pinctrl: core: use devres_release() instead of devres_destroy()
[firefly-linux-kernel-4.4.55.git] / drivers / pinctrl / core.c
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 #include "core.h"
31 #include "devicetree.h"
32 #include "pinmux.h"
33 #include "pinconf.h"
34
35
36 static bool pinctrl_dummy_state;
37
38 /* Mutex taken by all entry points */
39 DEFINE_MUTEX(pinctrl_mutex);
40
41 /* Global list of pin control devices (struct pinctrl_dev) */
42 LIST_HEAD(pinctrldev_list);
43
44 /* List of pin controller handles (struct pinctrl) */
45 static LIST_HEAD(pinctrl_list);
46
47 /* List of pinctrl maps (struct pinctrl_maps) */
48 LIST_HEAD(pinctrl_maps);
49
50
51 /**
52  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
53  *
54  * Usually this function is called by platforms without pinctrl driver support
55  * but run with some shared drivers using pinctrl APIs.
56  * After calling this function, the pinctrl core will return successfully
57  * with creating a dummy state for the driver to keep going smoothly.
58  */
59 void pinctrl_provide_dummies(void)
60 {
61         pinctrl_dummy_state = true;
62 }
63
64 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
65 {
66         /* We're not allowed to register devices without name */
67         return pctldev->desc->name;
68 }
69 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
70
71 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
72 {
73         return dev_name(pctldev->dev);
74 }
75 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
76
77 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
78 {
79         return pctldev->driver_data;
80 }
81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
82
83 /**
84  * get_pinctrl_dev_from_devname() - look up pin controller device
85  * @devname: the name of a device instance, as returned by dev_name()
86  *
87  * Looks up a pin control device matching a certain device name or pure device
88  * pointer, the pure device pointer will take precedence.
89  */
90 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
91 {
92         struct pinctrl_dev *pctldev = NULL;
93         bool found = false;
94
95         if (!devname)
96                 return NULL;
97
98         list_for_each_entry(pctldev, &pinctrldev_list, node) {
99                 if (!strcmp(dev_name(pctldev->dev), devname)) {
100                         /* Matched on device name */
101                         found = true;
102                         break;
103                 }
104         }
105
106         return found ? pctldev : NULL;
107 }
108
109 /**
110  * pin_get_from_name() - look up a pin number from a name
111  * @pctldev: the pin control device to lookup the pin on
112  * @name: the name of the pin to look up
113  */
114 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
115 {
116         unsigned i, pin;
117
118         /* The pin number can be retrived from the pin controller descriptor */
119         for (i = 0; i < pctldev->desc->npins; i++) {
120                 struct pin_desc *desc;
121
122                 pin = pctldev->desc->pins[i].number;
123                 desc = pin_desc_get(pctldev, pin);
124                 /* Pin space may be sparse */
125                 if (desc == NULL)
126                         continue;
127                 if (desc->name && !strcmp(name, desc->name))
128                         return pin;
129         }
130
131         return -EINVAL;
132 }
133
134 /**
135  * pin_get_name_from_id() - look up a pin name from a pin id
136  * @pctldev: the pin control device to lookup the pin on
137  * @name: the name of the pin to look up
138  */
139 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
140 {
141         const struct pin_desc *desc;
142
143         desc = pin_desc_get(pctldev, pin);
144         if (desc == NULL) {
145                 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
146                         pin);
147                 return NULL;
148         }
149
150         return desc->name;
151 }
152
153 /**
154  * pin_is_valid() - check if pin exists on controller
155  * @pctldev: the pin control device to check the pin on
156  * @pin: pin to check, use the local pin controller index number
157  *
158  * This tells us whether a certain pin exist on a certain pin controller or
159  * not. Pin lists may be sparse, so some pins may not exist.
