dffaa8f45f191f02e46a022e76e5db4afaf95ebd
[firefly-linux-kernel-4.4.55.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Radio control handlers.
37  */
38 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
39 {
40         int status;
41
42         /*
43          * Don't enable the radio twice.
44          * And check if the hardware button has been disabled.
45          */
46         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
47                 return 0;
48
49         /*
50          * Initialize all data queues.
51          */
52         rt2x00queue_init_queues(rt2x00dev);
53
54         /*
55          * Enable radio.
56          */
57         status =
58             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
59         if (status)
60                 return status;
61
62         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63
64         rt2x00leds_led_radio(rt2x00dev, true);
65         rt2x00led_led_activity(rt2x00dev, true);
66
67         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
68
69         /*
70          * Enable queues.
71          */
72         rt2x00queue_start_queues(rt2x00dev);
73         rt2x00link_start_tuner(rt2x00dev);
74         rt2x00link_start_agc(rt2x00dev);
75
76         /*
77          * Start watchdog monitoring.
78          */
79         rt2x00link_start_watchdog(rt2x00dev);
80
81         return 0;
82 }
83
84 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
85 {
86         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
87                 return;
88
89         /*
90          * Stop watchdog monitoring.
91          */
92         rt2x00link_stop_watchdog(rt2x00dev);
93
94         /*
95          * Stop all queues
96          */
97         rt2x00link_stop_agc(rt2x00dev);
98         rt2x00link_stop_tuner(rt2x00dev);
99         rt2x00queue_stop_queues(rt2x00dev);
100         rt2x00queue_flush_queues(rt2x00dev, true);
101
102         /*
103          * Disable radio.
104          */
105         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
106         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
107         rt2x00led_led_activity(rt2x00dev, false);
108         rt2x00leds_led_radio(rt2x00dev, false);
109 }
110
111 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
112                                           struct ieee80211_vif *vif)
113 {
114         struct rt2x00_dev *rt2x00dev = data;
115         struct rt2x00_intf *intf = vif_to_intf(vif);
116
117         /*
118          * It is possible the radio was disabled while the work had been
119          * scheduled. If that happens we should return here immediately,
120          * note that in the spinlock protected area above the delayed_flags
121          * have been cleared correctly.
122          */
123         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
124                 return;
125
126         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
127                 rt2x00queue_update_beacon(rt2x00dev, vif);
128 }
129
130 static void rt2x00lib_intf_scheduled(struct work_struct *work)
131 {
132         struct rt2x00_dev *rt2x00dev =
133             container_of(work, struct rt2x00_dev, intf_work);
134
135         /*
136          * Iterate over each interface and perform the
137          * requested configurations.
138          */
139         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
140                                             rt2x00lib_intf_scheduled_iter,
141                                             rt2x00dev);
142 }
143
144 static void rt2x00lib_autowakeup(struct work_struct *work)
145 {
146         struct rt2x00_dev *rt2x00dev =
147             container_of(work, struct rt2x00_dev, autowakeup_work.work);
148
149         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
150                 return;
151
152         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
153                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
154         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
155 }
156
157 /*
158  * Interrupt context handlers.
159  */
160 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
161                                      struct ieee80211_vif *vif)
162 {
163         struct rt2x00_dev *rt2x00dev = data;
164         struct sk_buff *skb;
165
166         /*
167          * Only AP mode interfaces do broad- and multicast buffering
168          */
169         if (vif->type != NL80211_IFTYPE_AP)
170                 return;
171
172         /*
173          * Send out buffered broad- and multicast frames
174          */
175         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
176         while (skb) {
177                 rt2x00mac_tx(rt2x00dev->hw, skb);
178                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
179         }
180 }
181
182 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
183                                         struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186
187         if (vif->type != NL80211_IFTYPE_AP &&
188             vif->type != NL80211_IFTYPE_ADHOC &&
189             vif->type != NL80211_IFTYPE_MESH_POINT &&
190             vif->type != NL80211_IFTYPE_WDS)
191                 return;
192
193         /*
194          * Update the beacon without locking. This is safe on PCI devices
195          * as they only update the beacon periodically here. This should
196          * never be called for USB devices.
