2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45 #include <uapi/linux/nvme_ioctl.h>
48 #define NVME_MINORS (1U << MINORBITS)
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53 #define ADMIN_TIMEOUT (admin_timeout * HZ)
54 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
56 static unsigned char admin_timeout = 60;
57 module_param(admin_timeout, byte, 0644);
58 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
60 unsigned char nvme_io_timeout = 30;
61 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
62 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
71 static int nvme_char_major;
72 module_param(nvme_char_major, int, 0);
74 static int use_threaded_interrupts;
75 module_param(use_threaded_interrupts, int, 0);
77 static bool use_cmb_sqes = true;
78 module_param(use_cmb_sqes, bool, 0644);
79 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 static DEFINE_SPINLOCK(dev_list_lock);
82 static LIST_HEAD(dev_list);
83 static struct task_struct *nvme_thread;
84 static struct workqueue_struct *nvme_workq;
85 static wait_queue_head_t nvme_kthread_wait;
87 static struct class *nvme_class;
89 static int __nvme_reset(struct nvme_dev *dev);
90 static int nvme_reset(struct nvme_dev *dev);
91 static int nvme_process_cq(struct nvme_queue *nvmeq);
92 static void nvme_dead_ctrl(struct nvme_dev *dev);
94 struct async_cmd_info {
95 struct kthread_work work;
96 struct kthread_worker *worker;
104 * An NVM Express queue. Each device has at least two (one for admin
105 * commands and one for I/O commands).
108 struct device *q_dmadev;
109 struct nvme_dev *dev;
110 char irqname[24]; /* nvme4294967295-65535\0 */
112 struct nvme_command *sq_cmds;
113 struct nvme_command __iomem *sq_cmds_io;
114 volatile struct nvme_completion *cqes;
115 struct blk_mq_tags **tags;
116 dma_addr_t sq_dma_addr;
117 dma_addr_t cq_dma_addr;
127 struct async_cmd_info cmdinfo;
131 * Check we didin't inadvertently grow the command struct
133 static inline void _nvme_check_size(void)
135 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
137 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
138 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
139 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
140 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
141 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
142 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
143 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
144 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
145 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
146 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
149 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
150 struct nvme_completion *);
152 struct nvme_cmd_info {
153 nvme_completion_fn fn;
156 struct nvme_queue *nvmeq;
157 struct nvme_iod iod[0];
161 * Max size of iod being embedded in the request payload
163 #define NVME_INT_PAGES 2
164 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
165 #define NVME_INT_MASK 0x01
168 * Will slightly overestimate the number of pages needed. This is OK
169 * as it only leads to a small amount of wasted memory for the lifetime of
172 static int nvme_npages(unsigned size, struct nvme_dev *dev)
174 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
175 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
178 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
180 unsigned int ret = sizeof(struct nvme_cmd_info);
182 ret += sizeof(struct nvme_iod);
183 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
184 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
189 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
190 unsigned int hctx_idx)
192 struct nvme_dev *dev = data;
193 struct nvme_queue *nvmeq = dev->queues[0];
195 WARN_ON(hctx_idx != 0);
196 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
197 WARN_ON(nvmeq->tags);
199 hctx->driver_data = nvmeq;
200 nvmeq->tags = &dev->admin_tagset.tags[0];
204 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
206 struct nvme_queue *nvmeq = hctx->driver_data;
211 static int nvme_admin_init_request(void *data, struct request *req,
212 unsigned int hctx_idx, unsigned int rq_idx,
213 unsigned int numa_node)
215 struct nvme_dev *dev = data;
216 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
217 struct nvme_queue *nvmeq = dev->queues[0];
224 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
225 unsigned int hctx_idx)
227 struct nvme_dev *dev = data;
228 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
231 nvmeq->tags = &dev->tagset.tags[hctx_idx];
233 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
234 hctx->driver_data = nvmeq;
238 static int nvme_init_request(void *data, struct request *req,
239 unsigned int hctx_idx, unsigned int rq_idx,
240 unsigned int numa_node)
242 struct nvme_dev *dev = data;
243 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
244 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
252 nvme_completion_fn handler)
257 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
260 static void *iod_get_private(struct nvme_iod *iod)
262 return (void *) (iod->private & ~0x1UL);
266 * If bit 0 is set, the iod is embedded in the request payload.
268 static bool iod_should_kfree(struct nvme_iod *iod)
270 return (iod->private & NVME_INT_MASK) == 0;
273 /* Special values must be less than 0x1000 */
274 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
275 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
276 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
277 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
279 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
280 struct nvme_completion *cqe)
282 if (ctx == CMD_CTX_CANCELLED)
284 if (ctx == CMD_CTX_COMPLETED) {
285 dev_warn(nvmeq->q_dmadev,
286 "completed id %d twice on queue %d\n",
287 cqe->command_id, le16_to_cpup(&cqe->sq_id));
290 if (ctx == CMD_CTX_INVALID) {
291 dev_warn(nvmeq->q_dmadev,
292 "invalid id %d completed on queue %d\n",
293 cqe->command_id, le16_to_cpup(&cqe->sq_id));
296 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
299 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
306 cmd->fn = special_completion;
307 cmd->ctx = CMD_CTX_CANCELLED;
311 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
312 struct nvme_completion *cqe)
314 u32 result = le32_to_cpup(&cqe->result);
315 u16 status = le16_to_cpup(&cqe->status) >> 1;
317 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
318 ++nvmeq->dev->event_limit;
319 if (status != NVME_SC_SUCCESS)
322 switch (result & 0xff07) {
323 case NVME_AER_NOTICE_NS_CHANGED:
324 dev_info(nvmeq->q_dmadev, "rescanning\n");
325 schedule_work(&nvmeq->dev->scan_work);
327 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
331 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
332 struct nvme_completion *cqe)
334 struct request *req = ctx;
336 u16 status = le16_to_cpup(&cqe->status) >> 1;
337 u32 result = le32_to_cpup(&cqe->result);
339 blk_mq_free_request(req);
341 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
342 ++nvmeq->dev->abort_limit;
345 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
346 struct nvme_completion *cqe)
348 struct async_cmd_info *cmdinfo = ctx;
349 cmdinfo->result = le32_to_cpup(&cqe->result);
350 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
351 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
352 blk_mq_free_request(cmdinfo->req);
355 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
358 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
360 return blk_mq_rq_to_pdu(req);
364 * Called with local interrupts disabled and the q_lock held. May not sleep.
366 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
367 nvme_completion_fn *fn)
369 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
371 if (tag >= nvmeq->q_depth) {
372 *fn = special_completion;
373 return CMD_CTX_INVALID;
378 cmd->fn = special_completion;
379 cmd->ctx = CMD_CTX_COMPLETED;
384 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
385 * @nvmeq: The queue to use
386 * @cmd: The command to send
388 * Safe to use from interrupt context
390 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391 struct nvme_command *cmd)
393 u16 tail = nvmeq->sq_tail;
395 if (nvmeq->sq_cmds_io)
396 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
398 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
400 if (++tail == nvmeq->q_depth)
402 writel(tail, nvmeq->q_db);
403 nvmeq->sq_tail = tail;
406 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
409 spin_lock_irqsave(&nvmeq->q_lock, flags);
410 __nvme_submit_cmd(nvmeq, cmd);
411 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
414 static __le64 **iod_list(struct nvme_iod *iod)
416 return ((void *)iod) + iod->offset;
419 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
420 unsigned nseg, unsigned long private)
422 iod->private = private;
423 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
425 iod->length = nbytes;
429 static struct nvme_iod *
430 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
431 unsigned long priv, gfp_t gfp)
433 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
434 sizeof(__le64 *) * nvme_npages(bytes, dev) +
435 sizeof(struct scatterlist) * nseg, gfp);
438 iod_init(iod, bytes, nseg, priv);
443 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
446 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
447 sizeof(struct nvme_dsm_range);
448 struct nvme_iod *iod;
450 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
451 size <= NVME_INT_BYTES(dev)) {
452 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
455 iod_init(iod, size, rq->nr_phys_segments,
456 (unsigned long) rq | NVME_INT_MASK);
460 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
461 (unsigned long) rq, gfp);
464 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
466 const int last_prp = dev->page_size / 8 - 1;
468 __le64 **list = iod_list(iod);
469 dma_addr_t prp_dma = iod->first_dma;
471 if (iod->npages == 0)
472 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
473 for (i = 0; i < iod->npages; i++) {
474 __le64 *prp_list = list[i];
475 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
476 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
477 prp_dma = next_prp_dma;
480 if (iod_should_kfree(iod))
484 static int nvme_error_status(u16 status)
486 switch (status & 0x7ff) {
487 case NVME_SC_SUCCESS:
489 case NVME_SC_CAP_EXCEEDED:
496 #ifdef CONFIG_BLK_DEV_INTEGRITY
497 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
499 if (be32_to_cpu(pi->ref_tag) == v)
500 pi->ref_tag = cpu_to_be32(p);
503 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
505 if (be32_to_cpu(pi->ref_tag) == p)
506 pi->ref_tag = cpu_to_be32(v);
510 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
512 * The virtual start sector is the one that was originally submitted by the
513 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
514 * start sector may be different. Remap protection information to match the
515 * physical LBA on writes, and back to the original seed on reads.
