mac80211/rt2x00: add ieee80211_tx_status_ni()
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable RX.
70          */
71         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_RX_ON);
72         rt2x00link_start_tuner(rt2x00dev);
73
74         /*
75          * Start watchdog monitoring.
76          */
77         rt2x00link_start_watchdog(rt2x00dev);
78
79         /*
80          * Start the TX queues.
81          */
82         ieee80211_wake_queues(rt2x00dev->hw);
83
84         return 0;
85 }
86
87 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
88 {
89         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
90                 return;
91
92         /*
93          * Stop the TX queues in mac80211.
94          */
95         ieee80211_stop_queues(rt2x00dev->hw);
96         rt2x00queue_stop_queues(rt2x00dev);
97
98         /*
99          * Stop watchdog monitoring.
100          */
101         rt2x00link_stop_watchdog(rt2x00dev);
102
103         /*
104          * Disable RX.
105          */
106         rt2x00link_stop_tuner(rt2x00dev);
107         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_RX_OFF);
108
109         /*
110          * Disable radio.
111          */
112         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
113         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
114         rt2x00led_led_activity(rt2x00dev, false);
115         rt2x00leds_led_radio(rt2x00dev, false);
116 }
117
118 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
119                                           struct ieee80211_vif *vif)
120 {
121         struct rt2x00_dev *rt2x00dev = data;
122         struct rt2x00_intf *intf = vif_to_intf(vif);
123         int delayed_flags;
124
125         /*
126          * Copy all data we need during this action under the protection
127          * of a spinlock. Otherwise race conditions might occur which results
128          * into an invalid configuration.
129          */
130         spin_lock(&intf->lock);
131
132         delayed_flags = intf->delayed_flags;
133         intf->delayed_flags = 0;
134
135         spin_unlock(&intf->lock);
136
137         /*
138          * It is possible the radio was disabled while the work had been
139          * scheduled. If that happens we should return here immediately,
140          * note that in the spinlock protected area above the delayed_flags
141          * have been cleared correctly.
142          */
143         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144                 return;
145
146         if (delayed_flags & DELAYED_UPDATE_BEACON)
147                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152         struct rt2x00_dev *rt2x00dev =
153             container_of(work, struct rt2x00_dev, intf_work);
154
155         /*
156          * Iterate over each interface and perform the
157          * requested configurations.
158          */
159         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160                                             rt2x00lib_intf_scheduled_iter,
161                                             rt2x00dev);
162 }
163
164 /*
165  * Interrupt context handlers.
166  */
167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
168                                      struct ieee80211_vif *vif)
169 {
170         struct rt2x00_dev *rt2x00dev = data;
171         struct sk_buff *skb;
172
173         /*
174          * Only AP mode interfaces do broad- and multicast buffering
175          */
176         if (vif->type != NL80211_IFTYPE_AP)
177                 return;
178
179         /*
180          * Send out buffered broad- and multicast frames
181          */
182         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
183         while (skb) {
184                 rt2x00mac_tx(rt2x00dev->hw, skb);
185                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
186         }
187 }
188
189 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
190                                         struct ieee80211_vif *vif)
191 {
192         struct rt2x00_dev *rt2x00dev = data;
193
194         if (vif->type != NL80211_IFTYPE_AP &&
195             vif->type != NL80211_IFTYPE_ADHOC &&
196             vif->type != NL80211_IFTYPE_MESH_POINT &&
197             vif->type != NL80211_IFTYPE_WDS)
198                 return;
199
200         rt2x00queue_update_beacon(rt2x00dev, vif, true);
201 }
202
203 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
204 {
205         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
206                 return;
207
208         /* send buffered bc/mc frames out for every bssid */
209         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
210                                             rt2x00lib_bc_buffer_iter,
211                                             rt2x00dev);
212         /*
213          * Devices with pre tbtt interrupt don't need to update the beacon
214          * here as they will fetch the next beacon directly prior to
215          * transmission.
