intel-iommu: Tidy up iommu->gcmd handling
[firefly-linux-kernel-4.4.55.git] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36
37 #undef PREFIX
38 #define PREFIX "DMAR:"
39
40 /* No locks are needed as DMA remapping hardware unit
41  * list is constructed at boot time and hotplug of
42  * these units are not supported by the architecture.
43  */
44 LIST_HEAD(dmar_drhd_units);
45
46 static struct acpi_table_header * __initdata dmar_tbl;
47 static acpi_size dmar_tbl_size;
48
49 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
50 {
51         /*
52          * add INCLUDE_ALL at the tail, so scan the list will find it at
53          * the very end.
54          */
55         if (drhd->include_all)
56                 list_add_tail(&drhd->list, &dmar_drhd_units);
57         else
58                 list_add(&drhd->list, &dmar_drhd_units);
59 }
60
61 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62                                            struct pci_dev **dev, u16 segment)
63 {
64         struct pci_bus *bus;
65         struct pci_dev *pdev = NULL;
66         struct acpi_dmar_pci_path *path;
67         int count;
68
69         bus = pci_find_bus(segment, scope->bus);
70         path = (struct acpi_dmar_pci_path *)(scope + 1);
71         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72                 / sizeof(struct acpi_dmar_pci_path);
73
74         while (count) {
75                 if (pdev)
76                         pci_dev_put(pdev);
77                 /*
78                  * Some BIOSes list non-exist devices in DMAR table, just
79                  * ignore it
80                  */
81                 if (!bus) {
82                         printk(KERN_WARNING
83                         PREFIX "Device scope bus [%d] not found\n",
84                         scope->bus);
85                         break;
86                 }
87                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
88                 if (!pdev) {
89                         printk(KERN_WARNING PREFIX
90                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91                                 segment, bus->number, path->dev, path->fn);
92                         break;
93                 }
94                 path ++;
95                 count --;
96                 bus = pdev->subordinate;
97         }
98         if (!pdev) {
99                 printk(KERN_WARNING PREFIX
100                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101                 segment, scope->bus, path->dev, path->fn);
102                 *dev = NULL;
103                 return 0;
104         }
105         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106                         pdev->subordinate) || (scope->entry_type == \
107                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
108                 pci_dev_put(pdev);
109                 printk(KERN_WARNING PREFIX
110                         "Device scope type does not match for %s\n",
111                          pci_name(pdev));
112                 return -EINVAL;
113         }
114         *dev = pdev;
115         return 0;
116 }
117
118 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119                                        struct pci_dev ***devices, u16 segment)
120 {
121         struct acpi_dmar_device_scope *scope;
122         void * tmp = start;
123         int index;
124         int ret;
125
126         *cnt = 0;
127         while (start < end) {
128                 scope = start;
129                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131                         (*cnt)++;
132                 else
133                         printk(KERN_WARNING PREFIX
134                                 "Unsupported device scope\n");
135                 start += scope->length;
136         }
137         if (*cnt == 0)
138                 return 0;
139
140         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
141         if (!*devices)
142                 return -ENOMEM;
143
144         start = tmp;
145         index = 0;
146         while (start < end) {
147                 scope = start;
148                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150                         ret = dmar_parse_one_dev_scope(scope,
151                                 &(*devices)[index], segment);
152                         if (ret) {
153                                 kfree(*devices);
154                                 return ret;
155                         }
156                         index ++;
157                 }
158                 start += scope->length;
159         }
160
161         return 0;
162 }
163
164 /**
165  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166  * structure which uniquely represent one DMA remapping hardware unit
167  * present in the platform
168  */
169 static int __init
170 dmar_parse_one_drhd(struct acpi_dmar_header *header)
171 {
172         struct acpi_dmar_hardware_unit *drhd;
173         struct dmar_drhd_unit *dmaru;
174         int ret = 0;
175
176         drhd = (struct acpi_dmar_hardware_unit *)header;
177         if (!drhd->address) {