160  */
161 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
162 {
163         struct pin_desc *pindesc;
164
165         if (pin < 0)
166                 return false;
167
168         mutex_lock(&pinctrl_mutex);
169         pindesc = pin_desc_get(pctldev, pin);
170         mutex_unlock(&pinctrl_mutex);
171
172         return pindesc != NULL;
173 }
174 EXPORT_SYMBOL_GPL(pin_is_valid);
175
176 /* Deletes a range of pin descriptors */
177 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
178                                   const struct pinctrl_pin_desc *pins,
179                                   unsigned num_pins)
180 {
181         int i;
182
183         for (i = 0; i < num_pins; i++) {
184                 struct pin_desc *pindesc;
185
186                 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
187                                             pins[i].number);
188                 if (pindesc != NULL) {
189                         radix_tree_delete(&pctldev->pin_desc_tree,
190                                           pins[i].number);
191                         if (pindesc->dynamic_name)
192                                 kfree(pindesc->name);
193                 }
194                 kfree(pindesc);
195         }
196 }
197
198 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
199                                     unsigned number, const char *name)
200 {
201         struct pin_desc *pindesc;
202
203         pindesc = pin_desc_get(pctldev, number);
204         if (pindesc != NULL) {
205                 pr_err("pin %d already registered on %s\n", number,
206                        pctldev->desc->name);
207                 return -EINVAL;
208         }
209
210         pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
211         if (pindesc == NULL) {
212                 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
213                 return -ENOMEM;
214         }
215
216         /* Set owner */
217         pindesc->pctldev = pctldev;
218
219         /* Copy basic pin info */
220         if (name) {
221                 pindesc->name = name;
222         } else {
223                 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
224                 if (pindesc->name == NULL) {
225                         kfree(pindesc);
226                         return -ENOMEM;
227                 }
228                 pindesc->dynamic_name = true;
229         }
230
231         radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
232         pr_debug("registered pin %d (%s) on %s\n",
233                  number, pindesc->name, pctldev->desc->name);
234         return 0;
235 }
236
237 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
238                                  struct pinctrl_pin_desc const *pins,
239                                  unsigned num_descs)
240 {
241         unsigned i;
242         int ret = 0;
243
244         for (i = 0; i < num_descs; i++) {
245                 ret = pinctrl_register_one_pin(pctldev,
246                                                pins[i].number, pins[i].name);
247                 if (ret)
248                         return ret;
249         }
250
251         return 0;
252 }
253
254 /**
255  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
256  * @pctldev: pin controller device to check
257  * @gpio: gpio pin to check taken from the global GPIO pin space
258  *
259  * Tries to match a GPIO pin number to the ranges handled by a certain pin
260  * controller, return the range or NULL
261  */
262 static struct pinctrl_gpio_range *
263 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
264 {
265         struct pinctrl_gpio_range *range = NULL;
266
267         /* Loop over the ranges */
268         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
269                 /* Check if we're in the valid range */
270                 if (gpio >= range->base &&
271                     gpio < range->base + range->npins) {
272                         return range;
273                 }
274         }
275
276         return NULL;
277 }
278
279 /**
280  * pinctrl_get_device_gpio_range() - find device for GPIO range
281  * @gpio: the pin to locate the pin controller for
282  * @outdev: the pin control device if found
283  * @outrange: the GPIO range if found
284  *
285  * Find the pin controller handling a certain GPIO pin from the pinspace of
286  * the GPIO subsystem, return the device and the matching GPIO range. Returns
287  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
288  * may still have not been registered.
289  */
290 static int pinctrl_get_device_gpio_range(unsigned gpio,
291                                          struct pinctrl_dev **outdev,
292                                          struct pinctrl_gpio_range **outrange)
293 {
294         struct pinctrl_dev *pctldev = NULL;
295
296         /* Loop over the pin controllers */
297         list_for_each_entry(pctldev, &pinctrldev_list, node) {
298                 struct pinctrl_gpio_range *range;
299
300                 range = pinctrl_match_gpio_range(pctldev, gpio);
301                 if (range != NULL) {
302                         *outdev = pctldev;
303                         *outrange = range;
304                         return 0;
305                 }
306         }
307
308         return -EPROBE_DEFER;
309 }
310
311 /**
312  * pinctrl_add_gpio_range() - register a GPIO range for a controller
313  * @pctldev: pin controller device to add the range to
314  * @range: the GPIO range to add
315  *
316  * This adds a range of GPIOs to be handled by a certain pin controller. Call
317  * this to register handled ranges after registering your pin controller.
318  */
319 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
320                             struct pinctrl_gpio_range *range)
321 {
322         mutex_lock(&pinctrl_mutex);
323         list_add_tail(&range->node, &pctldev->gpio_ranges);
324         mutex_unlock(&pinctrl_mutex);
325 }
326 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
327
328 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
329                              struct pinctrl_gpio_range *ranges,
330                              unsigned nranges)
331 {
332         int i;
333
334         for (i = 0; i < nranges; i++)
335                 pinctrl_add_gpio_range(pctldev, &ranges[i]);
336 }
337 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
338
339 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
340                 struct pinctrl_gpio_range *range)
341 {
342         struct pinctrl_dev *pctldev = get_pinctrl_dev_from_devname(devname);
343
344         /*
345          * If we can't find this device, let's assume that is because
346          * it has not probed yet, so the driver trying to register this
347          * range need to defer probing.