216          */
217         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
218                 return;
219
220         /* fetch next beacon */
221         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
222                                             rt2x00lib_beaconupdate_iter,
223                                             rt2x00dev);
224 }
225 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
226
227 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
228 {
229         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
230                 return;
231
232         /* fetch next beacon */
233         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
234                                             rt2x00lib_beaconupdate_iter,
235                                             rt2x00dev);
236 }
237 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
238
239 void rt2x00lib_dmadone(struct queue_entry *entry)
240 {
241         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
242         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
245
246 void rt2x00lib_txdone(struct queue_entry *entry,
247                       struct txdone_entry_desc *txdesc)
248 {
249         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
250         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
251         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
252         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
253         unsigned int header_length, i;
254         u8 rate_idx, rate_flags, retry_rates;
255         u8 skbdesc_flags = skbdesc->flags;
256         bool success;
257
258         /*
259          * Unmap the skb.
260          */
261         rt2x00queue_unmap_skb(entry);
262
263         /*
264          * Remove the extra tx headroom from the skb.
265          */
266         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
267
268         /*
269          * Signal that the TX descriptor is no longer in the skb.
270          */
271         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
272
273         /*
274          * Determine the length of 802.11 header.
275          */
276         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
277
278         /*
279          * Remove L2 padding which was added during
280          */
281         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
282                 rt2x00queue_remove_l2pad(entry->skb, header_length);
283
284         /*
285          * If the IV/EIV data was stripped from the frame before it was
286          * passed to the hardware, we should now reinsert it again because
287          * mac80211 will expect the same data to be present it the
288          * frame as it was passed to us.
289          */
290         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
291                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
292
293         /*
294          * Send frame to debugfs immediately, after this call is completed
295          * we are going to overwrite the skb->cb array.
296          */
297         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
298
299         /*
300          * Determine if the frame has been successfully transmitted.
301          */
302         success =
303             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
304             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
305
306         /*
307          * Update TX statistics.
308          */
309         rt2x00dev->link.qual.tx_success += success;
310         rt2x00dev->link.qual.tx_failed += !success;
311
312         rate_idx = skbdesc->tx_rate_idx;
313         rate_flags = skbdesc->tx_rate_flags;
314         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
315             (txdesc->retry + 1) : 1;
316
317         /*
318          * Initialize TX status
319          */
320         memset(&tx_info->status, 0, sizeof(tx_info->status));
321         tx_info->status.ack_signal = 0;
322
323         /*
324          * Frame was send with retries, hardware tried
325          * different rates to send out the frame, at each
326          * retry it lowered the rate 1 step except when the
327          * lowest rate was used.
328          */
329         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
330                 tx_info->status.rates[i].idx = rate_idx - i;
331                 tx_info->status.rates[i].flags = rate_flags;
332
333                 if (rate_idx - i == 0) {
334                         /*
335                          * The lowest rate (index 0) was used until the
336                          * number of max retries was reached.
337                          */
338                         tx_info->status.rates[i].count = retry_rates - i;
339                         i++;
340                         break;
341                 }
342                 tx_info->status.rates[i].count = 1;
343         }
344         if (i < (IEEE80211_TX_MAX_RATES - 1))
345                 tx_info->status.rates[i].idx = -1; /* terminate */
346
347         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
348                 if (success)
349                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
350                 else
351                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
352         }
353
354         /*
355          * Every single frame has it's own tx status, hence report
356          * every frame as ampdu of size 1.
357          *
358          * TODO: if we can find out how many frames were aggregated
359          * by the hw we could provide the real ampdu_len to mac80211
360          * which would allow the rc algorithm to better decide on
361          * which rates are suitable.
362          */
363         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
364                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
365                 tx_info->status.ampdu_len = 1;
366                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
367         }
368
369         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
370                 if (success)
371                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
372                 else
373                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
374         }
375
376         /*
377          * Only send the status report to mac80211 when it's a frame
378          * that originated in mac80211. If this was a extra frame coming
379          * through a mac80211 library call (RTS/CTS) then we should not
380          * send the status report back.
