NTB: Add flow control to the ntb_netdev
[firefly-linux-kernel-4.4.55.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94
95 static struct dentry *nt_debugfs_dir;
96
97 struct ntb_queue_entry {
98         /* ntb_queue list reference */
99         struct list_head entry;
100         /* pointers to data to be transferred */
101         void *cb_data;
102         void *buf;
103         unsigned int len;
104         unsigned int flags;
105
106         struct ntb_transport_qp *qp;
107         union {
108                 struct ntb_payload_header __iomem *tx_hdr;
109                 struct ntb_payload_header *rx_hdr;
110         };
111         unsigned int index;
112 };
113
114 struct ntb_rx_info {
115         unsigned int entry;
116 };
117
118 struct ntb_transport_qp {
119         struct ntb_transport_ctx *transport;
120         struct ntb_dev *ndev;
121         void *cb_data;
122         struct dma_chan *dma_chan;
123
124         bool client_ready;
125         bool link_is_up;
126
127         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
128         u64 qp_bit;
129
130         struct ntb_rx_info __iomem *rx_info;
131         struct ntb_rx_info *remote_rx_info;
132
133         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134                            void *data, int len);
135         struct list_head tx_free_q;
136         spinlock_t ntb_tx_free_q_lock;
137         void __iomem *tx_mw;
138         dma_addr_t tx_mw_phys;
139         unsigned int tx_index;
140         unsigned int tx_max_entry;
141         unsigned int tx_max_frame;
142
143         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144                            void *data, int len);
145         struct list_head rx_post_q;
146         struct list_head rx_pend_q;
147         struct list_head rx_free_q;
148         /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
149         spinlock_t ntb_rx_q_lock;
150         void *rx_buff;
151         unsigned int rx_index;
152         unsigned int rx_max_entry;
153         unsigned int rx_max_frame;
154         dma_cookie_t last_cookie;
155         struct tasklet_struct rxc_db_work;
156
157         void (*event_handler)(void *data, int status);
158         struct delayed_work link_work;
159         struct work_struct link_cleanup;
160
161         struct dentry *debugfs_dir;
162         struct dentry *debugfs_stats;
163
164         /* Stats */
165         u64 rx_bytes;
166         u64 rx_pkts;
167         u64 rx_ring_empty;
168         u64 rx_err_no_buf;
169         u64 rx_err_oflow;
170         u64 rx_err_ver;
171         u64 rx_memcpy;
172         u64 rx_async;
173         u64 tx_bytes;
174         u64 tx_pkts;
175         u64 tx_ring_full;
176         u64 tx_err_no_buf;
177         u64 tx_memcpy;
178         u64 tx_async;
179 };
180
181 struct ntb_transport_mw {
182         phys_addr_t phys_addr;
183         resource_size_t phys_size;
184         resource_size_t xlat_align;
185         resource_size_t xlat_align_size;
186         void __iomem *vbase;
187         size_t xlat_size;
188         size_t buff_size;
189         void *virt_addr;
190         dma_addr_t dma_addr;
191 };
192
193 struct ntb_transport_client_dev {
194         struct list_head entry;
195         struct ntb_transport_ctx *nt;
196         struct device dev;
197 };
198
199 struct ntb_transport_ctx {
200         struct list_head entry;
201         struct list_head client_devs;
202
203         struct ntb_dev *ndev;
204
205         struct ntb_transport_mw *mw_vec;
206         struct ntb_transport_qp *qp_vec;
207         unsigned int mw_count;
208         unsigned int qp_count;
209         u64 qp_bitmap;
210         u64 qp_bitmap_free;
211
212         bool link_is_up;
213         struct delayed_work link_work;
214         struct work_struct link_cleanup;
215
216         struct dentry *debugfs_node_dir;
217 };
218
219 enum {
220         DESC_DONE_FLAG = BIT(0),
221         LINK_DOWN_FLAG = BIT(1),
222 };
223
224 struct ntb_payload_header {
225         unsigned int ver;
226         unsigned int len;
227         unsigned int flags;
228 };
229
230 enum {
231         VERSION = 0,
232         QP_LINKS,
233         NUM_QPS,
234         NUM_MWS,
235         MW0_SZ_HIGH,
236         MW0_SZ_LOW,
237         MW1_SZ_HIGH,
238         MW1_SZ_LOW,
239         MAX_SPAD,
240 };
241
242 #define dev_client_dev(__dev) \
243         container_of((__dev), struct ntb_transport_client_dev, dev)
244
245 #define drv_client(__drv) \
246         container_of((__drv), struct ntb_transport_client, driver)
247
248 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
249 #define NTB_QP_DEF_NUM_ENTRIES  100
250 #define NTB_LINK_DOWN_TIMEOUT   10
251
252 static void ntb_transport_rxc_db(unsigned long data);
253 static const struct ntb_ctx_ops ntb_transport_ops;
254 static struct ntb_client ntb_transport_client;
255
256 static int ntb_transport_bus_match(struct device *dev,
257                                    struct device_driver *drv)
258 {
259         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
260 }
261
262 static int ntb_transport_bus_probe(struct device *dev)
263 {
264         const struct ntb_transport_client *client;
265         int rc = -EINVAL;
266
267         get_device(dev);
268
269         client = drv_client(dev->driver);
270         rc = client->probe(dev);
271         if (rc)
272                 put_device(dev);
273
274         return rc;
275 }
276
277 static int ntb_transport_bus_remove(struct device *dev)
278 {
279         const struct ntb_transport_client *client;
280
281         client = drv_client(dev->driver);
282         client->remove(dev);
283
284         put_device(dev);
285
286         return 0;
287 }
288
289 static struct bus_type ntb_transport_bus = {
290         .name = "ntb_transport",
291         .match = ntb_transport_bus_match,
292         .probe = ntb_transport_bus_probe,
293         .remove = ntb_transport_bus_remove,
294 };
295
296 static LIST_HEAD(ntb_transport_list);
297
298 static int ntb_bus_init(struct ntb_transport_ctx *nt)
299 {
300         list_add(&nt->entry, &ntb_transport_list);
301         return 0;
302 }
303
304 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
305 {
306         struct ntb_transport_client_dev *client_dev, *cd;
307
308         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
309                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
310                         dev_name(&client_dev->dev));
311                 list_del(&client_dev->entry);
312                 device_unregister(&client_dev->dev);
313         }
314
315         list_del(&nt->entry);
316 }
317
318 static void ntb_transport_client_release(struct device *dev)
319 {
320         struct ntb_transport_client_dev *client_dev;
321
322         client_dev = dev_client_dev(dev);
323         kfree(client_dev);
324 }
325
326 /**
327  * ntb_transport_unregister_client_dev - Unregister NTB client device
328  * @device_name: Name of NTB client device
329  *
330  * Unregister an NTB client device with the NTB transport layer
331  */
332 void ntb_transport_unregister_client_dev(char *device_name)
333 {
334         struct ntb_transport_client_dev *client, *cd;
335         struct ntb_transport_ctx *nt;
336
337         list_for_each_entry(nt, &ntb_transport_list, entry)
338                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
339                         if (!strncmp(dev_name(&client->dev), device_name,
340                                      strlen(device_name))) {
341                                 list_del(&client->entry);
342                                 device_unregister(&client->dev);
343                         }
344 }
345 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
346
347 /**
348  * ntb_transport_register_client_dev - Register NTB client device
349  * @device_name: Name of NTB client device
350  *
351  * Register an NTB client device with the NTB transport layer
352  */
353 int ntb_transport_register_client_dev(char *device_name)
354 {
355         struct ntb_transport_client_dev *client_dev;
356         struct ntb_transport_ctx *nt;
357         int node;
358         int rc, i = 0;
359
360         if (list_empty(&ntb_transport_list))
361                 return -ENODEV;
362
363         list_for_each_entry(nt, &ntb_transport_list, entry) {