517 * Type 0 and 3 do not have a ref tag, so no remapping required.
519 static void nvme_dif_remap(struct request *req,
520 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
522 struct nvme_ns *ns = req->rq_disk->private_data;
523 struct bio_integrity_payload *bip;
524 struct t10_pi_tuple *pi;
526 u32 i, nlb, ts, phys, virt;
528 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
531 bip = bio_integrity(req->bio);
535 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
538 virt = bip_get_seed(bip);
539 phys = nvme_block_nr(ns, blk_rq_pos(req));
540 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
541 ts = ns->disk->integrity->tuple_size;
543 for (i = 0; i < nlb; i++, virt++, phys++) {
544 pi = (struct t10_pi_tuple *)p;
545 dif_swap(phys, virt, pi);
551 static int nvme_noop_verify(struct blk_integrity_iter *iter)
556 static int nvme_noop_generate(struct blk_integrity_iter *iter)
561 struct blk_integrity nvme_meta_noop = {
562 .name = "NVME_META_NOOP",
563 .generate_fn = nvme_noop_generate,
564 .verify_fn = nvme_noop_verify,
567 static void nvme_init_integrity(struct nvme_ns *ns)
569 struct blk_integrity integrity;
571 switch (ns->pi_type) {
572 case NVME_NS_DPS_PI_TYPE3:
573 integrity = t10_pi_type3_crc;
575 case NVME_NS_DPS_PI_TYPE1:
576 case NVME_NS_DPS_PI_TYPE2:
577 integrity = t10_pi_type1_crc;
580 integrity = nvme_meta_noop;
583 integrity.tuple_size = ns->ms;
584 blk_integrity_register(ns->disk, &integrity);
585 blk_queue_max_integrity_segments(ns->queue, 1);
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
598 static void nvme_init_integrity(struct nvme_ns *ns)
603 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
604 struct nvme_completion *cqe)
606 struct nvme_iod *iod = ctx;
607 struct request *req = iod_get_private(iod);
608 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
609 u16 status = le16_to_cpup(&cqe->status) >> 1;
612 if (unlikely(status)) {
613 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
614 && (jiffies - req->start_time) < req->timeout) {
617 blk_mq_requeue_request(req);
618 spin_lock_irqsave(req->q->queue_lock, flags);
619 if (!blk_queue_stopped(req->q))
620 blk_mq_kick_requeue_list(req->q);
621 spin_unlock_irqrestore(req->q->queue_lock, flags);
625 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
631 error = nvme_error_status(status);
635 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
636 u32 result = le32_to_cpup(&cqe->result);
637 req->special = (void *)(uintptr_t)result;
641 dev_warn(nvmeq->dev->dev,
642 "completing aborted command with status:%04x\n",
646 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
647 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
648 if (blk_integrity_rq(req)) {
649 if (!rq_data_dir(req))
650 nvme_dif_remap(req, nvme_dif_complete);
651 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
652 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
655 nvme_free_iod(nvmeq->dev, iod);
657 blk_mq_complete_request(req, error);
660 /* length is in bytes. gfp flags indicates whether we may sleep. */
661 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
662 int total_len, gfp_t gfp)
664 struct dma_pool *pool;
665 int length = total_len;
666 struct scatterlist *sg = iod->sg;
667 int dma_len = sg_dma_len(sg);
668 u64 dma_addr = sg_dma_address(sg);
669 u32 page_size = dev->page_size;
670 int offset = dma_addr & (page_size - 1);
672 __le64 **list = iod_list(iod);
676 length -= (page_size - offset);
680 dma_len -= (page_size - offset);
682 dma_addr += (page_size - offset);
685 dma_addr = sg_dma_address(sg);
686 dma_len = sg_dma_len(sg);
689 if (length <= page_size) {
690 iod->first_dma = dma_addr;
694 nprps = DIV_ROUND_UP(length, page_size);
695 if (nprps <= (256 / 8)) {
696 pool = dev->prp_small_pool;
699 pool = dev->prp_page_pool;
703 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
705 iod->first_dma = dma_addr;
707 return (total_len - length) + page_size;
710 iod->first_dma = prp_dma;
713 if (i == page_size >> 3) {
714 __le64 *old_prp_list = prp_list;
715 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
717 return total_len - length;
718 list[iod->npages++] = prp_list;
719 prp_list[0] = old_prp_list[i - 1];
720 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
723 prp_list[i++] = cpu_to_le64(dma_addr);
724 dma_len -= page_size;
725 dma_addr += page_size;
733 dma_addr = sg_dma_address(sg);
734 dma_len = sg_dma_len(sg);
740 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
741 struct nvme_iod *iod)
743 struct nvme_command cmnd;
745 memcpy(&cmnd, req->cmd, sizeof(cmnd));
746 cmnd.rw.command_id = req->tag;
747 if (req->nr_phys_segments) {
748 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
749 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
752 __nvme_submit_cmd(nvmeq, &cmnd);
756 * We reuse the small pool to allocate the 16-byte range here as it is not
757 * worth having a special pool for these or additional cases to handle freeing
760 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
761 struct request *req, struct nvme_iod *iod)
763 struct nvme_dsm_range *range =
764 (struct nvme_dsm_range *)iod_list(iod)[0];
765 struct nvme_command cmnd;
767 range->cattr = cpu_to_le32(0);
768 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
769 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
771 memset(&cmnd, 0, sizeof(cmnd));
772 cmnd.dsm.opcode = nvme_cmd_dsm;
773 cmnd.dsm.command_id = req->tag;
774 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
775 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
777 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
779 __nvme_submit_cmd(nvmeq, &cmnd);
782 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
785 struct nvme_command cmnd;
787 memset(&cmnd, 0, sizeof(cmnd));
788 cmnd.common.opcode = nvme_cmd_flush;
789 cmnd.common.command_id = cmdid;
790 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
792 __nvme_submit_cmd(nvmeq, &cmnd);
795 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
798 struct request *req = iod_get_private(iod);
799 struct nvme_command cmnd;
803 if (req->cmd_flags & REQ_FUA)
804 control |= NVME_RW_FUA;
805 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
806 control |= NVME_RW_LR;
808 if (req->cmd_flags & REQ_RAHEAD)
809 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
811 memset(&cmnd, 0, sizeof(cmnd));
812 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
813 cmnd.rw.command_id = req->tag;
814 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
815 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
816 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
817 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
818 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
821 switch (ns->pi_type) {
822 case NVME_NS_DPS_PI_TYPE3:
823 control |= NVME_RW_PRINFO_PRCHK_GUARD;
825 case NVME_NS_DPS_PI_TYPE1:
826 case NVME_NS_DPS_PI_TYPE2:
827 control |= NVME_RW_PRINFO_PRCHK_GUARD |
828 NVME_RW_PRINFO_PRCHK_REF;
829 cmnd.rw.reftag = cpu_to_le32(
830 nvme_block_nr(ns, blk_rq_pos(req)));
833 if (blk_integrity_rq(req))
835 cpu_to_le64(sg_dma_address(iod->meta_sg));
837 control |= NVME_RW_PRINFO_PRACT;
840 cmnd.rw.control = cpu_to_le16(control);
841 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
843 __nvme_submit_cmd(nvmeq, &cmnd);
849 * NOTE: ns is NULL when called on the admin queue.
851 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
852 const struct blk_mq_queue_data *bd)
854 struct nvme_ns *ns = hctx->queue->queuedata;
855 struct nvme_queue *nvmeq = hctx->driver_data;
856 struct nvme_dev *dev = nvmeq->dev;
857 struct request *req = bd->rq;
858 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
859 struct nvme_iod *iod;
860 enum dma_data_direction dma_dir;
863 * If formated with metadata, require the block layer provide a buffer
864 * unless this namespace is formated such that the metadata can be
865 * stripped/generated by the controller with PRACT=1.
867 if (ns && ns->ms && !blk_integrity_rq(req)) {
868 if (!(ns->pi_type && ns->ms == 8) &&
869 req->cmd_type != REQ_TYPE_DRV_PRIV) {
870 blk_mq_complete_request(req, -EFAULT);
871 return BLK_MQ_RQ_QUEUE_OK;
875 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
877 return BLK_MQ_RQ_QUEUE_BUSY;
879 if (req->cmd_flags & REQ_DISCARD) {
882 * We reuse the small pool to allocate the 16-byte range here
883 * as it is not worth having a special pool for these or
884 * additional cases to handle freeing the iod.
