89968a5bff84c42c77af80ac5420351b2512c42e
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141
142         if (priv->rx_start)
143                 return 0;
144
145         while (data < end_data && *data)
146                 data++;
147
148         while (data < end_data && !*data)
149                 data++;
150
151         bootrec = (struct bootrec *) data;
152
153         while (bootrec->data <= end_data &&
154                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
155                 u32 code = le32_to_cpu(bootrec->code);
156                 switch (code) {
157                 case BR_CODE_COMPONENT_ID:
158                         priv->fw_interface = be32_to_cpup((__be32 *)
159                                              bootrec->data);
160                         switch (priv->fw_interface) {
161                         case FW_LM86:
162                         case FW_LM20:
163                         case FW_LM87: {
164                                 char *iftype = (char *)bootrec->data;
165                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
166                                                  "firmware\n",
167                                         wiphy_name(dev->wiphy),
168                                         iftype[2], iftype[3]);
169                                 break;
170                                 }
171                         case FW_FMAC:
172                         default:
173                                 printk(KERN_ERR "%s: unsupported firmware\n",
174                                         wiphy_name(dev->wiphy));
175                                 return -ENODEV;
176                         }
177                         break;
178                 case BR_CODE_COMPONENT_VERSION:
179                         /* 24 bytes should be enough for all firmwares */
180                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
181                                 fw_version = (unsigned char*)bootrec->data;
182                         break;
183                 case BR_CODE_DESCR: {
184                         struct bootrec_desc *desc =
185                                 (struct bootrec_desc *)bootrec->data;
186                         priv->rx_start = le32_to_cpu(desc->rx_start);
187                         /* FIXME add sanity checking */
188                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
189                         priv->headroom = desc->headroom;
190                         priv->tailroom = desc->tailroom;
191                         priv->privacy_caps = desc->privacy_caps;
192                         priv->rx_keycache_size = desc->rx_keycache_size;
193                         if (le32_to_cpu(bootrec->len) == 11)
194                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
195                         else
196                                 priv->rx_mtu = (size_t)
197                                         0x620 - priv->tx_hdr_len;
198                         break;
199                         }
200                 case BR_CODE_EXPOSED_IF:
201                         exp_if = (struct bootrec_exp_if *) bootrec->data;
202                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
203                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
204                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
205                         break;
206                 case BR_CODE_DEPENDENT_IF:
207                         break;
208                 case BR_CODE_END_OF_BRA:
209                 case LEGACY_BR_CODE_END_OF_BRA:
210                         end_data = NULL;
211                         break;
212                 default:
213                         break;
214                 }
215                 bootrec = (struct bootrec *)&bootrec->data[len];
216         }
217
218         if (fw_version)
219                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
220                         wiphy_name(dev->wiphy), fw_version,
221                         priv->fw_var >> 8, priv->fw_var & 0xff);
222
223         if (priv->fw_var < 0x500)
224                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
225                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
226                        "and grab one for \"kernel >= 2.6.28\"!\n",
227                         wiphy_name(dev->wiphy));
228
229         if (priv->fw_var >= 0x300) {
230                 /* Firmware supports QoS, use it! */
231                 priv->tx_stats[4].limit = 3;            /* AC_VO */
232                 priv->tx_stats[5].limit = 4;            /* AC_VI */
233                 priv->tx_stats[6].limit = 3;            /* AC_BE */
234                 priv->tx_stats[7].limit = 2;            /* AC_BK */
235                 dev->queues = 4;
236         }
237
238         if (!modparam_nohwcrypt)
239                 printk(KERN_INFO "%s: cryptographic accelerator "
240                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
241                         wiphy_name(dev->wiphy),
242                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
243                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
244                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
245                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
246                         "YES" : "no");
247
248         return 0;
249 }
250 EXPORT_SYMBOL_GPL(p54_parse_firmware);
251
252 static int p54_convert_rev0(struct ieee80211_hw *dev,
253                             struct pda_pa_curve_data *curve_data)
254 {
255         struct p54_common *priv = dev->priv;
256         struct p54_pa_curve_data_sample *dst;
257         struct pda_pa_curve_data_sample_rev0 *src;
258         size_t cd_len = sizeof(*curve_data) +
259                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
260                  curve_data->channels;
261         unsigned int i, j;
262         void *source, *target;
263
264         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
265         if (!priv->curve_data)
266                 return -ENOMEM;
267
268         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
269         source = curve_data->data;
270         target = priv->curve_data->data;
271         for (i = 0; i < curve_data->channels; i++) {
272                 __le16 *freq = source;
273                 source += sizeof(__le16);
274                 *((__le16 *)target) = *freq;
275                 target += sizeof(__le16);
276                 for (j = 0; j < curve_data->points_per_channel; j++) {
277                         dst = target;
278                         src = source;
279
280                         dst->rf_power = src->rf_power;
281                         dst->pa_detector = src->pa_detector;
282                         dst->data_64qam = src->pcv;
283                         /* "invent" the points for the other modulations */
284 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
285                         dst->data_16qam = SUB(src->pcv, 12);
286                         dst->data_qpsk = SUB(dst->data_16qam, 12);
287                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
288                         dst->data_barker = SUB(dst->data_bpsk, 14);
289 #undef SUB
290                         target += sizeof(*dst);
291                         source += sizeof(*src);
292                 }
293         }
294
295         return 0;
296 }
297
298 static int p54_convert_rev1(struct ieee80211_hw *dev,
299                             struct pda_pa_curve_data *curve_data)
300 {
301         struct p54_common *priv = dev->priv;
302         struct p54_pa_curve_data_sample *dst;
303         struct pda_pa_curve_data_sample_rev1 *src;
304         size_t cd_len = sizeof(*curve_data) +
305                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
306                  curve_data->channels;
307         unsigned int i, j;
308         void *source, *target;
309
310         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
311         if (!priv->curve_data)
312                 return -ENOMEM;
313
314         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
315         source = curve_data->data;
316         target = priv->curve_data->data;
317         for (i = 0; i < curve_data->channels; i++) {
318                 __le16 *freq = source;
319                 source += sizeof(__le16);
320                 *((__le16 *)target) = *freq;
321                 target += sizeof(__le16);
322                 for (j = 0; j < curve_data->points_per_channel; j++) {
323                         memcpy(target, source, sizeof(*src));
324
325                         target += sizeof(*dst);
326                         source += sizeof(*src);
327                 }
328                 source++;
329         }
330
331         return 0;
332 }
333
334 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
335                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
336 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
337
338 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
339 {
340         struct p54_common *priv = dev->priv;
341         struct eeprom_pda_wrap *wrap = NULL;
342         struct pda_entry *entry;
343         unsigned int data_len, entry_len;
344         void *tmp;
345         int err;
346         u8 *end = (u8 *)eeprom + len;
347         u16 synth = 0;
348
349         wrap = (struct eeprom_pda_wrap *) eeprom;
350         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
351
352         /* verify that at least the entry length/code fits */
353         while ((u8 *)entry <= end - sizeof(*entry)) {
354                 entry_len = le16_to_cpu(entry->len);
355                 data_len = ((entry_len - 1) << 1);
356
357                 /* abort if entry exceeds whole structure */
358                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
359                         break;
360
361                 switch (le16_to_cpu(entry->code)) {
362                 case PDR_MAC_ADDRESS:
363                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
364                         break;
365                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
366                         if (data_len < 2) {
367                                 err = -EINVAL;
368                                 goto err;
369                         }
370
371                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
372                                 err = -EINVAL;
373                                 goto err;
374                         }
375
376                         priv->output_limit = kmalloc(entry->data[1] *
377                                 sizeof(*priv->output_limit), GFP_KERNEL);
378
379                         if (!priv->output_limit) {
380                                 err = -ENOMEM;
381                                 goto err;
382                         }
383
384                         memcpy(priv->output_limit, &entry->data[2],
385                                entry->data[1]*sizeof(*priv->output_limit));
386                         priv->output_limit_len = entry->data[1];
387                         break;
388                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
389                         struct pda_pa_curve_data *curve_data =
390                                 (struct pda_pa_curve_data *)entry->data;
391                         if (data_len < sizeof(*curve_data)) {
392                                 err = -EINVAL;
393                                 goto err;
394                         }
395
396                         switch (curve_data->cal_method_rev) {
397                         case 0:
398                                 err = p54_convert_rev0(dev, curve_data);
399                                 break;
400                         case 1:
401                                 err = p54_convert_rev1(dev, curve_data);
402                                 break;
403                         default:
404                                 printk(KERN_ERR "%s: unknown curve data "