364                 struct device *dev;
365
366                 node = dev_to_node(&nt->ndev->dev);
367
368                 client_dev = kzalloc_node(sizeof(*client_dev),
369                                           GFP_KERNEL, node);
370                 if (!client_dev) {
371                         rc = -ENOMEM;
372                         goto err;
373                 }
374
375                 dev = &client_dev->dev;
376
377                 /* setup and register client devices */
378                 dev_set_name(dev, "%s%d", device_name, i);
379                 dev->bus = &ntb_transport_bus;
380                 dev->release = ntb_transport_client_release;
381                 dev->parent = &nt->ndev->dev;
382
383                 rc = device_register(dev);
384                 if (rc) {
385                         kfree(client_dev);
386                         goto err;
387                 }
388
389                 list_add_tail(&client_dev->entry, &nt->client_devs);
390                 i++;
391         }
392
393         return 0;
394
395 err:
396         ntb_transport_unregister_client_dev(device_name);
397
398         return rc;
399 }
400 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
401
402 /**
403  * ntb_transport_register_client - Register NTB client driver
404  * @drv: NTB client driver to be registered
405  *
406  * Register an NTB client driver with the NTB transport layer
407  *
408  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
409  */
410 int ntb_transport_register_client(struct ntb_transport_client *drv)
411 {
412         drv->driver.bus = &ntb_transport_bus;
413
414         if (list_empty(&ntb_transport_list))
415                 return -ENODEV;
416
417         return driver_register(&drv->driver);
418 }
419 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
420
421 /**
422  * ntb_transport_unregister_client - Unregister NTB client driver
423  * @drv: NTB client driver to be unregistered
424  *
425  * Unregister an NTB client driver with the NTB transport layer
426  *
427  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
428  */
429 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
430 {
431         driver_unregister(&drv->driver);
432 }
433 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
434
435 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
436                             loff_t *offp)
437 {
438         struct ntb_transport_qp *qp;
439         char *buf;
440         ssize_t ret, out_offset, out_count;
441
442         qp = filp->private_data;
443
444         if (!qp || !qp->link_is_up)
445                 return 0;
446
447         out_count = 1000;
448
449         buf = kmalloc(out_count, GFP_KERNEL);
450         if (!buf)
451                 return -ENOMEM;
452
453         out_offset = 0;
454         out_offset += snprintf(buf + out_offset, out_count - out_offset,
455                                "NTB QP stats\n");
456         out_offset += snprintf(buf + out_offset, out_count - out_offset,
457                                "rx_bytes - \t%llu\n", qp->rx_bytes);
458         out_offset += snprintf(buf + out_offset, out_count - out_offset,
459                                "rx_pkts - \t%llu\n", qp->rx_pkts);
460         out_offset += snprintf(buf + out_offset, out_count - out_offset,
461                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
462         out_offset += snprintf(buf + out_offset, out_count - out_offset,
463                                "rx_async - \t%llu\n", qp->rx_async);
464         out_offset += snprintf(buf + out_offset, out_count - out_offset,
465                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
466         out_offset += snprintf(buf + out_offset, out_count - out_offset,
467                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
468         out_offset += snprintf(buf + out_offset, out_count - out_offset,
469                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
470         out_offset += snprintf(buf + out_offset, out_count - out_offset,
471                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
472         out_offset += snprintf(buf + out_offset, out_count - out_offset,
473                                "rx_buff - \t%p\n", qp->rx_buff);
474         out_offset += snprintf(buf + out_offset, out_count - out_offset,
475                                "rx_index - \t%u\n", qp->rx_index);
476         out_offset += snprintf(buf + out_offset, out_count - out_offset,
477                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
478
479         out_offset += snprintf(buf + out_offset, out_count - out_offset,
480                                "tx_bytes - \t%llu\n", qp->tx_bytes);
481         out_offset += snprintf(buf + out_offset, out_count - out_offset,
482                                "tx_pkts - \t%llu\n", qp->tx_pkts);
483         out_offset += snprintf(buf + out_offset, out_count - out_offset,
484                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
485         out_offset += snprintf(buf + out_offset, out_count - out_offset,
486                                "tx_async - \t%llu\n", qp->tx_async);
487         out_offset += snprintf(buf + out_offset, out_count - out_offset,
488                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
489         out_offset += snprintf(buf + out_offset, out_count - out_offset,
490                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
491         out_offset += snprintf(buf + out_offset, out_count - out_offset,
492                                "tx_mw - \t%p\n", qp->tx_mw);
493         out_offset += snprintf(buf + out_offset, out_count - out_offset,
494                                "tx_index - \t%u\n", qp->tx_index);
495         out_offset += snprintf(buf + out_offset, out_count - out_offset,
496                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
497         out_offset += snprintf(buf + out_offset, out_count - out_offset,
498                                "qp->remote_rx_info->entry - \t%u\n",
499                                qp->remote_rx_info->entry);
500         out_offset += snprintf(buf + out_offset, out_count - out_offset,
501                                "free tx - \t%u\n",
502                                ntb_transport_tx_free_entry(qp));
503
504         out_offset += snprintf(buf + out_offset, out_count - out_offset,
505                                "\nQP Link %s\n",
506                                qp->link_is_up ? "Up" : "Down");
507         if (out_offset > out_count)
508                 out_offset = out_count;
509
510         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
511         kfree(buf);
512         return ret;
513 }
514
515 static const struct file_operations ntb_qp_debugfs_stats = {
516         .owner = THIS_MODULE,
517         .open = simple_open,
518         .read = debugfs_read,
519 };
520
521 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
522                          struct list_head *list)
523 {
524         unsigned long flags;
525
526         spin_lock_irqsave(lock, flags);
527         list_add_tail(entry, list);
528         spin_unlock_irqrestore(lock, flags);
529 }
530
531 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
532                                            struct list_head *list)
533 {
534         struct ntb_queue_entry *entry;
535         unsigned long flags;
536
537         spin_lock_irqsave(lock, flags);
538         if (list_empty(list)) {
539                 entry = NULL;
540                 goto out;
541         }
542         entry = list_first_entry(list, struct ntb_queue_entry, entry);
543         list_del(&entry->entry);
544
545 out:
546         spin_unlock_irqrestore(lock, flags);
547
548         return entry;
549 }
550
551 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
552                                            struct list_head *list,
553                                            struct list_head *to_list)
554 {
555         struct ntb_queue_entry *entry;
556         unsigned long flags;
557
558         spin_lock_irqsave(lock, flags);
559
560         if (list_empty(list)) {
561                 entry = NULL;
562         } else {
563                 entry = list_first_entry(list, struct ntb_queue_entry, entry);