886 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
890 iod_list(iod)[0] = (__le64 *)range;
892 } else if (req->nr_phys_segments) {
893 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
895 sg_init_table(iod->sg, req->nr_phys_segments);
896 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
900 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
903 if (blk_rq_bytes(req) !=
904 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
905 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
908 if (blk_integrity_rq(req)) {
909 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
912 sg_init_table(iod->meta_sg, 1);
913 if (blk_rq_map_integrity_sg(
914 req->q, req->bio, iod->meta_sg) != 1)
917 if (rq_data_dir(req))
918 nvme_dif_remap(req, nvme_dif_prep);
920 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
925 nvme_set_info(cmd, iod, req_completion);
926 spin_lock_irq(&nvmeq->q_lock);
927 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
928 nvme_submit_priv(nvmeq, req, iod);
929 else if (req->cmd_flags & REQ_DISCARD)
930 nvme_submit_discard(nvmeq, ns, req, iod);
931 else if (req->cmd_flags & REQ_FLUSH)
932 nvme_submit_flush(nvmeq, ns, req->tag);
934 nvme_submit_iod(nvmeq, iod, ns);
936 nvme_process_cq(nvmeq);
937 spin_unlock_irq(&nvmeq->q_lock);
938 return BLK_MQ_RQ_QUEUE_OK;
941 nvme_free_iod(dev, iod);
942 return BLK_MQ_RQ_QUEUE_ERROR;
944 nvme_free_iod(dev, iod);
945 return BLK_MQ_RQ_QUEUE_BUSY;
948 static int nvme_process_cq(struct nvme_queue *nvmeq)
952 head = nvmeq->cq_head;
953 phase = nvmeq->cq_phase;
957 nvme_completion_fn fn;
958 struct nvme_completion cqe = nvmeq->cqes[head];
959 if ((le16_to_cpu(cqe.status) & 1) != phase)
961 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
962 if (++head == nvmeq->q_depth) {
966 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
967 fn(nvmeq, ctx, &cqe);
970 /* If the controller ignores the cq head doorbell and continuously
971 * writes to the queue, it is theoretically possible to wrap around
972 * the queue twice and mistakenly return IRQ_NONE. Linux only
973 * requires that 0.1% of your interrupts are handled, so this isn't
976 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
979 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
980 nvmeq->cq_head = head;
981 nvmeq->cq_phase = phase;
987 static irqreturn_t nvme_irq(int irq, void *data)
990 struct nvme_queue *nvmeq = data;
991 spin_lock(&nvmeq->q_lock);
992 nvme_process_cq(nvmeq);
993 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
995 spin_unlock(&nvmeq->q_lock);
999 static irqreturn_t nvme_irq_check(int irq, void *data)
1001 struct nvme_queue *nvmeq = data;
1002 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1003 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1005 return IRQ_WAKE_THREAD;
1009 * Returns 0 on success. If the result is negative, it's a Linux error code;
1010 * if the result is positive, it's an NVM Express status code
1012 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1013 void *buffer, void __user *ubuffer, unsigned bufflen,
1014 u32 *result, unsigned timeout)
1016 bool write = cmd->common.opcode & 1;
1017 struct bio *bio = NULL;
1018 struct request *req;
1021 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1023 return PTR_ERR(req);
1025 req->cmd_type = REQ_TYPE_DRV_PRIV;
1026 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1027 req->__data_len = 0;
1028 req->__sector = (sector_t) -1;
1029 req->bio = req->biotail = NULL;
1031 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1033 req->cmd = (unsigned char *)cmd;
1034 req->cmd_len = sizeof(struct nvme_command);
1035 req->special = (void *)0;
1037 if (buffer && bufflen) {
1038 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1041 } else if (ubuffer && bufflen) {
1042 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1048 blk_execute_rq(req->q, NULL, req, 0);
1050 blk_rq_unmap_user(bio);
1052 *result = (u32)(uintptr_t)req->special;
1055 blk_mq_free_request(req);
1059 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1060 void *buffer, unsigned bufflen)
1062 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1065 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1067 struct nvme_queue *nvmeq = dev->queues[0];
1068 struct nvme_command c;
1069 struct nvme_cmd_info *cmd_info;
1070 struct request *req;
1072 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1074 return PTR_ERR(req);
1076 req->cmd_flags |= REQ_NO_TIMEOUT;
1077 cmd_info = blk_mq_rq_to_pdu(req);
1078 nvme_set_info(cmd_info, NULL, async_req_completion);
1080 memset(&c, 0, sizeof(c));
1081 c.common.opcode = nvme_admin_async_event;
1082 c.common.command_id = req->tag;
1084 blk_mq_free_request(req);
1085 __nvme_submit_cmd(nvmeq, &c);
1089 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1090 struct nvme_command *cmd,
1091 struct async_cmd_info *cmdinfo, unsigned timeout)
1093 struct nvme_queue *nvmeq = dev->queues[0];
1094 struct request *req;
1095 struct nvme_cmd_info *cmd_rq;
1097 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1099 return PTR_ERR(req);
1101 req->timeout = timeout;
1102 cmd_rq = blk_mq_rq_to_pdu(req);
1104 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1105 cmdinfo->status = -EINTR;
1107 cmd->common.command_id = req->tag;
1109 nvme_submit_cmd(nvmeq, cmd);
1113 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1115 struct nvme_command c;
1117 memset(&c, 0, sizeof(c));
1118 c.delete_queue.opcode = opcode;
1119 c.delete_queue.qid = cpu_to_le16(id);
1121 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1124 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1125 struct nvme_queue *nvmeq)
1127 struct nvme_command c;
1128 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1131 * Note: we (ab)use the fact the the prp fields survive if no data
1132 * is attached to the request.
1134 memset(&c, 0, sizeof(c));
1135 c.create_cq.opcode = nvme_admin_create_cq;
1136 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1137 c.create_cq.cqid = cpu_to_le16(qid);
1138 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1139 c.create_cq.cq_flags = cpu_to_le16(flags);
1140 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1142 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1145 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1146 struct nvme_queue *nvmeq)
1148 struct nvme_command c;
1149 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1152 * Note: we (ab)use the fact the the prp fields survive if no data
1153 * is attached to the request.
1155 memset(&c, 0, sizeof(c));
1156 c.create_sq.opcode = nvme_admin_create_sq;
1157 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1158 c.create_sq.sqid = cpu_to_le16(qid);
1159 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1160 c.create_sq.sq_flags = cpu_to_le16(flags);
1161 c.create_sq.cqid = cpu_to_le16(qid);
1163 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1166 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1168 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1171 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1173 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1176 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1178 struct nvme_command c = { };
1181 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1182 c.identify.opcode = nvme_admin_identify;
1183 c.identify.cns = cpu_to_le32(1);
1185 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1189 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1190 sizeof(struct nvme_id_ctrl));
1196 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1197 struct nvme_id_ns **id)
1199 struct nvme_command c = { };
1202 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1203 c.identify.opcode = nvme_admin_identify,
1204 c.identify.nsid = cpu_to_le32(nsid),
1206 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1210 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1211 sizeof(struct nvme_id_ns));
1217 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1218 dma_addr_t dma_addr, u32 *result)
1220 struct nvme_command c;
1222 memset(&c, 0, sizeof(c));
1223 c.features.opcode = nvme_admin_get_features;
1224 c.features.nsid = cpu_to_le32(nsid);
1225 c.features.prp1 = cpu_to_le64(dma_addr);
1226 c.features.fid = cpu_to_le32(fid);
1228 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1232 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1233 dma_addr_t dma_addr, u32 *result)
1235 struct nvme_command c;
1237 memset(&c, 0, sizeof(c));
1238 c.features.opcode = nvme_admin_set_features;
1239 c.features.prp1 = cpu_to_le64(dma_addr);
1240 c.features.fid = cpu_to_le32(fid);
1241 c.features.dword11 = cpu_to_le32(dword11);
1243 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1247 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1249 struct nvme_command c = { };
1252 c.common.opcode = nvme_admin_get_log_page,
1253 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1254 c.common.cdw10[0] = cpu_to_le32(
1255 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1258 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1262 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1263 sizeof(struct nvme_smart_log));
1270 * nvme_abort_req - Attempt aborting a request
1272 * Schedule controller reset if the command was already aborted once before and
1273 * still hasn't been returned to the driver, or if this is the admin queue.
