ARM64: DTS: Fix Firefly board audio driver
[firefly-linux-kernel-4.4.55.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49
50 #define NVME_MINORS             (1U << MINORBITS)
51 #define NVME_Q_DEPTH            1024
52 #define NVME_AQ_DEPTH           256
53 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
55 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
56 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
57
58 static unsigned char admin_timeout = 60;
59 module_param(admin_timeout, byte, 0644);
60 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
61
62 unsigned char nvme_io_timeout = 30;
63 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
64 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
65
66 static unsigned char shutdown_timeout = 5;
67 module_param(shutdown_timeout, byte, 0644);
68 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69
70 static int nvme_major;
71 module_param(nvme_major, int, 0);
72
73 static int nvme_char_major;
74 module_param(nvme_char_major, int, 0);
75
76 static int use_threaded_interrupts;
77 module_param(use_threaded_interrupts, int, 0);
78
79 static bool use_cmb_sqes = true;
80 module_param(use_cmb_sqes, bool, 0644);
81 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
82
83 static DEFINE_SPINLOCK(dev_list_lock);
84 static LIST_HEAD(dev_list);
85 static struct task_struct *nvme_thread;
86 static struct workqueue_struct *nvme_workq;
87 static wait_queue_head_t nvme_kthread_wait;
88
89 static struct class *nvme_class;
90
91 static int __nvme_reset(struct nvme_dev *dev);
92 static int nvme_reset(struct nvme_dev *dev);
93 static void nvme_process_cq(struct nvme_queue *nvmeq);
94 static void nvme_dead_ctrl(struct nvme_dev *dev);
95
96 struct async_cmd_info {
97         struct kthread_work work;
98         struct kthread_worker *worker;
99         struct request *req;
100         u32 result;
101         int status;
102         void *ctx;
103 };
104
105 /*
106  * An NVM Express queue.  Each device has at least two (one for admin
107  * commands and one for I/O commands).
108  */
109 struct nvme_queue {
110         struct device *q_dmadev;
111         struct nvme_dev *dev;
112         char irqname[24];       /* nvme4294967295-65535\0 */
113         spinlock_t q_lock;
114         struct nvme_command *sq_cmds;
115         struct nvme_command __iomem *sq_cmds_io;
116         volatile struct nvme_completion *cqes;
117         struct blk_mq_tags **tags;
118         dma_addr_t sq_dma_addr;
119         dma_addr_t cq_dma_addr;
120         u32 __iomem *q_db;
121         u16 q_depth;
122         s16 cq_vector;
123         u16 sq_head;
124         u16 sq_tail;
125         u16 cq_head;
126         u16 qid;
127         u8 cq_phase;
128         u8 cqe_seen;
129         struct async_cmd_info cmdinfo;
130 };
131
132 /*
133  * Check we didin't inadvertently grow the command struct
134  */
135 static inline void _nvme_check_size(void)
136 {
137         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
141         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
142         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
144         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
145         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
146         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
147         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
148         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
149 }
150
151 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
152                                                 struct nvme_completion *);
153
154 struct nvme_cmd_info {
155         nvme_completion_fn fn;
156         void *ctx;
157         int aborted;
158         struct nvme_queue *nvmeq;
159         struct nvme_iod iod[0];
160 };
161
162 /*
163  * Max size of iod being embedded in the request payload
164  */
165 #define NVME_INT_PAGES          2
166 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
167 #define NVME_INT_MASK           0x01
168
169 /*
170  * Will slightly overestimate the number of pages needed.  This is OK
171  * as it only leads to a small amount of wasted memory for the lifetime of
172  * the I/O.
173  */
174 static int nvme_npages(unsigned size, struct nvme_dev *dev)
175 {
176         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
177         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
178 }
179
180 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
181 {
182         unsigned int ret = sizeof(struct nvme_cmd_info);
183
184         ret += sizeof(struct nvme_iod);
185         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
186         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
187
188         return ret;
189 }
190
191 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
192                                 unsigned int hctx_idx)
193 {
194         struct nvme_dev *dev = data;
195         struct nvme_queue *nvmeq = dev->queues[0];
196
197         WARN_ON(hctx_idx != 0);
198         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
199         WARN_ON(nvmeq->tags);
200
201         hctx->driver_data = nvmeq;
202         nvmeq->tags = &dev->admin_tagset.tags[0];
203         return 0;
204 }
205
206 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
207 {
208         struct nvme_queue *nvmeq = hctx->driver_data;
209
210         nvmeq->tags = NULL;
211 }
212
213 static int nvme_admin_init_request(void *data, struct request *req,
214                                 unsigned int hctx_idx, unsigned int rq_idx,
215                                 unsigned int numa_node)
216 {
217         struct nvme_dev *dev = data;
218         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
219         struct nvme_queue *nvmeq = dev->queues[0];
220
221         BUG_ON(!nvmeq);
222         cmd->nvmeq = nvmeq;
223         return 0;
224 }
225
226 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
227                           unsigned int hctx_idx)
228 {
229         struct nvme_dev *dev = data;
230         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
231
232         if (!nvmeq->tags)
233                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
234
235         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
236         hctx->driver_data = nvmeq;
237         return 0;
238 }
239
240 static int nvme_init_request(void *data, struct request *req,
241                                 unsigned int hctx_idx, unsigned int rq_idx,
242                                 unsigned int numa_node)
243 {
244         struct nvme_dev *dev = data;
245         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
246         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
247
248         BUG_ON(!nvmeq);
249         cmd->nvmeq = nvmeq;
250         return 0;
251 }
252
253 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
254                                 nvme_completion_fn handler)
255 {
256         cmd->fn = handler;
257         cmd->ctx = ctx;
258         cmd->aborted = 0;
259         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
260 }
261
262 static void *iod_get_private(struct nvme_iod *iod)
263 {
264         return (void *) (iod->private & ~0x1UL);
265 }
266
267 /*
268  * If bit 0 is set, the iod is embedded in the request payload.
269  */
270 static bool iod_should_kfree(struct nvme_iod *iod)
271 {
272         return (iod->private & NVME_INT_MASK) == 0;
273 }
274
275 /* Special values must be less than 0x1000 */
276 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
277 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
278 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
279 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
280
281 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
282                                                 struct nvme_completion *cqe)
283 {
284         if (ctx == CMD_CTX_CANCELLED)
285                 return;
286         if (ctx == CMD_CTX_COMPLETED) {
287                 dev_warn(nvmeq->q_dmadev,
288                                 "completed id %d twice on queue %d\n",
289                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
290                 return;
291         }
292         if (ctx == CMD_CTX_INVALID) {
293                 dev_warn(nvmeq->q_dmadev,
294                                 "invalid id %d completed on queue %d\n",
295                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
296                 return;
297         }
298         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
299 }
300
301 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
302 {
303         void *ctx;
304
305         if (fn)
306                 *fn = cmd->fn;
307         ctx = cmd->ctx;
308         cmd->fn = special_completion;
309         cmd->ctx = CMD_CTX_CANCELLED;
310         return ctx;
311 }
312
313 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
314                                                 struct nvme_completion *cqe)
315 {
316         u32 result = le32_to_cpup(&cqe->result);
317         u16 status = le16_to_cpup(&cqe->status) >> 1;
318
319         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
320                 ++nvmeq->dev->event_limit;
321         if (status != NVME_SC_SUCCESS)
322                 return;
323
324         switch (result & 0xff07) {
325         case NVME_AER_NOTICE_NS_CHANGED:
326                 dev_info(nvmeq->q_dmadev, "rescanning\n");
327                 schedule_work(&nvmeq->dev->scan_work);
328         default:
329                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
330         }
331 }
332
333 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
334                                                 struct nvme_completion *cqe)
335 {
336         struct request *req = ctx;
337
338         u16 status = le16_to_cpup(&cqe->status) >> 1;
339         u32 result = le32_to_cpup(&cqe->result);
340
341         blk_mq_free_request(req);
342
343         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
344         ++nvmeq->dev->abort_limit;
345 }
346
347 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
348                                                 struct nvme_completion *cqe)
349 {
350         struct async_cmd_info *cmdinfo = ctx;
351         cmdinfo->result = le32_to_cpup(&cqe->result);
352         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
353         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
354         blk_mq_free_request(cmdinfo->req);
355 }
356
357 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
358                                   unsigned int tag)
359 {
360         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
361
362         return blk_mq_rq_to_pdu(req);
363 }
364
365 /*
366  * Called with local interrupts disabled and the q_lock held.  May not sleep.
367  */
368 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
369                                                 nvme_completion_fn *fn)
370 {
371         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
372         void *ctx;
373         if (tag >= nvmeq->q_depth) {
374                 *fn = special_completion;
375                 return CMD_CTX_INVALID;
376         }
377         if (fn)
378                 *fn = cmd->fn;
379         ctx = cmd->ctx;
380         cmd->fn = special_completion;
381         cmd->ctx = CMD_CTX_COMPLETED;
382         return ctx;
383 }
384
385 /**
386  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
387  * @nvmeq: The queue to use
388  * @cmd: The command to send
389  *
390  * Safe to use from interrupt context
391  */
392 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
393                                                 struct nvme_command *cmd)
394 {
395         u16 tail = nvmeq->sq_tail;
396
397         if (nvmeq->sq_cmds_io)
398                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
399         else
400                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
401
402         if (++tail == nvmeq->q_depth)
403                 tail = 0;
404         writel(tail, nvmeq->q_db);
405         nvmeq->sq_tail = tail;
406 }
407
408 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
409 {
410         unsigned long flags;
411         spin_lock_irqsave(&nvmeq->q_lock, flags);
412         __nvme_submit_cmd(nvmeq, cmd);
413         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
414 }
415
416 static __le64 **iod_list(struct nvme_iod *iod)
417 {
418         return ((void *)iod) + iod->offset;
419 }
420
421 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
422                             unsigned nseg, unsigned long private)
423 {
424         iod->private = private;
425         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
426         iod->npages = -1;
427         iod->length = nbytes;
428         iod->nents = 0;
429 }
430
431 static struct nvme_iod *
432 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
433                  unsigned long priv, gfp_t gfp)
434 {
435         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
436                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
437                                 sizeof(struct scatterlist) * nseg, gfp);
438
439         if (iod)
440                 iod_init(iod, bytes, nseg, priv);
441
442         return iod;
443 }
444
445 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
446                                        gfp_t gfp)
447 {
448         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
449                                                 sizeof(struct nvme_dsm_range);
450         struct nvme_iod *iod;
451
452         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
453             size <= NVME_INT_BYTES(dev)) {
454                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
455
456                 iod = cmd->iod;
457                 iod_init(iod, size, rq->nr_phys_segments,
458                                 (unsigned long) rq | NVME_INT_MASK);
459                 return iod;
460         }
461
462         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
463                                 (unsigned long) rq, gfp);
464 }
465
466 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
467 {
468         const int last_prp = dev->page_size / 8 - 1;
469         int i;
470         __le64 **list = iod_list(iod);
471         dma_addr_t prp_dma = iod->first_dma;
472
473         if (iod->npages == 0)
474                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
475         for (i = 0; i < iod->npages; i++) {
476                 __le64 *prp_list = list[i];
477                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
478                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
479                 prp_dma = next_prp_dma;
480         }
481
482         if (iod_should_kfree(iod))
483                 kfree(iod);
484 }
485
486 static int nvme_error_status(u16 status)
487 {
488         switch (status & 0x7ff) {
489         case NVME_SC_SUCCESS:
490                 return 0;
491         case NVME_SC_CAP_EXCEEDED:
492                 return -ENOSPC;
493         default:
494                 return -EIO;
495         }
496 }
497
498 #ifdef CONFIG_BLK_DEV_INTEGRITY
499 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
500 {
501         if (be32_to_cpu(pi->ref_tag) == v)
502                 pi->ref_tag = cpu_to_be32(p);
503 }
504
505 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
506 {
507         if (be32_to_cpu(pi->ref_tag) == p)
508                 pi->ref_tag = cpu_to_be32(v);
509 }
510
511 /**
512  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
513  *
514  * The virtual start sector is the one that was originally submitted by the
515  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
516  * start sector may be different. Remap protection information to match the
517  * physical LBA on writes, and back to the original seed on reads.
518  *
519  * Type 0 and 3 do not have a ref tag, so no remapping required.
