22d83752ae87d91e0cb7689c5e99de50e3d0080a
[firefly-linux-kernel-4.4.55.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <uapi/linux/nvme_ioctl.h>
46 #include "nvme.h"
47
48 #define NVME_MINORS             (1U << MINORBITS)
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
54 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
55
56 static unsigned char admin_timeout = 60;
57 module_param(admin_timeout, byte, 0644);
58 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
59
60 unsigned char nvme_io_timeout = 30;
61 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
62 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
63
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int nvme_char_major;
72 module_param(nvme_char_major, int, 0);
73
74 static int use_threaded_interrupts;
75 module_param(use_threaded_interrupts, int, 0);
76
77 static bool use_cmb_sqes = true;
78 module_param(use_cmb_sqes, bool, 0644);
79 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
80
81 static DEFINE_SPINLOCK(dev_list_lock);
82 static LIST_HEAD(dev_list);
83 static struct task_struct *nvme_thread;
84 static struct workqueue_struct *nvme_workq;
85 static wait_queue_head_t nvme_kthread_wait;
86
87 static struct class *nvme_class;
88
89 static int __nvme_reset(struct nvme_dev *dev);
90 static int nvme_reset(struct nvme_dev *dev);
91 static int nvme_process_cq(struct nvme_queue *nvmeq);
92 static void nvme_dead_ctrl(struct nvme_dev *dev);
93
94 struct async_cmd_info {
95         struct kthread_work work;
96         struct kthread_worker *worker;
97         struct request *req;
98         u32 result;
99         int status;
100         void *ctx;
101 };
102
103 /*
104  * An NVM Express queue.  Each device has at least two (one for admin
105  * commands and one for I/O commands).
106  */
107 struct nvme_queue {
108         struct device *q_dmadev;
109         struct nvme_dev *dev;
110         char irqname[24];       /* nvme4294967295-65535\0 */
111         spinlock_t q_lock;
112         struct nvme_command *sq_cmds;
113         struct nvme_command __iomem *sq_cmds_io;
114         volatile struct nvme_completion *cqes;
115         struct blk_mq_tags **tags;
116         dma_addr_t sq_dma_addr;
117         dma_addr_t cq_dma_addr;
118         u32 __iomem *q_db;
119         u16 q_depth;
120         s16 cq_vector;
121         u16 sq_head;
122         u16 sq_tail;
123         u16 cq_head;
124         u16 qid;
125         u8 cq_phase;
126         u8 cqe_seen;
127         struct async_cmd_info cmdinfo;
128 };
129
130 /*
131  * Check we didin't inadvertently grow the command struct
132  */
133 static inline void _nvme_check_size(void)
134 {
135         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
141         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
142         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
144         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
145         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
146         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
147 }
148
149 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
150                                                 struct nvme_completion *);
151
152 struct nvme_cmd_info {
153         nvme_completion_fn fn;
154         void *ctx;
155         int aborted;
156         struct nvme_queue *nvmeq;
157         struct nvme_iod iod[0];
158 };
159
160 /*
161  * Max size of iod being embedded in the request payload
162  */
163 #define NVME_INT_PAGES          2
164 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
165 #define NVME_INT_MASK           0x01
166
167 /*
168  * Will slightly overestimate the number of pages needed.  This is OK
169  * as it only leads to a small amount of wasted memory for the lifetime of
170  * the I/O.
171  */
172 static int nvme_npages(unsigned size, struct nvme_dev *dev)
173 {
174         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
175         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
176 }
177
178 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
179 {
180         unsigned int ret = sizeof(struct nvme_cmd_info);
181
182         ret += sizeof(struct nvme_iod);
183         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
184         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
185
186         return ret;
187 }
188
189 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
190                                 unsigned int hctx_idx)
191 {
192         struct nvme_dev *dev = data;
193         struct nvme_queue *nvmeq = dev->queues[0];
194
195         WARN_ON(hctx_idx != 0);
196         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
197         WARN_ON(nvmeq->tags);
198
199         hctx->driver_data = nvmeq;
200         nvmeq->tags = &dev->admin_tagset.tags[0];
201         return 0;
202 }
203
204 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206         struct nvme_queue *nvmeq = hctx->driver_data;
207
208         nvmeq->tags = NULL;
209 }
210
211 static int nvme_admin_init_request(void *data, struct request *req,
212                                 unsigned int hctx_idx, unsigned int rq_idx,
213                                 unsigned int numa_node)
214 {
215         struct nvme_dev *dev = data;
216         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
217         struct nvme_queue *nvmeq = dev->queues[0];
218
219         BUG_ON(!nvmeq);
220         cmd->nvmeq = nvmeq;
221         return 0;
222 }
223
224 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
225                           unsigned int hctx_idx)
226 {
227         struct nvme_dev *dev = data;
228         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
229
230         if (!nvmeq->tags)
231                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
232
233         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
234         hctx->driver_data = nvmeq;
235         return 0;
236 }
237
238 static int nvme_init_request(void *data, struct request *req,
239                                 unsigned int hctx_idx, unsigned int rq_idx,
240                                 unsigned int numa_node)
241 {
242         struct nvme_dev *dev = data;
243         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
244         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
245
246         BUG_ON(!nvmeq);
247         cmd->nvmeq = nvmeq;
248         return 0;
249 }
250
251 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
252                                 nvme_completion_fn handler)
253 {
254         cmd->fn = handler;
255         cmd->ctx = ctx;
256         cmd->aborted = 0;
257         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
258 }
259
260 static void *iod_get_private(struct nvme_iod *iod)
261 {
262         return (void *) (iod->private & ~0x1UL);
263 }
264
265 /*
266  * If bit 0 is set, the iod is embedded in the request payload.
267  */
268 static bool iod_should_kfree(struct nvme_iod *iod)
269 {
270         return (iod->private & NVME_INT_MASK) == 0;
271 }
272
273 /* Special values must be less than 0x1000 */
274 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
275 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
276 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
277 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
278
279 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
280                                                 struct nvme_completion *cqe)
281 {
282         if (ctx == CMD_CTX_CANCELLED)
283                 return;
284         if (ctx == CMD_CTX_COMPLETED) {
285                 dev_warn(nvmeq->q_dmadev,
286                                 "completed id %d twice on queue %d\n",
287                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
288                 return;
289         }
290         if (ctx == CMD_CTX_INVALID) {
291                 dev_warn(nvmeq->q_dmadev,
292                                 "invalid id %d completed on queue %d\n",
293                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
294                 return;
295         }
296         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
297 }
298
299 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
300 {
301         void *ctx;
302
303         if (fn)
304                 *fn = cmd->fn;
305         ctx = cmd->ctx;
306         cmd->fn = special_completion;
307         cmd->ctx = CMD_CTX_CANCELLED;
308         return ctx;
309 }
310
311 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
312                                                 struct nvme_completion *cqe)
313 {
314         u32 result = le32_to_cpup(&cqe->result);
315         u16 status = le16_to_cpup(&cqe->status) >> 1;
316
317         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
318                 ++nvmeq->dev->event_limit;
319         if (status != NVME_SC_SUCCESS)
320                 return;
321
322         switch (result & 0xff07) {
323         case NVME_AER_NOTICE_NS_CHANGED:
324                 dev_info(nvmeq->q_dmadev, "rescanning\n");
325                 schedule_work(&nvmeq->dev->scan_work);
326         default:
327                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
328         }
329 }
330
331 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
332                                                 struct nvme_completion *cqe)
333 {
334         struct request *req = ctx;
335
336         u16 status = le16_to_cpup(&cqe->status) >> 1;
337         u32 result = le32_to_cpup(&cqe->result);
338
339         blk_mq_free_request(req);
340
341         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
342         ++nvmeq->dev->abort_limit;
343 }
344
345 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
346                                                 struct nvme_completion *cqe)
347 {
348         struct async_cmd_info *cmdinfo = ctx;
349         cmdinfo->result = le32_to_cpup(&cqe->result);
350         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
351         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
352         blk_mq_free_request(cmdinfo->req);
353 }
354
355 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
356                                   unsigned int tag)
357 {
358         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
359
360         return blk_mq_rq_to_pdu(req);
361 }
362
363 /*
364  * Called with local interrupts disabled and the q_lock held.  May not sleep.
365  */
366 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
367                                                 nvme_completion_fn *fn)
368 {
369         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
370         void *ctx;
371         if (tag >= nvmeq->q_depth) {
372                 *fn = special_completion;
373                 return CMD_CTX_INVALID;
374         }
375         if (fn)
376                 *fn = cmd->fn;
377         ctx = cmd->ctx;
378         cmd->fn = special_completion;
379         cmd->ctx = CMD_CTX_COMPLETED;
380         return ctx;
381 }
382
383 /**
384  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
385  * @nvmeq: The queue to use
386  * @cmd: The command to send
387  *
388  * Safe to use from interrupt context
389  */
390 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391                                                 struct nvme_command *cmd)
392 {
393         u16 tail = nvmeq->sq_tail;
394
395         if (nvmeq->sq_cmds_io)
396                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397         else
398                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399
400         if (++tail == nvmeq->q_depth)
401                 tail = 0;
402         writel(tail, nvmeq->q_db);
403         nvmeq->sq_tail = tail;
404 }
405
406 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
407 {
408         unsigned long flags;
409         spin_lock_irqsave(&nvmeq->q_lock, flags);
410         __nvme_submit_cmd(nvmeq, cmd);
411         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
412 }
413
414 static __le64 **iod_list(struct nvme_iod *iod)
415 {
416         return ((void *)iod) + iod->offset;
417 }
418
419 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
420                             unsigned nseg, unsigned long private)
421 {
422         iod->private = private;
423         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
424         iod->npages = -1;
425         iod->length = nbytes;
426         iod->nents = 0;
427 }
428
429 static struct nvme_iod *
430 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
431                  unsigned long priv, gfp_t gfp)
432 {
433         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
434                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
435                                 sizeof(struct scatterlist) * nseg, gfp);
436
437         if (iod)
438                 iod_init(iod, bytes, nseg, priv);
439
440         return iod;
441 }
442
443 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
444                                        gfp_t gfp)
445 {
446         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
447                                                 sizeof(struct nvme_dsm_range);
448         struct nvme_iod *iod;
449
450         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
451             size <= NVME_INT_BYTES(dev)) {
452                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
453
454                 iod = cmd->iod;
455                 iod_init(iod, size, rq->nr_phys_segments,
456                                 (unsigned long) rq | NVME_INT_MASK);
457                 return iod;
458         }
459
460         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
461                                 (unsigned long) rq, gfp);
462 }
463
464 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
465 {
466         const int last_prp = dev->page_size / 8 - 1;
467         int i;
468         __le64 **list = iod_list(iod);
469         dma_addr_t prp_dma = iod->first_dma;
470
471         if (iod->npages == 0)
472                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
473         for (i = 0; i < iod->npages; i++) {
474                 __le64 *prp_list = list[i];
475                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
476                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
477                 prp_dma = next_prp_dma;
478         }
479
480         if (iod_should_kfree(iod))
481                 kfree(iod);
482 }
483
484 static int nvme_error_status(u16 status)
485 {
486         switch (status & 0x7ff) {
487         case NVME_SC_SUCCESS:
488                 return 0;
489         case NVME_SC_CAP_EXCEEDED:
490                 return -ENOSPC;
491         default:
492                 return -EIO;
493         }
494 }
495
496 #ifdef CONFIG_BLK_DEV_INTEGRITY
497 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
498 {
499         if (be32_to_cpu(pi->ref_tag) == v)
500                 pi->ref_tag = cpu_to_be32(p);
501 }
502
503 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
504 {
505         if (be32_to_cpu(pi->ref_tag) == p)
506                 pi->ref_tag = cpu_to_be32(v);
507 }
508
509 /**
510  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
511  *
512  * The virtual start sector is the one that was originally submitted by the
513  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
514  * start sector may be different. Remap protection information to match the
515  * physical LBA on writes, and back to the original seed on reads.
516  *
517  * Type 0 and 3 do not have a ref tag, so no remapping required.