1275 static void nvme_abort_req(struct request *req)
1277 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1278 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1279 struct nvme_dev *dev = nvmeq->dev;
1280 struct request *abort_req;
1281 struct nvme_cmd_info *abort_cmd;
1282 struct nvme_command cmd;
1284 if (!nvmeq->qid || cmd_rq->aborted) {
1285 spin_lock(&dev_list_lock);
1286 if (!__nvme_reset(dev)) {
1288 "I/O %d QID %d timeout, reset controller\n",
1289 req->tag, nvmeq->qid);
1291 spin_unlock(&dev_list_lock);
1295 if (!dev->abort_limit)
1298 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1300 if (IS_ERR(abort_req))
1303 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1304 nvme_set_info(abort_cmd, abort_req, abort_completion);
1306 memset(&cmd, 0, sizeof(cmd));
1307 cmd.abort.opcode = nvme_admin_abort_cmd;
1308 cmd.abort.cid = req->tag;
1309 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1310 cmd.abort.command_id = abort_req->tag;
1313 cmd_rq->aborted = 1;
1315 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1317 nvme_submit_cmd(dev->queues[0], &cmd);
1320 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1322 struct nvme_queue *nvmeq = data;
1324 nvme_completion_fn fn;
1325 struct nvme_cmd_info *cmd;
1326 struct nvme_completion cqe;
1328 if (!blk_mq_request_started(req))
1331 cmd = blk_mq_rq_to_pdu(req);
1333 if (cmd->ctx == CMD_CTX_CANCELLED)
1336 if (blk_queue_dying(req->q))
1337 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1339 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1342 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1343 req->tag, nvmeq->qid);
1344 ctx = cancel_cmd_info(cmd, &fn);
1345 fn(nvmeq, ctx, &cqe);
1348 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1350 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1351 struct nvme_queue *nvmeq = cmd->nvmeq;
1353 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1355 spin_lock_irq(&nvmeq->q_lock);
1356 nvme_abort_req(req);
1357 spin_unlock_irq(&nvmeq->q_lock);
1360 * The aborted req will be completed on receiving the abort req.
1361 * We enable the timer again. If hit twice, it'll cause a device reset,
1362 * as the device then is in a faulty state.
1364 return BLK_EH_RESET_TIMER;
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1369 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1370 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1372 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1373 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1377 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1381 for (i = dev->queue_count - 1; i >= lowest; i--) {
1382 struct nvme_queue *nvmeq = dev->queues[i];
1384 dev->queues[i] = NULL;
1385 nvme_free_queue(nvmeq);
1390 * nvme_suspend_queue - put queue into suspended state
1391 * @nvmeq - queue to suspend
1393 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1397 spin_lock_irq(&nvmeq->q_lock);
1398 if (nvmeq->cq_vector == -1) {
1399 spin_unlock_irq(&nvmeq->q_lock);
1402 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1403 nvmeq->dev->online_queues--;
1404 nvmeq->cq_vector = -1;
1405 spin_unlock_irq(&nvmeq->q_lock);
1407 if (!nvmeq->qid && nvmeq->dev->admin_q)
1408 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1410 irq_set_affinity_hint(vector, NULL);
1411 free_irq(vector, nvmeq);
1416 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1418 spin_lock_irq(&nvmeq->q_lock);
1419 if (nvmeq->tags && *nvmeq->tags)
1420 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1421 spin_unlock_irq(&nvmeq->q_lock);
1424 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1426 struct nvme_queue *nvmeq = dev->queues[qid];
1430 if (nvme_suspend_queue(nvmeq))
1433 /* Don't tell the adapter to delete the admin queue.
1434 * Don't tell a removed adapter to delete IO queues. */
1435 if (qid && readl(&dev->bar->csts) != -1) {
1436 adapter_delete_sq(dev, qid);
1437 adapter_delete_cq(dev, qid);
1440 spin_lock_irq(&nvmeq->q_lock);
1441 nvme_process_cq(nvmeq);
1442 spin_unlock_irq(&nvmeq->q_lock);
1445 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1448 int q_depth = dev->q_depth;
1449 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1451 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1452 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1453 mem_per_q = round_down(mem_per_q, dev->page_size);
1454 q_depth = div_u64(mem_per_q, entry_size);
1457 * Ensure the reduced q_depth is above some threshold where it
1458 * would be better to map queues in system memory with the
1468 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1471 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1472 unsigned offset = (qid - 1) *
1473 roundup(SQ_SIZE(depth), dev->page_size);
1474 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1475 nvmeq->sq_cmds_io = dev->cmb + offset;
1477 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1478 &nvmeq->sq_dma_addr, GFP_KERNEL);
1479 if (!nvmeq->sq_cmds)
1486 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1489 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1493 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1494 &nvmeq->cq_dma_addr, GFP_KERNEL);
1498 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1501 nvmeq->q_dmadev = dev->dev;
1503 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1504 dev->instance, qid);
1505 spin_lock_init(&nvmeq->q_lock);
1507 nvmeq->cq_phase = 1;
1508 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1509 nvmeq->q_depth = depth;
1511 nvmeq->cq_vector = -1;
1512 dev->queues[qid] = nvmeq;
1514 /* make sure queue descriptor is set before queue count, for kthread */
1521 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1522 nvmeq->cq_dma_addr);
1528 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1531 if (use_threaded_interrupts)
1532 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1533 nvme_irq_check, nvme_irq, IRQF_SHARED,
1535 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1536 IRQF_SHARED, name, nvmeq);
1539 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1541 struct nvme_dev *dev = nvmeq->dev;
1543 spin_lock_irq(&nvmeq->q_lock);
1546 nvmeq->cq_phase = 1;
1547 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1548 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1549 dev->online_queues++;
1550 spin_unlock_irq(&nvmeq->q_lock);
1553 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1555 struct nvme_dev *dev = nvmeq->dev;
1558 nvmeq->cq_vector = qid - 1;
1559 result = adapter_alloc_cq(dev, qid, nvmeq);
1563 result = adapter_alloc_sq(dev, qid, nvmeq);
1567 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1571 nvme_init_queue(nvmeq, qid);
1575 adapter_delete_sq(dev, qid);
1577 adapter_delete_cq(dev, qid);
1581 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1583 unsigned long timeout;
1584 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1586 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1588 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1590 if (fatal_signal_pending(current))
1592 if (time_after(jiffies, timeout)) {
1594 "Device not ready; aborting %s\n", enabled ?
1595 "initialisation" : "reset");
1604 * If the device has been passed off to us in an enabled state, just clear
1605 * the enabled bit. The spec says we should set the 'shutdown notification
1606 * bits', but doing so may cause the device to complete commands to the
1607 * admin queue ... and we don't know what memory that might be pointing at!
1609 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1611 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1612 dev->ctrl_config &= ~NVME_CC_ENABLE;
1613 writel(dev->ctrl_config, &dev->bar->cc);
1615 return nvme_wait_ready(dev, cap, false);
1618 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1620 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1621 dev->ctrl_config |= NVME_CC_ENABLE;
1622 writel(dev->ctrl_config, &dev->bar->cc);
1624 return nvme_wait_ready(dev, cap, true);
1627 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1629 unsigned long timeout;
1631 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1632 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1634 writel(dev->ctrl_config, &dev->bar->cc);
1636 timeout = SHUTDOWN_TIMEOUT + jiffies;
1637 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1638 NVME_CSTS_SHST_CMPLT) {
1640 if (fatal_signal_pending(current))
1642 if (time_after(jiffies, timeout)) {
1644 "Device shutdown incomplete; abort shutdown\n");
1652 static struct blk_mq_ops nvme_mq_admin_ops = {
1653 .queue_rq = nvme_queue_rq,
1654 .map_queue = blk_mq_map_queue,
1655 .init_hctx = nvme_admin_init_hctx,
1656 .exit_hctx = nvme_admin_exit_hctx,
1657 .init_request = nvme_admin_init_request,
1658 .timeout = nvme_timeout,
1661 static struct blk_mq_ops nvme_mq_ops = {
1662 .queue_rq = nvme_queue_rq,
1663 .map_queue = blk_mq_map_queue,
1664 .init_hctx = nvme_init_hctx,
1665 .init_request = nvme_init_request,
1666 .timeout = nvme_timeout,
1669 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1671 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1672 blk_cleanup_queue(dev->admin_q);
1673 blk_mq_free_tag_set(&dev->admin_tagset);
1677 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1679 if (!dev->admin_q) {
1680 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1681 dev->admin_tagset.nr_hw_queues = 1;
1682 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1683 dev->admin_tagset.reserved_tags = 1;
1684 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1685 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1686 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1687 dev->admin_tagset.driver_data = dev;
1689 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1692 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1693 if (IS_ERR(dev->admin_q)) {