197          */
198         WARN_ON(rt2x00_is_usb(rt2x00dev));
199         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
200 }
201
202 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
203 {
204         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
205                 return;
206
207         /* send buffered bc/mc frames out for every bssid */
208         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
209                                                    rt2x00lib_bc_buffer_iter,
210                                                    rt2x00dev);
211         /*
212          * Devices with pre tbtt interrupt don't need to update the beacon
213          * here as they will fetch the next beacon directly prior to
214          * transmission.
215          */
216         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
217                 return;
218
219         /* fetch next beacon */
220         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
221                                                    rt2x00lib_beaconupdate_iter,
222                                                    rt2x00dev);
223 }
224 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
225
226 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
227 {
228         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
229                 return;
230
231         /* fetch next beacon */
232         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
233                                                    rt2x00lib_beaconupdate_iter,
234                                                    rt2x00dev);
235 }
236 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
237
238 void rt2x00lib_dmastart(struct queue_entry *entry)
239 {
240         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
241         rt2x00queue_index_inc(entry, Q_INDEX);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
244
245 void rt2x00lib_dmadone(struct queue_entry *entry)
246 {
247         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
248         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
252
253 void rt2x00lib_txdone(struct queue_entry *entry,
254                       struct txdone_entry_desc *txdesc)
255 {
256         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
259         unsigned int header_length, i;
260         u8 rate_idx, rate_flags, retry_rates;
261         u8 skbdesc_flags = skbdesc->flags;
262         bool success;
263
264         /*
265          * Unmap the skb.
266          */
267         rt2x00queue_unmap_skb(entry);
268
269         /*
270          * Remove the extra tx headroom from the skb.
271          */
272         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
273
274         /*
275          * Signal that the TX descriptor is no longer in the skb.
276          */
277         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
278
279         /*
280          * Determine the length of 802.11 header.
281          */
282         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
283
284         /*
285          * Remove L2 padding which was added during
286          */
287         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
288                 rt2x00queue_remove_l2pad(entry->skb, header_length);
289
290         /*
291          * If the IV/EIV data was stripped from the frame before it was
292          * passed to the hardware, we should now reinsert it again because
293          * mac80211 will expect the same data to be present it the
294          * frame as it was passed to us.
295          */
296         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
297                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
298
299         /*
300          * Send frame to debugfs immediately, after this call is completed
301          * we are going to overwrite the skb->cb array.
302          */
303         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
304
305         /*
306          * Determine if the frame has been successfully transmitted.
307          */
308         success =
309             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
310             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
311
312         /*
313          * Update TX statistics.
314          */
315         rt2x00dev->link.qual.tx_success += success;
316         rt2x00dev->link.qual.tx_failed += !success;
317
318         rate_idx = skbdesc->tx_rate_idx;
319         rate_flags = skbdesc->tx_rate_flags;
320         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
321             (txdesc->retry + 1) : 1;
322
323         /*
324          * Initialize TX status
325          */
326         memset(&tx_info->status, 0, sizeof(tx_info->status));
327         tx_info->status.ack_signal = 0;
328
329         /*
330          * Frame was send with retries, hardware tried
331          * different rates to send out the frame, at each
332          * retry it lowered the rate 1 step except when the
333          * lowest rate was used.
334          */
335         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
336                 tx_info->status.rates[i].idx = rate_idx - i;
337                 tx_info->status.rates[i].flags = rate_flags;
338
339                 if (rate_idx - i == 0) {
340                         /*
341                          * The lowest rate (index 0) was used until the
342                          * number of max retries was reached.
343                          */
344                         tx_info->status.rates[i].count = retry_rates - i;
345                         i++;
346                         break;
347                 }
348                 tx_info->status.rates[i].count = 1;
349         }
350         if (i < (IEEE80211_TX_MAX_RATES - 1))
351                 tx_info->status.rates[i].idx = -1; /* terminate */
352
353         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354                 if (success)
355                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
356                 else
357                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
358         }
359
360         /*
361          * Every single frame has it's own tx status, hence report
362          * every frame as ampdu of size 1.
