1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
6 * Portions of this file are derived from the ipw3945 project, as well
7 * as portions of the ieee80211 subsystem header files.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22 * The full GNU General Public License is included in this distribution in the
23 * file called LICENSE.
25 * Contact Information:
26 * Intel Linux Wireless <ilw@linux.intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 *****************************************************************************/
30 #include <linux/sched.h>
31 #include <linux/wait.h>
32 #include <linux/gfp.h>
37 #include "iwl-op-mode.h"
39 /******************************************************************************
43 ******************************************************************************/
46 * Rx theory of operation
48 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
49 * each of which point to Receive Buffers to be filled by the NIC. These get
50 * used not only for Rx frames, but for any command response or notification
51 * from the NIC. The driver and NIC manage the Rx buffers by means
52 * of indexes into the circular buffer.
55 * The host/firmware share two index registers for managing the Rx buffers.
57 * The READ index maps to the first position that the firmware may be writing
58 * to -- the driver can read up to (but not including) this position and get
60 * The READ index is managed by the firmware once the card is enabled.
62 * The WRITE index maps to the last position the driver has read from -- the
63 * position preceding WRITE is the last slot the firmware can place a packet.
65 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
68 * During initialization, the host sets up the READ queue position to the first
69 * INDEX position, and WRITE to the last (READ - 1 wrapped)
71 * When the firmware places a packet in a buffer, it will advance the READ index
72 * and fire the RX interrupt. The driver can then query the READ index and
73 * process as many packets as possible, moving the WRITE index forward as it
74 * resets the Rx queue buffers with new memory.
76 * The management in the driver is as follows:
77 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
78 * When the interrupt handler is called, the request is processed.
79 * The page is either stolen - transferred to the upper layer
80 * or reused - added immediately to the iwl->rxq->rx_free list.
81 * + When the page is stolen - the driver updates the matching queue's used
82 * count, detaches the RBD and transfers it to the queue used list.
83 * When there are two used RBDs - they are transferred to the allocator empty
84 * list. Work is then scheduled for the allocator to start allocating
86 * When there are another 6 used RBDs - they are transferred to the allocator
87 * empty list and the driver tries to claim the pre-allocated buffers and
88 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * When there are 8+ buffers in the free list - either from allocation or from
91 * 8 reused unstolen pages - restock is called to update the FW and indexes.
92 * + In order to make sure the allocator always has RBDs to use for allocation
93 * the allocator has initial pool in the size of num_queues*(8-2) - the
94 * maximum missing RBDs per allocation request (request posted with 2
95 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
96 * The queues supplies the recycle of the rest of the RBDs.
97 * + A received packet is processed and handed to the kernel network stack,
98 * detached from the iwl->rxq. The driver 'processed' index is updated.
99 * + If there are no allocated buffers in iwl->rxq->rx_free,
100 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
101 * If there were enough free buffers and RX_STALLED is set it is cleared.
106 * iwl_rxq_alloc() Allocates rx_free
107 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
108 * iwl_pcie_rxq_restock.
109 * Used only during initialization.
110 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
111 * queue, updates firmware pointers, and updates
113 * iwl_pcie_rx_allocator() Background work for allocating pages.
115 * -- enable interrupts --
116 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
117 * READ INDEX, detaching the SKB from the pool.
118 * Moves the packet buffer from queue to rx_used.
119 * Posts and claims requests to the allocator.
120 * Calls iwl_pcie_rxq_restock to refill any empty
126 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128 * Regular Receive interrupt:
130 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
131 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * rxq.queue -> rxq.rx_free -> rxq.queue
139 * iwl_rxq_space - Return number of free slots available in queue.
141 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 /* Make sure RX_QUEUE_SIZE is a power of 2 */
144 BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
147 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
148 * between empty and completely full queues.
149 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
150 * defined for negative dividends.
152 return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
156 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 return cpu_to_le32((u32)(dma_addr >> 8));
164 * iwl_pcie_rx_stop - stops the Rx DMA
166 int iwl_pcie_rx_stop(struct iwl_trans *trans)
168 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
169 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
170 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
174 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
176 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans)
178 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
179 struct iwl_rxq *rxq = &trans_pcie->rxq;
182 lockdep_assert_held(&rxq->lock);
185 * explicitly wake up the NIC if:
186 * 1. shadow registers aren't enabled
187 * 2. there is a chance that the NIC is asleep
189 if (!trans->cfg->base_params->shadow_reg_enable &&
190 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
191 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
193 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
194 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
196 iwl_set_bit(trans, CSR_GP_CNTRL,
197 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
198 rxq->need_update = true;
203 rxq->write_actual = round_down(rxq->write, 8);
204 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
207 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
209 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
210 struct iwl_rxq *rxq = &trans_pcie->rxq;
212 spin_lock(&rxq->lock);
214 if (!rxq->need_update)
217 iwl_pcie_rxq_inc_wr_ptr(trans);
218 rxq->need_update = false;
221 spin_unlock(&rxq->lock);
225 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
227 * If there are slots in the RX queue that need to be restocked,
228 * and we have free pre-allocated buffers, fill the ranks as much
229 * as we can, pulling from rx_free.