520  */
521 static void nvme_dif_remap(struct request *req,
522                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
523 {
524         struct nvme_ns *ns = req->rq_disk->private_data;
525         struct bio_integrity_payload *bip;
526         struct t10_pi_tuple *pi;
527         void *p, *pmap;
528         u32 i, nlb, ts, phys, virt;
529
530         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
531                 return;
532
533         bip = bio_integrity(req->bio);
534         if (!bip)
535                 return;
536
537         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
538
539         p = pmap;
540         virt = bip_get_seed(bip);
541         phys = nvme_block_nr(ns, blk_rq_pos(req));
542         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
543         ts = ns->disk->queue->integrity.tuple_size;
544
545         for (i = 0; i < nlb; i++, virt++, phys++) {
546                 pi = (struct t10_pi_tuple *)p;
547                 dif_swap(phys, virt, pi);
548                 p += ts;
549         }
550         kunmap_atomic(pmap);
551 }
552
553 static void nvme_init_integrity(struct nvme_ns *ns)
554 {
555         struct blk_integrity integrity;
556
557         switch (ns->pi_type) {
558         case NVME_NS_DPS_PI_TYPE3:
559                 integrity.profile = &t10_pi_type3_crc;
560                 break;
561         case NVME_NS_DPS_PI_TYPE1:
562         case NVME_NS_DPS_PI_TYPE2:
563                 integrity.profile = &t10_pi_type1_crc;
564                 break;
565         default:
566                 integrity.profile = NULL;
567                 break;
568         }
569         integrity.tuple_size = ns->ms;
570         blk_integrity_register(ns->disk, &integrity);
571         blk_queue_max_integrity_segments(ns->queue, 1);
572 }
573 #else /* CONFIG_BLK_DEV_INTEGRITY */
574 static void nvme_dif_remap(struct request *req,
575                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
576 {
577 }
578 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
579 {
580 }
581 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
582 {
583 }
584 static void nvme_init_integrity(struct nvme_ns *ns)
585 {
586 }
587 #endif
588
589 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
590                                                 struct nvme_completion *cqe)
591 {
592         struct nvme_iod *iod = ctx;
593         struct request *req = iod_get_private(iod);
594         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
595         u16 status = le16_to_cpup(&cqe->status) >> 1;
596         bool requeue = false;
597         int error = 0;
598
599         if (unlikely(status)) {
600                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
601                     && (jiffies - req->start_time) < req->timeout) {
602                         unsigned long flags;
603
604                         requeue = true;
605                         blk_mq_requeue_request(req);
606                         spin_lock_irqsave(req->q->queue_lock, flags);
607                         if (!blk_queue_stopped(req->q))
608                                 blk_mq_kick_requeue_list(req->q);
609                         spin_unlock_irqrestore(req->q->queue_lock, flags);
610                         goto release_iod;
611                 }
612
613                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
614                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
615                                 error = -EINTR;
616                         else
617                                 error = status;
618                 } else {
619                         error = nvme_error_status(status);
620                 }
621         }
622
623         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
624                 u32 result = le32_to_cpup(&cqe->result);
625                 req->special = (void *)(uintptr_t)result;
626         }
627
628         if (cmd_rq->aborted)
629                 dev_warn(nvmeq->dev->dev,
630                         "completing aborted command with status:%04x\n",
631                         error);
632
633 release_iod:
634         if (iod->nents) {
635                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
636                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
637                 if (blk_integrity_rq(req)) {
638                         if (!rq_data_dir(req))
639                                 nvme_dif_remap(req, nvme_dif_complete);
640                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
641                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
642                 }
643         }
644         nvme_free_iod(nvmeq->dev, iod);
645
646         if (likely(!requeue))
647                 blk_mq_complete_request(req, error);
648 }
649
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652                 int total_len, gfp_t gfp)
653 {
654         struct dma_pool *pool;
655         int length = total_len;
656         struct scatterlist *sg = iod->sg;
657         int dma_len = sg_dma_len(sg);
658         u64 dma_addr = sg_dma_address(sg);
659         u32 page_size = dev->page_size;
660         int offset = dma_addr & (page_size - 1);
661         __le64 *prp_list;
662         __le64 **list = iod_list(iod);
663         dma_addr_t prp_dma;
664         int nprps, i;
665
666         length -= (page_size - offset);
667         if (length <= 0)
668                 return total_len;
669
670         dma_len -= (page_size - offset);
671         if (dma_len) {
672                 dma_addr += (page_size - offset);
673         } else {
674                 sg = sg_next(sg);
675                 dma_addr = sg_dma_address(sg);
676                 dma_len = sg_dma_len(sg);
677         }
678
679         if (length <= page_size) {
680                 iod->first_dma = dma_addr;
681                 return total_len;
682         }
683
684         nprps = DIV_ROUND_UP(length, page_size);
685         if (nprps <= (256 / 8)) {
686                 pool = dev->prp_small_pool;
687                 iod->npages = 0;
688         } else {
689                 pool = dev->prp_page_pool;
690                 iod->npages = 1;
691         }
692
693         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694         if (!prp_list) {
695                 iod->first_dma = dma_addr;
696                 iod->npages = -1;
697                 return (total_len - length) + page_size;
698         }
699         list[0] = prp_list;
700         iod->first_dma = prp_dma;
701         i = 0;
702         for (;;) {
703                 if (i == page_size >> 3) {
704                         __le64 *old_prp_list = prp_list;
705                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706                         if (!prp_list)
707                                 return total_len - length;
708                         list[iod->npages++] = prp_list;
709                         prp_list[0] = old_prp_list[i - 1];
710                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711                         i = 1;
712                 }
713                 prp_list[i++] = cpu_to_le64(dma_addr);
714                 dma_len -= page_size;
715                 dma_addr += page_size;
716                 length -= page_size;
717                 if (length <= 0)
718                         break;
719                 if (dma_len > 0)
720                         continue;
721                 BUG_ON(dma_len < 0);
722                 sg = sg_next(sg);
723                 dma_addr = sg_dma_address(sg);
724                 dma_len = sg_dma_len(sg);
725         }
726
727         return total_len;
728 }
729
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731                 struct nvme_iod *iod)
732 {
733         struct nvme_command cmnd;
734
735         memcpy(&cmnd, req->cmd, sizeof(cmnd));
736         cmnd.rw.command_id = req->tag;
737         if (req->nr_phys_segments) {
738                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
740         }
741
742         __nvme_submit_cmd(nvmeq, &cmnd);
743 }
744
745 /*
746  * We reuse the small pool to allocate the 16-byte range here as it is not
747  * worth having a special pool for these or additional cases to handle freeing
748  * the iod.
749  */
750 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
751                 struct request *req, struct nvme_iod *iod)
752 {
753         struct nvme_dsm_range *range =
754                                 (struct nvme_dsm_range *)iod_list(iod)[0];
755         struct nvme_command cmnd;
756
757         range->cattr = cpu_to_le32(0);
758         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
759         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
760
761         memset(&cmnd, 0, sizeof(cmnd));
762         cmnd.dsm.opcode = nvme_cmd_dsm;
763         cmnd.dsm.command_id = req->tag;
764         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
765         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
766         cmnd.dsm.nr = 0;
767         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
768
769         __nvme_submit_cmd(nvmeq, &cmnd);
770 }
771
772 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
773                                                                 int cmdid)
774 {
775         struct nvme_command cmnd;
776
777         memset(&cmnd, 0, sizeof(cmnd));
778         cmnd.common.opcode = nvme_cmd_flush;
779         cmnd.common.command_id = cmdid;
780         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
781
782         __nvme_submit_cmd(nvmeq, &cmnd);
783 }
784
785 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
786                                                         struct nvme_ns *ns)
787 {
788         struct request *req = iod_get_private(iod);
789         struct nvme_command cmnd;
790         u16 control = 0;
791         u32 dsmgmt = 0;
792
793         if (req->cmd_flags & REQ_FUA)
794                 control |= NVME_RW_FUA;
795         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796                 control |= NVME_RW_LR;
797
798         if (req->cmd_flags & REQ_RAHEAD)
799                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801         memset(&cmnd, 0, sizeof(cmnd));
802         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
803         cmnd.rw.command_id = req->tag;
804         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
805         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
806         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
807         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
808         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
809
810         if (ns->ms) {
811                 switch (ns->pi_type) {
812                 case NVME_NS_DPS_PI_TYPE3:
813                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
814                         break;
815                 case NVME_NS_DPS_PI_TYPE1:
816                 case NVME_NS_DPS_PI_TYPE2:
817                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
818                                         NVME_RW_PRINFO_PRCHK_REF;
819                         cmnd.rw.reftag = cpu_to_le32(
820                                         nvme_block_nr(ns, blk_rq_pos(req)));
821                         break;
822                 }
823                 if (blk_integrity_rq(req))
824                         cmnd.rw.metadata =
825                                 cpu_to_le64(sg_dma_address(iod->meta_sg));
826                 else
827                         control |= NVME_RW_PRINFO_PRACT;
828         }
829
830         cmnd.rw.control = cpu_to_le16(control);
831         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
832
833         __nvme_submit_cmd(nvmeq, &cmnd);
834
835         return 0;
836 }
837
838 /*
839  * NOTE: ns is NULL when called on the admin queue.
840  */
841 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
842                          const struct blk_mq_queue_data *bd)
843 {
844         struct nvme_ns *ns = hctx->queue->queuedata;
845         struct nvme_queue *nvmeq = hctx->driver_data;
846         struct nvme_dev *dev = nvmeq->dev;
847         struct request *req = bd->rq;
848         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
849         struct nvme_iod *iod;
850         enum dma_data_direction dma_dir;
851
852         /*
853          * If formated with metadata, require the block layer provide a buffer
854          * unless this namespace is formated such that the metadata can be
855          * stripped/generated by the controller with PRACT=1.
856          */
857         if (ns && ns->ms && !blk_integrity_rq(req)) {
858                 if (!(ns->pi_type && ns->ms == 8) &&
859                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
860                         blk_mq_complete_request(req, -EFAULT);
861                         return BLK_MQ_RQ_QUEUE_OK;
862                 }
863         }
864
865         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
866         if (!iod)
867                 return BLK_MQ_RQ_QUEUE_BUSY;
868
869         if (req->cmd_flags & REQ_DISCARD) {
870                 void *range;
871                 /*
872                  * We reuse the small pool to allocate the 16-byte range here
873                  * as it is not worth having a special pool for these or
874                  * additional cases to handle freeing the iod.
875                  */
876                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
877                                                 &iod->first_dma);
878                 if (!range)
879                         goto retry_cmd;
880                 iod_list(iod)[0] = (__le64 *)range;
881                 iod->npages = 0;
882         } else if (req->nr_phys_segments) {
883                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
884
885                 sg_init_table(iod->sg, req->nr_phys_segments);
886                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
887                 if (!iod->nents)
888                         goto error_cmd;
889
890                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
891                         goto retry_cmd;
892
893                 if (blk_rq_bytes(req) !=
894                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
895                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
896                         goto retry_cmd;
897                 }
898                 if (blk_integrity_rq(req)) {
899                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
900                                 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
901                                                 dma_dir);
902                                 goto error_cmd;
903                         }
904
905                         sg_init_table(iod->meta_sg, 1);
906                         if (blk_rq_map_integrity_sg(
907                                         req->q, req->bio, iod->meta_sg) != 1) {
908                                 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
909                                                 dma_dir);
910                                 goto error_cmd;
911                         }
912
913                         if (rq_data_dir(req))
914                                 nvme_dif_remap(req, nvme_dif_prep);
915
916                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
917                                 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
918                                                 dma_dir);
919                                 goto error_cmd;
920                         }
921                 }
922         }
923
924         nvme_set_info(cmd, iod, req_completion);
925         spin_lock_irq(&nvmeq->q_lock);
926         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
927                 nvme_submit_priv(nvmeq, req, iod);
928         else if (req->cmd_flags & REQ_DISCARD)
929                 nvme_submit_discard(nvmeq, ns, req, iod);
930         else if (req->cmd_flags & REQ_FLUSH)
931                 nvme_submit_flush(nvmeq, ns, req->tag);
932         else
933                 nvme_submit_iod(nvmeq, iod, ns);
934
935         nvme_process_cq(nvmeq);
936         spin_unlock_irq(&nvmeq->q_lock);
937         return BLK_MQ_RQ_QUEUE_OK;
938
939  error_cmd:
940         nvme_free_iod(dev, iod);
941         return BLK_MQ_RQ_QUEUE_ERROR;
942  retry_cmd:
943         nvme_free_iod(dev, iod);
944         return BLK_MQ_RQ_QUEUE_BUSY;
945 }
946
947 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
948 {
949         u16 head, phase;
950
951         head = nvmeq->cq_head;
952         phase = nvmeq->cq_phase;
953
954         for (;;) {
955                 void *ctx;
956                 nvme_completion_fn fn;
957                 struct nvme_completion cqe = nvmeq->cqes[head];
958                 if ((le16_to_cpu(cqe.status) & 1) != phase)
959                         break;
960                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
961                 if (++head == nvmeq->q_depth) {
962                         head = 0;
963                         phase = !phase;
964                 }
965                 if (tag && *tag == cqe.command_id)
966                         *tag = -1;
967                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
968                 fn(nvmeq, ctx, &cqe);
969         }
970
971         /* If the controller ignores the cq head doorbell and continuously
972          * writes to the queue, it is theoretically possible to wrap around
973          * the queue twice and mistakenly return IRQ_NONE.  Linux only
974          * requires that 0.1% of your interrupts are handled, so this isn't
975          * a big problem.