518  */
519 static void nvme_dif_remap(struct request *req,
520                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
521 {
522         struct nvme_ns *ns = req->rq_disk->private_data;
523         struct bio_integrity_payload *bip;
524         struct t10_pi_tuple *pi;
525         void *p, *pmap;
526         u32 i, nlb, ts, phys, virt;
527
528         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
529                 return;
530
531         bip = bio_integrity(req->bio);
532         if (!bip)
533                 return;
534
535         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
536
537         p = pmap;
538         virt = bip_get_seed(bip);
539         phys = nvme_block_nr(ns, blk_rq_pos(req));
540         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
541         ts = ns->disk->integrity->tuple_size;
542
543         for (i = 0; i < nlb; i++, virt++, phys++) {
544                 pi = (struct t10_pi_tuple *)p;
545                 dif_swap(phys, virt, pi);
546                 p += ts;
547         }
548         kunmap_atomic(pmap);
549 }
550
551 static int nvme_noop_verify(struct blk_integrity_iter *iter)
552 {
553         return 0;
554 }
555
556 static int nvme_noop_generate(struct blk_integrity_iter *iter)
557 {
558         return 0;
559 }
560
561 struct blk_integrity nvme_meta_noop = {
562         .name                   = "NVME_META_NOOP",
563         .generate_fn            = nvme_noop_generate,
564         .verify_fn              = nvme_noop_verify,
565 };
566
567 static void nvme_init_integrity(struct nvme_ns *ns)
568 {
569         struct blk_integrity integrity;
570
571         switch (ns->pi_type) {
572         case NVME_NS_DPS_PI_TYPE3:
573                 integrity = t10_pi_type3_crc;
574                 break;
575         case NVME_NS_DPS_PI_TYPE1:
576         case NVME_NS_DPS_PI_TYPE2:
577                 integrity = t10_pi_type1_crc;
578                 break;
579         default:
580                 integrity = nvme_meta_noop;
581                 break;
582         }
583         integrity.tuple_size = ns->ms;
584         blk_integrity_register(ns->disk, &integrity);
585         blk_queue_max_integrity_segments(ns->queue, 1);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 static void nvme_init_integrity(struct nvme_ns *ns)
599 {
600 }
601 #endif
602
603 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
604                                                 struct nvme_completion *cqe)
605 {
606         struct nvme_iod *iod = ctx;
607         struct request *req = iod_get_private(iod);
608         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
609         u16 status = le16_to_cpup(&cqe->status) >> 1;
610         int error = 0;
611
612         if (unlikely(status)) {
613                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
614                     && (jiffies - req->start_time) < req->timeout) {
615                         unsigned long flags;
616
617                         blk_mq_requeue_request(req);
618                         spin_lock_irqsave(req->q->queue_lock, flags);
619                         if (!blk_queue_stopped(req->q))
620                                 blk_mq_kick_requeue_list(req->q);
621                         spin_unlock_irqrestore(req->q->queue_lock, flags);
622                         return;
623                 }
624
625                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
627                                 error = -EINTR;
628                         else
629                                 error = status;
630                 } else {
631                         error = nvme_error_status(status);
632                 }
633         }
634
635         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
636                 u32 result = le32_to_cpup(&cqe->result);
637                 req->special = (void *)(uintptr_t)result;
638         }
639
640         if (cmd_rq->aborted)
641                 dev_warn(nvmeq->dev->dev,
642                         "completing aborted command with status:%04x\n",
643                         error);
644
645         if (iod->nents) {
646                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
647                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
648                 if (blk_integrity_rq(req)) {
649                         if (!rq_data_dir(req))
650                                 nvme_dif_remap(req, nvme_dif_complete);
651                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
652                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
653                 }
654         }
655         nvme_free_iod(nvmeq->dev, iod);
656
657         blk_mq_complete_request(req, error);
658 }
659
660 /* length is in bytes.  gfp flags indicates whether we may sleep. */
661 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
662                 int total_len, gfp_t gfp)
663 {
664         struct dma_pool *pool;
665         int length = total_len;
666         struct scatterlist *sg = iod->sg;
667         int dma_len = sg_dma_len(sg);
668         u64 dma_addr = sg_dma_address(sg);
669         u32 page_size = dev->page_size;
670         int offset = dma_addr & (page_size - 1);
671         __le64 *prp_list;
672         __le64 **list = iod_list(iod);
673         dma_addr_t prp_dma;
674         int nprps, i;
675
676         length -= (page_size - offset);
677         if (length <= 0)
678                 return total_len;
679
680         dma_len -= (page_size - offset);
681         if (dma_len) {
682                 dma_addr += (page_size - offset);
683         } else {
684                 sg = sg_next(sg);
685                 dma_addr = sg_dma_address(sg);
686                 dma_len = sg_dma_len(sg);
687         }
688
689         if (length <= page_size) {
690                 iod->first_dma = dma_addr;
691                 return total_len;
692         }
693
694         nprps = DIV_ROUND_UP(length, page_size);
695         if (nprps <= (256 / 8)) {
696                 pool = dev->prp_small_pool;
697                 iod->npages = 0;
698         } else {
699                 pool = dev->prp_page_pool;
700                 iod->npages = 1;
701         }
702
703         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
704         if (!prp_list) {
705                 iod->first_dma = dma_addr;
706                 iod->npages = -1;
707                 return (total_len - length) + page_size;
708         }
709         list[0] = prp_list;
710         iod->first_dma = prp_dma;
711         i = 0;
712         for (;;) {
713                 if (i == page_size >> 3) {
714                         __le64 *old_prp_list = prp_list;
715                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
716                         if (!prp_list)
717                                 return total_len - length;
718                         list[iod->npages++] = prp_list;
719                         prp_list[0] = old_prp_list[i - 1];
720                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
721                         i = 1;
722                 }
723                 prp_list[i++] = cpu_to_le64(dma_addr);
724                 dma_len -= page_size;
725                 dma_addr += page_size;
726                 length -= page_size;
727                 if (length <= 0)
728                         break;
729                 if (dma_len > 0)
730                         continue;
731                 BUG_ON(dma_len < 0);
732                 sg = sg_next(sg);
733                 dma_addr = sg_dma_address(sg);
734                 dma_len = sg_dma_len(sg);
735         }
736
737         return total_len;
738 }
739
740 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
741                 struct nvme_iod *iod)
742 {
743         struct nvme_command cmnd;
744
745         memcpy(&cmnd, req->cmd, sizeof(cmnd));
746         cmnd.rw.command_id = req->tag;
747         if (req->nr_phys_segments) {
748                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
749                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
750         }
751
752         __nvme_submit_cmd(nvmeq, &cmnd);
753 }
754
755 /*
756  * We reuse the small pool to allocate the 16-byte range here as it is not
757  * worth having a special pool for these or additional cases to handle freeing
758  * the iod.
759  */
760 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
761                 struct request *req, struct nvme_iod *iod)
762 {
763         struct nvme_dsm_range *range =
764                                 (struct nvme_dsm_range *)iod_list(iod)[0];
765         struct nvme_command cmnd;
766
767         range->cattr = cpu_to_le32(0);
768         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
769         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
770
771         memset(&cmnd, 0, sizeof(cmnd));
772         cmnd.dsm.opcode = nvme_cmd_dsm;
773         cmnd.dsm.command_id = req->tag;
774         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
775         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
776         cmnd.dsm.nr = 0;
777         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
778
779         __nvme_submit_cmd(nvmeq, &cmnd);
780 }
781
782 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
783                                                                 int cmdid)
784 {
785         struct nvme_command cmnd;
786
787         memset(&cmnd, 0, sizeof(cmnd));
788         cmnd.common.opcode = nvme_cmd_flush;
789         cmnd.common.command_id = cmdid;
790         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
791
792         __nvme_submit_cmd(nvmeq, &cmnd);
793 }
794
795 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
796                                                         struct nvme_ns *ns)
797 {
798         struct request *req = iod_get_private(iod);
799         struct nvme_command cmnd;
800         u16 control = 0;
801         u32 dsmgmt = 0;
802
803         if (req->cmd_flags & REQ_FUA)
804                 control |= NVME_RW_FUA;
805         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
806                 control |= NVME_RW_LR;
807
808         if (req->cmd_flags & REQ_RAHEAD)
809                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
810
811         memset(&cmnd, 0, sizeof(cmnd));
812         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
813         cmnd.rw.command_id = req->tag;
814         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
815         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
816         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
817         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
818         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
819
820         if (ns->ms) {
821                 switch (ns->pi_type) {
822                 case NVME_NS_DPS_PI_TYPE3:
823                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
824                         break;
825                 case NVME_NS_DPS_PI_TYPE1:
826                 case NVME_NS_DPS_PI_TYPE2:
827                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
828                                         NVME_RW_PRINFO_PRCHK_REF;
829                         cmnd.rw.reftag = cpu_to_le32(
830                                         nvme_block_nr(ns, blk_rq_pos(req)));
831                         break;
832                 }
833                 if (blk_integrity_rq(req))
834                         cmnd.rw.metadata =
835                                 cpu_to_le64(sg_dma_address(iod->meta_sg));
836                 else
837                         control |= NVME_RW_PRINFO_PRACT;
838         }
839
840         cmnd.rw.control = cpu_to_le16(control);
841         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
842
843         __nvme_submit_cmd(nvmeq, &cmnd);
844
845         return 0;
846 }
847
848 /*
849  * NOTE: ns is NULL when called on the admin queue.
850  */
851 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
852                          const struct blk_mq_queue_data *bd)
853 {
854         struct nvme_ns *ns = hctx->queue->queuedata;
855         struct nvme_queue *nvmeq = hctx->driver_data;
856         struct nvme_dev *dev = nvmeq->dev;
857         struct request *req = bd->rq;
858         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
859         struct nvme_iod *iod;
860         enum dma_data_direction dma_dir;
861
862         /*
863          * If formated with metadata, require the block layer provide a buffer
864          * unless this namespace is formated such that the metadata can be
865          * stripped/generated by the controller with PRACT=1.
866          */
867         if (ns && ns->ms && !blk_integrity_rq(req)) {
868                 if (!(ns->pi_type && ns->ms == 8) &&
869                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
870                         blk_mq_complete_request(req, -EFAULT);
871                         return BLK_MQ_RQ_QUEUE_OK;
872                 }
873         }
874
875         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
876         if (!iod)
877                 return BLK_MQ_RQ_QUEUE_BUSY;
878
879         if (req->cmd_flags & REQ_DISCARD) {
880                 void *range;
881                 /*
882                  * We reuse the small pool to allocate the 16-byte range here
883                  * as it is not worth having a special pool for these or
884                  * additional cases to handle freeing the iod.