231 * This moves the 'write' index forward to catch up with 'processed', and
232 * also updates the memory address in the firmware to reference the new
235 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
237 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
238 struct iwl_rxq *rxq = &trans_pcie->rxq;
239 struct iwl_rx_mem_buffer *rxb;
242 * If the device isn't enabled - not need to try to add buffers...
243 * This can happen when we stop the device and still have an interrupt
244 * pending. We stop the APM before we sync the interrupts because we
245 * have to (see comment there). On the other hand, since the APM is
246 * stopped, we cannot access the HW (in particular not prph).
247 * So don't try to restock if the APM has been already stopped.
249 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252 spin_lock(&rxq->lock);
253 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
254 /* The overwritten rxb must be a used one */
255 rxb = rxq->queue[rxq->write];
256 BUG_ON(rxb && rxb->page);
258 /* Get next free Rx buffer, remove from free list */
259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
261 list_del(&rxb->list);
263 /* Point to Rx buffer via next RBD in circular buffer */
264 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
265 rxq->queue[rxq->write] = rxb;
266 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
269 spin_unlock(&rxq->lock);
271 /* If we've added more space for the firmware to place data, tell it.
272 * Increment device's write pointer in multiples of 8. */
273 if (rxq->write_actual != (rxq->write & ~0x7)) {
274 spin_lock(&rxq->lock);
275 iwl_pcie_rxq_inc_wr_ptr(trans);
276 spin_unlock(&rxq->lock);
281 * iwl_pcie_rx_alloc_page - allocates and returns a page.
284 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans)
286 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
287 struct iwl_rxq *rxq = &trans_pcie->rxq;
289 gfp_t gfp_mask = GFP_KERNEL;
291 if (rxq->free_count > RX_LOW_WATERMARK)
292 gfp_mask |= __GFP_NOWARN;
294 if (trans_pcie->rx_page_order > 0)
295 gfp_mask |= __GFP_COMP;
297 /* Alloc a new receive buffer */
298 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
301 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
302 trans_pcie->rx_page_order);
303 /* Issue an error if the hardware has consumed more than half
304 * of its free buffer list and we don't have enough
305 * pre-allocated buffers.
307 if (rxq->free_count <= RX_LOW_WATERMARK &&
308 iwl_rxq_space(rxq) > (RX_QUEUE_SIZE / 2) &&
311 "Failed to alloc_pages with GFP_KERNEL. Only %u free buffers remaining.\n",
319 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
321 * A used RBD is an Rx buffer that has been given to the stack. To use it again
322 * a page must be allocated and the RBD must point to the page. This function
323 * doesn't change the HW pointer but handles the list of pages that is used by
324 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
327 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans)
329 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
330 struct iwl_rxq *rxq = &trans_pcie->rxq;
331 struct iwl_rx_mem_buffer *rxb;
335 spin_lock(&rxq->lock);
336 if (list_empty(&rxq->rx_used)) {
337 spin_unlock(&rxq->lock);
340 spin_unlock(&rxq->lock);
342 /* Alloc a new receive buffer */
343 page = iwl_pcie_rx_alloc_page(trans);
347 spin_lock(&rxq->lock);
349 if (list_empty(&rxq->rx_used)) {
350 spin_unlock(&rxq->lock);
351 __free_pages(page, trans_pcie->rx_page_order);
354 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
356 list_del(&rxb->list);
357 spin_unlock(&rxq->lock);
361 /* Get physical address of the RB */
363 dma_map_page(trans->dev, page, 0,
364 PAGE_SIZE << trans_pcie->rx_page_order,
366 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
368 spin_lock(&rxq->lock);
369 list_add(&rxb->list, &rxq->rx_used);
370 spin_unlock(&rxq->lock);
371 __free_pages(page, trans_pcie->rx_page_order);
374 /* dma address must be no more than 36 bits */
375 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
376 /* and also 256 byte aligned! */
377 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
379 spin_lock(&rxq->lock);
381 list_add_tail(&rxb->list, &rxq->rx_free);
384 spin_unlock(&rxq->lock);
388 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
390 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
391 struct iwl_rxq *rxq = &trans_pcie->rxq;
394 lockdep_assert_held(&rxq->lock);
396 for (i = 0; i < RX_QUEUE_SIZE; i++) {
397 if (!rxq->pool[i].page)
399 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
400 PAGE_SIZE << trans_pcie->rx_page_order,
402 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
403 rxq->pool[i].page = NULL;
408 * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
410 * When moving to rx_free an page is allocated for the slot.