405                                                 "revision %d\n",
406                                                 wiphy_name(dev->wiphy),
407                                                 curve_data->cal_method_rev);
408                                 err = -ENODEV;
409                                 break;
410                         }
411                         if (err)
412                                 goto err;
413
414                 }
415                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
416                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
417                         if (!priv->iq_autocal) {
418                                 err = -ENOMEM;
419                                 goto err;
420                         }
421
422                         memcpy(priv->iq_autocal, entry->data, data_len);
423                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
424                         break;
425                 case PDR_INTERFACE_LIST:
426                         tmp = entry->data;
427                         while ((u8 *)tmp < entry->data + data_len) {
428                                 struct bootrec_exp_if *exp_if = tmp;
429                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
430                                         synth = le16_to_cpu(exp_if->variant);
431                                 tmp += sizeof(struct bootrec_exp_if);
432                         }
433                         break;
434                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
435                         priv->version = *(u8 *)(entry->data + 1);
436                         break;
437                 case PDR_END:
438                         /* make it overrun */
439                         entry_len = len;
440                         break;
441                 case PDR_MANUFACTURING_PART_NUMBER:
442                 case PDR_PDA_VERSION:
443                 case PDR_NIC_SERIAL_NUMBER:
444                 case PDR_REGULATORY_DOMAIN_LIST:
445                 case PDR_TEMPERATURE_TYPE:
446                 case PDR_PRISM_PCI_IDENTIFIER:
447                 case PDR_COUNTRY_INFORMATION:
448                 case PDR_OEM_NAME:
449                 case PDR_PRODUCT_NAME:
450                 case PDR_UTF8_OEM_NAME:
451                 case PDR_UTF8_PRODUCT_NAME:
452                 case PDR_COUNTRY_LIST:
453                 case PDR_DEFAULT_COUNTRY:
454                 case PDR_ANTENNA_GAIN:
455                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
456                 case PDR_RSSI_LINEAR_APPROXIMATION:
457                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
458                 case PDR_REGULATORY_POWER_LIMITS:
459                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
460                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
461                 case PDR_PRISM_TX_IQ_CALIBRATION:
462                 case PDR_BASEBAND_REGISTERS:
463                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
464                         break;
465                 default:
466                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
467                                 wiphy_name(dev->wiphy),
468                                 le16_to_cpu(entry->code));
469                         break;
470                 }
471
472                 entry = (void *)entry + (entry_len + 1)*2;
473         }
474
475         if (!synth || !priv->iq_autocal || !priv->output_limit ||
476             !priv->curve_data) {
477                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
478                         wiphy_name(dev->wiphy));
479                 err = -EINVAL;
480                 goto err;
481         }
482
483         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
484         if (priv->rxhw == 4)
485                 p54_init_xbow_synth(dev);
486         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
487                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
488         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
489                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
490
491         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
492                 u8 perm_addr[ETH_ALEN];
493
494                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
495                         wiphy_name(dev->wiphy));
496                 random_ether_addr(perm_addr);
497                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
498         }
499
500         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
501                 wiphy_name(dev->wiphy),
502                 dev->wiphy->perm_addr,
503                 priv->version, p54_rf_chips[priv->rxhw]);
504
505         return 0;
506
507   err:
508         if (priv->iq_autocal) {
509                 kfree(priv->iq_autocal);
510                 priv->iq_autocal = NULL;
511         }
512
513         if (priv->output_limit) {
514                 kfree(priv->output_limit);
515                 priv->output_limit = NULL;
516         }
517
518         if (priv->curve_data) {
519                 kfree(priv->curve_data);
520                 priv->curve_data = NULL;
521         }
522
523         printk(KERN_ERR "%s: eeprom parse failed!\n",
524                 wiphy_name(dev->wiphy));
525         return err;
526 }
527
528 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
529 {
530         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
531         return ((rssi * 0x83) / 64 - 400) / 4;
532 }
533
534 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
535 {
536         struct p54_common *priv = dev->priv;
537         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
538         struct ieee80211_rx_status rx_status = {0};
539         u16 freq = le16_to_cpu(hdr->freq);
540         size_t header_len = sizeof(*hdr);
541         u32 tsf32;
542
543         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
544                 if (priv->filter_flags & FIF_FCSFAIL)
545                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
546                 else
547                         return 0;
548         }
549
550         if (hdr->decrypt_status == P54_DECRYPT_OK)
551                 rx_status.flag |= RX_FLAG_DECRYPTED;
552         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
553             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
554                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
555
556         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
557         rx_status.noise = priv->noise;
558         /* XX correct? */
559         rx_status.qual = (100 * hdr->rssi) / 127;
560         if (hdr->rate & 0x10)
561                 rx_status.flag |= RX_FLAG_SHORTPRE;
562         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
563                         hdr->rate : (hdr->rate - 4)) & 0xf;
564         rx_status.freq = freq;
565         rx_status.band =  dev->conf.channel->band;
566         rx_status.antenna = hdr->antenna;
567
568         tsf32 = le32_to_cpu(hdr->tsf32);
569         if (tsf32 < priv->tsf_low32)
570                 priv->tsf_high32++;
571         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
572         priv->tsf_low32 = tsf32;
573
574         rx_status.flag |= RX_FLAG_TSFT;
575
576         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
577                 header_len += hdr->align[0];
578
579         skb_pull(skb, header_len);
580         skb_trim(skb, le16_to_cpu(hdr->len));
581
582         ieee80211_rx_irqsafe(dev, skb, &rx_status);
583
584         return -1;
585 }
586
587 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
588 {
589         struct p54_common *priv = dev->priv;
590         int i;
591
592         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
593                 return ;
594
595         for (i = 0; i < dev->queues; i++)
596                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
597                         ieee80211_wake_queue(dev, i);
598 }
599
600 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
601 {
602         struct p54_common *priv = dev->priv;
603         struct ieee80211_tx_info *info;
604         struct memrecord *range;
605         unsigned long flags;
606         u32 freed = 0, last_addr = priv->rx_start;
607
608         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
609                 return;
610
611         spin_lock_irqsave(&priv->tx_queue.lock, flags);
612         info = IEEE80211_SKB_CB(skb);
613         range = (void *)info->rate_driver_data;
614         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
615                 struct ieee80211_tx_info *ni;
616                 struct memrecord *mr;
617
618                 ni = IEEE80211_SKB_CB(skb->prev);
619                 mr = (struct memrecord *)ni->rate_driver_data;
620                 last_addr = mr->end_addr;
621         }
622         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
623                 struct ieee80211_tx_info *ni;
624                 struct memrecord *mr;
625
626                 ni = IEEE80211_SKB_CB(skb->next);
627                 mr = (struct memrecord *)ni->rate_driver_data;
628                 freed = mr->start_addr - last_addr;
629         } else
630                 freed = priv->rx_end - last_addr;
631         __skb_unlink(skb, &priv->tx_queue);
632         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
633         kfree_skb(skb);
634
635         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
636                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
637                 p54_wake_free_queues(dev);
638 }
639 EXPORT_SYMBOL_GPL(p54_free_skb);
640
641 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
642 {
643         struct p54_common *priv = dev->priv;
644         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
645         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
646         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
647         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
648         struct memrecord *range = NULL;
649         u32 freed = 0;
650         u32 last_addr = priv->rx_start;
651         unsigned long flags;
652         int count, idx;
653
654         spin_lock_irqsave(&priv->tx_queue.lock, flags);
655         while (entry != (struct sk_buff *)&priv->tx_queue) {
656                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
657                 struct p54_hdr *entry_hdr;
658                 struct p54_tx_data *entry_data;
659                 int pad = 0;
660
661                 range = (void *)info->rate_driver_data;
662                 if (range->start_addr != addr) {
663                         last_addr = range->end_addr;
664                         entry = entry->next;
665                         continue;
666                 }
667
668                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
669                         struct ieee80211_tx_info *ni;
670                         struct memrecord *mr;
671
672                         ni = IEEE80211_SKB_CB(entry->next);
673                         mr = (struct memrecord *)ni->rate_driver_data;
674                         freed = mr->start_addr - last_addr;
675                 } else
676                         freed = priv->rx_end - last_addr;
677
678                 last_addr = range->end_addr;
679                 __skb_unlink(entry, &priv->tx_queue);
680                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
681
682                 entry_hdr = (struct p54_hdr *) entry->data;
683                 entry_data = (struct p54_tx_data *) entry_hdr->data;
684                 priv->tx_stats[entry_data->hw_queue].len--;
685
686                 if (unlikely(entry == priv->cached_beacon)) {
687                         kfree_skb(entry);
688                         priv->cached_beacon = NULL;
689                         goto out;
690                 }
691
692                 /*
693                  * Clear manually, ieee80211_tx_info_clear_status would
694                  * clear the counts too and we need them.