348          */
349         if (!pctldev)
350                 return ERR_PTR(-EPROBE_DEFER);
351
352         pinctrl_add_gpio_range(pctldev, range);
353         return pctldev;
354 }
355 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
356
357 /**
358  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
359  * @pctldev: the pin controller device to look in
360  * @pin: a controller-local number to find the range for
361  */
362 struct pinctrl_gpio_range *
363 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
364                                  unsigned int pin)
365 {
366         struct pinctrl_gpio_range *range = NULL;
367
368         /* Loop over the ranges */
369         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
370                 /* Check if we're in the valid range */
371                 if (pin >= range->pin_base &&
372                     pin < range->pin_base + range->npins) {
373                         return range;
374                 }
375         }
376
377         return NULL;
378 }
379 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
380
381 /**
382  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
383  * @pctldev: pin controller device to remove the range from
384  * @range: the GPIO range to remove
385  */
386 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
387                                struct pinctrl_gpio_range *range)
388 {
389         mutex_lock(&pinctrl_mutex);
390         list_del(&range->node);
391         mutex_unlock(&pinctrl_mutex);
392 }
393 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
394
395 /**
396  * pinctrl_get_group_selector() - returns the group selector for a group
397  * @pctldev: the pin controller handling the group
398  * @pin_group: the pin group to look up
399  */
400 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
401                                const char *pin_group)
402 {
403         const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
404         unsigned ngroups = pctlops->get_groups_count(pctldev);
405         unsigned group_selector = 0;
406
407         while (group_selector < ngroups) {
408                 const char *gname = pctlops->get_group_name(pctldev,
409                                                             group_selector);
410                 if (!strcmp(gname, pin_group)) {
411                         dev_dbg(pctldev->dev,
412                                 "found group selector %u for %s\n",
413                                 group_selector,
414                                 pin_group);
415                         return group_selector;
416                 }
417
418                 group_selector++;
419         }
420
421         dev_err(pctldev->dev, "does not have pin group %s\n",
422                 pin_group);
423
424         return -EINVAL;
425 }
426
427 /**
428  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
429  * @gpio: the GPIO pin number from the GPIO subsystem number space
430  *
431  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
432  * as part of their gpio_request() semantics, platforms and individual drivers
433  * shall *NOT* request GPIO pins to be muxed in.
434  */
435 int pinctrl_request_gpio(unsigned gpio)
436 {
437         struct pinctrl_dev *pctldev;
438         struct pinctrl_gpio_range *range;
439         int ret;
440         int pin;
441
442         mutex_lock(&pinctrl_mutex);
443
444         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
445         if (ret) {
446                 mutex_unlock(&pinctrl_mutex);
447                 return ret;
448         }
449
450         /* Convert to the pin controllers number space */
451         pin = gpio - range->base + range->pin_base;
452
453         ret = pinmux_request_gpio(pctldev, range, pin, gpio);
454
455         mutex_unlock(&pinctrl_mutex);
456         return ret;
457 }
458 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
459
460 /**
461  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
462  * @gpio: the GPIO pin number from the GPIO subsystem number space
463  *
464  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
465  * as part of their gpio_free() semantics, platforms and individual drivers
466  * shall *NOT* request GPIO pins to be muxed out.
467  */
468 void pinctrl_free_gpio(unsigned gpio)
469 {
470         struct pinctrl_dev *pctldev;
471         struct pinctrl_gpio_range *range;
472         int ret;
473         int pin;
474
475         mutex_lock(&pinctrl_mutex);
476
477         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
478         if (ret) {
479                 mutex_unlock(&pinctrl_mutex);
480                 return;
481         }
482
483         /* Convert to the pin controllers number space */
484         pin = gpio - range->base + range->pin_base;
485
486         pinmux_free_gpio(pctldev, pin, range);
487
488         mutex_unlock(&pinctrl_mutex);
489 }
490 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
491
492 static int pinctrl_gpio_direction(unsigned gpio, bool input)
493 {
494         struct pinctrl_dev *pctldev;
495         struct pinctrl_gpio_range *range;
496         int ret;
497         int pin;
498
499         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
500         if (ret)
501                 return ret;
502
503         /* Convert to the pin controllers number space */
504         pin = gpio - range->base + range->pin_base;
505
506         return pinmux_gpio_direction(pctldev, range, pin, input);
507 }
508
509 /**
510  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
511  * @gpio: the GPIO pin number from the GPIO subsystem number space
512  *
513  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
514  * as part of their gpio_direction_input() semantics, platforms and individual
515  * drivers shall *NOT* touch pin control GPIO calls.
516  */
517 int pinctrl_gpio_direction_input(unsigned gpio)
518 {
519         int ret;
520         mutex_lock(&pinctrl_mutex);
521         ret = pinctrl_gpio_direction(gpio, true);
522         mutex_unlock(&pinctrl_mutex);
523         return ret;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
526
527 /**
528  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
529  * @gpio: the GPIO pin number from the GPIO subsystem number space
530  *
531  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
532  * as part of their gpio_direction_output() semantics, platforms and individual
533  * drivers shall *NOT* touch pin control GPIO calls.
