, hdr, len);
8103
8104         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8105         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8106         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8107
8108         /* Set the size of the skb to the size of the frame */
8109         skb_put(skb, sizeof(*ipw_rt) + len);
8110
8111         /* Big bitfield of all the fields we provide in radiotap */
8112         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8113              (1 << IEEE80211_RADIOTAP_TSFT) |
8114              (1 << IEEE80211_RADIOTAP_FLAGS) |
8115              (1 << IEEE80211_RADIOTAP_RATE) |
8116              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8117              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8118              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8119              (1 << IEEE80211_RADIOTAP_ANTENNA));
8120
8121         /* Zero the flags, we'll add to them as we go */
8122         ipw_rt->rt_flags = 0;
8123         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8124                                frame->parent_tsf[2] << 16 |
8125                                frame->parent_tsf[1] << 8  |
8126                                frame->parent_tsf[0]);
8127
8128         /* Convert to DBM */
8129         ipw_rt->rt_dbmsignal = signal;
8130         ipw_rt->rt_dbmnoise = noise;
8131
8132         /* Convert the channel data and set the flags */
8133         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8134         if (channel > 14) {     /* 802.11a */
8135                 ipw_rt->rt_chbitmask =
8136                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8137         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8138                 ipw_rt->rt_chbitmask =
8139                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8140         } else {                /* 802.11g */
8141                 ipw_rt->rt_chbitmask =
8142                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8143         }
8144
8145         /* set the rate in multiples of 500k/s */
8146         switch (rate) {
8147         case IPW_TX_RATE_1MB:
8148                 ipw_rt->rt_rate = 2;
8149                 break;
8150         case IPW_TX_RATE_2MB:
8151                 ipw_rt->rt_rate = 4;
8152                 break;
8153         case IPW_TX_RATE_5MB:
8154                 ipw_rt->rt_rate = 10;
8155                 break;
8156         case IPW_TX_RATE_6MB:
8157                 ipw_rt->rt_rate = 12;
8158                 break;
8159         case IPW_TX_RATE_9MB:
8160                 ipw_rt->rt_rate = 18;
8161                 break;
8162         case IPW_TX_RATE_11MB:
8163                 ipw_rt->rt_rate = 22;
8164                 break;
8165         case IPW_TX_RATE_12MB:
8166                 ipw_rt->rt_rate = 24;
8167                 break;
8168         case IPW_TX_RATE_18MB:
8169                 ipw_rt->rt_rate = 36;
8170                 break;
8171         case IPW_TX_RATE_24MB:
8172                 ipw_rt->rt_rate = 48;
8173                 break;
8174         case IPW_TX_RATE_36MB:
8175                 ipw_rt->rt_rate = 72;
8176                 break;
8177         case IPW_TX_RATE_48MB:
8178                 ipw_rt->rt_rate = 96;
8179                 break;
8180         case IPW_TX_RATE_54MB:
8181                 ipw_rt->rt_rate = 108;
8182                 break;
8183         default:
8184                 ipw_rt->rt_rate = 0;
8185                 break;
8186         }
8187
8188         /* antenna number */
8189         ipw_rt->rt_antenna = (phy_flags & 3);
8190
8191         /* set the preamble flag if we have it */
8192         if (phy_flags & (1 << 6))
8193                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8194
8195         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8196
8197         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8198                 dev->stats.rx_errors++;
8199                 dev_kfree_skb_any(skb);
8200         }
8201 }
8202 #endif
8203
8204 static int is_network_packet(struct ipw_priv *priv,
8205                                     struct libipw_hdr_4addr *header)
8206 {
8207         /* Filter incoming packets to determine if they are targeted toward
8208          * this network, discarding packets coming from ourselves */
8209         switch (priv->ieee->iw_mode) {
8210         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8211                 /* packets from our adapter are dropped (echo) */
8212                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8213                         return 0;
8214
8215                 /* {broad,multi}cast packets to our BSSID go through */
8216                 if (is_multicast_ether_addr(header->addr1))
8217                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8218
8219                 /* packets to our adapter go through */
8220                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8221                                ETH_ALEN);
8222
8223         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8224                 /* packets from our adapter are dropped (echo) */
8225                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8226                         return 0;
8227
8228                 /* {broad,multi}cast packets to our BSS go through */
8229                 if (is_multicast_ether_addr(header->addr1))
8230                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8231
8232                 /* packets to our adapter go through */
8233                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8234                                ETH_ALEN);
8235         }
8236
8237         return 1;
8238 }
8239
8240 #define IPW_PACKET_RETRY_TIME HZ
8241
8242 static  int is_duplicate_packet(struct ipw_priv *priv,
8243                                       struct libipw_hdr_4addr *header)
8244 {
8245         u16 sc = le16_to_cpu(header->seq_ctl);
8246         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8247         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8248         u16 *last_seq, *last_frag;
8249         unsigned long *last_time;
8250
8251         switch (priv->ieee->iw_mode) {
8252         case IW_MODE_ADHOC:
8253                 {
8254                         struct list_head *p;
8255                         struct ipw_ibss_seq *entry = NULL;
8256                         u8 *mac = header->addr2;
8257                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8258
8259                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8260                                 entry =
8261                                     list_entry(p, struct ipw_ibss_seq, list);
8262                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8263                                         break;
8264                         }
8265                         if (p == &priv->ibss_mac_hash[index]) {
8266                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8267                                 if (!entry) {
8268                                         IPW_ERROR
8269                                             ("Cannot malloc new mac entry\n");
8270                                         return 0;
8271                                 }
8272                                 memcpy(entry->mac, mac, ETH_ALEN);
8273                                 entry->seq_num = seq;
8274                                 entry->frag_num = frag;
8275                                 entry->packet_time = jiffies;
8276                                 list_add(&entry->list,
8277                                          &priv->ibss_mac_hash[index]);
8278                                 return 0;
8279                         }
8280                         last_seq = &entry->seq_num;
8281                         last_frag = &entry->frag_num;
8282                         last_time = &entry->packet_time;
8283                         break;
8284                 }
8285         case IW_MODE_INFRA:
8286                 last_seq = &priv->last_seq_num;
8287                 last_frag = &priv->last_frag_num;
8288                 last_time = &priv->last_packet_time;
8289                 break;
8290         default:
8291                 return 0;
8292         }
8293         if ((*last_seq == seq) &&
8294             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8295                 if (*last_frag == frag)
8296                         goto drop;
8297                 if (*last_frag + 1 != frag)
8298                         /* out-of-order fragment */
8299                         goto drop;
8300         } else
8301                 *last_seq = seq;
8302
8303         *last_frag = frag;
8304         *last_time = jiffies;
8305         return 0;
8306
8307       drop:
8308         /* Comment this line now since we observed the card receives
8309          * duplicate packets but the FCTL_RETRY bit is not set in the
8310          * IBSS mode with fragmentation enabled.
8311          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8312         return 1;
8313 }
8314
8315 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8316                                    struct ipw_rx_mem_buffer *rxb,
8317                                    struct libipw_rx_stats *stats)
8318 {
8319         struct sk_buff *skb = rxb->skb;
8320         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8321         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8322             (skb->data + IPW_RX_FRAME_SIZE);
8323
8324         libipw_rx_mgt(priv->ieee, header, stats);
8325
8326         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8327             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8328               IEEE80211_STYPE_PROBE_RESP) ||
8329              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8330               IEEE80211_STYPE_BEACON))) {
8331                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8332                         ipw_add_station(priv, header->addr2);
8333         }
8334
8335         if (priv->config & CFG_NET_STATS) {
8336                 IPW_DEBUG_HC("sending stat packet\n");
8337
8338                 /* Set the size of the skb to the size of the full
8339                  * ipw header and 802.11 frame */
8340                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8341                         IPW_RX_FRAME_SIZE);
8342
8343                 /* Advance past the ipw packet header to the 802.11 frame */
8344                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8345
8346                 /* Push the libipw_rx_stats before the 802.11 frame */
8347                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8348
8349                 skb->dev = priv->ieee->dev;
8350
8351                 /* Point raw at the libipw_stats */
8352                 skb_reset_mac_header(skb);
8353
8354                 skb->pkt_type = PACKET_OTHERHOST;
8355                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8356                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8357                 netif_rx(skb);
8358                 rxb->skb = NULL;
8359         }
8360 }
8361
8362 /*
8363  * Main entry function for receiving a packet with 80211 headers.  This
8364  * should be called when ever the FW has notified us that there is a new
8365  * skb in the receive queue.
8366  */
8367 static void ipw_rx(struct ipw_priv *priv)
8368 {
8369         struct ipw_rx_mem_buffer *rxb;
8370         struct ipw_rx_packet *pkt;
8371         struct libipw_hdr_4addr *header;
8372         u32 r, w, i;
8373         u8 network_packet;
8374         u8 fill_rx = 0;
8375
8376         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8377         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8378         i = priv->rxq->read;
8379
8380         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8381                 fill_rx = 1;
8382
8383         while (i != r) {
8384                 rxb = priv->rxq->queue[i];
8385                 if (unlikely(rxb == NULL)) {
8386                         printk(KERN_CRIT "Queue not allocated!\n");
8387                         break;
8388                 }
8389                 priv->rxq->queue[i] = NULL;
8390
8391                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8392                                             IPW_RX_BUF_SIZE,
8393                                             PCI_DMA_FROMDEVICE);
8394
8395                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8396                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8397                              pkt->header.message_type,
8398                              pkt->header.rx_seq_num, pkt->header.control_bits);
8399
8400                 switch (pkt->header.message_type) {
8401                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8402                                 struct libipw_rx_stats stats = {
8403                                         .rssi = pkt->u.frame.rssi_dbm -
8404                                             IPW_RSSI_TO_DBM,
8405                                         .signal =
8406                                             pkt->u.frame.rssi_dbm -
8407                                             IPW_RSSI_TO_DBM + 0x100,
8408                                         .noise =
8409                                             le16_to_cpu(pkt->u.frame.noise),
8410                                         .rate = pkt->u.frame.rate,
8411                                         .mac_time = jiffies,
8412                                         .received_channel =
8413                                             pkt->u.frame.received_channel,
8414                                         .freq =
8415                                             (pkt->u.frame.
8416                                              control & (1 << 0)) ?
8417                                             LIBIPW_24GHZ_BAND :
8418                                             LIBIPW_52GHZ_BAND,
8419                                         .len = le16_to_cpu(pkt->u.frame.length),
8420                                 };
8421
8422                                 if (stats.rssi != 0)
8423                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8424                                 if (stats.signal != 0)
8425                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8426                                 if (stats.noise != 0)
8427                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8428                                 if (stats.rate != 0)
8429                                         stats.mask |= LIBIPW_STATMASK_RATE;
8430
8431                                 priv->rx_packets++;
8432
8433 #ifdef CONFIG_IPW2200_PROMISCUOUS
8434         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8435                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8436 #endif
8437
8438 #ifdef CONFIG_IPW2200_MONITOR
8439                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8440 #ifdef CONFIG_IPW2200_RADIOTAP
8441
8442                 ipw_handle_data_packet_monitor(priv,
8443                                                rxb,
8444                                                &stats);
8445 #else
8446                 ipw_handle_data_packet(priv, rxb,
8447                                        &stats);
8448 #endif
8449                                         break;
8450                                 }
8451 #endif
8452
8453                                 header =
8454                                     (struct libipw_hdr_4addr *)(rxb->skb->
8455                                                                    data +
8456                                                                    IPW_RX_FRAME_SIZE);
8457                                 /* TODO: Check Ad-Hoc dest/source and make sure
8458                                  * that we are actually parsing these packets
8459                                  * correctly -- we should probably use the
8460                                  * frame control of the packet and disregard
8461                                  * the current iw_mode */
8462
8463                                 network_packet =
8464                                     is_network_packet(priv, header);
8465                                 if (network_packet && priv->assoc_network) {
8466                                         priv->assoc_network->stats.rssi =
8467                                             stats.rssi;
8468                                         priv->exp_avg_rssi =
8469                                             exponential_average(priv->exp_avg_rssi,
8470                                             stats.rssi, DEPTH_RSSI);
8471                                 }
8472
8473                                 IPW_DEBUG_RX("Frame: len=%u\n",
8474                                              le16_to_cpu(pkt->u.frame.length));
8475
8476                                 if (le16_to_cpu(pkt->u.frame.length) <
8477                                     libipw_get_hdrlen(le16_to_cpu(
8478                                                     header->frame_ctl))) {
8479                                         IPW_DEBUG_DROP
8480                                             ("Received packet is too small. "
8481                                              "Dropping.\n");
8482                                         priv->net_dev->stats.rx_errors++;
8483                                         priv->wstats.discard.misc++;
8484                                         break;
8485                                 }
8486
8487                                 switch (WLAN_FC_GET_TYPE
8488                                         (le16_to_cpu(header->frame_ctl))) {
8489
8490                                 case IEEE80211_FTYPE_MGMT:
8491                                         ipw_handle_mgmt_packet(priv, rxb,
8492                                                                &stats);
8493                                         break;
8494
8495                                 case IEEE80211_FTYPE_CTL:
8496                                         break;
8497
8498                                 case IEEE80211_FTYPE_DATA:
8499                                         if (unlikely(!network_packet ||
8500                                                      is_duplicate_packet(priv,
8501                                                                          header)))
8502                                         {
8503                                                 IPW_DEBUG_DROP("Dropping: "
8504                                                                "%pM, "
8505                                                                "%pM, "
8506                                                                "%pM\n",
8507                                                                header->addr1,
8508                                                                header->addr2,
8509                                                                header->addr3);
8510                                                 break;
8511                                         }
8512
8513                                         ipw_handle_data_packet(priv, rxb,
8514                                                                &stats);
8515
8516                                         break;
8517                                 }
8518                                 break;
8519                         }
8520
8521                 case RX_HOST_NOTIFICATION_TYPE:{
8522                                 IPW_DEBUG_RX
8523                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8524                                      pkt->u.notification.subtype,
8525                                      pkt->u.notification.flags,
8526                                      le16_to_cpu(pkt->u.notification.size));
8527                                 ipw_rx_notification(priv, &pkt->u.notification);
8528                                 break;
8529                         }
8530
8531                 default:
8532                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8533                                      pkt->header.message_type);
8534                         break;
8535                 }
8536
8537                 /* For now we just don't re-use anything.  We can tweak this
8538                  * later to try and re-use notification packets and SKBs that
8539                  * fail to Rx correctly */
8540                 if (rxb->skb != NULL) {
8541                         dev_kfree_skb_any(rxb->skb);
8542                         rxb->skb = NULL;
8543                 }
8544
8545                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8546                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8547                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8548
8549                 i = (i + 1) % RX_QUEUE_SIZE;
8550
8551                 /* If there are a lot of unsued frames, restock the Rx queue
8552                  * so the ucode won't assert */
8553                 if (fill_rx) {
8554                         priv->rxq->read = i;
8555                         ipw_rx_queue_replenish(priv);
8556                 }
8557         }
8558
8559         /* Backtrack one entry */
8560         priv->rxq->read = i;
8561         ipw_rx_queue_restock(priv);
8562 }
8563
8564 #define DEFAULT_RTS_THRESHOLD     2304U
8565 #define MIN_RTS_THRESHOLD         1U
8566 #define MAX_RTS_THRESHOLD         2304U
8567 #define DEFAULT_BEACON_INTERVAL   100U
8568 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8569 #define DEFAULT_LONG_RETRY_LIMIT  4U
8570
8571 /**
8572  * ipw_sw_reset
8573  * @option: options to control different reset behaviour
8574  *          0 = reset everything except the 'disable' module_param
8575  *          1 = reset everything and print out driver info (for probe only)
8576  *          2 = reset everything
8577  */
8578 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8579 {
8580         int band, modulation;
8581         int old_mode = priv->ieee->iw_mode;
8582
8583         /* Initialize module parameter values here */
8584         priv->config = 0;
8585
8586         /* We default to disabling the LED code as right now it causes
8587          * too many systems to lock up... */
8588         if (!led_support)
8589                 priv->config |= CFG_NO_LED;
8590
8591         if (associate)
8592                 priv->config |= CFG_ASSOCIATE;
8593         else
8594                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8595
8596         if (auto_create)
8597                 priv->config |= CFG_ADHOC_CREATE;
8598         else
8599                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8600
8601         priv->config &= ~CFG_STATIC_ESSID;
8602         priv->essid_len = 0;
8603         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8604
8605         if (disable && option) {
8606                 priv->status |= STATUS_RF_KILL_SW;
8607                 IPW_DEBUG_INFO("Radio disabled.\n");
8608         }
8609
8610         if (default_channel != 0) {
8611                 priv->config |= CFG_STATIC_CHANNEL;
8612                 priv->channel = default_channel;
8613                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8614                 /* TODO: Validate that provided channel is in range */
8615         }
8616 #ifdef CONFIG_IPW2200_QOS
8617         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8618                      burst_duration_CCK, burst_duration_OFDM);
8619 #endif                          /* CONFIG_IPW2200_QOS */
8620
8621         switch (network_mode) {
8622         case 1:
8623                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8624                 priv->net_dev->type = ARPHRD_ETHER;
8625
8626                 break;
8627 #ifdef CONFIG_IPW2200_MONITOR
8628         case 2:
8629                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8630 #ifdef CONFIG_IPW2200_RADIOTAP
8631                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8632 #else
8633                 priv->net_dev->type = ARPHRD_IEEE80211;
8634 #endif
8635                 break;
8636 #endif
8637         default:
8638         case 0:
8639                 priv->net_dev->type = ARPHRD_ETHER;
8640                 priv->ieee->iw_mode = IW_MODE_INFRA;
8641                 break;
8642         }
8643
8644         if (hwcrypto) {
8645                 priv->ieee->host_encrypt = 0;
8646                 priv->ieee->host_encrypt_msdu = 0;
8647                 priv->ieee->host_decrypt = 0;
8648                 priv->ieee->host_mc_decrypt = 0;
8649         }
8650         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8651
8652         /* IPW2200/2915 is abled to do hardware fragmentation. */
8653         priv->ieee->host_open_frag = 0;
8654
8655         if ((priv->pci_dev->device == 0x4223) ||
8656             (priv->pci_dev->device == 0x4224)) {
8657                 if (option == 1)
8658                         printk(KERN_INFO DRV_NAME
8659                                ": Detected Intel PRO/Wireless 2915ABG Network "
8660                                "Connection\n");
8661                 priv->ieee->abg_true = 1;
8662                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8663                 modulation = LIBIPW_OFDM_MODULATION |
8664                     LIBIPW_CCK_MODULATION;
8665                 priv->adapter = IPW_2915ABG;
8666                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8667         } else {
8668                 if (option == 1)
8669                         printk(KERN_INFO DRV_NAME
8670                                ": Detected Intel PRO/Wireless 2200BG Network "
8671                                "Connection\n");
8672
8673                 priv->ieee->abg_true = 0;
8674                 band = LIBIPW_24GHZ_BAND;
8675                 modulation = LIBIPW_OFDM_MODULATION |
8676                     LIBIPW_CCK_MODULATION;
8677                 priv->adapter = IPW_2200BG;
8678                 priv->ieee->mode = IEEE_G | IEEE_B;
8679         }
8680
8681         priv->ieee->freq_band = band;
8682         priv->ieee->modulation = modulation;
8683
8684         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8685
8686         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8687         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8688
8689         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8690         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8691         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8692
8693         /* If power management is turned on, default to AC mode */
8694         priv->power_mode = IPW_POWER_AC;
8695         priv->tx_power = IPW_TX_POWER_DEFAULT;
8696
8697         return old_mode == priv->ieee->iw_mode;
8698 }
8699
8700 /*
8701  * This file defines the Wireless Extension handlers.  It does not
8702  * define any methods of hardware manipulation and relies on the
8703  * functions defined in ipw_main to provide the HW interaction.