363          *
364          * TODO: if we can find out how many frames were aggregated
365          * by the hw we could provide the real ampdu_len to mac80211
366          * which would allow the rc algorithm to better decide on
367          * which rates are suitable.
368          */
369         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
372                 tx_info->status.ampdu_len = 1;
373                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
374
375                 if (!success)
376                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
377         }
378
379         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380                 if (success)
381                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382                 else
383                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
384         }
385
386         /*
387          * Only send the status report to mac80211 when it's a frame
388          * that originated in mac80211. If this was a extra frame coming
389          * through a mac80211 library call (RTS/CTS) then we should not
390          * send the status report back.
391          */
392         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
393                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
394                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395                 else
396                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
397         } else
398                 dev_kfree_skb_any(entry->skb);
399
400         /*
401          * Make this entry available for reuse.
402          */
403         entry->skb = NULL;
404         entry->flags = 0;
405
406         rt2x00dev->ops->lib->clear_entry(entry);
407
408         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
409
410         /*
411          * If the data queue was below the threshold before the txdone
412          * handler we must make sure the packet queue in the mac80211 stack
413          * is reenabled when the txdone handler has finished.
414          */
415         if (!rt2x00queue_threshold(entry->queue))
416                 rt2x00queue_unpause_queue(entry->queue);
417 }
418 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
419
420 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
421 {
422         struct txdone_entry_desc txdesc;
423
424         txdesc.flags = 0;
425         __set_bit(status, &txdesc.flags);
426         txdesc.retry = 0;
427
428         rt2x00lib_txdone(entry, &txdesc);
429 }
430 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
431
432 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
433 {
434         struct ieee80211_mgmt *mgmt = (void *)data;
435         u8 *pos, *end;
436
437         pos = (u8 *)mgmt->u.beacon.variable;
438         end = data + len;
439         while (pos < end) {
440                 if (pos + 2 + pos[1] > end)
441                         return NULL;
442
443                 if (pos[0] == ie)
444                         return pos;
445
446                 pos += 2 + pos[1];
447         }
448
449         return NULL;
450 }
451
452 static void rt2x00lib_sleep(struct work_struct *work)
453 {
454         struct rt2x00_dev *rt2x00dev =
455             container_of(work, struct rt2x00_dev, sleep_work);
456
457         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
458                 return;
459
460         /*
461          * Check again is powersaving is enabled, to prevent races from delayed
462          * work execution.
463          */
464         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
465                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
466                                  IEEE80211_CONF_CHANGE_PS);
467 }
468
469 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
470                                       struct sk_buff *skb,
471                                       struct rxdone_entry_desc *rxdesc)
472 {
473         struct ieee80211_hdr *hdr = (void *) skb->data;
474         struct ieee80211_tim_ie *tim_ie;
475         u8 *tim;
476         u8 tim_len;
477         bool cam;
478
479         /* If this is not a beacon, or if mac80211 has no powersaving
480          * configured, or if the device is already in powersaving mode
481          * we can exit now. */
482         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
483                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
484                 return;
485
486         /* min. beacon length + FCS_LEN */
487         if (skb->len <= 40 + FCS_LEN)
488                 return;
489
490         /* and only beacons from the associated BSSID, please */
491         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
492             !rt2x00dev->aid)
493                 return;
494
495         rt2x00dev->last_beacon = jiffies;
496
497         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
498         if (!tim)
499                 return;
500
501         if (tim[1] < sizeof(*tim_ie))
502                 return;
503
504         tim_len = tim[1];
505         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
506
507         /* Check whenever the PHY can be turned off again. */
508
509         /* 1. What about buffered unicast traffic for our AID? */
510         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
511
512         /* 2. Maybe the AP wants to send multicast/broadcast data? */
513         cam |= (tim_ie->bitmap_ctrl & 0x01);
514
515         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
516                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
517 }
518
519 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
520                                         struct rxdone_entry_desc *rxdesc)
521 {
522         struct ieee80211_supported_band *sband;
523         const struct rt2x00_rate *rate;
524         unsigned int i;
525         int signal = rxdesc->signal;
526         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
527
528         switch (rxdesc->rate_mode) {
529         case RATE_MODE_CCK:
530         case RATE_MODE_OFDM:
531                 /*
532                  * For non-HT rates the MCS value needs to contain the
533                  * actually used rate modulation (CCK or OFDM).