885                  */
886                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
887                                                 &iod->first_dma);
888                 if (!range)
889                         goto retry_cmd;
890                 iod_list(iod)[0] = (__le64 *)range;
891                 iod->npages = 0;
892         } else if (req->nr_phys_segments) {
893                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
894
895                 sg_init_table(iod->sg, req->nr_phys_segments);
896                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
897                 if (!iod->nents)
898                         goto error_cmd;
899
900                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
901                         goto retry_cmd;
902
903                 if (blk_rq_bytes(req) !=
904                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
905                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
906                         goto retry_cmd;
907                 }
908                 if (blk_integrity_rq(req)) {
909                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
910                                 goto error_cmd;
911
912                         sg_init_table(iod->meta_sg, 1);
913                         if (blk_rq_map_integrity_sg(
914                                         req->q, req->bio, iod->meta_sg) != 1)
915                                 goto error_cmd;
916
917                         if (rq_data_dir(req))
918                                 nvme_dif_remap(req, nvme_dif_prep);
919
920                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
921                                 goto error_cmd;
922                 }
923         }
924
925         nvme_set_info(cmd, iod, req_completion);
926         spin_lock_irq(&nvmeq->q_lock);
927         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
928                 nvme_submit_priv(nvmeq, req, iod);
929         else if (req->cmd_flags & REQ_DISCARD)
930                 nvme_submit_discard(nvmeq, ns, req, iod);
931         else if (req->cmd_flags & REQ_FLUSH)
932                 nvme_submit_flush(nvmeq, ns, req->tag);
933         else
934                 nvme_submit_iod(nvmeq, iod, ns);
935
936         nvme_process_cq(nvmeq);
937         spin_unlock_irq(&nvmeq->q_lock);
938         return BLK_MQ_RQ_QUEUE_OK;
939
940  error_cmd:
941         nvme_free_iod(dev, iod);
942         return BLK_MQ_RQ_QUEUE_ERROR;
943  retry_cmd:
944         nvme_free_iod(dev, iod);
945         return BLK_MQ_RQ_QUEUE_BUSY;
946 }
947
948 static int nvme_process_cq(struct nvme_queue *nvmeq)
949 {
950         u16 head, phase;
951
952         head = nvmeq->cq_head;
953         phase = nvmeq->cq_phase;
954
955         for (;;) {
956                 void *ctx;
957                 nvme_completion_fn fn;
958                 struct nvme_completion cqe = nvmeq->cqes[head];
959                 if ((le16_to_cpu(cqe.status) & 1) != phase)
960                         break;
961                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
962                 if (++head == nvmeq->q_depth) {
963                         head = 0;
964                         phase = !phase;
965                 }
966                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
967                 fn(nvmeq, ctx, &cqe);
968         }
969
970         /* If the controller ignores the cq head doorbell and continuously
971          * writes to the queue, it is theoretically possible to wrap around
972          * the queue twice and mistakenly return IRQ_NONE.  Linux only
973          * requires that 0.1% of your interrupts are handled, so this isn't
974          * a big problem.
975          */
976         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
977                 return 0;
978
979         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
980         nvmeq->cq_head = head;
981         nvmeq->cq_phase = phase;
982
983         nvmeq->cqe_seen = 1;
984         return 1;
985 }
986
987 static irqreturn_t nvme_irq(int irq, void *data)
988 {
989         irqreturn_t result;
990         struct nvme_queue *nvmeq = data;
991         spin_lock(&nvmeq->q_lock);
992         nvme_process_cq(nvmeq);
993         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
994         nvmeq->cqe_seen = 0;
995         spin_unlock(&nvmeq->q_lock);
996         return result;
997 }
998
999 static irqreturn_t nvme_irq_check(int irq, void *data)
1000 {
1001         struct nvme_queue *nvmeq = data;
1002         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1003         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1004                 return IRQ_NONE;
1005         return IRQ_WAKE_THREAD;
1006 }
1007
1008 /*
1009  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1010  * if the result is positive, it's an NVM Express status code
1011  */
1012 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1013                 void *buffer, void __user *ubuffer, unsigned bufflen,
1014                 u32 *result, unsigned timeout)
1015 {
1016         bool write = cmd->common.opcode & 1;
1017         struct bio *bio = NULL;
1018         struct request *req;
1019         int ret;
1020
1021         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1022         if (IS_ERR(req))
1023                 return PTR_ERR(req);
1024
1025         req->cmd_type = REQ_TYPE_DRV_PRIV;
1026         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1027         req->__data_len = 0;
1028         req->__sector = (sector_t) -1;
1029         req->bio = req->biotail = NULL;
1030
1031         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1032
1033         req->cmd = (unsigned char *)cmd;
1034         req->cmd_len = sizeof(struct nvme_command);
1035         req->special = (void *)0;
1036
1037         if (buffer && bufflen) {
1038                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1039                 if (ret)
1040                         goto out;
1041         } else if (ubuffer && bufflen) {
1042                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1043                 if (ret)
1044                         goto out;
1045                 bio = req->bio;
1046         }
1047
1048         blk_execute_rq(req->q, NULL, req, 0);
1049         if (bio)
1050                 blk_rq_unmap_user(bio);
1051         if (result)
1052                 *result = (u32)(uintptr_t)req->special;
1053         ret = req->errors;
1054  out:
1055         blk_mq_free_request(req);
1056         return ret;
1057 }
1058
1059 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1060                 void *buffer, unsigned bufflen)
1061 {
1062         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1063 }
1064
1065 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1066 {
1067         struct nvme_queue *nvmeq = dev->queues[0];
1068         struct nvme_command c;
1069         struct nvme_cmd_info *cmd_info;
1070         struct request *req;
1071
1072         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1073         if (IS_ERR(req))
1074                 return PTR_ERR(req);
1075
1076         req->cmd_flags |= REQ_NO_TIMEOUT;
1077         cmd_info = blk_mq_rq_to_pdu(req);
1078         nvme_set_info(cmd_info, NULL, async_req_completion);
1079
1080         memset(&c, 0, sizeof(c));
1081         c.common.opcode = nvme_admin_async_event;
1082         c.common.command_id = req->tag;
1083
1084         blk_mq_free_request(req);
1085         __nvme_submit_cmd(nvmeq, &c);
1086         return 0;
1087 }
1088
1089 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1090                         struct nvme_command *cmd,
1091                         struct async_cmd_info *cmdinfo, unsigned timeout)
1092 {
1093         struct nvme_queue *nvmeq = dev->queues[0];
1094         struct request *req;
1095         struct nvme_cmd_info *cmd_rq;
1096
1097         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1098         if (IS_ERR(req))
1099                 return PTR_ERR(req);
1100
1101         req->timeout = timeout;
1102         cmd_rq = blk_mq_rq_to_pdu(req);
1103         cmdinfo->req = req;
1104         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1105         cmdinfo->status = -EINTR;
1106
1107         cmd->common.command_id = req->tag;
1108
1109         nvme_submit_cmd(nvmeq, cmd);
1110         return 0;
1111 }
1112
1113 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1114 {
1115         struct nvme_command c;
1116
1117         memset(&c, 0, sizeof(c));
1118         c.delete_queue.opcode = opcode;
1119         c.delete_queue.qid = cpu_to_le16(id);
1120
1121         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1122 }
1123
1124 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1125                                                 struct nvme_queue *nvmeq)
1126 {
1127         struct nvme_command c;
1128         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1129
1130         /*
1131          * Note: we (ab)use the fact the the prp fields survive if no data
1132          * is attached to the request.
1133          */
1134         memset(&c, 0, sizeof(c));
1135         c.create_cq.opcode = nvme_admin_create_cq;
1136         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1137         c.create_cq.cqid = cpu_to_le16(qid);
1138         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1139         c.create_cq.cq_flags = cpu_to_le16(flags);
1140         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1141
1142         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1143 }
1144
1145 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1146                                                 struct nvme_queue *nvmeq)
1147 {
1148         struct nvme_command c;
1149         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1150
1151         /*
1152          * Note: we (ab)use the fact the the prp fields survive if no data
1153          * is attached to the request.
1154          */
1155         memset(&c, 0, sizeof(c));
1156         c.create_sq.opcode = nvme_admin_create_sq;
1157         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1158         c.create_sq.sqid = cpu_to_le16(qid);
1159         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1160         c.create_sq.sq_flags = cpu_to_le16(flags);
1161         c.create_sq.cqid = cpu_to_le16(qid);
1162
1163         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1164 }
1165
1166 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1167 {
1168         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1169 }
1170
1171 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1172 {
1173         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1174 }
1175
1176 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1177 {
1178         struct nvme_command c = { };
1179         int error;
1180
1181         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1182         c.identify.opcode = nvme_admin_identify;
1183         c.identify.cns = cpu_to_le32(1);
1184
1185         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1186         if (!*id)
1187                 return -ENOMEM;
1188
1189         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1190                         sizeof(struct nvme_id_ctrl));
1191         if (error)
1192                 kfree(*id);
1193         return error;
1194 }
1195
1196 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1197                 struct nvme_id_ns **id)
1198 {
1199         struct nvme_command c = { };
1200         int error;
1201
1202         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1203         c.identify.opcode = nvme_admin_identify,
1204         c.identify.nsid = cpu_to_le32(nsid),
1205
1206         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1207         if (!*id)
1208                 return -ENOMEM;
1209
1210         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1211                         sizeof(struct nvme_id_ns));
1212         if (error)
1213                 kfree(*id);
1214         return error;
1215 }
1216
1217 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1218                                         dma_addr_t dma_addr, u32 *result)
1219 {
1220         struct nvme_command c;
1221
1222         memset(&c, 0, sizeof(c));
1223         c.features.opcode = nvme_admin_get_features;
1224         c.features.nsid = cpu_to_le32(nsid);
1225         c.features.prp1 = cpu_to_le64(dma_addr);
1226         c.features.fid = cpu_to_le32(fid);
1227
1228         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1229                         result, 0);
1230 }
1231
1232 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1233                                         dma_addr_t dma_addr, u32 *result)
1234 {
1235         struct nvme_command c;
1236
1237         memset(&c, 0, sizeof(c));
1238         c.features.opcode = nvme_admin_set_features;
1239         c.features.prp1 = cpu_to_le64(dma_addr);
1240         c.features.fid = cpu_to_le32(fid);
1241         c.features.dword11 = cpu_to_le32(dword11);
1242
1243         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1244                         result, 0);
1245 }
1246
1247 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1248 {
1249         struct nvme_command c = { };
1250         int error;
1251
1252         c.common.opcode = nvme_admin_get_log_page,
1253         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1254         c.common.cdw10[0] = cpu_to_le32(
1255                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1256                          NVME_LOG_SMART),
1257
1258         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1259         if (!*log)
1260                 return -ENOMEM;
1261
1262         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1263                         sizeof(struct nvme_smart_log));
1264         if (error)
1265                 kfree(*log);
1266         return error;
1267 }
1268
1269 /**
1270  * nvme_abort_req - Attempt aborting a request
1271  *
1272  * Schedule controller reset if the command was already aborted once before and
1273  * still hasn't been returned to the driver, or if this is the admin queue.
1274  */
1275 static void nvme_abort_req(struct request *req)
1276 {
1277         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1278         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1279         struct nvme_dev *dev = nvmeq->dev;
1280         struct request *abort_req;
1281         struct nvme_cmd_info *abort_cmd;
1282         struct nvme_command cmd;
1283
1284         if (!nvmeq->qid || cmd_rq->aborted) {
1285                 spin_lock(&dev_list_lock);
1286                 if (!__nvme_reset(dev)) {
1287                         dev_warn(dev->dev,
1288                                  "I/O %d QID %d timeout, reset controller\n",
1289                                  req->tag, nvmeq->qid);
1290                 }
1291                 spin_unlock(&dev_list_lock);
1292                 return;
1293         }
1294
1295         if (!dev->abort_limit)
1296                 return;
1297
1298         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1299                                                                         false);
1300         if (IS_ERR(abort_req))
1301                 return;
1302
1303         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1304         nvme_set_info(abort_cmd, abort_req, abort_completion);
1305
1306         memset(&cmd, 0, sizeof(cmd));
1307         cmd.abort.opcode = nvme_admin_abort_cmd;
1308         cmd.abort.cid = req->tag;
1309         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1310         cmd.abort.command_id = abort_req->tag;
1311
1312         --dev->abort_limit;
1313         cmd_rq->aborted = 1;
1314
1315         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1316                                                         nvmeq->qid);
1317         nvme_submit_cmd(dev->queues[0], &cmd);
1318 }
1319
1320 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1321 {
1322         struct nvme_queue *nvmeq = data;
1323         void *ctx;
1324         nvme_completion_fn fn;
1325         struct nvme_cmd_info *cmd;
1326         struct nvme_completion cqe;
1327
1328         if (!blk_mq_request_started(req))
1329                 return;
1330
1331         cmd = blk_mq_rq_to_pdu(req);
1332
1333         if (cmd->ctx == CMD_CTX_CANCELLED)
1334                 return;
1335
1336         if (blk_queue_dying(req->q))
1337                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1338         else
1339                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1340
1341
1342         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1343                                                 req->tag, nvmeq->qid);
1344         ctx = cancel_cmd_info(cmd, &fn);
1345         fn(nvmeq, ctx, &cqe);
1346 }
1347
1348 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1349 {
1350         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1351         struct nvme_queue *nvmeq = cmd->nvmeq;
1352
1353         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1354                                                         nvmeq->qid);
1355         spin_lock_irq(&nvmeq->q_lock);
1356         nvme_abort_req(req);
1357         spin_unlock_irq(&nvmeq->q_lock);
1358
1359         /*
1360          * The aborted req will be completed on receiving the abort req.