1694 blk_mq_free_tag_set(&dev->admin_tagset);
1697 if (!blk_get_queue(dev->admin_q)) {
1698 nvme_dev_remove_admin(dev);
1699 dev->admin_q = NULL;
1703 blk_mq_unfreeze_queue(dev->admin_q);
1708 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1712 u64 cap = readq(&dev->bar->cap);
1713 struct nvme_queue *nvmeq;
1714 unsigned page_shift = PAGE_SHIFT;
1715 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1716 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1718 if (page_shift < dev_page_min) {
1720 "Minimum device page size (%u) too large for "
1721 "host (%u)\n", 1 << dev_page_min,
1725 if (page_shift > dev_page_max) {
1727 "Device maximum page size (%u) smaller than "
1728 "host (%u); enabling work-around\n",
1729 1 << dev_page_max, 1 << page_shift);
1730 page_shift = dev_page_max;
1733 dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1734 NVME_CAP_NSSRC(cap) : 0;
1736 if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1737 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1739 result = nvme_disable_ctrl(dev, cap);
1743 nvmeq = dev->queues[0];
1745 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1750 aqa = nvmeq->q_depth - 1;
1753 dev->page_size = 1 << page_shift;
1755 dev->ctrl_config = NVME_CC_CSS_NVM;
1756 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1757 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1758 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1760 writel(aqa, &dev->bar->aqa);
1761 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1762 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1764 result = nvme_enable_ctrl(dev, cap);
1768 nvmeq->cq_vector = 0;
1769 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1771 nvmeq->cq_vector = -1;
1778 nvme_free_queues(dev, 0);
1782 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1784 struct nvme_dev *dev = ns->dev;
1785 struct nvme_user_io io;
1786 struct nvme_command c;
1787 unsigned length, meta_len;
1789 dma_addr_t meta_dma = 0;
1791 void __user *metadata;
1793 if (copy_from_user(&io, uio, sizeof(io)))
1796 switch (io.opcode) {
1797 case nvme_cmd_write:
1799 case nvme_cmd_compare:
1805 length = (io.nblocks + 1) << ns->lba_shift;
1806 meta_len = (io.nblocks + 1) * ns->ms;
1807 metadata = (void __user *)(uintptr_t)io.metadata;
1808 write = io.opcode & 1;
1815 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1818 meta = dma_alloc_coherent(dev->dev, meta_len,
1819 &meta_dma, GFP_KERNEL);
1826 if (copy_from_user(meta, metadata, meta_len)) {
1833 memset(&c, 0, sizeof(c));
1834 c.rw.opcode = io.opcode;
1835 c.rw.flags = io.flags;
1836 c.rw.nsid = cpu_to_le32(ns->ns_id);
1837 c.rw.slba = cpu_to_le64(io.slba);
1838 c.rw.length = cpu_to_le16(io.nblocks);
1839 c.rw.control = cpu_to_le16(io.control);
1840 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1841 c.rw.reftag = cpu_to_le32(io.reftag);
1842 c.rw.apptag = cpu_to_le16(io.apptag);
1843 c.rw.appmask = cpu_to_le16(io.appmask);
1844 c.rw.metadata = cpu_to_le64(meta_dma);
1846 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1847 (void __user *)(uintptr_t)io.addr, length, NULL, 0);
1850 if (status == NVME_SC_SUCCESS && !write) {
1851 if (copy_to_user(metadata, meta, meta_len))
1854 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1859 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1860 struct nvme_passthru_cmd __user *ucmd)
1862 struct nvme_passthru_cmd cmd;
1863 struct nvme_command c;
1864 unsigned timeout = 0;
1867 if (!capable(CAP_SYS_ADMIN))
1869 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1872 memset(&c, 0, sizeof(c));
1873 c.common.opcode = cmd.opcode;
1874 c.common.flags = cmd.flags;
1875 c.common.nsid = cpu_to_le32(cmd.nsid);
1876 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1877 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1878 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1879 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1880 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1881 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1882 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1883 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1886 timeout = msecs_to_jiffies(cmd.timeout_ms);
1888 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1889 NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1890 &cmd.result, timeout);
1892 if (put_user(cmd.result, &ucmd->result))
1899 static int nvme_subsys_reset(struct nvme_dev *dev)
1901 if (!dev->subsystem)
1904 writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1908 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1911 struct nvme_ns *ns = bdev->bd_disk->private_data;
1915 force_successful_syscall_return();
1917 case NVME_IOCTL_ADMIN_CMD:
1918 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1919 case NVME_IOCTL_IO_CMD:
1920 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1921 case NVME_IOCTL_SUBMIT_IO:
1922 return nvme_submit_io(ns, (void __user *)arg);
1923 case SG_GET_VERSION_NUM:
1924 return nvme_sg_get_version_num((void __user *)arg);
1926 return nvme_sg_io(ns, (void __user *)arg);
1932 #ifdef CONFIG_COMPAT
1933 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1934 unsigned int cmd, unsigned long arg)
1938 return -ENOIOCTLCMD;
1940 return nvme_ioctl(bdev, mode, cmd, arg);
1943 #define nvme_compat_ioctl NULL
1946 static void nvme_free_dev(struct kref *kref);
1947 static void nvme_free_ns(struct kref *kref)
1949 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1951 spin_lock(&dev_list_lock);
1952 ns->disk->private_data = NULL;
1953 spin_unlock(&dev_list_lock);
1955 kref_put(&ns->dev->kref, nvme_free_dev);
1960 static int nvme_open(struct block_device *bdev, fmode_t mode)
1965 spin_lock(&dev_list_lock);
1966 ns = bdev->bd_disk->private_data;
1969 else if (!kref_get_unless_zero(&ns->kref))
1971 spin_unlock(&dev_list_lock);
1976 static void nvme_release(struct gendisk *disk, fmode_t mode)
1978 struct nvme_ns *ns = disk->private_data;
1979 kref_put(&ns->kref, nvme_free_ns);
1982 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1984 /* some standard values */
1985 geo->heads = 1 << 6;
1986 geo->sectors = 1 << 5;
1987 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1991 static void nvme_config_discard(struct nvme_ns *ns)
1993 u32 logical_block_size = queue_logical_block_size(ns->queue);
1994 ns->queue->limits.discard_zeroes_data = 0;
1995 ns->queue->limits.discard_alignment = logical_block_size;
1996 ns->queue->limits.discard_granularity = logical_block_size;
1997 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1998 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2001 static int nvme_revalidate_disk(struct gendisk *disk)
2003 struct nvme_ns *ns = disk->private_data;
2004 struct nvme_dev *dev = ns->dev;
2005 struct nvme_id_ns *id;
2010 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2011 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2012 dev->instance, ns->ns_id);
2015 if (id->ncap == 0) {
2021 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2022 ns->lba_shift = id->lbaf[lbaf].ds;
2023 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2024 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2027 * If identify namespace failed, use default 512 byte block size so
2028 * block layer can use before failing read/write for 0 capacity.
2030 if (ns->lba_shift == 0)
2032 bs = 1 << ns->lba_shift;
2034 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2035 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2036 id->dps & NVME_NS_DPS_PI_MASK : 0;
2038 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2040 bs != queue_logical_block_size(disk->queue) ||
2041 (ns->ms && ns->ext)))
2042 blk_integrity_unregister(disk);
2044 ns->pi_type = pi_type;
2045 blk_queue_logical_block_size(ns->queue, bs);
2047 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2049 nvme_init_integrity(ns);
2051 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
2052 set_capacity(disk, 0);
2054 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2056 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2057 nvme_config_discard(ns);
2063 static const struct block_device_operations nvme_fops = {
2064 .owner = THIS_MODULE,
2065 .ioctl = nvme_ioctl,
2066 .compat_ioctl = nvme_compat_ioctl,
2068 .release = nvme_release,
2069 .getgeo = nvme_getgeo,
2070 .revalidate_disk= nvme_revalidate_disk,
2073 static int nvme_kthread(void *data)
2075 struct nvme_dev *dev, *next;
2077 while (!kthread_should_stop()) {
2078 set_current_state(TASK_INTERRUPTIBLE);
2079 spin_lock(&dev_list_lock);
2080 list_for_each_entry_safe(dev, next, &dev_list, node) {
2082 u32 csts = readl(&dev->bar->csts);
2084 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2085 csts & NVME_CSTS_CFS) {
2086 if (!__nvme_reset(dev)) {
2088 "Failed status: %x, reset controller\n",
2089 readl(&dev->bar->csts));
2093 for (i = 0; i < dev->queue_count; i++) {
2094 struct nvme_queue *nvmeq = dev->queues[i];
2097 spin_lock_irq(&nvmeq->q_lock);
2098 nvme_process_cq(nvmeq);
2100 while ((i == 0) && (dev->event_limit > 0)) {
2101 if (nvme_submit_async_admin_req(dev))
2105 spin_unlock_irq(&nvmeq->q_lock);
2108 spin_unlock(&dev_list_lock);
2109 schedule_timeout(round_jiffies_relative(HZ));
2114 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2117 struct gendisk *disk;
2118 int node = dev_to_node(dev->dev);
2120 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2124 ns->queue = blk_mq_init_queue(&dev->tagset);
2125 if (IS_ERR(ns->queue))
2127 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2130 ns->queue->queuedata = ns;
2132 disk = alloc_disk_node(0, node);
2134 goto out_free_queue;
2136 kref_init(&ns->kref);