178                 /* Promote an attitude of violence to a BIOS engineer today */
179                 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
180                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
181                      dmi_get_system_info(DMI_BIOS_VENDOR),
182                      dmi_get_system_info(DMI_BIOS_VERSION),
183                      dmi_get_system_info(DMI_PRODUCT_VERSION));
184                 return -ENODEV;
185         }
186         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
187         if (!dmaru)
188                 return -ENOMEM;
189
190         dmaru->hdr = header;
191         dmaru->reg_base_addr = drhd->address;
192         dmaru->segment = drhd->segment;
193         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
194
195         ret = alloc_iommu(dmaru);
196         if (ret) {
197                 kfree(dmaru);
198                 return ret;
199         }
200         dmar_register_drhd_unit(dmaru);
201         return 0;
202 }
203
204 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
205 {
206         struct acpi_dmar_hardware_unit *drhd;
207         int ret = 0;
208
209         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
210
211         if (dmaru->include_all)
212                 return 0;
213
214         ret = dmar_parse_dev_scope((void *)(drhd + 1),
215                                 ((void *)drhd) + drhd->header.length,
216                                 &dmaru->devices_cnt, &dmaru->devices,
217                                 drhd->segment);
218         if (ret) {
219                 list_del(&dmaru->list);
220                 kfree(dmaru);
221         }
222         return ret;
223 }
224
225 #ifdef CONFIG_DMAR
226 LIST_HEAD(dmar_rmrr_units);
227
228 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
229 {
230         list_add(&rmrr->list, &dmar_rmrr_units);
231 }
232
233
234 static int __init
235 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
236 {
237         struct acpi_dmar_reserved_memory *rmrr;
238         struct dmar_rmrr_unit *rmrru;
239
240         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
241         if (!rmrru)
242                 return -ENOMEM;
243
244         rmrru->hdr = header;
245         rmrr = (struct acpi_dmar_reserved_memory *)header;
246         rmrru->base_address = rmrr->base_address;
247         rmrru->end_address = rmrr->end_address;
248
249         dmar_register_rmrr_unit(rmrru);
250         return 0;
251 }
252
253 static int __init
254 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
255 {
256         struct acpi_dmar_reserved_memory *rmrr;
257         int ret;
258
259         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
260         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
261                 ((void *)rmrr) + rmrr->header.length,
262                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
263
264         if (ret || (rmrru->devices_cnt == 0)) {
265                 list_del(&rmrru->list);
266                 kfree(rmrru);
267         }
268         return ret;
269 }
270 #endif
271
272 static void __init
273 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
274 {
275         struct acpi_dmar_hardware_unit *drhd;
276         struct acpi_dmar_reserved_memory *rmrr;
277
278         switch (header->type) {
279         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
280                 drhd = (struct acpi_dmar_hardware_unit *)header;
281                 printk (KERN_INFO PREFIX
282                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
283                         drhd->flags, (unsigned long long)drhd->address);
284                 break;
285         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
286                 rmrr = (struct acpi_dmar_reserved_memory *)header;
287
288                 printk (KERN_INFO PREFIX
289                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
290                         (unsigned long long)rmrr->base_address,
291                         (unsigned long long)rmrr->end_address);
292                 break;
293         }
294 }
295
296 /**
297  * dmar_table_detect - checks to see if the platform supports DMAR devices
298  */
299 static int __init dmar_table_detect(void)
300 {
301         acpi_status status = AE_OK;
302
303         /* if we could find DMAR table, then there are DMAR devices */
304         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
305                                 (struct acpi_table_header **)&dmar_tbl,
306                                 &dmar_tbl_size);
307
308         if (ACPI_SUCCESS(status) && !dmar_tbl) {
309                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
310                 status = AE_NOT_FOUND;
311         }
312
313         return (ACPI_SUCCESS(status) ? 1 : 0);
314 }
315
316 /**
317  * parse_dmar_table - parses the DMA reporting table
318  */
319 static int __init
320 parse_dmar_table(void)
321 {
322         struct acpi_table_dmar *dmar;
323         struct acpi_dmar_header *entry_header;
324         int ret = 0;
325
326         /*
327          * Do it again, earlier dmar_tbl mapping could be mapped with
328          * fixed map.
