2 #include <linux/device.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS 4
14 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 const __be32 *addrp, u64 size, unsigned int flags,
20 const char *name, struct resource *r);
24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
26 printk(KERN_DEBUG "%s", s);
28 printk(" %08x", be32_to_cpu(*(addr++)));
32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
35 /* Callbacks for bus specific translators */
38 const char *addresses;
39 int (*match)(struct device_node *parent);
40 void (*count_cells)(struct device_node *child,
41 int *addrc, int *sizec);
42 u64 (*map)(__be32 *addr, const __be32 *range,
43 int na, int ns, int pna);
44 int (*translate)(__be32 *addr, u64 offset, int na);
45 unsigned int (*get_flags)(const __be32 *addr);
49 * Default translator (generic bus)
52 static void of_bus_default_count_cells(struct device_node *dev,
53 int *addrc, int *sizec)
56 *addrc = of_n_addr_cells(dev);
58 *sizec = of_n_size_cells(dev);
61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 int na, int ns, int pna)
66 cp = of_read_number(range, na);
67 s = of_read_number(range + na + pna, ns);
68 da = of_read_number(addr, na);
70 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 (unsigned long long)cp, (unsigned long long)s,
72 (unsigned long long)da);
74 if (da < cp || da >= (cp + s))
79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
81 u64 a = of_read_number(addr, na);
82 memset(addr, 0, na * 4);
85 addr[na - 2] = cpu_to_be32(a >> 32);
86 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
93 return IORESOURCE_MEM;
96 #ifdef CONFIG_OF_ADDRESS_PCI
98 * PCI bus specific translator
101 static int of_bus_pci_match(struct device_node *np)
104 * "pciex" is PCI Express
105 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 * "ht" is hypertransport
108 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
112 static void of_bus_pci_count_cells(struct device_node *np,
113 int *addrc, int *sizec)
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
126 switch((w >> 24) & 0x03) {
128 flags |= IORESOURCE_IO;
130 case 0x02: /* 32 bits */
131 case 0x03: /* 64 bits */
132 flags |= IORESOURCE_MEM;
136 flags |= IORESOURCE_PREFETCH;
140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
146 af = of_bus_pci_get_flags(addr);
147 rf = of_bus_pci_get_flags(range);
149 /* Check address type match */
150 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
153 /* Read address values, skipping high cell */
154 cp = of_read_number(range + 1, na - 1);
155 s = of_read_number(range + na + pna, ns);
156 da = of_read_number(addr + 1, na - 1);
158 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 (unsigned long long)cp, (unsigned long long)s,
160 (unsigned long long)da);
162 if (da < cp || da >= (cp + s))
167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
169 return of_bus_default_translate(addr + 1, offset, na - 1);
171 #endif /* CONFIG_OF_ADDRESS_PCI */
174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
179 struct device_node *parent;
181 int onesize, i, na, ns;
183 /* Get parent & match bus type */
184 parent = of_get_parent(dev);
187 bus = of_match_bus(parent);
188 if (strcmp(bus->name, "pci")) {
192 bus->count_cells(dev, &na, &ns);
194 if (!OF_CHECK_ADDR_COUNT(na))
197 /* Get "reg" or "assigned-addresses" property */
198 prop = of_get_property(dev, bus->addresses, &psize);
204 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 u32 val = be32_to_cpu(prop[0]);
206 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
208 *size = of_read_number(prop + na, ns);
210 *flags = bus->get_flags(prop);
216 EXPORT_SYMBOL(of_get_pci_address);
218 int of_pci_address_to_resource(struct device_node *dev, int bar,
225 addrp = of_get_pci_address(dev, bar, &size, &flags);
228 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 struct device_node *node)
235 const int na = 3, ns = 2;
239 parser->pna = of_n_addr_cells(node);
240 parser->np = parser->pna + na + ns;
242 parser->range = of_get_property(node, "ranges", &rlen);
243 if (parser->range == NULL)
246 parser->end = parser->range + rlen / sizeof(__be32);
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 struct of_pci_range *range)
255 const int na = 3, ns = 2;
260 if (!parser->range || parser->range + parser->np > parser->end)
263 range->pci_space = parser->range[0];
264 range->flags = of_bus_pci_get_flags(parser->range);
265 range->pci_addr = of_read_number(parser->range + 1, ns);
266 range->cpu_addr = of_translate_address(parser->node,
268 range->size = of_read_number(parser->range + parser->pna + na, ns);
270 parser->range += parser->np;
272 /* Now consume following elements while they are contiguous */
273 while (parser->range + parser->np <= parser->end) {
274 u32 flags, pci_space;
275 u64 pci_addr, cpu_addr, size;
277 pci_space = be32_to_cpup(parser->range);
278 flags = of_bus_pci_get_flags(parser->range);
279 pci_addr = of_read_number(parser->range + 1, ns);
280 cpu_addr = of_translate_address(parser->node,
282 size = of_read_number(parser->range + parser->pna + na, ns);
284 if (flags != range->flags)
286 if (pci_addr != range->pci_addr + range->size ||
287 cpu_addr != range->cpu_addr + range->size)
291 parser->range += parser->np;
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range: the PCI range that describes the resource
301 * @np: device node where the range belongs to
302 * @res: pointer to a valid resource that will be updated to
303 * reflect the values contained in the range.