695                  */
696                 memset(&info->status.ampdu_ack_len, 0,
697                        sizeof(struct ieee80211_tx_info) -
698                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
699                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
700                                       status.ampdu_ack_len) != 23);
701
702                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
703                         pad = entry_data->align[0];
704
705                 /* walk through the rates array and adjust the counts */
706                 count = payload->tries;
707                 for (idx = 0; idx < 4; idx++) {
708                         if (count >= info->status.rates[idx].count) {
709                                 count -= info->status.rates[idx].count;
710                         } else if (count > 0) {
711                                 info->status.rates[idx].count = count;
712                                 count = 0;
713                         } else {
714                                 info->status.rates[idx].idx = -1;
715                                 info->status.rates[idx].count = 0;
716                         }
717                 }
718
719                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
720                      (!payload->status))
721                         info->flags |= IEEE80211_TX_STAT_ACK;
722                 if (payload->status & P54_TX_PSM_CANCELLED)
723                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
724                 info->status.ack_signal = p54_rssi_to_dbm(dev,
725                                 (int)payload->ack_rssi);
726                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
727                 ieee80211_tx_status_irqsafe(dev, entry);
728                 goto out;
729         }
730         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
731
732 out:
733         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
734                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
735                 p54_wake_free_queues(dev);
736 }
737
738 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
739                                    struct sk_buff *skb)
740 {
741         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
742         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
743         struct p54_common *priv = dev->priv;
744
745         if (!priv->eeprom)
746                 return ;
747
748         if (priv->fw_var >= 0x509) {
749                 memcpy(priv->eeprom, eeprom->v2.data,
750                        le16_to_cpu(eeprom->v2.len));
751         } else {
752                 memcpy(priv->eeprom, eeprom->v1.data,
753                        le16_to_cpu(eeprom->v1.len));
754         }
755
756         complete(&priv->eeprom_comp);
757 }
758
759 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
760 {
761         struct p54_common *priv = dev->priv;
762         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
763         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
764         u32 tsf32 = le32_to_cpu(stats->tsf32);
765
766         if (tsf32 < priv->tsf_low32)
767                 priv->tsf_high32++;
768         priv->tsf_low32 = tsf32;
769
770         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
771         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
772         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
773
774         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
775         complete(&priv->stats_comp);
776
777         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
778 }
779
780 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
781 {
782         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
783         struct p54_trap *trap = (struct p54_trap *) hdr->data;
784         u16 event = le16_to_cpu(trap->event);
785         u16 freq = le16_to_cpu(trap->frequency);
786
787         switch (event) {
788         case P54_TRAP_BEACON_TX:
789                 break;
790         case P54_TRAP_RADAR:
791                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
792                         wiphy_name(dev->wiphy), freq);
793                 break;
794         case P54_TRAP_NO_BEACON:
795                 break;
796         case P54_TRAP_SCAN:
797                 break;
798         case P54_TRAP_TBTT:
799                 break;
800         case P54_TRAP_TIMER:
801                 break;
802         default:
803                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
804                        wiphy_name(dev->wiphy), event, freq);
805                 break;
806         }
807 }
808
809 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
810 {
811         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
812
813         switch (le16_to_cpu(hdr->type)) {
814         case P54_CONTROL_TYPE_TXDONE:
815                 p54_rx_frame_sent(dev, skb);
816                 break;
817         case P54_CONTROL_TYPE_TRAP:
818                 p54_rx_trap(dev, skb);
819                 break;
820         case P54_CONTROL_TYPE_BBP:
821                 break;
822         case P54_CONTROL_TYPE_STAT_READBACK:
823                 p54_rx_stats(dev, skb);
824                 break;
825         case P54_CONTROL_TYPE_EEPROM_READBACK:
826                 p54_rx_eeprom_readback(dev, skb);
827                 break;
828         default:
829                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
830                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
831                 break;
832         }
833
834         return 0;
835 }
836
837 /* returns zero if skb can be reused */
838 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
839 {
840         u16 type = le16_to_cpu(*((__le16 *)skb->data));
841
842         if (type & P54_HDR_FLAG_CONTROL)
843                 return p54_rx_control(dev, skb);
844         else
845                 return p54_rx_data(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(p54_rx);
848
849 /*
850  * So, the firmware is somewhat stupid and doesn't know what places in its
851  * memory incoming data should go to. By poking around in the firmware, we
852  * can find some unused memory to upload our packets to. However, data that we
853  * want the card to TX needs to stay intact until the card has told us that
854  * it is done with it. This function finds empty places we can upload to and
855  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
856  * allocated areas.