381          */
382         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
383                 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
384                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
385                 else
386                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
387         } else
388                 dev_kfree_skb_any(entry->skb);
389
390         /*
391          * Make this entry available for reuse.
392          */
393         entry->skb = NULL;
394         entry->flags = 0;
395
396         rt2x00dev->ops->lib->clear_entry(entry);
397
398         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
399
400         /*
401          * If the data queue was below the threshold before the txdone
402          * handler we must make sure the packet queue in the mac80211 stack
403          * is reenabled when the txdone handler has finished.
404          */
405         if (!rt2x00queue_threshold(entry->queue))
406                 ieee80211_wake_queue(rt2x00dev->hw, qid);
407 }
408 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
409
410 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
411 {
412         struct txdone_entry_desc txdesc;
413
414         txdesc.flags = 0;
415         __set_bit(status, &txdesc.flags);
416         txdesc.retry = 0;
417
418         rt2x00lib_txdone(entry, &txdesc);
419 }
420 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
421
422 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
423                                         struct rxdone_entry_desc *rxdesc)
424 {
425         struct ieee80211_supported_band *sband;
426         const struct rt2x00_rate *rate;
427         unsigned int i;
428         int signal = rxdesc->signal;
429         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
430
431         switch (rxdesc->rate_mode) {
432         case RATE_MODE_CCK:
433         case RATE_MODE_OFDM:
434                 /*
435                  * For non-HT rates the MCS value needs to contain the
436                  * actually used rate modulation (CCK or OFDM).
437                  */
438                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
439                         signal = RATE_MCS(rxdesc->rate_mode, signal);
440
441                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
442                 for (i = 0; i < sband->n_bitrates; i++) {
443                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
444                         if (((type == RXDONE_SIGNAL_PLCP) &&
445                              (rate->plcp == signal)) ||
446                             ((type == RXDONE_SIGNAL_BITRATE) &&
447                               (rate->bitrate == signal)) ||
448                             ((type == RXDONE_SIGNAL_MCS) &&
449                               (rate->mcs == signal))) {
450                                 return i;
451                         }
452                 }
453                 break;
454         case RATE_MODE_HT_MIX:
455         case RATE_MODE_HT_GREENFIELD:
456                 if (signal >= 0 && signal <= 76)
457                         return signal;
458                 break;
459         default:
460                 break;
461         }
462
463         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
464                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
465                 rxdesc->rate_mode, signal, type);
466         return 0;
467 }
468
469 void rt2x00lib_rxdone(struct queue_entry *entry)
470 {
471         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
472         struct rxdone_entry_desc rxdesc;
473         struct sk_buff *skb;
474         struct ieee80211_rx_status *rx_status;
475         unsigned int header_length;
476         int rate_idx;
477
478         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
479             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
480                 goto submit_entry;
481
482         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
483                 goto submit_entry;
484
485         /*
486          * Allocate a new sk_buffer. If no new buffer available, drop the
487          * received frame and reuse the existing buffer.
488          */
489         skb = rt2x00queue_alloc_rxskb(entry);
490         if (!skb)
491                 goto submit_entry;
492
493         /*
494          * Unmap the skb.
495          */
496         rt2x00queue_unmap_skb(entry);
497
498         /*
499          * Extract the RXD details.
500          */
501         memset(&rxdesc, 0, sizeof(rxdesc));
502         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
503
504         /*
505          * The data behind the ieee80211 header must be
506          * aligned on a 4 byte boundary.
507          */
508         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
509
510         /*
511          * Hardware might have stripped the IV/EIV/ICV data,
512          * in that case it is possible that the data was
513          * provided separately (through hardware descriptor)
514          * in which case we should reinsert the data into the frame.