8704  *
8705  * The exception to this is the use of the ipw_get_ordinal()
8706  * function used to poll the hardware vs. making unnecessary calls.
8707  *
8708  */
8709
8710 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8711 {
8712         if (channel == 0) {
8713                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8714                 priv->config &= ~CFG_STATIC_CHANNEL;
8715                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8716                                 "parameters.\n");
8717                 ipw_associate(priv);
8718                 return 0;
8719         }
8720
8721         priv->config |= CFG_STATIC_CHANNEL;
8722
8723         if (priv->channel == channel) {
8724                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8725                                channel);
8726                 return 0;
8727         }
8728
8729         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8730         priv->channel = channel;
8731
8732 #ifdef CONFIG_IPW2200_MONITOR
8733         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8734                 int i;
8735                 if (priv->status & STATUS_SCANNING) {
8736                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8737                                        "channel change.\n");
8738                         ipw_abort_scan(priv);
8739                 }
8740
8741                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8742                         udelay(10);
8743
8744                 if (priv->status & STATUS_SCANNING)
8745                         IPW_DEBUG_SCAN("Still scanning...\n");
8746                 else
8747                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8748                                        1000 - i);
8749
8750                 return 0;
8751         }
8752 #endif                          /* CONFIG_IPW2200_MONITOR */
8753
8754         /* Network configuration changed -- force [re]association */
8755         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8756         if (!ipw_disassociate(priv))
8757                 ipw_associate(priv);
8758
8759         return 0;
8760 }
8761
8762 static int ipw_wx_set_freq(struct net_device *dev,
8763                            struct iw_request_info *info,
8764                            union iwreq_data *wrqu, char *extra)
8765 {
8766         struct ipw_priv *priv = libipw_priv(dev);
8767         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8768         struct iw_freq *fwrq = &wrqu->freq;
8769         int ret = 0, i;
8770         u8 channel, flags;
8771         int band;
8772
8773         if (fwrq->m == 0) {
8774                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8775                 mutex_lock(&priv->mutex);
8776                 ret = ipw_set_channel(priv, 0);
8777                 mutex_unlock(&priv->mutex);
8778                 return ret;
8779         }
8780         /* if setting by freq convert to channel */
8781         if (fwrq->e == 1) {
8782                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8783                 if (channel == 0)
8784                         return -EINVAL;
8785         } else
8786                 channel = fwrq->m;
8787
8788         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8789                 return -EINVAL;
8790
8791         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8792                 i = libipw_channel_to_index(priv->ieee, channel);
8793                 if (i == -1)
8794                         return -EINVAL;
8795
8796                 flags = (band == LIBIPW_24GHZ_BAND) ?
8797                     geo->bg[i].flags : geo->a[i].flags;
8798                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8799                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8800                         return -EINVAL;
8801                 }
8802         }
8803
8804         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8805         mutex_lock(&priv->mutex);
8806         ret = ipw_set_channel(priv, channel);
8807         mutex_unlock(&priv->mutex);
8808         return ret;
8809 }
8810
8811 static int ipw_wx_get_freq(struct net_device *dev,
8812                            struct iw_request_info *info,
8813                            union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = libipw_priv(dev);
8816
8817         wrqu->freq.e = 0;
8818
8819         /* If we are associated, trying to associate, or have a statically
8820          * configured CHANNEL then return that; otherwise return ANY */
8821         mutex_lock(&priv->mutex);
8822         if (priv->config & CFG_STATIC_CHANNEL ||
8823             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8824                 int i;
8825
8826                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8827                 BUG_ON(i == -1);
8828                 wrqu->freq.e = 1;
8829
8830                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8831                 case LIBIPW_52GHZ_BAND:
8832                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8833                         break;
8834
8835                 case LIBIPW_24GHZ_BAND:
8836                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8837                         break;
8838
8839                 default:
8840                         BUG();
8841                 }
8842         } else
8843                 wrqu->freq.m = 0;
8844
8845         mutex_unlock(&priv->mutex);
8846         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8847         return 0;
8848 }
8849
8850 static int ipw_wx_set_mode(struct net_device *dev,
8851                            struct iw_request_info *info,
8852                            union iwreq_data *wrqu, char *extra)
8853 {
8854         struct ipw_priv *priv = libipw_priv(dev);
8855         int err = 0;
8856
8857         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8858
8859         switch (wrqu->mode) {
8860 #ifdef CONFIG_IPW2200_MONITOR
8861         case IW_MODE_MONITOR:
8862 #endif
8863         case IW_MODE_ADHOC:
8864         case IW_MODE_INFRA:
8865                 break;
8866         case IW_MODE_AUTO:
8867                 wrqu->mode = IW_MODE_INFRA;
8868                 break;
8869         default:
8870                 return -EINVAL;
8871         }
8872         if (wrqu->mode == priv->ieee->iw_mode)
8873                 return 0;
8874
8875         mutex_lock(&priv->mutex);
8876
8877         ipw_sw_reset(priv, 0);
8878
8879 #ifdef CONFIG_IPW2200_MONITOR
8880         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8881                 priv->net_dev->type = ARPHRD_ETHER;
8882
8883         if (wrqu->mode == IW_MODE_MONITOR)
8884 #ifdef CONFIG_IPW2200_RADIOTAP
8885                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8886 #else
8887                 priv->net_dev->type = ARPHRD_IEEE80211;
8888 #endif
8889 #endif                          /* CONFIG_IPW2200_MONITOR */
8890
8891         /* Free the existing firmware and reset the fw_loaded
8892          * flag so ipw_load() will bring in the new firmware */
8893         free_firmware();
8894
8895         priv->ieee->iw_mode = wrqu->mode;
8896
8897         schedule_work(&priv->adapter_restart);
8898         mutex_unlock(&priv->mutex);
8899         return err;
8900 }
8901
8902 static int ipw_wx_get_mode(struct net_device *dev,
8903                            struct iw_request_info *info,
8904                            union iwreq_data *wrqu, char *extra)
8905 {
8906         struct ipw_priv *priv = libipw_priv(dev);
8907         mutex_lock(&priv->mutex);
8908         wrqu->mode = priv->ieee->iw_mode;
8909         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8910         mutex_unlock(&priv->mutex);
8911         return 0;
8912 }
8913
8914 /* Values are in microsecond */
8915 static const s32 timeout_duration[] = {
8916         350000,
8917         250000,
8918         75000,
8919         37000,
8920         25000,
8921 };
8922
8923 static const s32 period_duration[] = {
8924         400000,
8925         700000,
8926         1000000,
8927         1000000,
8928         1000000
8929 };
8930
8931 static int ipw_wx_get_range(struct net_device *dev,
8932                             struct iw_request_info *info,
8933                             union iwreq_data *wrqu, char *extra)
8934 {
8935         struct ipw_priv *priv = libipw_priv(dev);
8936         struct iw_range *range = (struct iw_range *)extra;
8937         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8938         int i = 0, j;
8939
8940         wrqu->data.length = sizeof(*range);
8941         memset(range, 0, sizeof(*range));
8942
8943         /* 54Mbs == ~27 Mb/s real (802.11g) */
8944         range->throughput = 27 * 1000 * 1000;
8945
8946         range->max_qual.qual = 100;
8947         /* TODO: Find real max RSSI and stick here */
8948         range->max_qual.level = 0;
8949         range->max_qual.noise = 0;
8950         range->max_qual.updated = 7;    /* Updated all three */
8951
8952         range->avg_qual.qual = 70;
8953         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8954         range->avg_qual.level = 0;      /* FIXME to real average level */
8955         range->avg_qual.noise = 0;
8956         range->avg_qual.updated = 7;    /* Updated all three */
8957         mutex_lock(&priv->mutex);
8958         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8959
8960         for (i = 0; i < range->num_bitrates; i++)
8961                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8962                     500000;
8963
8964         range->max_rts = DEFAULT_RTS_THRESHOLD;
8965         range->min_frag = MIN_FRAG_THRESHOLD;
8966         range->max_frag = MAX_FRAG_THRESHOLD;
8967
8968         range->encoding_size[0] = 5;
8969         range->encoding_size[1] = 13;
8970         range->num_encoding_sizes = 2;
8971         range->max_encoding_tokens = WEP_KEYS;
8972
8973         /* Set the Wireless Extension versions */
8974         range->we_version_compiled = WIRELESS_EXT;
8975         range->we_version_source = 18;
8976
8977         i = 0;
8978         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8979                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8980                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8981                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8982                                 continue;
8983
8984                         range->freq[i].i = geo->bg[j].channel;
8985                         range->freq[i].m = geo->bg[j].freq * 100000;
8986                         range->freq[i].e = 1;
8987                         i++;
8988                 }
8989         }
8990
8991         if (priv->ieee->mode & IEEE_A) {
8992                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8993                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8994                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8995                                 continue;
8996
8997                         range->freq[i].i = geo->a[j].channel;
8998                         range->freq[i].m = geo->a[j].freq * 100000;
8999                         range->freq[i].e = 1;
9000                         i++;
9001                 }
9002         }
9003
9004         range->num_channels = i;
9005         range->num_frequency = i;
9006
9007         mutex_unlock(&priv->mutex);
9008
9009         /* Event capability (kernel + driver) */
9010         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9011                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9012                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9013                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9014         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9015
9016         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9017                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9018
9019         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9020
9021         IPW_DEBUG_WX("GET Range\n");
9022         return 0;
9023 }
9024
9025 static int ipw_wx_set_wap(struct net_device *dev,
9026                           struct iw_request_info *info,
9027                           union iwreq_data *wrqu, char *extra)
9028 {
9029         struct ipw_priv *priv = libipw_priv(dev);
9030
9031         static const unsigned char any[] = {
9032                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9033         };
9034         static const unsigned char off[] = {
9035                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9036         };
9037
9038         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9039                 return -EINVAL;
9040         mutex_lock(&priv->mutex);
9041         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9042             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9043                 /* we disable mandatory BSSID association */
9044                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9045                 priv->config &= ~CFG_STATIC_BSSID;
9046                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9047                                 "parameters.\n");
9048                 ipw_associate(priv);
9049                 mutex_unlock(&priv->mutex);
9050                 return 0;
9051         }
9052
9053         priv->config |= CFG_STATIC_BSSID;
9054         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9055                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9056                 mutex_unlock(&priv->mutex);
9057                 return 0;
9058         }
9059
9060         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9061                      wrqu->ap_addr.sa_data);
9062
9063         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9064
9065         /* Network configuration changed -- force [re]association */
9066         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9067         if (!ipw_disassociate(priv))
9068                 ipw_associate(priv);
9069
9070         mutex_unlock(&priv->mutex);
9071         return 0;
9072 }
9073
9074 static int ipw_wx_get_wap(struct net_device *dev,
9075                           struct iw_request_info *info,
9076                           union iwreq_data *wrqu, char *extra)
9077 {
9078         struct ipw_priv *priv = libipw_priv(dev);
9079
9080         /* If we are associated, trying to associate, or have a statically
9081          * configured BSSID then return that; otherwise return ANY */
9082         mutex_lock(&priv->mutex);
9083         if (priv->config & CFG_STATIC_BSSID ||
9084             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9085                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9086                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9087         } else
9088                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9089
9090         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9091                      wrqu->ap_addr.sa_data);
9092         mutex_unlock(&priv->mutex);
9093         return 0;
9094 }
9095
9096 static int ipw_wx_set_essid(struct net_device *dev,
9097                             struct iw_request_info *info,
9098                             union iwreq_data *wrqu, char *extra)
9099 {
9100         struct ipw_priv *priv = libipw_priv(dev);
9101         int length;
9102         DECLARE_SSID_BUF(ssid);
9103
9104         mutex_lock(&priv->mutex);
9105
9106         if (!wrqu->essid.flags)
9107         {
9108                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9109                 ipw_disassociate(priv);
9110                 priv->config &= ~CFG_STATIC_ESSID;
9111                 ipw_associate(priv);
9112                 mutex_unlock(&priv->mutex);
9113                 return 0;
9114         }
9115
9116         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9117
9118         priv->config |= CFG_STATIC_ESSID;
9119
9120         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9121             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9122                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9123                 mutex_unlock(&priv->mutex);
9124                 return 0;
9125         }
9126
9127         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9128                      print_ssid(ssid, extra, length), length);
9129
9130         priv->essid_len = length;
9131         memcpy(priv->essid, extra, priv->essid_len);
9132
9133         /* Network configuration changed -- force [re]association */
9134         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9135         if (!ipw_disassociate(priv))
9136                 ipw_associate(priv);
9137
9138         mutex_unlock(&priv->mutex);
9139         return 0;
9140 }
9141
9142 static int ipw_wx_get_essid(struct net_device *dev,
9143                             struct iw_request_info *info,
9144                             union iwreq_data *wrqu, char *extra)
9145 {
9146         struct ipw_priv *priv = libipw_priv(dev);
9147         DECLARE_SSID_BUF(ssid);
9148
9149         /* If we are associated, trying to associate, or have a statically
9150          * configured ESSID then return that; otherwise return ANY */
9151         mutex_lock(&priv->mutex);
9152         if (priv->config & CFG_STATIC_ESSID ||
9153             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9154                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9155                              print_ssid(ssid, priv->essid, priv->essid_len));
9156                 memcpy(extra, priv->essid, priv->essid_len);
9157                 wrqu->essid.length = priv->essid_len;
9158                 wrqu->essid.flags = 1;  /* active */
9159         } else {
9160                 IPW_DEBUG_WX("Getting essid: ANY\n");
9161                 wrqu->essid.length = 0;
9162                 wrqu->essid.flags = 0;  /* active */
9163         }
9164         mutex_unlock(&priv->mutex);
9165         return 0;
9166 }
9167
9168 static int ipw_wx_set_nick(struct net_device *dev,
9169                            struct iw_request_info *info,
9170                            union iwreq_data *wrqu, char *extra)
9171 {
9172         struct ipw_priv *priv = libipw_priv(dev);
9173
9174         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9175         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9176                 return -E2BIG;
9177         mutex_lock(&priv->mutex);
9178         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9179         memset(priv->nick, 0, sizeof(priv->nick));
9180         memcpy(priv->nick, extra, wrqu->data.length);
9181         IPW_DEBUG_TRACE("<<\n");
9182         mutex_unlock(&priv->mutex);
9183         return 0;
9184
9185 }
9186
9187 static int ipw_wx_get_nick(struct net_device *dev,
9188                            struct iw_request_info *info,