305 * Returns EINVAL if the range cannot be converted to resource.
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
313 int of_pci_range_to_resource(struct of_pci_range *range,
314 struct device_node *np, struct resource *res)
317 res->flags = range->flags;
318 res->parent = res->child = res->sibling = NULL;
319 res->name = np->full_name;
321 if (res->flags & IORESOURCE_IO) {
323 err = pci_register_io_range(range->cpu_addr, range->size);
326 port = pci_address_to_pio(range->cpu_addr);
327 if (port == (unsigned long)-1) {
333 if ((sizeof(resource_size_t) < 8) &&
334 upper_32_bits(range->cpu_addr)) {
339 res->start = range->cpu_addr;
341 res->end = res->start + range->size - 1;
345 res->start = (resource_size_t)OF_BAD_ADDR;
346 res->end = (resource_size_t)OF_BAD_ADDR;
349 #endif /* CONFIG_PCI */
352 * ISA bus specific translator
355 static int of_bus_isa_match(struct device_node *np)
357 return !strcmp(np->name, "isa");
360 static void of_bus_isa_count_cells(struct device_node *child,
361 int *addrc, int *sizec)
369 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
374 /* Check address type match */
375 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
378 /* Read address values, skipping high cell */
379 cp = of_read_number(range + 1, na - 1);
380 s = of_read_number(range + na + pna, ns);
381 da = of_read_number(addr + 1, na - 1);
383 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
384 (unsigned long long)cp, (unsigned long long)s,
385 (unsigned long long)da);
387 if (da < cp || da >= (cp + s))
392 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
394 return of_bus_default_translate(addr + 1, offset, na - 1);
397 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
399 unsigned int flags = 0;
400 u32 w = be32_to_cpup(addr);
403 flags |= IORESOURCE_IO;
405 flags |= IORESOURCE_MEM;
410 * Array of bus specific translators
413 static struct of_bus of_busses[] = {
414 #ifdef CONFIG_OF_ADDRESS_PCI
418 .addresses = "assigned-addresses",
419 .match = of_bus_pci_match,
420 .count_cells = of_bus_pci_count_cells,
421 .map = of_bus_pci_map,
422 .translate = of_bus_pci_translate,
423 .get_flags = of_bus_pci_get_flags,
425 #endif /* CONFIG_OF_ADDRESS_PCI */
430 .match = of_bus_isa_match,
431 .count_cells = of_bus_isa_count_cells,
432 .map = of_bus_isa_map,
433 .translate = of_bus_isa_translate,
434 .get_flags = of_bus_isa_get_flags,
441 .count_cells = of_bus_default_count_cells,
442 .map = of_bus_default_map,
443 .translate = of_bus_default_translate,
444 .get_flags = of_bus_default_get_flags,
448 static struct of_bus *of_match_bus(struct device_node *np)
452 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
453 if (!of_busses[i].match || of_busses[i].match(np))
454 return &of_busses[i];
459 static int of_empty_ranges_quirk(struct device_node *np)
461 if (IS_ENABLED(CONFIG_PPC)) {
462 /* To save cycles, we cache the result for global "Mac" setting */
463 static int quirk_state = -1;
465 /* PA-SEMI sdc DT bug */
466 if (of_device_is_compatible(np, "1682m-sdc"))
469 /* Make quirk cached */
472 of_machine_is_compatible("Power Macintosh") ||
473 of_machine_is_compatible("MacRISC");
479 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
480 struct of_bus *pbus, __be32 *addr,
481 int na, int ns, int pna, const char *rprop)
483 const __be32 *ranges;
486 u64 offset = OF_BAD_ADDR;
489 * Normally, an absence of a "ranges" property means we are
490 * crossing a non-translatable boundary, and thus the addresses
491 * below the current cannot be converted to CPU physical ones.