1361          * We enable the timer again. If hit twice, it'll cause a device reset,
1362          * as the device then is in a faulty state.
1363          */
1364         return BLK_EH_RESET_TIMER;
1365 }
1366
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1368 {
1369         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1370                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1371         if (nvmeq->sq_cmds)
1372                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1373                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1374         kfree(nvmeq);
1375 }
1376
1377 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1378 {
1379         int i;
1380
1381         for (i = dev->queue_count - 1; i >= lowest; i--) {
1382                 struct nvme_queue *nvmeq = dev->queues[i];
1383                 dev->queue_count--;
1384                 dev->queues[i] = NULL;
1385                 nvme_free_queue(nvmeq);
1386         }
1387 }
1388
1389 /**
1390  * nvme_suspend_queue - put queue into suspended state
1391  * @nvmeq - queue to suspend
1392  */
1393 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1394 {
1395         int vector;
1396
1397         spin_lock_irq(&nvmeq->q_lock);
1398         if (nvmeq->cq_vector == -1) {
1399                 spin_unlock_irq(&nvmeq->q_lock);
1400                 return 1;
1401         }
1402         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1403         nvmeq->dev->online_queues--;
1404         nvmeq->cq_vector = -1;
1405         spin_unlock_irq(&nvmeq->q_lock);
1406
1407         if (!nvmeq->qid && nvmeq->dev->admin_q)
1408                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1409
1410         irq_set_affinity_hint(vector, NULL);
1411         free_irq(vector, nvmeq);
1412
1413         return 0;
1414 }
1415
1416 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1417 {
1418         spin_lock_irq(&nvmeq->q_lock);
1419         if (nvmeq->tags && *nvmeq->tags)
1420                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1421         spin_unlock_irq(&nvmeq->q_lock);
1422 }
1423
1424 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1425 {
1426         struct nvme_queue *nvmeq = dev->queues[qid];
1427
1428         if (!nvmeq)
1429                 return;
1430         if (nvme_suspend_queue(nvmeq))
1431                 return;
1432
1433         /* Don't tell the adapter to delete the admin queue.
1434          * Don't tell a removed adapter to delete IO queues. */
1435         if (qid && readl(&dev->bar->csts) != -1) {
1436                 adapter_delete_sq(dev, qid);
1437                 adapter_delete_cq(dev, qid);
1438         }
1439
1440         spin_lock_irq(&nvmeq->q_lock);
1441         nvme_process_cq(nvmeq);
1442         spin_unlock_irq(&nvmeq->q_lock);
1443 }
1444
1445 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1446                                 int entry_size)
1447 {
1448         int q_depth = dev->q_depth;
1449         unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1450
1451         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1452                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1453                 mem_per_q = round_down(mem_per_q, dev->page_size);
1454                 q_depth = div_u64(mem_per_q, entry_size);
1455
1456                 /*
1457                  * Ensure the reduced q_depth is above some threshold where it
1458                  * would be better to map queues in system memory with the
1459                  * original depth
1460                  */
1461                 if (q_depth < 64)
1462                         return -ENOMEM;
1463         }
1464
1465         return q_depth;
1466 }
1467
1468 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1469                                 int qid, int depth)
1470 {
1471         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1472                 unsigned offset = (qid - 1) *
1473                                         roundup(SQ_SIZE(depth), dev->page_size);
1474                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1475                 nvmeq->sq_cmds_io = dev->cmb + offset;
1476         } else {
1477                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1478                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1479                 if (!nvmeq->sq_cmds)
1480                         return -ENOMEM;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1487                                                         int depth)
1488 {
1489         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1490         if (!nvmeq)
1491                 return NULL;
1492
1493         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1494                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1495         if (!nvmeq->cqes)
1496                 goto free_nvmeq;
1497
1498         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1499                 goto free_cqdma;
1500
1501         nvmeq->q_dmadev = dev->dev;
1502         nvmeq->dev = dev;
1503         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1504                         dev->instance, qid);
1505         spin_lock_init(&nvmeq->q_lock);
1506         nvmeq->cq_head = 0;
1507         nvmeq->cq_phase = 1;
1508         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1509         nvmeq->q_depth = depth;
1510         nvmeq->qid = qid;
1511         nvmeq->cq_vector = -1;
1512         dev->queues[qid] = nvmeq;
1513
1514         /* make sure queue descriptor is set before queue count, for kthread */
1515         mb();
1516         dev->queue_count++;
1517
1518         return nvmeq;
1519
1520  free_cqdma:
1521         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1522                                                         nvmeq->cq_dma_addr);
1523  free_nvmeq:
1524         kfree(nvmeq);
1525         return NULL;
1526 }
1527
1528 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1529                                                         const char *name)
1530 {
1531         if (use_threaded_interrupts)
1532                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1533                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1534                                         name, nvmeq);
1535         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1536                                 IRQF_SHARED, name, nvmeq);
1537 }
1538
1539 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1540 {
1541         struct nvme_dev *dev = nvmeq->dev;
1542
1543         spin_lock_irq(&nvmeq->q_lock);
1544         nvmeq->sq_tail = 0;
1545         nvmeq->cq_head = 0;
1546         nvmeq->cq_phase = 1;
1547         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1548         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1549         dev->online_queues++;
1550         spin_unlock_irq(&nvmeq->q_lock);
1551 }
1552
1553 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1554 {
1555         struct nvme_dev *dev = nvmeq->dev;
1556         int result;
1557
1558         nvmeq->cq_vector = qid - 1;
1559         result = adapter_alloc_cq(dev, qid, nvmeq);
1560         if (result < 0)
1561                 return result;
1562
1563         result = adapter_alloc_sq(dev, qid, nvmeq);
1564         if (result < 0)
1565                 goto release_cq;
1566
1567         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1568         if (result < 0)
1569                 goto release_sq;
1570
1571         nvme_init_queue(nvmeq, qid);
1572         return result;
1573
1574  release_sq:
1575         adapter_delete_sq(dev, qid);
1576  release_cq:
1577         adapter_delete_cq(dev, qid);
1578         return result;
1579 }
1580
1581 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1582 {
1583         unsigned long timeout;
1584         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1585
1586         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1587
1588         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1589                 msleep(100);
1590                 if (fatal_signal_pending(current))
1591                         return -EINTR;
1592                 if (time_after(jiffies, timeout)) {
1593                         dev_err(dev->dev,
1594                                 "Device not ready; aborting %s\n", enabled ?
1595                                                 "initialisation" : "reset");
1596                         return -ENODEV;
1597                 }
1598         }
1599
1600         return 0;
1601 }
1602
1603 /*
1604  * If the device has been passed off to us in an enabled state, just clear
1605  * the enabled bit.  The spec says we should set the 'shutdown notification
1606  * bits', but doing so may cause the device to complete commands to the
1607  * admin queue ... and we don't know what memory that might be pointing at!
1608  */
1609 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1610 {
1611         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1612         dev->ctrl_config &= ~NVME_CC_ENABLE;
1613         writel(dev->ctrl_config, &dev->bar->cc);
1614
1615         return nvme_wait_ready(dev, cap, false);
1616 }
1617
1618 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1619 {
1620         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1621         dev->ctrl_config |= NVME_CC_ENABLE;
1622         writel(dev->ctrl_config, &dev->bar->cc);
1623
1624         return nvme_wait_ready(dev, cap, true);
1625 }
1626
1627 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1628 {
1629         unsigned long timeout;
1630
1631         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1632         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1633
1634         writel(dev->ctrl_config, &dev->bar->cc);
1635
1636         timeout = SHUTDOWN_TIMEOUT + jiffies;
1637         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1638                                                         NVME_CSTS_SHST_CMPLT) {
1639                 msleep(100);
1640                 if (fatal_signal_pending(current))
1641                         return -EINTR;
1642                 if (time_after(jiffies, timeout)) {
1643                         dev_err(dev->dev,
1644                                 "Device shutdown incomplete; abort shutdown\n");
1645                         return -ENODEV;
1646                 }
1647         }
1648
1649         return 0;
1650 }
1651
1652 static struct blk_mq_ops nvme_mq_admin_ops = {
1653         .queue_rq       = nvme_queue_rq,
1654         .map_queue      = blk_mq_map_queue,
1655         .init_hctx      = nvme_admin_init_hctx,
1656         .exit_hctx      = nvme_admin_exit_hctx,
1657         .init_request   = nvme_admin_init_request,
1658         .timeout        = nvme_timeout,
1659 };
1660
1661 static struct blk_mq_ops nvme_mq_ops = {
1662         .queue_rq       = nvme_queue_rq,
1663         .map_queue      = blk_mq_map_queue,
1664         .init_hctx      = nvme_init_hctx,
1665         .init_request   = nvme_init_request,
1666         .timeout        = nvme_timeout,
1667 };
1668
1669 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1670 {
1671         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1672                 blk_cleanup_queue(dev->admin_q);
1673                 blk_mq_free_tag_set(&dev->admin_tagset);
1674         }
1675 }
1676
1677 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1678 {
1679         if (!dev->admin_q) {
1680                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1681                 dev->admin_tagset.nr_hw_queues = 1;
1682                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1683                 dev->admin_tagset.reserved_tags = 1;
1684                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1685                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1686                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1687                 dev->admin_tagset.driver_data = dev;
1688
1689                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1690                         return -ENOMEM;
1691
1692                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1693                 if (IS_ERR(dev->admin_q)) {
1694                         blk_mq_free_tag_set(&dev->admin_tagset);
1695                         return -ENOMEM;
1696                 }
1697                 if (!blk_get_queue(dev->admin_q)) {
1698                         nvme_dev_remove_admin(dev);
1699                         dev->admin_q = NULL;
1700                         return -ENODEV;
1701                 }
1702         } else
1703                 blk_mq_unfreeze_queue(dev->admin_q);
1704
1705         return 0;
1706 }
1707
1708 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1709 {
1710         int result;
1711         u32 aqa;
1712         u64 cap = readq(&dev->bar->cap);
1713         struct nvme_queue *nvmeq;
1714         unsigned page_shift = PAGE_SHIFT;
1715         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1716         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1717
1718         if (page_shift < dev_page_min) {
1719                 dev_err(dev->dev,
1720                                 "Minimum device page size (%u) too large for "
1721                                 "host (%u)\n", 1 << dev_page_min,
1722                                 1 << page_shift);
1723                 return -ENODEV;
1724         }
1725         if (page_shift > dev_page_max) {
1726                 dev_info(dev->dev,
1727                                 "Device maximum page size (%u) smaller than "
1728                                 "host (%u); enabling work-around\n",
1729                                 1 << dev_page_max, 1 << page_shift);
1730                 page_shift = dev_page_max;
1731         }
1732
1733         dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1734                                                 NVME_CAP_NSSRC(cap) : 0;
1735
1736         if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1737                 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1738
1739         result = nvme_disable_ctrl(dev, cap);
1740         if (result < 0)
1741                 return result;
1742
1743         nvmeq = dev->queues[0];
1744         if (!nvmeq) {
1745                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1746                 if (!nvmeq)
1747                         return -ENOMEM;
1748         }
1749
1750         aqa = nvmeq->q_depth - 1;
1751         aqa |= aqa << 16;
1752
1753         dev->page_size = 1 << page_shift;
1754
1755         dev->ctrl_config = NVME_CC_CSS_NVM;
1756         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1757         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1758         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1759
1760         writel(aqa, &dev->bar->aqa);
1761         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1762         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1763
1764         result = nvme_enable_ctrl(dev, cap);
1765         if (result)
1766                 goto free_nvmeq;
1767
1768         nvmeq->cq_vector = 0;
1769         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1770         if (result) {