976          */
977         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
978                 return;
979
980         if (likely(nvmeq->cq_vector >= 0))
981                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
982         nvmeq->cq_head = head;
983         nvmeq->cq_phase = phase;
984
985         nvmeq->cqe_seen = 1;
986 }
987
988 static void nvme_process_cq(struct nvme_queue *nvmeq)
989 {
990         __nvme_process_cq(nvmeq, NULL);
991 }
992
993 static irqreturn_t nvme_irq(int irq, void *data)
994 {
995         irqreturn_t result;
996         struct nvme_queue *nvmeq = data;
997         spin_lock(&nvmeq->q_lock);
998         nvme_process_cq(nvmeq);
999         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000         nvmeq->cqe_seen = 0;
1001         spin_unlock(&nvmeq->q_lock);
1002         return result;
1003 }
1004
1005 static irqreturn_t nvme_irq_check(int irq, void *data)
1006 {
1007         struct nvme_queue *nvmeq = data;
1008         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1009         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1010                 return IRQ_NONE;
1011         return IRQ_WAKE_THREAD;
1012 }
1013
1014 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1015 {
1016         struct nvme_queue *nvmeq = hctx->driver_data;
1017
1018         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1019             nvmeq->cq_phase) {
1020                 spin_lock_irq(&nvmeq->q_lock);
1021                 __nvme_process_cq(nvmeq, &tag);
1022                 spin_unlock_irq(&nvmeq->q_lock);
1023
1024                 if (tag == -1)
1025                         return 1;
1026         }
1027
1028         return 0;
1029 }
1030
1031 /*
1032  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1033  * if the result is positive, it's an NVM Express status code
1034  */
1035 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1036                 void *buffer, void __user *ubuffer, unsigned bufflen,
1037                 u32 *result, unsigned timeout)
1038 {
1039         bool write = cmd->common.opcode & 1;
1040         struct bio *bio = NULL;
1041         struct request *req;
1042         int ret;
1043
1044         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1045         if (IS_ERR(req))
1046                 return PTR_ERR(req);
1047
1048         req->cmd_type = REQ_TYPE_DRV_PRIV;
1049         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1050         req->__data_len = 0;
1051         req->__sector = (sector_t) -1;
1052         req->bio = req->biotail = NULL;
1053
1054         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1055
1056         req->cmd = (unsigned char *)cmd;
1057         req->cmd_len = sizeof(struct nvme_command);
1058         req->special = (void *)0;
1059
1060         if (buffer && bufflen) {
1061                 ret = blk_rq_map_kern(q, req, buffer, bufflen,
1062                                       __GFP_DIRECT_RECLAIM);
1063                 if (ret)
1064                         goto out;
1065         } else if (ubuffer && bufflen) {
1066                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1067                                       __GFP_DIRECT_RECLAIM);
1068                 if (ret)
1069                         goto out;
1070                 bio = req->bio;
1071         }
1072
1073         blk_execute_rq(req->q, NULL, req, 0);
1074         if (bio)
1075                 blk_rq_unmap_user(bio);
1076         if (result)
1077                 *result = (u32)(uintptr_t)req->special;
1078         ret = req->errors;
1079  out:
1080         blk_mq_free_request(req);
1081         return ret;
1082 }
1083
1084 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1085                 void *buffer, unsigned bufflen)
1086 {
1087         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1088 }
1089
1090 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1091 {
1092         struct nvme_queue *nvmeq = dev->queues[0];
1093         struct nvme_command c;
1094         struct nvme_cmd_info *cmd_info;
1095         struct request *req;
1096
1097         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1098         if (IS_ERR(req))
1099                 return PTR_ERR(req);
1100
1101         req->cmd_flags |= REQ_NO_TIMEOUT;
1102         cmd_info = blk_mq_rq_to_pdu(req);
1103         nvme_set_info(cmd_info, NULL, async_req_completion);
1104
1105         memset(&c, 0, sizeof(c));
1106         c.common.opcode = nvme_admin_async_event;
1107         c.common.command_id = req->tag;
1108
1109         blk_mq_free_request(req);
1110         __nvme_submit_cmd(nvmeq, &c);
1111         return 0;
1112 }
1113
1114 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1115                         struct nvme_command *cmd,
1116                         struct async_cmd_info *cmdinfo, unsigned timeout)
1117 {
1118         struct nvme_queue *nvmeq = dev->queues[0];
1119         struct request *req;
1120         struct nvme_cmd_info *cmd_rq;
1121
1122         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1123         if (IS_ERR(req))
1124                 return PTR_ERR(req);
1125
1126         req->timeout = timeout;
1127         cmd_rq = blk_mq_rq_to_pdu(req);
1128         cmdinfo->req = req;
1129         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1130         cmdinfo->status = -EINTR;
1131
1132         cmd->common.command_id = req->tag;
1133
1134         nvme_submit_cmd(nvmeq, cmd);
1135         return 0;
1136 }
1137
1138 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1139 {
1140         struct nvme_command c;
1141
1142         memset(&c, 0, sizeof(c));
1143         c.delete_queue.opcode = opcode;
1144         c.delete_queue.qid = cpu_to_le16(id);
1145
1146         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1147 }
1148
1149 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1150                                                 struct nvme_queue *nvmeq)
1151 {
1152         struct nvme_command c;
1153         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1154
1155         /*
1156          * Note: we (ab)use the fact the the prp fields survive if no data
1157          * is attached to the request.
1158          */
1159         memset(&c, 0, sizeof(c));
1160         c.create_cq.opcode = nvme_admin_create_cq;
1161         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1162         c.create_cq.cqid = cpu_to_le16(qid);
1163         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164         c.create_cq.cq_flags = cpu_to_le16(flags);
1165         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1166
1167         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1168 }
1169
1170 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1171                                                 struct nvme_queue *nvmeq)
1172 {
1173         struct nvme_command c;
1174         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1175
1176         /*
1177          * Note: we (ab)use the fact the the prp fields survive if no data
1178          * is attached to the request.
1179          */
1180         memset(&c, 0, sizeof(c));
1181         c.create_sq.opcode = nvme_admin_create_sq;
1182         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183         c.create_sq.sqid = cpu_to_le16(qid);
1184         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185         c.create_sq.sq_flags = cpu_to_le16(flags);
1186         c.create_sq.cqid = cpu_to_le16(qid);
1187
1188         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1189 }
1190
1191 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192 {
1193         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194 }
1195
1196 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197 {
1198         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199 }
1200
1201 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1202 {
1203         struct nvme_command c = { };
1204         int error;
1205
1206         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1207         c.identify.opcode = nvme_admin_identify;
1208         c.identify.cns = cpu_to_le32(1);
1209
1210         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1211         if (!*id)
1212                 return -ENOMEM;
1213
1214         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1215                         sizeof(struct nvme_id_ctrl));
1216         if (error)
1217                 kfree(*id);
1218         return error;
1219 }
1220
1221 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1222                 struct nvme_id_ns **id)
1223 {
1224         struct nvme_command c = { };
1225         int error;
1226
1227         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1228         c.identify.opcode = nvme_admin_identify,
1229         c.identify.nsid = cpu_to_le32(nsid),
1230
1231         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1232         if (!*id)
1233                 return -ENOMEM;
1234
1235         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1236                         sizeof(struct nvme_id_ns));
1237         if (error)
1238                 kfree(*id);
1239         return error;
1240 }
1241
1242 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1243                                         dma_addr_t dma_addr, u32 *result)
1244 {
1245         struct nvme_command c;
1246
1247         memset(&c, 0, sizeof(c));
1248         c.features.opcode = nvme_admin_get_features;
1249         c.features.nsid = cpu_to_le32(nsid);
1250         c.features.prp1 = cpu_to_le64(dma_addr);
1251         c.features.fid = cpu_to_le32(fid);
1252
1253         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1254                         result, 0);
1255 }
1256
1257 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1258                                         dma_addr_t dma_addr, u32 *result)
1259 {
1260         struct nvme_command c;
1261
1262         memset(&c, 0, sizeof(c));
1263         c.features.opcode = nvme_admin_set_features;
1264         c.features.prp1 = cpu_to_le64(dma_addr);
1265         c.features.fid = cpu_to_le32(fid);
1266         c.features.dword11 = cpu_to_le32(dword11);
1267
1268         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1269                         result, 0);
1270 }
1271
1272 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1273 {
1274         struct nvme_command c = { };
1275         int error;
1276
1277         c.common.opcode = nvme_admin_get_log_page,
1278         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1279         c.common.cdw10[0] = cpu_to_le32(
1280                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1281                          NVME_LOG_SMART),
1282
1283         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1284         if (!*log)
1285                 return -ENOMEM;
1286
1287         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1288                         sizeof(struct nvme_smart_log));
1289         if (error)
1290                 kfree(*log);
1291         return error;
1292 }
1293
1294 /**
1295  * nvme_abort_req - Attempt aborting a request
1296  *
1297  * Schedule controller reset if the command was already aborted once before and
1298  * still hasn't been returned to the driver, or if this is the admin queue.
1299  */
1300 static void nvme_abort_req(struct request *req)
1301 {
1302         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1303         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1304         struct nvme_dev *dev = nvmeq->dev;
1305         struct request *abort_req;
1306         struct nvme_cmd_info *abort_cmd;
1307         struct nvme_command cmd;
1308
1309         if (!nvmeq->qid || cmd_rq->aborted) {
1310                 spin_lock(&dev_list_lock);
1311                 if (!__nvme_reset(dev)) {
1312                         dev_warn(dev->dev,
1313                                  "I/O %d QID %d timeout, reset controller\n",
1314                                  req->tag, nvmeq->qid);
1315                 }
1316                 spin_unlock(&dev_list_lock);
1317                 return;
1318         }
1319
1320         if (!dev->abort_limit)
1321                 return;
1322
1323         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1324                                                                         false);
1325         if (IS_ERR(abort_req))
1326                 return;
1327
1328         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1329         nvme_set_info(abort_cmd, abort_req, abort_completion);
1330
1331         memset(&cmd, 0, sizeof(cmd));
1332         cmd.abort.opcode = nvme_admin_abort_cmd;
1333         cmd.abort.cid = req->tag;
1334         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1335         cmd.abort.command_id = abort_req->tag;
1336
1337         --dev->abort_limit;
1338         cmd_rq->aborted = 1;
1339
1340         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1341                                                         nvmeq->qid);
1342         nvme_submit_cmd(dev->queues[0], &cmd);
1343 }
1344
1345 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1346 {
1347         struct nvme_queue *nvmeq = data;
1348         void *ctx;
1349         nvme_completion_fn fn;
1350         struct nvme_cmd_info *cmd;
1351         struct nvme_completion cqe;
1352
1353         if (!blk_mq_request_started(req))
1354                 return;
1355
1356         cmd = blk_mq_rq_to_pdu(req);
1357
1358         if (cmd->ctx == CMD_CTX_CANCELLED)
1359                 return;
1360
1361         if (blk_queue_dying(req->q))
1362                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1363         else
1364                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1365
1366
1367         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1368                                                 req->tag, nvmeq->qid);
1369         ctx = cancel_cmd_info(cmd, &fn);
1370         fn(nvmeq, ctx, &cqe);
1371 }
1372
1373 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1374 {
1375         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1376         struct nvme_queue *nvmeq = cmd->nvmeq;
1377
1378         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1379                                                         nvmeq->qid);
1380         spin_lock_irq(&nvmeq->q_lock);
1381         nvme_abort_req(req);
1382         spin_unlock_irq(&nvmeq->q_lock);
1383
1384         /*
1385          * The aborted req will be completed on receiving the abort req.
1386          * We enable the timer again. If hit twice, it'll cause a device reset,
1387          * as the device then is in a faulty state.
1388          */
1389         return BLK_EH_RESET_TIMER;
1390 }
1391
1392 static void nvme_free_queue(struct nvme_queue *nvmeq)
1393 {
1394         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1395                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1396         if (nvmeq->sq_cmds)
1397                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1398                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1399         kfree(nvmeq);
1400 }
1401
1402 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1403 {
1404         int i;
1405
1406         for (i = dev->queue_count - 1; i >= lowest; i--) {
1407                 struct nvme_queue *nvmeq = dev->queues[i];
1408                 dev->queue_count--;
1409                 dev->queues[i] = NULL;
1410                 nvme_free_queue(nvmeq);
1411         }
1412 }
1413
1414 /**
1415  * nvme_suspend_queue - put queue into suspended state
1416  * @nvmeq - queue to suspend
1417  */
1418 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1419 {
1420         int vector;
1421
1422         spin_lock_irq(&nvmeq->q_lock);
1423         if (nvmeq->cq_vector == -1) {
1424                 spin_unlock_irq(&nvmeq->q_lock);
1425                 return 1;
1426         }
1427         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1428         nvmeq->dev->online_queues--;
1429         nvmeq->cq_vector = -1;
1430         spin_unlock_irq(&nvmeq->q_lock);
1431
1432         if (!nvmeq->qid && nvmeq->dev->admin_q)
1433                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1434
1435         irq_set_affinity_hint(vector, NULL);
1436         free_irq(vector, nvmeq);
1437
1438         return 0;
1439 }
1440
1441 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1442 {
1443         spin_lock_irq(&nvmeq->q_lock);
1444         if (nvmeq->tags && *nvmeq->tags)
1445                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1446         spin_unlock_irq(&nvmeq->q_lock);
1447 }
1448
1449 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1450 {
1451         struct nvme_queue *nvmeq = dev->queues[qid];
1452
1453         if (!nvmeq)
1454                 return;
1455         if (nvme_suspend_queue(nvmeq))
1456                 return;
1457
1458         /* Don't tell the adapter to delete the admin queue.