2139 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140 list_add_tail(&ns->list, &dev->namespaces);
2142 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2143 if (dev->max_hw_sectors) {
2144 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2145 blk_queue_max_segments(ns->queue,
2146 ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2148 if (dev->stripe_size)
2149 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2150 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2151 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2152 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2154 disk->major = nvme_major;
2155 disk->first_minor = 0;
2156 disk->fops = &nvme_fops;
2157 disk->private_data = ns;
2158 disk->queue = ns->queue;
2159 disk->driverfs_dev = dev->device;
2160 disk->flags = GENHD_FL_EXT_DEVT;
2161 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2164 * Initialize capacity to 0 until we establish the namespace format and
2165 * setup integrity extentions if necessary. The revalidate_disk after
2166 * add_disk allows the driver to register with integrity if the format
2169 set_capacity(disk, 0);
2170 if (nvme_revalidate_disk(ns->disk))
2173 kref_get(&dev->kref);
2176 struct block_device *bd = bdget_disk(ns->disk, 0);
2179 if (blkdev_get(bd, FMODE_READ, NULL)) {
2183 blkdev_reread_part(bd);
2184 blkdev_put(bd, FMODE_READ);
2189 list_del(&ns->list);
2191 blk_cleanup_queue(ns->queue);
2197 * Create I/O queues. Failing to create an I/O queue is not an issue,
2198 * we can continue with less than the desired amount of queues, and
2199 * even a controller without I/O queues an still be used to issue
2200 * admin commands. This might be useful to upgrade a buggy firmware
2203 static void nvme_create_io_queues(struct nvme_dev *dev)
2207 for (i = dev->queue_count; i <= dev->max_qid; i++)
2208 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2211 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2212 if (nvme_create_queue(dev->queues[i], i)) {
2213 nvme_free_queues(dev, i);
2218 static int set_queue_count(struct nvme_dev *dev, int count)
2222 u32 q_count = (count - 1) | ((count - 1) << 16);
2224 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2229 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2232 return min(result & 0xffff, result >> 16) + 1;
2235 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2237 u64 szu, size, offset;
2239 resource_size_t bar_size;
2240 struct pci_dev *pdev = to_pci_dev(dev->dev);
2242 dma_addr_t dma_addr;
2247 dev->cmbsz = readl(&dev->bar->cmbsz);
2248 if (!(NVME_CMB_SZ(dev->cmbsz)))
2251 cmbloc = readl(&dev->bar->cmbloc);
2253 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2254 size = szu * NVME_CMB_SZ(dev->cmbsz);
2255 offset = szu * NVME_CMB_OFST(cmbloc);
2256 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2258 if (offset > bar_size)
2262 * Controllers may support a CMB size larger than their BAR,
2263 * for example, due to being behind a bridge. Reduce the CMB to
2264 * the reported size of the BAR
2266 if (size > bar_size - offset)
2267 size = bar_size - offset;
2269 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2270 cmb = ioremap_wc(dma_addr, size);
2274 dev->cmb_dma_addr = dma_addr;
2275 dev->cmb_size = size;
2279 static inline void nvme_release_cmb(struct nvme_dev *dev)
2287 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2289 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2292 static int nvme_setup_io_queues(struct nvme_dev *dev)
2294 struct nvme_queue *adminq = dev->queues[0];
2295 struct pci_dev *pdev = to_pci_dev(dev->dev);
2296 int result, i, vecs, nr_io_queues, size;
2298 nr_io_queues = num_possible_cpus();
2299 result = set_queue_count(dev, nr_io_queues);
2302 if (result < nr_io_queues)
2303 nr_io_queues = result;
2305 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2306 result = nvme_cmb_qdepth(dev, nr_io_queues,
2307 sizeof(struct nvme_command));
2309 dev->q_depth = result;
2311 nvme_release_cmb(dev);
2314 size = db_bar_size(dev, nr_io_queues);
2318 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2321 if (!--nr_io_queues)
2323 size = db_bar_size(dev, nr_io_queues);
2325 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2326 adminq->q_db = dev->dbs;
2329 /* Deregister the admin queue's interrupt */
2330 free_irq(dev->entry[0].vector, adminq);
2333 * If we enable msix early due to not intx, disable it again before
2334 * setting up the full range we need.
2337 pci_disable_msix(pdev);
2339 for (i = 0; i < nr_io_queues; i++)
2340 dev->entry[i].entry = i;
2341 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2343 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2347 for (i = 0; i < vecs; i++)
2348 dev->entry[i].vector = i + pdev->irq;
2353 * Should investigate if there's a performance win from allocating
2354 * more queues than interrupt vectors; it might allow the submission
2355 * path to scale better, even if the receive path is limited by the
2356 * number of interrupts.
2358 nr_io_queues = vecs;
2359 dev->max_qid = nr_io_queues;
2361 result = queue_request_irq(dev, adminq, adminq->irqname);
2363 adminq->cq_vector = -1;
2367 /* Free previously allocated queues that are no longer usable */
2368 nvme_free_queues(dev, nr_io_queues + 1);
2369 nvme_create_io_queues(dev);
2374 nvme_free_queues(dev, 1);
2378 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2380 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2381 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2383 return nsa->ns_id - nsb->ns_id;
2386 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2390 list_for_each_entry(ns, &dev->namespaces, list) {
2391 if (ns->ns_id == nsid)
2393 if (ns->ns_id > nsid)
2399 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2401 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2402 dev->online_queues < 2);
2405 static void nvme_ns_remove(struct nvme_ns *ns)
2407 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2410 blk_set_queue_dying(ns->queue);
2411 if (ns->disk->flags & GENHD_FL_UP) {
2412 if (blk_get_integrity(ns->disk))
2413 blk_integrity_unregister(ns->disk);
2414 del_gendisk(ns->disk);
2416 if (kill || !blk_queue_dying(ns->queue)) {
2417 blk_mq_abort_requeue_list(ns->queue);
2418 blk_cleanup_queue(ns->queue);
2420 list_del_init(&ns->list);
2421 kref_put(&ns->kref, nvme_free_ns);
2424 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2426 struct nvme_ns *ns, *next;
2429 for (i = 1; i <= nn; i++) {
2430 ns = nvme_find_ns(dev, i);
2432 if (revalidate_disk(ns->disk))
2435 nvme_alloc_ns(dev, i);
2437 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2441 list_sort(NULL, &dev->namespaces, ns_cmp);
2444 static void nvme_set_irq_hints(struct nvme_dev *dev)
2446 struct nvme_queue *nvmeq;
2449 for (i = 0; i < dev->online_queues; i++) {
2450 nvmeq = dev->queues[i];
2452 if (!nvmeq->tags || !(*nvmeq->tags))
2455 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2456 blk_mq_tags_cpumask(*nvmeq->tags));
2460 static void nvme_dev_scan(struct work_struct *work)
2462 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2463 struct nvme_id_ctrl *ctrl;
2465 if (!dev->tagset.tags)
2467 if (nvme_identify_ctrl(dev, &ctrl))
2469 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2471 nvme_set_irq_hints(dev);
2475 * Return: error value if an error occurred setting up the queues or calling
2476 * Identify Device. 0 if these succeeded, even if adding some of the
2477 * namespaces failed. At the moment, these failures are silent. TBD which
2478 * failures should be reported.
2480 static int nvme_dev_add(struct nvme_dev *dev)
2482 struct pci_dev *pdev = to_pci_dev(dev->dev);
2484 struct nvme_id_ctrl *ctrl;
2485 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2487 res = nvme_identify_ctrl(dev, &ctrl);
2489 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2493 dev->oncs = le16_to_cpup(&ctrl->oncs);
2494 dev->abort_limit = ctrl->acl + 1;
2495 dev->vwc = ctrl->vwc;
2496 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2497 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2498 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2500 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2501 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2502 (pdev->device == 0x0953) && ctrl->vs[3]) {
2503 unsigned int max_hw_sectors;
2505 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2506 max_hw_sectors = dev->stripe_size >> (shift - 9);
2507 if (dev->max_hw_sectors) {
2508 dev->max_hw_sectors = min(max_hw_sectors,
2509 dev->max_hw_sectors);
2511 dev->max_hw_sectors = max_hw_sectors;
2515 if (!dev->tagset.tags) {
2516 dev->tagset.ops = &nvme_mq_ops;
2517 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2518 dev->tagset.timeout = NVME_IO_TIMEOUT;
2519 dev->tagset.numa_node = dev_to_node(dev->dev);
2520 dev->tagset.queue_depth =
2521 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2522 dev->tagset.cmd_size = nvme_cmd_size(dev);
2523 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2524 dev->tagset.driver_data = dev;
2526 if (blk_mq_alloc_tag_set(&dev->tagset))
2529 schedule_work(&dev->scan_work);
2533 static int nvme_dev_map(struct nvme_dev *dev)
2536 int bars, result = -ENOMEM;
2537 struct pci_dev *pdev = to_pci_dev(dev->dev);
2539 if (pci_enable_device_mem(pdev))
2542 dev->entry[0].vector = pdev->irq;
2543 pci_set_master(pdev);
2544 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2548 if (pci_request_selected_regions(pdev, bars, "nvme"))
2551 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2552 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2555 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2559 if (readl(&dev->bar->csts) == -1) {
2565 * Some devices don't advertse INTx interrupts, pre-enable a single
2566 * MSIX vec for setup. We'll adjust this later.