534  */
535 int pinctrl_gpio_direction_output(unsigned gpio)
536 {
537         int ret;
538         mutex_lock(&pinctrl_mutex);
539         ret = pinctrl_gpio_direction(gpio, false);
540         mutex_unlock(&pinctrl_mutex);
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
544
545 static struct pinctrl_state *find_state(struct pinctrl *p,
546                                         const char *name)
547 {
548         struct pinctrl_state *state;
549
550         list_for_each_entry(state, &p->states, node)
551                 if (!strcmp(state->name, name))
552                         return state;
553
554         return NULL;
555 }
556
557 static struct pinctrl_state *create_state(struct pinctrl *p,
558                                           const char *name)
559 {
560         struct pinctrl_state *state;
561
562         state = kzalloc(sizeof(*state), GFP_KERNEL);
563         if (state == NULL) {
564                 dev_err(p->dev,
565                         "failed to alloc struct pinctrl_state\n");
566                 return ERR_PTR(-ENOMEM);
567         }
568
569         state->name = name;
570         INIT_LIST_HEAD(&state->settings);
571
572         list_add_tail(&state->node, &p->states);
573
574         return state;
575 }
576
577 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
578 {
579         struct pinctrl_state *state;
580         struct pinctrl_setting *setting;
581         int ret;
582
583         state = find_state(p, map->name);
584         if (!state)
585                 state = create_state(p, map->name);
586         if (IS_ERR(state))
587                 return PTR_ERR(state);
588
589         if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
590                 return 0;
591
592         setting = kzalloc(sizeof(*setting), GFP_KERNEL);
593         if (setting == NULL) {
594                 dev_err(p->dev,
595                         "failed to alloc struct pinctrl_setting\n");
596                 return -ENOMEM;
597         }
598
599         setting->type = map->type;
600
601         setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
602         if (setting->pctldev == NULL) {
603                 kfree(setting);
604                 /* Do not defer probing of hogs (circular loop) */
605                 if (!strcmp(map->ctrl_dev_name, map->dev_name))
606                         return -ENODEV;
607                 /*
608                  * OK let us guess that the driver is not there yet, and
609                  * let's defer obtaining this pinctrl handle to later...
610                  */
611                 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
612                         map->ctrl_dev_name);
613                 return -EPROBE_DEFER;
614         }
615
616         setting->dev_name = map->dev_name;
617
618         switch (map->type) {
619         case PIN_MAP_TYPE_MUX_GROUP:
620                 ret = pinmux_map_to_setting(map, setting);
621                 break;
622         case PIN_MAP_TYPE_CONFIGS_PIN:
623         case PIN_MAP_TYPE_CONFIGS_GROUP:
624                 ret = pinconf_map_to_setting(map, setting);
625                 break;
626         default:
627                 ret = -EINVAL;
628                 break;
629         }
630         if (ret < 0) {
631                 kfree(setting);
632                 return ret;
633         }
634
635         list_add_tail(&setting->node, &state->settings);
636
637         return 0;
638 }
639
640 static struct pinctrl *find_pinctrl(struct device *dev)
641 {
642         struct pinctrl *p;
643
644         list_for_each_entry(p, &pinctrl_list, node)
645                 if (p->dev == dev)
646                         return p;
647
648         return NULL;
649 }
650
651 static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
652
653 static struct pinctrl *create_pinctrl(struct device *dev)
654 {
655         struct pinctrl *p;
656         const char *devname;
657         struct pinctrl_maps *maps_node;
658         int i;
659         struct pinctrl_map const *map;
660         int ret;
661
662         /*
663          * create the state cookie holder struct pinctrl for each
664          * mapping, this is what consumers will get when requesting
665          * a pin control handle with pinctrl_get()
666          */
667         p = kzalloc(sizeof(*p), GFP_KERNEL);
668         if (p == NULL) {
669                 dev_err(dev, "failed to alloc struct pinctrl\n");
670                 return ERR_PTR(-ENOMEM);
671         }
672         p->dev = dev;
673         INIT_LIST_HEAD(&p->states);
674         INIT_LIST_HEAD(&p->dt_maps);
675
676         ret = pinctrl_dt_to_map(p);
677         if (ret < 0) {
678                 kfree(p);
679                 return ERR_PTR(ret);
680         }
681
682         devname = dev_name(dev);
683
684         /* Iterate over the pin control maps to locate the right ones */
685         for_each_maps(maps_node, i, map) {
686                 /* Map must be for this device */
687                 if (strcmp(map->dev_name, devname))
688                         continue;
689
690                 ret = add_setting(p, map);
691                 /*
692                  * At this point the adding of a setting may:
693                  *
694                  * - Defer, if the pinctrl device is not yet available
695                  * - Fail, if the pinctrl device is not yet available,
696                  *   AND the setting is a hog. We cannot defer that, since
697                  *   the hog will kick in immediately after the device
698                  *   is registered.