564                 list_move_tail(&entry->entry, to_list);
565         }
566
567         spin_unlock_irqrestore(lock, flags);
568
569         return entry;
570 }
571
572 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
573                                      unsigned int qp_num)
574 {
575         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
576         struct ntb_transport_mw *mw;
577         unsigned int rx_size, num_qps_mw;
578         unsigned int mw_num, mw_count, qp_count;
579         unsigned int i;
580
581         mw_count = nt->mw_count;
582         qp_count = nt->qp_count;
583
584         mw_num = QP_TO_MW(nt, qp_num);
585         mw = &nt->mw_vec[mw_num];
586
587         if (!mw->virt_addr)
588                 return -ENOMEM;
589
590         if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
591                 num_qps_mw = qp_count / mw_count + 1;
592         else
593                 num_qps_mw = qp_count / mw_count;
594
595         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
596         qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
597         rx_size -= sizeof(struct ntb_rx_info);
598
599         qp->remote_rx_info = qp->rx_buff + rx_size;
600
601         /* Due to housekeeping, there must be atleast 2 buffs */
602         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
603         qp->rx_max_entry = rx_size / qp->rx_max_frame;
604         qp->rx_index = 0;
605
606         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
607
608         /* setup the hdr offsets with 0's */
609         for (i = 0; i < qp->rx_max_entry; i++) {
610                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
611                                 sizeof(struct ntb_payload_header));
612                 memset(offset, 0, sizeof(struct ntb_payload_header));
613         }
614
615         qp->rx_pkts = 0;
616         qp->tx_pkts = 0;
617         qp->tx_index = 0;
618
619         return 0;
620 }
621
622 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
623 {
624         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
625         struct pci_dev *pdev = nt->ndev->pdev;
626
627         if (!mw->virt_addr)
628                 return;
629
630         ntb_mw_clear_trans(nt->ndev, num_mw);
631         dma_free_coherent(&pdev->dev, mw->buff_size,
632                           mw->virt_addr, mw->dma_addr);
633         mw->xlat_size = 0;
634         mw->buff_size = 0;
635         mw->virt_addr = NULL;
636 }
637
638 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
639                       resource_size_t size)
640 {
641         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
642         struct pci_dev *pdev = nt->ndev->pdev;
643         size_t xlat_size, buff_size;
644         int rc;
645
646         if (!size)
647                 return -EINVAL;
648
649         xlat_size = round_up(size, mw->xlat_align_size);
650         buff_size = round_up(size, mw->xlat_align);
651
652         /* No need to re-setup */
653         if (mw->xlat_size == xlat_size)
654                 return 0;
655
656         if (mw->buff_size)
657                 ntb_free_mw(nt, num_mw);
658
659         /* Alloc memory for receiving data.  Must be aligned */
660         mw->xlat_size = xlat_size;
661         mw->buff_size = buff_size;
662
663         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
664                                            &mw->dma_addr, GFP_KERNEL);
665         if (!mw->virt_addr) {
666                 mw->xlat_size = 0;
667                 mw->buff_size = 0;
668                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
669                         buff_size);
670                 return -ENOMEM;
671         }
672
673         /*
674          * we must ensure that the memory address allocated is BAR size
675          * aligned in order for the XLAT register to take the value. This
676          * is a requirement of the hardware. It is recommended to setup CMA
677          * for BAR sizes equal or greater than 4MB.
678          */
679         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
680                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
681                         &mw->dma_addr);
682                 ntb_free_mw(nt, num_mw);
683                 return -ENOMEM;
684         }
685
686         /* Notify HW the memory location of the receive buffer */
687         rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
688         if (rc) {
689                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
690                 ntb_free_mw(nt, num_mw);
691                 return -EIO;
692         }
693
694         return 0;
695 }
696
697 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
698 {
699         qp->link_is_up = false;
700
701         qp->tx_index = 0;
702         qp->rx_index = 0;
703         qp->rx_bytes = 0;
704         qp->rx_pkts = 0;
705         qp->rx_ring_empty = 0;
706         qp->rx_err_no_buf = 0;
707         qp->rx_err_oflow = 0;
708         qp->rx_err_ver = 0;
709         qp->rx_memcpy = 0;
710         qp->rx_async = 0;
711         qp->tx_bytes = 0;
712         qp->tx_pkts = 0;
713         qp->tx_ring_full = 0;
714         qp->tx_err_no_buf = 0;
715         qp->tx_memcpy = 0;
716         qp->tx_async = 0;
717 }
718
719 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
720 {
721         struct ntb_transport_ctx *nt = qp->transport;
722         struct pci_dev *pdev = nt->ndev->pdev;
723
724         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
725
726         cancel_delayed_work_sync(&qp->link_work);
727         ntb_qp_link_down_reset(qp);
728
729         if (qp->event_handler)
730                 qp->event_handler(qp->cb_data, qp->link_is_up);
731 }
732
733 static void ntb_qp_link_cleanup_work(struct work_struct *work)
734 {
735         struct ntb_transport_qp *qp = container_of(work,
736                                                    struct ntb_transport_qp,
737                                                    link_cleanup);
738         struct ntb_transport_ctx *nt = qp->transport;
739
740         ntb_qp_link_cleanup(qp);
741
742         if (nt->link_is_up)
743                 schedule_delayed_work(&qp->link_work,
744                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
745 }
746
747 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
748 {
749         schedule_work(&qp->link_cleanup);
750 }
751
752 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
753 {
754         struct ntb_transport_qp *qp;
755         u64 qp_bitmap_alloc;
756         int i;
757
758         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
759
760         /* Pass along the info to any clients */
761         for (i = 0; i < nt->qp_count; i++)
762                 if (qp_bitmap_alloc & BIT_ULL(i)) {
763                         qp = &nt->qp_vec[i];
764                         ntb_qp_link_cleanup(qp);
765                         cancel_work_sync(&qp->link_cleanup);
766                         cancel_delayed_work_sync(&qp->link_work);
767                 }
768
769         if (!nt->link_is_up)
770                 cancel_delayed_work_sync(&nt->link_work);
771
772         /* The scratchpad registers keep the values if the remote side
773          * goes down, blast them now to give them a sane value the next
774          * time they are accessed
775          */
776         for (i = 0; i < MAX_SPAD; i++)
777                 ntb_spad_write(nt->ndev, i, 0);
778 }
779
780 static void ntb_transport_link_cleanup_work(struct work_struct *work)
781 {
782         struct ntb_transport_ctx *nt =
783                 container_of(work, struct ntb_transport_ctx, link_cleanup);
784
785         ntb_transport_link_cleanup(nt);
786 }
787
788 static void ntb_transport_event_callback(void *data)
789 {
790         struct ntb_transport_ctx *nt = data;
791
792         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
793                 schedule_delayed_work(&nt->link_work, 0);
794         else
795                 schedule_work(&nt->link_cleanup);
796 }
797
798 static void ntb_transport_link_work(struct work_struct *work)
799 {
800         struct ntb_transport_ctx *nt =
801                 container_of(work, struct ntb_transport_ctx, link_work.work);
802         struct ntb_dev *ndev = nt->ndev;