1459          * Don't tell a removed adapter to delete IO queues. */
1460         if (qid && readl(&dev->bar->csts) != -1) {
1461                 adapter_delete_sq(dev, qid);
1462                 adapter_delete_cq(dev, qid);
1463         }
1464
1465         spin_lock_irq(&nvmeq->q_lock);
1466         nvme_process_cq(nvmeq);
1467         spin_unlock_irq(&nvmeq->q_lock);
1468 }
1469
1470 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471                                 int entry_size)
1472 {
1473         int q_depth = dev->q_depth;
1474         unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1475
1476         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1477                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1478                 mem_per_q = round_down(mem_per_q, dev->page_size);
1479                 q_depth = div_u64(mem_per_q, entry_size);
1480
1481                 /*
1482                  * Ensure the reduced q_depth is above some threshold where it
1483                  * would be better to map queues in system memory with the
1484                  * original depth
1485                  */
1486                 if (q_depth < 64)
1487                         return -ENOMEM;
1488         }
1489
1490         return q_depth;
1491 }
1492
1493 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494                                 int qid, int depth)
1495 {
1496         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1497                 unsigned offset = (qid - 1) *
1498                                         roundup(SQ_SIZE(depth), dev->page_size);
1499                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1500                 nvmeq->sq_cmds_io = dev->cmb + offset;
1501         } else {
1502                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1503                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1504                 if (!nvmeq->sq_cmds)
1505                         return -ENOMEM;
1506         }
1507
1508         return 0;
1509 }
1510
1511 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1512                                                         int depth)
1513 {
1514         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1515         if (!nvmeq)
1516                 return NULL;
1517
1518         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1519                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1520         if (!nvmeq->cqes)
1521                 goto free_nvmeq;
1522
1523         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1524                 goto free_cqdma;
1525
1526         nvmeq->q_dmadev = dev->dev;
1527         nvmeq->dev = dev;
1528         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1529                         dev->instance, qid);
1530         spin_lock_init(&nvmeq->q_lock);
1531         nvmeq->cq_head = 0;
1532         nvmeq->cq_phase = 1;
1533         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1534         nvmeq->q_depth = depth;
1535         nvmeq->qid = qid;
1536         nvmeq->cq_vector = -1;
1537         dev->queues[qid] = nvmeq;
1538
1539         /* make sure queue descriptor is set before queue count, for kthread */
1540         mb();
1541         dev->queue_count++;
1542
1543         return nvmeq;
1544
1545  free_cqdma:
1546         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1547                                                         nvmeq->cq_dma_addr);
1548  free_nvmeq:
1549         kfree(nvmeq);
1550         return NULL;
1551 }
1552
1553 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1554                                                         const char *name)
1555 {
1556         if (use_threaded_interrupts)
1557                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1558                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1559                                         name, nvmeq);
1560         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1561                                 IRQF_SHARED, name, nvmeq);
1562 }
1563
1564 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1565 {
1566         struct nvme_dev *dev = nvmeq->dev;
1567
1568         spin_lock_irq(&nvmeq->q_lock);
1569         nvmeq->sq_tail = 0;
1570         nvmeq->cq_head = 0;
1571         nvmeq->cq_phase = 1;
1572         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1573         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1574         dev->online_queues++;
1575         spin_unlock_irq(&nvmeq->q_lock);
1576 }
1577
1578 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1579 {
1580         struct nvme_dev *dev = nvmeq->dev;
1581         int result;
1582
1583         nvmeq->cq_vector = qid - 1;
1584         result = adapter_alloc_cq(dev, qid, nvmeq);
1585         if (result < 0)
1586                 return result;
1587
1588         result = adapter_alloc_sq(dev, qid, nvmeq);
1589         if (result < 0)
1590                 goto release_cq;
1591
1592         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1593         if (result < 0)
1594                 goto release_sq;
1595
1596         nvme_init_queue(nvmeq, qid);
1597         return result;
1598
1599  release_sq:
1600         adapter_delete_sq(dev, qid);
1601  release_cq:
1602         adapter_delete_cq(dev, qid);
1603         return result;
1604 }
1605
1606 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1607 {
1608         unsigned long timeout;
1609         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1610
1611         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1612
1613         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1614                 msleep(100);
1615                 if (fatal_signal_pending(current))
1616                         return -EINTR;
1617                 if (time_after(jiffies, timeout)) {
1618                         dev_err(dev->dev,
1619                                 "Device not ready; aborting %s\n", enabled ?
1620                                                 "initialisation" : "reset");
1621                         return -ENODEV;
1622                 }
1623         }
1624
1625         return 0;
1626 }
1627
1628 /*
1629  * If the device has been passed off to us in an enabled state, just clear
1630  * the enabled bit.  The spec says we should set the 'shutdown notification
1631  * bits', but doing so may cause the device to complete commands to the
1632  * admin queue ... and we don't know what memory that might be pointing at!
1633  */
1634 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1635 {
1636         struct pci_dev *pdev = to_pci_dev(dev->dev);
1637
1638         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1639         dev->ctrl_config &= ~NVME_CC_ENABLE;
1640         writel(dev->ctrl_config, &dev->bar->cc);
1641
1642         if (pdev->vendor == 0x1c58 && pdev->device == 0x0003)
1643                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1644
1645         return nvme_wait_ready(dev, cap, false);
1646 }
1647
1648 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1649 {
1650         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1651         dev->ctrl_config |= NVME_CC_ENABLE;
1652         writel(dev->ctrl_config, &dev->bar->cc);
1653
1654         return nvme_wait_ready(dev, cap, true);
1655 }
1656
1657 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1658 {
1659         unsigned long timeout;
1660
1661         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1662         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1663
1664         writel(dev->ctrl_config, &dev->bar->cc);
1665
1666         timeout = SHUTDOWN_TIMEOUT + jiffies;
1667         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1668                                                         NVME_CSTS_SHST_CMPLT) {
1669                 msleep(100);
1670                 if (fatal_signal_pending(current))
1671                         return -EINTR;
1672                 if (time_after(jiffies, timeout)) {
1673                         dev_err(dev->dev,
1674                                 "Device shutdown incomplete; abort shutdown\n");
1675                         return -ENODEV;
1676                 }
1677         }
1678
1679         return 0;
1680 }
1681
1682 static struct blk_mq_ops nvme_mq_admin_ops = {
1683         .queue_rq       = nvme_queue_rq,
1684         .map_queue      = blk_mq_map_queue,
1685         .init_hctx      = nvme_admin_init_hctx,
1686         .exit_hctx      = nvme_admin_exit_hctx,
1687         .init_request   = nvme_admin_init_request,
1688         .timeout        = nvme_timeout,
1689 };
1690
1691 static struct blk_mq_ops nvme_mq_ops = {
1692         .queue_rq       = nvme_queue_rq,
1693         .map_queue      = blk_mq_map_queue,
1694         .init_hctx      = nvme_init_hctx,
1695         .init_request   = nvme_init_request,
1696         .timeout        = nvme_timeout,
1697         .poll           = nvme_poll,
1698 };
1699
1700 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1701 {
1702         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1703                 blk_cleanup_queue(dev->admin_q);
1704                 blk_mq_free_tag_set(&dev->admin_tagset);
1705         }
1706 }
1707
1708 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1709 {
1710         if (!dev->admin_q) {
1711                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1712                 dev->admin_tagset.nr_hw_queues = 1;
1713                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1714                 dev->admin_tagset.reserved_tags = 1;
1715                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1716                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1717                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1718                 dev->admin_tagset.driver_data = dev;
1719
1720                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1721                         return -ENOMEM;
1722
1723                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1724                 if (IS_ERR(dev->admin_q)) {
1725                         blk_mq_free_tag_set(&dev->admin_tagset);
1726                         return -ENOMEM;
1727                 }
1728                 if (!blk_get_queue(dev->admin_q)) {
1729                         nvme_dev_remove_admin(dev);
1730                         dev->admin_q = NULL;
1731                         return -ENODEV;
1732                 }
1733         } else
1734                 blk_mq_unfreeze_queue(dev->admin_q);
1735
1736         return 0;
1737 }
1738
1739 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1740 {
1741         int result;
1742         u32 aqa;
1743         u64 cap = lo_hi_readq(&dev->bar->cap);
1744         struct nvme_queue *nvmeq;
1745         /*
1746          * default to a 4K page size, with the intention to update this
1747          * path in the future to accomodate architectures with differing
1748          * kernel and IO page sizes.