412 * Also restock the Rx queue via iwl_pcie_rxq_restock.
413 * This is called only during initialization
415 static void iwl_pcie_rx_replenish(struct iwl_trans *trans)
417 iwl_pcie_rxq_alloc_rbs(trans);
419 iwl_pcie_rxq_restock(trans);
423 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
425 * Allocates for each received request 8 pages
426 * Called as a scheduled work item.
428 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
430 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
431 struct iwl_rb_allocator *rba = &trans_pcie->rba;
433 while (atomic_read(&rba->req_pending)) {
435 struct list_head local_empty;
436 struct list_head local_allocated;
438 INIT_LIST_HEAD(&local_allocated);
439 spin_lock(&rba->lock);
440 /* swap out the entire rba->rbd_empty to a local list */
441 list_replace_init(&rba->rbd_empty, &local_empty);
442 spin_unlock(&rba->lock);
444 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
445 struct iwl_rx_mem_buffer *rxb;
448 /* List should never be empty - each reused RBD is
449 * returned to the list, and initial pool covers any
450 * possible gap between the time the page is allocated
451 * to the time the RBD is added.
453 BUG_ON(list_empty(&local_empty));
454 /* Get the first rxb from the rbd list */
455 rxb = list_first_entry(&local_empty,
456 struct iwl_rx_mem_buffer, list);
459 /* Alloc a new receive buffer */
460 page = iwl_pcie_rx_alloc_page(trans);
465 /* Get physical address of the RB */
466 rxb->page_dma = dma_map_page(trans->dev, page, 0,
467 PAGE_SIZE << trans_pcie->rx_page_order,
469 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
471 __free_pages(page, trans_pcie->rx_page_order);
474 /* dma address must be no more than 36 bits */
475 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
476 /* and also 256 byte aligned! */
477 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
479 /* move the allocated entry to the out list */
480 list_move(&rxb->list, &local_allocated);
484 spin_lock(&rba->lock);
485 /* add the allocated rbds to the allocator allocated list */
486 list_splice_tail(&local_allocated, &rba->rbd_allocated);
487 /* add the unused rbds back to the allocator empty list */
488 list_splice_tail(&local_empty, &rba->rbd_empty);
489 spin_unlock(&rba->lock);
491 atomic_dec(&rba->req_pending);
492 atomic_inc(&rba->req_ready);
497 * iwl_pcie_rx_allocator_get - Returns the pre-allocated pages
499 .* Called by queue when the queue posted allocation request and
500 * has freed 8 RBDs in order to restock itself.
502 static int iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
503 struct iwl_rx_mem_buffer
504 *out[RX_CLAIM_REQ_ALLOC])
506 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
507 struct iwl_rb_allocator *rba = &trans_pcie->rba;
510 if (atomic_dec_return(&rba->req_ready) < 0) {
511 atomic_inc(&rba->req_ready);
513 "Allocation request not ready, pending requests = %d\n",
514 atomic_read(&rba->req_pending));
518 spin_lock(&rba->lock);
519 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
520 /* Get next free Rx buffer, remove it from free list */
521 out[i] = list_first_entry(&rba->rbd_allocated,
522 struct iwl_rx_mem_buffer, list);
523 list_del(&out[i]->list);
525 spin_unlock(&rba->lock);
530 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
532 struct iwl_rb_allocator *rba_p =
533 container_of(data, struct iwl_rb_allocator, rx_alloc);
534 struct iwl_trans_pcie *trans_pcie =
535 container_of(rba_p, struct iwl_trans_pcie, rba);
537 iwl_pcie_rx_allocator(trans_pcie->trans);
540 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
542 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
543 struct iwl_rxq *rxq = &trans_pcie->rxq;
544 struct iwl_rb_allocator *rba = &trans_pcie->rba;
545 struct device *dev = trans->dev;
547 memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
549 spin_lock_init(&rxq->lock);
550 spin_lock_init(&rba->lock);
552 if (WARN_ON(rxq->bd || rxq->rb_stts))
555 /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
556 rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
557 &rxq->bd_dma, GFP_KERNEL);
561 /*Allocate the driver's pointer to receive buffer status */
562 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
563 &rxq->rb_stts_dma, GFP_KERNEL);
570 dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
571 rxq->bd, rxq->bd_dma);
578 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
580 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
582 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
584 if (trans_pcie->rx_buf_size_8k)
585 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
587 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
590 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
591 /* reset and flush pointers */