803         struct pci_dev *pdev = ndev->pdev;
804         resource_size_t size;
805         u32 val;
806         int rc, i, spad;
807
808         /* send the local info, in the opposite order of the way we read it */
809         for (i = 0; i < nt->mw_count; i++) {
810                 size = nt->mw_vec[i].phys_size;
811
812                 if (max_mw_size && size > max_mw_size)
813                         size = max_mw_size;
814
815                 spad = MW0_SZ_HIGH + (i * 2);
816                 ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
817
818                 spad = MW0_SZ_LOW + (i * 2);
819                 ntb_peer_spad_write(ndev, spad, (u32)size);
820         }
821
822         ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
823
824         ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
825
826         ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
827
828         /* Query the remote side for its info */
829         val = ntb_spad_read(ndev, VERSION);
830         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
831         if (val != NTB_TRANSPORT_VERSION)
832                 goto out;
833
834         val = ntb_spad_read(ndev, NUM_QPS);
835         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
836         if (val != nt->qp_count)
837                 goto out;
838
839         val = ntb_spad_read(ndev, NUM_MWS);
840         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
841         if (val != nt->mw_count)
842                 goto out;
843
844         for (i = 0; i < nt->mw_count; i++) {
845                 u64 val64;
846
847                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
848                 val64 = (u64)val << 32;
849
850                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
851                 val64 |= val;
852
853                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
854
855                 rc = ntb_set_mw(nt, i, val64);
856                 if (rc)
857                         goto out1;
858         }
859
860         nt->link_is_up = true;
861
862         for (i = 0; i < nt->qp_count; i++) {
863                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
864
865                 ntb_transport_setup_qp_mw(nt, i);
866
867                 if (qp->client_ready)
868                         schedule_delayed_work(&qp->link_work, 0);
869         }
870
871         return;
872
873 out1:
874         for (i = 0; i < nt->mw_count; i++)
875                 ntb_free_mw(nt, i);
876 out:
877         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
878                 schedule_delayed_work(&nt->link_work,
879                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
880 }
881
882 static void ntb_qp_link_work(struct work_struct *work)
883 {
884         struct ntb_transport_qp *qp = container_of(work,
885                                                    struct ntb_transport_qp,
886                                                    link_work.work);
887         struct pci_dev *pdev = qp->ndev->pdev;
888         struct ntb_transport_ctx *nt = qp->transport;
889         int val;
890
891         WARN_ON(!nt->link_is_up);
892
893         val = ntb_spad_read(nt->ndev, QP_LINKS);
894
895         ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
896
897         /* query remote spad for qp ready bits */
898         ntb_peer_spad_read(nt->ndev, QP_LINKS);
899         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
900
901         /* See if the remote side is up */
902         if (val & BIT(qp->qp_num)) {
903                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
904                 qp->link_is_up = true;
905
906                 if (qp->event_handler)
907                         qp->event_handler(qp->cb_data, qp->link_is_up);
908
909                 tasklet_schedule(&qp->rxc_db_work);
910         } else if (nt->link_is_up)
911                 schedule_delayed_work(&qp->link_work,
912                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
913 }
914
915 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
916                                     unsigned int qp_num)
917 {
918         struct ntb_transport_qp *qp;
919         struct ntb_transport_mw *mw;
920         phys_addr_t mw_base;
921         resource_size_t mw_size;
922         unsigned int num_qps_mw, tx_size;
923         unsigned int mw_num, mw_count, qp_count;
924         u64 qp_offset;
925
926         mw_count = nt->mw_count;
927         qp_count = nt->qp_count;
928
929         mw_num = QP_TO_MW(nt, qp_num);
930         mw = &nt->mw_vec[mw_num];
931
932         qp = &nt->qp_vec[qp_num];
933         qp->qp_num = qp_num;
934         qp->transport = nt;
935         qp->ndev = nt->ndev;
936         qp->client_ready = false;
937         qp->event_handler = NULL;
938         ntb_qp_link_down_reset(qp);
939
940         if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
941                 num_qps_mw = qp_count / mw_count + 1;
942         else
943                 num_qps_mw = qp_count / mw_count;
944
945         mw_base = nt->mw_vec[mw_num].phys_addr;
946         mw_size = nt->mw_vec[mw_num].phys_size;
947
948         tx_size = (unsigned int)mw_size / num_qps_mw;
949         qp_offset = tx_size * qp_num / mw_count;
950
951         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
952         if (!qp->tx_mw)
953                 return -EINVAL;
954
955         qp->tx_mw_phys = mw_base + qp_offset;
956         if (!qp->tx_mw_phys)
957                 return -EINVAL;
958
959         tx_size -= sizeof(struct ntb_rx_info);
960         qp->rx_info = qp->tx_mw + tx_size;
961
962         /* Due to housekeeping, there must be atleast 2 buffs */
963         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
964         qp->tx_max_entry = tx_size / qp->tx_max_frame;
965
966         if (nt->debugfs_node_dir) {
967                 char debugfs_name[4];
968
969                 snprintf(debugfs_name, 4, "qp%d", qp_num);
970                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
971                                                      nt->debugfs_node_dir);
972
973                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
974                                                         qp->debugfs_dir, qp,
975                                                         &ntb_qp_debugfs_stats);
976         } else {
977                 qp->debugfs_dir = NULL;
978                 qp->debugfs_stats = NULL;
979         }
980
981         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
982         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
983
984         spin_lock_init(&qp->ntb_rx_q_lock);
985         spin_lock_init(&qp->ntb_tx_free_q_lock);
986
987         INIT_LIST_HEAD(&qp->rx_post_q);
988         INIT_LIST_HEAD(&qp->rx_pend_q);
989         INIT_LIST_HEAD(&qp->rx_free_q);
990         INIT_LIST_HEAD(&qp->tx_free_q);
991
992         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
993                      (unsigned long)qp);
994
995         return 0;
996 }
997
998 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
999 {
1000         struct ntb_transport_ctx *nt;
1001         struct ntb_transport_mw *mw;
1002         unsigned int mw_count, qp_count;
1003         u64 qp_bitmap;
1004         int node;
1005         int rc, i;
1006
1007         if (ntb_db_is_unsafe(ndev))
1008                 dev_dbg(&ndev->dev,
1009                         "doorbell is unsafe, proceed anyway...\n");
1010         if (ntb_spad_is_unsafe(ndev))
1011                 dev_dbg(&ndev->dev,
1012                         "scratchpad is unsafe, proceed anyway...\n");
1013
1014         node = dev_to_node(&ndev->dev);
1015
1016         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1017         if (!nt)
1018                 return -ENOMEM;
1019
1020         nt->ndev = ndev;
1021
1022         mw_count = ntb_mw_count(ndev);
1023
1024         nt->mw_count = mw_count;
1025
1026         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1027                                   GFP_KERNEL, node);
1028         if (!nt->mw_vec) {
1029                 rc = -ENOMEM;
1030                 goto err;
1031         }
1032
1033         for (i = 0; i < mw_count; i++) {
1034                 mw = &nt->mw_vec[i];