1771                 nvmeq->cq_vector = -1;
1772                 goto free_nvmeq;
1773         }
1774
1775         return result;
1776
1777  free_nvmeq:
1778         nvme_free_queues(dev, 0);
1779         return result;
1780 }
1781
1782 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1783 {
1784         struct nvme_dev *dev = ns->dev;
1785         struct nvme_user_io io;
1786         struct nvme_command c;
1787         unsigned length, meta_len;
1788         int status, write;
1789         dma_addr_t meta_dma = 0;
1790         void *meta = NULL;
1791         void __user *metadata;
1792
1793         if (copy_from_user(&io, uio, sizeof(io)))
1794                 return -EFAULT;
1795
1796         switch (io.opcode) {
1797         case nvme_cmd_write:
1798         case nvme_cmd_read:
1799         case nvme_cmd_compare:
1800                 break;
1801         default:
1802                 return -EINVAL;
1803         }
1804
1805         length = (io.nblocks + 1) << ns->lba_shift;
1806         meta_len = (io.nblocks + 1) * ns->ms;
1807         metadata = (void __user *)(uintptr_t)io.metadata;
1808         write = io.opcode & 1;
1809
1810         if (ns->ext) {
1811                 length += meta_len;
1812                 meta_len = 0;
1813         }
1814         if (meta_len) {
1815                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1816                         return -EINVAL;
1817
1818                 meta = dma_alloc_coherent(dev->dev, meta_len,
1819                                                 &meta_dma, GFP_KERNEL);
1820
1821                 if (!meta) {
1822                         status = -ENOMEM;
1823                         goto unmap;
1824                 }
1825                 if (write) {
1826                         if (copy_from_user(meta, metadata, meta_len)) {
1827                                 status = -EFAULT;
1828                                 goto unmap;
1829                         }
1830                 }
1831         }
1832
1833         memset(&c, 0, sizeof(c));
1834         c.rw.opcode = io.opcode;
1835         c.rw.flags = io.flags;
1836         c.rw.nsid = cpu_to_le32(ns->ns_id);
1837         c.rw.slba = cpu_to_le64(io.slba);
1838         c.rw.length = cpu_to_le16(io.nblocks);
1839         c.rw.control = cpu_to_le16(io.control);
1840         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1841         c.rw.reftag = cpu_to_le32(io.reftag);
1842         c.rw.apptag = cpu_to_le16(io.apptag);
1843         c.rw.appmask = cpu_to_le16(io.appmask);
1844         c.rw.metadata = cpu_to_le64(meta_dma);
1845
1846         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1847                         (void __user *)(uintptr_t)io.addr, length, NULL, 0);
1848  unmap:
1849         if (meta) {
1850                 if (status == NVME_SC_SUCCESS && !write) {
1851                         if (copy_to_user(metadata, meta, meta_len))
1852                                 status = -EFAULT;
1853                 }
1854                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1855         }
1856         return status;
1857 }
1858
1859 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1860                         struct nvme_passthru_cmd __user *ucmd)
1861 {
1862         struct nvme_passthru_cmd cmd;
1863         struct nvme_command c;
1864         unsigned timeout = 0;
1865         int status;
1866
1867         if (!capable(CAP_SYS_ADMIN))
1868                 return -EACCES;
1869         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1870                 return -EFAULT;
1871
1872         memset(&c, 0, sizeof(c));
1873         c.common.opcode = cmd.opcode;
1874         c.common.flags = cmd.flags;
1875         c.common.nsid = cpu_to_le32(cmd.nsid);
1876         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1877         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1878         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1879         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1880         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1881         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1882         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1883         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1884
1885         if (cmd.timeout_ms)
1886                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1887
1888         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1889                         NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1890                         &cmd.result, timeout);
1891         if (status >= 0) {
1892                 if (put_user(cmd.result, &ucmd->result))
1893                         return -EFAULT;
1894         }
1895
1896         return status;
1897 }
1898
1899 static int nvme_subsys_reset(struct nvme_dev *dev)
1900 {
1901         if (!dev->subsystem)
1902                 return -ENOTTY;
1903
1904         writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1905         return 0;
1906 }
1907
1908 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1909                                                         unsigned long arg)
1910 {
1911         struct nvme_ns *ns = bdev->bd_disk->private_data;
1912
1913         switch (cmd) {
1914         case NVME_IOCTL_ID:
1915                 force_successful_syscall_return();
1916                 return ns->ns_id;
1917         case NVME_IOCTL_ADMIN_CMD:
1918                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1919         case NVME_IOCTL_IO_CMD:
1920                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1921         case NVME_IOCTL_SUBMIT_IO:
1922                 return nvme_submit_io(ns, (void __user *)arg);
1923         case SG_GET_VERSION_NUM:
1924                 return nvme_sg_get_version_num((void __user *)arg);
1925         case SG_IO:
1926                 return nvme_sg_io(ns, (void __user *)arg);
1927         default:
1928                 return -ENOTTY;
1929         }
1930 }
1931
1932 #ifdef CONFIG_COMPAT
1933 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1934                                         unsigned int cmd, unsigned long arg)
1935 {
1936         switch (cmd) {
1937         case SG_IO:
1938                 return -ENOIOCTLCMD;
1939         }
1940         return nvme_ioctl(bdev, mode, cmd, arg);
1941 }
1942 #else
1943 #define nvme_compat_ioctl       NULL
1944 #endif
1945
1946 static void nvme_free_dev(struct kref *kref);
1947 static void nvme_free_ns(struct kref *kref)
1948 {
1949         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1950
1951         spin_lock(&dev_list_lock);
1952         ns->disk->private_data = NULL;
1953         spin_unlock(&dev_list_lock);
1954
1955         kref_put(&ns->dev->kref, nvme_free_dev);
1956         put_disk(ns->disk);
1957         kfree(ns);
1958 }
1959
1960 static int nvme_open(struct block_device *bdev, fmode_t mode)
1961 {
1962         int ret = 0;
1963         struct nvme_ns *ns;
1964
1965         spin_lock(&dev_list_lock);
1966         ns = bdev->bd_disk->private_data;
1967         if (!ns)
1968                 ret = -ENXIO;
1969         else if (!kref_get_unless_zero(&ns->kref))
1970                 ret = -ENXIO;
1971         spin_unlock(&dev_list_lock);
1972
1973         return ret;
1974 }
1975
1976 static void nvme_release(struct gendisk *disk, fmode_t mode)
1977 {
1978         struct nvme_ns *ns = disk->private_data;
1979         kref_put(&ns->kref, nvme_free_ns);
1980 }
1981
1982 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1983 {
1984         /* some standard values */
1985         geo->heads = 1 << 6;
1986         geo->sectors = 1 << 5;
1987         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1988         return 0;
1989 }
1990
1991 static void nvme_config_discard(struct nvme_ns *ns)
1992 {
1993         u32 logical_block_size = queue_logical_block_size(ns->queue);
1994         ns->queue->limits.discard_zeroes_data = 0;
1995         ns->queue->limits.discard_alignment = logical_block_size;
1996         ns->queue->limits.discard_granularity = logical_block_size;
1997         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1998         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1999 }
2000
2001 static int nvme_revalidate_disk(struct gendisk *disk)
2002 {
2003         struct nvme_ns *ns = disk->private_data;
2004         struct nvme_dev *dev = ns->dev;
2005         struct nvme_id_ns *id;
2006         u8 lbaf, pi_type;
2007         u16 old_ms;
2008         unsigned short bs;
2009
2010         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2011                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2012                                                 dev->instance, ns->ns_id);
2013                 return -ENODEV;
2014         }
2015         if (id->ncap == 0) {
2016                 kfree(id);
2017                 return -ENODEV;
2018         }
2019
2020         old_ms = ns->ms;
2021         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2022         ns->lba_shift = id->lbaf[lbaf].ds;
2023         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2024         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2025
2026         /*
2027          * If identify namespace failed, use default 512 byte block size so
2028          * block layer can use before failing read/write for 0 capacity.
2029          */
2030         if (ns->lba_shift == 0)
2031                 ns->lba_shift = 9;
2032         bs = 1 << ns->lba_shift;
2033
2034         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2035         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2036                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2037
2038         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2039                                 ns->ms != old_ms ||
2040                                 bs != queue_logical_block_size(disk->queue) ||
2041                                 (ns->ms && ns->ext)))
2042                 blk_integrity_unregister(disk);
2043
2044         ns->pi_type = pi_type;
2045         blk_queue_logical_block_size(ns->queue, bs);
2046
2047         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2048                                                                 !ns->ext)
2049                 nvme_init_integrity(ns);
2050
2051         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
2052                 set_capacity(disk, 0);
2053         else
2054                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2055
2056         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2057                 nvme_config_discard(ns);
2058
2059         kfree(id);
2060         return 0;
2061 }
2062
2063 static const struct block_device_operations nvme_fops = {
2064         .owner          = THIS_MODULE,
2065         .ioctl          = nvme_ioctl,
2066         .compat_ioctl   = nvme_compat_ioctl,
2067         .open           = nvme_open,
2068         .release        = nvme_release,
2069         .getgeo         = nvme_getgeo,
2070         .revalidate_disk= nvme_revalidate_disk,
2071 };
2072
2073 static int nvme_kthread(void *data)
2074 {
2075         struct nvme_dev *dev, *next;
2076
2077         while (!kthread_should_stop()) {
2078                 set_current_state(TASK_INTERRUPTIBLE);
2079                 spin_lock(&dev_list_lock);
2080                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2081                         int i;
2082                         u32 csts = readl(&dev->bar->csts);
2083
2084                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2085                                                         csts & NVME_CSTS_CFS) {
2086                                 if (!__nvme_reset(dev)) {
2087                                         dev_warn(dev->dev,
2088                                                 "Failed status: %x, reset controller\n",
2089                                                 readl(&dev->bar->csts));
2090                                 }
2091                                 continue;
2092                         }
2093                         for (i = 0; i < dev->queue_count; i++) {
2094                                 struct nvme_queue *nvmeq = dev->queues[i];
2095                                 if (!nvmeq)
2096                                         continue;
2097                                 spin_lock_irq(&nvmeq->q_lock);
2098                                 nvme_process_cq(nvmeq);
2099
2100                                 while ((i == 0) && (dev->event_limit > 0)) {
2101                                         if (nvme_submit_async_admin_req(dev))
2102                                                 break;
2103                                         dev->event_limit--;
2104                                 }
2105                                 spin_unlock_irq(&nvmeq->q_lock);
2106                         }
2107                 }
2108                 spin_unlock(&dev_list_lock);
2109                 schedule_timeout(round_jiffies_relative(HZ));
2110         }
2111         return 0;
2112 }
2113
2114 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2115 {
2116         struct nvme_ns *ns;
2117         struct gendisk *disk;
2118         int node = dev_to_node(dev->dev);
2119
2120         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2121         if (!ns)
2122                 return;
2123
2124         ns->queue = blk_mq_init_queue(&dev->tagset);
2125         if (IS_ERR(ns->queue))
2126                 goto out_free_ns;
2127         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2129         ns->dev = dev;
2130         ns->queue->queuedata = ns;
2131
2132         disk = alloc_disk_node(0, node);
2133         if (!disk)
2134                 goto out_free_queue;
2135
2136         kref_init(&ns->kref);
2137         ns->ns_id = nsid;
2138         ns->disk = disk;
2139         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140         list_add_tail(&ns->list, &dev->namespaces);
2141
2142         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2143         if (dev->max_hw_sectors) {
2144                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2145                 blk_queue_max_segments(ns->queue,
2146                         ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2147         }
2148         if (dev->stripe_size)
2149                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2150         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2151                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2152         blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2153
2154         disk->major = nvme_major;
2155         disk->first_minor = 0;
2156         disk->fops = &nvme_fops;
2157         disk->private_data = ns;
2158         disk->queue = ns->queue;
2159         disk->driverfs_dev = dev->device;
2160         disk->flags = GENHD_FL_EXT_DEVT;
2161         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2162
2163         /*
2164          * Initialize capacity to 0 until we establish the namespace format and
2165          * setup integrity extentions if necessary. The revalidate_disk after
2166          * add_disk allows the driver to register with integrity if the format
2167          * requires it.