592 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
593 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
594 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
596 /* Reset driver's Rx queue write index */
597 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
599 /* Tell device where to find RBD circular buffer in DRAM */
600 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
601 (u32)(rxq->bd_dma >> 8));
603 /* Tell device where in DRAM to update its Rx status */
604 iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
605 rxq->rb_stts_dma >> 4);
608 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
609 * the credit mechanism in 5000 HW RX FIFO
610 * Direct rx interrupts to hosts
611 * Rx buffer size 4 or 8k
615 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
616 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
617 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
618 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
620 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
621 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
623 /* Set interrupt coalescing timer to default (2048 usecs) */
624 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
626 /* W/A for interrupt coalescing bug in 7260 and 3160 */
627 if (trans->cfg->host_interrupt_operation_mode)
628 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
631 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
635 lockdep_assert_held(&rxq->lock);
637 INIT_LIST_HEAD(&rxq->rx_free);
638 INIT_LIST_HEAD(&rxq->rx_used);
642 for (i = 0; i < RX_QUEUE_SIZE; i++)
643 list_add(&rxq->pool[i].list, &rxq->rx_used);
646 static void iwl_pcie_rx_init_rba(struct iwl_rb_allocator *rba)
650 lockdep_assert_held(&rba->lock);
652 INIT_LIST_HEAD(&rba->rbd_allocated);
653 INIT_LIST_HEAD(&rba->rbd_empty);
655 for (i = 0; i < RX_POOL_SIZE; i++)
656 list_add(&rba->pool[i].list, &rba->rbd_empty);
659 static void iwl_pcie_rx_free_rba(struct iwl_trans *trans)
661 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
662 struct iwl_rb_allocator *rba = &trans_pcie->rba;
665 lockdep_assert_held(&rba->lock);
667 for (i = 0; i < RX_POOL_SIZE; i++) {
668 if (!rba->pool[i].page)
670 dma_unmap_page(trans->dev, rba->pool[i].page_dma,
671 PAGE_SIZE << trans_pcie->rx_page_order,
673 __free_pages(rba->pool[i].page, trans_pcie->rx_page_order);
674 rba->pool[i].page = NULL;
678 int iwl_pcie_rx_init(struct iwl_trans *trans)
680 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
681 struct iwl_rxq *rxq = &trans_pcie->rxq;
682 struct iwl_rb_allocator *rba = &trans_pcie->rba;
686 err = iwl_pcie_rx_alloc(trans);
691 rba->alloc_wq = alloc_workqueue("rb_allocator",
692 WQ_HIGHPRI | WQ_UNBOUND, 1);
693 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
695 spin_lock(&rba->lock);
696 atomic_set(&rba->req_pending, 0);
697 atomic_set(&rba->req_ready, 0);
698 /* free all first - we might be reconfigured for a different size */
699 iwl_pcie_rx_free_rba(trans);
700 iwl_pcie_rx_init_rba(rba);
701 spin_unlock(&rba->lock);
703 spin_lock(&rxq->lock);
705 /* free all first - we might be reconfigured for a different size */
706 iwl_pcie_rxq_free_rbs(trans);
707 iwl_pcie_rx_init_rxb_lists(rxq);
709 for (i = 0; i < RX_QUEUE_SIZE; i++)
710 rxq->queue[i] = NULL;
712 /* Set us so that we have processed and used all buffers, but have
713 * not restocked the Rx queue with fresh buffers */
714 rxq->read = rxq->write = 0;
715 rxq->write_actual = 0;
716 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
717 spin_unlock(&rxq->lock);
719 iwl_pcie_rx_replenish(trans);
721 iwl_pcie_rx_hw_init(trans, rxq);
723 spin_lock(&rxq->lock);
724 iwl_pcie_rxq_inc_wr_ptr(trans);
725 spin_unlock(&rxq->lock);
730 void iwl_pcie_rx_free(struct iwl_trans *trans)
732 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
733 struct iwl_rxq *rxq = &trans_pcie->rxq;
734 struct iwl_rb_allocator *rba = &trans_pcie->rba;
736 /*if rxq->bd is NULL, it means that nothing has been allocated,
739 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
743 cancel_work_sync(&rba->rx_alloc);
745 destroy_workqueue(rba->alloc_wq);
746 rba->alloc_wq = NULL;
749 spin_lock(&rba->lock);
750 iwl_pcie_rx_free_rba(trans);
751 spin_unlock(&rba->lock);
753 spin_lock(&rxq->lock);
754 iwl_pcie_rxq_free_rbs(trans);
755 spin_unlock(&rxq->lock);
757 dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
758 rxq->bd, rxq->bd_dma);
763 dma_free_coherent(trans->dev,
764 sizeof(struct iwl_rb_status),
765 rxq->rb_stts, rxq->rb_stts_dma);
767 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
768 rxq->rb_stts_dma = 0;
773 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
775 * Called when a RBD can be reused. The RBD is transferred to the allocator.