329          */
330         dmar_table_detect();
331
332         dmar = (struct acpi_table_dmar *)dmar_tbl;
333         if (!dmar)
334                 return -ENODEV;
335
336         if (dmar->width < PAGE_SHIFT - 1) {
337                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
338                 return -EINVAL;
339         }
340
341         printk (KERN_INFO PREFIX "Host address width %d\n",
342                 dmar->width + 1);
343
344         entry_header = (struct acpi_dmar_header *)(dmar + 1);
345         while (((unsigned long)entry_header) <
346                         (((unsigned long)dmar) + dmar_tbl->length)) {
347                 /* Avoid looping forever on bad ACPI tables */
348                 if (entry_header->length == 0) {
349                         printk(KERN_WARNING PREFIX
350                                 "Invalid 0-length structure\n");
351                         ret = -EINVAL;
352                         break;
353                 }
354
355                 dmar_table_print_dmar_entry(entry_header);
356
357                 switch (entry_header->type) {
358                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
359                         ret = dmar_parse_one_drhd(entry_header);
360                         break;
361                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
362 #ifdef CONFIG_DMAR
363                         ret = dmar_parse_one_rmrr(entry_header);
364 #endif
365                         break;
366                 default:
367                         printk(KERN_WARNING PREFIX
368                                 "Unknown DMAR structure type\n");
369                         ret = 0; /* for forward compatibility */
370                         break;
371                 }
372                 if (ret)
373                         break;
374
375                 entry_header = ((void *)entry_header + entry_header->length);
376         }
377         return ret;
378 }
379
380 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
381                           struct pci_dev *dev)
382 {
383         int index;
384
385         while (dev) {
386                 for (index = 0; index < cnt; index++)
387                         if (dev == devices[index])
388                                 return 1;
389
390                 /* Check our parent */
391                 dev = dev->bus->self;
392         }
393
394         return 0;
395 }
396
397 struct dmar_drhd_unit *
398 dmar_find_matched_drhd_unit(struct pci_dev *dev)
399 {
400         struct dmar_drhd_unit *dmaru = NULL;
401         struct acpi_dmar_hardware_unit *drhd;
402
403         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
404                 drhd = container_of(dmaru->hdr,
405                                     struct acpi_dmar_hardware_unit,
406                                     header);
407
408                 if (dmaru->include_all &&
409                     drhd->segment == pci_domain_nr(dev->bus))
410                         return dmaru;
411
412                 if (dmar_pci_device_match(dmaru->devices,
413                                           dmaru->devices_cnt, dev))
414                         return dmaru;
415         }
416
417         return NULL;
418 }
419
420 int __init dmar_dev_scope_init(void)
421 {
422         struct dmar_drhd_unit *drhd, *drhd_n;
423         int ret = -ENODEV;
424
425         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
426                 ret = dmar_parse_dev(drhd);
427                 if (ret)
428                         return ret;
429         }
430
431 #ifdef CONFIG_DMAR
432         {
433                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
434                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
435                         ret = rmrr_parse_dev(rmrr);
436                         if (ret)
437                                 return ret;
438                 }
439         }
440 #endif
441
442         return ret;
443 }
444
445
446 int __init dmar_table_init(void)
447 {
448         static int dmar_table_initialized;
449         int ret;
450
451         if (dmar_table_initialized)
452                 return 0;
453
454         dmar_table_initialized = 1;
455
456         ret = parse_dmar_table();
457         if (ret) {
458                 if (ret != -ENODEV)
459                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
460                 return ret;
461         }
462
463         if (list_empty(&dmar_drhd_units)) {
464                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
465                 return -ENODEV;
466         }
467
468 #ifdef CONFIG_DMAR
469         if (list_empty(&dmar_rmrr_units))
470                 printk(KERN_INFO PREFIX "No RMRR found\n");
471 #endif
472
473 #ifdef CONFIG_INTR_REMAP
474         parse_ioapics_under_ir();
475 #endif
476         return 0;
477 }
478
479 void __init detect_intel_iommu(void)
480 {
481         int ret;
482
483         ret = dmar_table_detect();
484
485         {
486 #ifdef CONFIG_INTR_REMAP
487                 struct acpi_table_dmar *dmar;
488                 /*
489                  * for now we will disable dma-remapping when interrupt
490                  * remapping is enabled.