857  */
858 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
859                                struct p54_hdr *data, u32 len)
860 {
861         struct p54_common *priv = dev->priv;
862         struct sk_buff *entry = priv->tx_queue.next;
863         struct sk_buff *target_skb = NULL;
864         struct ieee80211_tx_info *info;
865         struct memrecord *range;
866         u32 last_addr = priv->rx_start;
867         u32 largest_hole = 0;
868         u32 target_addr = priv->rx_start;
869         unsigned long flags;
870         unsigned int left;
871         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
872
873         if (!skb)
874                 return -EINVAL;
875
876         spin_lock_irqsave(&priv->tx_queue.lock, flags);
877         left = skb_queue_len(&priv->tx_queue);
878         while (left--) {
879                 u32 hole_size;
880                 info = IEEE80211_SKB_CB(entry);
881                 range = (void *)info->rate_driver_data;
882                 hole_size = range->start_addr - last_addr;
883                 if (!target_skb && hole_size >= len) {
884                         target_skb = entry->prev;
885                         hole_size -= len;
886                         target_addr = last_addr;
887                 }
888                 largest_hole = max(largest_hole, hole_size);
889                 last_addr = range->end_addr;
890                 entry = entry->next;
891         }
892         if (!target_skb && priv->rx_end - last_addr >= len) {
893                 target_skb = priv->tx_queue.prev;
894                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
895                 if (!skb_queue_empty(&priv->tx_queue)) {
896                         info = IEEE80211_SKB_CB(target_skb);
897                         range = (void *)info->rate_driver_data;
898                         target_addr = range->end_addr;
899                 }
900         } else
901                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
902
903         if (!target_skb) {
904                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
905                 ieee80211_stop_queues(dev);
906                 return -ENOMEM;
907         }
908
909         info = IEEE80211_SKB_CB(skb);
910         range = (void *)info->rate_driver_data;
911         range->start_addr = target_addr;
912         range->end_addr = target_addr + len;
913         __skb_queue_after(&priv->tx_queue, target_skb, skb);
914         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
915
916         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
917                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
918                 ieee80211_stop_queues(dev);
919
920         data->req_id = cpu_to_le32(target_addr + priv->headroom);
921         return 0;
922 }
923
924 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
925                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
926 {
927         struct p54_common *priv = dev->priv;
928         struct p54_hdr *hdr;
929         struct sk_buff *skb;
930
931         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
932         if (!skb)
933                 return NULL;
934         skb_reserve(skb, priv->tx_hdr_len);
935
936         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
937         hdr->flags = cpu_to_le16(hdr_flags);
938         hdr->len = cpu_to_le16(len - sizeof(*hdr));
939         hdr->type = cpu_to_le16(type);
940         hdr->tries = hdr->rts_tries = 0;
941
942         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
943                 kfree_skb(skb);
944                 return NULL;
945         }
946         return skb;
947 }
948
949 int p54_read_eeprom(struct ieee80211_hw *dev)
950 {
951         struct p54_common *priv = dev->priv;
952         struct p54_hdr *hdr = NULL;
953         struct p54_eeprom_lm86 *eeprom_hdr;
954         struct sk_buff *skb;
955         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
956         int ret = -ENOMEM;
957         void *eeprom = NULL;
958
959         maxblocksize = EEPROM_READBACK_LEN;
960         if (priv->fw_var >= 0x509)
961                 maxblocksize -= 0xc;
962         else
963                 maxblocksize -= 0x4;
964
965         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
966                             sizeof(*eeprom_hdr) + maxblocksize,
967                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
968         if (!skb)
969                 goto free;
970         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
971         if (!priv->eeprom)
972                 goto free;
973         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
974         if (!eeprom)
975                 goto free;
976
977         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
978                      sizeof(*eeprom_hdr) + maxblocksize);
979
980         while (eeprom_size) {
981                 blocksize = min(eeprom_size, maxblocksize);
982                 if (priv->fw_var < 0x509) {
983                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
984                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
985                 } else {
986                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
987                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
988                         eeprom_hdr->v2.magic2 = 0xf;
989                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
990                 }
991                 priv->tx(dev, skb, 0);
992
993                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
994                         printk(KERN_ERR "%s: device does not respond!\n",
995                                 wiphy_name(dev->wiphy));
996                         ret = -EBUSY;
997                         goto free;
998                 }
999
1000                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1001                 offset += blocksize;
1002                 eeprom_size -= blocksize;
1003         }
1004
1005         ret = p54_parse_eeprom(dev, eeprom, offset);
1006 free:
1007         kfree(priv->eeprom);
1008         priv->eeprom = NULL;
1009         p54_free_skb(dev, skb);
1010         kfree(eeprom);
1011
1012         return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1015
1016 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1017                 bool set)
1018 {
1019         struct p54_common *priv = dev->priv;
1020         struct sk_buff *skb;
1021         struct p54_tim *tim;
1022
1023         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1024                       sizeof(struct p54_hdr) + sizeof(*tim),
1025                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
1026         if (!skb)
1027                 return -ENOMEM;
1028
1029         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1030         tim->count = 1;
1031         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1032         priv->tx(dev, skb, 1);
1033         return 0;
1034 }
1035
1036 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1037 {
1038         struct p54_common *priv = dev->priv;
1039         struct sk_buff *skb;
1040         struct p54_sta_unlock *sta;
1041
1042         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1043                 sizeof(struct p54_hdr) + sizeof(*sta),
1044                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1045         if (!skb)
1046                 return -ENOMEM;
1047
1048         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1049         memcpy(sta->addr, addr, ETH_ALEN);
1050         priv->tx(dev, skb, 1);
1051         return 0;
1052 }
1053
1054 static void p54_sta_notify_ps(struct ieee80211_hw *dev,
1055                               enum sta_notify_ps_cmd notify_cmd,
1056                               struct ieee80211_sta *sta)
1057 {
1058         switch (notify_cmd) {
1059         case STA_NOTIFY_AWAKE:
1060                 p54_sta_unlock(dev, sta->addr);
1061                 break;
1062         default:
1063                 break;
1064         }
1065 }
1066
1067 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1068                               enum sta_notify_cmd notify_cmd,
1069                               struct ieee80211_sta *sta)
1070 {
1071         switch (notify_cmd) {
1072         case STA_NOTIFY_ADD:
1073         case STA_NOTIFY_REMOVE:
1074                 /*
1075                  * Notify the firmware that we don't want or we don't
1076                  * need to buffer frames for this station anymore.
1077                  */
1078
1079                 p54_sta_unlock(dev, sta->addr);
1080                 break;
1081         default:
1082                 break;
1083         }
1084 }
1085
1086 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1087 {
1088         struct p54_common *priv = dev->priv;
1089         struct sk_buff *skb;
1090         struct p54_hdr *hdr;
1091         struct p54_txcancel *cancel;
1092
1093         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1094                 sizeof(struct p54_hdr) + sizeof(*cancel),
1095                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1096         if (!skb)
1097                 return -ENOMEM;
1098
1099         hdr = (void *)entry->data;
1100         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1101         cancel->req_id = hdr->req_id;
1102         priv->tx(dev, skb, 1);
1103         return 0;
1104 }
1105
1106 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1107                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1108                 u16 *flags, u16 *aid)
1109 {
1110         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1111         struct p54_common *priv = dev->priv;
1112         int ret = 0;
1113
1114         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1115                 if (ieee80211_is_beacon(hdr->frame_control)) {
1116                         *aid = 0;
1117                         *queue = 0;
1118                         *extra_len = IEEE80211_MAX_TIM_LEN;
1119                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1120                         return 0;
1121                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1122                         *aid = 0;
1123                         *queue = 2;
1124                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1125                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1126                         return 0;
1127                 } else {
1128                         *queue = 2;
1129                         ret = 0;
1130                 }
1131         } else {
1132                 *queue += 4;
1133                 ret = 1;
1134         }
1135
1136         switch (priv->mode) {
1137         case NL80211_IFTYPE_STATION:
1138                 *aid = 1;
1139                 break;
1140         case NL80211_IFTYPE_AP:
1141         case NL80211_IFTYPE_ADHOC:
1142         case NL80211_IFTYPE_MESH_POINT:
1143                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1144                         *aid = 0;
1145                         *queue = 3;
1146                         return 0;
1147                 }
1148                 if (info->control.sta)
1149                         *aid = info->control.sta->aid;
1150                 else
1151                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1152         }
1153         return ret;
1154 }
1155
1156 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1157 {
1158         switch (alg) {
1159         case ALG_WEP:
1160                 return P54_CRYPTO_WEP;
1161         case ALG_TKIP:
1162                 return P54_CRYPTO_TKIPMICHAEL;
1163         case ALG_CCMP:
1164                 return P54_CRYPTO_AESCCMP;
1165         default:
1166                 return 0;
1167         }
1168 }
1169
1170 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1171 {
1172         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1173         struct ieee80211_tx_queue_stats *current_queue = NULL;
1174         struct p54_common *priv = dev->priv;
1175         struct p54_hdr *hdr;
1176         struct p54_tx_data *txhdr;
1177         size_t padding, len, tim_len = 0;
1178         int i, j, ridx, ret;
1179         u16 hdr_flags = 0, aid = 0;
1180         u8 rate, queue, crypt_offset = 0;
1181         u8 cts_rate = 0x20;
1182         u8 rc_flags;
1183         u8 calculated_tries[4];
1184         u8 nrates = 0, nremaining = 8;
1185
1186         queue = skb_get_queue_mapping(skb);
1187
1188         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1189         current_queue = &priv->tx_stats[queue];
1190         if (unlikely((current_queue->len > current_queue->limit) && ret))
1191                 return NETDEV_TX_BUSY;
1192         current_queue->len++;
1193         current_queue->count++;
1194         if ((current_queue->len == current_queue->limit) && ret)
1195                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1196
1197         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1198         len = skb->len;
1199
1200         if (info->control.hw_key) {
1201                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1202                 if (info->control.hw_key->alg == ALG_TKIP) {
1203                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1204                         /*
1205                          * The firmware excepts that the IV has to have
1206                          * this special format
1207                          */
1208                         iv[1] = iv[0];
1209                         iv[0] = iv[2];
1210                         iv[2] = 0;
1211                 }
1212         }
1213
1214         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1215         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1216
1217         if (padding)
1218                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1219         hdr->type = cpu_to_le16(aid);
1220         hdr->rts_tries = info->control.rates[0].count;
1221
1222         /*
1223          * we register the rates in perfect order, and
1224          * RTS/CTS won't happen on 5 GHz
1225          */
1226         cts_rate = info->control.rts_cts_rate_idx;
1227
1228         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1229
1230         /* see how many rates got used */
1231         for (i = 0; i < 4; i++) {
1232                 if (info->control.rates[i].idx < 0)
1233                         break;
1234                 nrates++;
1235         }
1236
1237         /* limit tries to 8/nrates per rate */
1238         for (i = 0; i < nrates; i++) {
1239                 /*
1240                  * The magic expression here is equivalent to 8/nrates for
1241                  * all values that matter, but avoids division and jumps.