492 * Unfortunately, while this is very clear in the spec, it's not
493 * what Apple understood, and they do have things like /uni-n or
494 * /ht nodes with no "ranges" property and a lot of perfectly
495 * useable mapped devices below them. Thus we treat the absence of
496 * "ranges" as equivalent to an empty "ranges" property which means
497 * a 1:1 translation at that level. It's up to the caller not to try
498 * to translate addresses that aren't supposed to be translated in
499 * the first place. --BenH.
501 * As far as we know, this damage only exists on Apple machines, so
502 * This code is only enabled on powerpc. --gcl
504 ranges = of_get_property(parent, rprop, &rlen);
505 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
506 pr_debug("OF: no ranges; cannot translate\n");
509 if (ranges == NULL || rlen == 0) {
510 offset = of_read_number(addr, na);
511 memset(addr, 0, pna * 4);
512 pr_debug("OF: empty ranges; 1:1 translation\n");
516 pr_debug("OF: walking ranges...\n");
518 /* Now walk through the ranges */
520 rone = na + pna + ns;
521 for (; rlen >= rone; rlen -= rone, ranges += rone) {
522 offset = bus->map(addr, ranges, na, ns, pna);
523 if (offset != OF_BAD_ADDR)
526 if (offset == OF_BAD_ADDR) {
527 pr_debug("OF: not found !\n");
530 memcpy(addr, ranges + na, 4 * pna);
533 of_dump_addr("OF: parent translation for:", addr, pna);
534 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
536 /* Translate it into parent bus space */
537 return pbus->translate(addr, offset, pna);
541 * Translate an address from the device-tree into a CPU physical address,
542 * this walks up the tree and applies the various bus mappings on the
545 * Note: We consider that crossing any level with #size-cells == 0 to mean
546 * that translation is impossible (that is we are not dealing with a value
547 * that can be mapped to a cpu physical address). This is not really specified
548 * that way, but this is traditionally the way IBM at least do things
550 static u64 __of_translate_address(struct device_node *dev,
551 const __be32 *in_addr, const char *rprop)
553 struct device_node *parent = NULL;
554 struct of_bus *bus, *pbus;
555 __be32 addr[OF_MAX_ADDR_CELLS];
556 int na, ns, pna, pns;
557 u64 result = OF_BAD_ADDR;
559 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
561 /* Increase refcount at current level */
564 /* Get parent & match bus type */
565 parent = of_get_parent(dev);
568 bus = of_match_bus(parent);
570 /* Count address cells & copy address locally */
571 bus->count_cells(dev, &na, &ns);
572 if (!OF_CHECK_COUNTS(na, ns)) {
573 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
576 memcpy(addr, in_addr, na * 4);
578 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
579 bus->name, na, ns, of_node_full_name(parent));
580 of_dump_addr("OF: translating address:", addr, na);
584 /* Switch to parent bus */
587 parent = of_get_parent(dev);
589 /* If root, we have finished */
590 if (parent == NULL) {
591 pr_debug("OF: reached root node\n");
592 result = of_read_number(addr, na);
596 /* Get new parent bus and counts */
597 pbus = of_match_bus(parent);
598 pbus->count_cells(dev, &pna, &pns);
599 if (!OF_CHECK_COUNTS(pna, pns)) {
600 printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
601 of_node_full_name(dev));
605 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
606 pbus->name, pna, pns, of_node_full_name(parent));
608 /* Apply bus translation */
609 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
612 /* Complete the move up one level */
617 of_dump_addr("OF: one level translation:", addr, na);
626 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
628 return __of_translate_address(dev, in_addr, "ranges");
630 EXPORT_SYMBOL(of_translate_address);
632 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