515          */
516         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
517             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
518                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
519                                           &rxdesc);
520         else if (header_length &&
521                  (rxdesc.size > header_length) &&
522                  (rxdesc.dev_flags & RXDONE_L2PAD))
523                 rt2x00queue_remove_l2pad(entry->skb, header_length);
524         else
525                 rt2x00queue_align_payload(entry->skb, header_length);
526
527         /* Trim buffer to correct size */
528         skb_trim(entry->skb, rxdesc.size);
529
530         /*
531          * Translate the signal to the correct bitrate index.
532          */
533         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
534         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
535             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
536                 rxdesc.flags |= RX_FLAG_HT;
537
538         /*
539          * Update extra components
540          */
541         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
542         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
543         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
544
545         /*
546          * Initialize RX status information, and send frame
547          * to mac80211.
548          */
549         rx_status = IEEE80211_SKB_RXCB(entry->skb);
550         rx_status->mactime = rxdesc.timestamp;
551         rx_status->band = rt2x00dev->curr_band;
552         rx_status->freq = rt2x00dev->curr_freq;
553         rx_status->rate_idx = rate_idx;
554         rx_status->signal = rxdesc.rssi;
555         rx_status->flag = rxdesc.flags;
556         rx_status->antenna = rt2x00dev->link.ant.active.rx;
557
558         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
559
560         /*
561          * Replace the skb with the freshly allocated one.
562          */
563         entry->skb = skb;
564
565 submit_entry:
566         entry->flags = 0;
567         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
568         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
569             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
570                 rt2x00dev->ops->lib->clear_entry(entry);
571                 rt2x00queue_index_inc(entry->queue, Q_INDEX);
572         }
573 }
574 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
575
576 /*
577  * Driver initialization handlers.
578  */
579 const struct rt2x00_rate rt2x00_supported_rates[12] = {
580         {
581                 .flags = DEV_RATE_CCK,
582                 .bitrate = 10,
583                 .ratemask = BIT(0),
584                 .plcp = 0x00,
585                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
586         },
587         {
588                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
589                 .bitrate = 20,
590                 .ratemask = BIT(1),
591                 .plcp = 0x01,
592                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
593         },
594         {
595                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
596                 .bitrate = 55,
597                 .ratemask = BIT(2),
598                 .plcp = 0x02,
599                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
600         },
601         {
602                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
603                 .bitrate = 110,
604                 .ratemask = BIT(3),
605                 .plcp = 0x03,
606                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
607         },
608         {
609                 .flags = DEV_RATE_OFDM,
610                 .bitrate = 60,
611                 .ratemask = BIT(4),
612                 .plcp = 0x0b,
613                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
614         },
615         {
616                 .flags = DEV_RATE_OFDM,
617                 .bitrate = 90,
618                 .ratemask = BIT(5),
619                 .plcp = 0x0f,
620                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
621         },
622         {
623                 .flags = DEV_RATE_OFDM,
624                 .bitrate = 120,
625                 .ratemask = BIT(6),
626                 .plcp = 0x0a,
627                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
628         },
629         {
630                 .flags = DEV_RATE_OFDM,
631                 .bitrate = 180,
632                 .ratemask = BIT(7),
633                 .plcp = 0x0e,
634                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
635         },
636         {
637                 .flags = DEV_RATE_OFDM,
638                 .bitrate = 240,
639                 .ratemask = BIT(8),
640                 .plcp = 0x09,
641                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
642         },
643         {
644                 .flags = DEV_RATE_OFDM,
645                 .bitrate = 360,
646                 .ratemask = BIT(9),
647                 .plcp = 0x0d,
648                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
649         },
650         {
651                 .flags = DEV_RATE_OFDM,
652                 .bitrate = 480,
653                 .ratemask = BIT(10),
654                 .plcp = 0x08,
655                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
656         },
657         {
658                 .flags = DEV_RATE_OFDM,
659                 .bitrate = 540,
660                 .ratemask = BIT(11),
661                 .plcp = 0x0c,
662                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
663         },
664 };
665
666 static void rt2x00lib_channel(struct ieee80211_channel *entry,
667                               const int channel, const int tx_power,
668                               const int value)
669 {
670         entry->center_freq = ieee80211_channel_to_frequency(channel);
671         entry->hw_value = value;
672         entry->max_power = tx_power;
673         entry->max_antenna_gain = 0xff;