1242                  * Note that nrates can only take the values 1 through 4.
1243                  */
1244                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1245                                                  info->control.rates[i].count);
1246                 nremaining -= calculated_tries[i];
1247         }
1248
1249         /* if there are tries left, distribute from back to front */
1250         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1251                 int tmp = info->control.rates[i].count - calculated_tries[i];
1252
1253                 if (tmp <= 0)
1254                         continue;
1255                 /* RC requested more tries at this rate */
1256
1257                 tmp = min_t(int, tmp, nremaining);
1258                 calculated_tries[i] += tmp;
1259                 nremaining -= tmp;
1260         }
1261
1262         ridx = 0;
1263         for (i = 0; i < nrates && ridx < 8; i++) {
1264                 /* we register the rates in perfect order */
1265                 rate = info->control.rates[i].idx;
1266                 if (info->band == IEEE80211_BAND_5GHZ)
1267                         rate += 4;
1268
1269                 /* store the count we actually calculated for TX status */
1270                 info->control.rates[i].count = calculated_tries[i];
1271
1272                 rc_flags = info->control.rates[i].flags;
1273                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1274                         rate |= 0x10;
1275                         cts_rate |= 0x10;
1276                 }
1277                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1278                         rate |= 0x40;
1279                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1280                         rate |= 0x20;
1281                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1282                         txhdr->rateset[ridx] = rate;
1283                         ridx++;
1284                 }
1285         }
1286
1287         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1288                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1289
1290         /* TODO: enable bursting */
1291         hdr->flags = cpu_to_le16(hdr_flags);
1292         hdr->tries = ridx;
1293         txhdr->rts_rate_idx = 0;
1294         if (info->control.hw_key) {
1295                 crypt_offset += info->control.hw_key->iv_len;
1296                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1297                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1298                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1299                 if (info->control.hw_key->alg == ALG_TKIP) {
1300                         if (unlikely(skb_tailroom(skb) < 12))
1301                                 goto err;
1302                         /* reserve space for the MIC key */
1303                         len += 8;
1304                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1305                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1306                 }
1307                 /* reserve some space for ICV */
1308                 len += info->control.hw_key->icv_len;
1309         } else {
1310                 txhdr->key_type = 0;
1311                 txhdr->key_len = 0;
1312         }
1313         txhdr->crypt_offset = crypt_offset;
1314         txhdr->hw_queue = queue;
1315         if (current_queue)
1316                 txhdr->backlog = current_queue->len;
1317         else
1318                 txhdr->backlog = 0;
1319         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1320         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1321                 2 : info->antenna_sel_tx - 1;
1322         txhdr->output_power = priv->output_power;
1323         txhdr->cts_rate = cts_rate;
1324         if (padding)
1325                 txhdr->align[0] = padding;
1326
1327         hdr->len = cpu_to_le16(len);
1328         /* modifies skb->cb and with it info, so must be last! */
1329         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1330                 goto err;
1331         priv->tx(dev, skb, 0);
1332         return 0;
1333
1334  err:
1335         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1336         if (current_queue) {
1337                 current_queue->len--;
1338                 current_queue->count--;
1339         }
1340         return NETDEV_TX_BUSY;
1341 }
1342
1343 static int p54_setup_mac(struct ieee80211_hw *dev)
1344 {
1345         struct p54_common *priv = dev->priv;
1346         struct sk_buff *skb;
1347         struct p54_setup_mac *setup;
1348         u16 mode;
1349
1350         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1351                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1352                             GFP_ATOMIC);
1353         if (!skb)
1354                 return -ENOMEM;
1355
1356         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1357         if (dev->conf.radio_enabled) {
1358                 switch (priv->mode) {
1359                 case NL80211_IFTYPE_STATION:
1360                         mode = P54_FILTER_TYPE_STATION;
1361                         break;
1362                 case NL80211_IFTYPE_AP:
1363                         mode = P54_FILTER_TYPE_AP;
1364                         break;
1365                 case NL80211_IFTYPE_ADHOC:
1366                 case NL80211_IFTYPE_MESH_POINT:
1367                         mode = P54_FILTER_TYPE_IBSS;
1368                         break;
1369                 default:
1370                         mode = P54_FILTER_TYPE_NONE;
1371                         break;
1372                 }
1373                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1374                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1375         } else
1376                 mode = P54_FILTER_TYPE_RX_DISABLED;
1377
1378         setup->mac_mode = cpu_to_le16(mode);
1379         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1380         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1381         setup->rx_antenna = 2; /* automatic */
1382         setup->rx_align = 0;
1383         if (priv->fw_var < 0x500) {
1384                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1385                 memset(setup->v1.rts_rates, 0, 8);
1386                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1387                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1388                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1389                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1390                 setup->v1.unalloc0 = cpu_to_le16(0);
1391         } else {
1392                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1393                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1394                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1395                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1396                 setup->v2.truncate = cpu_to_le16(48896);
1397                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1398                 setup->v2.sbss_offset = 0;
1399                 setup->v2.mcast_window = 0;
1400                 setup->v2.rx_rssi_threshold = 0;
1401                 setup->v2.rx_ed_threshold = 0;
1402                 setup->v2.ref_clock = cpu_to_le32(644245094);
1403                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1404                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1405         }
1406         priv->tx(dev, skb, 1);
1407         return 0;
1408 }
1409
1410 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell,
1411                     u16 frequency)
1412 {
1413         struct p54_common *priv = dev->priv;
1414         struct sk_buff *skb;
1415         struct p54_scan *chan;
1416         unsigned int i;
1417         void *entry;
1418         __le16 freq = cpu_to_le16(frequency);
1419
1420         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1421                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1422                             GFP_ATOMIC);
1423         if (!skb)
1424                 return -ENOMEM;
1425
1426         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1427         memset(chan->padding1, 0, sizeof(chan->padding1));
1428         chan->mode = cpu_to_le16(mode);
1429         chan->dwell = cpu_to_le16(dwell);
1430
1431         for (i = 0; i < priv->iq_autocal_len; i++) {
1432                 if (priv->iq_autocal[i].freq != freq)
1433                         continue;
1434
1435                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1436                        sizeof(*priv->iq_autocal));