634 return __of_translate_address(dev, in_addr, "dma-ranges");
636 EXPORT_SYMBOL(of_translate_dma_address);
638 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
643 struct device_node *parent;
645 int onesize, i, na, ns;
647 /* Get parent & match bus type */
648 parent = of_get_parent(dev);
651 bus = of_match_bus(parent);
652 bus->count_cells(dev, &na, &ns);
654 if (!OF_CHECK_ADDR_COUNT(na))
657 /* Get "reg" or "assigned-addresses" property */
658 prop = of_get_property(dev, bus->addresses, &psize);
664 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
667 *size = of_read_number(prop + na, ns);
669 *flags = bus->get_flags(prop);
674 EXPORT_SYMBOL(of_get_address);
678 struct list_head list;
680 resource_size_t size;
683 static LIST_HEAD(io_range_list);
684 static DEFINE_SPINLOCK(io_range_lock);
688 * Record the PCI IO range (expressed as CPU physical address + size).
689 * Return a negative value if an error has occured, zero otherwise
691 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
696 struct io_range *range;
697 resource_size_t allocated_size = 0;
699 /* check if the range hasn't been previously recorded */
700 spin_lock(&io_range_lock);
701 list_for_each_entry(range, &io_range_list, list) {
702 if (addr >= range->start && addr + size <= range->start + size) {
703 /* range already registered, bail out */
706 allocated_size += range->size;
709 /* range not registed yet, check for available space */
710 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
711 /* if it's too big check if 64K space can be reserved */
712 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
718 pr_warn("Requested IO range too big, new size set to 64K\n");
721 /* add the range to the list */
722 range = kzalloc(sizeof(*range), GFP_ATOMIC);
731 list_add_tail(&range->list, &io_range_list);
734 spin_unlock(&io_range_lock);
740 phys_addr_t pci_pio_to_address(unsigned long pio)
742 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
745 struct io_range *range;
746 resource_size_t allocated_size = 0;
748 if (pio > IO_SPACE_LIMIT)
751 spin_lock(&io_range_lock);
752 list_for_each_entry(range, &io_range_list, list) {
753 if (pio >= allocated_size && pio < allocated_size + range->size) {
754 address = range->start + pio - allocated_size;
757 allocated_size += range->size;
759 spin_unlock(&io_range_lock);
765 unsigned long __weak pci_address_to_pio(phys_addr_t address)
768 struct io_range *res;
769 resource_size_t offset = 0;
770 unsigned long addr = -1;
772 spin_lock(&io_range_lock);
773 list_for_each_entry(res, &io_range_list, list) {
774 if (address >= res->start && address < res->start + res->size) {
775 addr = address - res->start + offset;
780 spin_unlock(&io_range_lock);
784 if (address > IO_SPACE_LIMIT)
785 return (unsigned long)-1;
787 return (unsigned long) address;
791 static int __of_address_to_resource(struct device_node *dev,
792 const __be32 *addrp, u64 size, unsigned int flags,
793 const char *name, struct resource *r)
797 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
799 taddr = of_translate_address(dev, addrp);
800 if (taddr == OF_BAD_ADDR)
802 memset(r, 0, sizeof(struct resource));
803 if (flags & IORESOURCE_IO) {
805 port = pci_address_to_pio(taddr);
806 if (port == (unsigned long)-1)
809 r->end = port + size - 1;
812 r->end = taddr + size - 1;
815 r->name = name ? name : dev->full_name;
821 * of_address_to_resource - Translate device tree address and return as resource
823 * Note that if your address is a PIO address, the conversion will fail if
824 * the physical address can't be internally converted to an IO token with
825 * pci_address_to_pio(), that is because it's either called to early or it
826 * can't be matched to any host bridge IO space
828 int of_address_to_resource(struct device_node *dev, int index,
834 const char *name = NULL;