1749          */
1750         unsigned page_shift = 12;
1751         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1752
1753         if (page_shift < dev_page_min) {
1754                 dev_err(dev->dev,
1755                                 "Minimum device page size (%u) too large for "
1756                                 "host (%u)\n", 1 << dev_page_min,
1757                                 1 << page_shift);
1758                 return -ENODEV;
1759         }
1760
1761         dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1762                                                 NVME_CAP_NSSRC(cap) : 0;
1763
1764         if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1765                 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1766
1767         result = nvme_disable_ctrl(dev, cap);
1768         if (result < 0)
1769                 return result;
1770
1771         nvmeq = dev->queues[0];
1772         if (!nvmeq) {
1773                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1774                 if (!nvmeq)
1775                         return -ENOMEM;
1776         }
1777
1778         aqa = nvmeq->q_depth - 1;
1779         aqa |= aqa << 16;
1780
1781         dev->page_size = 1 << page_shift;
1782
1783         dev->ctrl_config = NVME_CC_CSS_NVM;
1784         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1785         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1786         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1787
1788         writel(aqa, &dev->bar->aqa);
1789         lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1790         lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1791
1792         result = nvme_enable_ctrl(dev, cap);
1793         if (result)
1794                 goto free_nvmeq;
1795
1796         nvmeq->cq_vector = 0;
1797         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1798         if (result) {
1799                 nvmeq->cq_vector = -1;
1800                 goto free_nvmeq;
1801         }
1802
1803         return result;
1804
1805  free_nvmeq:
1806         nvme_free_queues(dev, 0);
1807         return result;
1808 }
1809
1810 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1811 {
1812         struct nvme_dev *dev = ns->dev;
1813         struct nvme_user_io io;
1814         struct nvme_command c;
1815         unsigned length, meta_len;
1816         int status, write;
1817         dma_addr_t meta_dma = 0;
1818         void *meta = NULL;
1819         void __user *metadata;
1820
1821         if (copy_from_user(&io, uio, sizeof(io)))
1822                 return -EFAULT;
1823
1824         switch (io.opcode) {
1825         case nvme_cmd_write:
1826         case nvme_cmd_read:
1827         case nvme_cmd_compare:
1828                 break;
1829         default:
1830                 return -EINVAL;
1831         }
1832
1833         length = (io.nblocks + 1) << ns->lba_shift;
1834         meta_len = (io.nblocks + 1) * ns->ms;
1835         metadata = (void __user *)(uintptr_t)io.metadata;
1836         write = io.opcode & 1;
1837
1838         if (ns->ext) {
1839                 length += meta_len;
1840                 meta_len = 0;
1841         }
1842         if (meta_len) {
1843                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1844                         return -EINVAL;
1845
1846                 meta = dma_alloc_coherent(dev->dev, meta_len,
1847                                                 &meta_dma, GFP_KERNEL);
1848
1849                 if (!meta) {
1850                         status = -ENOMEM;
1851                         goto unmap;
1852                 }
1853                 if (write) {
1854                         if (copy_from_user(meta, metadata, meta_len)) {
1855                                 status = -EFAULT;
1856                                 goto unmap;
1857                         }
1858                 }
1859         }
1860
1861         memset(&c, 0, sizeof(c));
1862         c.rw.opcode = io.opcode;
1863         c.rw.flags = io.flags;
1864         c.rw.nsid = cpu_to_le32(ns->ns_id);
1865         c.rw.slba = cpu_to_le64(io.slba);
1866         c.rw.length = cpu_to_le16(io.nblocks);
1867         c.rw.control = cpu_to_le16(io.control);
1868         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1869         c.rw.reftag = cpu_to_le32(io.reftag);
1870         c.rw.apptag = cpu_to_le16(io.apptag);
1871         c.rw.appmask = cpu_to_le16(io.appmask);
1872         c.rw.metadata = cpu_to_le64(meta_dma);
1873
1874         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1875                         (void __user *)(uintptr_t)io.addr, length, NULL, 0);
1876  unmap:
1877         if (meta) {
1878                 if (status == NVME_SC_SUCCESS && !write) {
1879                         if (copy_to_user(metadata, meta, meta_len))
1880                                 status = -EFAULT;
1881                 }
1882                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1883         }
1884         return status;
1885 }
1886
1887 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1888                         struct nvme_passthru_cmd __user *ucmd)
1889 {
1890         struct nvme_passthru_cmd cmd;
1891         struct nvme_command c;
1892         unsigned timeout = 0;
1893         int status;
1894
1895         if (!capable(CAP_SYS_ADMIN))
1896                 return -EACCES;
1897         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1898                 return -EFAULT;
1899
1900         memset(&c, 0, sizeof(c));
1901         c.common.opcode = cmd.opcode;
1902         c.common.flags = cmd.flags;
1903         c.common.nsid = cpu_to_le32(cmd.nsid);
1904         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1905         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1906         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1907         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1908         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1909         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1910         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1911         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1912
1913         if (cmd.timeout_ms)
1914                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1915
1916         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1917                         NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1918                         &cmd.result, timeout);
1919         if (status >= 0) {
1920                 if (put_user(cmd.result, &ucmd->result))
1921                         return -EFAULT;
1922         }
1923
1924         return status;
1925 }
1926
1927 static int nvme_subsys_reset(struct nvme_dev *dev)
1928 {
1929         if (!dev->subsystem)
1930                 return -ENOTTY;
1931
1932         writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1933         return 0;
1934 }
1935
1936 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1937                                                         unsigned long arg)
1938 {
1939         struct nvme_ns *ns = bdev->bd_disk->private_data;
1940
1941         switch (cmd) {
1942         case NVME_IOCTL_ID:
1943                 force_successful_syscall_return();
1944                 return ns->ns_id;
1945         case NVME_IOCTL_ADMIN_CMD:
1946                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1947         case NVME_IOCTL_IO_CMD:
1948                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1949         case NVME_IOCTL_SUBMIT_IO:
1950                 return nvme_submit_io(ns, (void __user *)arg);
1951         case SG_GET_VERSION_NUM:
1952                 return nvme_sg_get_version_num((void __user *)arg);
1953         case SG_IO:
1954                 return nvme_sg_io(ns, (void __user *)arg);
1955         default:
1956                 return -ENOTTY;
1957         }
1958 }
1959
1960 #ifdef CONFIG_COMPAT
1961 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1962                                         unsigned int cmd, unsigned long arg)
1963 {
1964         switch (cmd) {
1965         case SG_IO:
1966                 return -ENOIOCTLCMD;
1967         }
1968         return nvme_ioctl(bdev, mode, cmd, arg);
1969 }
1970 #else
1971 #define nvme_compat_ioctl       NULL
1972 #endif
1973
1974 static void nvme_free_dev(struct kref *kref);
1975 static void nvme_free_ns(struct kref *kref)
1976 {
1977         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1978
1979         if (ns->type == NVME_NS_LIGHTNVM)
1980                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1981
1982         spin_lock(&dev_list_lock);
1983         ns->disk->private_data = NULL;
1984         spin_unlock(&dev_list_lock);
1985
1986         kref_put(&ns->dev->kref, nvme_free_dev);
1987         put_disk(ns->disk);
1988         kfree(ns);
1989 }
1990
1991 static int nvme_open(struct block_device *bdev, fmode_t mode)
1992 {
1993         int ret = 0;
1994         struct nvme_ns *ns;
1995
1996         spin_lock(&dev_list_lock);
1997         ns = bdev->bd_disk->private_data;
1998         if (!ns)
1999                 ret = -ENXIO;
2000         else if (!kref_get_unless_zero(&ns->kref))
2001                 ret = -ENXIO;
2002         spin_unlock(&dev_list_lock);
2003
2004         return ret;
2005 }
2006
2007 static void nvme_release(struct gendisk *disk, fmode_t mode)
2008 {
2009         struct nvme_ns *ns = disk->private_data;
2010         kref_put(&ns->kref, nvme_free_ns);
2011 }
2012
2013 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
2014 {
2015         /* some standard values */
2016         geo->heads = 1 << 6;
2017         geo->sectors = 1 << 5;
2018         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2019         return 0;
2020 }
2021
2022 static void nvme_config_discard(struct nvme_ns *ns)
2023 {
2024         u32 logical_block_size = queue_logical_block_size(ns->queue);
2025         ns->queue->limits.discard_zeroes_data = 0;
2026         ns->queue->limits.discard_alignment = logical_block_size;
2027         ns->queue->limits.discard_granularity = logical_block_size;
2028         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
2029         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2030 }
2031
2032 static int nvme_revalidate_disk(struct gendisk *disk)
2033 {
2034         struct nvme_ns *ns = disk->private_data;
2035         struct nvme_dev *dev = ns->dev;
2036         struct nvme_id_ns *id;
2037         u8 lbaf, pi_type;
2038         u16 old_ms;
2039         unsigned short bs;
2040
2041         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2042                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2043                                                 dev->instance, ns->ns_id);
2044                 return -ENODEV;
2045         }
2046         if (id->ncap == 0) {
2047                 kfree(id);
2048                 return -ENODEV;
2049         }
2050
2051         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
2052                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
2053                         dev_warn(dev->dev,
2054                                 "%s: LightNVM init failure\n", __func__);
2055                         kfree(id);
2056                         return -ENODEV;
2057                 }
2058                 ns->type = NVME_NS_LIGHTNVM;
2059         }
2060
2061         old_ms = ns->ms;
2062         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2063         ns->lba_shift = id->lbaf[lbaf].ds;
2064         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2065         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2066
2067         /*
2068          * If identify namespace failed, use default 512 byte block size so
2069          * block layer can use before failing read/write for 0 capacity.
2070          */
2071         if (ns->lba_shift == 0)
2072                 ns->lba_shift = 9;
2073         bs = 1 << ns->lba_shift;
2074
2075         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2076         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2077                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2078
2079         blk_mq_freeze_queue(disk->queue);
2080         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2081                                 ns->ms != old_ms ||
2082                                 bs != queue_logical_block_size(disk->queue) ||
2083                                 (ns->ms && ns->ext)))
2084                 blk_integrity_unregister(disk);
2085
2086         ns->pi_type = pi_type;
2087         blk_queue_logical_block_size(ns->queue, bs);
2088
2089         if (ns->ms && !ns->ext)
2090                 nvme_init_integrity(ns);
2091
2092         if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
2093                                                 !blk_get_integrity(disk)) ||
2094                                                 ns->type == NVME_NS_LIGHTNVM)
2095                 set_capacity(disk, 0);
2096         else
2097                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2098
2099         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2100                 nvme_config_discard(ns);
2101         blk_mq_unfreeze_queue(disk->queue);
2102
2103         kfree(id);
2104         return 0;
2105 }
2106
2107 static char nvme_pr_type(enum pr_type type)
2108 {
2109         switch (type) {
2110         case PR_WRITE_EXCLUSIVE:
2111                 return 1;
2112         case PR_EXCLUSIVE_ACCESS:
2113                 return 2;
2114         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2115                 return 3;
2116         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2117                 return 4;
2118         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2119                 return 5;
2120         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2121                 return 6;
2122         default:
2123                 return 0;
2124         }
2125 };
2126
2127 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2128                                 u64 key, u64 sa_key, u8 op)
2129 {
2130         struct nvme_ns *ns = bdev->bd_disk->private_data;
2131         struct nvme_command c;
2132         u8 data[16] = { 0, };
2133
2134         put_unaligned_le64(key, &data[0]);
2135         put_unaligned_le64(sa_key, &data[8]);
2136
2137         memset(&c, 0, sizeof(c));
2138         c.common.opcode = op;
2139         c.common.nsid = cpu_to_le32(ns->ns_id);
2140         c.common.cdw10[0] = cpu_to_le32(cdw10);
2141
2142         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2143 }
2144
2145 static int nvme_pr_register(struct block_device *bdev, u64 old,
2146                 u64 new, unsigned flags)
2147 {
2148         u32 cdw10;
2149
2150         if (flags & ~PR_FL_IGNORE_KEY)
2151                 return -EOPNOTSUPP;
2152
2153         cdw10 = old ? 2 : 0;
2154         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2155         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2156         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2157 }
2158
2159 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2160                 enum pr_type type, unsigned flags)
2161 {
2162         u32 cdw10;
2163
2164         if (flags & ~PR_FL_IGNORE_KEY)
2165                 return -EOPNOTSUPP;
2166
2167         cdw10 = nvme_pr_type(type) << 8;
2168         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2169         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2170 }
2171
2172 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2173                 enum pr_type type, bool abort)
2174 {
2175         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2176         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2177 }
2178
2179 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2180 {
2181         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2182         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2183 }
2184
2185 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2186 {
2187         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2188         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2189 }
2190
2191 static const struct pr_ops nvme_pr_ops = {
2192         .pr_register    = nvme_pr_register,
2193         .pr_reserve     = nvme_pr_reserve,
2194         .pr_release     = nvme_pr_release,
2195         .pr_preempt     = nvme_pr_preempt,
2196         .pr_clear       = nvme_pr_clear,
2197 };
2198
2199 static const struct block_device_operations nvme_fops = {
2200         .owner          = THIS_MODULE,
2201         .ioctl          = nvme_ioctl,
2202         .compat_ioctl   = nvme_compat_ioctl,
2203         .open           = nvme_open,
2204         .release        = nvme_release,
2205         .getgeo         = nvme_getgeo,
2206         .revalidate_disk= nvme_revalidate_disk,
2207         .pr_ops         = &nvme_pr_ops,
2208 };
2209
2210 static int nvme_kthread(void *data)
2211 {
2212         struct nvme_dev *dev, *next;
2213
2214         while (!kthread_should_stop()) {
2215                 set_current_state(TASK_INTERRUPTIBLE);
2216                 spin_lock(&dev_list_lock);
2217                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2218                         int i;
2219                         u32 csts = readl(&dev->bar->csts);
2220
2221                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2222                                                         csts & NVME_CSTS_CFS) {
2223                                 if (!__nvme_reset(dev)) {
2224                                         dev_warn(dev->dev,
2225                                                 "Failed status: 0x%x, reset controller\n",
2226                                                 csts);
2227                                 }
2228                                 continue;
2229                         }
2230                         for (i = 0; i < dev->queue_count; i++) {
2231                                 struct nvme_queue *nvmeq = dev->queues[i];
2232                                 if (!nvmeq)
2233                                         continue;
2234                                 spin_lock_irq(&nvmeq->q_lock);
2235                                 nvme_process_cq(nvmeq);
2236
2237                                 while ((i == 0) && (dev->event_limit > 0)) {
2238                                         if (nvme_submit_async_admin_req(dev))
2239                                                 break;
2240                                         dev->event_limit--;
2241                                 }
2242                                 spin_unlock_irq(&nvmeq->q_lock);
2243                         }
2244                 }
2245                 spin_unlock(&dev_list_lock);
2246                 schedule_timeout(round_jiffies_relative(HZ));
2247         }
2248         return 0;
2249 }
2250
2251 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2252 {
2253         struct nvme_ns *ns;
2254         struct gendisk *disk;
2255         int node = dev_to_node(dev->dev);
2256
2257         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2258         if (!ns)
2259                 return;
2260
2261         ns->queue = blk_mq_init_queue(&dev->tagset);
2262         if (IS_ERR(ns->queue))
2263                 goto out_free_ns;
2264         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2265         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2266         ns->dev = dev;
2267         ns->queue->queuedata = ns;
2268
2269         disk = alloc_disk_node(0, node);
2270         if (!disk)
2271                 goto out_free_queue;
2272
2273         kref_init(&ns->kref);
2274         ns->ns_id = nsid;
2275         ns->disk = disk;
2276         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2277         list_add_tail(&ns->list, &dev->namespaces);
2278
2279         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2280         if (dev->max_hw_sectors) {
2281                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2282                 blk_queue_max_segments(ns->queue,
2283                         (dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
2284         }
2285         if (dev->stripe_size)
2286                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2287         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2288                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2289         blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2290
2291         disk->major = nvme_major;
2292         disk->first_minor = 0;
2293         disk->fops = &nvme_fops;
2294         disk->private_data = ns;
2295         disk->queue = ns->queue;
2296         disk->driverfs_dev = dev->device;
2297         disk->flags = GENHD_FL_EXT_DEVT;
2298 #ifdef CONFIG_ARCH_ROCKCHIP
2299         disk->is_rk_disk = true;
2300 #else
2301         disk->is_rk_disk = false;
2302 #endif
2303
2304         disk->is_rk_disk = false;
2305         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2306
2307         /*
2308          * Initialize capacity to 0 until we establish the namespace format and
2309          * setup integrity extentions if necessary. The revalidate_disk after
2310          * add_disk allows the driver to register with integrity if the format
2311          * requires it.