1035
1036                 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1037                                       &mw->xlat_align, &mw->xlat_align_size);
1038                 if (rc)
1039                         goto err1;
1040
1041                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1042                 if (!mw->vbase) {
1043                         rc = -ENOMEM;
1044                         goto err1;
1045                 }
1046
1047                 mw->buff_size = 0;
1048                 mw->xlat_size = 0;
1049                 mw->virt_addr = NULL;
1050                 mw->dma_addr = 0;
1051         }
1052
1053         qp_bitmap = ntb_db_valid_mask(ndev);
1054
1055         qp_count = ilog2(qp_bitmap);
1056         if (max_num_clients && max_num_clients < qp_count)
1057                 qp_count = max_num_clients;
1058         else if (mw_count < qp_count)
1059                 qp_count = mw_count;
1060
1061         qp_bitmap &= BIT_ULL(qp_count) - 1;
1062
1063         nt->qp_count = qp_count;
1064         nt->qp_bitmap = qp_bitmap;
1065         nt->qp_bitmap_free = qp_bitmap;
1066
1067         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1068                                   GFP_KERNEL, node);
1069         if (!nt->qp_vec) {
1070                 rc = -ENOMEM;
1071                 goto err2;
1072         }
1073
1074         if (nt_debugfs_dir) {
1075                 nt->debugfs_node_dir =
1076                         debugfs_create_dir(pci_name(ndev->pdev),
1077                                            nt_debugfs_dir);
1078         }
1079
1080         for (i = 0; i < qp_count; i++) {
1081                 rc = ntb_transport_init_queue(nt, i);
1082                 if (rc)
1083                         goto err3;
1084         }
1085
1086         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1087         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1088
1089         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1090         if (rc)
1091                 goto err3;
1092
1093         INIT_LIST_HEAD(&nt->client_devs);
1094         rc = ntb_bus_init(nt);
1095         if (rc)
1096                 goto err4;
1097
1098         nt->link_is_up = false;
1099         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1100         ntb_link_event(ndev);
1101
1102         return 0;
1103
1104 err4:
1105         ntb_clear_ctx(ndev);
1106 err3:
1107         kfree(nt->qp_vec);
1108 err2:
1109         kfree(nt->mw_vec);
1110 err1:
1111         while (i--) {
1112                 mw = &nt->mw_vec[i];
1113                 iounmap(mw->vbase);
1114         }
1115 err:
1116         kfree(nt);
1117         return rc;
1118 }
1119
1120 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1121 {
1122         struct ntb_transport_ctx *nt = ndev->ctx;
1123         struct ntb_transport_qp *qp;
1124         u64 qp_bitmap_alloc;
1125         int i;
1126
1127         ntb_transport_link_cleanup(nt);
1128         cancel_work_sync(&nt->link_cleanup);
1129         cancel_delayed_work_sync(&nt->link_work);
1130
1131         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1132
1133         /* verify that all the qp's are freed */
1134         for (i = 0; i < nt->qp_count; i++) {
1135                 qp = &nt->qp_vec[i];
1136                 if (qp_bitmap_alloc & BIT_ULL(i))
1137                         ntb_transport_free_queue(qp);
1138                 debugfs_remove_recursive(qp->debugfs_dir);
1139         }
1140
1141         ntb_link_disable(ndev);
1142         ntb_clear_ctx(ndev);
1143
1144         ntb_bus_remove(nt);
1145
1146         for (i = nt->mw_count; i--; ) {
1147                 ntb_free_mw(nt, i);
1148                 iounmap(nt->mw_vec[i].vbase);
1149         }
1150
1151         kfree(nt->qp_vec);
1152         kfree(nt->mw_vec);
1153         kfree(nt);
1154 }
1155
1156 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1157 {
1158         struct ntb_queue_entry *entry;
1159         void *cb_data;
1160         unsigned int len;
1161         unsigned long irqflags;
1162
1163         spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1164
1165         while (!list_empty(&qp->rx_post_q)) {
1166                 entry = list_first_entry(&qp->rx_post_q,
1167                                          struct ntb_queue_entry, entry);
1168                 if (!(entry->flags & DESC_DONE_FLAG))
1169                         break;
1170
1171                 entry->rx_hdr->flags = 0;
1172                 iowrite32(entry->index, &qp->rx_info->entry);
1173
1174                 cb_data = entry->cb_data;
1175                 len = entry->len;
1176
1177                 list_move_tail(&entry->entry, &qp->rx_free_q);
1178
1179                 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1180
1181                 if (qp->rx_handler && qp->client_ready)
1182                         qp->rx_handler(qp, qp->cb_data, cb_data, len);
1183
1184                 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1185         }
1186
1187         spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1188 }
1189
1190 static void ntb_rx_copy_callback(void *data)
1191 {
1192         struct ntb_queue_entry *entry = data;
1193
1194         entry->flags |= DESC_DONE_FLAG;
1195
1196         ntb_complete_rxc(entry->qp);
1197 }
1198
1199 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1200 {
1201         void *buf = entry->buf;
1202         size_t len = entry->len;
1203
1204         memcpy(buf, offset, len);
1205
1206         /* Ensure that the data is fully copied out before clearing the flag */
1207         wmb();
1208
1209         ntb_rx_copy_callback(entry);
1210 }
1211
1212 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1213 {
1214         struct dma_async_tx_descriptor *txd;
1215         struct ntb_transport_qp *qp = entry->qp;
1216         struct dma_chan *chan = qp->dma_chan;
1217         struct dma_device *device;
1218         size_t pay_off, buff_off, len;
1219         struct dmaengine_unmap_data *unmap;
1220         dma_cookie_t cookie;
1221         void *buf = entry->buf;
1222
1223         len = entry->len;
1224
1225         if (!chan)
1226                 goto err;
1227
1228         if (len < copy_bytes)
1229                 goto err_wait;
1230
1231         device = chan->device;
1232         pay_off = (size_t)offset & ~PAGE_MASK;
1233         buff_off = (size_t)buf & ~PAGE_MASK;
1234
1235         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1236                 goto err_wait;
1237
1238         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1239         if (!unmap)
1240                 goto err_wait;
1241
1242         unmap->len = len;
1243         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1244                                       pay_off, len, DMA_TO_DEVICE);
1245         if (dma_mapping_error(device->dev, unmap->addr[0]))
1246                 goto err_get_unmap;
1247
1248         unmap->to_cnt = 1;
1249
1250         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1251                                       buff_off, len, DMA_FROM_DEVICE);
1252         if (dma_mapping_error(device->dev, unmap->addr[1]))
1253                 goto err_get_unmap;
1254
1255         unmap->from_cnt = 1;
1256
1257         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1258                                              unmap->addr[0], len,
1259                                              DMA_PREP_INTERRUPT);
1260         if (!txd)
1261                 goto err_get_unmap;
1262
1263         txd->callback = ntb_rx_copy_callback;
1264         txd->callback_param = entry;
1265         dma_set_unmap(txd, unmap);
1266
1267         cookie = dmaengine_submit(txd);
1268         if (dma_submit_error(cookie))
1269                 goto err_set_unmap;
1270
1271         dmaengine_unmap_put(unmap);
1272
1273         qp->last_cookie = cookie;
1274
1275         qp->rx_async++;
1276
1277         return;
1278
1279 err_set_unmap:
1280         dmaengine_unmap_put(unmap);
1281 err_get_unmap:
1282         dmaengine_unmap_put(unmap);
1283 err_wait:
1284         /* If the callbacks come out of order, the writing of the index to the
1285          * last completed will be out of order.  This may result in the
1286          * receive stalling forever.