2569 result = pci_enable_msix(pdev, dev->entry, 1);
2574 cap = readq(&dev->bar->cap);
2575 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2576 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2577 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2578 if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2579 dev->cmb = nvme_map_cmb(dev);
2587 pci_release_regions(pdev);
2589 pci_disable_device(pdev);
2593 static void nvme_dev_unmap(struct nvme_dev *dev)
2595 struct pci_dev *pdev = to_pci_dev(dev->dev);
2597 if (pdev->msi_enabled)
2598 pci_disable_msi(pdev);
2599 else if (pdev->msix_enabled)
2600 pci_disable_msix(pdev);
2605 pci_release_regions(pdev);
2608 if (pci_is_enabled(pdev))
2609 pci_disable_device(pdev);
2612 struct nvme_delq_ctx {
2613 struct task_struct *waiter;
2614 struct kthread_worker *worker;
2618 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2620 dq->waiter = current;
2624 set_current_state(TASK_KILLABLE);
2625 if (!atomic_read(&dq->refcount))
2627 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2628 fatal_signal_pending(current)) {
2630 * Disable the controller first since we can't trust it
2631 * at this point, but leave the admin queue enabled
2632 * until all queue deletion requests are flushed.
2633 * FIXME: This may take a while if there are more h/w
2634 * queues than admin tags.
2636 set_current_state(TASK_RUNNING);
2637 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2638 nvme_clear_queue(dev->queues[0]);
2639 flush_kthread_worker(dq->worker);
2640 nvme_disable_queue(dev, 0);
2644 set_current_state(TASK_RUNNING);
2647 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2649 atomic_dec(&dq->refcount);
2651 wake_up_process(dq->waiter);
2654 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2656 atomic_inc(&dq->refcount);
2660 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2662 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2666 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2667 kthread_work_func_t fn)
2669 struct nvme_command c;
2671 memset(&c, 0, sizeof(c));
2672 c.delete_queue.opcode = opcode;
2673 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2675 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2676 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2680 static void nvme_del_cq_work_handler(struct kthread_work *work)
2682 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2684 nvme_del_queue_end(nvmeq);
2687 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2689 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2690 nvme_del_cq_work_handler);
2693 static void nvme_del_sq_work_handler(struct kthread_work *work)
2695 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2697 int status = nvmeq->cmdinfo.status;
2700 status = nvme_delete_cq(nvmeq);
2702 nvme_del_queue_end(nvmeq);
2705 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2707 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2708 nvme_del_sq_work_handler);
2711 static void nvme_del_queue_start(struct kthread_work *work)
2713 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2715 if (nvme_delete_sq(nvmeq))
2716 nvme_del_queue_end(nvmeq);
2719 static void nvme_disable_io_queues(struct nvme_dev *dev)
2722 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2723 struct nvme_delq_ctx dq;
2724 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2725 &worker, "nvme%d", dev->instance);
2727 if (IS_ERR(kworker_task)) {
2729 "Failed to create queue del task\n");
2730 for (i = dev->queue_count - 1; i > 0; i--)
2731 nvme_disable_queue(dev, i);
2736 atomic_set(&dq.refcount, 0);
2737 dq.worker = &worker;
2738 for (i = dev->queue_count - 1; i > 0; i--) {
2739 struct nvme_queue *nvmeq = dev->queues[i];
2741 if (nvme_suspend_queue(nvmeq))
2743 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2744 nvmeq->cmdinfo.worker = dq.worker;
2745 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2746 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2748 nvme_wait_dq(&dq, dev);
2749 kthread_stop(kworker_task);
2753 * Remove the node from the device list and check
2754 * for whether or not we need to stop the nvme_thread.
2756 static void nvme_dev_list_remove(struct nvme_dev *dev)
2758 struct task_struct *tmp = NULL;
2760 spin_lock(&dev_list_lock);
2761 list_del_init(&dev->node);
2762 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2766 spin_unlock(&dev_list_lock);
2772 static void nvme_freeze_queues(struct nvme_dev *dev)
2776 list_for_each_entry(ns, &dev->namespaces, list) {
2777 blk_mq_freeze_queue_start(ns->queue);
2779 spin_lock_irq(ns->queue->queue_lock);
2780 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2781 spin_unlock_irq(ns->queue->queue_lock);
2783 blk_mq_cancel_requeue_work(ns->queue);
2784 blk_mq_stop_hw_queues(ns->queue);
2788 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2792 list_for_each_entry(ns, &dev->namespaces, list) {
2793 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2794 blk_mq_unfreeze_queue(ns->queue);
2795 blk_mq_start_stopped_hw_queues(ns->queue, true);
2796 blk_mq_kick_requeue_list(ns->queue);
2800 static void nvme_dev_shutdown(struct nvme_dev *dev)
2805 nvme_dev_list_remove(dev);
2808 nvme_freeze_queues(dev);
2809 csts = readl(&dev->bar->csts);
2811 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2812 for (i = dev->queue_count - 1; i >= 0; i--) {
2813 struct nvme_queue *nvmeq = dev->queues[i];
2814 nvme_suspend_queue(nvmeq);
2817 nvme_disable_io_queues(dev);
2818 nvme_shutdown_ctrl(dev);
2819 nvme_disable_queue(dev, 0);
2821 nvme_dev_unmap(dev);
2823 for (i = dev->queue_count - 1; i >= 0; i--)
2824 nvme_clear_queue(dev->queues[i]);
2827 static void nvme_dev_remove(struct nvme_dev *dev)
2829 struct nvme_ns *ns, *next;
2831 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2835 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2837 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2838 PAGE_SIZE, PAGE_SIZE, 0);
2839 if (!dev->prp_page_pool)
2842 /* Optimisation for I/Os between 4k and 128k */
2843 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2845 if (!dev->prp_small_pool) {
2846 dma_pool_destroy(dev->prp_page_pool);
2852 static void nvme_release_prp_pools(struct nvme_dev *dev)
2854 dma_pool_destroy(dev->prp_page_pool);
2855 dma_pool_destroy(dev->prp_small_pool);
2858 static DEFINE_IDA(nvme_instance_ida);
2860 static int nvme_set_instance(struct nvme_dev *dev)
2862 int instance, error;
2865 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2868 spin_lock(&dev_list_lock);
2869 error = ida_get_new(&nvme_instance_ida, &instance);
2870 spin_unlock(&dev_list_lock);
2871 } while (error == -EAGAIN);
2876 dev->instance = instance;
2880 static void nvme_release_instance(struct nvme_dev *dev)
2882 spin_lock(&dev_list_lock);
2883 ida_remove(&nvme_instance_ida, dev->instance);
2884 spin_unlock(&dev_list_lock);
2887 static void nvme_free_dev(struct kref *kref)
2889 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2891 put_device(dev->dev);
2892 put_device(dev->device);
2893 nvme_release_instance(dev);
2894 if (dev->tagset.tags)
2895 blk_mq_free_tag_set(&dev->tagset);
2897 blk_put_queue(dev->admin_q);
2903 static int nvme_dev_open(struct inode *inode, struct file *f)
2905 struct nvme_dev *dev;
2906 int instance = iminor(inode);
2909 spin_lock(&dev_list_lock);
2910 list_for_each_entry(dev, &dev_list, node) {
2911 if (dev->instance == instance) {
2912 if (!dev->admin_q) {
2916 if (!kref_get_unless_zero(&dev->kref))
2918 f->private_data = dev;
2923 spin_unlock(&dev_list_lock);
2928 static int nvme_dev_release(struct inode *inode, struct file *f)
2930 struct nvme_dev *dev = f->private_data;
2931 kref_put(&dev->kref, nvme_free_dev);
2935 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2937 struct nvme_dev *dev = f->private_data;
2941 case NVME_IOCTL_ADMIN_CMD:
2942 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2943 case NVME_IOCTL_IO_CMD:
2944 if (list_empty(&dev->namespaces))
2946 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2947 return nvme_user_cmd(dev, ns, (void __user *)arg);
2948 case NVME_IOCTL_RESET:
2949 dev_warn(dev->dev, "resetting controller\n");
2950 return nvme_reset(dev);
2951 case NVME_IOCTL_SUBSYS_RESET:
2952 return nvme_subsys_reset(dev);
2958 static const struct file_operations nvme_dev_fops = {
2959 .owner = THIS_MODULE,
2960 .open = nvme_dev_open,
2961 .release = nvme_dev_release,
2962 .unlocked_ioctl = nvme_dev_ioctl,
2963 .compat_ioctl = nvme_dev_ioctl,
2966 static void nvme_probe_work(struct work_struct *work)
2968 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2969 bool start_thread = false;
2972 result = nvme_dev_map(dev);
2976 result = nvme_configure_admin_queue(dev);
2980 spin_lock(&dev_list_lock);
2981 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2982 start_thread = true;
2985 list_add(&dev->node, &dev_list);
2986 spin_unlock(&dev_list_lock);
2989 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2990 wake_up_all(&nvme_kthread_wait);
2992 wait_event_killable(nvme_kthread_wait, nvme_thread);
2994 if (IS_ERR_OR_NULL(nvme_thread)) {
2995 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2999 nvme_init_queue(dev->queues[0], 0);
3000 result = nvme_alloc_admin_tags(dev);
3004 result = nvme_setup_io_queues(dev);
3008 dev->event_limit = 1;
3011 * Keep the controller around but remove all namespaces if we don't have
3012 * any working I/O queue.