1437                 break;
1438         }
1439         if (i == priv->iq_autocal_len)
1440                 goto err;
1441
1442         for (i = 0; i < priv->output_limit_len; i++) {
1443                 if (priv->output_limit[i].freq != freq)
1444                         continue;
1445
1446                 chan->val_barker = 0x38;
1447                 chan->val_bpsk = chan->dup_bpsk =
1448                         priv->output_limit[i].val_bpsk;
1449                 chan->val_qpsk = chan->dup_qpsk =
1450                         priv->output_limit[i].val_qpsk;
1451                 chan->val_16qam = chan->dup_16qam =
1452                         priv->output_limit[i].val_16qam;
1453                 chan->val_64qam = chan->dup_64qam =
1454                         priv->output_limit[i].val_64qam;
1455                 break;
1456         }
1457         if (i == priv->output_limit_len)
1458                 goto err;
1459
1460         entry = priv->curve_data->data;
1461         for (i = 0; i < priv->curve_data->channels; i++) {
1462                 if (*((__le16 *)entry) != freq) {
1463                         entry += sizeof(__le16);
1464                         entry += sizeof(struct p54_pa_curve_data_sample) *
1465                                  priv->curve_data->points_per_channel;
1466                         continue;
1467                 }
1468
1469                 entry += sizeof(__le16);
1470                 chan->pa_points_per_curve = 8;
1471                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1472                 memcpy(chan->curve_data, entry,
1473                        sizeof(struct p54_pa_curve_data_sample) *
1474                        min((u8)8, priv->curve_data->points_per_channel));
1475                 break;
1476         }
1477
1478         if (priv->fw_var < 0x500) {
1479                 chan->v1.rssical_mul = cpu_to_le16(130);
1480                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1481         } else {
1482                 chan->v2.rssical_mul = cpu_to_le16(130);
1483                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1484                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1485                 memset(chan->v2.rts_rates, 0, 8);
1486         }
1487         priv->tx(dev, skb, 1);
1488         return 0;
1489
1490  err:
1491         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1492         kfree_skb(skb);
1493         return -EINVAL;
1494 }
1495
1496 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1497 {
1498         struct p54_common *priv = dev->priv;
1499         struct sk_buff *skb;
1500         struct p54_led *led;
1501
1502         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1503                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1504                         GFP_ATOMIC);
1505         if (!skb)
1506                 return -ENOMEM;
1507
1508         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1509         led->mode = cpu_to_le16(mode);
1510         led->led_permanent = cpu_to_le16(link);
1511         led->led_temporary = cpu_to_le16(act);
1512         led->duration = cpu_to_le16(1000);
1513         priv->tx(dev, skb, 1);
1514         return 0;
1515 }
1516
1517 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1518 do {                                                            \
1519         queue.aifs = cpu_to_le16(ai_fs);                        \
1520         queue.cwmin = cpu_to_le16(cw_min);                      \
1521         queue.cwmax = cpu_to_le16(cw_max);                      \
1522         queue.txop = cpu_to_le16(_txop);                        \
1523 } while(0)
1524
1525 static int p54_set_edcf(struct ieee80211_hw *dev)
1526 {
1527         struct p54_common *priv = dev->priv;
1528         struct sk_buff *skb;
1529         struct p54_edcf *edcf;
1530
1531         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1532                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1533                         GFP_ATOMIC);
1534         if (!skb)
1535                 return -ENOMEM;
1536
1537         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1538         if (priv->use_short_slot) {
1539                 edcf->slottime = 9;
1540                 edcf->sifs = 0x10;
1541                 edcf->eofpad = 0x00;
1542         } else {
1543                 edcf->slottime = 20;
1544                 edcf->sifs = 0x0a;
1545                 edcf->eofpad = 0x06;
1546         }
1547         /* (see prism54/isl_oid.h for further details) */
1548         edcf->frameburst = cpu_to_le16(0);
1549         edcf->round_trip_delay = cpu_to_le16(0);
1550         edcf->flags = 0;
1551         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1552         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1553         priv->tx(dev, skb, 1);
1554         return 0;
1555 }
1556
1557 static int p54_init_stats(struct ieee80211_hw *dev)
1558 {
1559         struct p54_common *priv = dev->priv;
1560
1561         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1562                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1563                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1564         if (!priv->cached_stats)
1565                         return -ENOMEM;
1566
1567         mod_timer(&priv->stats_timer, jiffies + HZ);
1568         return 0;
1569 }
1570
1571 static int p54_beacon_tim(struct sk_buff *skb)
1572 {
1573         /*
1574          * the good excuse for this mess is ... the firmware.
1575          * The dummy TIM MUST be at the end of the beacon frame,
1576          * because it'll be overwritten!
1577          */
1578
1579         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1580         u8 *pos, *end;
1581
1582         if (skb->len <= sizeof(mgmt))
1583                 return -EINVAL;
1584
1585         pos = (u8 *)mgmt->u.beacon.variable;
1586         end = skb->data + skb->len;
1587         while (pos < end) {
1588                 if (pos + 2 + pos[1] > end)
1589                         return -EINVAL;
1590
1591                 if (pos[0] == WLAN_EID_TIM) {
1592                         u8 dtim_len = pos[1];
1593                         u8 dtim_period = pos[3];
1594                         u8 *next = pos + 2 + dtim_len;
1595
1596                         if (dtim_len < 3)
1597                                 return -EINVAL;
1598
1599                         memmove(pos, next, end - next);
1600
1601                         if (dtim_len > 3)
1602                                 skb_trim(skb, skb->len - (dtim_len - 3));
1603
1604                         pos = end - (dtim_len + 2);
1605
1606                         /* add the dummy at the end */
1607                         pos[0] = WLAN_EID_TIM;
1608                         pos[1] = 3;
1609                         pos[2] = 0;
1610                         pos[3] = dtim_period;
1611                         pos[4] = 0;
1612                         return 0;
1613                 }
1614                 pos += 2 + pos[1];
1615         }
1616         return 0;
1617 }
1618
1619 static int p54_beacon_update(struct ieee80211_hw *dev,
1620                         struct ieee80211_vif *vif)
1621 {
1622         struct p54_common *priv = dev->priv;
1623         struct sk_buff *beacon;
1624         int ret;
1625
1626         if (priv->cached_beacon) {
1627                 p54_tx_cancel(dev, priv->cached_beacon);
1628                 /* wait for the last beacon the be freed */
1629                 msleep(10);
1630         }
1631
1632         beacon = ieee80211_beacon_get(dev, vif);
1633         if (!beacon)
1634                 return -ENOMEM;
1635         ret = p54_beacon_tim(beacon);
1636         if (ret)
1637                 return ret;
1638         ret = p54_tx(dev, beacon);
1639         if (ret)
1640                 return ret;
1641         priv->cached_beacon = beacon;
1642         priv->tsf_high32 = 0;
1643         priv->tsf_low32 = 0;
1644
1645         return 0;
1646 }
1647
1648 static int p54_start(struct ieee80211_hw *dev)
1649 {
1650         struct p54_common *priv = dev->priv;
1651         int err;
1652
1653         mutex_lock(&priv->conf_mutex);
1654         err = priv->open(dev);
1655         if (err)
1656                 goto out;
1657         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1658         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1659         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1660         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1661         err = p54_set_edcf(dev);
1662         if (err)
1663                 goto out;