2168          */
2169         set_capacity(disk, 0);
2170         if (nvme_revalidate_disk(ns->disk))
2171                 goto out_free_disk;
2172
2173         kref_get(&dev->kref);
2174         add_disk(ns->disk);
2175         if (ns->ms) {
2176                 struct block_device *bd = bdget_disk(ns->disk, 0);
2177                 if (!bd)
2178                         return;
2179                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2180                         bdput(bd);
2181                         return;
2182                 }
2183                 blkdev_reread_part(bd);
2184                 blkdev_put(bd, FMODE_READ);
2185         }
2186         return;
2187  out_free_disk:
2188         kfree(disk);
2189         list_del(&ns->list);
2190  out_free_queue:
2191         blk_cleanup_queue(ns->queue);
2192  out_free_ns:
2193         kfree(ns);
2194 }
2195
2196 /*
2197  * Create I/O queues.  Failing to create an I/O queue is not an issue,
2198  * we can continue with less than the desired amount of queues, and
2199  * even a controller without I/O queues an still be used to issue
2200  * admin commands.  This might be useful to upgrade a buggy firmware
2201  * for example.
2202  */
2203 static void nvme_create_io_queues(struct nvme_dev *dev)
2204 {
2205         unsigned i;
2206
2207         for (i = dev->queue_count; i <= dev->max_qid; i++)
2208                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2209                         break;
2210
2211         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2212                 if (nvme_create_queue(dev->queues[i], i)) {
2213                         nvme_free_queues(dev, i);
2214                         break;
2215                 }
2216 }
2217
2218 static int set_queue_count(struct nvme_dev *dev, int count)
2219 {
2220         int status;
2221         u32 result;
2222         u32 q_count = (count - 1) | ((count - 1) << 16);
2223
2224         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2225                                                                 &result);
2226         if (status < 0)
2227                 return status;
2228         if (status > 0) {
2229                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2230                 return 0;
2231         }
2232         return min(result & 0xffff, result >> 16) + 1;
2233 }
2234
2235 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2236 {
2237         u64 szu, size, offset;
2238         u32 cmbloc;
2239         resource_size_t bar_size;
2240         struct pci_dev *pdev = to_pci_dev(dev->dev);
2241         void __iomem *cmb;
2242         dma_addr_t dma_addr;
2243
2244         if (!use_cmb_sqes)
2245                 return NULL;
2246
2247         dev->cmbsz = readl(&dev->bar->cmbsz);
2248         if (!(NVME_CMB_SZ(dev->cmbsz)))
2249                 return NULL;
2250
2251         cmbloc = readl(&dev->bar->cmbloc);
2252
2253         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2254         size = szu * NVME_CMB_SZ(dev->cmbsz);
2255         offset = szu * NVME_CMB_OFST(cmbloc);
2256         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2257
2258         if (offset > bar_size)
2259                 return NULL;
2260
2261         /*
2262          * Controllers may support a CMB size larger than their BAR,
2263          * for example, due to being behind a bridge. Reduce the CMB to
2264          * the reported size of the BAR
2265          */
2266         if (size > bar_size - offset)
2267                 size = bar_size - offset;
2268
2269         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2270         cmb = ioremap_wc(dma_addr, size);
2271         if (!cmb)
2272                 return NULL;
2273
2274         dev->cmb_dma_addr = dma_addr;
2275         dev->cmb_size = size;
2276         return cmb;
2277 }
2278
2279 static inline void nvme_release_cmb(struct nvme_dev *dev)
2280 {
2281         if (dev->cmb) {
2282                 iounmap(dev->cmb);
2283                 dev->cmb = NULL;
2284         }
2285 }
2286
2287 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2288 {
2289         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2290 }
2291
2292 static int nvme_setup_io_queues(struct nvme_dev *dev)
2293 {
2294         struct nvme_queue *adminq = dev->queues[0];
2295         struct pci_dev *pdev = to_pci_dev(dev->dev);
2296         int result, i, vecs, nr_io_queues, size;
2297
2298         nr_io_queues = num_possible_cpus();
2299         result = set_queue_count(dev, nr_io_queues);
2300         if (result <= 0)
2301                 return result;
2302         if (result < nr_io_queues)
2303                 nr_io_queues = result;
2304
2305         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2306                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2307                                 sizeof(struct nvme_command));
2308                 if (result > 0)
2309                         dev->q_depth = result;
2310                 else
2311                         nvme_release_cmb(dev);
2312         }
2313
2314         size = db_bar_size(dev, nr_io_queues);
2315         if (size > 8192) {
2316                 iounmap(dev->bar);
2317                 do {
2318                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2319                         if (dev->bar)
2320                                 break;
2321                         if (!--nr_io_queues)
2322                                 return -ENOMEM;
2323                         size = db_bar_size(dev, nr_io_queues);
2324                 } while (1);
2325                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2326                 adminq->q_db = dev->dbs;
2327         }
2328
2329         /* Deregister the admin queue's interrupt */
2330         free_irq(dev->entry[0].vector, adminq);
2331
2332         /*
2333          * If we enable msix early due to not intx, disable it again before
2334          * setting up the full range we need.
2335          */
2336         if (!pdev->irq)
2337                 pci_disable_msix(pdev);
2338
2339         for (i = 0; i < nr_io_queues; i++)
2340                 dev->entry[i].entry = i;
2341         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2342         if (vecs < 0) {
2343                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2344                 if (vecs < 0) {
2345                         vecs = 1;
2346                 } else {
2347                         for (i = 0; i < vecs; i++)
2348                                 dev->entry[i].vector = i + pdev->irq;
2349                 }
2350         }
2351
2352         /*
2353          * Should investigate if there's a performance win from allocating
2354          * more queues than interrupt vectors; it might allow the submission
2355          * path to scale better, even if the receive path is limited by the
2356          * number of interrupts.
2357          */
2358         nr_io_queues = vecs;
2359         dev->max_qid = nr_io_queues;
2360
2361         result = queue_request_irq(dev, adminq, adminq->irqname);
2362         if (result) {
2363                 adminq->cq_vector = -1;
2364                 goto free_queues;
2365         }
2366
2367         /* Free previously allocated queues that are no longer usable */
2368         nvme_free_queues(dev, nr_io_queues + 1);
2369         nvme_create_io_queues(dev);
2370
2371         return 0;
2372
2373  free_queues:
2374         nvme_free_queues(dev, 1);
2375         return result;
2376 }
2377
2378 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2379 {
2380         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2381         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2382
2383         return nsa->ns_id - nsb->ns_id;
2384 }
2385
2386 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2387 {
2388         struct nvme_ns *ns;
2389
2390         list_for_each_entry(ns, &dev->namespaces, list) {
2391                 if (ns->ns_id == nsid)
2392                         return ns;
2393                 if (ns->ns_id > nsid)
2394                         break;
2395         }
2396         return NULL;
2397 }
2398
2399 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2400 {
2401         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2402                                                         dev->online_queues < 2);
2403 }
2404
2405 static void nvme_ns_remove(struct nvme_ns *ns)
2406 {
2407         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2408
2409         if (kill)
2410                 blk_set_queue_dying(ns->queue);
2411         if (ns->disk->flags & GENHD_FL_UP) {
2412                 if (blk_get_integrity(ns->disk))
2413                         blk_integrity_unregister(ns->disk);
2414                 del_gendisk(ns->disk);
2415         }
2416         if (kill || !blk_queue_dying(ns->queue)) {
2417                 blk_mq_abort_requeue_list(ns->queue);
2418                 blk_cleanup_queue(ns->queue);
2419         }
2420         list_del_init(&ns->list);
2421         kref_put(&ns->kref, nvme_free_ns);
2422 }
2423
2424 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2425 {
2426         struct nvme_ns *ns, *next;
2427         unsigned i;
2428
2429         for (i = 1; i <= nn; i++) {
2430                 ns = nvme_find_ns(dev, i);
2431                 if (ns) {
2432                         if (revalidate_disk(ns->disk))
2433                                 nvme_ns_remove(ns);
2434                 } else
2435                         nvme_alloc_ns(dev, i);
2436         }
2437         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2438                 if (ns->ns_id > nn)
2439                         nvme_ns_remove(ns);
2440         }
2441         list_sort(NULL, &dev->namespaces, ns_cmp);
2442 }
2443
2444 static void nvme_set_irq_hints(struct nvme_dev *dev)
2445 {
2446         struct nvme_queue *nvmeq;
2447         int i;
2448
2449         for (i = 0; i < dev->online_queues; i++) {
2450                 nvmeq = dev->queues[i];
2451
2452                 if (!nvmeq->tags || !(*nvmeq->tags))
2453                         continue;
2454
2455                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2456                                         blk_mq_tags_cpumask(*nvmeq->tags));
2457         }
2458 }
2459
2460 static void nvme_dev_scan(struct work_struct *work)
2461 {
2462         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2463         struct nvme_id_ctrl *ctrl;
2464
2465         if (!dev->tagset.tags)
2466                 return;
2467         if (nvme_identify_ctrl(dev, &ctrl))
2468                 return;
2469         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2470         kfree(ctrl);
2471         nvme_set_irq_hints(dev);
2472 }
2473
2474 /*
2475  * Return: error value if an error occurred setting up the queues or calling
2476  * Identify Device.  0 if these succeeded, even if adding some of the
2477  * namespaces failed.  At the moment, these failures are silent.  TBD which
2478  * failures should be reported.
2479  */
2480 static int nvme_dev_add(struct nvme_dev *dev)
2481 {
2482         struct pci_dev *pdev = to_pci_dev(dev->dev);
2483         int res;
2484         struct nvme_id_ctrl *ctrl;
2485         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2486
2487         res = nvme_identify_ctrl(dev, &ctrl);
2488         if (res) {
2489                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2490                 return -EIO;
2491         }
2492
2493         dev->oncs = le16_to_cpup(&ctrl->oncs);
2494         dev->abort_limit = ctrl->acl + 1;
2495         dev->vwc = ctrl->vwc;
2496         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2497         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2498         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2499         if (ctrl->mdts)
2500                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2501         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2502                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2503                 unsigned int max_hw_sectors;
2504
2505                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2506                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2507                 if (dev->max_hw_sectors) {
2508                         dev->max_hw_sectors = min(max_hw_sectors,
2509                                                         dev->max_hw_sectors);
2510                 } else
2511                         dev->max_hw_sectors = max_hw_sectors;
2512         }
2513         kfree(ctrl);
2514
2515         if (!dev->tagset.tags) {
2516                 dev->tagset.ops = &nvme_mq_ops;
2517                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2518                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2519                 dev->tagset.numa_node = dev_to_node(dev->dev);
2520                 dev->tagset.queue_depth =
2521                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2522                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2523                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2524                 dev->tagset.driver_data = dev;
2525
2526                 if (blk_mq_alloc_tag_set(&dev->tagset))
2527                         return 0;
2528         }
2529         schedule_work(&dev->scan_work);
2530         return 0;
2531 }
2532
2533 static int nvme_dev_map(struct nvme_dev *dev)
2534 {
2535         u64 cap;
2536         int bars, result = -ENOMEM;
2537         struct pci_dev *pdev = to_pci_dev(dev->dev);
2538
2539         if (pci_enable_device_mem(pdev))
2540                 return result;
2541
2542         dev->entry[0].vector = pdev->irq;
2543         pci_set_master(pdev);
2544         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2545         if (!bars)
2546                 goto disable_pci;
2547
2548         if (pci_request_selected_regions(pdev, bars, "nvme"))
2549                 goto disable_pci;
2550
2551         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2552             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2553                 goto disable;
2554
2555         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2556         if (!dev->bar)
2557                 goto disable;
2558
2559         if (readl(&dev->bar->csts) == -1) {
2560                 result = -ENODEV;
2561                 goto unmap;
2562         }
2563
2564         /*
2565          * Some devices don't advertse INTx interrupts, pre-enable a single
2566          * MSIX vec for setup. We'll adjust this later.