491                  * When support for queued invalidation for IOTLB invalidation
492                  * is added, we will not need this any more.
493                  */
494                 dmar = (struct acpi_table_dmar *) dmar_tbl;
495                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
496                         printk(KERN_INFO
497                                "Queued invalidation will be enabled to support "
498                                "x2apic and Intr-remapping.\n");
499 #endif
500 #ifdef CONFIG_DMAR
501                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
502                     !dmar_disabled)
503                         iommu_detected = 1;
504 #endif
505         }
506         early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
507         dmar_tbl = NULL;
508 }
509
510
511 int alloc_iommu(struct dmar_drhd_unit *drhd)
512 {
513         struct intel_iommu *iommu;
514         int map_size;
515         u32 ver;
516         static int iommu_allocated = 0;
517         int agaw = 0;
518         int msagaw = 0;
519
520         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
521         if (!iommu)
522                 return -ENOMEM;
523
524         iommu->seq_id = iommu_allocated++;
525         sprintf (iommu->name, "dmar%d", iommu->seq_id);
526
527         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
528         if (!iommu->reg) {
529                 printk(KERN_ERR "IOMMU: can't map the region\n");
530                 goto error;
531         }
532         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
533         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
534
535 #ifdef CONFIG_DMAR
536         agaw = iommu_calculate_agaw(iommu);
537         if (agaw < 0) {
538                 printk(KERN_ERR
539                        "Cannot get a valid agaw for iommu (seq_id = %d)\n",
540                        iommu->seq_id);
541                 goto error;
542         }
543         msagaw = iommu_calculate_max_sagaw(iommu);
544         if (msagaw < 0) {
545                 printk(KERN_ERR
546                         "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
547                         iommu->seq_id);
548                 goto error;
549         }
550 #endif
551         iommu->agaw = agaw;
552         iommu->msagaw = msagaw;
553
554         /* the registers might be more than one page */
555         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
556                 cap_max_fault_reg_offset(iommu->cap));
557         map_size = VTD_PAGE_ALIGN(map_size);
558         if (map_size > VTD_PAGE_SIZE) {
559                 iounmap(iommu->reg);
560                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
561                 if (!iommu->reg) {
562                         printk(KERN_ERR "IOMMU: can't map the region\n");
563                         goto error;
564                 }
565         }
566
567         ver = readl(iommu->reg + DMAR_VER_REG);
568         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
569                 (unsigned long long)drhd->reg_base_addr,
570                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
571                 (unsigned long long)iommu->cap,
572                 (unsigned long long)iommu->ecap);
573
574         spin_lock_init(&iommu->register_lock);
575
576         drhd->iommu = iommu;
577         return 0;
578 error:
579         kfree(iommu);
580         return -1;
581 }
582
583 void free_iommu(struct intel_iommu *iommu)
584 {
585         if (!iommu)
586                 return;
587
588 #ifdef CONFIG_DMAR
589         free_dmar_iommu(iommu);
590 #endif
591
592         if (iommu->reg)
593                 iounmap(iommu->reg);
594         kfree(iommu);
595 }
596
597 /*
598  * Reclaim all the submitted descriptors which have completed its work.
599  */
600 static inline void reclaim_free_desc(struct q_inval *qi)
601 {
602         while (qi->desc_status[qi->free_tail] == QI_DONE) {
603                 qi->desc_status[qi->free_tail] = QI_FREE;
604                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
605                 qi->free_cnt++;
606         }
607 }
608
609 static int qi_check_fault(struct intel_iommu *iommu, int index)
610 {
611         u32 fault;
612         int head;
613         struct q_inval *qi = iommu->qi;
614         int wait_index = (index + 1) % QI_LENGTH;
615
616         fault = readl(iommu->reg + DMAR_FSTS_REG);
617
618         /*
619          * If IQE happens, the head points to the descriptor associated
620          * with the error. No new descriptors are fetched until the IQE
621          * is cleared.