776 * When there are 2 empty RBDs - a request for allocation is posted
778 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
779 struct iwl_rx_mem_buffer *rxb,
782 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
783 struct iwl_rb_allocator *rba = &trans_pcie->rba;
785 /* Count the used RBDs */
788 /* Move the RBD to the used list, will be moved to allocator in batches
789 * before claiming or posting a request*/
790 list_add_tail(&rxb->list, &rxq->rx_used);
792 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
793 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
794 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
795 * after but we still need to post another request.
797 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
798 /* Move the 2 RBDs to the allocator ownership.
799 Allocator has another 6 from pool for the request completion*/
800 spin_lock(&rba->lock);
801 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
802 spin_unlock(&rba->lock);
804 atomic_inc(&rba->req_pending);
805 queue_work(rba->alloc_wq, &rba->rx_alloc);
809 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
810 struct iwl_rx_mem_buffer *rxb)
812 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
813 struct iwl_rxq *rxq = &trans_pcie->rxq;
814 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
815 bool page_stolen = false;
816 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
822 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
824 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
825 struct iwl_rx_packet *pkt;
826 struct iwl_device_cmd *cmd;
829 int index, cmd_index, err, len;
830 struct iwl_rx_cmd_buffer rxcb = {
832 ._rx_page_order = trans_pcie->rx_page_order,
834 ._page_stolen = false,
838 pkt = rxb_addr(&rxcb);
840 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
844 "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
846 get_cmd_string(trans_pcie, pkt->hdr.cmd),
847 pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
849 len = iwl_rx_packet_len(pkt);
850 len += sizeof(u32); /* account for status word */
851 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
852 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
854 /* Reclaim a command buffer only if this packet is a response
855 * to a (driver-originated) command.
856 * If the packet (e.g. Rx frame) originated from uCode,
857 * there is no command buffer to reclaim.
858 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
859 * but apparently a few don't get set; catch them here. */
860 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
864 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
865 if (trans_pcie->no_reclaim_cmds[i] ==
873 sequence = le16_to_cpu(pkt->hdr.sequence);
874 index = SEQ_TO_INDEX(sequence);
875 cmd_index = get_cmd_index(&txq->q, index);
878 cmd = txq->entries[cmd_index].cmd;
882 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
885 kzfree(txq->entries[cmd_index].free_buf);
886 txq->entries[cmd_index].free_buf = NULL;
890 * After here, we should always check rxcb._page_stolen,
891 * if it is true then one of the handlers took the page.
895 /* Invoke any callbacks, transfer the buffer to caller,
896 * and fire off the (possibly) blocking
897 * iwl_trans_send_cmd()
898 * as we reclaim the driver command queue */
899 if (!rxcb._page_stolen)
900 iwl_pcie_hcmd_complete(trans, &rxcb, err);
902 IWL_WARN(trans, "Claim null rxb?\n");
905 page_stolen |= rxcb._page_stolen;
906 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
909 /* page was stolen from us -- free our reference */
911 __free_pages(rxb->page, trans_pcie->rx_page_order);
915 /* Reuse the page if possible. For notification packets and
916 * SKBs that fail to Rx correctly, add them back into the
917 * rx_free list for reuse later. */
918 if (rxb->page != NULL) {
920 dma_map_page(trans->dev, rxb->page, 0,
921 PAGE_SIZE << trans_pcie->rx_page_order,
923 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
925 * free the page(s) as well to not break
926 * the invariant that the items on the used
927 * list have no page(s)
929 __free_pages(rxb->page, trans_pcie->rx_page_order);
931 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq);
933 list_add_tail(&rxb->list, &rxq->rx_free);
937 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq);
941 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
943 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
945 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
946 struct iwl_rxq *rxq = &trans_pcie->rxq;
950 spin_lock(&rxq->lock);
951 /* uCode's read index (stored in shared DRAM) indicates the last Rx
952 * buffer that the driver may process (last buffer filled by ucode). */
953 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
956 /* Rx interrupt, but nothing sent from uCode */
958 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
961 struct iwl_rx_mem_buffer *rxb;
964 rxq->queue[i] = NULL;
966 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
968 iwl_pcie_rx_handle_rb(trans, rxb);
970 i = (i + 1) & RX_QUEUE_MASK;
972 /* If we have RX_CLAIM_REQ_ALLOC released rx buffers -
973 * try to claim the pre-allocated buffers from the allocator */
974 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) {
975 struct iwl_rb_allocator *rba = &trans_pcie->rba;
976 struct iwl_rx_mem_buffer *out[RX_CLAIM_REQ_ALLOC];
978 /* Add the remaining 6 empty RBDs for allocator use */
979 spin_lock(&rba->lock);
980 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
981 spin_unlock(&rba->lock);
983 /* If not ready - continue, will try to reclaim later.