2567          */
2568         if (!pdev->irq) {
2569                 result = pci_enable_msix(pdev, dev->entry, 1);
2570                 if (result < 0)
2571                         goto unmap;
2572         }
2573
2574         cap = readq(&dev->bar->cap);
2575         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2576         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2577         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2578         if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2579                 dev->cmb = nvme_map_cmb(dev);
2580
2581         return 0;
2582
2583  unmap:
2584         iounmap(dev->bar);
2585         dev->bar = NULL;
2586  disable:
2587         pci_release_regions(pdev);
2588  disable_pci:
2589         pci_disable_device(pdev);
2590         return result;
2591 }
2592
2593 static void nvme_dev_unmap(struct nvme_dev *dev)
2594 {
2595         struct pci_dev *pdev = to_pci_dev(dev->dev);
2596
2597         if (pdev->msi_enabled)
2598                 pci_disable_msi(pdev);
2599         else if (pdev->msix_enabled)
2600                 pci_disable_msix(pdev);
2601
2602         if (dev->bar) {
2603                 iounmap(dev->bar);
2604                 dev->bar = NULL;
2605                 pci_release_regions(pdev);
2606         }
2607
2608         if (pci_is_enabled(pdev))
2609                 pci_disable_device(pdev);
2610 }
2611
2612 struct nvme_delq_ctx {
2613         struct task_struct *waiter;
2614         struct kthread_worker *worker;
2615         atomic_t refcount;
2616 };
2617
2618 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2619 {
2620         dq->waiter = current;
2621         mb();
2622
2623         for (;;) {
2624                 set_current_state(TASK_KILLABLE);
2625                 if (!atomic_read(&dq->refcount))
2626                         break;
2627                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2628                                         fatal_signal_pending(current)) {
2629                         /*
2630                          * Disable the controller first since we can't trust it
2631                          * at this point, but leave the admin queue enabled
2632                          * until all queue deletion requests are flushed.
2633                          * FIXME: This may take a while if there are more h/w
2634                          * queues than admin tags.
2635                          */
2636                         set_current_state(TASK_RUNNING);
2637                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2638                         nvme_clear_queue(dev->queues[0]);
2639                         flush_kthread_worker(dq->worker);
2640                         nvme_disable_queue(dev, 0);
2641                         return;
2642                 }
2643         }
2644         set_current_state(TASK_RUNNING);
2645 }
2646
2647 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2648 {
2649         atomic_dec(&dq->refcount);
2650         if (dq->waiter)
2651                 wake_up_process(dq->waiter);
2652 }
2653
2654 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2655 {
2656         atomic_inc(&dq->refcount);
2657         return dq;
2658 }
2659
2660 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2661 {
2662         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2663         nvme_put_dq(dq);
2664 }
2665
2666 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2667                                                 kthread_work_func_t fn)
2668 {
2669         struct nvme_command c;
2670
2671         memset(&c, 0, sizeof(c));
2672         c.delete_queue.opcode = opcode;
2673         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2674
2675         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2676         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2677                                                                 ADMIN_TIMEOUT);
2678 }
2679
2680 static void nvme_del_cq_work_handler(struct kthread_work *work)
2681 {
2682         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2683                                                         cmdinfo.work);
2684         nvme_del_queue_end(nvmeq);
2685 }
2686
2687 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2688 {
2689         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2690                                                 nvme_del_cq_work_handler);
2691 }
2692
2693 static void nvme_del_sq_work_handler(struct kthread_work *work)
2694 {
2695         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2696                                                         cmdinfo.work);
2697         int status = nvmeq->cmdinfo.status;
2698
2699         if (!status)
2700                 status = nvme_delete_cq(nvmeq);
2701         if (status)
2702                 nvme_del_queue_end(nvmeq);
2703 }
2704
2705 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2706 {
2707         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2708                                                 nvme_del_sq_work_handler);
2709 }
2710
2711 static void nvme_del_queue_start(struct kthread_work *work)
2712 {
2713         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2714                                                         cmdinfo.work);
2715         if (nvme_delete_sq(nvmeq))
2716                 nvme_del_queue_end(nvmeq);
2717 }
2718
2719 static void nvme_disable_io_queues(struct nvme_dev *dev)
2720 {
2721         int i;
2722         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2723         struct nvme_delq_ctx dq;
2724         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2725                                         &worker, "nvme%d", dev->instance);
2726
2727         if (IS_ERR(kworker_task)) {
2728                 dev_err(dev->dev,
2729                         "Failed to create queue del task\n");
2730                 for (i = dev->queue_count - 1; i > 0; i--)
2731                         nvme_disable_queue(dev, i);
2732                 return;
2733         }
2734
2735         dq.waiter = NULL;
2736         atomic_set(&dq.refcount, 0);
2737         dq.worker = &worker;
2738         for (i = dev->queue_count - 1; i > 0; i--) {
2739                 struct nvme_queue *nvmeq = dev->queues[i];
2740
2741                 if (nvme_suspend_queue(nvmeq))
2742                         continue;
2743                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2744                 nvmeq->cmdinfo.worker = dq.worker;
2745                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2746                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2747         }
2748         nvme_wait_dq(&dq, dev);
2749         kthread_stop(kworker_task);
2750 }
2751
2752 /*
2753 * Remove the node from the device list and check
2754 * for whether or not we need to stop the nvme_thread.
2755 */
2756 static void nvme_dev_list_remove(struct nvme_dev *dev)
2757 {
2758         struct task_struct *tmp = NULL;
2759
2760         spin_lock(&dev_list_lock);
2761         list_del_init(&dev->node);
2762         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2763                 tmp = nvme_thread;
2764                 nvme_thread = NULL;
2765         }
2766         spin_unlock(&dev_list_lock);
2767
2768         if (tmp)
2769                 kthread_stop(tmp);
2770 }
2771
2772 static void nvme_freeze_queues(struct nvme_dev *dev)
2773 {
2774         struct nvme_ns *ns;
2775
2776         list_for_each_entry(ns, &dev->namespaces, list) {
2777                 blk_mq_freeze_queue_start(ns->queue);
2778
2779                 spin_lock_irq(ns->queue->queue_lock);
2780                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2781                 spin_unlock_irq(ns->queue->queue_lock);
2782
2783                 blk_mq_cancel_requeue_work(ns->queue);
2784                 blk_mq_stop_hw_queues(ns->queue);
2785         }
2786 }
2787
2788 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2789 {
2790         struct nvme_ns *ns;
2791
2792         list_for_each_entry(ns, &dev->namespaces, list) {
2793                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2794                 blk_mq_unfreeze_queue(ns->queue);
2795                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2796                 blk_mq_kick_requeue_list(ns->queue);
2797         }
2798 }
2799
2800 static void nvme_dev_shutdown(struct nvme_dev *dev)
2801 {
2802         int i;
2803         u32 csts = -1;
2804
2805         nvme_dev_list_remove(dev);
2806
2807         if (dev->bar) {
2808                 nvme_freeze_queues(dev);
2809                 csts = readl(&dev->bar->csts);
2810         }
2811         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2812                 for (i = dev->queue_count - 1; i >= 0; i--) {
2813                         struct nvme_queue *nvmeq = dev->queues[i];
2814                         nvme_suspend_queue(nvmeq);
2815                 }
2816         } else {
2817                 nvme_disable_io_queues(dev);
2818                 nvme_shutdown_ctrl(dev);
2819                 nvme_disable_queue(dev, 0);
2820         }
2821         nvme_dev_unmap(dev);
2822
2823         for (i = dev->queue_count - 1; i >= 0; i--)
2824                 nvme_clear_queue(dev->queues[i]);
2825 }
2826
2827 static void nvme_dev_remove(struct nvme_dev *dev)
2828 {
2829         struct nvme_ns *ns, *next;
2830
2831         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2832                 nvme_ns_remove(ns);
2833 }
2834
2835 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2836 {
2837         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2838                                                 PAGE_SIZE, PAGE_SIZE, 0);
2839         if (!dev->prp_page_pool)
2840                 return -ENOMEM;
2841
2842         /* Optimisation for I/Os between 4k and 128k */
2843         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2844                                                 256, 256, 0);
2845         if (!dev->prp_small_pool) {
2846                 dma_pool_destroy(dev->prp_page_pool);
2847                 return -ENOMEM;
2848         }
2849         return 0;
2850 }
2851
2852 static void nvme_release_prp_pools(struct nvme_dev *dev)
2853 {
2854         dma_pool_destroy(dev->prp_page_pool);
2855         dma_pool_destroy(dev->prp_small_pool);
2856 }
2857
2858 static DEFINE_IDA(nvme_instance_ida);
2859
2860 static int nvme_set_instance(struct nvme_dev *dev)
2861 {
2862         int instance, error;
2863
2864         do {
2865                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2866                         return -ENODEV;
2867
2868                 spin_lock(&dev_list_lock);
2869                 error = ida_get_new(&nvme_instance_ida, &instance);
2870                 spin_unlock(&dev_list_lock);
2871         } while (error == -EAGAIN);
2872
2873         if (error)
2874                 return -ENODEV;
2875
2876         dev->instance = instance;
2877         return 0;
2878 }
2879
2880 static void nvme_release_instance(struct nvme_dev *dev)
2881 {
2882         spin_lock(&dev_list_lock);
2883         ida_remove(&nvme_instance_ida, dev->instance);
2884         spin_unlock(&dev_list_lock);
2885 }
2886
2887 static void nvme_free_dev(struct kref *kref)
2888 {
2889         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2890
2891         put_device(dev->dev);
2892         put_device(dev->device);
2893         nvme_release_instance(dev);
2894         if (dev->tagset.tags)
2895                 blk_mq_free_tag_set(&dev->tagset);
2896         if (dev->admin_q)
2897                 blk_put_queue(dev->admin_q);
2898         kfree(dev->queues);
2899         kfree(dev->entry);
2900         kfree(dev);
2901 }
2902
2903 static int nvme_dev_open(struct inode *inode, struct file *f)
2904 {
2905         struct nvme_dev *dev;
2906         int instance = iminor(inode);
2907         int ret = -ENODEV;
2908
2909         spin_lock(&dev_list_lock);
2910         list_for_each_entry(dev, &dev_list, node) {
2911                 if (dev->instance == instance) {
2912                         if (!dev->admin_q) {
2913                                 ret = -EWOULDBLOCK;
2914                                 break;
2915                         }
2916                         if (!kref_get_unless_zero(&dev->kref))
2917                                 break;
2918                         f->private_data = dev;
2919                         ret = 0;
2920                         break;
2921                 }
2922         }
2923         spin_unlock(&dev_list_lock);
2924
2925         return ret;
2926 }
2927
2928 static int nvme_dev_release(struct inode *inode, struct file *f)
2929 {
2930         struct nvme_dev *dev = f->private_data;
2931         kref_put(&dev->kref, nvme_free_dev);
2932         return 0;
2933 }
2934
2935 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2936 {
2937         struct nvme_dev *dev = f->private_data;
2938         struct nvme_ns *ns;
2939
2940         switch (cmd) {
2941         case NVME_IOCTL_ADMIN_CMD:
2942                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2943         case NVME_IOCTL_IO_CMD:
2944                 if (list_empty(&dev->namespaces))
2945                         return -ENOTTY;
2946                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2947                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2948         case NVME_IOCTL_RESET:
2949                 dev_warn(dev->dev, "resetting controller\n");
2950                 return nvme_reset(dev);
2951         case NVME_IOCTL_SUBSYS_RESET:
2952                 return nvme_subsys_reset(dev);
2953         default:
2954                 return -ENOTTY;
2955         }
2956 }
2957
2958 static const struct file_operations nvme_dev_fops = {
2959         .owner          = THIS_MODULE,
2960         .open           = nvme_dev_open,
2961         .release        = nvme_dev_release,
2962         .unlocked_ioctl = nvme_dev_ioctl,
2963         .compat_ioctl   = nvme_dev_ioctl,
2964 };
2965
2966 static void nvme_probe_work(struct work_struct *work)
2967 {
2968         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2969         bool start_thread = false;
2970         int result;
2971
2972         result = nvme_dev_map(dev);
2973         if (result)
2974                 goto out;
2975
2976         result = nvme_configure_admin_queue(dev);
2977         if (result)
2978                 goto unmap;
2979
2980         spin_lock(&dev_list_lock);
2981         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2982                 start_thread = true;
2983                 nvme_thread = NULL;
2984         }
2985         list_add(&dev->node, &dev_list);
2986         spin_unlock(&dev_list_lock);
2987
2988         if (start_thread) {
2989                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2990                 wake_up_all(&nvme_kthread_wait);
2991         } else
2992                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2993
2994         if (IS_ERR_OR_NULL(nvme_thread)) {
2995                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2996                 goto disable;
2997         }
2998
2999         nvme_init_queue(dev->queues[0], 0);
3000         result = nvme_alloc_admin_tags(dev);
3001         if (result)
3002                 goto disable;
3003
3004         result = nvme_setup_io_queues(dev);
3005         if (result)
3006                 goto free_tags;
3007
3008         dev->event_limit = 1;
3009
3010         /*
3011          * Keep the controller around but remove all namespaces if we don't have
3012          * any working I/O queue.