9189                            union iwreq_data *wrqu, char *extra)
9190 {
9191         struct ipw_priv *priv = libipw_priv(dev);
9192         IPW_DEBUG_WX("Getting nick\n");
9193         mutex_lock(&priv->mutex);
9194         wrqu->data.length = strlen(priv->nick);
9195         memcpy(extra, priv->nick, wrqu->data.length);
9196         wrqu->data.flags = 1;   /* active */
9197         mutex_unlock(&priv->mutex);
9198         return 0;
9199 }
9200
9201 static int ipw_wx_set_sens(struct net_device *dev,
9202                             struct iw_request_info *info,
9203                             union iwreq_data *wrqu, char *extra)
9204 {
9205         struct ipw_priv *priv = libipw_priv(dev);
9206         int err = 0;
9207
9208         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9209         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9210         mutex_lock(&priv->mutex);
9211
9212         if (wrqu->sens.fixed == 0)
9213         {
9214                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9215                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9216                 goto out;
9217         }
9218         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9219             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9220                 err = -EINVAL;
9221                 goto out;
9222         }
9223
9224         priv->roaming_threshold = wrqu->sens.value;
9225         priv->disassociate_threshold = 3*wrqu->sens.value;
9226       out:
9227         mutex_unlock(&priv->mutex);
9228         return err;
9229 }
9230
9231 static int ipw_wx_get_sens(struct net_device *dev,
9232                             struct iw_request_info *info,
9233                             union iwreq_data *wrqu, char *extra)
9234 {
9235         struct ipw_priv *priv = libipw_priv(dev);
9236         mutex_lock(&priv->mutex);
9237         wrqu->sens.fixed = 1;
9238         wrqu->sens.value = priv->roaming_threshold;
9239         mutex_unlock(&priv->mutex);
9240
9241         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9242                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9243
9244         return 0;
9245 }
9246
9247 static int ipw_wx_set_rate(struct net_device *dev,
9248                            struct iw_request_info *info,
9249                            union iwreq_data *wrqu, char *extra)
9250 {
9251         /* TODO: We should use semaphores or locks for access to priv */
9252         struct ipw_priv *priv = libipw_priv(dev);
9253         u32 target_rate = wrqu->bitrate.value;
9254         u32 fixed, mask;
9255
9256         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9257         /* value = X, fixed = 1 means only rate X */
9258         /* value = X, fixed = 0 means all rates lower equal X */
9259
9260         if (target_rate == -1) {
9261                 fixed = 0;
9262                 mask = LIBIPW_DEFAULT_RATES_MASK;
9263                 /* Now we should reassociate */
9264                 goto apply;
9265         }
9266
9267         mask = 0;
9268         fixed = wrqu->bitrate.fixed;
9269
9270         if (target_rate == 1000000 || !fixed)
9271                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9272         if (target_rate == 1000000)
9273                 goto apply;
9274
9275         if (target_rate == 2000000 || !fixed)
9276                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9277         if (target_rate == 2000000)
9278                 goto apply;
9279
9280         if (target_rate == 5500000 || !fixed)
9281                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9282         if (target_rate == 5500000)
9283                 goto apply;
9284
9285         if (target_rate == 6000000 || !fixed)
9286                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9287         if (target_rate == 6000000)
9288                 goto apply;
9289
9290         if (target_rate == 9000000 || !fixed)
9291                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9292         if (target_rate == 9000000)
9293                 goto apply;
9294
9295         if (target_rate == 11000000 || !fixed)
9296                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9297         if (target_rate == 11000000)
9298                 goto apply;
9299
9300         if (target_rate == 12000000 || !fixed)
9301                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9302         if (target_rate == 12000000)
9303                 goto apply;
9304
9305         if (target_rate == 18000000 || !fixed)
9306                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9307         if (target_rate == 18000000)
9308                 goto apply;
9309
9310         if (target_rate == 24000000 || !fixed)
9311                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9312         if (target_rate == 24000000)
9313                 goto apply;
9314
9315         if (target_rate == 36000000 || !fixed)
9316                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9317         if (target_rate == 36000000)
9318                 goto apply;
9319
9320         if (target_rate == 48000000 || !fixed)
9321                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9322         if (target_rate == 48000000)
9323                 goto apply;
9324
9325         if (target_rate == 54000000 || !fixed)
9326                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9327         if (target_rate == 54000000)
9328                 goto apply;
9329
9330         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9331         return -EINVAL;
9332
9333       apply:
9334         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9335                      mask, fixed ? "fixed" : "sub-rates");
9336         mutex_lock(&priv->mutex);
9337         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9338                 priv->config &= ~CFG_FIXED_RATE;
9339                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9340         } else
9341                 priv->config |= CFG_FIXED_RATE;
9342
9343         if (priv->rates_mask == mask) {
9344                 IPW_DEBUG_WX("Mask set to current mask.\n");
9345                 mutex_unlock(&priv->mutex);
9346                 return 0;
9347         }
9348
9349         priv->rates_mask = mask;
9350
9351         /* Network configuration changed -- force [re]association */
9352         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9353         if (!ipw_disassociate(priv))
9354                 ipw_associate(priv);
9355
9356         mutex_unlock(&priv->mutex);
9357         return 0;
9358 }
9359
9360 static int ipw_wx_get_rate(struct net_device *dev,
9361                            struct iw_request_info *info,
9362                            union iwreq_data *wrqu, char *extra)
9363 {
9364         struct ipw_priv *priv = libipw_priv(dev);
9365         mutex_lock(&priv->mutex);
9366         wrqu->bitrate.value = priv->last_rate;
9367         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9368         mutex_unlock(&priv->mutex);
9369         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9370         return 0;
9371 }
9372
9373 static int ipw_wx_set_rts(struct net_device *dev,
9374                           struct iw_request_info *info,
9375                           union iwreq_data *wrqu, char *extra)
9376 {
9377         struct ipw_priv *priv = libipw_priv(dev);
9378         mutex_lock(&priv->mutex);
9379         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9380                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9381         else {
9382                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9383                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9384                         mutex_unlock(&priv->mutex);
9385                         return -EINVAL;
9386                 }
9387                 priv->rts_threshold = wrqu->rts.value;
9388         }
9389
9390         ipw_send_rts_threshold(priv, priv->rts_threshold);
9391         mutex_unlock(&priv->mutex);
9392         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9393         return 0;
9394 }
9395
9396 static int ipw_wx_get_rts(struct net_device *dev,
9397                           struct iw_request_info *info,
9398                           union iwreq_data *wrqu, char *extra)
9399 {
9400         struct ipw_priv *priv = libipw_priv(dev);
9401         mutex_lock(&priv->mutex);
9402         wrqu->rts.value = priv->rts_threshold;
9403         wrqu->rts.fixed = 0;    /* no auto select */
9404         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9405         mutex_unlock(&priv->mutex);
9406         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9407         return 0;
9408 }
9409
9410 static int ipw_wx_set_txpow(struct net_device *dev,
9411                             struct iw_request_info *info,
9412                             union iwreq_data *wrqu, char *extra)
9413 {
9414         struct ipw_priv *priv = libipw_priv(dev);
9415         int err = 0;
9416
9417         mutex_lock(&priv->mutex);
9418         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9419                 err = -EINPROGRESS;
9420                 goto out;
9421         }
9422
9423         if (!wrqu->power.fixed)
9424                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9425
9426         if (wrqu->power.flags != IW_TXPOW_DBM) {
9427                 err = -EINVAL;
9428                 goto out;
9429         }
9430
9431         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9432             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9433                 err = -EINVAL;
9434                 goto out;
9435         }
9436
9437         priv->tx_power = wrqu->power.value;
9438         err = ipw_set_tx_power(priv);
9439       out:
9440         mutex_unlock(&priv->mutex);
9441         return err;
9442 }
9443
9444 static int ipw_wx_get_txpow(struct net_device *dev,
9445                             struct iw_request_info *info,
9446                             union iwreq_data *wrqu, char *extra)
9447 {
9448         struct ipw_priv *priv = libipw_priv(dev);
9449         mutex_lock(&priv->mutex);
9450         wrqu->power.value = priv->tx_power;
9451         wrqu->power.fixed = 1;
9452         wrqu->power.flags = IW_TXPOW_DBM;
9453         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9454         mutex_unlock(&priv->mutex);
9455
9456         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9457                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9458
9459         return 0;
9460 }
9461
9462 static int ipw_wx_set_frag(struct net_device *dev,
9463                            struct iw_request_info *info,
9464                            union iwreq_data *wrqu, char *extra)
9465 {
9466         struct ipw_priv *priv = libipw_priv(dev);
9467         mutex_lock(&priv->mutex);
9468         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9469                 priv->ieee->fts = DEFAULT_FTS;
9470         else {
9471                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9472                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9473                         mutex_unlock(&priv->mutex);
9474                         return -EINVAL;
9475                 }
9476
9477                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9478         }
9479
9480         ipw_send_frag_threshold(priv, wrqu->frag.value);
9481         mutex_unlock(&priv->mutex);
9482         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9483         return 0;
9484 }
9485
9486 static int ipw_wx_get_frag(struct net_device *dev,
9487                            struct iw_request_info *info,
9488                            union iwreq_data *wrqu, char *extra)
9489 {
9490         struct ipw_priv *priv = libipw_priv(dev);
9491         mutex_lock(&priv->mutex);
9492         wrqu->frag.value = priv->ieee->fts;
9493         wrqu->frag.fixed = 0;   /* no auto select */
9494         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9495         mutex_unlock(&priv->mutex);
9496         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9497
9498         return 0;
9499 }
9500
9501 static int ipw_wx_set_retry(struct net_device *dev,
9502                             struct iw_request_info *info,
9503                             union iwreq_data *wrqu, char *extra)
9504 {
9505         struct ipw_priv *priv = libipw_priv(dev);
9506
9507         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9508                 return -EINVAL;
9509
9510         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9511                 return 0;
9512
9513         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9514                 return -EINVAL;
9515
9516         mutex_lock(&priv->mutex);
9517         if (wrqu->retry.flags & IW_RETRY_SHORT)
9518                 priv->short_retry_limit = (u8) wrqu->retry.value;
9519         else if (wrqu->retry.flags & IW_RETRY_LONG)
9520                 priv->long_retry_limit = (u8) wrqu->retry.value;
9521         else {
9522                 priv->short_retry_limit = (u8) wrqu->retry.value;
9523                 priv->long_retry_limit = (u8) wrqu->retry.value;
9524         }
9525
9526         ipw_send_retry_limit(priv, priv->short_retry_limit,
9527                              priv->long_retry_limit);
9528         mutex_unlock(&priv->mutex);
9529         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9530                      priv->short_retry_limit, priv->long_retry_limit);
9531         return 0;
9532 }
9533
9534 static int ipw_wx_get_retry(struct net_device *dev,
9535                             struct iw_request_info *info,
9536                             union iwreq_data *wrqu, char *extra)
9537 {
9538         struct ipw_priv *priv = libipw_priv(dev);
9539
9540         mutex_lock(&priv->mutex);
9541         wrqu->retry.disabled = 0;
9542
9543         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9544                 mutex_unlock(&priv->mutex);
9545                 return -EINVAL;
9546         }
9547
9548         if (wrqu->retry.flags & IW_RETRY_LONG) {
9549                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9550                 wrqu->retry.value = priv->long_retry_limit;
9551         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9552                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9553                 wrqu->retry.value = priv->short_retry_limit;
9554         } else {
9555                 wrqu->retry.flags = IW_RETRY_LIMIT;
9556                 wrqu->retry.value = priv->short_retry_limit;
9557         }
9558         mutex_unlock(&priv->mutex);
9559
9560         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9561
9562         return 0;
9563 }
9564
9565 static int ipw_wx_set_scan(struct net_device *dev,
9566                            struct iw_request_info *info,
9567                            union iwreq_data *wrqu, char *extra)
9568 {
9569         struct ipw_priv *priv = libipw_priv(dev);
9570         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9571         struct delayed_work *work = NULL;
9572
9573         mutex_lock(&priv->mutex);
9574
9575         priv->user_requested_scan = 1;
9576
9577         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9578                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9579                         int len = min((int)req->essid_len,
9580                                       (int)sizeof(priv->direct_scan_ssid));
9581                         memcpy(priv->direct_scan_ssid, req->essid, len);
9582                         priv->direct_scan_ssid_len = len;
9583                         work = &priv->request_direct_scan;
9584                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9585                         work = &priv->request_passive_scan;
9586                 }
9587         } else {
9588                 /* Normal active broadcast scan */
9589                 work = &priv->request_scan;
9590         }
9591
9592         mutex_unlock(&priv->mutex);
9593
9594         IPW_DEBUG_WX("Start scan\n");
9595
9596         schedule_delayed_work(work, 0);
9597
9598         return 0;
9599 }
9600
9601 static int ipw_wx_get_scan(struct net_device *dev,
9602                            struct iw_request_info *info,
9603                            union iwreq_data *wrqu, char *extra)
9604 {
9605         struct ipw_priv *priv = libipw_priv(dev);
9606         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9607 }
9608
9609 static int ipw_wx_set_encode(struct net_device *dev,
9610                              struct iw_request_info *info,
9611                              union iwreq_data *wrqu, char *key)
9612 {
9613         struct ipw_priv *priv = libipw_priv(dev);
9614         int ret;
9615         u32 cap = priv->capability;
9616
9617         mutex_lock(&priv->mutex);
9618         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9619
9620         /* In IBSS mode, we need to notify the firmware to update
9621          * the beacon info after we changed the capability. */
9622         if (cap != priv->capability &&
9623             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9624             priv->status & STATUS_ASSOCIATED)
9625                 ipw_disassociate(priv);
9626
9627         mutex_unlock(&priv->mutex);
9628         return ret;
9629 }
9630
9631 static int ipw_wx_get_encode(struct net_device *dev,
9632                              struct iw_request_info *info,
9633                              union iwreq_data *wrqu, char *key)
9634 {
9635         struct ipw_priv *priv = libipw_priv(dev);
9636         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9637 }
9638
9639 static int ipw_wx_set_power(struct net_device *dev,
9640                             struct iw_request_info *info,
9641                             union iwreq_data *wrqu, char *extra)
9642 {
9643         struct ipw_priv *priv = libipw_priv(dev);
9644         int err;
9645         mutex_lock(&priv->mutex);
9646         if (wrqu->power.disabled) {
9647                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9648                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9649                 if (err) {
9650                         IPW_DEBUG_WX("failed setting power mode.\n");
9651                         mutex_unlock(&priv->mutex);
9652                         return err;
9653                 }
9654                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9655                 mutex_unlock(&priv->mutex);
9656                 return 0;
9657         }
9658
9659         switch (wrqu->power.flags & IW_POWER_MODE) {
9660         case IW_POWER_ON:       /* If not specified */
9661         case IW_POWER_MODE:     /* If set all mask */
9662         case IW_POWER_ALL_R:    /* If explicitly state all */
9663                 break;
9664         default:                /* Otherwise we don't support it */
