rt2x00: fix random stalls
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Radio control handlers.
37  */
38 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
39 {
40         int status;
41
42         /*
43          * Don't enable the radio twice.
44          * And check if the hardware button has been disabled.
45          */
46         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
47                 return 0;
48
49         /*
50          * Initialize all data queues.
51          */
52         rt2x00queue_init_queues(rt2x00dev);
53
54         /*
55          * Enable radio.
56          */
57         status =
58             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
59         if (status)
60                 return status;
61
62         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63
64         rt2x00leds_led_radio(rt2x00dev, true);
65         rt2x00led_led_activity(rt2x00dev, true);
66
67         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
68
69         /*
70          * Enable queues.
71          */
72         rt2x00queue_start_queues(rt2x00dev);
73         rt2x00link_start_tuner(rt2x00dev);
74         rt2x00link_start_agc(rt2x00dev);
75
76         /*
77          * Start watchdog monitoring.
78          */
79         rt2x00link_start_watchdog(rt2x00dev);
80
81         return 0;
82 }
83
84 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
85 {
86         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
87                 return;
88
89         /*
90          * Stop watchdog monitoring.
91          */
92         rt2x00link_stop_watchdog(rt2x00dev);
93
94         /*
95          * Stop all queues
96          */
97         rt2x00link_stop_agc(rt2x00dev);
98         rt2x00link_stop_tuner(rt2x00dev);
99         rt2x00queue_stop_queues(rt2x00dev);
100         rt2x00queue_flush_queues(rt2x00dev, true);
101
102         /*
103          * Disable radio.
104          */
105         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
106         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
107         rt2x00led_led_activity(rt2x00dev, false);
108         rt2x00leds_led_radio(rt2x00dev, false);
109 }
110
111 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
112                                           struct ieee80211_vif *vif)
113 {
114         struct rt2x00_dev *rt2x00dev = data;
115         struct rt2x00_intf *intf = vif_to_intf(vif);
116
117         /*
118          * It is possible the radio was disabled while the work had been
119          * scheduled. If that happens we should return here immediately,
120          * note that in the spinlock protected area above the delayed_flags
121          * have been cleared correctly.
122          */
123         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
124                 return;
125
126         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
127                 rt2x00queue_update_beacon(rt2x00dev, vif);
128 }
129
130 static void rt2x00lib_intf_scheduled(struct work_struct *work)
131 {
132         struct rt2x00_dev *rt2x00dev =
133             container_of(work, struct rt2x00_dev, intf_work);
134
135         /*
136          * Iterate over each interface and perform the
137          * requested configurations.
138          */
139         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
140                                             rt2x00lib_intf_scheduled_iter,
141                                             rt2x00dev);
142 }
143
144 static void rt2x00lib_autowakeup(struct work_struct *work)
145 {
146         struct rt2x00_dev *rt2x00dev =
147             container_of(work, struct rt2x00_dev, autowakeup_work.work);
148
149         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
150                 return;
151
152         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
153                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
154         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
155 }
156
157 /*
158  * Interrupt context handlers.
159  */
160 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
161                                      struct ieee80211_vif *vif)
162 {
163         struct rt2x00_dev *rt2x00dev = data;
164         struct sk_buff *skb;
165
166         /*
167          * Only AP mode interfaces do broad- and multicast buffering
168          */
169         if (vif->type != NL80211_IFTYPE_AP)
170                 return;
171
172         /*
173          * Send out buffered broad- and multicast frames
174          */
175         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
176         while (skb) {
177                 rt2x00mac_tx(rt2x00dev->hw, skb);
178                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
179         }
180 }
181
182 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
183                                         struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186
187         if (vif->type != NL80211_IFTYPE_AP &&
188             vif->type != NL80211_IFTYPE_ADHOC &&
189             vif->type != NL80211_IFTYPE_MESH_POINT &&
190             vif->type != NL80211_IFTYPE_WDS)
191                 return;
192
193         /*
194          * Update the beacon without locking. This is safe on PCI devices
195          * as they only update the beacon periodically here. This should
196          * never be called for USB devices.