622          */
623         if (fault & DMA_FSTS_IQE) {
624                 head = readl(iommu->reg + DMAR_IQH_REG);
625                 if ((head >> 4) == index) {
626                         memcpy(&qi->desc[index], &qi->desc[wait_index],
627                                         sizeof(struct qi_desc));
628                         __iommu_flush_cache(iommu, &qi->desc[index],
629                                         sizeof(struct qi_desc));
630                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
631                         return -EINVAL;
632                 }
633         }
634
635         return 0;
636 }
637
638 /*
639  * Submit the queued invalidation descriptor to the remapping
640  * hardware unit and wait for its completion.
641  */
642 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
643 {
644         int rc = 0;
645         struct q_inval *qi = iommu->qi;
646         struct qi_desc *hw, wait_desc;
647         int wait_index, index;
648         unsigned long flags;
649
650         if (!qi)
651                 return 0;
652
653         hw = qi->desc;
654
655         spin_lock_irqsave(&qi->q_lock, flags);
656         while (qi->free_cnt < 3) {
657                 spin_unlock_irqrestore(&qi->q_lock, flags);
658                 cpu_relax();
659                 spin_lock_irqsave(&qi->q_lock, flags);
660         }
661
662         index = qi->free_head;
663         wait_index = (index + 1) % QI_LENGTH;
664
665         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
666
667         hw[index] = *desc;
668
669         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
670                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
671         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
672
673         hw[wait_index] = wait_desc;
674
675         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
676         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
677
678         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
679         qi->free_cnt -= 2;
680
681         /*
682          * update the HW tail register indicating the presence of
683          * new descriptors.
684          */
685         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
686
687         while (qi->desc_status[wait_index] != QI_DONE) {
688                 /*
689                  * We will leave the interrupts disabled, to prevent interrupt
690                  * context to queue another cmd while a cmd is already submitted
691                  * and waiting for completion on this cpu. This is to avoid
692                  * a deadlock where the interrupt context can wait indefinitely
693                  * for free slots in the queue.
694                  */
695                 rc = qi_check_fault(iommu, index);
696                 if (rc)
697                         goto out;
698
699                 spin_unlock(&qi->q_lock);
700                 cpu_relax();
701                 spin_lock(&qi->q_lock);
702         }
703 out:
704         qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
705
706         reclaim_free_desc(qi);
707         spin_unlock_irqrestore(&qi->q_lock, flags);
708
709         return rc;
710 }
711
712 /*
713  * Flush the global interrupt entry cache.
714  */
715 void qi_global_iec(struct intel_iommu *iommu)
716 {
717         struct qi_desc desc;
718
719         desc.low = QI_IEC_TYPE;
720         desc.high = 0;
721
722         /* should never fail */
723         qi_submit_sync(&desc, iommu);
724 }
725
726 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
727                       u64 type)
728 {
729         struct qi_desc desc;
730
731         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
732                         | QI_CC_GRAN(type) | QI_CC_TYPE;
733         desc.high = 0;
734
735         qi_submit_sync(&desc, iommu);
736 }
737
738 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
739                     unsigned int size_order, u64 type)
740 {
741         u8 dw = 0, dr = 0;
742
743         struct qi_desc desc;
744         int ih = 0;
745
746         if (cap_write_drain(iommu->cap))
747                 dw = 1;
748
749         if (cap_read_drain(iommu->cap))
750                 dr = 1;
751
752         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
753                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
754         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
755                 | QI_IOTLB_AM(size_order);
756
757         qi_submit_sync(&desc, iommu);
758 }
759
760 /*
761  * Disable Queued Invalidation interface.