9665                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9666                              wrqu->power.flags);
9667                 mutex_unlock(&priv->mutex);
9668                 return -EOPNOTSUPP;
9669         }
9670
9671         /* If the user hasn't specified a power management mode yet, default
9672          * to BATTERY */
9673         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9674                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9675         else
9676                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9677
9678         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9679         if (err) {
9680                 IPW_DEBUG_WX("failed setting power mode.\n");
9681                 mutex_unlock(&priv->mutex);
9682                 return err;
9683         }
9684
9685         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9686         mutex_unlock(&priv->mutex);
9687         return 0;
9688 }
9689
9690 static int ipw_wx_get_power(struct net_device *dev,
9691                             struct iw_request_info *info,
9692                             union iwreq_data *wrqu, char *extra)
9693 {
9694         struct ipw_priv *priv = libipw_priv(dev);
9695         mutex_lock(&priv->mutex);
9696         if (!(priv->power_mode & IPW_POWER_ENABLED))
9697                 wrqu->power.disabled = 1;
9698         else
9699                 wrqu->power.disabled = 0;
9700
9701         mutex_unlock(&priv->mutex);
9702         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9703
9704         return 0;
9705 }
9706
9707 static int ipw_wx_set_powermode(struct net_device *dev,
9708                                 struct iw_request_info *info,
9709                                 union iwreq_data *wrqu, char *extra)
9710 {
9711         struct ipw_priv *priv = libipw_priv(dev);
9712         int mode = *(int *)extra;
9713         int err;
9714
9715         mutex_lock(&priv->mutex);
9716         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9717                 mode = IPW_POWER_AC;
9718
9719         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9720                 err = ipw_send_power_mode(priv, mode);
9721                 if (err) {
9722                         IPW_DEBUG_WX("failed setting power mode.\n");
9723                         mutex_unlock(&priv->mutex);
9724                         return err;
9725                 }
9726                 priv->power_mode = IPW_POWER_ENABLED | mode;
9727         }
9728         mutex_unlock(&priv->mutex);
9729         return 0;
9730 }
9731
9732 #define MAX_WX_STRING 80
9733 static int ipw_wx_get_powermode(struct net_device *dev,
9734                                 struct iw_request_info *info,
9735                                 union iwreq_data *wrqu, char *extra)
9736 {
9737         struct ipw_priv *priv = libipw_priv(dev);
9738         int level = IPW_POWER_LEVEL(priv->power_mode);
9739         char *p = extra;
9740
9741         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9742
9743         switch (level) {
9744         case IPW_POWER_AC:
9745                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9746                 break;
9747         case IPW_POWER_BATTERY:
9748                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9749                 break;
9750         default:
9751                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9752                               "(Timeout %dms, Period %dms)",
9753                               timeout_duration[level - 1] / 1000,
9754                               period_duration[level - 1] / 1000);
9755         }
9756
9757         if (!(priv->power_mode & IPW_POWER_ENABLED))
9758                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9759
9760         wrqu->data.length = p - extra + 1;
9761
9762         return 0;
9763 }
9764
9765 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9766                                     struct iw_request_info *info,
9767                                     union iwreq_data *wrqu, char *extra)
9768 {
9769         struct ipw_priv *priv = libipw_priv(dev);
9770         int mode = *(int *)extra;
9771         u8 band = 0, modulation = 0;
9772
9773         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9774                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9775                 return -EINVAL;
9776         }
9777         mutex_lock(&priv->mutex);
9778         if (priv->adapter == IPW_2915ABG) {
9779                 priv->ieee->abg_true = 1;
9780                 if (mode & IEEE_A) {
9781                         band |= LIBIPW_52GHZ_BAND;
9782                         modulation |= LIBIPW_OFDM_MODULATION;
9783                 } else
9784                         priv->ieee->abg_true = 0;
9785         } else {
9786                 if (mode & IEEE_A) {
9787                         IPW_WARNING("Attempt to set 2200BG into "
9788                                     "802.11a mode\n");
9789                         mutex_unlock(&priv->mutex);
9790                         return -EINVAL;
9791                 }
9792
9793                 priv->ieee->abg_true = 0;
9794         }
9795
9796         if (mode & IEEE_B) {
9797                 band |= LIBIPW_24GHZ_BAND;
9798                 modulation |= LIBIPW_CCK_MODULATION;
9799         } else
9800                 priv->ieee->abg_true = 0;
9801
9802         if (mode & IEEE_G) {
9803                 band |= LIBIPW_24GHZ_BAND;
9804                 modulation |= LIBIPW_OFDM_MODULATION;
9805         } else
9806                 priv->ieee->abg_true = 0;
9807
9808         priv->ieee->mode = mode;
9809         priv->ieee->freq_band = band;
9810         priv->ieee->modulation = modulation;
9811         init_supported_rates(priv, &priv->rates);
9812
9813         /* Network configuration changed -- force [re]association */
9814         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9815         if (!ipw_disassociate(priv)) {
9816                 ipw_send_supported_rates(priv, &priv->rates);
9817                 ipw_associate(priv);
9818         }
9819
9820         /* Update the band LEDs */
9821         ipw_led_band_on(priv);
9822
9823         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9824                      mode & IEEE_A ? 'a' : '.',
9825                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9826         mutex_unlock(&priv->mutex);
9827         return 0;
9828 }
9829
9830 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9831                                     struct iw_request_info *info,
9832                                     union iwreq_data *wrqu, char *extra)
9833 {
9834         struct ipw_priv *priv = libipw_priv(dev);
9835         mutex_lock(&priv->mutex);
9836         switch (priv->ieee->mode) {
9837         case IEEE_A:
9838                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9839                 break;
9840         case IEEE_B:
9841                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9842                 break;
9843         case IEEE_A | IEEE_B:
9844                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9845                 break;
9846         case IEEE_G:
9847                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9848                 break;
9849         case IEEE_A | IEEE_G:
9850                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9851                 break;
9852         case IEEE_B | IEEE_G:
9853                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9854                 break;
9855         case IEEE_A | IEEE_B | IEEE_G:
9856                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9857                 break;
9858         default:
9859                 strncpy(extra, "unknown", MAX_WX_STRING);
9860                 break;
9861         }
9862
9863         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9864
9865         wrqu->data.length = strlen(extra) + 1;
9866         mutex_unlock(&priv->mutex);
9867
9868         return 0;
9869 }
9870
9871 static int ipw_wx_set_preamble(struct net_device *dev,
9872                                struct iw_request_info *info,
9873                                union iwreq_data *wrqu, char *extra)
9874 {
9875         struct ipw_priv *priv = libipw_priv(dev);
9876         int mode = *(int *)extra;
9877         mutex_lock(&priv->mutex);
9878         /* Switching from SHORT -> LONG requires a disassociation */
9879         if (mode == 1) {
9880                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9881                         priv->config |= CFG_PREAMBLE_LONG;
9882
9883                         /* Network configuration changed -- force [re]association */
9884                         IPW_DEBUG_ASSOC
9885                             ("[re]association triggered due to preamble change.\n");
9886                         if (!ipw_disassociate(priv))
9887                                 ipw_associate(priv);
9888                 }
9889                 goto done;
9890         }
9891
9892         if (mode == 0) {
9893                 priv->config &= ~CFG_PREAMBLE_LONG;
9894                 goto done;
9895         }
9896         mutex_unlock(&priv->mutex);
9897         return -EINVAL;
9898
9899       done:
9900         mutex_unlock(&priv->mutex);
9901         return 0;
9902 }
9903
9904 static int ipw_wx_get_preamble(struct net_device *dev,
9905                                struct iw_request_info *info,
9906                                union iwreq_data *wrqu, char *extra)
9907 {
9908         struct ipw_priv *priv = libipw_priv(dev);
9909         mutex_lock(&priv->mutex);
9910         if (priv->config & CFG_PREAMBLE_LONG)
9911                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9912         else
9913                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9914         mutex_unlock(&priv->mutex);
9915         return 0;
9916 }
9917
9918 #ifdef CONFIG_IPW2200_MONITOR
9919 static int ipw_wx_set_monitor(struct net_device *dev,
9920                               struct iw_request_info *info,
9921                               union iwreq_data *wrqu, char *extra)
9922 {
9923         struct ipw_priv *priv = libipw_priv(dev);
9924         int *parms = (int *)extra;
9925         int enable = (parms[0] > 0);
9926         mutex_lock(&priv->mutex);
9927         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9928         if (enable) {
9929                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9930 #ifdef CONFIG_IPW2200_RADIOTAP
9931                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9932 #else
9933                         priv->net_dev->type = ARPHRD_IEEE80211;
9934 #endif
9935                         schedule_work(&priv->adapter_restart);
9936                 }
9937
9938                 ipw_set_channel(priv, parms[1]);
9939         } else {
9940                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9941                         mutex_unlock(&priv->mutex);
9942                         return 0;
9943                 }
9944                 priv->net_dev->type = ARPHRD_ETHER;
9945                 schedule_work(&priv->adapter_restart);
9946         }
9947         mutex_unlock(&priv->mutex);
9948         return 0;
9949 }
9950
9951 #endif                          /* CONFIG_IPW2200_MONITOR */
9952
9953 static int ipw_wx_reset(struct net_device *dev,
9954                         struct iw_request_info *info,
9955                         union iwreq_data *wrqu, char *extra)
9956 {
9957         struct ipw_priv *priv = libipw_priv(dev);
9958         IPW_DEBUG_WX("RESET\n");
9959         schedule_work(&priv->adapter_restart);
9960         return 0;
9961 }
9962
9963 static int ipw_wx_sw_reset(struct net_device *dev,
9964                            struct iw_request_info *info,
9965                            union iwreq_data *wrqu, char *extra)
9966 {
9967         struct ipw_priv *priv = libipw_priv(dev);
9968         union iwreq_data wrqu_sec = {
9969                 .encoding = {
9970                              .flags = IW_ENCODE_DISABLED,
9971                              },
9972         };
9973         int ret;
9974
9975         IPW_DEBUG_WX("SW_RESET\n");
9976
9977         mutex_lock(&priv->mutex);
9978
9979         ret = ipw_sw_reset(priv, 2);
9980         if (!ret) {
9981                 free_firmware();
9982                 ipw_adapter_restart(priv);
9983         }
9984
9985         /* The SW reset bit might have been toggled on by the 'disable'
9986          * module parameter, so take appropriate action */
9987         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9988
9989         mutex_unlock(&priv->mutex);
9990         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9991         mutex_lock(&priv->mutex);
9992
9993         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9994                 /* Configuration likely changed -- force [re]association */
9995                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9996                                 "reset.\n");
9997                 if (!ipw_disassociate(priv))
9998                         ipw_associate(priv);
9999         }
10000
10001         mutex_unlock(&priv->mutex);
10002
10003         return 0;
10004 }
10005
10006 /* Rebase the WE IOCTLs to zero for the handler array */
10007 static iw_handler ipw_wx_handlers[] = {
10008         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10009         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10010         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10011         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10012         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10013         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10014         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10015         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10016         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10017         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10018         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10019         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10020         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10021         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10022         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10023         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10024         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10025         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10026         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10027         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10028         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10029         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10030         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10031         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10032         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10033         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10034         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10035         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10036         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10037         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10038         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10039         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10040         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10041         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10042         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10043         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10044         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10045         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10046         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10047         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10048         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10049 };
10050
10051 enum {
10052         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10053         IPW_PRIV_GET_POWER,
10054         IPW_PRIV_SET_MODE,
10055         IPW_PRIV_GET_MODE,
10056         IPW_PRIV_SET_PREAMBLE,
10057         IPW_PRIV_GET_PREAMBLE,
10058         IPW_PRIV_RESET,
10059         IPW_PRIV_SW_RESET,
10060 #ifdef CONFIG_IPW2200_MONITOR
10061         IPW_PRIV_SET_MONITOR,
10062 #endif
10063 };
10064
10065 static struct iw_priv_args ipw_priv_args[] = {
10066         {
10067          .cmd = IPW_PRIV_SET_POWER,
10068          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10069          .name = "set_power"},
10070         {
10071          .cmd = IPW_PRIV_GET_POWER,
10072          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10073          .name = "get_power"},
10074         {
10075          .cmd = IPW_PRIV_SET_MODE,
10076          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10077          .name = "set_mode"},
10078         {
10079          .cmd = IPW_PRIV_GET_MODE,
10080          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10081          .name = "get_mode"},
10082         {
10083          .cmd = IPW_PRIV_SET_PREAMBLE,
10084          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10085          .name = "set_preamble"},
10086         {
10087          .cmd = IPW_PRIV_GET_PREAMBLE,
10088          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10089          .name = "get_preamble"},
10090         {
10091          IPW_PRIV_RESET,
10092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10093         {
10094          IPW_PRIV_SW_RESET,
10095          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10096 #ifdef CONFIG_IPW2200_MONITOR
10097         {
10098          IPW_PRIV_SET_MONITOR,
10099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10100 #endif                          /* CONFIG_IPW2200_MONITOR */
10101 };
10102
10103 static iw_handler ipw_priv_handler[] = {
10104         ipw_wx_set_powermode,
10105         ipw_wx_get_powermode,
10106         ipw_wx_set_wireless_mode,
10107         ipw_wx_get_wireless_mode,
10108         ipw_wx_set_preamble,
10109         ipw_wx_get_preamble,
10110         ipw_wx_reset,
10111         ipw_wx_sw_reset,
10112 #ifdef CONFIG_IPW2200_MONITOR
10113         ipw_wx_set_monitor,
10114 #endif
10115 };
10116
10117 static struct iw_handler_def ipw_wx_handler_def = {
10118         .standard = ipw_wx_handlers,
10119         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10120         .num_private = ARRAY_SIZE(ipw_priv_handler),
10121         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10122         .private = ipw_priv_handler,
10123         .private_args = ipw_priv_args,
10124         .get_wireless_stats = ipw_get_wireless_stats,
10125 };
10126
10127 /*
10128  * Get wireless statistics.