197          */
198         WARN_ON(rt2x00_is_usb(rt2x00dev));
199         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
200 }
201
202 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
203 {
204         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
205                 return;
206
207         /* send buffered bc/mc frames out for every bssid */
208         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
209                                                    rt2x00lib_bc_buffer_iter,
210                                                    rt2x00dev);
211         /*
212          * Devices with pre tbtt interrupt don't need to update the beacon
213          * here as they will fetch the next beacon directly prior to
214          * transmission.
215          */
216         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
217                 return;
218
219         /* fetch next beacon */
220         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
221                                                    rt2x00lib_beaconupdate_iter,
222                                                    rt2x00dev);
223 }
224 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
225
226 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
227 {
228         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
229                 return;
230
231         /* fetch next beacon */
232         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
233                                                    rt2x00lib_beaconupdate_iter,
234                                                    rt2x00dev);
235 }
236 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
237
238 void rt2x00lib_dmastart(struct queue_entry *entry)
239 {
240         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
241         rt2x00queue_index_inc(entry, Q_INDEX);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
244
245 void rt2x00lib_dmadone(struct queue_entry *entry)
246 {
247         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
248         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
252
253 void rt2x00lib_txdone(struct queue_entry *entry,
254                       struct txdone_entry_desc *txdesc)
255 {
256         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
259         unsigned int header_length, i;
260         u8 rate_idx, rate_flags, retry_rates;
261         u8 skbdesc_flags = skbdesc->flags;
262         bool success;
263
264         /*
265          * Unmap the skb.
266          */
267         rt2x00queue_unmap_skb(entry);
268
269         /*
270          * Remove the extra tx headroom from the skb.
271          */
272         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
273
274         /*
275          * Signal that the TX descriptor is no longer in the skb.
276          */
277         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
278
279         /*
280          * Determine the length of 802.11 header.
281          */
282         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
283
284         /*
285          * Remove L2 padding which was added during
286          */
287         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
288                 rt2x00queue_remove_l2pad(entry->skb, header_length);
289
290         /*
291          * If the IV/EIV data was stripped from the frame before it was
292          * passed to the hardware, we should now reinsert it again because
293          * mac80211 will expect the same data to be present it the
294          * frame as it was passed to us.
295          */
296         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
297                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
298
299         /*
300          * Send frame to debugfs immediately, after this call is completed
301          * we are going to overwrite the skb->cb array.
302          */
303         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
304
305         /*
306          * Determine if the frame has been successfully transmitted.
307          */
308         success =
309             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
310             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
311
312         /*
313          * Update TX statistics.
314          */
315         rt2x00dev->link.qual.tx_success += success;
316         rt2x00dev->link.qual.tx_failed += !success;
317
318         rate_idx = skbdesc->tx_rate_idx;
319         rate_flags = skbdesc->tx_rate_flags;
320         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
321             (txdesc->retry + 1) : 1;
322
323         /*
324          * Initialize TX status
325          */
326         memset(&tx_info->status, 0, sizeof(tx_info->status));
327         tx_info->status.ack_signal = 0;
328
329         /*
330          * Frame was send with retries, hardware tried
331          * different rates to send out the frame, at each
332          * retry it lowered the rate 1 step except when the
333          * lowest rate was used.
334          */
335         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
336                 tx_info->status.rates[i].idx = rate_idx - i;
337                 tx_info->status.rates[i].flags = rate_flags;
338
339                 if (rate_idx - i == 0) {
340                         /*
341                          * The lowest rate (index 0) was used until the
342                          * number of max retries was reached.
343                          */
344                         tx_info->status.rates[i].count = retry_rates - i;
345                         i++;
346                         break;
347                 }
348                 tx_info->status.rates[i].count = 1;
349         }
350         if (i < (IEEE80211_TX_MAX_RATES - 1))
351                 tx_info->status.rates[i].idx = -1; /* terminate */
352
353         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354                 if (success)
355                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
356                 else
357                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
358         }
359
360         /*
361          * Every single frame has it's own tx status, hence report
362          * every frame as ampdu of size 1.