984 * No need to reschedule work - allocator exits only on
986 if (!iwl_pcie_rx_allocator_get(trans, out)) {
987 /* If success - then RX_CLAIM_REQ_ALLOC
988 * buffers were retrieved and should be added
990 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
991 for (j = 0; j < RX_CLAIM_REQ_ALLOC; j++) {
992 list_add_tail(&out[j]->list,
998 /* handle restock for two cases:
999 * - we just pulled buffers from the allocator
1000 * - we have 8+ unstolen pages accumulated */
1001 if (rxq->free_count >= RX_CLAIM_REQ_ALLOC) {
1003 spin_unlock(&rxq->lock);
1004 iwl_pcie_rxq_restock(trans);
1009 /* Backtrack one entry */
1011 spin_unlock(&rxq->lock);
1013 if (trans_pcie->napi.poll)
1014 napi_gro_flush(&trans_pcie->napi, false);
1018 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1020 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1022 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1024 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1025 if (trans->cfg->internal_wimax_coex &&
1026 !trans->cfg->apmg_not_supported &&
1027 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1028 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1029 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1030 APMG_PS_CTRL_VAL_RESET_REQ))) {
1031 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1032 iwl_op_mode_wimax_active(trans->op_mode);
1033 wake_up(&trans_pcie->wait_command_queue);
1037 iwl_pcie_dump_csr(trans);
1038 iwl_dump_fh(trans, NULL);
1041 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1042 * before we wake up the command caller, to ensure a proper cleanup. */
1043 iwl_trans_fw_error(trans);
1046 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1047 wake_up(&trans_pcie->wait_command_queue);
1050 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1054 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1056 trace_iwlwifi_dev_irq(trans->dev);
1058 /* Discover which interrupts are active/pending */
1059 inta = iwl_read32(trans, CSR_INT);
1061 /* the thread will service interrupts and re-enable them */
1065 /* a device (PCI-E) page is 4096 bytes long */
1066 #define ICT_SHIFT 12
1067 #define ICT_SIZE (1 << ICT_SHIFT)
1068 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1070 /* interrupt handler using ict table, with this interrupt driver will
1071 * stop using INTA register to get device's interrupt, reading this register
1072 * is expensive, device will write interrupts in ICT dram table, increment
1073 * index then will fire interrupt to driver, driver will OR all ICT table
1074 * entries from current index up to table entry with 0 value. the result is
1075 * the interrupt we need to service, driver will set the entries back to 0 and
1078 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1080 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1085 trace_iwlwifi_dev_irq(trans->dev);
1087 /* Ignore interrupt if there's nothing in NIC to service.
1088 * This may be due to IRQ shared with another device,
1089 * or due to sporadic interrupts thrown from our NIC. */
1090 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1091 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1096 * Collect all entries up to the first 0, starting from ict_index;
1097 * note we already read at ict_index.
1101 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1102 trans_pcie->ict_index, read);
1103 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1104 trans_pcie->ict_index =
1105 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1107 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1108 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1112 /* We should not get this value, just ignore it. */
1113 if (val == 0xffffffff)
1117 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1118 * (bit 15 before shifting it to 31) to clear when using interrupt
1119 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1120 * so we use them to decide on the real state of the Rx bit.
1121 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1126 inta = (0xff & val) | ((0xff00 & val) << 16);
1130 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1132 struct iwl_trans *trans = dev_id;
1133 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1134 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1138 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1140 spin_lock(&trans_pcie->irq_lock);
1142 /* dram interrupt table not set yet,
1143 * use legacy interrupt.