1287          */
1288         dma_sync_wait(chan, qp->last_cookie);
1289 err:
1290         ntb_memcpy_rx(entry, offset);
1291         qp->rx_memcpy++;
1292 }
1293
1294 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1295 {
1296         struct ntb_payload_header *hdr;
1297         struct ntb_queue_entry *entry;
1298         void *offset;
1299
1300         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1301         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1302
1303         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1304                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1305
1306         if (!(hdr->flags & DESC_DONE_FLAG)) {
1307                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1308                 qp->rx_ring_empty++;
1309                 return -EAGAIN;
1310         }
1311
1312         if (hdr->flags & LINK_DOWN_FLAG) {
1313                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1314                 ntb_qp_link_down(qp);
1315                 hdr->flags = 0;
1316                 return -EAGAIN;
1317         }
1318
1319         if (hdr->ver != (u32)qp->rx_pkts) {
1320                 dev_dbg(&qp->ndev->pdev->dev,
1321                         "version mismatch, expected %llu - got %u\n",
1322                         qp->rx_pkts, hdr->ver);
1323                 qp->rx_err_ver++;
1324                 return -EIO;
1325         }
1326
1327         entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1328         if (!entry) {
1329                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1330                 qp->rx_err_no_buf++;
1331                 return -EAGAIN;
1332         }
1333
1334         entry->rx_hdr = hdr;
1335         entry->index = qp->rx_index;
1336
1337         if (hdr->len > entry->len) {
1338                 dev_dbg(&qp->ndev->pdev->dev,
1339                         "receive buffer overflow! Wanted %d got %d\n",
1340                         hdr->len, entry->len);
1341                 qp->rx_err_oflow++;
1342
1343                 entry->len = -EIO;
1344                 entry->flags |= DESC_DONE_FLAG;
1345
1346                 ntb_complete_rxc(qp);
1347         } else {
1348                 dev_dbg(&qp->ndev->pdev->dev,
1349                         "RX OK index %u ver %u size %d into buf size %d\n",
1350                         qp->rx_index, hdr->ver, hdr->len, entry->len);
1351
1352                 qp->rx_bytes += hdr->len;
1353                 qp->rx_pkts++;
1354
1355                 entry->len = hdr->len;
1356
1357                 ntb_async_rx(entry, offset);
1358         }
1359
1360         qp->rx_index++;
1361         qp->rx_index %= qp->rx_max_entry;
1362
1363         return 0;
1364 }
1365
1366 static void ntb_transport_rxc_db(unsigned long data)
1367 {
1368         struct ntb_transport_qp *qp = (void *)data;
1369         int rc, i;
1370
1371         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1372                 __func__, qp->qp_num);
1373
1374         /* Limit the number of packets processed in a single interrupt to
1375          * provide fairness to others
1376          */
1377         for (i = 0; i < qp->rx_max_entry; i++) {
1378                 rc = ntb_process_rxc(qp);
1379                 if (rc)
1380                         break;
1381         }
1382
1383         if (i && qp->dma_chan)
1384                 dma_async_issue_pending(qp->dma_chan);
1385
1386         if (i == qp->rx_max_entry) {
1387                 /* there is more work to do */
1388                 tasklet_schedule(&qp->rxc_db_work);
1389         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1390                 /* the doorbell bit is set: clear it */
1391                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1392                 /* ntb_db_read ensures ntb_db_clear write is committed */
1393                 ntb_db_read(qp->ndev);
1394
1395                 /* an interrupt may have arrived between finishing
1396                  * ntb_process_rxc and clearing the doorbell bit:
1397                  * there might be some more work to do.
1398                  */
1399                 tasklet_schedule(&qp->rxc_db_work);
1400         }
1401 }
1402
1403 static void ntb_tx_copy_callback(void *data)
1404 {
1405         struct ntb_queue_entry *entry = data;
1406         struct ntb_transport_qp *qp = entry->qp;
1407         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1408
1409         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1410
1411         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1412
1413         /* The entry length can only be zero if the packet is intended to be a
1414          * "link down" or similar.  Since no payload is being sent in these
1415          * cases, there is nothing to add to the completion queue.
1416          */
1417         if (entry->len > 0) {
1418                 qp->tx_bytes += entry->len;
1419
1420                 if (qp->tx_handler)
1421                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1422                                        entry->len);
1423         }
1424
1425         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1426 }
1427
1428 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1429 {
1430 #ifdef ARCH_HAS_NOCACHE_UACCESS
1431         /*
1432          * Using non-temporal mov to improve performance on non-cached
1433          * writes, even though we aren't actually copying from user space.
1434          */
1435         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1436 #else
1437         memcpy_toio(offset, entry->buf, entry->len);
1438 #endif
1439
1440         /* Ensure that the data is fully copied out before setting the flags */
1441         wmb();
1442
1443         ntb_tx_copy_callback(entry);
1444 }
1445
1446 static void ntb_async_tx(struct ntb_transport_qp *qp,
1447                          struct ntb_queue_entry *entry)
1448 {
1449         struct ntb_payload_header __iomem *hdr;
1450         struct dma_async_tx_descriptor *txd;
1451         struct dma_chan *chan = qp->dma_chan;
1452         struct dma_device *device;
1453         size_t dest_off, buff_off;
1454         struct dmaengine_unmap_data *unmap;
1455         dma_addr_t dest;
1456         dma_cookie_t cookie;
1457         void __iomem *offset;
1458         size_t len = entry->len;
1459         void *buf = entry->buf;
1460
1461         offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1462         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1463         entry->tx_hdr = hdr;
1464
1465         iowrite32(entry->len, &hdr->len);
1466         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1467
1468         if (!chan)
1469                 goto err;
1470
1471         if (len < copy_bytes)
1472                 goto err;
1473
1474         device = chan->device;
1475         dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1476         buff_off = (size_t)buf & ~PAGE_MASK;
1477         dest_off = (size_t)dest & ~PAGE_MASK;
1478
1479         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1480                 goto err;
1481
1482         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1483         if (!unmap)
1484                 goto err;
1485
1486         unmap->len = len;
1487         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1488                                       buff_off, len, DMA_TO_DEVICE);
1489         if (dma_mapping_error(device->dev, unmap->addr[0]))
1490                 goto err_get_unmap;
1491
1492         unmap->to_cnt = 1;
1493
1494         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1495                                              DMA_PREP_INTERRUPT);
1496         if (!txd)
1497                 goto err_get_unmap;
1498
1499         txd->callback = ntb_tx_copy_callback;
1500         txd->callback_param = entry;
1501         dma_set_unmap(txd, unmap);
1502
1503         cookie = dmaengine_submit(txd);
1504         if (dma_submit_error(cookie))
1505                 goto err_set_unmap;
1506
1507         dmaengine_unmap_put(unmap);
1508
1509         dma_async_issue_pending(chan);
1510         qp->tx_async++;
1511
1512         return;
1513 err_set_unmap:
1514         dmaengine_unmap_put(unmap);
1515 err_get_unmap:
1516         dmaengine_unmap_put(unmap);
1517 err:
1518         ntb_memcpy_tx(entry, offset);
1519         qp->tx_memcpy++;
1520 }
1521
1522 static int ntb_process_tx(struct ntb_transport_qp *qp,
1523                           struct ntb_queue_entry *entry)
1524 {
1525         if (qp->tx_index == qp->remote_rx_info->entry) {
1526                 qp->tx_ring_full++;
1527                 return -EAGAIN;
1528         }
1529
1530         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1531                 if (qp->tx_handler)
1532                         qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1533
1534                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1535                              &qp->tx_free_q);
1536                 return 0;
1537         }
1538
1539         ntb_async_tx(qp, entry);
1540
1541         qp->tx_index++;
1542         qp->tx_index %= qp->tx_max_entry;
1543
1544         qp->tx_pkts++;
1545
1546         return 0;
1547 }
1548
1549 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1550 {
1551         struct pci_dev *pdev = qp->ndev->pdev;
1552         struct ntb_queue_entry *entry;
1553         int i, rc;
1554
1555         if (!qp->link_is_up)
1556                 return;
1557
1558         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1559
1560         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1561                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1562                 if (entry)
1563                         break;
1564                 msleep(100);
1565         }
1566
1567         if (!entry)
1568                 return;
1569
1570         entry->cb_data = NULL;
1571         entry->buf = NULL;
1572         entry->len = 0;
1573         entry->flags = LINK_DOWN_FLAG;
1574
1575         rc = ntb_process_tx(qp, entry);
1576         if (rc)
1577                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1578                         qp->qp_num);
1579
1580         ntb_qp_link_down_reset(qp);
1581 }
1582
1583 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1584 {
1585         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1586 }
1587
1588 /**
1589  * ntb_transport_create_queue - Create a new NTB transport layer queue
1590  * @rx_handler: receive callback function
1591  * @tx_handler: transmit callback function
1592  * @event_handler: event callback function
1593  *
1594  * Create a new NTB transport layer queue and provide the queue with a callback
1595  * routine for both transmit and receive.  The receive callback routine will be
1596  * used to pass up data when the transport has received it on the queue.   The
1597  * transmit callback routine will be called when the transport has completed the
1598  * transmission of the data on the queue and the data is ready to be freed.