363          *
364          * TODO: if we can find out how many frames were aggregated
365          * by the hw we could provide the real ampdu_len to mac80211
366          * which would allow the rc algorithm to better decide on
367          * which rates are suitable.
368          */
369         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
372                 tx_info->status.ampdu_len = 1;
373                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
374
375                 if (!success)
376                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
377         }
378
379         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380                 if (success)
381                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382                 else
383                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
384         }
385
386         /*
387          * Only send the status report to mac80211 when it's a frame
388          * that originated in mac80211. If this was a extra frame coming
389          * through a mac80211 library call (RTS/CTS) then we should not
390          * send the status report back.
391          */
392         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
393                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
394                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395                 else
396                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
397         } else
398                 dev_kfree_skb_any(entry->skb);
399
400         /*
401          * Make this entry available for reuse.
402          */
403         entry->skb = NULL;
404         entry->flags = 0;
405
406         rt2x00dev->ops->lib->clear_entry(entry);
407
408         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
409
410         /*
411          * If the data queue was below the threshold before the txdone
412          * handler we must make sure the packet queue in the mac80211 stack
413          * is reenabled when the txdone handler has finished. This has to be
414          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
415          * before it was stopped.
416          */
417         spin_lock_bh(&entry->queue->tx_lock);
418         if (!rt2x00queue_threshold(entry->queue))
419                 rt2x00queue_unpause_queue(entry->queue);
420         spin_unlock_bh(&entry->queue->tx_lock);
421 }
422 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
423
424 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
425 {
426         struct txdone_entry_desc txdesc;
427
428         txdesc.flags = 0;
429         __set_bit(status, &txdesc.flags);
430         txdesc.retry = 0;
431
432         rt2x00lib_txdone(entry, &txdesc);
433 }
434 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
435
436 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
437 {
438         struct ieee80211_mgmt *mgmt = (void *)data;
439         u8 *pos, *end;
440
441         pos = (u8 *)mgmt->u.beacon.variable;
442         end = data + len;
443         while (pos < end) {
444                 if (pos + 2 + pos[1] > end)
445                         return NULL;
446
447                 if (pos[0] == ie)
448                         return pos;
449
450                 pos += 2 + pos[1];
451         }
452
453         return NULL;
454 }
455
456 static void rt2x00lib_sleep(struct work_struct *work)
457 {
458         struct rt2x00_dev *rt2x00dev =
459             container_of(work, struct rt2x00_dev, sleep_work);
460
461         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
462                 return;
463
464         /*
465          * Check again is powersaving is enabled, to prevent races from delayed
466          * work execution.
467          */
468         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
469                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
470                                  IEEE80211_CONF_CHANGE_PS);
471 }
472
473 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
474                                       struct sk_buff *skb,
475                                       struct rxdone_entry_desc *rxdesc)
476 {
477         struct ieee80211_hdr *hdr = (void *) skb->data;
478         struct ieee80211_tim_ie *tim_ie;
479         u8 *tim;
480         u8 tim_len;
481         bool cam;
482
483         /* If this is not a beacon, or if mac80211 has no powersaving
484          * configured, or if the device is already in powersaving mode
485          * we can exit now. */
486         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
487                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
488                 return;
489
490         /* min. beacon length + FCS_LEN */
491         if (skb->len <= 40 + FCS_LEN)
492                 return;
493
494         /* and only beacons from the associated BSSID, please */
495         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
496             !rt2x00dev->aid)
497                 return;
498
499         rt2x00dev->last_beacon = jiffies;
500
501         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
502         if (!tim)
503                 return;
504
505         if (tim[1] < sizeof(*tim_ie))
506                 return;
507
508         tim_len = tim[1];
509         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
510
511         /* Check whenever the PHY can be turned off again. */
512
513         /* 1. What about buffered unicast traffic for our AID? */
514         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
515
516         /* 2. Maybe the AP wants to send multicast/broadcast data? */
517         cam |= (tim_ie->bitmap_ctrl & 0x01);
518
519         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
520                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
521 }
522
523 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
524                                         struct rxdone_entry_desc *rxdesc)
525 {
526         struct ieee80211_supported_band *sband;
527         const struct rt2x00_rate *rate;
528         unsigned int i;
529         int signal = rxdesc->signal;
530         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
531
532         switch (rxdesc->rate_mode) {
533         case RATE_MODE_CCK:
534         case RATE_MODE_OFDM:
535                 /*
536                  * For non-HT rates the MCS value needs to contain the
537                  * actually used rate modulation (CCK or OFDM).