762  */
763 void dmar_disable_qi(struct intel_iommu *iommu)
764 {
765         unsigned long flags;
766         u32 sts;
767         cycles_t start_time = get_cycles();
768
769         if (!ecap_qis(iommu->ecap))
770                 return;
771
772         spin_lock_irqsave(&iommu->register_lock, flags);
773
774         sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
775         if (!(sts & DMA_GSTS_QIES))
776                 goto end;
777
778         /*
779          * Give a chance to HW to complete the pending invalidation requests.
780          */
781         while ((readl(iommu->reg + DMAR_IQT_REG) !=
782                 readl(iommu->reg + DMAR_IQH_REG)) &&
783                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
784                 cpu_relax();
785
786         iommu->gcmd &= ~DMA_GCMD_QIE;
787         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
788
789         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
790                       !(sts & DMA_GSTS_QIES), sts);
791 end:
792         spin_unlock_irqrestore(&iommu->register_lock, flags);
793 }
794
795 /*
796  * Enable queued invalidation.
797  */
798 static void __dmar_enable_qi(struct intel_iommu *iommu)
799 {
800         u32 sts;
801         unsigned long flags;
802         struct q_inval *qi = iommu->qi;
803
804         qi->free_head = qi->free_tail = 0;
805         qi->free_cnt = QI_LENGTH;
806
807         spin_lock_irqsave(&iommu->register_lock, flags);
808
809         /* write zero to the tail reg */
810         writel(0, iommu->reg + DMAR_IQT_REG);
811
812         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
813
814         iommu->gcmd |= DMA_GCMD_QIE;
815         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
816
817         /* Make sure hardware complete it */
818         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
819
820         spin_unlock_irqrestore(&iommu->register_lock, flags);
821 }
822
823 /*
824  * Enable Queued Invalidation interface. This is a must to support
825  * interrupt-remapping. Also used by DMA-remapping, which replaces
826  * register based IOTLB invalidation.
827  */
828 int dmar_enable_qi(struct intel_iommu *iommu)
829 {
830         struct q_inval *qi;
831
832         if (!ecap_qis(iommu->ecap))
833                 return -ENOENT;
834
835         /*
836          * queued invalidation is already setup and enabled.
837          */
838         if (iommu->qi)
839                 return 0;
840
841         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
842         if (!iommu->qi)
843                 return -ENOMEM;
844
845         qi = iommu->qi;
846
847         qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
848         if (!qi->desc) {
849                 kfree(qi);
850                 iommu->qi = 0;
851                 return -ENOMEM;
852         }
853
854         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
855         if (!qi->desc_status) {
856                 free_page((unsigned long) qi->desc);
857                 kfree(qi);
858                 iommu->qi = 0;
859                 return -ENOMEM;
860         }
861
862         qi->free_head = qi->free_tail = 0;
863         qi->free_cnt = QI_LENGTH;
864
865         spin_lock_init(&qi->q_lock);
866
867         __dmar_enable_qi(iommu);
868
869         return 0;
870 }
871
872 /* iommu interrupt handling. Most stuff are MSI-like. */
873
874 enum faulttype {
875         DMA_REMAP,
876         INTR_REMAP,
877         UNKNOWN,
878 };
879
880 static const char *dma_remap_fault_reasons[] =
881 {
882         "Software",
883         "Present bit in root entry is clear",
884         "Present bit in context entry is clear",
885         "Invalid context entry",
886         "Access beyond MGAW",
887         "PTE Write access is not set",
888         "PTE Read access is not set",
889         "Next page table ptr is invalid",
890         "Root table address invalid",
891         "Context table ptr is invalid",
892         "non-zero reserved fields in RTP",
893         "non-zero reserved fields in CTP",
894         "non-zero reserved fields in PTE",
895 };
896
897 static const char *intr_remap_fault_reasons[] =
898 {
899         "Detected reserved fields in the decoded interrupt-remapped request",
900         "Interrupt index exceeded the interrupt-remapping table size",
901         "Present field in the IRTE entry is clear",
902         "Error accessing interrupt-remapping table pointed by IRTA_REG",
903         "Detected reserved fields in the IRTE entry",