3013          */
3014         if (dev->online_queues < 2) {
3015                 dev_warn(dev->dev, "IO queues not created\n");
3016                 nvme_dev_remove(dev);
3017         } else {
3018                 nvme_unfreeze_queues(dev);
3019                 nvme_dev_add(dev);
3020         }
3021
3022         return;
3023
3024  free_tags:
3025         nvme_dev_remove_admin(dev);
3026         blk_put_queue(dev->admin_q);
3027         dev->admin_q = NULL;
3028         dev->queues[0]->tags = NULL;
3029  disable:
3030         nvme_disable_queue(dev, 0);
3031         nvme_dev_list_remove(dev);
3032  unmap:
3033         nvme_dev_unmap(dev);
3034  out:
3035         if (!work_busy(&dev->reset_work))
3036                 nvme_dead_ctrl(dev);
3037 }
3038
3039 static int nvme_remove_dead_ctrl(void *arg)
3040 {
3041         struct nvme_dev *dev = (struct nvme_dev *)arg;
3042         struct pci_dev *pdev = to_pci_dev(dev->dev);
3043
3044         if (pci_get_drvdata(pdev))
3045                 pci_stop_and_remove_bus_device_locked(pdev);
3046         kref_put(&dev->kref, nvme_free_dev);
3047         return 0;
3048 }
3049
3050 static void nvme_dead_ctrl(struct nvme_dev *dev)
3051 {
3052         dev_warn(dev->dev, "Device failed to resume\n");
3053         kref_get(&dev->kref);
3054         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3055                                                 dev->instance))) {
3056                 dev_err(dev->dev,
3057                         "Failed to start controller remove task\n");
3058                 kref_put(&dev->kref, nvme_free_dev);
3059         }
3060 }
3061
3062 static void nvme_reset_work(struct work_struct *ws)
3063 {
3064         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3065         bool in_probe = work_busy(&dev->probe_work);
3066
3067         nvme_dev_shutdown(dev);
3068
3069         /* Synchronize with device probe so that work will see failure status
3070          * and exit gracefully without trying to schedule another reset */
3071         flush_work(&dev->probe_work);
3072
3073         /* Fail this device if reset occured during probe to avoid
3074          * infinite initialization loops. */
3075         if (in_probe) {
3076                 nvme_dead_ctrl(dev);
3077                 return;
3078         }
3079         /* Schedule device resume asynchronously so the reset work is available
3080          * to cleanup errors that may occur during reinitialization */
3081         schedule_work(&dev->probe_work);
3082 }
3083
3084 static int __nvme_reset(struct nvme_dev *dev)
3085 {
3086         if (work_pending(&dev->reset_work))
3087                 return -EBUSY;
3088         list_del_init(&dev->node);
3089         queue_work(nvme_workq, &dev->reset_work);
3090         return 0;
3091 }
3092
3093 static int nvme_reset(struct nvme_dev *dev)
3094 {
3095         int ret;
3096
3097         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3098                 return -ENODEV;
3099
3100         spin_lock(&dev_list_lock);
3101         ret = __nvme_reset(dev);
3102         spin_unlock(&dev_list_lock);
3103
3104         if (!ret) {
3105                 flush_work(&dev->reset_work);
3106                 flush_work(&dev->probe_work);
3107                 return 0;
3108         }
3109
3110         return ret;
3111 }
3112
3113 static ssize_t nvme_sysfs_reset(struct device *dev,
3114                                 struct device_attribute *attr, const char *buf,
3115                                 size_t count)
3116 {
3117         struct nvme_dev *ndev = dev_get_drvdata(dev);
3118         int ret;
3119
3120         ret = nvme_reset(ndev);
3121         if (ret < 0)
3122                 return ret;
3123
3124         return count;
3125 }
3126 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3127
3128 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3129 {
3130         int node, result = -ENOMEM;
3131         struct nvme_dev *dev;
3132
3133         node = dev_to_node(&pdev->dev);
3134         if (node == NUMA_NO_NODE)
3135                 set_dev_node(&pdev->dev, 0);
3136
3137         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3138         if (!dev)
3139                 return -ENOMEM;
3140         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3141                                                         GFP_KERNEL, node);
3142         if (!dev->entry)
3143                 goto free;
3144         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3145                                                         GFP_KERNEL, node);
3146         if (!dev->queues)
3147                 goto free;
3148
3149         INIT_LIST_HEAD(&dev->namespaces);
3150         INIT_WORK(&dev->reset_work, nvme_reset_work);
3151         dev->dev = get_device(&pdev->dev);
3152         pci_set_drvdata(pdev, dev);
3153         result = nvme_set_instance(dev);
3154         if (result)
3155                 goto put_pci;
3156
3157         result = nvme_setup_prp_pools(dev);
3158         if (result)
3159                 goto release;
3160
3161         kref_init(&dev->kref);
3162         dev->device = device_create(nvme_class, &pdev->dev,
3163                                 MKDEV(nvme_char_major, dev->instance),
3164                                 dev, "nvme%d", dev->instance);
3165         if (IS_ERR(dev->device)) {
3166                 result = PTR_ERR(dev->device);
3167                 goto release_pools;
3168         }
3169         get_device(dev->device);
3170         dev_set_drvdata(dev->device, dev);
3171
3172         result = device_create_file(dev->device, &dev_attr_reset_controller);
3173         if (result)
3174                 goto put_dev;
3175
3176         INIT_LIST_HEAD(&dev->node);
3177         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3178         INIT_WORK(&dev->probe_work, nvme_probe_work);
3179         schedule_work(&dev->probe_work);
3180         return 0;
3181
3182  put_dev:
3183         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3184         put_device(dev->device);
3185  release_pools:
3186         nvme_release_prp_pools(dev);
3187  release:
3188         nvme_release_instance(dev);
3189  put_pci:
3190         put_device(dev->dev);
3191  free:
3192         kfree(dev->queues);
3193         kfree(dev->entry);
3194         kfree(dev);
3195         return result;
3196 }
3197
3198 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3199 {
3200         struct nvme_dev *dev = pci_get_drvdata(pdev);
3201
3202         if (prepare)
3203                 nvme_dev_shutdown(dev);
3204         else
3205                 schedule_work(&dev->probe_work);
3206 }
3207
3208 static void nvme_shutdown(struct pci_dev *pdev)
3209 {
3210         struct nvme_dev *dev = pci_get_drvdata(pdev);
3211         nvme_dev_shutdown(dev);
3212 }
3213
3214 static void nvme_remove(struct pci_dev *pdev)
3215 {
3216         struct nvme_dev *dev = pci_get_drvdata(pdev);
3217
3218         spin_lock(&dev_list_lock);
3219         list_del_init(&dev->node);
3220         spin_unlock(&dev_list_lock);
3221
3222         pci_set_drvdata(pdev, NULL);
3223         flush_work(&dev->probe_work);
3224         flush_work(&dev->reset_work);
3225         flush_work(&dev->scan_work);
3226         device_remove_file(dev->device, &dev_attr_reset_controller);
3227         nvme_dev_remove(dev);
3228         nvme_dev_shutdown(dev);
3229         nvme_dev_remove_admin(dev);
3230         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3231         nvme_free_queues(dev, 0);
3232         nvme_release_cmb(dev);
3233         nvme_release_prp_pools(dev);
3234         kref_put(&dev->kref, nvme_free_dev);
3235 }
3236
3237 /* These functions are yet to be implemented */
3238 #define nvme_error_detected NULL
3239 #define nvme_dump_registers NULL
3240 #define nvme_link_reset NULL
3241 #define nvme_slot_reset NULL
3242 #define nvme_error_resume NULL
3243
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_suspend(struct device *dev)
3246 {
3247         struct pci_dev *pdev = to_pci_dev(dev);
3248         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249
3250         nvme_dev_shutdown(ndev);
3251         return 0;
3252 }
3253
3254 static int nvme_resume(struct device *dev)
3255 {
3256         struct pci_dev *pdev = to_pci_dev(dev);
3257         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3258
3259         schedule_work(&ndev->probe_work);
3260         return 0;
3261 }
3262 #endif
3263
3264 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3265
3266 static const struct pci_error_handlers nvme_err_handler = {
3267         .error_detected = nvme_error_detected,
3268         .mmio_enabled   = nvme_dump_registers,
3269         .link_reset     = nvme_link_reset,
3270         .slot_reset     = nvme_slot_reset,
3271         .resume         = nvme_error_resume,
3272         .reset_notify   = nvme_reset_notify,
3273 };
3274
3275 /* Move to pci_ids.h later */
3276 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3277
3278 static const struct pci_device_id nvme_id_table[] = {
3279         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3280         { 0, }
3281 };
3282 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3283
3284 static struct pci_driver nvme_driver = {
3285         .name           = "nvme",
3286         .id_table       = nvme_id_table,
3287         .probe          = nvme_probe,
3288         .remove         = nvme_remove,
3289         .shutdown       = nvme_shutdown,
3290         .driver         = {
3291                 .pm     = &nvme_dev_pm_ops,
3292         },
3293         .err_handler    = &nvme_err_handler,
3294 };
3295
3296 static int __init nvme_init(void)
3297 {
3298         int result;
3299
3300         init_waitqueue_head(&nvme_kthread_wait);
3301
3302         nvme_workq = create_singlethread_workqueue("nvme");
3303         if (!nvme_workq)
3304                 return -ENOMEM;
3305
3306         result = register_blkdev(nvme_major, "nvme");
3307         if (result < 0)
3308                 goto kill_workq;
3309         else if (result > 0)
3310                 nvme_major = result;
3311
3312         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3313                                                         &nvme_dev_fops);
3314         if (result < 0)
3315                 goto unregister_blkdev;
3316         else if (result > 0)
3317                 nvme_char_major = result;
3318
3319         nvme_class = class_create(THIS_MODULE, "nvme");
3320         if (IS_ERR(nvme_class)) {
3321                 result = PTR_ERR(nvme_class);
3322                 goto unregister_chrdev;
3323         }
3324
3325         result = pci_register_driver(&nvme_driver);
3326         if (result)
3327                 goto destroy_class;
3328         return 0;
3329
3330  destroy_class:
3331         class_destroy(nvme_class);
3332  unregister_chrdev:
3333         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3334  unregister_blkdev:
3335         unregister_blkdev(nvme_major, "nvme");
3336  kill_workq:
3337         destroy_workqueue(nvme_workq);
3338         return result;
3339 }
3340
3341 static void __exit nvme_exit(void)
3342 {
3343         pci_unregister_driver(&nvme_driver);
3344         unregister_blkdev(nvme_major, "nvme");
3345         destroy_workqueue(nvme_workq);
3346         class_destroy(nvme_class);
3347         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3348         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3349         _nvme_check_size();
3350 }
3351
3352 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3353 MODULE_LICENSE("GPL");
3354 MODULE_VERSION("1.0");
3355 module_init(nvme_init);
3356 module_exit(nvme_exit);