538                  */
539                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
540                         signal = RATE_MCS(rxdesc->rate_mode, signal);
541
542                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
543                 for (i = 0; i < sband->n_bitrates; i++) {
544                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
545                         if (((type == RXDONE_SIGNAL_PLCP) &&
546                              (rate->plcp == signal)) ||
547                             ((type == RXDONE_SIGNAL_BITRATE) &&
548                               (rate->bitrate == signal)) ||
549                             ((type == RXDONE_SIGNAL_MCS) &&
550                               (rate->mcs == signal))) {
551                                 return i;
552                         }
553                 }
554                 break;
555         case RATE_MODE_HT_MIX:
556         case RATE_MODE_HT_GREENFIELD:
557                 if (signal >= 0 && signal <= 76)
558                         return signal;
559                 break;
560         default:
561                 break;
562         }
563
564         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
565                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
566                 rxdesc->rate_mode, signal, type);
567         return 0;
568 }
569
570 void rt2x00lib_rxdone(struct queue_entry *entry)
571 {
572         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
573         struct rxdone_entry_desc rxdesc;
574         struct sk_buff *skb;
575         struct ieee80211_rx_status *rx_status;
576         unsigned int header_length;
577         int rate_idx;
578
579         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
580             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
581                 goto submit_entry;
582
583         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
584                 goto submit_entry;
585
586         /*
587          * Allocate a new sk_buffer. If no new buffer available, drop the
588          * received frame and reuse the existing buffer.
589          */
590         skb = rt2x00queue_alloc_rxskb(entry);
591         if (!skb)
592                 goto submit_entry;
593
594         /*
595          * Unmap the skb.
596          */
597         rt2x00queue_unmap_skb(entry);
598
599         /*
600          * Extract the RXD details.
601          */
602         memset(&rxdesc, 0, sizeof(rxdesc));
603         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
604
605         /*
606          * The data behind the ieee80211 header must be
607          * aligned on a 4 byte boundary.
608          */
609         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
610
611         /*
612          * Hardware might have stripped the IV/EIV/ICV data,
613          * in that case it is possible that the data was
614          * provided separately (through hardware descriptor)
615          * in which case we should reinsert the data into the frame.
616          */
617         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
618             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
619                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
620                                           &rxdesc);
621         else if (header_length &&
622                  (rxdesc.size > header_length) &&
623                  (rxdesc.dev_flags & RXDONE_L2PAD))
624                 rt2x00queue_remove_l2pad(entry->skb, header_length);
625
626         /* Trim buffer to correct size */
627         skb_trim(entry->skb, rxdesc.size);
628
629         /*
630          * Translate the signal to the correct bitrate index.
631          */
632         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
633         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
634             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
635                 rxdesc.flags |= RX_FLAG_HT;
636
637         /*
638          * Check if this is a beacon, and more frames have been
639          * buffered while we were in powersaving mode.
640          */
641         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
642
643         /*
644          * Update extra components
645          */
646         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
647         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
648         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
649
650         /*
651          * Initialize RX status information, and send frame
652          * to mac80211.
653          */
654         rx_status = IEEE80211_SKB_RXCB(entry->skb);
655         rx_status->mactime = rxdesc.timestamp;
656         rx_status->band = rt2x00dev->curr_band;
657         rx_status->freq = rt2x00dev->curr_freq;
658         rx_status->rate_idx = rate_idx;
659         rx_status->signal = rxdesc.rssi;
660         rx_status->flag = rxdesc.flags;
661         rx_status->antenna = rt2x00dev->link.ant.active.rx;
662
663         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
664
665         /*
666          * Replace the skb with the freshly allocated one.