699                  *
700                  * If the error returned was not -EPROBE_DEFER then we
701                  * accumulate the errors to see if we end up with
702                  * an -EPROBE_DEFER later, as that is the worst case.
703                  */
704                 if (ret == -EPROBE_DEFER) {
705                         pinctrl_put_locked(p, false);
706                         return ERR_PTR(ret);
707                 }
708         }
709         if (ret < 0) {
710                 /* If some other error than deferral occured, return here */
711                 pinctrl_put_locked(p, false);
712                 return ERR_PTR(ret);
713         }
714
715         kref_init(&p->users);
716
717         /* Add the pinctrl handle to the global list */
718         list_add_tail(&p->node, &pinctrl_list);
719
720         return p;
721 }
722
723 static struct pinctrl *pinctrl_get_locked(struct device *dev)
724 {
725         struct pinctrl *p;
726
727         if (WARN_ON(!dev))
728                 return ERR_PTR(-EINVAL);
729
730         /*
731          * See if somebody else (such as the device core) has already
732          * obtained a handle to the pinctrl for this device. In that case,
733          * return another pointer to it.
734          */
735         p = find_pinctrl(dev);
736         if (p != NULL) {
737                 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
738                 kref_get(&p->users);
739                 return p;
740         }
741
742         return create_pinctrl(dev);
743 }
744
745 /**
746  * pinctrl_get() - retrieves the pinctrl handle for a device
747  * @dev: the device to obtain the handle for
748  */
749 struct pinctrl *pinctrl_get(struct device *dev)
750 {
751         struct pinctrl *p;
752
753         mutex_lock(&pinctrl_mutex);
754         p = pinctrl_get_locked(dev);
755         mutex_unlock(&pinctrl_mutex);
756
757         return p;
758 }
759 EXPORT_SYMBOL_GPL(pinctrl_get);
760
761 static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
762 {
763         struct pinctrl_state *state, *n1;
764         struct pinctrl_setting *setting, *n2;
765
766         list_for_each_entry_safe(state, n1, &p->states, node) {
767                 list_for_each_entry_safe(setting, n2, &state->settings, node) {
768                         switch (setting->type) {
769                         case PIN_MAP_TYPE_MUX_GROUP:
770                                 if (state == p->state)
771                                         pinmux_disable_setting(setting);
772                                 pinmux_free_setting(setting);
773                                 break;
774                         case PIN_MAP_TYPE_CONFIGS_PIN:
775                         case PIN_MAP_TYPE_CONFIGS_GROUP:
776                                 pinconf_free_setting(setting);
777                                 break;
778                         default:
779                                 break;
780                         }
781                         list_del(&setting->node);
782                         kfree(setting);
783                 }
784                 list_del(&state->node);
785                 kfree(state);
786         }
787
788         pinctrl_dt_free_maps(p);
789
790         if (inlist)
791                 list_del(&p->node);
792         kfree(p);
793 }
794
795 /**
796  * pinctrl_release() - release the pinctrl handle
797  * @kref: the kref in the pinctrl being released
798  */
799 static void pinctrl_release(struct kref *kref)
800 {
801         struct pinctrl *p = container_of(kref, struct pinctrl, users);
802
803         pinctrl_put_locked(p, true);
804 }
805
806 /**
807  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
808  * @p: the pinctrl handle to release
809  */
810 void pinctrl_put(struct pinctrl *p)
811 {
812         mutex_lock(&pinctrl_mutex);
813         kref_put(&p->users, pinctrl_release);
814         mutex_unlock(&pinctrl_mutex);
815 }
816 EXPORT_SYMBOL_GPL(pinctrl_put);
817
818 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
819                                                          const char *name)
820 {
821         struct pinctrl_state *state;
822
823         state = find_state(p, name);
824         if (!state) {
825                 if (pinctrl_dummy_state) {
826                         /* create dummy state */
827                         dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
828                                 name);
829                         state = create_state(p, name);
830                 } else
831                         state = ERR_PTR(-ENODEV);
832         }
833
834         return state;
835 }
836
837 /**
838  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
839  * @p: the pinctrl handle to retrieve the state from
840  * @name: the state name to retrieve
841  */
842 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
843 {
844         struct pinctrl_state *s;
845
846         mutex_lock(&pinctrl_mutex);
847         s = pinctrl_lookup_state_locked(p, name);
848         mutex_unlock(&pinctrl_mutex);
849
850         return s;
851 }
852 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
853
854 static int pinctrl_select_state_locked(struct pinctrl *p,
855                                        struct pinctrl_state *state)
856 {
857         struct pinctrl_setting *setting, *setting2;
858         int ret;
859
860         if (p->state == state)
861                 return 0;
862
863         if (p->state) {
864                 /*
865                  * The set of groups with a mux configuration in the old state
866                  * may not be identical to the set of groups with a mux setting
867                  * in the new state. While this might be unusual, it's entirely
868                  * possible for the "user"-supplied mapping table to be written
869                  * that way. For each group that was configured in the old state
870                  * but not in the new state, this code puts that group into a
871                  * safe/disabled state.