10129  * Called by /proc/net/wireless
10130  * Also called by SIOCGIWSTATS
10131  */
10132 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10133 {
10134         struct ipw_priv *priv = libipw_priv(dev);
10135         struct iw_statistics *wstats;
10136
10137         wstats = &priv->wstats;
10138
10139         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10140          * netdev->get_wireless_stats seems to be called before fw is
10141          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10142          * and associated; if not associcated, the values are all meaningless
10143          * anyway, so set them all to NULL and INVALID */
10144         if (!(priv->status & STATUS_ASSOCIATED)) {
10145                 wstats->miss.beacon = 0;
10146                 wstats->discard.retries = 0;
10147                 wstats->qual.qual = 0;
10148                 wstats->qual.level = 0;
10149                 wstats->qual.noise = 0;
10150                 wstats->qual.updated = 7;
10151                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10152                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10153                 return wstats;
10154         }
10155
10156         wstats->qual.qual = priv->quality;
10157         wstats->qual.level = priv->exp_avg_rssi;
10158         wstats->qual.noise = priv->exp_avg_noise;
10159         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10160             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10161
10162         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10163         wstats->discard.retries = priv->last_tx_failures;
10164         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10165
10166 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10167         goto fail_get_ordinal;
10168         wstats->discard.retries += tx_retry; */
10169
10170         return wstats;
10171 }
10172
10173 /* net device stuff */
10174
10175 static  void init_sys_config(struct ipw_sys_config *sys_config)
10176 {
10177         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10178         sys_config->bt_coexistence = 0;
10179         sys_config->answer_broadcast_ssid_probe = 0;
10180         sys_config->accept_all_data_frames = 0;
10181         sys_config->accept_non_directed_frames = 1;
10182         sys_config->exclude_unicast_unencrypted = 0;
10183         sys_config->disable_unicast_decryption = 1;
10184         sys_config->exclude_multicast_unencrypted = 0;
10185         sys_config->disable_multicast_decryption = 1;
10186         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10187                 antenna = CFG_SYS_ANTENNA_BOTH;
10188         sys_config->antenna_diversity = antenna;
10189         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10190         sys_config->dot11g_auto_detection = 0;
10191         sys_config->enable_cts_to_self = 0;
10192         sys_config->bt_coexist_collision_thr = 0;
10193         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10194         sys_config->silence_threshold = 0x1e;
10195 }
10196
10197 static int ipw_net_open(struct net_device *dev)
10198 {
10199         IPW_DEBUG_INFO("dev->open\n");
10200         netif_start_queue(dev);
10201         return 0;
10202 }
10203
10204 static int ipw_net_stop(struct net_device *dev)
10205 {
10206         IPW_DEBUG_INFO("dev->close\n");
10207         netif_stop_queue(dev);
10208         return 0;
10209 }
10210
10211 /*
10212 todo:
10213
10214 modify to send one tfd per fragment instead of using chunking.  otherwise
10215 we need to heavily modify the libipw_skb_to_txb.
10216 */
10217
10218 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10219                              int pri)
10220 {
10221         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10222             txb->fragments[0]->data;
10223         int i = 0;
10224         struct tfd_frame *tfd;
10225 #ifdef CONFIG_IPW2200_QOS
10226         int tx_id = ipw_get_tx_queue_number(priv, pri);
10227         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10228 #else
10229         struct clx2_tx_queue *txq = &priv->txq[0];
10230 #endif
10231         struct clx2_queue *q = &txq->q;
10232         u8 id, hdr_len, unicast;
10233         int fc;
10234
10235         if (!(priv->status & STATUS_ASSOCIATED))
10236                 goto drop;
10237
10238         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10239         switch (priv->ieee->iw_mode) {
10240         case IW_MODE_ADHOC:
10241                 unicast = !is_multicast_ether_addr(hdr->addr1);
10242                 id = ipw_find_station(priv, hdr->addr1);
10243                 if (id == IPW_INVALID_STATION) {
10244                         id = ipw_add_station(priv, hdr->addr1);
10245                         if (id == IPW_INVALID_STATION) {
10246                                 IPW_WARNING("Attempt to send data to "
10247                                             "invalid cell: %pM\n",
10248                                             hdr->addr1);
10249                                 goto drop;
10250                         }
10251                 }
10252                 break;
10253
10254         case IW_MODE_INFRA:
10255         default:
10256                 unicast = !is_multicast_ether_addr(hdr->addr3);
10257                 id = 0;
10258                 break;
10259         }
10260
10261         tfd = &txq->bd[q->first_empty];
10262         txq->txb[q->first_empty] = txb;
10263         memset(tfd, 0, sizeof(*tfd));
10264         tfd->u.data.station_number = id;
10265
10266         tfd->control_flags.message_type = TX_FRAME_TYPE;
10267         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10268
10269         tfd->u.data.cmd_id = DINO_CMD_TX;
10270         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10271
10272         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10273                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10274         else
10275                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10276
10277         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10278                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10279
10280         fc = le16_to_cpu(hdr->frame_ctl);
10281         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10282
10283         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10284
10285         if (likely(unicast))
10286                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10287
10288         if (txb->encrypted && !priv->ieee->host_encrypt) {
10289                 switch (priv->ieee->sec.level) {
10290                 case SEC_LEVEL_3:
10291                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10292                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10293                         /* XXX: ACK flag must be set for CCMP even if it
10294                          * is a multicast/broadcast packet, because CCMP
10295                          * group communication encrypted by GTK is
10296                          * actually done by the AP. */
10297                         if (!unicast)
10298                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10299
10300                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10301                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10302                         tfd->u.data.key_index = 0;
10303                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10304                         break;
10305                 case SEC_LEVEL_2:
10306                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10307                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10308                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10309                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10310                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10311                         break;
10312                 case SEC_LEVEL_1:
10313                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10314                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10315                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10316                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10317                             40)
10318                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10319                         else
10320                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10321                         break;
10322                 case SEC_LEVEL_0:
10323                         break;
10324                 default:
10325                         printk(KERN_ERR "Unknown security level %d\n",
10326                                priv->ieee->sec.level);
10327                         break;
10328                 }
10329         } else
10330                 /* No hardware encryption */
10331                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10332
10333 #ifdef CONFIG_IPW2200_QOS
10334         if (fc & IEEE80211_STYPE_QOS_DATA)
10335                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10336 #endif                          /* CONFIG_IPW2200_QOS */
10337
10338         /* payload */
10339         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10340                                                  txb->nr_frags));
10341         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10342                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10343         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10344                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10345                                i, le32_to_cpu(tfd->u.data.num_chunks),
10346                                txb->fragments[i]->len - hdr_len);
10347                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10348                              i, tfd->u.data.num_chunks,
10349                              txb->fragments[i]->len - hdr_len);
10350                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10351                            txb->fragments[i]->len - hdr_len);
10352
10353                 tfd->u.data.chunk_ptr[i] =
10354                     cpu_to_le32(pci_map_single
10355                                 (priv->pci_dev,
10356                                  txb->fragments[i]->data + hdr_len,
10357                                  txb->fragments[i]->len - hdr_len,
10358                                  PCI_DMA_TODEVICE));
10359                 tfd->u.data.chunk_len[i] =
10360                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10361         }
10362
10363         if (i != txb->nr_frags) {
10364                 struct sk_buff *skb;
10365                 u16 remaining_bytes = 0;
10366                 int j;
10367
10368                 for (j = i; j < txb->nr_frags; j++)
10369                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10370
10371                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10372                        remaining_bytes);
10373                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10374                 if (skb != NULL) {
10375                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10376                         for (j = i; j < txb->nr_frags; j++) {
10377                                 int size = txb->fragments[j]->len - hdr_len;
10378
10379                                 printk(KERN_INFO "Adding frag %d %d...\n",
10380                                        j, size);
10381                                 memcpy(skb_put(skb, size),
10382                                        txb->fragments[j]->data + hdr_len, size);
10383                         }
10384                         dev_kfree_skb_any(txb->fragments[i]);
10385                         txb->fragments[i] = skb;
10386                         tfd->u.data.chunk_ptr[i] =
10387                             cpu_to_le32(pci_map_single
10388                                         (priv->pci_dev, skb->data,
10389                                          remaining_bytes,
10390                                          PCI_DMA_TODEVICE));
10391
10392                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10393                 }
10394         }
10395
10396         /* kick DMA */
10397         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10398         ipw_write32(priv, q->reg_w, q->first_empty);
10399
10400         if (ipw_tx_queue_space(q) < q->high_mark)
10401                 netif_stop_queue(priv->net_dev);
10402
10403         return NETDEV_TX_OK;
10404
10405       drop:
10406         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10407         libipw_txb_free(txb);
10408         return NETDEV_TX_OK;
10409 }
10410
10411 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10412 {
10413         struct ipw_priv *priv = libipw_priv(dev);
10414 #ifdef CONFIG_IPW2200_QOS
10415         int tx_id = ipw_get_tx_queue_number(priv, pri);
10416         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10417 #else
10418         struct clx2_tx_queue *txq = &priv->txq[0];
10419 #endif                          /* CONFIG_IPW2200_QOS */
10420
10421         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10422                 return 1;
10423
10424         return 0;
10425 }
10426
10427 #ifdef CONFIG_IPW2200_PROMISCUOUS
10428 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10429                                       struct libipw_txb *txb)
10430 {
10431         struct libipw_rx_stats dummystats;
10432         struct ieee80211_hdr *hdr;
10433         u8 n;
10434         u16 filter = priv->prom_priv->filter;
10435         int hdr_only = 0;
10436
10437         if (filter & IPW_PROM_NO_TX)
10438                 return;
10439
10440         memset(&dummystats, 0, sizeof(dummystats));
10441
10442         /* Filtering of fragment chains is done against the first fragment */
10443         hdr = (void *)txb->fragments[0]->data;
10444         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10445                 if (filter & IPW_PROM_NO_MGMT)
10446                         return;
10447                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10448                         hdr_only = 1;
10449         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10450                 if (filter & IPW_PROM_NO_CTL)
10451                         return;
10452                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10453                         hdr_only = 1;
10454         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10455                 if (filter & IPW_PROM_NO_DATA)
10456                         return;
10457                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10458                         hdr_only = 1;
10459         }
10460
10461         for(n=0; n<txb->nr_frags; ++n) {
10462                 struct sk_buff *src = txb->fragments[n];
10463                 struct sk_buff *dst;
10464                 struct ieee80211_radiotap_header *rt_hdr;
10465                 int len;
10466
10467                 if (hdr_only) {
10468                         hdr = (void *)src->data;
10469                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10470                 } else
10471                         len = src->len;
10472
10473                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10474                 if (!dst)
10475                         continue;
10476
10477                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10478
10479                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10480                 rt_hdr->it_pad = 0;
10481                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10482                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10483
10484                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10485                         ieee80211chan2mhz(priv->channel));
10486                 if (priv->channel > 14)         /* 802.11a */
10487                         *(__le16*)skb_put(dst, sizeof(u16)) =
10488                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10489                                              IEEE80211_CHAN_5GHZ);
10490                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10491                         *(__le16*)skb_put(dst, sizeof(u16)) =
10492                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10493                                              IEEE80211_CHAN_2GHZ);
10494                 else            /* 802.11g */
10495                         *(__le16*)skb_put(dst, sizeof(u16)) =
10496                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10497                                  IEEE80211_CHAN_2GHZ);
10498
10499                 rt_hdr->it_len = cpu_to_le16(dst->len);
10500
10501                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10502
10503                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10504                         dev_kfree_skb_any(dst);
10505         }
10506 }
10507 #endif
10508
10509 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10510                                            struct net_device *dev, int pri)
10511 {
10512         struct ipw_priv *priv = libipw_priv(dev);
10513         unsigned long flags;
10514         netdev_tx_t ret;
10515
10516         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10517         spin_lock_irqsave(&priv->lock, flags);
10518
10519 #ifdef CONFIG_IPW2200_PROMISCUOUS
10520         if (rtap_iface && netif_running(priv->prom_net_dev))
10521                 ipw_handle_promiscuous_tx(priv, txb);
10522 #endif
10523
10524         ret = ipw_tx_skb(priv, txb, pri);
10525         if (ret == NETDEV_TX_OK)
10526                 __ipw_led_activity_on(priv);
10527         spin_unlock_irqrestore(&priv->lock, flags);
10528
10529         return ret;
10530 }
10531
10532 static void ipw_net_set_multicast_list(struct net_device *dev)
10533 {
10534
10535 }
10536
10537 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10538 {
10539         struct ipw_priv *priv = libipw_priv(dev);
10540         struct sockaddr *addr = p;
10541
10542         if (!is_valid_ether_addr(addr->sa_data))
10543                 return -EADDRNOTAVAIL;
10544         mutex_lock(&priv->mutex);
10545         priv->config |= CFG_CUSTOM_MAC;
10546         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10547         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10548                priv->net_dev->name, priv->mac_addr);
10549         schedule_work(&priv->adapter_restart);
10550         mutex_unlock(&priv->mutex);
10551         return 0;
10552 }
10553
10554 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10555                                     struct ethtool_drvinfo *info)
10556 {
10557         struct ipw_priv *p = libipw_priv(dev);