667          */
668         entry->skb = skb;
669
670 submit_entry:
671         entry->flags = 0;
672         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
673         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
674             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
675                 rt2x00dev->ops->lib->clear_entry(entry);
676 }
677 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
678
679 /*
680  * Driver initialization handlers.
681  */
682 const struct rt2x00_rate rt2x00_supported_rates[12] = {
683         {
684                 .flags = DEV_RATE_CCK,
685                 .bitrate = 10,
686                 .ratemask = BIT(0),
687                 .plcp = 0x00,
688                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
689         },
690         {
691                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
692                 .bitrate = 20,
693                 .ratemask = BIT(1),
694                 .plcp = 0x01,
695                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
696         },
697         {
698                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
699                 .bitrate = 55,
700                 .ratemask = BIT(2),
701                 .plcp = 0x02,
702                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
703         },
704         {
705                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
706                 .bitrate = 110,
707                 .ratemask = BIT(3),
708                 .plcp = 0x03,
709                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
710         },
711         {
712                 .flags = DEV_RATE_OFDM,
713                 .bitrate = 60,
714                 .ratemask = BIT(4),
715                 .plcp = 0x0b,
716                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
717         },
718         {
719                 .flags = DEV_RATE_OFDM,
720                 .bitrate = 90,
721                 .ratemask = BIT(5),
722                 .plcp = 0x0f,
723                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
724         },
725         {
726                 .flags = DEV_RATE_OFDM,
727                 .bitrate = 120,
728                 .ratemask = BIT(6),
729                 .plcp = 0x0a,
730                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
731         },
732         {
733                 .flags = DEV_RATE_OFDM,
734                 .bitrate = 180,
735                 .ratemask = BIT(7),
736                 .plcp = 0x0e,
737                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
738         },
739         {
740                 .flags = DEV_RATE_OFDM,
741                 .bitrate = 240,
742                 .ratemask = BIT(8),
743                 .plcp = 0x09,
744                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
745         },
746         {
747                 .flags = DEV_RATE_OFDM,
748                 .bitrate = 360,
749                 .ratemask = BIT(9),
750                 .plcp = 0x0d,
751                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
752         },
753         {
754                 .flags = DEV_RATE_OFDM,
755                 .bitrate = 480,
756                 .ratemask = BIT(10),
757                 .plcp = 0x08,
758                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
759         },
760         {
761                 .flags = DEV_RATE_OFDM,
762                 .bitrate = 540,
763                 .ratemask = BIT(11),
764                 .plcp = 0x0c,
765                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
766         },
767 };
768
769 static void rt2x00lib_channel(struct ieee80211_channel *entry,
770                               const int channel, const int tx_power,
771                               const int value)
772 {
773         /* XXX: this assumption about the band is wrong for 802.11j */
774         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
775         entry->center_freq = ieee80211_channel_to_frequency(channel,
776                                                             entry->band);
777         entry->hw_value = value;
778         entry->max_power = tx_power;
779         entry->max_antenna_gain = 0xff;
780 }
781
782 static void rt2x00lib_rate(struct ieee80211_rate *entry,
783                            const u16 index, const struct rt2x00_rate *rate)
784 {
785         entry->flags = 0;
786         entry->bitrate = rate->bitrate;
787         entry->hw_value = index;
788         entry->hw_value_short = index;
789
790         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
791                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
792 }
793
794 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
795                                     struct hw_mode_spec *spec)
796 {
797         struct ieee80211_hw *hw = rt2x00dev->hw;
798         struct ieee80211_channel *channels;
799         struct ieee80211_rate *rates;
800         unsigned int num_rates;
801         unsigned int i;
802
803         num_rates = 0;
804         if (spec->supported_rates & SUPPORT_RATE_CCK)
805                 num_rates += 4;
806         if (spec->supported_rates & SUPPORT_RATE_OFDM)
807                 num_rates += 8;
808
809         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
810         if (!channels)
811                 return -ENOMEM;
812
813         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
814         if (!rates)
815                 goto exit_free_channels;
816
817         /*
818          * Initialize Rate list.
819          */
820         for (i = 0; i < num_rates; i++)
821                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
822
823         /*
824          * Initialize Channel list.