872                  */
873                 list_for_each_entry(setting, &p->state->settings, node) {
874                         bool found = false;
875                         if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
876                                 continue;
877                         list_for_each_entry(setting2, &state->settings, node) {
878                                 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
879                                         continue;
880                                 if (setting2->data.mux.group ==
881                                                 setting->data.mux.group) {
882                                         found = true;
883                                         break;
884                                 }
885                         }
886                         if (!found)
887                                 pinmux_disable_setting(setting);
888                 }
889         }
890
891         p->state = state;
892
893         /* Apply all the settings for the new state */
894         list_for_each_entry(setting, &state->settings, node) {
895                 switch (setting->type) {
896                 case PIN_MAP_TYPE_MUX_GROUP:
897                         ret = pinmux_enable_setting(setting);
898                         break;
899                 case PIN_MAP_TYPE_CONFIGS_PIN:
900                 case PIN_MAP_TYPE_CONFIGS_GROUP:
901                         ret = pinconf_apply_setting(setting);
902                         break;
903                 default:
904                         ret = -EINVAL;
905                         break;
906                 }
907                 if (ret < 0) {
908                         /* FIXME: Difficult to return to prev state */
909                         return ret;
910                 }
911         }
912
913         return 0;
914 }
915
916 /**
917  * pinctrl_select() - select/activate/program a pinctrl state to HW
918  * @p: the pinctrl handle for the device that requests configuratio
919  * @state: the state handle to select/activate/program
920  */
921 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
922 {
923         int ret;
924
925         mutex_lock(&pinctrl_mutex);
926         ret = pinctrl_select_state_locked(p, state);
927         mutex_unlock(&pinctrl_mutex);
928
929         return ret;
930 }
931 EXPORT_SYMBOL_GPL(pinctrl_select_state);
932
933 static void devm_pinctrl_release(struct device *dev, void *res)
934 {
935         pinctrl_put(*(struct pinctrl **)res);
936 }
937
938 /**
939  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
940  * @dev: the device to obtain the handle for
941  *
942  * If there is a need to explicitly destroy the returned struct pinctrl,
943  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
944  */
945 struct pinctrl *devm_pinctrl_get(struct device *dev)
946 {
947         struct pinctrl **ptr, *p;
948
949         ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
950         if (!ptr)
951                 return ERR_PTR(-ENOMEM);
952
953         p = pinctrl_get(dev);
954         if (!IS_ERR(p)) {
955                 *ptr = p;
956                 devres_add(dev, ptr);
957         } else {
958                 devres_free(ptr);
959         }
960
961         return p;
962 }
963 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
964
965 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
966 {
967         struct pinctrl **p = res;
968
969         return *p == data;
970 }
971
972 /**
973  * devm_pinctrl_put() - Resource managed pinctrl_put()
974  * @p: the pinctrl handle to release
975  *
976  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
977  * this function will not need to be called and the resource management
978  * code will ensure that the resource is freed.