1145 if (likely(trans_pcie->use_ict))
1146 inta = iwl_pcie_int_cause_ict(trans);
1148 inta = iwl_pcie_int_cause_non_ict(trans);
1150 if (iwl_have_debug_level(IWL_DL_ISR)) {
1151 IWL_DEBUG_ISR(trans,
1152 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1153 inta, trans_pcie->inta_mask,
1154 iwl_read32(trans, CSR_INT_MASK),
1155 iwl_read32(trans, CSR_FH_INT_STATUS));
1156 if (inta & (~trans_pcie->inta_mask))
1157 IWL_DEBUG_ISR(trans,
1158 "We got a masked interrupt (0x%08x)\n",
1159 inta & (~trans_pcie->inta_mask));
1162 inta &= trans_pcie->inta_mask;
1165 * Ignore interrupt if there's nothing in NIC to service.
1166 * This may be due to IRQ shared with another device,
1167 * or due to sporadic interrupts thrown from our NIC.
1169 if (unlikely(!inta)) {
1170 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1172 * Re-enable interrupts here since we don't
1173 * have anything to service
1175 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1176 iwl_enable_interrupts(trans);
1177 spin_unlock(&trans_pcie->irq_lock);
1178 lock_map_release(&trans->sync_cmd_lockdep_map);
1182 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1184 * Hardware disappeared. It might have
1185 * already raised an interrupt.
1187 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1188 spin_unlock(&trans_pcie->irq_lock);
1192 /* Ack/clear/reset pending uCode interrupts.
1193 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1195 /* There is a hardware bug in the interrupt mask function that some
1196 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1197 * they are disabled in the CSR_INT_MASK register. Furthermore the
1198 * ICT interrupt handling mechanism has another bug that might cause
1199 * these unmasked interrupts fail to be detected. We workaround the
1200 * hardware bugs here by ACKing all the possible interrupts so that
1201 * interrupt coalescing can still be achieved.
1203 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1205 if (iwl_have_debug_level(IWL_DL_ISR))
1206 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1207 inta, iwl_read32(trans, CSR_INT_MASK));
1209 spin_unlock(&trans_pcie->irq_lock);
1211 /* Now service all interrupt bits discovered above. */
1212 if (inta & CSR_INT_BIT_HW_ERR) {
1213 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1215 /* Tell the device to stop sending interrupts */
1216 iwl_disable_interrupts(trans);
1219 iwl_pcie_irq_handle_error(trans);
1221 handled |= CSR_INT_BIT_HW_ERR;
1226 if (iwl_have_debug_level(IWL_DL_ISR)) {
1227 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1228 if (inta & CSR_INT_BIT_SCD) {
1229 IWL_DEBUG_ISR(trans,
1230 "Scheduler finished to transmit the frame/frames.\n");
1234 /* Alive notification via Rx interrupt will do the real work */
1235 if (inta & CSR_INT_BIT_ALIVE) {
1236 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1241 /* Safely ignore these bits for debug checks below */
1242 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1244 /* HW RF KILL switch toggled */
1245 if (inta & CSR_INT_BIT_RF_KILL) {
1248 hw_rfkill = iwl_is_rfkill_set(trans);
1249 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1250 hw_rfkill ? "disable radio" : "enable radio");
1252 isr_stats->rfkill++;
1254 mutex_lock(&trans_pcie->mutex);
1255 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1256 mutex_unlock(&trans_pcie->mutex);
1258 set_bit(STATUS_RFKILL, &trans->status);
1259 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1261 IWL_DEBUG_RF_KILL(trans,
1262 "Rfkill while SYNC HCMD in flight\n");
1263 wake_up(&trans_pcie->wait_command_queue);
1265 clear_bit(STATUS_RFKILL, &trans->status);
1268 handled |= CSR_INT_BIT_RF_KILL;
1271 /* Chip got too hot and stopped itself */
1272 if (inta & CSR_INT_BIT_CT_KILL) {
1273 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1274 isr_stats->ctkill++;
1275 handled |= CSR_INT_BIT_CT_KILL;
1278 /* Error detected by uCode */
1279 if (inta & CSR_INT_BIT_SW_ERR) {
1280 IWL_ERR(trans, "Microcode SW error detected. "
1281 " Restarting 0x%X.\n", inta);
1283 iwl_pcie_irq_handle_error(trans);
1284 handled |= CSR_INT_BIT_SW_ERR;
1287 /* uCode wakes up after power-down sleep */
1288 if (inta & CSR_INT_BIT_WAKEUP) {
1289 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1290 iwl_pcie_rxq_check_wrptr(trans);
1291 iwl_pcie_txq_check_wrptrs(trans);
1293 isr_stats->wakeup++;
1295 handled |= CSR_INT_BIT_WAKEUP;
1298 /* All uCode command responses, including Tx command responses,
1299 * Rx "responses" (frame-received notification), and other
1300 * notifications from uCode come through here*/
1301 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1302 CSR_INT_BIT_RX_PERIODIC)) {
1303 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1304 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1305 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1306 iwl_write32(trans, CSR_FH_INT_STATUS,
1307 CSR_FH_INT_RX_MASK);
1309 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1310 handled |= CSR_INT_BIT_RX_PERIODIC;
1312 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1314 /* Sending RX interrupt require many steps to be done in the
1316 * 1- write interrupt to current index in ICT table.