10558         char vers[64];
10559         char date[32];
10560         u32 len;
10561
10562         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10563         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10564
10565         len = sizeof(vers);
10566         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10567         len = sizeof(date);
10568         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10569
10570         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10571                  vers, date);
10572         strlcpy(info->bus_info, pci_name(p->pci_dev),
10573                 sizeof(info->bus_info));
10574         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10575 }
10576
10577 static u32 ipw_ethtool_get_link(struct net_device *dev)
10578 {
10579         struct ipw_priv *priv = libipw_priv(dev);
10580         return (priv->status & STATUS_ASSOCIATED) != 0;
10581 }
10582
10583 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10584 {
10585         return IPW_EEPROM_IMAGE_SIZE;
10586 }
10587
10588 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10589                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10590 {
10591         struct ipw_priv *p = libipw_priv(dev);
10592
10593         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10594                 return -EINVAL;
10595         mutex_lock(&p->mutex);
10596         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10597         mutex_unlock(&p->mutex);
10598         return 0;
10599 }
10600
10601 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10602                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10603 {
10604         struct ipw_priv *p = libipw_priv(dev);
10605         int i;
10606
10607         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10608                 return -EINVAL;
10609         mutex_lock(&p->mutex);
10610         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10611         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10612                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10613         mutex_unlock(&p->mutex);
10614         return 0;
10615 }
10616
10617 static const struct ethtool_ops ipw_ethtool_ops = {
10618         .get_link = ipw_ethtool_get_link,
10619         .get_drvinfo = ipw_ethtool_get_drvinfo,
10620         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10621         .get_eeprom = ipw_ethtool_get_eeprom,
10622         .set_eeprom = ipw_ethtool_set_eeprom,
10623 };
10624
10625 static irqreturn_t ipw_isr(int irq, void *data)
10626 {
10627         struct ipw_priv *priv = data;
10628         u32 inta, inta_mask;
10629
10630         if (!priv)
10631                 return IRQ_NONE;
10632
10633         spin_lock(&priv->irq_lock);
10634
10635         if (!(priv->status & STATUS_INT_ENABLED)) {
10636                 /* IRQ is disabled */
10637                 goto none;
10638         }
10639
10640         inta = ipw_read32(priv, IPW_INTA_RW);
10641         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10642
10643         if (inta == 0xFFFFFFFF) {
10644                 /* Hardware disappeared */
10645                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10646                 goto none;
10647         }
10648
10649         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10650                 /* Shared interrupt */
10651                 goto none;
10652         }
10653
10654         /* tell the device to stop sending interrupts */
10655         __ipw_disable_interrupts(priv);
10656
10657         /* ack current interrupts */
10658         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10659         ipw_write32(priv, IPW_INTA_RW, inta);
10660
10661         /* Cache INTA value for our tasklet */
10662         priv->isr_inta = inta;
10663
10664         tasklet_schedule(&priv->irq_tasklet);
10665
10666         spin_unlock(&priv->irq_lock);
10667
10668         return IRQ_HANDLED;
10669       none:
10670         spin_unlock(&priv->irq_lock);
10671         return IRQ_NONE;
10672 }
10673
10674 static void ipw_rf_kill(void *adapter)
10675 {
10676         struct ipw_priv *priv = adapter;
10677         unsigned long flags;
10678
10679         spin_lock_irqsave(&priv->lock, flags);
10680
10681         if (rf_kill_active(priv)) {
10682                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10683                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10684                 goto exit_unlock;
10685         }
10686
10687         /* RF Kill is now disabled, so bring the device back up */
10688
10689         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10690                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10691                                   "device\n");
10692
10693                 /* we can not do an adapter restart while inside an irq lock */
10694                 schedule_work(&priv->adapter_restart);
10695         } else
10696                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10697                                   "enabled\n");
10698
10699       exit_unlock:
10700         spin_unlock_irqrestore(&priv->lock, flags);
10701 }
10702
10703 static void ipw_bg_rf_kill(struct work_struct *work)
10704 {
10705         struct ipw_priv *priv =
10706                 container_of(work, struct ipw_priv, rf_kill.work);
10707         mutex_lock(&priv->mutex);
10708         ipw_rf_kill(priv);
10709         mutex_unlock(&priv->mutex);
10710 }
10711
10712 static void ipw_link_up(struct ipw_priv *priv)
10713 {
10714         priv->last_seq_num = -1;
10715         priv->last_frag_num = -1;
10716         priv->last_packet_time = 0;
10717
10718         netif_carrier_on(priv->net_dev);
10719
10720         cancel_delayed_work(&priv->request_scan);
10721         cancel_delayed_work(&priv->request_direct_scan);
10722         cancel_delayed_work(&priv->request_passive_scan);
10723         cancel_delayed_work(&priv->scan_event);
10724         ipw_reset_stats(priv);
10725         /* Ensure the rate is updated immediately */
10726         priv->last_rate = ipw_get_current_rate(priv);
10727         ipw_gather_stats(priv);
10728         ipw_led_link_up(priv);
10729         notify_wx_assoc_event(priv);
10730
10731         if (priv->config & CFG_BACKGROUND_SCAN)
10732                 schedule_delayed_work(&priv->request_scan, HZ);
10733 }
10734
10735 static void ipw_bg_link_up(struct work_struct *work)
10736 {
10737         struct ipw_priv *priv =
10738                 container_of(work, struct ipw_priv, link_up);
10739         mutex_lock(&priv->mutex);
10740         ipw_link_up(priv);
10741         mutex_unlock(&priv->mutex);
10742 }
10743
10744 static void ipw_link_down(struct ipw_priv *priv)
10745 {
10746         ipw_led_link_down(priv);
10747         netif_carrier_off(priv->net_dev);
10748         notify_wx_assoc_event(priv);
10749
10750         /* Cancel any queued work ... */
10751         cancel_delayed_work(&priv->request_scan);
10752         cancel_delayed_work(&priv->request_direct_scan);
10753         cancel_delayed_work(&priv->request_passive_scan);
10754         cancel_delayed_work(&priv->adhoc_check);
10755         cancel_delayed_work(&priv->gather_stats);
10756
10757         ipw_reset_stats(priv);
10758
10759         if (!(priv->status & STATUS_EXIT_PENDING)) {
10760                 /* Queue up another scan... */
10761                 schedule_delayed_work(&priv->request_scan, 0);
10762         } else
10763                 cancel_delayed_work(&priv->scan_event);
10764 }
10765
10766 static void ipw_bg_link_down(struct work_struct *work)
10767 {
10768         struct ipw_priv *priv =
10769                 container_of(work, struct ipw_priv, link_down);
10770         mutex_lock(&priv->mutex);
10771         ipw_link_down(priv);
10772         mutex_unlock(&priv->mutex);
10773 }
10774
10775 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10776 {
10777         int ret = 0;
10778
10779         init_waitqueue_head(&priv->wait_command_queue);
10780         init_waitqueue_head(&priv->wait_state);
10781
10782         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10783         INIT_WORK(&priv->associate, ipw_bg_associate);
10784         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10785         INIT_WORK(&priv->system_config, ipw_system_config);
10786         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10787         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10788         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10789         INIT_WORK(&priv->up, ipw_bg_up);
10790         INIT_WORK(&priv->down, ipw_bg_down);
10791         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10792         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10793         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10794         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10795         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10796         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10797         INIT_WORK(&priv->roam, ipw_bg_roam);
10798         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10799         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10800         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10801         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10802         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10803         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10804         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10805
10806 #ifdef CONFIG_IPW2200_QOS
10807         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10808 #endif                          /* CONFIG_IPW2200_QOS */
10809
10810         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10811                      ipw_irq_tasklet, (unsigned long)priv);
10812
10813         return ret;
10814 }
10815
10816 static void shim__set_security(struct net_device *dev,
10817                                struct libipw_security *sec)
10818 {
10819         struct ipw_priv *priv = libipw_priv(dev);
10820         int i;
10821         for (i = 0; i < 4; i++) {
10822                 if (sec->flags & (1 << i)) {
10823                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10824                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10825                         if (sec->key_sizes[i] == 0)
10826                                 priv->ieee->sec.flags &= ~(1 << i);
10827                         else {
10828                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10829                                        sec->key_sizes[i]);
10830                                 priv->ieee->sec.flags |= (1 << i);
10831                         }
10832                         priv->status |= STATUS_SECURITY_UPDATED;
10833                 } else if (sec->level != SEC_LEVEL_1)
10834                         priv->ieee->sec.flags &= ~(1 << i);
10835         }
10836
10837         if (sec->flags & SEC_ACTIVE_KEY) {
10838                 if (sec->active_key <= 3) {
10839                         priv->ieee->sec.active_key = sec->active_key;
10840                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10841                 } else
10842                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10843                 priv->status |= STATUS_SECURITY_UPDATED;
10844         } else
10845                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10846
10847         if ((sec->flags & SEC_AUTH_MODE) &&
10848             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10849                 priv->ieee->sec.auth_mode = sec->auth_mode;
10850                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10851                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10852                         priv->capability |= CAP_SHARED_KEY;
10853                 else
10854                         priv->capability &= ~CAP_SHARED_KEY;
10855                 priv->status |= STATUS_SECURITY_UPDATED;
10856         }
10857
10858         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10859                 priv->ieee->sec.flags |= SEC_ENABLED;
10860                 priv->ieee->sec.enabled = sec->enabled;
10861                 priv->status |= STATUS_SECURITY_UPDATED;
10862                 if (sec->enabled)
10863                         priv->capability |= CAP_PRIVACY_ON;
10864                 else
10865                         priv->capability &= ~CAP_PRIVACY_ON;
10866         }
10867
10868         if (sec->flags & SEC_ENCRYPT)
10869                 priv->ieee->sec.encrypt = sec->encrypt;
10870
10871         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10872                 priv->ieee->sec.level = sec->level;
10873                 priv->ieee->sec.flags |= SEC_LEVEL;
10874                 priv->status |= STATUS_SECURITY_UPDATED;
10875         }
10876
10877         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10878                 ipw_set_hwcrypto_keys(priv);
10879
10880         /* To match current functionality of ipw2100 (which works well w/
10881          * various supplicants, we don't force a disassociate if the
10882          * privacy capability changes ... */
10883 #if 0
10884         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10885             (((priv->assoc_request.capability &
10886                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10887              (!(priv->assoc_request.capability &
10888                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10889                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10890                                 "change.\n");
10891                 ipw_disassociate(priv);
10892         }
10893 #endif
10894 }
10895
10896 static int init_supported_rates(struct ipw_priv *priv,
10897                                 struct ipw_supported_rates *rates)
10898 {
10899         /* TODO: Mask out rates based on priv->rates_mask */
10900
10901         memset(rates, 0, sizeof(*rates));
10902         /* configure supported rates */
10903         switch (priv->ieee->freq_band) {
10904         case LIBIPW_52GHZ_BAND:
10905                 rates->ieee_mode = IPW_A_MODE;
10906                 rates->purpose = IPW_RATE_CAPABILITIES;
10907                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10908                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10909                 break;
10910
10911         default:                /* Mixed or 2.4Ghz */
10912                 rates->ieee_mode = IPW_G_MODE;
10913                 rates->purpose = IPW_RATE_CAPABILITIES;
10914                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10915                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10916                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10917                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10918                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10919                 }
10920                 break;
10921         }
10922
10923         return 0;
10924 }
10925
10926 static int ipw_config(struct ipw_priv *priv)
10927 {
10928         /* This is only called from ipw_up, which resets/reloads the firmware
10929            so, we don't need to first disable the card before we configure
10930            it */
10931         if (ipw_set_tx_power(priv))
10932                 goto error;
10933
10934         /* initialize adapter address */
10935         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10936                 goto error;
10937
10938         /* set basic system config settings */
10939         init_sys_config(&priv->sys_config);
10940
10941         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10942          * Does not support BT priority yet (don't abort or defer our Tx) */
10943         if (bt_coexist) {
10944                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10945
10946                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10947                         priv->sys_config.bt_coexistence
10948                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10949                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10950                         priv->sys_config.bt_coexistence
10951                             |= CFG_BT_COEXISTENCE_OOB;
10952         }
10953
10954 #ifdef CONFIG_IPW2200_PROMISCUOUS
10955         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10956                 priv->sys_config.accept_all_data_frames = 1;
10957                 priv->sys_config.accept_non_directed_frames = 1;
10958                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10959                 priv->sys_config.accept_all_mgmt_frames = 1;
10960         }
10961 #endif
10962
10963         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10964                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10965         else
10966                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10967
10968         if (ipw_send_system_config(priv))
10969                 goto error;
10970
10971         init_supported_rates(priv, &priv->rates);
10972         if (ipw_send_supported_rates(priv, &priv->rates))
10973                 goto error;
10974
10975         /* Set request-to-send threshold */
10976         if (priv->rts_threshold) {
10977                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10978                         goto error;
10979         }
10980 #ifdef CONFIG_IPW2200_QOS
10981         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10982         ipw_qos_activate(priv, NULL);
10983 #endif                          /* CONFIG_IPW2200_QOS */
10984
10985         if (ipw_set_random_seed(priv))
10986                 goto error;
10987
10988         /* final state transition to the RUN state */
10989         if (ipw_send_host_complete(priv))
10990                 goto error;
10991
10992         priv->status |= STATUS_INIT;
10993
10994         ipw_led_init(priv);
10995         ipw_led_radio_on(priv);
10996         priv->notif_missed_beacons = 0;
10997
10998         /* Set hardware WEP key if it is configured. */
10999         if ((priv->capability & CAP_PRIVACY_ON) &&
11000             (priv->ieee->sec.level == SEC_LEVEL_1) &&
11001             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11002                 ipw_set_hwcrypto_keys(priv);
11003
11004         return 0;
11005
11006       error:
11007         return -EIO;
11008 }
11009
11010 /*
11011  * NOTE:
11012  *
11013  * These tables have been tested in conjunction with the
11014  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11015  *
11016  * Altering this values, using it on other hardware, or in geographies
11017  * not intended for resale of the above mentioned Intel adapters has
11018  * not been tested.
11019  *
11020  * Remember to update the table in README.ipw2200 when changing this
11021  * table.