979  */
980 void devm_pinctrl_put(struct pinctrl *p)
981 {
982         WARN_ON(devres_release(p->dev, devm_pinctrl_release,
983                                devm_pinctrl_match, p));
984 }
985 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
986
987 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
988                          bool dup, bool locked)
989 {
990         int i, ret;
991         struct pinctrl_maps *maps_node;
992
993         pr_debug("add %d pinmux maps\n", num_maps);
994
995         /* First sanity check the new mapping */
996         for (i = 0; i < num_maps; i++) {
997                 if (!maps[i].dev_name) {
998                         pr_err("failed to register map %s (%d): no device given\n",
999                                maps[i].name, i);
1000                         return -EINVAL;
1001                 }
1002
1003                 if (!maps[i].name) {
1004                         pr_err("failed to register map %d: no map name given\n",
1005                                i);
1006                         return -EINVAL;
1007                 }
1008
1009                 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1010                                 !maps[i].ctrl_dev_name) {
1011                         pr_err("failed to register map %s (%d): no pin control device given\n",
1012                                maps[i].name, i);
1013                         return -EINVAL;
1014                 }
1015
1016                 switch (maps[i].type) {
1017                 case PIN_MAP_TYPE_DUMMY_STATE:
1018                         break;
1019                 case PIN_MAP_TYPE_MUX_GROUP:
1020                         ret = pinmux_validate_map(&maps[i], i);
1021                         if (ret < 0)
1022                                 return ret;
1023                         break;
1024                 case PIN_MAP_TYPE_CONFIGS_PIN:
1025                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1026                         ret = pinconf_validate_map(&maps[i], i);
1027                         if (ret < 0)
1028                                 return ret;
1029                         break;
1030                 default:
1031                         pr_err("failed to register map %s (%d): invalid type given\n",
1032                                maps[i].name, i);
1033                         return -EINVAL;
1034                 }
1035         }
1036
1037         maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1038         if (!maps_node) {
1039                 pr_err("failed to alloc struct pinctrl_maps\n");
1040                 return -ENOMEM;
1041         }
1042
1043         maps_node->num_maps = num_maps;
1044         if (dup) {
1045                 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1046                                           GFP_KERNEL);
1047                 if (!maps_node->maps) {
1048                         pr_err("failed to duplicate mapping table\n");
1049                         kfree(maps_node);
1050                         return -ENOMEM;
1051                 }
1052         } else {
1053                 maps_node->maps = maps;
1054         }
1055
1056         if (!locked)
1057                 mutex_lock(&pinctrl_mutex);
1058         list_add_tail(&maps_node->node, &pinctrl_maps);
1059         if (!locked)
1060                 mutex_unlock(&pinctrl_mutex);
1061
1062         return 0;
1063 }
1064
1065 /**
1066  * pinctrl_register_mappings() - register a set of pin controller mappings
1067  * @maps: the pincontrol mappings table to register. This should probably be
1068  *      marked with __initdata so it can be discarded after boot. This
1069  *      function will perform a shallow copy for the mapping entries.
1070  * @num_maps: the number of maps in the mapping table
1071  */
1072 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1073                               unsigned num_maps)
1074 {
1075         return pinctrl_register_map(maps, num_maps, true, false);
1076 }
1077
1078 void pinctrl_unregister_map(struct pinctrl_map const *map)
1079 {
1080         struct pinctrl_maps *maps_node;
1081
1082         list_for_each_entry(maps_node, &pinctrl_maps, node) {
1083                 if (maps_node->maps == map) {
1084                         list_del(&maps_node->node);
1085                         return;
1086                 }
1087         }
1088 }
1089
1090 /**
1091  * pinctrl_force_sleep() - turn a given controller device into sleep state
1092  * @pctldev: pin controller device
1093  */
1094 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1095 {
1096         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1097                 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1098         return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1101
1102 /**
1103  * pinctrl_force_default() - turn a given controller device into default state
1104  * @pctldev: pin controller device
1105  */
1106 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1107 {
1108         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1109                 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1113
1114 #ifdef CONFIG_DEBUG_FS
1115
1116 static int pinctrl_pins_show(struct seq_file *s, void *what)
1117 {
1118         struct pinctrl_dev *pctldev = s->private;
1119         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1120         unsigned i, pin;
1121
1122         seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1123
1124         mutex_lock(&pinctrl_mutex);
1125
1126         /* The pin number can be retrived from the pin controller descriptor */
1127         for (i = 0; i < pctldev->desc->npins; i++) {
1128                 struct pin_desc *desc;
1129
1130                 pin = pctldev->desc->pins[i].number;
1131                 desc = pin_desc_get(pctldev, pin);
1132                 /* Pin space may be sparse */
1133                 if (desc == NULL)
1134                         continue;
1135
1136                 seq_printf(s, "pin %d (%s) ", pin,
1137                            desc->name ? desc->name : "unnamed");
1138
1139                 /* Driver-specific info per pin */
1140                 if (ops->pin_dbg_show)