1318 * 3- update RX shared data to indicate last write index.
1319 * 4- send interrupt.
1320 * This could lead to RX race, driver could receive RX interrupt
1321 * but the shared data changes does not reflect this;
1322 * periodic interrupt will detect any dangling Rx activity.
1325 /* Disable periodic interrupt; we use it as just a one-shot. */
1326 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1327 CSR_INT_PERIODIC_DIS);
1330 * Enable periodic interrupt in 8 msec only if we received
1331 * real RX interrupt (instead of just periodic int), to catch
1332 * any dangling Rx interrupt. If it was just the periodic
1333 * interrupt, there was no dangling Rx activity, and no need
1334 * to extend the periodic interrupt; one-shot is enough.
1336 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1337 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1338 CSR_INT_PERIODIC_ENA);
1343 iwl_pcie_rx_handle(trans);
1347 /* This "Tx" DMA channel is used only for loading uCode */
1348 if (inta & CSR_INT_BIT_FH_TX) {
1349 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1350 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1352 handled |= CSR_INT_BIT_FH_TX;
1353 /* Wake up uCode load routine, now that load is complete */
1354 trans_pcie->ucode_write_complete = true;
1355 wake_up(&trans_pcie->ucode_write_waitq);
1358 if (inta & ~handled) {
1359 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1360 isr_stats->unhandled++;
1363 if (inta & ~(trans_pcie->inta_mask)) {
1364 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1365 inta & ~trans_pcie->inta_mask);
1368 /* Re-enable all interrupts */
1369 /* only Re-enable if disabled by irq */
1370 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1371 iwl_enable_interrupts(trans);
1372 /* Re-enable RF_KILL if it occurred */
1373 else if (handled & CSR_INT_BIT_RF_KILL)
1374 iwl_enable_rfkill_int(trans);
1377 lock_map_release(&trans->sync_cmd_lockdep_map);
1381 /******************************************************************************
1385 ******************************************************************************/
1387 /* Free dram table */
1388 void iwl_pcie_free_ict(struct iwl_trans *trans)
1390 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1392 if (trans_pcie->ict_tbl) {
1393 dma_free_coherent(trans->dev, ICT_SIZE,
1394 trans_pcie->ict_tbl,
1395 trans_pcie->ict_tbl_dma);
1396 trans_pcie->ict_tbl = NULL;
1397 trans_pcie->ict_tbl_dma = 0;
1402 * allocate dram shared table, it is an aligned memory
1403 * block of ICT_SIZE.
1404 * also reset all data related to ICT table interrupt.
1406 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1408 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1410 trans_pcie->ict_tbl =
1411 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1412 &trans_pcie->ict_tbl_dma,
1414 if (!trans_pcie->ict_tbl)
1417 /* just an API sanity check ... it is guaranteed to be aligned */
1418 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1419 iwl_pcie_free_ict(trans);
1423 IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1424 (unsigned long long)trans_pcie->ict_tbl_dma,
1425 trans_pcie->ict_tbl);
1430 /* Device is going up inform it about using ICT interrupt table,
1431 * also we need to tell the driver to start using ICT interrupt.
1433 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1435 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1438 if (!trans_pcie->ict_tbl)
1441 spin_lock(&trans_pcie->irq_lock);
1442 iwl_disable_interrupts(trans);
1444 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1446 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1448 val |= CSR_DRAM_INT_TBL_ENABLE;
1449 val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1451 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1453 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1454 trans_pcie->use_ict = true;
1455 trans_pcie->ict_index = 0;
1456 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1457 iwl_enable_interrupts(trans);
1458 spin_unlock(&trans_pcie->irq_lock);
1461 /* Device is going down disable ict interrupt usage */
1462 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1464 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1466 spin_lock(&trans_pcie->irq_lock);
1467 trans_pcie->use_ict = false;
1468 spin_unlock(&trans_pcie->irq_lock);
1471 irqreturn_t iwl_pcie_isr(int irq, void *data)
1473 struct iwl_trans *trans = data;
1478 /* Disable (but don't clear!) interrupts here to avoid
1479 * back-to-back ISRs and sporadic interrupts from our NIC.
1480 * If we have something to service, the tasklet will re-enable ints.
1481 * If we *don't* have something, we'll re-enable before leaving here.
1483 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1485 return IRQ_WAKE_THREAD;