825          */
826         for (i = 0; i < spec->num_channels; i++) {
827                 rt2x00lib_channel(&channels[i],
828                                   spec->channels[i].channel,
829                                   spec->channels_info[i].max_power, i);
830         }
831
832         /*
833          * Intitialize 802.11b, 802.11g
834          * Rates: CCK, OFDM.
835          * Channels: 2.4 GHz
836          */
837         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
838                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
839                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
840                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
841                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
842                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
843                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
844                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
845                        &spec->ht, sizeof(spec->ht));
846         }
847
848         /*
849          * Intitialize 802.11a
850          * Rates: OFDM.
851          * Channels: OFDM, UNII, HiperLAN2.
852          */
853         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
854                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
855                     spec->num_channels - 14;
856                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
857                     num_rates - 4;
858                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
859                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
860                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
861                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
862                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
863                        &spec->ht, sizeof(spec->ht));
864         }
865
866         return 0;
867
868  exit_free_channels:
869         kfree(channels);
870         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
871         return -ENOMEM;
872 }
873
874 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
875 {
876         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
877                 ieee80211_unregister_hw(rt2x00dev->hw);
878
879         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
880                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
881                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
882                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
883                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
884         }
885
886         kfree(rt2x00dev->spec.channels_info);
887 }
888
889 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
890 {
891         struct hw_mode_spec *spec = &rt2x00dev->spec;
892         int status;
893
894         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
895                 return 0;
896
897         /*
898          * Initialize HW modes.
899          */
900         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
901         if (status)
902                 return status;
903
904         /*
905          * Initialize HW fields.
906          */
907         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
908
909         /*
910          * Initialize extra TX headroom required.
911          */
912         rt2x00dev->hw->extra_tx_headroom =
913                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
914                       rt2x00dev->ops->extra_tx_headroom);
915
916         /*
917          * Take TX headroom required for alignment into account.
918          */
919         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
920                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
921         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
922                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
923
924         /*
925          * Allocate tx status FIFO for driver use.
926          */
927         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
928                 /*
929                  * Allocate the txstatus fifo. In the worst case the tx
930                  * status fifo has to hold the tx status of all entries
931                  * in all tx queues. Hence, calculate the kfifo size as
932                  * tx_queues * entry_num and round up to the nearest
933                  * power of 2.
934                  */
935                 int kfifo_size =
936                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
937                                            rt2x00dev->ops->tx->entry_num *
938                                            sizeof(u32));
939
940                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
941                                      GFP_KERNEL);
942                 if (status)
943                         return status;
944         }
945
946         /*
947          * Initialize tasklets if used by the driver. Tasklets are
948          * disabled until the interrupts are turned on. The driver
949          * has to handle that.
950          */
951 #define RT2X00_TASKLET_INIT(taskletname) \
952         if (rt2x00dev->ops->lib->taskletname) { \
953                 tasklet_init(&rt2x00dev->taskletname, \
954                              rt2x00dev->ops->lib->taskletname, \
955                              (unsigned long)rt2x00dev); \
956                 tasklet_disable(&rt2x00dev->taskletname); \
957         }
958
959         RT2X00_TASKLET_INIT(txstatus_tasklet);
960         RT2X00_TASKLET_INIT(pretbtt_tasklet);
961         RT2X00_TASKLET_INIT(tbtt_tasklet);
962         RT2X00_TASKLET_INIT(rxdone_tasklet);
963         RT2X00_TASKLET_INIT(autowake_tasklet);
964
965 #undef RT2X00_TASKLET_INIT
966
967         /*
968          * Register HW.
969          */
970         status = ieee80211_register_hw(rt2x00dev->hw);
971         if (status)
972                 return status;
973
974         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
975
976         return 0;
977 }
978
979 /*
980  * Initialization/uninitialization handlers.
981  */
982 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
983 {
984         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
985                 return;
986
987         /*
988          * Unregister extra components.
989          */
990         rt2x00rfkill_unregister(rt2x00dev);
991
992         /*
993          * Allow the HW to uninitialize.
994          */
995         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
996
997         /*
998          * Free allocated queue entries.