1664         err = p54_init_stats(dev);
1665         if (err)
1666                 goto out;
1667
1668         memset(priv->bssid, ~0, ETH_ALEN);
1669         priv->mode = NL80211_IFTYPE_MONITOR;
1670         err = p54_setup_mac(dev);
1671         if (err) {
1672                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1673                 goto out;
1674         }
1675
1676 out:
1677         mutex_unlock(&priv->conf_mutex);
1678         return err;
1679 }
1680
1681 static void p54_stop(struct ieee80211_hw *dev)
1682 {
1683         struct p54_common *priv = dev->priv;
1684         struct sk_buff *skb;
1685
1686         mutex_lock(&priv->conf_mutex);
1687         del_timer(&priv->stats_timer);
1688         p54_free_skb(dev, priv->cached_stats);
1689         priv->cached_stats = NULL;
1690         if (priv->cached_beacon)
1691                 p54_tx_cancel(dev, priv->cached_beacon);
1692
1693         while ((skb = skb_dequeue(&priv->tx_queue)))
1694                 kfree_skb(skb);
1695
1696         priv->cached_beacon = NULL;
1697         priv->stop(dev);
1698         priv->tsf_high32 = priv->tsf_low32 = 0;
1699         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1700         mutex_unlock(&priv->conf_mutex);
1701 }
1702
1703 static int p54_add_interface(struct ieee80211_hw *dev,
1704                              struct ieee80211_if_init_conf *conf)
1705 {
1706         struct p54_common *priv = dev->priv;
1707
1708         mutex_lock(&priv->conf_mutex);
1709         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1710                 mutex_unlock(&priv->conf_mutex);
1711                 return -EOPNOTSUPP;
1712         }
1713
1714         switch (conf->type) {
1715         case NL80211_IFTYPE_STATION:
1716         case NL80211_IFTYPE_ADHOC:
1717         case NL80211_IFTYPE_AP:
1718         case NL80211_IFTYPE_MESH_POINT:
1719                 priv->mode = conf->type;
1720                 break;
1721         default:
1722                 mutex_unlock(&priv->conf_mutex);
1723                 return -EOPNOTSUPP;
1724         }
1725
1726         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1727         p54_setup_mac(dev);
1728         p54_set_leds(dev, 1, 0, 0);
1729         mutex_unlock(&priv->conf_mutex);
1730         return 0;
1731 }
1732
1733 static void p54_remove_interface(struct ieee80211_hw *dev,
1734                                  struct ieee80211_if_init_conf *conf)
1735 {
1736         struct p54_common *priv = dev->priv;
1737
1738         mutex_lock(&priv->conf_mutex);
1739         if (priv->cached_beacon)
1740                 p54_tx_cancel(dev, priv->cached_beacon);
1741         priv->mode = NL80211_IFTYPE_MONITOR;
1742         memset(priv->mac_addr, 0, ETH_ALEN);
1743         memset(priv->bssid, 0, ETH_ALEN);
1744         p54_setup_mac(dev);
1745         mutex_unlock(&priv->conf_mutex);
1746 }
1747
1748 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1749 {
1750         int ret;
1751         struct p54_common *priv = dev->priv;
1752         struct ieee80211_conf *conf = &dev->conf;
1753
1754         mutex_lock(&priv->conf_mutex);
1755         if (changed & IEEE80211_CONF_CHANGE_POWER)
1756                 priv->output_power = conf->power_level << 2;
1757         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1758                 ret = p54_setup_mac(dev);
1759                 if (ret)
1760                         goto out;
1761         }
1762         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1763                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1764                                conf->channel->center_freq);
1765                 if (ret)
1766                         goto out;
1767         }
1768
1769 out:
1770         mutex_unlock(&priv->conf_mutex);
1771         return ret;
1772 }
1773
1774 static int p54_config_interface(struct ieee80211_hw *dev,
1775                                 struct ieee80211_vif *vif,
1776                                 struct ieee80211_if_conf *conf)
1777 {
1778         struct p54_common *priv = dev->priv;
1779         int ret = 0;
1780
1781         mutex_lock(&priv->conf_mutex);
1782         if (conf->changed & IEEE80211_IFCC_BSSID) {
1783                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1784                 ret = p54_setup_mac(dev);
1785                 if (ret)
1786                         goto out;
1787         }
1788
1789         if (conf->changed & IEEE80211_IFCC_BEACON) {
1790                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1791                                dev->conf.channel->center_freq);
1792                 if (ret)
1793                         goto out;
1794                 ret = p54_setup_mac(dev);
1795                 if (ret)
1796                         goto out;
1797                 ret = p54_beacon_update(dev, vif);
1798                 if (ret)
1799                         goto out;
1800                 ret = p54_set_edcf(dev);
1801                 if (ret)
1802                         goto out;
1803         }
1804
1805         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1806
1807 out:
1808         mutex_unlock(&priv->conf_mutex);
1809         return ret;
1810 }
1811
1812 static void p54_configure_filter(struct ieee80211_hw *dev,
1813                                  unsigned int changed_flags,
1814                                  unsigned int *total_flags,
1815                                  int mc_count, struct dev_mc_list *mclist)
1816 {
1817         struct p54_common *priv = dev->priv;
1818
1819         *total_flags &= FIF_PROMISC_IN_BSS |
1820                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1821                                 FIF_FCSFAIL : 0;
1822
1823         priv->filter_flags = *total_flags;
1824
1825         if (changed_flags & FIF_PROMISC_IN_BSS)
1826                 p54_setup_mac(dev);
1827 }
1828
1829 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1830                        const struct ieee80211_tx_queue_params *params)
1831 {
1832         struct p54_common *priv = dev->priv;
1833         int ret;
1834
1835         mutex_lock(&priv->conf_mutex);
1836         if ((params) && !(queue > 4)) {
1837                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1838                         params->cw_min, params->cw_max, params->txop);
1839                 ret = p54_set_edcf(dev);
1840         } else
1841                 ret = -EINVAL;
1842         mutex_unlock(&priv->conf_mutex);
1843         return ret;
1844 }
1845
1846 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1847 {
1848         struct p54_common *priv = dev->priv;
1849         struct sk_buff *skb;
1850         struct p54_xbow_synth *xbow;
1851
1852         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1853                             sizeof(struct p54_hdr),
1854                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1855                             GFP_KERNEL);
1856         if (!skb)
1857                 return -ENOMEM;
1858
1859         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1860         xbow->magic1 = cpu_to_le16(0x1);
1861         xbow->magic2 = cpu_to_le16(0x2);
1862         xbow->freq = cpu_to_le16(5390);
1863         memset(xbow->padding, 0, sizeof(xbow->padding));
1864         priv->tx(dev, skb, 1);
1865         return 0;
1866 }
1867
1868 static void p54_statistics_timer(unsigned long data)
1869 {
1870         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1871         struct p54_common *priv = dev->priv;
1872
1873         BUG_ON(!priv->cached_stats);
1874
1875         priv->tx(dev, priv->cached_stats, 0);
1876 }
1877
1878 static int p54_get_stats(struct ieee80211_hw *dev,
1879                          struct ieee80211_low_level_stats *stats)
1880 {
1881         struct p54_common *priv = dev->priv;
1882
1883         del_timer(&priv->stats_timer);
1884         p54_statistics_timer((unsigned long)dev);
1885
1886         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1887                 printk(KERN_ERR "%s: device does not respond!\n",
1888                         wiphy_name(dev->wiphy));
1889                 return -EBUSY;
1890         }
1891
1892         memcpy(stats, &priv->stats, sizeof(*stats));
1893
1894         return 0;
1895 }
1896
1897 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1898                             struct ieee80211_tx_queue_stats *stats)
1899 {
1900         struct p54_common *priv = dev->priv;
1901
1902         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1903
1904         return 0;
1905 }
1906
1907 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1908                                  struct ieee80211_vif *vif,