11022  *
11023  */
11024 static const struct libipw_geo ipw_geos[] = {
11025         {                       /* Restricted */
11026          "---",
11027          .bg_channels = 11,
11028          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11029                 {2427, 4}, {2432, 5}, {2437, 6},
11030                 {2442, 7}, {2447, 8}, {2452, 9},
11031                 {2457, 10}, {2462, 11}},
11032          },
11033
11034         {                       /* Custom US/Canada */
11035          "ZZF",
11036          .bg_channels = 11,
11037          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11038                 {2427, 4}, {2432, 5}, {2437, 6},
11039                 {2442, 7}, {2447, 8}, {2452, 9},
11040                 {2457, 10}, {2462, 11}},
11041          .a_channels = 8,
11042          .a = {{5180, 36},
11043                {5200, 40},
11044                {5220, 44},
11045                {5240, 48},
11046                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11047                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11048                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11049                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11050          },
11051
11052         {                       /* Rest of World */
11053          "ZZD",
11054          .bg_channels = 13,
11055          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11056                 {2427, 4}, {2432, 5}, {2437, 6},
11057                 {2442, 7}, {2447, 8}, {2452, 9},
11058                 {2457, 10}, {2462, 11}, {2467, 12},
11059                 {2472, 13}},
11060          },
11061
11062         {                       /* Custom USA & Europe & High */
11063          "ZZA",
11064          .bg_channels = 11,
11065          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11066                 {2427, 4}, {2432, 5}, {2437, 6},
11067                 {2442, 7}, {2447, 8}, {2452, 9},
11068                 {2457, 10}, {2462, 11}},
11069          .a_channels = 13,
11070          .a = {{5180, 36},
11071                {5200, 40},
11072                {5220, 44},
11073                {5240, 48},
11074                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11075                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11076                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11077                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11078                {5745, 149},
11079                {5765, 153},
11080                {5785, 157},
11081                {5805, 161},
11082                {5825, 165}},
11083          },
11084
11085         {                       /* Custom NA & Europe */
11086          "ZZB",
11087          .bg_channels = 11,
11088          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11089                 {2427, 4}, {2432, 5}, {2437, 6},
11090                 {2442, 7}, {2447, 8}, {2452, 9},
11091                 {2457, 10}, {2462, 11}},
11092          .a_channels = 13,
11093          .a = {{5180, 36},
11094                {5200, 40},
11095                {5220, 44},
11096                {5240, 48},
11097                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11098                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11099                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11100                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11101                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11102                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11103                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11104                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11105                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11106          },
11107
11108         {                       /* Custom Japan */
11109          "ZZC",
11110          .bg_channels = 11,
11111          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112                 {2427, 4}, {2432, 5}, {2437, 6},
11113                 {2442, 7}, {2447, 8}, {2452, 9},
11114                 {2457, 10}, {2462, 11}},
11115          .a_channels = 4,
11116          .a = {{5170, 34}, {5190, 38},
11117                {5210, 42}, {5230, 46}},
11118          },
11119
11120         {                       /* Custom */
11121          "ZZM",
11122          .bg_channels = 11,
11123          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11124                 {2427, 4}, {2432, 5}, {2437, 6},
11125                 {2442, 7}, {2447, 8}, {2452, 9},
11126                 {2457, 10}, {2462, 11}},
11127          },
11128
11129         {                       /* Europe */
11130          "ZZE",
11131          .bg_channels = 13,
11132          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133                 {2427, 4}, {2432, 5}, {2437, 6},
11134                 {2442, 7}, {2447, 8}, {2452, 9},
11135                 {2457, 10}, {2462, 11}, {2467, 12},
11136                 {2472, 13}},
11137          .a_channels = 19,
11138          .a = {{5180, 36},
11139                {5200, 40},
11140                {5220, 44},
11141                {5240, 48},
11142                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11143                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11144                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11145                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11146                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11147                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11148                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11149                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11150                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11151                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11152                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11153                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11154                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11155                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11156                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11157          },
11158
11159         {                       /* Custom Japan */
11160          "ZZJ",
11161          .bg_channels = 14,
11162          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11163                 {2427, 4}, {2432, 5}, {2437, 6},
11164                 {2442, 7}, {2447, 8}, {2452, 9},
11165                 {2457, 10}, {2462, 11}, {2467, 12},
11166                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11167          .a_channels = 4,
11168          .a = {{5170, 34}, {5190, 38},
11169                {5210, 42}, {5230, 46}},
11170          },
11171
11172         {                       /* Rest of World */
11173          "ZZR",
11174          .bg_channels = 14,
11175          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11176                 {2427, 4}, {2432, 5}, {2437, 6},
11177                 {2442, 7}, {2447, 8}, {2452, 9},
11178                 {2457, 10}, {2462, 11}, {2467, 12},
11179                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11180                              LIBIPW_CH_PASSIVE_ONLY}},
11181          },
11182
11183         {                       /* High Band */
11184          "ZZH",
11185          .bg_channels = 13,
11186          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11187                 {2427, 4}, {2432, 5}, {2437, 6},
11188                 {2442, 7}, {2447, 8}, {2452, 9},
11189                 {2457, 10}, {2462, 11},
11190                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11191                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11192          .a_channels = 4,
11193          .a = {{5745, 149}, {5765, 153},
11194                {5785, 157}, {5805, 161}},
11195          },
11196
11197         {                       /* Custom Europe */
11198          "ZZG",
11199          .bg_channels = 13,
11200          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11201                 {2427, 4}, {2432, 5}, {2437, 6},
11202                 {2442, 7}, {2447, 8}, {2452, 9},
11203                 {2457, 10}, {2462, 11},
11204                 {2467, 12}, {2472, 13}},
11205          .a_channels = 4,
11206          .a = {{5180, 36}, {5200, 40},
11207                {5220, 44}, {5240, 48}},
11208          },
11209
11210         {                       /* Europe */
11211          "ZZK",
11212          .bg_channels = 13,
11213          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11214                 {2427, 4}, {2432, 5}, {2437, 6},
11215                 {2442, 7}, {2447, 8}, {2452, 9},
11216                 {2457, 10}, {2462, 11},
11217                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11218                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11219          .a_channels = 24,
11220          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11221                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11222                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11223                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11224                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11225                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11226                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11227                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11228                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11229                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11230                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11231                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11232                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11233                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11234                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11235                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11236                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11237                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11238                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11239                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11240                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11241                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11242                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11243                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11244          },
11245
11246         {                       /* Europe */
11247          "ZZL",
11248          .bg_channels = 11,
11249          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11250                 {2427, 4}, {2432, 5}, {2437, 6},
11251                 {2442, 7}, {2447, 8}, {2452, 9},
11252                 {2457, 10}, {2462, 11}},
11253          .a_channels = 13,
11254          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11255                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11256                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11257                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11258                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11259                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11260                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11261                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11262                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11263                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11264                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11265                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11266                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11267          }
11268 };
11269
11270 #define MAX_HW_RESTARTS 5
11271 static int ipw_up(struct ipw_priv *priv)
11272 {
11273         int rc, i, j;
11274
11275         /* Age scan list entries found before suspend */
11276         if (priv->suspend_time) {
11277                 libipw_networks_age(priv->ieee, priv->suspend_time);
11278                 priv->suspend_time = 0;
11279         }
11280
11281         if (priv->status & STATUS_EXIT_PENDING)
11282                 return -EIO;
11283
11284         if (cmdlog && !priv->cmdlog) {
11285                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11286                                        GFP_KERNEL);
11287                 if (priv->cmdlog == NULL) {
11288                         IPW_ERROR("Error allocating %d command log entries.\n",
11289                                   cmdlog);
11290                         return -ENOMEM;
11291                 } else {
11292                         priv->cmdlog_len = cmdlog;
11293                 }
11294         }
11295
11296         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11297                 /* Load the microcode, firmware, and eeprom.
11298                  * Also start the clocks. */
11299                 rc = ipw_load(priv);
11300                 if (rc) {
11301                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11302                         return rc;
11303                 }
11304
11305                 ipw_init_ordinals(priv);
11306                 if (!(priv->config & CFG_CUSTOM_MAC))
11307                         eeprom_parse_mac(priv, priv->mac_addr);
11308                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11309                 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11310
11311                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11312                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11313                                     ipw_geos[j].name, 3))
11314                                 break;
11315                 }
11316                 if (j == ARRAY_SIZE(ipw_geos)) {
11317                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11318                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11319                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11320                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11321                         j = 0;
11322                 }
11323                 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11324                         IPW_WARNING("Could not set geography.");
11325                         return 0;
11326                 }
11327
11328                 if (priv->status & STATUS_RF_KILL_SW) {
11329                         IPW_WARNING("Radio disabled by module parameter.\n");
11330                         return 0;
11331                 } else if (rf_kill_active(priv)) {
11332                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11333                                     "Kill switch must be turned off for "
11334                                     "wireless networking to work.\n");
11335                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11336                         return 0;
11337                 }
11338
11339                 rc = ipw_config(priv);
11340                 if (!rc) {
11341                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11342
11343                         /* If configure to try and auto-associate, kick
11344                          * off a scan. */
11345                         schedule_delayed_work(&priv->request_scan, 0);
11346
11347                         return 0;
11348                 }
11349
11350                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11351                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11352                                i, MAX_HW_RESTARTS);
11353
11354                 /* We had an error bringing up the hardware, so take it
11355                  * all the way back down so we can try again */
11356                 ipw_down(priv);
11357         }
11358
11359         /* tried to restart and config the device for as long as our
11360          * patience could withstand */
11361         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11362
11363         return -EIO;
11364 }
11365
11366 static void ipw_bg_up(struct work_struct *work)
11367 {
11368         struct ipw_priv *priv =
11369                 container_of(work, struct ipw_priv, up);
11370         mutex_lock(&priv->mutex);
11371         ipw_up(priv);
11372         mutex_unlock(&priv->mutex);
11373 }
11374
11375 static void ipw_deinit(struct ipw_priv *priv)
11376 {
11377         int i;
11378
11379         if (priv->status & STATUS_SCANNING) {
11380                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11381                 ipw_abort_scan(priv);
11382         }
11383
11384         if (priv->status & STATUS_ASSOCIATED) {
11385                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11386                 ipw_disassociate(priv);
11387         }
11388
11389         ipw_led_shutdown(priv);
11390
11391         /* Wait up to 1s for status to change to not scanning and not
11392          * associated (disassociation can take a while for a ful 802.11
11393          * exchange */
11394         for (i = 1000; i && (priv->status &
11395                              (STATUS_DISASSOCIATING |
11396                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11397                 udelay(10);
11398
11399         if (priv->status & (STATUS_DISASSOCIATING |
11400                             STATUS_ASSOCIATED | STATUS_SCANNING))
11401                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11402         else
11403                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11404
11405         /* Attempt to disable the card */
11406         ipw_send_card_disable(priv, 0);
11407
11408         priv->status &= ~STATUS_INIT;
11409 }
11410
11411 static void ipw_down(struct ipw_priv *priv)
11412 {
11413         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11414
11415         priv->status |= STATUS_EXIT_PENDING;
11416
11417         if (ipw_is_init(priv))
11418                 ipw_deinit(priv);
11419
11420         /* Wipe out the EXIT_PENDING status bit if we are not actually
11421          * exiting the module */
11422         if (!exit_pending)
11423                 priv->status &= ~STATUS_EXIT_PENDING;
11424
11425         /* tell the device to stop sending interrupts */
11426         ipw_disable_interrupts(priv);
11427
11428         /* Clear all bits but the RF Kill */
11429         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11430         netif_carrier_off(priv->net_dev);
11431
11432         ipw_stop_nic(priv);
11433
11434         ipw_led_radio_off(priv);
11435 }
11436
11437 static void ipw_bg_down(struct work_struct *work)
11438 {
11439         struct ipw_priv *priv =
11440                 container_of(work, struct ipw_priv, down);
11441         mutex_lock(&priv->mutex);
11442         ipw_down(priv);
11443         mutex_unlock(&priv->mutex);
11444 }
11445
11446 /* Called by register_netdev() */
11447 static int ipw_net_init(struct net_device *dev)
11448 {
11449         int rc = 0;
11450         struct ipw_priv *priv = libipw_priv(dev);
11451
11452         mutex_lock(&priv->mutex);
11453         if (ipw_up(priv))
11454                 rc = -EIO;
11455         mutex_unlock(&priv->mutex);
11456
11457         return rc;
11458 }
11459
11460 static int ipw_wdev_init(struct net_device *dev)
11461 {
11462         int i, rc = 0;
11463         struct ipw_priv *priv = libipw_priv(dev);
11464         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11465         struct wireless_dev *wdev = &priv->ieee->wdev;
11466
11467         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11468
11469         /* fill-out priv->ieee->bg_band */
11470         if (geo->bg_channels) {
11471                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11472
11473                 bg_band->band = IEEE80211_BAND_2GHZ;
11474                 bg_band->n_channels = geo->bg_channels;
11475                 bg_band->channels = kcalloc(geo->bg_channels,
11476                                             sizeof(struct ieee80211_channel),
11477                                             GFP_KERNEL);
11478                 if (!bg_band->channels) {
11479                         rc = -ENOMEM;
11480                         goto out;
11481                 }
11482                 /* translate geo->bg to bg_band.channels */
11483                 for (i = 0; i < geo->bg_channels; i++) {
11484                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11485                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11486                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11487                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11488                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11489                                 bg_band->channels[i].flags |=
11490                                         IEEE80211_CHAN_PASSIVE_SCAN;
11491                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11492                                 bg_band->channels[i].flags |=
11493                                         IEEE80211_CHAN_NO_IBSS;
11494                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11495                                 bg_band->channels[i].flags |=
11496                                         IEEE80211_CHAN_RADAR;
11497                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11498                            LIBIPW_CH_UNIFORM_SPREADING, or
11499                            LIBIPW_CH_B_ONLY... */
11500                 }
11501                 /* point at bitrate info */
11502                 bg_band->bitrates = ipw2200_bg_rates;
11503                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11504
11505                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11506         }
11507
11508         /* fill-out priv->ieee->a_band */
11509         if (geo->a_channels) {
11510                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11511
11512                 a_band->band = IEEE80211_BAND_5GHZ;
11513                 a_band->n_channels = geo->a_channels;
11514                 a_band->channels = kcalloc(geo->a_channels,
11515                                            sizeof(struct ieee80211_channel),
11516                                            GFP_KERNEL);
11517                 if (!a_band->channels) {
11518                         rc = -ENOMEM;
11519                         goto out;
11520                 }
11521                 /* translate geo->a to a_band.channels */
11522                 for (i = 0; i < geo->a_channels; i++) {
11523                         a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11524                         a_band->channels[i].center_freq = geo->a[i].freq;
11525                         a_band->channels[i].hw_value = geo->a[i].channel;
11526                         a_band->channels[i].max_power = geo->a[i].max_power;
11527                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11528                                 a_band->channels[i].flags |=
11529                                         IEEE80211_CHAN_PASSIVE_SCAN;
11530                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11531                                 a_band->channels[i].flags |=
11532                                         IEEE80211_CHAN_NO_IBSS;
11533                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11534                                 a_band->channels[i].flags |=