999          */
1000         rt2x00queue_uninitialize(rt2x00dev);
1001 }
1002
1003 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1004 {
1005         int status;
1006
1007         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1008                 return 0;
1009
1010         /*
1011          * Allocate all queue entries.
1012          */
1013         status = rt2x00queue_initialize(rt2x00dev);
1014         if (status)
1015                 return status;
1016
1017         /*
1018          * Initialize the device.
1019          */
1020         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1021         if (status) {
1022                 rt2x00queue_uninitialize(rt2x00dev);
1023                 return status;
1024         }
1025
1026         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1027
1028         /*
1029          * Register the extra components.
1030          */
1031         rt2x00rfkill_register(rt2x00dev);
1032
1033         return 0;
1034 }
1035
1036 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1037 {
1038         int retval;
1039
1040         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1041                 return 0;
1042
1043         /*
1044          * If this is the first interface which is added,
1045          * we should load the firmware now.
1046          */
1047         retval = rt2x00lib_load_firmware(rt2x00dev);
1048         if (retval)
1049                 return retval;
1050
1051         /*
1052          * Initialize the device.
1053          */
1054         retval = rt2x00lib_initialize(rt2x00dev);
1055         if (retval)
1056                 return retval;
1057
1058         rt2x00dev->intf_ap_count = 0;
1059         rt2x00dev->intf_sta_count = 0;
1060         rt2x00dev->intf_associated = 0;
1061
1062         /* Enable the radio */
1063         retval = rt2x00lib_enable_radio(rt2x00dev);
1064         if (retval)
1065                 return retval;
1066
1067         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1068
1069         return 0;
1070 }
1071
1072 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1073 {
1074         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1075                 return;
1076
1077         /*
1078          * Perhaps we can add something smarter here,
1079          * but for now just disabling the radio should do.
1080          */
1081         rt2x00lib_disable_radio(rt2x00dev);
1082
1083         rt2x00dev->intf_ap_count = 0;
1084         rt2x00dev->intf_sta_count = 0;
1085         rt2x00dev->intf_associated = 0;
1086 }
1087
1088 /*
1089  * driver allocation handlers.
1090  */
1091 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1092 {
1093         int retval = -ENOMEM;
1094
1095         spin_lock_init(&rt2x00dev->irqmask_lock);
1096         mutex_init(&rt2x00dev->csr_mutex);
1097
1098         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1099
1100         /*
1101          * Make room for rt2x00_intf inside the per-interface
1102          * structure ieee80211_vif.
1103          */
1104         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1105
1106         /*
1107          * Determine which operating modes are supported, all modes
1108          * which require beaconing, depend on the availability of
1109          * beacon entries.
1110          */
1111         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1112         if (rt2x00dev->ops->bcn->entry_num > 0)
1113                 rt2x00dev->hw->wiphy->interface_modes |=
1114                     BIT(NL80211_IFTYPE_ADHOC) |
1115                     BIT(NL80211_IFTYPE_AP) |
1116                     BIT(NL80211_IFTYPE_MESH_POINT) |
1117                     BIT(NL80211_IFTYPE_WDS);
1118
1119         /*
1120          * Initialize work.
1121          */
1122         rt2x00dev->workqueue =
1123             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1124         if (!rt2x00dev->workqueue) {
1125                 retval = -ENOMEM;
1126                 goto exit;
1127         }
1128
1129         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1130         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1131         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1132
1133         /*
1134          * Let the driver probe the device to detect the capabilities.
1135          */
1136         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1137         if (retval) {
1138                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1139                 goto exit;
1140         }
1141
1142         /*
1143          * Allocate queue array.
1144          */
1145         retval = rt2x00queue_allocate(rt2x00dev);
1146         if (retval)
1147                 goto exit;
1148
1149         /*
1150          * Initialize ieee80211 structure.
1151          */
1152         retval = rt2x00lib_probe_hw(rt2x00dev);
1153         if (retval) {
1154                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1155                 goto exit;
1156         }
1157
1158         /*
1159          * Register extra components.