534                  */
535                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
536                         signal = RATE_MCS(rxdesc->rate_mode, signal);
537
538                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
539                 for (i = 0; i < sband->n_bitrates; i++) {
540                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
541                         if (((type == RXDONE_SIGNAL_PLCP) &&
542                              (rate->plcp == signal)) ||
543                             ((type == RXDONE_SIGNAL_BITRATE) &&
544                               (rate->bitrate == signal)) ||
545                             ((type == RXDONE_SIGNAL_MCS) &&
546                               (rate->mcs == signal))) {
547                                 return i;
548                         }
549                 }
550                 break;
551         case RATE_MODE_HT_MIX:
552         case RATE_MODE_HT_GREENFIELD:
553                 if (signal >= 0 && signal <= 76)
554                         return signal;
555                 break;
556         default:
557                 break;
558         }
559
560         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
561                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
562                 rxdesc->rate_mode, signal, type);
563         return 0;
564 }
565
566 void rt2x00lib_rxdone(struct queue_entry *entry)
567 {
568         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
569         struct rxdone_entry_desc rxdesc;
570         struct sk_buff *skb;
571         struct ieee80211_rx_status *rx_status;
572         unsigned int header_length;
573         int rate_idx;
574
575         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
576             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
577                 goto submit_entry;
578
579         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
580                 goto submit_entry;
581
582         /*
583          * Allocate a new sk_buffer. If no new buffer available, drop the
584          * received frame and reuse the existing buffer.
585          */
586         skb = rt2x00queue_alloc_rxskb(entry);
587         if (!skb)
588                 goto submit_entry;
589
590         /*
591          * Unmap the skb.
592          */
593         rt2x00queue_unmap_skb(entry);
594
595         /*
596          * Extract the RXD details.
597          */
598         memset(&rxdesc, 0, sizeof(rxdesc));
599         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
600
601         /*
602          * The data behind the ieee80211 header must be
603          * aligned on a 4 byte boundary.
604          */
605         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
606
607         /*
608          * Hardware might have stripped the IV/EIV/ICV data,
609          * in that case it is possible that the data was
610          * provided separately (through hardware descriptor)
611          * in which case we should reinsert the data into the frame.
612          */
613         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
614             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
615                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
616                                           &rxdesc);
617         else if (header_length &&
618                  (rxdesc.size > header_length) &&
619                  (rxdesc.dev_flags & RXDONE_L2PAD))
620                 rt2x00queue_remove_l2pad(entry->skb, header_length);
621
622         /* Trim buffer to correct size */
623         skb_trim(entry->skb, rxdesc.size);
624
625         /*
626          * Translate the signal to the correct bitrate index.
627          */
628         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
629         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
630             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
631                 rxdesc.flags |= RX_FLAG_HT;
632
633         /*
634          * Check if this is a beacon, and more frames have been
635          * buffered while we were in powersaving mode.
636          */
637         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
638
639         /*
640          * Update extra components
641          */
642         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
643         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
644         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
645
646         /*
647          * Initialize RX status information, and send frame
648          * to mac80211.
649          */
650         rx_status = IEEE80211_SKB_RXCB(entry->skb);
651         rx_status->mactime = rxdesc.timestamp;
652         rx_status->band = rt2x00dev->curr_band;
653         rx_status->freq = rt2x00dev->curr_freq;
654         rx_status->rate_idx = rate_idx;
655         rx_status->signal = rxdesc.rssi;
656         rx_status->flag = rxdesc.flags;
657         rx_status->antenna = rt2x00dev->link.ant.active.rx;
658
659         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
660
661         /*
662          * Replace the skb with the freshly allocated one.