1599  *
1600  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1601  */
1602 struct ntb_transport_qp *
1603 ntb_transport_create_queue(void *data, struct device *client_dev,
1604                            const struct ntb_queue_handlers *handlers)
1605 {
1606         struct ntb_dev *ndev;
1607         struct pci_dev *pdev;
1608         struct ntb_transport_ctx *nt;
1609         struct ntb_queue_entry *entry;
1610         struct ntb_transport_qp *qp;
1611         u64 qp_bit;
1612         unsigned int free_queue;
1613         dma_cap_mask_t dma_mask;
1614         int node;
1615         int i;
1616
1617         ndev = dev_ntb(client_dev->parent);
1618         pdev = ndev->pdev;
1619         nt = ndev->ctx;
1620
1621         node = dev_to_node(&ndev->dev);
1622
1623         free_queue = ffs(nt->qp_bitmap);
1624         if (!free_queue)
1625                 goto err;
1626
1627         /* decrement free_queue to make it zero based */
1628         free_queue--;
1629
1630         qp = &nt->qp_vec[free_queue];
1631         qp_bit = BIT_ULL(qp->qp_num);
1632
1633         nt->qp_bitmap_free &= ~qp_bit;
1634
1635         qp->cb_data = data;
1636         qp->rx_handler = handlers->rx_handler;
1637         qp->tx_handler = handlers->tx_handler;
1638         qp->event_handler = handlers->event_handler;
1639
1640         dma_cap_zero(dma_mask);
1641         dma_cap_set(DMA_MEMCPY, dma_mask);
1642
1643         if (use_dma) {
1644                 qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1645                                                    (void *)(unsigned long)node);
1646                 if (!qp->dma_chan)
1647                         dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1648         } else {
1649                 qp->dma_chan = NULL;
1650         }
1651         dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1652
1653         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1654                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1655                 if (!entry)
1656                         goto err1;
1657
1658                 entry->qp = qp;
1659                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1660                              &qp->rx_free_q);
1661         }
1662
1663         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1664                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1665                 if (!entry)
1666                         goto err2;
1667
1668                 entry->qp = qp;
1669                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1670                              &qp->tx_free_q);
1671         }
1672
1673         ntb_db_clear(qp->ndev, qp_bit);
1674         ntb_db_clear_mask(qp->ndev, qp_bit);
1675
1676         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1677
1678         return qp;
1679
1680 err2:
1681         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1682                 kfree(entry);
1683 err1:
1684         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1685                 kfree(entry);
1686         if (qp->dma_chan)
1687                 dma_release_channel(qp->dma_chan);
1688         nt->qp_bitmap_free |= qp_bit;
1689 err:
1690         return NULL;
1691 }
1692 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1693
1694 /**
1695  * ntb_transport_free_queue - Frees NTB transport queue
1696  * @qp: NTB queue to be freed
1697  *
1698  * Frees NTB transport queue
1699  */
1700 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1701 {
1702         struct pci_dev *pdev;
1703         struct ntb_queue_entry *entry;
1704         u64 qp_bit;
1705
1706         if (!qp)
1707                 return;
1708
1709         pdev = qp->ndev->pdev;
1710
1711         if (qp->dma_chan) {
1712                 struct dma_chan *chan = qp->dma_chan;
1713                 /* Putting the dma_chan to NULL will force any new traffic to be
1714                  * processed by the CPU instead of the DAM engine
1715                  */
1716                 qp->dma_chan = NULL;
1717
1718                 /* Try to be nice and wait for any queued DMA engine
1719                  * transactions to process before smashing it with a rock
1720                  */
1721                 dma_sync_wait(chan, qp->last_cookie);
1722                 dmaengine_terminate_all(chan);
1723                 dma_release_channel(chan);
1724         }
1725
1726         qp_bit = BIT_ULL(qp->qp_num);
1727
1728         ntb_db_set_mask(qp->ndev, qp_bit);
1729         tasklet_disable(&qp->rxc_db_work);
1730
1731         cancel_delayed_work_sync(&qp->link_work);
1732
1733         qp->cb_data = NULL;
1734         qp->rx_handler = NULL;
1735         qp->tx_handler = NULL;
1736         qp->event_handler = NULL;
1737
1738         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1739                 kfree(entry);
1740
1741         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1742                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1743                 kfree(entry);
1744         }
1745
1746         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1747                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1748                 kfree(entry);
1749         }
1750
1751         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1752                 kfree(entry);
1753
1754         qp->transport->qp_bitmap_free |= qp_bit;
1755
1756         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1757 }
1758 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1759
1760 /**
1761  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1762  * @qp: NTB queue to be freed
1763  * @len: pointer to variable to write enqueued buffers length
1764  *
1765  * Dequeues unused buffers from receive queue.  Should only be used during
1766  * shutdown of qp.
1767  *
1768  * RETURNS: NULL error value on error, or void* for success.