1160          */
1161         rt2x00link_register(rt2x00dev);
1162         rt2x00leds_register(rt2x00dev);
1163         rt2x00debug_register(rt2x00dev);
1164
1165         return 0;
1166
1167 exit:
1168         rt2x00lib_remove_dev(rt2x00dev);
1169
1170         return retval;
1171 }
1172 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1173
1174 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1175 {
1176         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1177
1178         /*
1179          * Disable radio.
1180          */
1181         rt2x00lib_disable_radio(rt2x00dev);
1182
1183         /*
1184          * Stop all work.
1185          */
1186         cancel_work_sync(&rt2x00dev->intf_work);
1187         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1188         cancel_work_sync(&rt2x00dev->sleep_work);
1189         if (rt2x00_is_usb(rt2x00dev)) {
1190                 del_timer_sync(&rt2x00dev->txstatus_timer);
1191                 cancel_work_sync(&rt2x00dev->rxdone_work);
1192                 cancel_work_sync(&rt2x00dev->txdone_work);
1193         }
1194         destroy_workqueue(rt2x00dev->workqueue);
1195
1196         /*
1197          * Free the tx status fifo.
1198          */
1199         kfifo_free(&rt2x00dev->txstatus_fifo);
1200
1201         /*
1202          * Kill the tx status tasklet.
1203          */
1204         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1205         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1206         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1207         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1208         tasklet_kill(&rt2x00dev->autowake_tasklet);
1209
1210         /*
1211          * Uninitialize device.
1212          */
1213         rt2x00lib_uninitialize(rt2x00dev);
1214
1215         /*
1216          * Free extra components
1217          */
1218         rt2x00debug_deregister(rt2x00dev);
1219         rt2x00leds_unregister(rt2x00dev);
1220
1221         /*
1222          * Free ieee80211_hw memory.
1223          */
1224         rt2x00lib_remove_hw(rt2x00dev);
1225
1226         /*
1227          * Free firmware image.
1228          */
1229         rt2x00lib_free_firmware(rt2x00dev);
1230
1231         /*
1232          * Free queue structures.
1233          */
1234         rt2x00queue_free(rt2x00dev);
1235 }
1236 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1237
1238 /*
1239  * Device state handlers
1240  */
1241 #ifdef CONFIG_PM
1242 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1243 {
1244         NOTICE(rt2x00dev, "Going to sleep.\n");
1245
1246         /*
1247          * Prevent mac80211 from accessing driver while suspended.
1248          */
1249         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1250                 return 0;
1251
1252         /*
1253          * Cleanup as much as possible.
1254          */
1255         rt2x00lib_uninitialize(rt2x00dev);
1256
1257         /*
1258          * Suspend/disable extra components.
1259          */
1260         rt2x00leds_suspend(rt2x00dev);
1261         rt2x00debug_deregister(rt2x00dev);
1262
1263         /*
1264          * Set device mode to sleep for power management,
1265          * on some hardware this call seems to consistently fail.
1266          * From the specifications it is hard to tell why it fails,
1267          * and if this is a "bad thing".
1268          * Overall it is safe to just ignore the failure and
1269          * continue suspending. The only downside is that the
1270          * device will not be in optimal power save mode, but with
1271          * the radio and the other components already disabled the
1272          * device is as good as disabled.
1273          */
1274         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1275                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1276                         "continue suspending.\n");
1277
1278         return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1281
1282 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1283 {
1284         NOTICE(rt2x00dev, "Waking up.\n");
1285
1286         /*
1287          * Restore/enable extra components.
1288          */
1289         rt2x00debug_register(rt2x00dev);
1290         rt2x00leds_resume(rt2x00dev);
1291
1292         /*
1293          * We are ready again to receive requests from mac80211.
1294          */
1295         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1296
1297         return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1300 #endif /* CONFIG_PM */
1301
1302 /*
1303  * rt2x00lib module information.
1304  */
1305 MODULE_AUTHOR(DRV_PROJECT);
1306 MODULE_VERSION(DRV_VERSION);
1307 MODULE_DESCRIPTION("rt2x00 library");
1308 MODULE_LICENSE("GPL");