663          */
664         entry->skb = skb;
665
666 submit_entry:
667         entry->flags = 0;
668         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
669         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
670             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
671                 rt2x00dev->ops->lib->clear_entry(entry);
672 }
673 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
674
675 /*
676  * Driver initialization handlers.
677  */
678 const struct rt2x00_rate rt2x00_supported_rates[12] = {
679         {
680                 .flags = DEV_RATE_CCK,
681                 .bitrate = 10,
682                 .ratemask = BIT(0),
683                 .plcp = 0x00,
684                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
685         },
686         {
687                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
688                 .bitrate = 20,
689                 .ratemask = BIT(1),
690                 .plcp = 0x01,
691                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
692         },
693         {
694                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
695                 .bitrate = 55,
696                 .ratemask = BIT(2),
697                 .plcp = 0x02,
698                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
699         },
700         {
701                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
702                 .bitrate = 110,
703                 .ratemask = BIT(3),
704                 .plcp = 0x03,
705                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
706         },
707         {
708                 .flags = DEV_RATE_OFDM,
709                 .bitrate = 60,
710                 .ratemask = BIT(4),
711                 .plcp = 0x0b,
712                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
713         },
714         {
715                 .flags = DEV_RATE_OFDM,
716                 .bitrate = 90,
717                 .ratemask = BIT(5),
718                 .plcp = 0x0f,
719                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
720         },
721         {
722                 .flags = DEV_RATE_OFDM,
723                 .bitrate = 120,
724                 .ratemask = BIT(6),
725                 .plcp = 0x0a,
726                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
727         },
728         {
729                 .flags = DEV_RATE_OFDM,
730                 .bitrate = 180,
731                 .ratemask = BIT(7),
732                 .plcp = 0x0e,
733                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
734         },
735         {
736                 .flags = DEV_RATE_OFDM,
737                 .bitrate = 240,
738                 .ratemask = BIT(8),
739                 .plcp = 0x09,
740                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
741         },
742         {
743                 .flags = DEV_RATE_OFDM,
744                 .bitrate = 360,
745                 .ratemask = BIT(9),
746                 .plcp = 0x0d,
747                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
748         },
749         {
750                 .flags = DEV_RATE_OFDM,
751                 .bitrate = 480,
752                 .ratemask = BIT(10),
753                 .plcp = 0x08,
754                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
755         },
756         {
757                 .flags = DEV_RATE_OFDM,
758                 .bitrate = 540,
759                 .ratemask = BIT(11),
760                 .plcp = 0x0c,
761                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
762         },
763 };
764
765 static void rt2x00lib_channel(struct ieee80211_channel *entry,
766                               const int channel, const int tx_power,
767                               const int value)
768 {
769         /* XXX: this assumption about the band is wrong for 802.11j */
770         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
771         entry->center_freq = ieee80211_channel_to_frequency(channel,
772                                                             entry->band);
773         entry->hw_value = value;
774         entry->max_power = tx_power;
775         entry->max_antenna_gain = 0xff;
776 }
777
778 static void rt2x00lib_rate(struct ieee80211_rate *entry,
779                            const u16 index, const struct rt2x00_rate *rate)
780 {
781         entry->flags = 0;
782         entry->bitrate = rate->bitrate;
783         entry->hw_value = index;
784         entry->hw_value_short = index;
785
786         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
787                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
788 }
789
790 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
791                                     struct hw_mode_spec *spec)
792 {
793         struct ieee80211_hw *hw = rt2x00dev->hw;
794         struct ieee80211_channel *channels;
795         struct ieee80211_rate *rates;
796         unsigned int num_rates;
797         unsigned int i;
798
799         num_rates = 0;
800         if (spec->supported_rates & SUPPORT_RATE_CCK)
801                 num_rates += 4;
802         if (spec->supported_rates & SUPPORT_RATE_OFDM)
803                 num_rates += 8;
804
805         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
806         if (!channels)
807                 return -ENOMEM;
808
809         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
810         if (!rates)
811                 goto exit_free_channels;
812
813         /*
814          * Initialize Rate list.
815          */
816         for (i = 0; i < num_rates; i++)
817                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
818
819         /*
820          * Initialize Channel list.