11535                                         IEEE80211_CHAN_RADAR;
11536                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11537                            LIBIPW_CH_UNIFORM_SPREADING, or
11538                            LIBIPW_CH_B_ONLY... */
11539                 }
11540                 /* point at bitrate info */
11541                 a_band->bitrates = ipw2200_a_rates;
11542                 a_band->n_bitrates = ipw2200_num_a_rates;
11543
11544                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11545         }
11546
11547         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11548         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11549
11550         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11551
11552         /* With that information in place, we can now register the wiphy... */
11553         if (wiphy_register(wdev->wiphy))
11554                 rc = -EIO;
11555 out:
11556         return rc;
11557 }
11558
11559 /* PCI driver stuff */
11560 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11561         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11562         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11563         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11564         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11565         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11566         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11567         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11568         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11569         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11570         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11571         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11572         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11573         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11574         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11575         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11576         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11577         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11578         {PCI_VDEVICE(INTEL, 0x104f), 0},
11579         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11580         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11581         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11582         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11583
11584         /* required last entry */
11585         {0,}
11586 };
11587
11588 MODULE_DEVICE_TABLE(pci, card_ids);
11589
11590 static struct attribute *ipw_sysfs_entries[] = {
11591         &dev_attr_rf_kill.attr,
11592         &dev_attr_direct_dword.attr,
11593         &dev_attr_indirect_byte.attr,
11594         &dev_attr_indirect_dword.attr,
11595         &dev_attr_mem_gpio_reg.attr,
11596         &dev_attr_command_event_reg.attr,
11597         &dev_attr_nic_type.attr,
11598         &dev_attr_status.attr,
11599         &dev_attr_cfg.attr,
11600         &dev_attr_error.attr,
11601         &dev_attr_event_log.attr,
11602         &dev_attr_cmd_log.attr,
11603         &dev_attr_eeprom_delay.attr,
11604         &dev_attr_ucode_version.attr,
11605         &dev_attr_rtc.attr,
11606         &dev_attr_scan_age.attr,
11607         &dev_attr_led.attr,
11608         &dev_attr_speed_scan.attr,
11609         &dev_attr_net_stats.attr,
11610         &dev_attr_channels.attr,
11611 #ifdef CONFIG_IPW2200_PROMISCUOUS
11612         &dev_attr_rtap_iface.attr,
11613         &dev_attr_rtap_filter.attr,
11614 #endif
11615         NULL
11616 };
11617
11618 static struct attribute_group ipw_attribute_group = {
11619         .name = NULL,           /* put in device directory */
11620         .attrs = ipw_sysfs_entries,
11621 };
11622
11623 #ifdef CONFIG_IPW2200_PROMISCUOUS
11624 static int ipw_prom_open(struct net_device *dev)
11625 {
11626         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11627         struct ipw_priv *priv = prom_priv->priv;
11628
11629         IPW_DEBUG_INFO("prom dev->open\n");
11630         netif_carrier_off(dev);
11631
11632         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11633                 priv->sys_config.accept_all_data_frames = 1;
11634                 priv->sys_config.accept_non_directed_frames = 1;
11635                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11636                 priv->sys_config.accept_all_mgmt_frames = 1;
11637
11638                 ipw_send_system_config(priv);
11639         }
11640
11641         return 0;
11642 }
11643
11644 static int ipw_prom_stop(struct net_device *dev)
11645 {
11646         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11647         struct ipw_priv *priv = prom_priv->priv;
11648
11649         IPW_DEBUG_INFO("prom dev->stop\n");
11650
11651         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11652                 priv->sys_config.accept_all_data_frames = 0;
11653                 priv->sys_config.accept_non_directed_frames = 0;
11654                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11655                 priv->sys_config.accept_all_mgmt_frames = 0;
11656
11657                 ipw_send_system_config(priv);
11658         }
11659
11660         return 0;
11661 }
11662
11663 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11664                                             struct net_device *dev)
11665 {
11666         IPW_DEBUG_INFO("prom dev->xmit\n");
11667         dev_kfree_skb(skb);
11668         return NETDEV_TX_OK;
11669 }
11670
11671 static const struct net_device_ops ipw_prom_netdev_ops = {
11672         .ndo_open               = ipw_prom_open,
11673         .ndo_stop               = ipw_prom_stop,
11674         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11675         .ndo_change_mtu         = libipw_change_mtu,
11676         .ndo_set_mac_address    = eth_mac_addr,
11677         .ndo_validate_addr      = eth_validate_addr,
11678 };
11679
11680 static int ipw_prom_alloc(struct ipw_priv *priv)
11681 {
11682         int rc = 0;
11683
11684         if (priv->prom_net_dev)
11685                 return -EPERM;
11686
11687         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11688         if (priv->prom_net_dev == NULL)
11689                 return -ENOMEM;
11690
11691         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11692         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11693         priv->prom_priv->priv = priv;
11694
11695         strcpy(priv->prom_net_dev->name, "rtap%d");
11696         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11697
11698         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11699         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11700
11701         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11702         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11703
11704         rc = register_netdev(priv->prom_net_dev);
11705         if (rc) {
11706                 free_libipw(priv->prom_net_dev, 1);
11707                 priv->prom_net_dev = NULL;
11708                 return rc;
11709         }
11710
11711         return 0;
11712 }
11713
11714 static void ipw_prom_free(struct ipw_priv *priv)
11715 {
11716         if (!priv->prom_net_dev)
11717                 return;
11718
11719         unregister_netdev(priv->prom_net_dev);
11720         free_libipw(priv->prom_net_dev, 1);
11721
11722         priv->prom_net_dev = NULL;
11723 }
11724
11725 #endif
11726
11727 static const struct net_device_ops ipw_netdev_ops = {
11728         .ndo_init               = ipw_net_init,
11729         .ndo_open               = ipw_net_open,
11730         .ndo_stop               = ipw_net_stop,
11731         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11732         .ndo_set_mac_address    = ipw_net_set_mac_address,
11733         .ndo_start_xmit         = libipw_xmit,
11734         .ndo_change_mtu         = libipw_change_mtu,
11735         .ndo_validate_addr      = eth_validate_addr,
11736 };
11737
11738 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11739                                    const struct pci_device_id *ent)
11740 {
11741         int err = 0;
11742         struct net_device *net_dev;
11743         void __iomem *base;
11744         u32 length, val;
11745         struct ipw_priv *priv;
11746         int i;
11747
11748         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11749         if (net_dev == NULL) {
11750                 err = -ENOMEM;
11751                 goto out;
11752         }
11753
11754         priv = libipw_priv(net_dev);
11755         priv->ieee = netdev_priv(net_dev);
11756
11757         priv->net_dev = net_dev;
11758         priv->pci_dev = pdev;
11759         ipw_debug_level = debug;
11760         spin_lock_init(&priv->irq_lock);
11761         spin_lock_init(&priv->lock);
11762         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11763                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11764
11765         mutex_init(&priv->mutex);
11766         if (pci_enable_device(pdev)) {
11767                 err = -ENODEV;
11768                 goto out_free_libipw;
11769         }
11770
11771         pci_set_master(pdev);
11772
11773         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11774         if (!err)
11775                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11776         if (err) {
11777                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11778                 goto out_pci_disable_device;
11779         }
11780
11781         pci_set_drvdata(pdev, priv);
11782
11783         err = pci_request_regions(pdev, DRV_NAME);
11784         if (err)
11785                 goto out_pci_disable_device;
11786
11787         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11788          * PCI Tx retries from interfering with C3 CPU state */
11789         pci_read_config_dword(pdev, 0x40, &val);
11790         if ((val & 0x0000ff00) != 0)
11791                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11792
11793         length = pci_resource_len(pdev, 0);
11794         priv->hw_len = length;
11795
11796         base = pci_ioremap_bar(pdev, 0);
11797         if (!base) {
11798                 err = -ENODEV;
11799                 goto out_pci_release_regions;
11800         }
11801
11802         priv->hw_base = base;
11803         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11804         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11805
11806         err = ipw_setup_deferred_work(priv);
11807         if (err) {
11808                 IPW_ERROR("Unable to setup deferred work\n");
11809                 goto out_iounmap;
11810         }
11811
11812         ipw_sw_reset(priv, 1);
11813
11814         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11815         if (err) {
11816                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11817                 goto out_iounmap;
11818         }
11819
11820         SET_NETDEV_DEV(net_dev, &pdev->dev);
11821
11822         mutex_lock(&priv->mutex);
11823
11824         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11825         priv->ieee->set_security = shim__set_security;
11826         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11827
11828 #ifdef CONFIG_IPW2200_QOS
11829         priv->ieee->is_qos_active = ipw_is_qos_active;
11830         priv->ieee->handle_probe_response = ipw_handle_beacon;
11831         priv->ieee->handle_beacon = ipw_handle_probe_response;
11832         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11833 #endif                          /* CONFIG_IPW2200_QOS */
11834
11835         priv->ieee->perfect_rssi = -20;
11836         priv->ieee->worst_rssi = -85;
11837
11838         net_dev->netdev_ops = &ipw_netdev_ops;
11839         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11840         net_dev->wireless_data = &priv->wireless_data;
11841         net_dev->wireless_handlers = &ipw_wx_handler_def;
11842         net_dev->ethtool_ops = &ipw_ethtool_ops;
11843
11844         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11845         if (err) {
11846                 IPW_ERROR("failed to create sysfs device attributes\n");
11847                 mutex_unlock(&priv->mutex);
11848                 goto out_release_irq;
11849         }
11850
11851         mutex_unlock(&priv->mutex);
11852         err = register_netdev(net_dev);
11853         if (err) {
11854                 IPW_ERROR("failed to register network device\n");
11855                 goto out_remove_sysfs;
11856         }
11857
11858         err = ipw_wdev_init(net_dev);
11859         if (err) {
11860                 IPW_ERROR("failed to register wireless device\n");
11861                 goto out_unregister_netdev;
11862         }
11863
11864 #ifdef CONFIG_IPW2200_PROMISCUOUS
11865         if (rtap_iface) {
11866                 err = ipw_prom_alloc(priv);
11867                 if (err) {
11868                         IPW_ERROR("Failed to register promiscuous network "
11869                                   "device (error %d).\n", err);
11870                         wiphy_unregister(priv->ieee->wdev.wiphy);
11871                         kfree(priv->ieee->a_band.channels);
11872                         kfree(priv->ieee->bg_band.channels);
11873                         goto out_unregister_netdev;
11874                 }
11875         }
11876 #endif
11877
11878         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11879                "channels, %d 802.11a channels)\n",
11880                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11881                priv->ieee->geo.a_channels);
11882
11883         return 0;
11884
11885       out_unregister_netdev:
11886         unregister_netdev(priv->net_dev);
11887       out_remove_sysfs:
11888         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11889       out_release_irq:
11890         free_irq(pdev->irq, priv);
11891       out_iounmap:
11892         iounmap(priv->hw_base);
11893       out_pci_release_regions:
11894         pci_release_regions(pdev);
11895       out_pci_disable_device:
11896         pci_disable_device(pdev);
11897         pci_set_drvdata(pdev, NULL);
11898       out_free_libipw:
11899         free_libipw(priv->net_dev, 0);
11900       out:
11901         return err;
11902 }
11903
11904 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11905 {
11906         struct ipw_priv *priv = pci_get_drvdata(pdev);
11907         struct list_head *p, *q;
11908         int i;
11909
11910         if (!priv)
11911                 return;
11912
11913         mutex_lock(&priv->mutex);
11914
11915         priv->status |= STATUS_EXIT_PENDING;
11916         ipw_down(priv);
11917         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11918
11919         mutex_unlock(&priv->mutex);
11920
11921         unregister_netdev(priv->net_dev);
11922
11923         if (priv->rxq) {
11924                 ipw_rx_queue_free(priv, priv->rxq);
11925                 priv->rxq = NULL;
11926         }
11927         ipw_tx_queue_free(priv);
11928
11929         if (priv->cmdlog) {
11930                 kfree(priv->cmdlog);
11931                 priv->cmdlog = NULL;
11932         }
11933
11934         /* make sure all works are inactive */
11935         cancel_delayed_work_sync(&priv->adhoc_check);
11936         cancel_work_sync(&priv->associate);
11937         cancel_work_sync(&priv->disassociate);
11938         cancel_work_sync(&priv->system_config);
11939         cancel_work_sync(&priv->rx_replenish);
11940         cancel_work_sync(&priv->adapter_restart);
11941         cancel_delayed_work_sync(&priv->rf_kill);
11942         cancel_work_sync(&priv->up);
11943         cancel_work_sync(&priv->down);
11944         cancel_delayed_work_sync(&priv->request_scan);
11945         cancel_delayed_work_sync(&priv->request_direct_scan);
11946         cancel_delayed_work_sync(&priv->request_passive_scan);
11947         cancel_delayed_work_sync(&priv->scan_event);
11948         cancel_delayed_work_sync(&priv->gather_stats);
11949         cancel_work_sync(&priv->abort_scan);
11950         cancel_work_sync(&priv->roam);
11951         cancel_delayed_work_sync(&priv->scan_check);
11952         cancel_work_sync(&priv->link_up);
11953         cancel_work_sync(&priv->link_down);
11954         cancel_delayed_work_sync(&priv->led_link_on);
11955         cancel_delayed_work_sync(&priv->led_link_off);
11956         cancel_delayed_work_sync(&priv->led_act_off);
11957         cancel_work_sync(&priv->merge_networks);
11958
11959         /* Free MAC hash list for ADHOC */
11960         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11961                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11962                         list_del(p);
11963                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11964                 }
11965         }
11966
11967         kfree(priv->error);
11968         priv->error = NULL;
11969
11970 #ifdef CONFIG_IPW2200_PROMISCUOUS
11971         ipw_prom_free(priv);
11972 #endif
11973
11974         free_irq(pdev->irq, priv);
11975         iounmap(priv->hw_base);
11976         pci_release_regions(pdev);
11977         pci_disable_device(pdev);
11978         pci_set_drvdata(pdev, NULL);
11979         /* wiphy_unregister needs to be here, before free_libipw */
11980         wiphy_unregister(priv->ieee->wdev.wiphy);
11981         kfree(priv->ieee->a_band.channels);
11982         kfree(priv->ieee->bg_band.channels);
11983         free_libipw(priv->net_dev, 0);
11984         free_firmware();
11985 }
11986
11987 #ifdef CONFIG_PM
11988 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11989 {
11990         struct ipw_priv *priv = pci_get_drvdata(pdev);
11991         struct net_device *dev = priv->net_dev;
11992
11993         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11994
11995         /* Take down the device; powers it off, etc. */
11996         ipw_down(priv);
11997
11998         /* Remove the PRESENT state of the device */
11999         netif_device_detach(dev);
12000
12001         pci_save_state(pdev);
12002         pci_disable_device(pdev);
12003         pci_set_power_state(pdev, pci_choose_state(pdev, state));
12004
12005         priv->suspend_at = get_seconds();
12006
12007         return 0;
12008 }
12009
12010 static int ipw_pci_resume(struct pci_dev *pdev)
12011 {
12012         struct ipw_priv *priv = pci_get_drvdata(pdev);
12013         struct net_device *dev = priv->net_dev;
12014         int err;
12015         u32 val;
12016
12017         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12018
12019         pci_set_power_state(pdev, PCI_D0);
12020         err = pci_enable_device(pdev);
12021         if (err) {
12022                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12023                        dev->name);
12024                 return err;
12025         }
12026         pci_restore_state(pdev);
12027
12028         /*
12029          * Suspend/Resume resets the PCI configuration space, so we have to
12030          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12031          * from interfering with C3 CPU state. pci_restore_state won't help
12032          * here since it only restores the first 64 bytes pci config header.
12033          */
12034         pci_read_config_dword(pdev, 0x40, &val);
12035         if ((val & 0x0000ff00) != 0)
12036                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12037
12038         /* Set the device back into the PRESENT state; this will also wake
12039          * the queue of needed */
12040         netif_device_attach(dev);
12041
12042         priv->suspend_time = get_seconds() - priv->suspend_at;
12043
12044         /* Bring the device back up */
12045         schedule_work(&priv->up);
12046
12047         return 0;
12048 }
12049 #endif
12050
12051 static void ipw_pci_shutdown(struct pci_dev *pdev)
12052 {
12053         struct ipw_priv *priv = pci_get_drvdata(pdev);
12054
12055         /* Take down the device; powers it off, etc. */
12056         ipw_down(priv);
12057
12058         pci_disable_device(pdev);
12059 }
12060
12061 /* driver initialization stuff */
12062 static struct pci_driver ipw_driver = {
12063         .name = DRV_NAME,
12064         .id_table = card_ids,
12065         .probe = ipw_pci_probe,
12066         .remove = __devexit_p(ipw_pci_remove),
12067 #ifdef CONFIG_PM
12068         .suspend = ipw_pci_suspend,
12069         .resume = ipw_pci_resume,
12070 #endif
12071         .shutdown = ipw_pci_shutdown,
12072 };
12073
12074 static int __init ipw_init(void)
12075 {
12076         int ret;
12077
12078         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12079         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12080
12081         ret = pci_register_driver(&ipw_driver);
12082         if (ret) {
12083                 IPW_ERROR("Unable to initialize PCI module\n");
12084                 return ret;
12085         }
12086
12087         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12088         if (ret) {
12089                 IPW_ERROR("Unable to create driver sysfs file\n");
12090                 pci_unregister_driver(&ipw_driver);
12091                 return ret;
12092         }
12093
12094         return ret;
12095 }
12096
12097 static void __exit ipw_exit(void)
12098 {
12099         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12100         pci_unregister_driver(&ipw_driver);
12101 }
12102
12103 module_param(disable, int, 0444);
12104 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12105
12106 module_param(associate, int, 0444);
12107 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12108
12109 module_param(auto_create, int, 0444);
12110 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12111
12112 module_param_named(led, led_support, int, 0444);
12113 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12114
12115 module_param(debug, int, 0444);
12116 MODULE_PARM_DESC(debug, "debug output mask");
12117
12118 module_param_named(channel, default_channel, int, 0444);
12119 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12120
12121 #ifdef CONFIG_IPW2200_PROMISCUOUS
12122 module_param(rtap_iface, int, 0444);
12123 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12124 #endif
12125
12126 #ifdef CONFIG_IPW2200_QOS
12127 module_param(qos_enable, int, 0444);
12128 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12129
12130 module_param(qos_burst_enable, int, 0444);
12131 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12132
12133 module_param(qos_no_ack_mask, int, 0444);
12134 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12135
12136 module_param(burst_duration_CCK, int, 0444);
12137 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12138
12139 module_param(burst_duration_OFDM, int, 0444);
12140 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12141 #endif                          /* CONFIG_IPW2200_QOS */
12142
12143 #ifdef CONFIG_IPW2200_MONITOR
12144 module_param_named(mode, network_mode, int, 0444);
12145 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12146 #else
12147 module_param_named(mode, network_mode, int, 0444);
12148 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12149 #endif
12150
12151 module_param(bt_coexist, int, 0444);
12152 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12153
12154 module_param(hwcrypto, int, 0444);
12155 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12156
12157 module_param(cmdlog, int, 0444);
12158 MODULE_PARM_DESC(cmdlog,
12159                  "allocate a ring buffer for logging firmware commands");
12160
12161 module_param(roaming, int, 0444);
12162 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12163
12164 module_param(antenna, int, 0444);
12165 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12166
12167 module_exit(ipw_exit);
12168 module_init(ipw_init);