2312          */
2313         set_capacity(disk, 0);
2314         if (nvme_revalidate_disk(ns->disk))
2315                 goto out_free_disk;
2316
2317         kref_get(&dev->kref);
2318         if (ns->type != NVME_NS_LIGHTNVM) {
2319                 add_disk(ns->disk);
2320                 if (ns->ms) {
2321                         struct block_device *bd = bdget_disk(ns->disk, 0);
2322                         if (!bd)
2323                                 return;
2324                         if (blkdev_get(bd, FMODE_READ, NULL)) {
2325                                 bdput(bd);
2326                                 return;
2327                         }
2328                         blkdev_reread_part(bd);
2329                         blkdev_put(bd, FMODE_READ);
2330                 }
2331         }
2332         return;
2333  out_free_disk:
2334         kfree(disk);
2335         list_del(&ns->list);
2336  out_free_queue:
2337         blk_cleanup_queue(ns->queue);
2338  out_free_ns:
2339         kfree(ns);
2340 }
2341
2342 /*
2343  * Create I/O queues.  Failing to create an I/O queue is not an issue,
2344  * we can continue with less than the desired amount of queues, and
2345  * even a controller without I/O queues an still be used to issue
2346  * admin commands.  This might be useful to upgrade a buggy firmware
2347  * for example.
2348  */
2349 static void nvme_create_io_queues(struct nvme_dev *dev)
2350 {
2351         unsigned i;
2352
2353         for (i = dev->queue_count; i <= dev->max_qid; i++)
2354                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2355                         break;
2356
2357         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2358                 if (nvme_create_queue(dev->queues[i], i)) {
2359                         nvme_free_queues(dev, i);
2360                         break;
2361                 }
2362 }
2363
2364 static int set_queue_count(struct nvme_dev *dev, int count)
2365 {
2366         int status;
2367         u32 result;
2368         u32 q_count = (count - 1) | ((count - 1) << 16);
2369
2370         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2371                                                                 &result);
2372         if (status < 0)
2373                 return status;
2374         if (status > 0) {
2375                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2376                 return 0;
2377         }
2378         return min(result & 0xffff, result >> 16) + 1;
2379 }
2380
2381 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2382 {
2383         u64 szu, size, offset;
2384         u32 cmbloc;
2385         resource_size_t bar_size;
2386         struct pci_dev *pdev = to_pci_dev(dev->dev);
2387         void __iomem *cmb;
2388         dma_addr_t dma_addr;
2389
2390         if (!use_cmb_sqes)
2391                 return NULL;
2392
2393         dev->cmbsz = readl(&dev->bar->cmbsz);
2394         if (!(NVME_CMB_SZ(dev->cmbsz)))
2395                 return NULL;
2396
2397         cmbloc = readl(&dev->bar->cmbloc);
2398
2399         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2400         size = szu * NVME_CMB_SZ(dev->cmbsz);
2401         offset = szu * NVME_CMB_OFST(cmbloc);
2402         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2403
2404         if (offset > bar_size)
2405                 return NULL;
2406
2407         /*
2408          * Controllers may support a CMB size larger than their BAR,
2409          * for example, due to being behind a bridge. Reduce the CMB to
2410          * the reported size of the BAR
2411          */
2412         if (size > bar_size - offset)
2413                 size = bar_size - offset;
2414
2415         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2416         cmb = ioremap_wc(dma_addr, size);
2417         if (!cmb)
2418                 return NULL;
2419
2420         dev->cmb_dma_addr = dma_addr;
2421         dev->cmb_size = size;
2422         return cmb;
2423 }
2424
2425 static inline void nvme_release_cmb(struct nvme_dev *dev)
2426 {
2427         if (dev->cmb) {
2428                 iounmap(dev->cmb);
2429                 dev->cmb = NULL;
2430         }
2431 }
2432
2433 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2434 {
2435         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2436 }
2437
2438 static int nvme_setup_io_queues(struct nvme_dev *dev)
2439 {
2440         struct nvme_queue *adminq = dev->queues[0];
2441         struct pci_dev *pdev = to_pci_dev(dev->dev);
2442         int result, i, vecs, nr_io_queues, size;
2443
2444         nr_io_queues = num_possible_cpus();
2445         result = set_queue_count(dev, nr_io_queues);
2446         if (result <= 0)
2447                 return result;
2448         if (result < nr_io_queues)
2449                 nr_io_queues = result;
2450
2451         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2452                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2453                                 sizeof(struct nvme_command));
2454                 if (result > 0)
2455                         dev->q_depth = result;
2456                 else
2457                         nvme_release_cmb(dev);
2458         }
2459
2460         size = db_bar_size(dev, nr_io_queues);
2461         if (size > 8192) {
2462                 iounmap(dev->bar);
2463                 do {
2464                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2465                         if (dev->bar)
2466                                 break;
2467                         if (!--nr_io_queues)
2468                                 return -ENOMEM;
2469                         size = db_bar_size(dev, nr_io_queues);
2470                 } while (1);
2471                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2472                 adminq->q_db = dev->dbs;
2473         }
2474
2475         /* Deregister the admin queue's interrupt */
2476         free_irq(dev->entry[0].vector, adminq);
2477
2478         /*
2479          * If we enable msix early due to not intx, disable it again before
2480          * setting up the full range we need.
2481          */
2482         if (!pdev->irq)
2483                 pci_disable_msix(pdev);
2484
2485         for (i = 0; i < nr_io_queues; i++)
2486                 dev->entry[i].entry = i;
2487         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2488         if (vecs < 0) {
2489                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2490                 if (vecs < 0) {
2491                         vecs = 1;
2492                 } else {
2493                         for (i = 0; i < vecs; i++)
2494                                 dev->entry[i].vector = i + pdev->irq;
2495                 }
2496         }
2497
2498         /*
2499          * Should investigate if there's a performance win from allocating
2500          * more queues than interrupt vectors; it might allow the submission
2501          * path to scale better, even if the receive path is limited by the
2502          * number of interrupts.
2503          */
2504         nr_io_queues = vecs;
2505         dev->max_qid = nr_io_queues;
2506
2507         result = queue_request_irq(dev, adminq, adminq->irqname);
2508         if (result) {
2509                 adminq->cq_vector = -1;
2510                 goto free_queues;
2511         }
2512
2513         /* Free previously allocated queues that are no longer usable */
2514         nvme_free_queues(dev, nr_io_queues + 1);
2515         nvme_create_io_queues(dev);
2516
2517         return 0;
2518
2519  free_queues:
2520         nvme_free_queues(dev, 1);
2521         return result;
2522 }
2523
2524 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2525 {
2526         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2527         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2528
2529         return nsa->ns_id - nsb->ns_id;
2530 }
2531
2532 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2533 {
2534         struct nvme_ns *ns;
2535
2536         list_for_each_entry(ns, &dev->namespaces, list) {
2537                 if (ns->ns_id == nsid)
2538                         return ns;
2539                 if (ns->ns_id > nsid)
2540                         break;
2541         }
2542         return NULL;
2543 }
2544
2545 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2546 {
2547         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2548                                                         dev->online_queues < 2);
2549 }
2550
2551 static void nvme_ns_remove(struct nvme_ns *ns)
2552 {
2553         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2554
2555         if (kill) {
2556                 blk_set_queue_dying(ns->queue);
2557
2558                 /*
2559                  * The controller was shutdown first if we got here through
2560                  * device removal. The shutdown may requeue outstanding
2561                  * requests. These need to be aborted immediately so
2562                  * del_gendisk doesn't block indefinitely for their completion.
2563                  */
2564                 blk_mq_abort_requeue_list(ns->queue);
2565         }
2566         if (ns->disk->flags & GENHD_FL_UP)
2567                 del_gendisk(ns->disk);
2568         if (kill || !blk_queue_dying(ns->queue)) {
2569                 blk_mq_abort_requeue_list(ns->queue);
2570                 blk_cleanup_queue(ns->queue);
2571         }
2572         list_del_init(&ns->list);
2573         kref_put(&ns->kref, nvme_free_ns);
2574 }
2575
2576 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2577 {
2578         struct nvme_ns *ns, *next;
2579         unsigned i;
2580
2581         for (i = 1; i <= nn; i++) {
2582                 ns = nvme_find_ns(dev, i);
2583                 if (ns) {
2584                         if (revalidate_disk(ns->disk))
2585                                 nvme_ns_remove(ns);
2586                 } else
2587                         nvme_alloc_ns(dev, i);
2588         }
2589         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2590                 if (ns->ns_id > nn)
2591                         nvme_ns_remove(ns);
2592         }
2593         list_sort(NULL, &dev->namespaces, ns_cmp);
2594 }
2595
2596 static void nvme_set_irq_hints(struct nvme_dev *dev)
2597 {
2598         struct nvme_queue *nvmeq;
2599         int i;
2600
2601         for (i = 0; i < dev->online_queues; i++) {
2602                 nvmeq = dev->queues[i];
2603
2604                 if (!nvmeq->tags || !(*nvmeq->tags))
2605                         continue;
2606
2607                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2608                                         blk_mq_tags_cpumask(*nvmeq->tags));
2609         }
2610 }
2611
2612 static void nvme_dev_scan(struct work_struct *work)
2613 {
2614         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2615         struct nvme_id_ctrl *ctrl;
2616
2617         if (!dev->tagset.tags)
2618                 return;
2619         if (nvme_identify_ctrl(dev, &ctrl))
2620                 return;
2621         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2622         kfree(ctrl);
2623         nvme_set_irq_hints(dev);
2624 }
2625
2626 /*
2627  * Return: error value if an error occurred setting up the queues or calling
2628  * Identify Device.  0 if these succeeded, even if adding some of the
2629  * namespaces failed.  At the moment, these failures are silent.  TBD which
2630  * failures should be reported.
2631  */
2632 static int nvme_dev_add(struct nvme_dev *dev)
2633 {
2634         struct pci_dev *pdev = to_pci_dev(dev->dev);
2635         int res;
2636         struct nvme_id_ctrl *ctrl;
2637         int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12;
2638
2639         res = nvme_identify_ctrl(dev, &ctrl);
2640         if (res) {
2641                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2642                 return -EIO;
2643         }
2644
2645         dev->oncs = le16_to_cpup(&ctrl->oncs);
2646         dev->abort_limit = ctrl->acl + 1;
2647         dev->vwc = ctrl->vwc;
2648         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2649         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2650         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2651         if (ctrl->mdts)
2652                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2653         else
2654                 dev->max_hw_sectors = UINT_MAX;
2655         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2656                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2657                 unsigned int max_hw_sectors;
2658
2659                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2660                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2661                 if (dev->max_hw_sectors) {
2662                         dev->max_hw_sectors = min(max_hw_sectors,
2663                                                         dev->max_hw_sectors);
2664                 } else
2665                         dev->max_hw_sectors = max_hw_sectors;
2666         }
2667         kfree(ctrl);
2668
2669         if (!dev->tagset.tags) {
2670                 dev->tagset.ops = &nvme_mq_ops;
2671                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2672                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2673                 dev->tagset.numa_node = dev_to_node(dev->dev);
2674                 dev->tagset.queue_depth =
2675                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2676                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2677                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2678                 dev->tagset.driver_data = dev;
2679
2680                 if (blk_mq_alloc_tag_set(&dev->tagset))
2681                         return 0;
2682         }
2683         schedule_work(&dev->scan_work);
2684         return 0;
2685 }
2686
2687 static int nvme_pci_enable(struct nvme_dev *dev)
2688 {
2689         u64 cap;
2690         int result = -ENOMEM;
2691         struct pci_dev *pdev = to_pci_dev(dev->dev);
2692
2693         if (pci_enable_device_mem(pdev))
2694                 return result;
2695
2696         dev->entry[0].vector = pdev->irq;
2697         pci_set_master(pdev);
2698
2699         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2700             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2701                 goto disable;
2702
2703         if (readl(&dev->bar->csts) == -1) {
2704                 result = -ENODEV;
2705                 goto disable;
2706         }
2707
2708         /*
2709          * Some devices don't advertse INTx interrupts, pre-enable a single
2710          * MSIX vec for setup. We'll adjust this later.
2711          */
2712         if (!pdev->irq) {
2713                 result = pci_enable_msix(pdev, dev->entry, 1);
2714                 if (result < 0)
2715                         goto disable;
2716         }
2717
2718         cap = lo_hi_readq(&dev->bar->cap);
2719         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2720         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2721         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2722
2723         /*
2724          * Temporary fix for the Apple controller found in the MacBook8,1 and
2725          * some MacBook7,1 to avoid controller resets and data loss.