674 }
675
676 static void rt2x00lib_rate(struct ieee80211_rate *entry,
677                            const u16 index, const struct rt2x00_rate *rate)
678 {
679         entry->flags = 0;
680         entry->bitrate = rate->bitrate;
681         entry->hw_value = index;
682         entry->hw_value_short = index;
683
684         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
685                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
686 }
687
688 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
689                                     struct hw_mode_spec *spec)
690 {
691         struct ieee80211_hw *hw = rt2x00dev->hw;
692         struct ieee80211_channel *channels;
693         struct ieee80211_rate *rates;
694         unsigned int num_rates;
695         unsigned int i;
696
697         num_rates = 0;
698         if (spec->supported_rates & SUPPORT_RATE_CCK)
699                 num_rates += 4;
700         if (spec->supported_rates & SUPPORT_RATE_OFDM)
701                 num_rates += 8;
702
703         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
704         if (!channels)
705                 return -ENOMEM;
706
707         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
708         if (!rates)
709                 goto exit_free_channels;
710
711         /*
712          * Initialize Rate list.
713          */
714         for (i = 0; i < num_rates; i++)
715                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
716
717         /*
718          * Initialize Channel list.
719          */
720         for (i = 0; i < spec->num_channels; i++) {
721                 rt2x00lib_channel(&channels[i],
722                                   spec->channels[i].channel,
723                                   spec->channels_info[i].max_power, i);
724         }
725
726         /*
727          * Intitialize 802.11b, 802.11g
728          * Rates: CCK, OFDM.
729          * Channels: 2.4 GHz
730          */
731         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
732                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
733                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
734                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
735                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
736                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
737                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
738                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
739                        &spec->ht, sizeof(spec->ht));
740         }
741
742         /*
743          * Intitialize 802.11a
744          * Rates: OFDM.
745          * Channels: OFDM, UNII, HiperLAN2.
746          */
747         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
748                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
749                     spec->num_channels - 14;
750                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
751                     num_rates - 4;
752                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
753                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
754                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
755                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
756                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
757                        &spec->ht, sizeof(spec->ht));
758         }
759
760         return 0;
761
762  exit_free_channels:
763         kfree(channels);
764         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
765         return -ENOMEM;
766 }
767
768 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
769 {
770         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
771                 ieee80211_unregister_hw(rt2x00dev->hw);
772
773         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
774                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
775                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
776                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
777                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
778         }
779
780         kfree(rt2x00dev->spec.channels_info);
781 }
782
783 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
784 {
785         struct hw_mode_spec *spec = &rt2x00dev->spec;
786         int status;
787
788         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
789                 return 0;
790
791         /*
792          * Initialize HW modes.
793          */
794         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
795         if (status)
796                 return status;
797
798         /*
799          * Initialize HW fields.
800          */
801         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
802
803         /*
804          * Initialize extra TX headroom required.
805          */
806         rt2x00dev->hw->extra_tx_headroom =
807                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
808                       rt2x00dev->ops->extra_tx_headroom);
809
810         /*
811          * Take TX headroom required for alignment into account.
812          */
813         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
814                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
815         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
816                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
817
818         /*
819          * Allocate tx status FIFO for driver use.
820          */
821         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
822             rt2x00dev->ops->lib->txstatus_tasklet) {
823                 /*
824                  * Allocate txstatus fifo and tasklet, we use a size of 512
825                  * for the kfifo which is big enough to store 512/4=128 tx
826                  * status reports. In the worst case (tx status for all tx
827                  * queues gets reported before we've got a chance to handle
828                  * them) 24*4=384 tx status reports need to be cached.