904         "Blocked a compatibility format interrupt request",
905         "Blocked an interrupt request due to source-id verification failure",
906 };
907
908 #define MAX_FAULT_REASON_IDX    (ARRAY_SIZE(fault_reason_strings) - 1)
909
910 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
911 {
912         if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
913                                      ARRAY_SIZE(intr_remap_fault_reasons))) {
914                 *fault_type = INTR_REMAP;
915                 return intr_remap_fault_reasons[fault_reason - 0x20];
916         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
917                 *fault_type = DMA_REMAP;
918                 return dma_remap_fault_reasons[fault_reason];
919         } else {
920                 *fault_type = UNKNOWN;
921                 return "Unknown";
922         }
923 }
924
925 void dmar_msi_unmask(unsigned int irq)
926 {
927         struct intel_iommu *iommu = get_irq_data(irq);
928         unsigned long flag;
929
930         /* unmask it */
931         spin_lock_irqsave(&iommu->register_lock, flag);
932         writel(0, iommu->reg + DMAR_FECTL_REG);
933         /* Read a reg to force flush the post write */
934         readl(iommu->reg + DMAR_FECTL_REG);
935         spin_unlock_irqrestore(&iommu->register_lock, flag);
936 }
937
938 void dmar_msi_mask(unsigned int irq)
939 {
940         unsigned long flag;
941         struct intel_iommu *iommu = get_irq_data(irq);
942
943         /* mask it */
944         spin_lock_irqsave(&iommu->register_lock, flag);
945         writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
946         /* Read a reg to force flush the post write */
947         readl(iommu->reg + DMAR_FECTL_REG);
948         spin_unlock_irqrestore(&iommu->register_lock, flag);
949 }
950
951 void dmar_msi_write(int irq, struct msi_msg *msg)
952 {
953         struct intel_iommu *iommu = get_irq_data(irq);
954         unsigned long flag;
955
956         spin_lock_irqsave(&iommu->register_lock, flag);
957         writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
958         writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
959         writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
960         spin_unlock_irqrestore(&iommu->register_lock, flag);
961 }
962
963 void dmar_msi_read(int irq, struct msi_msg *msg)
964 {
965         struct intel_iommu *iommu = get_irq_data(irq);
966         unsigned long flag;
967
968         spin_lock_irqsave(&iommu->register_lock, flag);
969         msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
970         msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
971         msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
972         spin_unlock_irqrestore(&iommu->register_lock, flag);
973 }
974
975 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
976                 u8 fault_reason, u16 source_id, unsigned long long addr)
977 {
978         const char *reason;
979         int fault_type;
980
981         reason = dmar_get_fault_reason(fault_reason, &fault_type);
982
983         if (fault_type == INTR_REMAP)
984                 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
985                        "fault index %llx\n"
986                         "INTR-REMAP:[fault reason %02d] %s\n",
987                         (source_id >> 8), PCI_SLOT(source_id & 0xFF),
988                         PCI_FUNC(source_id & 0xFF), addr >> 48,
989                         fault_reason, reason);
990         else
991                 printk(KERN_ERR
992                        "DMAR:[%s] Request device [%02x:%02x.%d] "
993                        "fault addr %llx \n"
994                        "DMAR:[fault reason %02d] %s\n",
995                        (type ? "DMA Read" : "DMA Write"),
996                        (source_id >> 8), PCI_SLOT(source_id & 0xFF),
997                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
998         return 0;
999 }
1000
1001 #define PRIMARY_FAULT_REG_LEN (16)
1002 irqreturn_t dmar_fault(int irq, void *dev_id)
1003 {
1004         struct intel_iommu *iommu = dev_id;
1005         int reg, fault_index;
1006         u32 fault_status;
1007         unsigned long flag;
1008
1009         spin_lock_irqsave(&iommu->register_lock, flag);
1010         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1011         if (fault_status)
1012                 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1013                        fault_status);
1014
1015         /* TBD: ignore advanced fault log currently */