1909                                  struct ieee80211_bss_conf *info,
1910                                  u32 changed)
1911 {
1912         struct p54_common *priv = dev->priv;
1913
1914         if (changed & BSS_CHANGED_ERP_SLOT) {
1915                 priv->use_short_slot = info->use_short_slot;
1916                 p54_set_edcf(dev);
1917         }
1918         if (changed & BSS_CHANGED_BASIC_RATES) {
1919                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
1920                         priv->basic_rate_mask = (info->basic_rates << 4);
1921                 else
1922                         priv->basic_rate_mask = info->basic_rates;
1923                 p54_setup_mac(dev);
1924                 if (priv->fw_var >= 0x500)
1925                         p54_scan(dev, P54_SCAN_EXIT, 0,
1926                                  dev->conf.channel->center_freq);
1927         }
1928         if (changed & BSS_CHANGED_ASSOC) {
1929                 if (info->assoc) {
1930                         priv->aid = info->aid;
1931                         priv->wakeup_timer = info->beacon_int *
1932                                              info->dtim_period * 5;
1933                         p54_setup_mac(dev);
1934                 }
1935         }
1936
1937 }
1938
1939 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
1940                        const u8 *local_address, const u8 *address,
1941                        struct ieee80211_key_conf *key)
1942 {
1943         struct p54_common *priv = dev->priv;
1944         struct sk_buff *skb;
1945         struct p54_keycache *rxkey;
1946         u8 algo = 0;
1947
1948         if (modparam_nohwcrypt)
1949                 return -EOPNOTSUPP;
1950
1951         if (cmd == DISABLE_KEY)
1952                 algo = 0;
1953         else {
1954                 switch (key->alg) {
1955                 case ALG_TKIP:
1956                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
1957                               BR_DESC_PRIV_CAP_TKIP)))
1958                                 return -EOPNOTSUPP;
1959                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1960                         algo = P54_CRYPTO_TKIPMICHAEL;
1961                         break;
1962                 case ALG_WEP:
1963                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
1964                                 return -EOPNOTSUPP;
1965                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1966                         algo = P54_CRYPTO_WEP;
1967                         break;
1968                 case ALG_CCMP:
1969                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
1970                                 return -EOPNOTSUPP;
1971                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1972                         algo = P54_CRYPTO_AESCCMP;
1973                         break;
1974                 default:
1975                         return -EINVAL;
1976                 }
1977         }
1978
1979         if (key->keyidx > priv->rx_keycache_size) {
1980                 /*
1981                  * The device supports the choosen algorithm, but the firmware
1982                  * does not provide enough key slots to store all of them.
1983                  * So, incoming frames have to be decoded by the mac80211 stack,
1984                  * but we can still offload encryption for outgoing frames.
1985                  */
1986
1987                 return 0;
1988         }
1989
1990         mutex_lock(&priv->conf_mutex);
1991         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
1992                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
1993                         GFP_ATOMIC);
1994         if (!skb) {
1995                 mutex_unlock(&priv->conf_mutex);
1996                 return -ENOMEM;
1997         }
1998
1999         /* TODO: some devices have 4 more free slots for rx keys */
2000         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2001         rxkey->entry = key->keyidx;
2002         rxkey->key_id = key->keyidx;
2003         rxkey->key_type = algo;
2004         if (address)
2005                 memcpy(rxkey->mac, address, ETH_ALEN);
2006         else
2007                 memset(rxkey->mac, ~0, ETH_ALEN);
2008         if (key->alg != ALG_TKIP) {
2009                 rxkey->key_len = min((u8)16, key->keylen);
2010                 memcpy(rxkey->key, key->key, rxkey->key_len);
2011         } else {
2012                 rxkey->key_len = 24;
2013                 memcpy(rxkey->key, key->key, 16);
2014                 memcpy(&(rxkey->key[16]), &(key->key
2015                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2016         }
2017
2018         priv->tx(dev, skb, 1);
2019         mutex_unlock(&priv->conf_mutex);
2020         return 0;
2021 }
2022
2023 static const struct ieee80211_ops p54_ops = {
2024         .tx                     = p54_tx,
2025         .start                  = p54_start,
2026         .stop                   = p54_stop,
2027         .add_interface          = p54_add_interface,
2028         .remove_interface       = p54_remove_interface,
2029         .set_tim                = p54_set_tim,
2030         .sta_notify_ps          = p54_sta_notify_ps,
2031         .sta_notify             = p54_sta_notify,
2032         .set_key                = p54_set_key,
2033         .config                 = p54_config,
2034         .config_interface       = p54_config_interface,
2035         .bss_info_changed       = p54_bss_info_changed,
2036         .configure_filter       = p54_configure_filter,
2037         .conf_tx                = p54_conf_tx,
2038         .get_stats              = p54_get_stats,
2039         .get_tx_stats           = p54_get_tx_stats
2040 };
2041
2042 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2043 {
2044         struct ieee80211_hw *dev;
2045         struct p54_common *priv;
2046
2047         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2048         if (!dev)
2049                 return NULL;
2050
2051         priv = dev->priv;
2052         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2053         priv->basic_rate_mask = 0x15f;
2054         skb_queue_head_init(&priv->tx_queue);
2055         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2056                      IEEE80211_HW_SIGNAL_DBM |
2057                      IEEE80211_HW_NOISE_DBM;
2058
2059         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2060                                       BIT(NL80211_IFTYPE_ADHOC) |
2061                                       BIT(NL80211_IFTYPE_AP) |
2062                                       BIT(NL80211_IFTYPE_MESH_POINT);
2063
2064         dev->channel_change_time = 1000;        /* TODO: find actual value */
2065         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2066         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2067         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2068         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2069         priv->tx_stats[4].limit = 5;            /* Data */
2070         dev->queues = 1;
2071         priv->noise = -94;
2072         /*
2073          * We support at most 8 tries no matter which rate they're at,
2074          * we cannot support max_rates * max_rate_tries as we set it
2075          * here, but setting it correctly to 4/2 or so would limit us
2076          * artificially if the RC algorithm wants just two rates, so
2077          * let's say 4/7, we'll redistribute it at TX time, see the
2078          * comments there.
2079          */
2080         dev->max_rates = 4;
2081         dev->max_rate_tries = 7;
2082         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2083                                  sizeof(struct p54_tx_data);
2084
2085         mutex_init(&priv->conf_mutex);
2086         init_completion(&priv->eeprom_comp);
2087         init_completion(&priv->stats_comp);
2088         setup_timer(&priv->stats_timer, p54_statistics_timer,
2089                 (unsigned long)dev);
2090
2091         return dev;
2092 }
2093 EXPORT_SYMBOL_GPL(p54_init_common);
2094
2095 void p54_free_common(struct ieee80211_hw *dev)
2096 {
2097         struct p54_common *priv = dev->priv;
2098         del_timer(&priv->stats_timer);
2099         kfree_skb(priv->cached_stats);
2100         kfree(priv->iq_autocal);
2101         kfree(priv->output_limit);
2102         kfree(priv->curve_data);
2103 }
2104 EXPORT_SYMBOL_GPL(p54_free_common);
2105
2106 static int __init p54_init(void)
2107 {
2108         return 0;
2109 }
2110
2111 static void __exit p54_exit(void)
2112 {
2113 }
2114
2115 module_init(p54_init);
2116 module_exit(p54_exit);