2726          */
2727         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2728                 dev->q_depth = 2;
2729                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
2730                         "queue depth=%u to work around controller resets\n",
2731                         dev->q_depth);
2732         }
2733
2734         if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2735                 dev->cmb = nvme_map_cmb(dev);
2736
2737         return 0;
2738
2739  disable:
2740         pci_disable_device(pdev);
2741
2742         return result;
2743 }
2744
2745 static void nvme_dev_unmap(struct nvme_dev *dev)
2746 {
2747         if (dev->bar)
2748                 iounmap(dev->bar);
2749         pci_release_regions(to_pci_dev(dev->dev));
2750 }
2751
2752 static void nvme_pci_disable(struct nvme_dev *dev)
2753 {
2754         struct pci_dev *pdev = to_pci_dev(dev->dev);
2755
2756         if (pdev->msi_enabled)
2757                 pci_disable_msi(pdev);
2758         else if (pdev->msix_enabled)
2759                 pci_disable_msix(pdev);
2760
2761         if (pci_is_enabled(pdev))
2762                 pci_disable_device(pdev);
2763 }
2764
2765 struct nvme_delq_ctx {
2766         struct task_struct *waiter;
2767         struct kthread_worker *worker;
2768         atomic_t refcount;
2769 };
2770
2771 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2772 {
2773         dq->waiter = current;
2774         mb();
2775
2776         for (;;) {
2777                 set_current_state(TASK_KILLABLE);
2778                 if (!atomic_read(&dq->refcount))
2779                         break;
2780                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2781                                         fatal_signal_pending(current)) {
2782                         /*
2783                          * Disable the controller first since we can't trust it
2784                          * at this point, but leave the admin queue enabled
2785                          * until all queue deletion requests are flushed.
2786                          * FIXME: This may take a while if there are more h/w
2787                          * queues than admin tags.
2788                          */
2789                         set_current_state(TASK_RUNNING);
2790                         nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap));
2791                         nvme_clear_queue(dev->queues[0]);
2792                         flush_kthread_worker(dq->worker);
2793                         nvme_disable_queue(dev, 0);
2794                         return;
2795                 }
2796         }
2797         set_current_state(TASK_RUNNING);
2798 }
2799
2800 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2801 {
2802         atomic_dec(&dq->refcount);
2803         if (dq->waiter)
2804                 wake_up_process(dq->waiter);
2805 }
2806
2807 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2808 {
2809         atomic_inc(&dq->refcount);
2810         return dq;
2811 }
2812
2813 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2814 {
2815         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2816         nvme_put_dq(dq);
2817
2818         spin_lock_irq(&nvmeq->q_lock);
2819         nvme_process_cq(nvmeq);
2820         spin_unlock_irq(&nvmeq->q_lock);
2821 }
2822
2823 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2824                                                 kthread_work_func_t fn)
2825 {
2826         struct nvme_command c;
2827
2828         memset(&c, 0, sizeof(c));
2829         c.delete_queue.opcode = opcode;
2830         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2831
2832         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2833         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2834                                                                 ADMIN_TIMEOUT);
2835 }
2836
2837 static void nvme_del_cq_work_handler(struct kthread_work *work)
2838 {
2839         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2840                                                         cmdinfo.work);
2841         nvme_del_queue_end(nvmeq);
2842 }
2843
2844 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2845 {
2846         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2847                                                 nvme_del_cq_work_handler);
2848 }
2849
2850 static void nvme_del_sq_work_handler(struct kthread_work *work)
2851 {
2852         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2853                                                         cmdinfo.work);
2854         int status = nvmeq->cmdinfo.status;
2855
2856         if (!status)
2857                 status = nvme_delete_cq(nvmeq);
2858         if (status)
2859                 nvme_del_queue_end(nvmeq);
2860 }
2861
2862 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2863 {
2864         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2865                                                 nvme_del_sq_work_handler);
2866 }
2867
2868 static void nvme_del_queue_start(struct kthread_work *work)
2869 {
2870         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2871                                                         cmdinfo.work);
2872         if (nvme_delete_sq(nvmeq))
2873                 nvme_del_queue_end(nvmeq);
2874 }
2875
2876 static void nvme_disable_io_queues(struct nvme_dev *dev)
2877 {
2878         int i;
2879         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2880         struct nvme_delq_ctx dq;
2881         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2882                                         &worker, "nvme%d", dev->instance);
2883
2884         if (IS_ERR(kworker_task)) {
2885                 dev_err(dev->dev,
2886                         "Failed to create queue del task\n");
2887                 for (i = dev->queue_count - 1; i > 0; i--)
2888                         nvme_disable_queue(dev, i);
2889                 return;
2890         }
2891
2892         dq.waiter = NULL;
2893         atomic_set(&dq.refcount, 0);
2894         dq.worker = &worker;
2895         for (i = dev->queue_count - 1; i > 0; i--) {
2896                 struct nvme_queue *nvmeq = dev->queues[i];
2897
2898                 if (nvme_suspend_queue(nvmeq))
2899                         continue;
2900                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2901                 nvmeq->cmdinfo.worker = dq.worker;
2902                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2903                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2904         }
2905         nvme_wait_dq(&dq, dev);
2906         kthread_stop(kworker_task);
2907 }
2908
2909 /*
2910 * Remove the node from the device list and check
2911 * for whether or not we need to stop the nvme_thread.
2912 */
2913 static void nvme_dev_list_remove(struct nvme_dev *dev)
2914 {
2915         struct task_struct *tmp = NULL;
2916
2917         spin_lock(&dev_list_lock);
2918         list_del_init(&dev->node);
2919         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2920                 tmp = nvme_thread;
2921                 nvme_thread = NULL;
2922         }
2923         spin_unlock(&dev_list_lock);
2924
2925         if (tmp)
2926                 kthread_stop(tmp);
2927 }
2928
2929 static void nvme_freeze_queues(struct nvme_dev *dev)
2930 {
2931         struct nvme_ns *ns;
2932
2933         list_for_each_entry(ns, &dev->namespaces, list) {
2934                 blk_mq_freeze_queue_start(ns->queue);
2935
2936                 spin_lock_irq(ns->queue->queue_lock);
2937                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2938                 spin_unlock_irq(ns->queue->queue_lock);
2939
2940                 blk_mq_cancel_requeue_work(ns->queue);
2941                 blk_mq_stop_hw_queues(ns->queue);
2942         }
2943 }
2944
2945 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2946 {
2947         struct nvme_ns *ns;
2948
2949         list_for_each_entry(ns, &dev->namespaces, list) {
2950                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2951                 blk_mq_unfreeze_queue(ns->queue);
2952                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2953                 blk_mq_kick_requeue_list(ns->queue);
2954         }
2955 }
2956
2957 static void nvme_dev_shutdown(struct nvme_dev *dev)
2958 {
2959         int i;
2960         u32 csts = -1;
2961
2962         nvme_dev_list_remove(dev);
2963
2964         if (pci_is_enabled(to_pci_dev(dev->dev))) {
2965                 nvme_freeze_queues(dev);
2966                 csts = readl(&dev->bar->csts);
2967         }
2968         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2969                 for (i = dev->queue_count - 1; i >= 0; i--) {
2970                         struct nvme_queue *nvmeq = dev->queues[i];
2971                         nvme_suspend_queue(nvmeq);
2972                 }
2973         } else {
2974                 nvme_disable_io_queues(dev);
2975                 nvme_shutdown_ctrl(dev);
2976                 nvme_disable_queue(dev, 0);
2977         }
2978         nvme_pci_disable(dev);
2979
2980         for (i = dev->queue_count - 1; i >= 0; i--)
2981                 nvme_clear_queue(dev->queues[i]);
2982 }
2983
2984 static void nvme_dev_remove(struct nvme_dev *dev)
2985 {
2986         struct nvme_ns *ns, *next;
2987
2988         if (nvme_io_incapable(dev)) {
2989                 /*
2990                  * If the device is not capable of IO (surprise hot-removal,
2991                  * for example), we need to quiesce prior to deleting the
2992                  * namespaces. This will end outstanding requests and prevent
2993                  * attempts to sync dirty data.
2994                  */
2995                 nvme_dev_shutdown(dev);
2996         }
2997         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2998                 nvme_ns_remove(ns);
2999 }
3000
3001 static int nvme_setup_prp_pools(struct nvme_dev *dev)
3002 {
3003         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
3004                                                 PAGE_SIZE, PAGE_SIZE, 0);
3005         if (!dev->prp_page_pool)
3006                 return -ENOMEM;
3007
3008         /* Optimisation for I/Os between 4k and 128k */
3009         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
3010                                                 256, 256, 0);
3011         if (!dev->prp_small_pool) {
3012                 dma_pool_destroy(dev->prp_page_pool);
3013                 return -ENOMEM;
3014         }
3015         return 0;
3016 }
3017
3018 static void nvme_release_prp_pools(struct nvme_dev *dev)
3019 {
3020         dma_pool_destroy(dev->prp_page_pool);
3021         dma_pool_destroy(dev->prp_small_pool);
3022 }
3023
3024 static DEFINE_IDA(nvme_instance_ida);
3025
3026 static int nvme_set_instance(struct nvme_dev *dev)
3027 {
3028         int instance, error;
3029
3030         do {
3031                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
3032                         return -ENODEV;
3033
3034                 spin_lock(&dev_list_lock);
3035                 error = ida_get_new(&nvme_instance_ida, &instance);
3036                 spin_unlock(&dev_list_lock);
3037         } while (error == -EAGAIN);
3038
3039         if (error)
3040                 return -ENODEV;
3041
3042         dev->instance = instance;
3043         return 0;
3044 }
3045
3046 static void nvme_release_instance(struct nvme_dev *dev)
3047 {
3048         spin_lock(&dev_list_lock);
3049         ida_remove(&nvme_instance_ida, dev->instance);
3050         spin_unlock(&dev_list_lock);
3051 }
3052
3053 static void nvme_free_dev(struct kref *kref)
3054 {
3055         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
3056
3057         put_device(dev->dev);
3058         put_device(dev->device);
3059         nvme_release_instance(dev);
3060         if (dev->tagset.tags)
3061                 blk_mq_free_tag_set(&dev->tagset);
3062         if (dev->admin_q)
3063                 blk_put_queue(dev->admin_q);
3064         kfree(dev->queues);
3065         kfree(dev->entry);
3066         kfree(dev);
3067 }
3068
3069 static int nvme_dev_open(struct inode *inode, struct file *f)
3070 {
3071         struct nvme_dev *dev;
3072         int instance = iminor(inode);
3073         int ret = -ENODEV;
3074
3075         spin_lock(&dev_list_lock);
3076         list_for_each_entry(dev, &dev_list, node) {
3077                 if (dev->instance == instance) {
3078                         if (!dev->admin_q) {
3079                                 ret = -EWOULDBLOCK;
3080                                 break;
3081                         }
3082                         if (!kref_get_unless_zero(&dev->kref))
3083                                 break;
3084                         f->private_data = dev;
3085                         ret = 0;
3086                         break;
3087                 }
3088         }
3089         spin_unlock(&dev_list_lock);
3090
3091         return ret;
3092 }
3093
3094 static int nvme_dev_release(struct inode *inode, struct file *f)
3095 {
3096         struct nvme_dev *dev = f->private_data;
3097         kref_put(&dev->kref, nvme_free_dev);
3098         return 0;
3099 }
3100
3101 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3102 {
3103         struct nvme_dev *dev = f->private_data;
3104         struct nvme_ns *ns;
3105
3106         switch (cmd) {
3107         case NVME_IOCTL_ADMIN_CMD:
3108                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
3109         case NVME_IOCTL_IO_CMD:
3110                 if (list_empty(&dev->namespaces))
3111                         return -ENOTTY;
3112                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
3113                 return nvme_user_cmd(dev, ns, (void __user *)arg);
3114         case NVME_IOCTL_RESET:
3115                 dev_warn(dev->dev, "resetting controller\n");
3116                 return nvme_reset(dev);
3117         case NVME_IOCTL_SUBSYS_RESET:
3118                 return nvme_subsys_reset(dev);
3119         default:
3120                 return -ENOTTY;
3121         }
3122 }
3123
3124 static const struct file_operations nvme_dev_fops = {
3125         .owner          = THIS_MODULE,
3126         .open           = nvme_dev_open,
3127         .release        = nvme_dev_release,
3128         .unlocked_ioctl = nvme_dev_ioctl,
3129         .compat_ioctl   = nvme_dev_ioctl,
3130 };
3131
3132 static void nvme_probe_work(struct work_struct *work)
3133 {
3134         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3135         bool start_thread = false;
3136         int result;
3137
3138         result = nvme_pci_enable(dev);
3139         if (result)
3140                 goto out;
3141
3142         result = nvme_configure_admin_queue(dev);
3143         if (result)
3144                 goto unmap;
3145
3146         spin_lock(&dev_list_lock);
3147         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3148                 start_thread = true;
3149                 nvme_thread = NULL;
3150         }
3151         list_add(&dev->node, &dev_list);
3152         spin_unlock(&dev_list_lock);
3153
3154         if (start_thread) {
3155                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
3156                 wake_up_all(&nvme_kthread_wait);
3157         } else
3158                 wait_event_killable(nvme_kthread_wait, nvme_thread);
3159
3160         if (IS_ERR_OR_NULL(nvme_thread)) {
3161                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3162                 goto disable;
3163         }
3164
3165         nvme_init_queue(dev->queues[0], 0);
3166         result = nvme_alloc_admin_tags(dev);
3167         if (result)
3168                 goto disable;
3169
3170         result = nvme_setup_io_queues(dev);
3171         if (result)
3172                 goto free_tags;
3173
3174         dev->event_limit = 1;
3175
3176         /*
3177          * Keep the controller around but remove all namespaces if we don't have
3178          * any working I/O queue.