1769  */
1770 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1771 {
1772         struct ntb_queue_entry *entry;
1773         void *buf;
1774
1775         if (!qp || qp->client_ready)
1776                 return NULL;
1777
1778         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1779         if (!entry)
1780                 return NULL;
1781
1782         buf = entry->cb_data;
1783         *len = entry->len;
1784
1785         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1786
1787         return buf;
1788 }
1789 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1790
1791 /**
1792  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1793  * @qp: NTB transport layer queue the entry is to be enqueued on
1794  * @cb: per buffer pointer for callback function to use
1795  * @data: pointer to data buffer that incoming packets will be copied into
1796  * @len: length of the data buffer
1797  *
1798  * Enqueue a new receive buffer onto the transport queue into which a NTB
1799  * payload can be received into.
1800  *
1801  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1802  */
1803 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1804                              unsigned int len)
1805 {
1806         struct ntb_queue_entry *entry;
1807
1808         if (!qp)
1809                 return -EINVAL;
1810
1811         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1812         if (!entry)
1813                 return -ENOMEM;
1814
1815         entry->cb_data = cb;
1816         entry->buf = data;
1817         entry->len = len;
1818         entry->flags = 0;
1819
1820         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
1821
1822         tasklet_schedule(&qp->rxc_db_work);
1823
1824         return 0;
1825 }
1826 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1827
1828 /**
1829  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1830  * @qp: NTB transport layer queue the entry is to be enqueued on
1831  * @cb: per buffer pointer for callback function to use
1832  * @data: pointer to data buffer that will be sent
1833  * @len: length of the data buffer
1834  *
1835  * Enqueue a new transmit buffer onto the transport queue from which a NTB
1836  * payload will be transmitted.  This assumes that a lock is being held to
1837  * serialize access to the qp.
1838  *
1839  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1840  */
1841 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1842                              unsigned int len)
1843 {
1844         struct ntb_queue_entry *entry;
1845         int rc;
1846
1847         if (!qp || !qp->link_is_up || !len)
1848                 return -EINVAL;
1849
1850         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1851         if (!entry) {
1852                 qp->tx_err_no_buf++;
1853                 return -EBUSY;
1854         }
1855
1856         entry->cb_data = cb;
1857         entry->buf = data;
1858         entry->len = len;
1859         entry->flags = 0;
1860
1861         rc = ntb_process_tx(qp, entry);
1862         if (rc)
1863                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1864                              &qp->tx_free_q);
1865
1866         return rc;
1867 }
1868 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1869
1870 /**
1871  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1872  * @qp: NTB transport layer queue to be enabled
1873  *
1874  * Notify NTB transport layer of client readiness to use queue
1875  */
1876 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1877 {
1878         if (!qp)
1879                 return;
1880
1881         qp->client_ready = true;
1882
1883         if (qp->transport->link_is_up)
1884                 schedule_delayed_work(&qp->link_work, 0);
1885 }
1886 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1887
1888 /**
1889  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1890  * @qp: NTB transport layer queue to be disabled
1891  *
1892  * Notify NTB transport layer of client's desire to no longer receive data on
1893  * transport queue specified.  It is the client's responsibility to ensure all
1894  * entries on queue are purged or otherwise handled appropriately.
1895  */
1896 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1897 {
1898         struct pci_dev *pdev;
1899         int val;
1900
1901         if (!qp)
1902                 return;
1903
1904         pdev = qp->ndev->pdev;
1905         qp->client_ready = false;
1906
1907         val = ntb_spad_read(qp->ndev, QP_LINKS);
1908
1909         ntb_peer_spad_write(qp->ndev, QP_LINKS,
1910                             val & ~BIT(qp->qp_num));
1911
1912         if (qp->link_is_up)
1913                 ntb_send_link_down(qp);
1914         else
1915                 cancel_delayed_work_sync(&qp->link_work);
1916 }
1917 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1918
1919 /**
1920  * ntb_transport_link_query - Query transport link state
1921  * @qp: NTB transport layer queue to be queried
1922  *
1923  * Query connectivity to the remote system of the NTB transport queue
1924  *
1925  * RETURNS: true for link up or false for link down
1926  */
1927 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1928 {
1929         if (!qp)
1930                 return false;
1931
1932         return qp->link_is_up;
1933 }
1934 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1935
1936 /**
1937  * ntb_transport_qp_num - Query the qp number
1938  * @qp: NTB transport layer queue to be queried
1939  *
1940  * Query qp number of the NTB transport queue
1941  *
1942  * RETURNS: a zero based number specifying the qp number
1943  */
1944 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1945 {
1946         if (!qp)
1947                 return 0;
1948
1949         return qp->qp_num;
1950 }
1951 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1952
1953 /**
1954  * ntb_transport_max_size - Query the max payload size of a qp
1955  * @qp: NTB transport layer queue to be queried
1956  *
1957  * Query the maximum payload size permissible on the given qp
1958  *
1959  * RETURNS: the max payload size of a qp
1960  */
1961 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1962 {
1963         unsigned int max;
1964
1965         if (!qp)
1966                 return 0;
1967
1968         if (!qp->dma_chan)
1969                 return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1970
1971         /* If DMA engine usage is possible, try to find the max size for that */
1972         max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1973         max -= max % (1 << qp->dma_chan->device->copy_align);
1974
1975         return max;
1976 }
1977 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1978
1979 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
1980 {
1981         unsigned int head = qp->tx_index;
1982         unsigned int tail = qp->remote_rx_info->entry;
1983
1984         return tail > head ? tail - head : qp->tx_max_entry + tail - head;
1985 }
1986 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
1987
1988 static void ntb_transport_doorbell_callback(void *data, int vector)
1989 {
1990         struct ntb_transport_ctx *nt = data;
1991         struct ntb_transport_qp *qp;
1992         u64 db_bits;
1993         unsigned int qp_num;
1994
1995         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1996                    ntb_db_vector_mask(nt->ndev, vector));
1997
1998         while (db_bits) {
1999                 qp_num = __ffs(db_bits);
2000                 qp = &nt->qp_vec[qp_num];
2001
2002                 tasklet_schedule(&qp->rxc_db_work);
2003
2004                 db_bits &= ~BIT_ULL(qp_num);
2005         }
2006 }
2007
2008 static const struct ntb_ctx_ops ntb_transport_ops = {
2009         .link_event = ntb_transport_event_callback,
2010         .db_event = ntb_transport_doorbell_callback,
2011 };
2012
2013 static struct ntb_client ntb_transport_client = {
2014         .ops = {
2015                 .probe = ntb_transport_probe,
2016                 .remove = ntb_transport_free,
2017         },
2018 };
2019
2020 static int __init ntb_transport_init(void)
2021 {
2022         int rc;
2023
2024         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2025
2026         if (debugfs_initialized())
2027                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2028
2029         rc = bus_register(&ntb_transport_bus);
2030         if (rc)
2031                 goto err_bus;
2032
2033         rc = ntb_register_client(&ntb_transport_client);
2034         if (rc)
2035                 goto err_client;
2036
2037         return 0;
2038
2039 err_client:
2040         bus_unregister(&ntb_transport_bus);
2041 err_bus:
2042         debugfs_remove_recursive(nt_debugfs_dir);
2043         return rc;
2044 }
2045 module_init(ntb_transport_init);
2046
2047 static void __exit ntb_transport_exit(void)
2048 {
2049         debugfs_remove_recursive(nt_debugfs_dir);
2050
2051         ntb_unregister_client(&ntb_transport_client);
2052         bus_unregister(&ntb_transport_bus);
2053 }
2054 module_exit(ntb_transport_exit);