821          */
822         for (i = 0; i < spec->num_channels; i++) {
823                 rt2x00lib_channel(&channels[i],
824                                   spec->channels[i].channel,
825                                   spec->channels_info[i].max_power, i);
826         }
827
828         /*
829          * Intitialize 802.11b, 802.11g
830          * Rates: CCK, OFDM.
831          * Channels: 2.4 GHz
832          */
833         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
834                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
835                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
836                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
837                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
838                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
839                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
840                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
841                        &spec->ht, sizeof(spec->ht));
842         }
843
844         /*
845          * Intitialize 802.11a
846          * Rates: OFDM.
847          * Channels: OFDM, UNII, HiperLAN2.
848          */
849         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
850                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
851                     spec->num_channels - 14;
852                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
853                     num_rates - 4;
854                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
855                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
856                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
857                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
858                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
859                        &spec->ht, sizeof(spec->ht));
860         }
861
862         return 0;
863
864  exit_free_channels:
865         kfree(channels);
866         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
867         return -ENOMEM;
868 }
869
870 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
871 {
872         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
873                 ieee80211_unregister_hw(rt2x00dev->hw);
874
875         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
876                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
877                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
878                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
879                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
880         }
881
882         kfree(rt2x00dev->spec.channels_info);
883 }
884
885 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
886 {
887         struct hw_mode_spec *spec = &rt2x00dev->spec;
888         int status;
889
890         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
891                 return 0;
892
893         /*
894          * Initialize HW modes.
895          */
896         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
897         if (status)
898                 return status;
899
900         /*
901          * Initialize HW fields.
902          */
903         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
904
905         /*
906          * Initialize extra TX headroom required.
907          */
908         rt2x00dev->hw->extra_tx_headroom =
909                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
910                       rt2x00dev->ops->extra_tx_headroom);
911
912         /*
913          * Take TX headroom required for alignment into account.
914          */
915         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
916                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
917         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
918                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
919
920         /*
921          * Allocate tx status FIFO for driver use.
922          */
923         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
924                 /*
925                  * Allocate the txstatus fifo. In the worst case the tx
926                  * status fifo has to hold the tx status of all entries
927                  * in all tx queues. Hence, calculate the kfifo size as
928                  * tx_queues * entry_num and round up to the nearest
929                  * power of 2.
930                  */
931                 int kfifo_size =
932                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
933                                            rt2x00dev->ops->tx->entry_num *
934                                            sizeof(u32));
935
936                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
937                                      GFP_KERNEL);
938                 if (status)
939                         return status;
940         }
941
942         /*
943          * Initialize tasklets if used by the driver. Tasklets are
944          * disabled until the interrupts are turned on. The driver
945          * has to handle that.
946          */
947 #define RT2X00_TASKLET_INIT(taskletname) \
948         if (rt2x00dev->ops->lib->taskletname) { \
949                 tasklet_init(&rt2x00dev->taskletname, \
950                              rt2x00dev->ops->lib->taskletname, \
951                              (unsigned long)rt2x00dev); \
952                 tasklet_disable(&rt2x00dev->taskletname); \
953         }
954
955         RT2X00_TASKLET_INIT(txstatus_tasklet);
956         RT2X00_TASKLET_INIT(pretbtt_tasklet);
957         RT2X00_TASKLET_INIT(tbtt_tasklet);
958         RT2X00_TASKLET_INIT(rxdone_tasklet);
959         RT2X00_TASKLET_INIT(autowake_tasklet);
960
961 #undef RT2X00_TASKLET_INIT
962
963         /*
964          * Register HW.
965          */
966         status = ieee80211_register_hw(rt2x00dev->hw);
967         if (status)
968                 return status;
969
970         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
971
972         return 0;
973 }
974
975 /*
976  * Initialization/uninitialization handlers.
977  */
978 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
979 {
980         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
981                 return;
982
983         /*
984          * Unregister extra components.
985          */
986         rt2x00rfkill_unregister(rt2x00dev);
987
988         /*
989          * Allow the HW to uninitialize.
990          */
991         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
992
993         /*
994          * Free allocated queue entries.