1016         if (!(fault_status & DMA_FSTS_PPF))
1017                 goto clear_rest;
1018
1019         fault_index = dma_fsts_fault_record_index(fault_status);
1020         reg = cap_fault_reg_offset(iommu->cap);
1021         while (1) {
1022                 u8 fault_reason;
1023                 u16 source_id;
1024                 u64 guest_addr;
1025                 int type;
1026                 u32 data;
1027
1028                 /* highest 32 bits */
1029                 data = readl(iommu->reg + reg +
1030                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1031                 if (!(data & DMA_FRCD_F))
1032                         break;
1033
1034                 fault_reason = dma_frcd_fault_reason(data);
1035                 type = dma_frcd_type(data);
1036
1037                 data = readl(iommu->reg + reg +
1038                                 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1039                 source_id = dma_frcd_source_id(data);
1040
1041                 guest_addr = dmar_readq(iommu->reg + reg +
1042                                 fault_index * PRIMARY_FAULT_REG_LEN);
1043                 guest_addr = dma_frcd_page_addr(guest_addr);
1044                 /* clear the fault */
1045                 writel(DMA_FRCD_F, iommu->reg + reg +
1046                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1047
1048                 spin_unlock_irqrestore(&iommu->register_lock, flag);
1049
1050                 dmar_fault_do_one(iommu, type, fault_reason,
1051                                 source_id, guest_addr);
1052
1053                 fault_index++;
1054                 if (fault_index > cap_num_fault_regs(iommu->cap))
1055                         fault_index = 0;
1056                 spin_lock_irqsave(&iommu->register_lock, flag);
1057         }
1058 clear_rest:
1059         /* clear all the other faults */
1060         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1061         writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1062
1063         spin_unlock_irqrestore(&iommu->register_lock, flag);
1064         return IRQ_HANDLED;
1065 }
1066
1067 int dmar_set_interrupt(struct intel_iommu *iommu)
1068 {
1069         int irq, ret;
1070
1071         /*
1072          * Check if the fault interrupt is already initialized.
1073          */
1074         if (iommu->irq)
1075                 return 0;
1076
1077         irq = create_irq();
1078         if (!irq) {
1079                 printk(KERN_ERR "IOMMU: no free vectors\n");
1080                 return -EINVAL;
1081         }
1082
1083         set_irq_data(irq, iommu);
1084         iommu->irq = irq;
1085
1086         ret = arch_setup_dmar_msi(irq);
1087         if (ret) {
1088                 set_irq_data(irq, NULL);
1089                 iommu->irq = 0;
1090                 destroy_irq(irq);
1091                 return 0;
1092         }
1093
1094         ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1095         if (ret)
1096                 printk(KERN_ERR "IOMMU: can't request irq\n");
1097         return ret;
1098 }
1099
1100 int __init enable_drhd_fault_handling(void)
1101 {
1102         struct dmar_drhd_unit *drhd;
1103
1104         /*
1105          * Enable fault control interrupt.
1106          */
1107         for_each_drhd_unit(drhd) {
1108                 int ret;
1109                 struct intel_iommu *iommu = drhd->iommu;
1110                 ret = dmar_set_interrupt(iommu);
1111
1112                 if (ret) {
1113                         printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1114                                " interrupt, ret %d\n",
1115                                (unsigned long long)drhd->reg_base_addr, ret);
1116                         return -1;
1117                 }
1118         }
1119
1120         return 0;
1121 }
1122
1123 /*
1124  * Re-enable Queued Invalidation interface.
1125  */
1126 int dmar_reenable_qi(struct intel_iommu *iommu)
1127 {
1128         if (!ecap_qis(iommu->ecap))
1129                 return -ENOENT;
1130
1131         if (!iommu->qi)
1132                 return -ENOENT;
1133
1134         /*
1135          * First disable queued invalidation.
1136          */
1137         dmar_disable_qi(iommu);
1138         /*
1139          * Then enable queued invalidation again. Since there is no pending
1140          * invalidation requests now, it's safe to re-enable queued
1141          * invalidation.
1142          */
1143         __dmar_enable_qi(iommu);
1144
1145         return 0;
1146 }