836 addrp = of_get_address(dev, index, &size, &flags);
840 /* Get optional "reg-names" property to add a name to a resource */
841 of_property_read_string_index(dev, "reg-names", index, &name);
843 return __of_address_to_resource(dev, addrp, size, flags, name, r);
845 EXPORT_SYMBOL_GPL(of_address_to_resource);
847 struct device_node *of_find_matching_node_by_address(struct device_node *from,
848 const struct of_device_id *matches,
851 struct device_node *dn = of_find_matching_node(from, matches);
855 if (!of_address_to_resource(dn, 0, &res) &&
856 res.start == base_address)
859 dn = of_find_matching_node(dn, matches);
867 * of_iomap - Maps the memory mapped IO for a given device_node
868 * @device: the device whose io range will be mapped
869 * @index: index of the io range
871 * Returns a pointer to the mapped memory
873 void __iomem *of_iomap(struct device_node *np, int index)
877 if (of_address_to_resource(np, index, &res))
880 return ioremap(res.start, resource_size(&res));
882 EXPORT_SYMBOL(of_iomap);
885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
886 * for a given device_node
887 * @device: the device whose io range will be mapped
888 * @index: index of the io range
889 * @name: name of the resource
891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
892 * error code on failure. Usage example:
894 * base = of_io_request_and_map(node, 0, "foo");
896 * return PTR_ERR(base);
898 void __iomem *of_io_request_and_map(struct device_node *np, int index,
904 if (of_address_to_resource(np, index, &res))
905 return IOMEM_ERR_PTR(-EINVAL);
907 if (!request_mem_region(res.start, resource_size(&res), name))
908 return IOMEM_ERR_PTR(-EBUSY);
910 mem = ioremap(res.start, resource_size(&res));
912 release_mem_region(res.start, resource_size(&res));
913 return IOMEM_ERR_PTR(-ENOMEM);
918 EXPORT_SYMBOL(of_io_request_and_map);
921 * of_dma_get_range - Get DMA range info
922 * @np: device node to get DMA range info
923 * @dma_addr: pointer to store initial DMA address of DMA range
924 * @paddr: pointer to store initial CPU address of DMA range
925 * @size: pointer to store size of DMA range
927 * Look in bottom up direction for the first "dma-ranges" property
930 * DMA addr (dma_addr) : naddr cells
931 * CPU addr (phys_addr_t) : pna cells
934 * It returns -ENODEV if "dma-ranges" property was not found
935 * for this device in DT.
937 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
939 struct device_node *node = of_node_get(np);
940 const __be32 *ranges = NULL;
941 int len, naddr, nsize, pna;
949 naddr = of_n_addr_cells(node);
950 nsize = of_n_size_cells(node);
951 node = of_get_next_parent(node);
955 ranges = of_get_property(node, "dma-ranges", &len);
957 /* Ignore empty ranges, they imply no translation required */
958 if (ranges && len > 0)
962 * At least empty ranges has to be defined for parent node if
970 pr_debug("%s: no dma-ranges found for node(%s)\n",
971 __func__, np->full_name);
978 pna = of_n_addr_cells(node);
980 /* dma-ranges format:
981 * DMA addr : naddr cells
982 * CPU addr : pna cells
985 dmaaddr = of_read_number(ranges, naddr);
986 *paddr = of_translate_dma_address(np, ranges);
987 if (*paddr == OF_BAD_ADDR) {
988 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
989 __func__, dma_addr, np->full_name);
995 *size = of_read_number(ranges + naddr + pna, nsize);
997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
998 *dma_addr, *paddr, *size);
1005 EXPORT_SYMBOL_GPL(of_dma_get_range);
1008 * of_dma_is_coherent - Check if device is coherent
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1014 bool of_dma_is_coherent(struct device_node *np)
1016 struct device_node *node = of_node_get(np);
1019 if (of_property_read_bool(node, "dma-coherent")) {
1023 node = of_get_next_parent(node);
1028 EXPORT_SYMBOL_GPL(of_dma_is_coherent);