995          */
996         rt2x00queue_uninitialize(rt2x00dev);
997 }
998
999 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1000 {
1001         int status;
1002
1003         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1004                 return 0;
1005
1006         /*
1007          * Allocate all queue entries.
1008          */
1009         status = rt2x00queue_initialize(rt2x00dev);
1010         if (status)
1011                 return status;
1012
1013         /*
1014          * Initialize the device.
1015          */
1016         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1017         if (status) {
1018                 rt2x00queue_uninitialize(rt2x00dev);
1019                 return status;
1020         }
1021
1022         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1023
1024         /*
1025          * Register the extra components.
1026          */
1027         rt2x00rfkill_register(rt2x00dev);
1028
1029         return 0;
1030 }
1031
1032 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1033 {
1034         int retval;
1035
1036         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1037                 return 0;
1038
1039         /*
1040          * If this is the first interface which is added,
1041          * we should load the firmware now.
1042          */
1043         retval = rt2x00lib_load_firmware(rt2x00dev);
1044         if (retval)
1045                 return retval;
1046
1047         /*
1048          * Initialize the device.
1049          */
1050         retval = rt2x00lib_initialize(rt2x00dev);
1051         if (retval)
1052                 return retval;
1053
1054         rt2x00dev->intf_ap_count = 0;
1055         rt2x00dev->intf_sta_count = 0;
1056         rt2x00dev->intf_associated = 0;
1057
1058         /* Enable the radio */
1059         retval = rt2x00lib_enable_radio(rt2x00dev);
1060         if (retval)
1061                 return retval;
1062
1063         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1064
1065         return 0;
1066 }
1067
1068 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1069 {
1070         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1071                 return;
1072
1073         /*
1074          * Perhaps we can add something smarter here,
1075          * but for now just disabling the radio should do.
1076          */
1077         rt2x00lib_disable_radio(rt2x00dev);
1078
1079         rt2x00dev->intf_ap_count = 0;
1080         rt2x00dev->intf_sta_count = 0;
1081         rt2x00dev->intf_associated = 0;
1082 }
1083
1084 /*
1085  * driver allocation handlers.
1086  */
1087 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1088 {
1089         int retval = -ENOMEM;
1090
1091         spin_lock_init(&rt2x00dev->irqmask_lock);
1092         mutex_init(&rt2x00dev->csr_mutex);
1093
1094         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1095
1096         /*
1097          * Make room for rt2x00_intf inside the per-interface
1098          * structure ieee80211_vif.
1099          */
1100         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1101
1102         /*
1103          * Determine which operating modes are supported, all modes
1104          * which require beaconing, depend on the availability of
1105          * beacon entries.
1106          */
1107         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1108         if (rt2x00dev->ops->bcn->entry_num > 0)
1109                 rt2x00dev->hw->wiphy->interface_modes |=
1110                     BIT(NL80211_IFTYPE_ADHOC) |
1111                     BIT(NL80211_IFTYPE_AP) |
1112                     BIT(NL80211_IFTYPE_MESH_POINT) |
1113                     BIT(NL80211_IFTYPE_WDS);
1114
1115         /*
1116          * Initialize work.
1117          */
1118         rt2x00dev->workqueue =
1119             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1120         if (!rt2x00dev->workqueue) {
1121                 retval = -ENOMEM;
1122                 goto exit;
1123         }
1124
1125         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1126         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1127         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1128
1129         /*
1130          * Let the driver probe the device to detect the capabilities.
1131          */
1132         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1133         if (retval) {
1134                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1135                 goto exit;
1136         }
1137
1138         /*
1139          * Allocate queue array.
1140          */
1141         retval = rt2x00queue_allocate(rt2x00dev);
1142         if (retval)
1143                 goto exit;
1144
1145         /*
1146          * Initialize ieee80211 structure.
1147          */
1148         retval = rt2x00lib_probe_hw(rt2x00dev);
1149         if (retval) {
1150                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1151                 goto exit;
1152         }
1153
1154         /*
1155          * Register extra components.