3014 if (dev->online_queues < 2) {
3015 dev_warn(dev->dev, "IO queues not created\n");
3016 nvme_dev_remove(dev);
3018 nvme_unfreeze_queues(dev);
3025 nvme_dev_remove_admin(dev);
3026 blk_put_queue(dev->admin_q);
3027 dev->admin_q = NULL;
3028 dev->queues[0]->tags = NULL;
3030 nvme_disable_queue(dev, 0);
3031 nvme_dev_list_remove(dev);
3033 nvme_dev_unmap(dev);
3035 if (!work_busy(&dev->reset_work))
3036 nvme_dead_ctrl(dev);
3039 static int nvme_remove_dead_ctrl(void *arg)
3041 struct nvme_dev *dev = (struct nvme_dev *)arg;
3042 struct pci_dev *pdev = to_pci_dev(dev->dev);
3044 if (pci_get_drvdata(pdev))
3045 pci_stop_and_remove_bus_device_locked(pdev);
3046 kref_put(&dev->kref, nvme_free_dev);
3050 static void nvme_dead_ctrl(struct nvme_dev *dev)
3052 dev_warn(dev->dev, "Device failed to resume\n");
3053 kref_get(&dev->kref);
3054 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3057 "Failed to start controller remove task\n");
3058 kref_put(&dev->kref, nvme_free_dev);
3062 static void nvme_reset_work(struct work_struct *ws)
3064 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3065 bool in_probe = work_busy(&dev->probe_work);
3067 nvme_dev_shutdown(dev);
3069 /* Synchronize with device probe so that work will see failure status
3070 * and exit gracefully without trying to schedule another reset */
3071 flush_work(&dev->probe_work);
3073 /* Fail this device if reset occured during probe to avoid
3074 * infinite initialization loops. */
3076 nvme_dead_ctrl(dev);
3079 /* Schedule device resume asynchronously so the reset work is available
3080 * to cleanup errors that may occur during reinitialization */
3081 schedule_work(&dev->probe_work);
3084 static int __nvme_reset(struct nvme_dev *dev)
3086 if (work_pending(&dev->reset_work))
3088 list_del_init(&dev->node);
3089 queue_work(nvme_workq, &dev->reset_work);
3093 static int nvme_reset(struct nvme_dev *dev)
3097 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3100 spin_lock(&dev_list_lock);
3101 ret = __nvme_reset(dev);
3102 spin_unlock(&dev_list_lock);
3105 flush_work(&dev->reset_work);
3106 flush_work(&dev->probe_work);
3113 static ssize_t nvme_sysfs_reset(struct device *dev,
3114 struct device_attribute *attr, const char *buf,
3117 struct nvme_dev *ndev = dev_get_drvdata(dev);
3120 ret = nvme_reset(ndev);
3126 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3128 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3130 int node, result = -ENOMEM;
3131 struct nvme_dev *dev;
3133 node = dev_to_node(&pdev->dev);
3134 if (node == NUMA_NO_NODE)
3135 set_dev_node(&pdev->dev, 0);
3137 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3140 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3144 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3149 INIT_LIST_HEAD(&dev->namespaces);
3150 INIT_WORK(&dev->reset_work, nvme_reset_work);
3151 dev->dev = get_device(&pdev->dev);
3152 pci_set_drvdata(pdev, dev);
3153 result = nvme_set_instance(dev);
3157 result = nvme_setup_prp_pools(dev);
3161 kref_init(&dev->kref);
3162 dev->device = device_create(nvme_class, &pdev->dev,
3163 MKDEV(nvme_char_major, dev->instance),
3164 dev, "nvme%d", dev->instance);
3165 if (IS_ERR(dev->device)) {
3166 result = PTR_ERR(dev->device);
3169 get_device(dev->device);
3170 dev_set_drvdata(dev->device, dev);
3172 result = device_create_file(dev->device, &dev_attr_reset_controller);
3176 INIT_LIST_HEAD(&dev->node);
3177 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3178 INIT_WORK(&dev->probe_work, nvme_probe_work);
3179 schedule_work(&dev->probe_work);
3183 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3184 put_device(dev->device);
3186 nvme_release_prp_pools(dev);
3188 nvme_release_instance(dev);
3190 put_device(dev->dev);
3198 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3200 struct nvme_dev *dev = pci_get_drvdata(pdev);
3203 nvme_dev_shutdown(dev);
3205 schedule_work(&dev->probe_work);
3208 static void nvme_shutdown(struct pci_dev *pdev)
3210 struct nvme_dev *dev = pci_get_drvdata(pdev);
3211 nvme_dev_shutdown(dev);
3214 static void nvme_remove(struct pci_dev *pdev)
3216 struct nvme_dev *dev = pci_get_drvdata(pdev);
3218 spin_lock(&dev_list_lock);
3219 list_del_init(&dev->node);
3220 spin_unlock(&dev_list_lock);
3222 pci_set_drvdata(pdev, NULL);
3223 flush_work(&dev->probe_work);
3224 flush_work(&dev->reset_work);
3225 flush_work(&dev->scan_work);
3226 device_remove_file(dev->device, &dev_attr_reset_controller);
3227 nvme_dev_remove(dev);
3228 nvme_dev_shutdown(dev);
3229 nvme_dev_remove_admin(dev);
3230 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3231 nvme_free_queues(dev, 0);
3232 nvme_release_cmb(dev);
3233 nvme_release_prp_pools(dev);
3234 kref_put(&dev->kref, nvme_free_dev);
3237 /* These functions are yet to be implemented */
3238 #define nvme_error_detected NULL
3239 #define nvme_dump_registers NULL
3240 #define nvme_link_reset NULL
3241 #define nvme_slot_reset NULL
3242 #define nvme_error_resume NULL
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_suspend(struct device *dev)
3247 struct pci_dev *pdev = to_pci_dev(dev);
3248 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3250 nvme_dev_shutdown(ndev);
3254 static int nvme_resume(struct device *dev)
3256 struct pci_dev *pdev = to_pci_dev(dev);
3257 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3259 schedule_work(&ndev->probe_work);
3264 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3266 static const struct pci_error_handlers nvme_err_handler = {
3267 .error_detected = nvme_error_detected,
3268 .mmio_enabled = nvme_dump_registers,
3269 .link_reset = nvme_link_reset,
3270 .slot_reset = nvme_slot_reset,
3271 .resume = nvme_error_resume,
3272 .reset_notify = nvme_reset_notify,
3275 /* Move to pci_ids.h later */
3276 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3278 static const struct pci_device_id nvme_id_table[] = {
3279 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3282 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3284 static struct pci_driver nvme_driver = {
3286 .id_table = nvme_id_table,
3287 .probe = nvme_probe,
3288 .remove = nvme_remove,
3289 .shutdown = nvme_shutdown,
3291 .pm = &nvme_dev_pm_ops,
3293 .err_handler = &nvme_err_handler,
3296 static int __init nvme_init(void)
3300 init_waitqueue_head(&nvme_kthread_wait);
3302 nvme_workq = create_singlethread_workqueue("nvme");
3306 result = register_blkdev(nvme_major, "nvme");
3309 else if (result > 0)
3310 nvme_major = result;
3312 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3315 goto unregister_blkdev;
3316 else if (result > 0)
3317 nvme_char_major = result;
3319 nvme_class = class_create(THIS_MODULE, "nvme");
3320 if (IS_ERR(nvme_class)) {
3321 result = PTR_ERR(nvme_class);
3322 goto unregister_chrdev;
3325 result = pci_register_driver(&nvme_driver);
3331 class_destroy(nvme_class);
3333 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3335 unregister_blkdev(nvme_major, "nvme");
3337 destroy_workqueue(nvme_workq);
3341 static void __exit nvme_exit(void)
3343 pci_unregister_driver(&nvme_driver);
3344 unregister_blkdev(nvme_major, "nvme");
3345 destroy_workqueue(nvme_workq);
3346 class_destroy(nvme_class);
3347 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3348 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3352 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3353 MODULE_LICENSE("GPL");
3354 MODULE_VERSION("1.0");
3355 module_init(nvme_init);
3356 module_exit(nvme_exit);