829                  */
830                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
831                                      GFP_KERNEL);
832                 if (status)
833                         return status;
834
835                 /* tasklet for processing the tx status reports. */
836                 tasklet_init(&rt2x00dev->txstatus_tasklet,
837                              rt2x00dev->ops->lib->txstatus_tasklet,
838                              (unsigned long)rt2x00dev);
839
840         }
841
842         /*
843          * Register HW.
844          */
845         status = ieee80211_register_hw(rt2x00dev->hw);
846         if (status)
847                 return status;
848
849         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
850
851         return 0;
852 }
853
854 /*
855  * Initialization/uninitialization handlers.
856  */
857 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
858 {
859         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
860                 return;
861
862         /*
863          * Unregister extra components.
864          */
865         rt2x00rfkill_unregister(rt2x00dev);
866
867         /*
868          * Allow the HW to uninitialize.
869          */
870         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
871
872         /*
873          * Free allocated queue entries.
874          */
875         rt2x00queue_uninitialize(rt2x00dev);
876 }
877
878 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
879 {
880         int status;
881
882         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
883                 return 0;
884
885         /*
886          * Allocate all queue entries.
887          */
888         status = rt2x00queue_initialize(rt2x00dev);
889         if (status)
890                 return status;
891
892         /*
893          * Initialize the device.
894          */
895         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
896         if (status) {
897                 rt2x00queue_uninitialize(rt2x00dev);
898                 return status;
899         }
900
901         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
902
903         /*
904          * Register the extra components.
905          */
906         rt2x00rfkill_register(rt2x00dev);
907
908         return 0;
909 }
910
911 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
912 {
913         int retval;
914
915         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
916                 return 0;
917
918         /*
919          * If this is the first interface which is added,
920          * we should load the firmware now.
921          */
922         retval = rt2x00lib_load_firmware(rt2x00dev);
923         if (retval)
924                 return retval;
925
926         /*
927          * Initialize the device.
928          */
929         retval = rt2x00lib_initialize(rt2x00dev);
930         if (retval)
931                 return retval;
932
933         rt2x00dev->intf_ap_count = 0;
934         rt2x00dev->intf_sta_count = 0;
935         rt2x00dev->intf_associated = 0;
936
937         /* Enable the radio */
938         retval = rt2x00lib_enable_radio(rt2x00dev);
939         if (retval)
940                 return retval;
941
942         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
943
944         return 0;
945 }
946
947 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
948 {
949         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
950                 return;
951
952         /*
953          * Perhaps we can add something smarter here,
954          * but for now just disabling the radio should do.
955          */
956         rt2x00lib_disable_radio(rt2x00dev);
957
958         rt2x00dev->intf_ap_count = 0;
959         rt2x00dev->intf_sta_count = 0;
960         rt2x00dev->intf_associated = 0;
961 }
962
963 /*
964  * driver allocation handlers.
965  */
966 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
967 {
968         int retval = -ENOMEM;
969
970         mutex_init(&rt2x00dev->csr_mutex);
971
972         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
973
974         /*
975          * Make room for rt2x00_intf inside the per-interface
976          * structure ieee80211_vif.
977          */
978         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
979
980         /*
981          * Determine which operating modes are supported, all modes
982          * which require beaconing, depend on the availability of
983          * beacon entries.
984          */
985         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
986         if (rt2x00dev->ops->bcn->entry_num > 0)
987                 rt2x00dev->hw->wiphy->interface_modes |=
988                     BIT(NL80211_IFTYPE_ADHOC) |
989                     BIT(NL80211_IFTYPE_AP) |
990                     BIT(NL80211_IFTYPE_MESH_POINT) |
991                     BIT(NL80211_IFTYPE_WDS);
992
993         /*
994          * Initialize configuration work.
995          */
996         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
997
998         /*
999          * Let the driver probe the device to detect the capabilities.
1000          */
1001         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1002         if (retval) {
1003                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1004                 goto exit;
1005         }
1006
1007         /*
1008          * Allocate queue array.
1009          */
1010         retval = rt2x00queue_allocate(rt2x00dev);
1011         if (retval)
1012                 goto exit;
1013
1014         /*
1015          * Initialize ieee80211 structure.