1156          */
1157         rt2x00link_register(rt2x00dev);
1158         rt2x00leds_register(rt2x00dev);
1159         rt2x00debug_register(rt2x00dev);
1160
1161         return 0;
1162
1163 exit:
1164         rt2x00lib_remove_dev(rt2x00dev);
1165
1166         return retval;
1167 }
1168 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1169
1170 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1171 {
1172         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1173
1174         /*
1175          * Disable radio.
1176          */
1177         rt2x00lib_disable_radio(rt2x00dev);
1178
1179         /*
1180          * Stop all work.
1181          */
1182         cancel_work_sync(&rt2x00dev->intf_work);
1183         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1184         cancel_work_sync(&rt2x00dev->sleep_work);
1185         if (rt2x00_is_usb(rt2x00dev)) {
1186                 del_timer_sync(&rt2x00dev->txstatus_timer);
1187                 cancel_work_sync(&rt2x00dev->rxdone_work);
1188                 cancel_work_sync(&rt2x00dev->txdone_work);
1189         }
1190         destroy_workqueue(rt2x00dev->workqueue);
1191
1192         /*
1193          * Free the tx status fifo.
1194          */
1195         kfifo_free(&rt2x00dev->txstatus_fifo);
1196
1197         /*
1198          * Kill the tx status tasklet.
1199          */
1200         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1201         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1202         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1203         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1204         tasklet_kill(&rt2x00dev->autowake_tasklet);
1205
1206         /*
1207          * Uninitialize device.
1208          */
1209         rt2x00lib_uninitialize(rt2x00dev);
1210
1211         /*
1212          * Free extra components
1213          */
1214         rt2x00debug_deregister(rt2x00dev);
1215         rt2x00leds_unregister(rt2x00dev);
1216
1217         /*
1218          * Free ieee80211_hw memory.
1219          */
1220         rt2x00lib_remove_hw(rt2x00dev);
1221
1222         /*
1223          * Free firmware image.
1224          */
1225         rt2x00lib_free_firmware(rt2x00dev);
1226
1227         /*
1228          * Free queue structures.
1229          */
1230         rt2x00queue_free(rt2x00dev);
1231 }
1232 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1233
1234 /*
1235  * Device state handlers
1236  */
1237 #ifdef CONFIG_PM
1238 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1239 {
1240         NOTICE(rt2x00dev, "Going to sleep.\n");
1241
1242         /*
1243          * Prevent mac80211 from accessing driver while suspended.
1244          */
1245         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1246                 return 0;
1247
1248         /*
1249          * Cleanup as much as possible.
1250          */
1251         rt2x00lib_uninitialize(rt2x00dev);
1252
1253         /*
1254          * Suspend/disable extra components.
1255          */
1256         rt2x00leds_suspend(rt2x00dev);
1257         rt2x00debug_deregister(rt2x00dev);
1258
1259         /*
1260          * Set device mode to sleep for power management,
1261          * on some hardware this call seems to consistently fail.
1262          * From the specifications it is hard to tell why it fails,
1263          * and if this is a "bad thing".
1264          * Overall it is safe to just ignore the failure and
1265          * continue suspending. The only downside is that the
1266          * device will not be in optimal power save mode, but with
1267          * the radio and the other components already disabled the
1268          * device is as good as disabled.
1269          */
1270         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1271                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1272                         "continue suspending.\n");
1273
1274         return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1277
1278 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1279 {
1280         NOTICE(rt2x00dev, "Waking up.\n");
1281
1282         /*
1283          * Restore/enable extra components.
1284          */
1285         rt2x00debug_register(rt2x00dev);
1286         rt2x00leds_resume(rt2x00dev);
1287
1288         /*
1289          * We are ready again to receive requests from mac80211.
1290          */
1291         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1292
1293         return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1296 #endif /* CONFIG_PM */
1297
1298 /*
1299  * rt2x00lib module information.
1300  */
1301 MODULE_AUTHOR(DRV_PROJECT);
1302 MODULE_VERSION(DRV_VERSION);
1303 MODULE_DESCRIPTION("rt2x00 library");
1304 MODULE_LICENSE("GPL");