3179          */
3180         if (dev->online_queues < 2) {
3181                 dev_warn(dev->dev, "IO queues not created\n");
3182                 nvme_dev_remove(dev);
3183         } else {
3184                 nvme_unfreeze_queues(dev);
3185                 nvme_dev_add(dev);
3186         }
3187
3188         return;
3189
3190  free_tags:
3191         nvme_dev_remove_admin(dev);
3192         blk_put_queue(dev->admin_q);
3193         dev->admin_q = NULL;
3194         dev->queues[0]->tags = NULL;
3195  disable:
3196         nvme_disable_queue(dev, 0);
3197         nvme_dev_list_remove(dev);
3198  unmap:
3199         nvme_dev_unmap(dev);
3200  out:
3201         if (!work_busy(&dev->reset_work))
3202                 nvme_dead_ctrl(dev);
3203 }
3204
3205 static int nvme_remove_dead_ctrl(void *arg)
3206 {
3207         struct nvme_dev *dev = (struct nvme_dev *)arg;
3208         struct pci_dev *pdev = to_pci_dev(dev->dev);
3209
3210         if (pci_get_drvdata(pdev))
3211                 pci_stop_and_remove_bus_device_locked(pdev);
3212         kref_put(&dev->kref, nvme_free_dev);
3213         return 0;
3214 }
3215
3216 static void nvme_dead_ctrl(struct nvme_dev *dev)
3217 {
3218         dev_warn(dev->dev, "Device failed to resume\n");
3219         kref_get(&dev->kref);
3220         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3221                                                 dev->instance))) {
3222                 dev_err(dev->dev,
3223                         "Failed to start controller remove task\n");
3224                 kref_put(&dev->kref, nvme_free_dev);
3225         }
3226 }
3227
3228 static void nvme_reset_work(struct work_struct *ws)
3229 {
3230         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3231         bool in_probe = work_busy(&dev->probe_work);
3232
3233         nvme_dev_shutdown(dev);
3234
3235         /* Synchronize with device probe so that work will see failure status
3236          * and exit gracefully without trying to schedule another reset */
3237         flush_work(&dev->probe_work);
3238
3239         /* Fail this device if reset occured during probe to avoid
3240          * infinite initialization loops. */
3241         if (in_probe) {
3242                 nvme_dead_ctrl(dev);
3243                 return;
3244         }
3245         /* Schedule device resume asynchronously so the reset work is available
3246          * to cleanup errors that may occur during reinitialization */
3247         schedule_work(&dev->probe_work);
3248 }
3249
3250 static int __nvme_reset(struct nvme_dev *dev)
3251 {
3252         if (work_pending(&dev->reset_work))
3253                 return -EBUSY;
3254         list_del_init(&dev->node);
3255         queue_work(nvme_workq, &dev->reset_work);
3256         return 0;
3257 }
3258
3259 static int nvme_reset(struct nvme_dev *dev)
3260 {
3261         int ret;
3262
3263         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3264                 return -ENODEV;
3265
3266         spin_lock(&dev_list_lock);
3267         ret = __nvme_reset(dev);
3268         spin_unlock(&dev_list_lock);
3269
3270         if (!ret) {
3271                 flush_work(&dev->reset_work);
3272                 flush_work(&dev->probe_work);
3273                 return 0;
3274         }
3275
3276         return ret;
3277 }
3278
3279 static ssize_t nvme_sysfs_reset(struct device *dev,
3280                                 struct device_attribute *attr, const char *buf,
3281                                 size_t count)
3282 {
3283         struct nvme_dev *ndev = dev_get_drvdata(dev);
3284         int ret;
3285
3286         ret = nvme_reset(ndev);
3287         if (ret < 0)
3288                 return ret;
3289
3290         return count;
3291 }
3292 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3293
3294 static int nvme_dev_map(struct nvme_dev *dev)
3295 {
3296         int bars;
3297         struct pci_dev *pdev = to_pci_dev(dev->dev);
3298
3299         bars = pci_select_bars(pdev, IORESOURCE_MEM);
3300         if (!bars)
3301                 return -ENODEV;
3302         if (pci_request_selected_regions(pdev, bars, "nvme"))
3303                 return -ENODEV;
3304
3305         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
3306         if (!dev->bar)
3307                 goto release;
3308
3309         return 0;
3310 release:
3311         pci_release_regions(pdev);
3312         return -ENODEV;
3313 }
3314
3315 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3316 {
3317         int node, result = -ENOMEM;
3318         struct nvme_dev *dev;
3319
3320         node = dev_to_node(&pdev->dev);
3321         if (node == NUMA_NO_NODE)
3322                 set_dev_node(&pdev->dev, 0);
3323
3324         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3325         if (!dev)
3326                 return -ENOMEM;
3327         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3328                                                         GFP_KERNEL, node);
3329         if (!dev->entry)
3330                 goto free;
3331         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3332                                                         GFP_KERNEL, node);
3333         if (!dev->queues)
3334                 goto free;
3335
3336         INIT_LIST_HEAD(&dev->namespaces);
3337         INIT_WORK(&dev->reset_work, nvme_reset_work);
3338         dev->dev = get_device(&pdev->dev);
3339         pci_set_drvdata(pdev, dev);
3340
3341         result = nvme_dev_map(dev);
3342         if (result)
3343                 goto free;
3344
3345         result = nvme_set_instance(dev);
3346         if (result)
3347                 goto put_pci;
3348
3349         result = nvme_setup_prp_pools(dev);
3350         if (result)
3351                 goto release;
3352
3353         kref_init(&dev->kref);
3354         dev->device = device_create(nvme_class, &pdev->dev,
3355                                 MKDEV(nvme_char_major, dev->instance),
3356                                 dev, "nvme%d", dev->instance);
3357         if (IS_ERR(dev->device)) {
3358                 result = PTR_ERR(dev->device);
3359                 goto release_pools;
3360         }
3361         get_device(dev->device);
3362         dev_set_drvdata(dev->device, dev);
3363
3364         result = device_create_file(dev->device, &dev_attr_reset_controller);
3365         if (result)
3366                 goto put_dev;
3367
3368         INIT_LIST_HEAD(&dev->node);
3369         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3370         INIT_WORK(&dev->probe_work, nvme_probe_work);
3371         schedule_work(&dev->probe_work);
3372         return 0;
3373
3374  put_dev:
3375         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3376         put_device(dev->device);
3377  release_pools:
3378         nvme_release_prp_pools(dev);
3379  release:
3380         nvme_release_instance(dev);
3381  put_pci:
3382         put_device(dev->dev);
3383         nvme_dev_unmap(dev);
3384  free:
3385         kfree(dev->queues);
3386         kfree(dev->entry);
3387         kfree(dev);
3388         return result;
3389 }
3390
3391 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3392 {
3393         struct nvme_dev *dev = pci_get_drvdata(pdev);
3394
3395         if (prepare)
3396                 nvme_dev_shutdown(dev);
3397         else
3398                 schedule_work(&dev->probe_work);
3399 }
3400
3401 static void nvme_shutdown(struct pci_dev *pdev)
3402 {
3403         struct nvme_dev *dev = pci_get_drvdata(pdev);
3404         nvme_dev_shutdown(dev);
3405 }
3406
3407 static void nvme_remove(struct pci_dev *pdev)
3408 {
3409         struct nvme_dev *dev = pci_get_drvdata(pdev);
3410
3411         spin_lock(&dev_list_lock);
3412         list_del_init(&dev->node);
3413         spin_unlock(&dev_list_lock);
3414
3415         pci_set_drvdata(pdev, NULL);
3416         flush_work(&dev->probe_work);
3417         flush_work(&dev->reset_work);
3418         flush_work(&dev->scan_work);
3419         device_remove_file(dev->device, &dev_attr_reset_controller);
3420         nvme_dev_remove(dev);
3421         nvme_dev_shutdown(dev);
3422         nvme_dev_remove_admin(dev);
3423         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3424         nvme_free_queues(dev, 0);
3425         nvme_release_cmb(dev);
3426         nvme_release_prp_pools(dev);
3427         nvme_dev_unmap(dev);
3428         kref_put(&dev->kref, nvme_free_dev);
3429 }
3430
3431 /* These functions are yet to be implemented */
3432 #define nvme_error_detected NULL
3433 #define nvme_dump_registers NULL
3434 #define nvme_link_reset NULL
3435 #define nvme_slot_reset NULL
3436 #define nvme_error_resume NULL
3437
3438 #ifdef CONFIG_PM_SLEEP
3439 static int nvme_suspend(struct device *dev)
3440 {
3441         struct pci_dev *pdev = to_pci_dev(dev);
3442         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3443
3444         nvme_dev_shutdown(ndev);
3445         return 0;
3446 }
3447
3448 static int nvme_resume(struct device *dev)
3449 {
3450         struct pci_dev *pdev = to_pci_dev(dev);
3451         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3452
3453         schedule_work(&ndev->probe_work);
3454         return 0;
3455 }
3456 #endif
3457
3458 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3459
3460 static const struct pci_error_handlers nvme_err_handler = {
3461         .error_detected = nvme_error_detected,
3462         .mmio_enabled   = nvme_dump_registers,
3463         .link_reset     = nvme_link_reset,
3464         .slot_reset     = nvme_slot_reset,
3465         .resume         = nvme_error_resume,
3466         .reset_notify   = nvme_reset_notify,
3467 };
3468
3469 /* Move to pci_ids.h later */
3470 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3471
3472 static const struct pci_device_id nvme_id_table[] = {
3473         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3474         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3475         { 0, }
3476 };
3477 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3478
3479 static struct pci_driver nvme_driver = {
3480         .name           = "nvme",
3481         .id_table       = nvme_id_table,
3482         .probe          = nvme_probe,
3483         .remove         = nvme_remove,
3484         .shutdown       = nvme_shutdown,
3485         .driver         = {
3486                 .pm     = &nvme_dev_pm_ops,
3487         },
3488         .err_handler    = &nvme_err_handler,
3489 };
3490
3491 static int __init nvme_init(void)
3492 {
3493         int result;
3494
3495         init_waitqueue_head(&nvme_kthread_wait);
3496
3497         nvme_workq = create_singlethread_workqueue("nvme");
3498         if (!nvme_workq)
3499                 return -ENOMEM;
3500
3501         result = register_blkdev(nvme_major, "nvme");
3502         if (result < 0)
3503                 goto kill_workq;
3504         else if (result > 0)
3505                 nvme_major = result;
3506
3507         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3508                                                         &nvme_dev_fops);
3509         if (result < 0)
3510                 goto unregister_blkdev;
3511         else if (result > 0)
3512                 nvme_char_major = result;
3513
3514         nvme_class = class_create(THIS_MODULE, "nvme");
3515         if (IS_ERR(nvme_class)) {
3516                 result = PTR_ERR(nvme_class);
3517                 goto unregister_chrdev;
3518         }
3519
3520         result = pci_register_driver(&nvme_driver);
3521         if (result)
3522                 goto destroy_class;
3523         return 0;
3524
3525  destroy_class:
3526         class_destroy(nvme_class);
3527  unregister_chrdev:
3528         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3529  unregister_blkdev:
3530         unregister_blkdev(nvme_major, "nvme");
3531  kill_workq:
3532         destroy_workqueue(nvme_workq);
3533         return result;
3534 }
3535
3536 static void __exit nvme_exit(void)
3537 {
3538         pci_unregister_driver(&nvme_driver);
3539         unregister_blkdev(nvme_major, "nvme");
3540         destroy_workqueue(nvme_workq);
3541         class_destroy(nvme_class);
3542         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3543         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3544         _nvme_check_size();
3545 }
3546
3547 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3548 MODULE_LICENSE("GPL");
3549 MODULE_VERSION("1.0");
3550 module_init(nvme_init);
3551 module_exit(nvme_exit);