1016          */
1017         retval = rt2x00lib_probe_hw(rt2x00dev);
1018         if (retval) {
1019                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1020                 goto exit;
1021         }
1022
1023         /*
1024          * Register extra components.
1025          */
1026         rt2x00link_register(rt2x00dev);
1027         rt2x00leds_register(rt2x00dev);
1028         rt2x00debug_register(rt2x00dev);
1029
1030         return 0;
1031
1032 exit:
1033         rt2x00lib_remove_dev(rt2x00dev);
1034
1035         return retval;
1036 }
1037 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1038
1039 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1040 {
1041         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1042
1043         /*
1044          * Disable radio.
1045          */
1046         rt2x00lib_disable_radio(rt2x00dev);
1047
1048         /*
1049          * Stop all work.
1050          */
1051         cancel_work_sync(&rt2x00dev->intf_work);
1052         cancel_work_sync(&rt2x00dev->rxdone_work);
1053         cancel_work_sync(&rt2x00dev->txdone_work);
1054
1055         /*
1056          * Free the tx status fifo.
1057          */
1058         kfifo_free(&rt2x00dev->txstatus_fifo);
1059
1060         /*
1061          * Kill the tx status tasklet.
1062          */
1063         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1064
1065         /*
1066          * Uninitialize device.
1067          */
1068         rt2x00lib_uninitialize(rt2x00dev);
1069
1070         /*
1071          * Free extra components
1072          */
1073         rt2x00debug_deregister(rt2x00dev);
1074         rt2x00leds_unregister(rt2x00dev);
1075
1076         /*
1077          * Free ieee80211_hw memory.
1078          */
1079         rt2x00lib_remove_hw(rt2x00dev);
1080
1081         /*
1082          * Free firmware image.
1083          */
1084         rt2x00lib_free_firmware(rt2x00dev);
1085
1086         /*
1087          * Free queue structures.
1088          */
1089         rt2x00queue_free(rt2x00dev);
1090 }
1091 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1092
1093 /*
1094  * Device state handlers
1095  */
1096 #ifdef CONFIG_PM
1097 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1098 {
1099         NOTICE(rt2x00dev, "Going to sleep.\n");
1100
1101         /*
1102          * Prevent mac80211 from accessing driver while suspended.
1103          */
1104         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1105                 return 0;
1106
1107         /*
1108          * Cleanup as much as possible.
1109          */
1110         rt2x00lib_uninitialize(rt2x00dev);
1111
1112         /*
1113          * Suspend/disable extra components.
1114          */
1115         rt2x00leds_suspend(rt2x00dev);
1116         rt2x00debug_deregister(rt2x00dev);
1117
1118         /*
1119          * Set device mode to sleep for power management,
1120          * on some hardware this call seems to consistently fail.
1121          * From the specifications it is hard to tell why it fails,
1122          * and if this is a "bad thing".
1123          * Overall it is safe to just ignore the failure and
1124          * continue suspending. The only downside is that the
1125          * device will not be in optimal power save mode, but with
1126          * the radio and the other components already disabled the
1127          * device is as good as disabled.
1128          */
1129         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1130                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1131                         "continue suspending.\n");
1132
1133         return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1136
1137 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1138 {
1139         NOTICE(rt2x00dev, "Waking up.\n");
1140
1141         /*
1142          * Restore/enable extra components.
1143          */
1144         rt2x00debug_register(rt2x00dev);
1145         rt2x00leds_resume(rt2x00dev);
1146
1147         /*
1148          * We are ready again to receive requests from mac80211.
1149          */
1150         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1151
1152         return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1155 #endif /* CONFIG_PM */
1156
1157 /*
1158  * rt2x00lib module information.
1159  */
1160 MODULE_AUTHOR(DRV_PROJECT);
1161 MODULE_VERSION(DRV_VERSION);
1162 MODULE_DESCRIPTION("rt2x00 library");
1163 MODULE_LICENSE("GPL");