1141                         ops->pin_dbg_show(pctldev, s, pin);
1142
1143                 seq_puts(s, "\n");
1144         }
1145
1146         mutex_unlock(&pinctrl_mutex);
1147
1148         return 0;
1149 }
1150
1151 static int pinctrl_groups_show(struct seq_file *s, void *what)
1152 {
1153         struct pinctrl_dev *pctldev = s->private;
1154         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1155         unsigned ngroups, selector = 0;
1156
1157         ngroups = ops->get_groups_count(pctldev);
1158         mutex_lock(&pinctrl_mutex);
1159
1160         seq_puts(s, "registered pin groups:\n");
1161         while (selector < ngroups) {
1162                 const unsigned *pins;
1163                 unsigned num_pins;
1164                 const char *gname = ops->get_group_name(pctldev, selector);
1165                 const char *pname;
1166                 int ret;
1167                 int i;
1168
1169                 ret = ops->get_group_pins(pctldev, selector,
1170                                           &pins, &num_pins);
1171                 if (ret)
1172                         seq_printf(s, "%s [ERROR GETTING PINS]\n",
1173                                    gname);
1174                 else {
1175                         seq_printf(s, "group: %s\n", gname);
1176                         for (i = 0; i < num_pins; i++) {
1177                                 pname = pin_get_name(pctldev, pins[i]);
1178                                 if (WARN_ON(!pname)) {
1179                                         mutex_unlock(&pinctrl_mutex);
1180                                         return -EINVAL;
1181                                 }
1182                                 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1183                         }
1184                         seq_puts(s, "\n");
1185                 }
1186                 selector++;
1187         }
1188
1189         mutex_unlock(&pinctrl_mutex);
1190
1191         return 0;
1192 }
1193
1194 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1195 {
1196         struct pinctrl_dev *pctldev = s->private;
1197         struct pinctrl_gpio_range *range = NULL;
1198
1199         seq_puts(s, "GPIO ranges handled:\n");
1200
1201         mutex_lock(&pinctrl_mutex);
1202
1203         /* Loop over the ranges */
1204         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1205                 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1206                            range->id, range->name,
1207                            range->base, (range->base + range->npins - 1),
1208                            range->pin_base,
1209                            (range->pin_base + range->npins - 1));
1210         }
1211
1212         mutex_unlock(&pinctrl_mutex);
1213
1214         return 0;
1215 }
1216
1217 static int pinctrl_devices_show(struct seq_file *s, void *what)
1218 {
1219         struct pinctrl_dev *pctldev;
1220
1221         seq_puts(s, "name [pinmux] [pinconf]\n");
1222
1223         mutex_lock(&pinctrl_mutex);
1224
1225         list_for_each_entry(pctldev, &pinctrldev_list, node) {
1226                 seq_printf(s, "%s ", pctldev->desc->name);
1227                 if (pctldev->desc->pmxops)
1228                         seq_puts(s, "yes ");
1229                 else
1230                         seq_puts(s, "no ");
1231                 if (pctldev->desc->confops)
1232                         seq_puts(s, "yes");
1233                 else
1234                         seq_puts(s, "no");
1235                 seq_puts(s, "\n");
1236         }
1237
1238         mutex_unlock(&pinctrl_mutex);
1239
1240         return 0;
1241 }
1242
1243 static inline const char *map_type(enum pinctrl_map_type type)
1244 {
1245         static const char * const names[] = {
1246                 "INVALID",
1247                 "DUMMY_STATE",
1248                 "MUX_GROUP",
1249                 "CONFIGS_PIN",
1250                 "CONFIGS_GROUP",
1251         };
1252
1253         if (type >= ARRAY_SIZE(names))
1254                 return "UNKNOWN";
1255
1256         return names[type];
1257 }
1258
1259 static int pinctrl_maps_show(struct seq_file *s, void *what)
1260 {
1261         struct pinctrl_maps *maps_node;
1262         int i;
1263         struct pinctrl_map const *map;
1264
1265         seq_puts(s, "Pinctrl maps:\n");
1266
1267         mutex_lock(&pinctrl_mutex);
1268
1269         for_each_maps(maps_node, i, map) {
1270                 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1271                            map->dev_name, map->name, map_type(map->type),
1272                            map->type);
1273
1274                 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1275                         seq_printf(s, "controlling device %s\n",
1276                                    map->ctrl_dev_name);
1277
1278                 switch (map->type) {
1279                 case PIN_MAP_TYPE_MUX_GROUP:
1280                         pinmux_show_map(s, map);
1281                         break;
1282                 case PIN_MAP_TYPE_CONFIGS_PIN:
1283                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1284                         pinconf_show_map(s, map);
1285                         break;
1286                 default:
1287                         break;
1288                 }
1289
1290                 seq_printf(s, "\n");
1291         }
1292
1293         mutex_unlock(&pinctrl_mutex);
1294
1295         return 0;
1296 }
1297
1298 static int pinctrl_show(struct seq_file *s, void *what)
1299 {
1300         struct pinctrl *p;
1301         struct pinctrl_state *state;
1302         struct pinctrl_setting *setting;
1303
1304         seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1305
1306         mutex_lock(&pinctrl_mutex);
1307
1308         list_for_each_entry(p, &pinctrl_list, node) {
1309                 seq_printf(s, "device: %s current state: %s\n",
1310                            dev_name(p->dev),
1311                            p->state ? p->state->name : "none");
1312
1313                 list_for_each_entry(state, &p->states, node) {
1314                         seq_printf(s, "  state: %s\n", state->name);
1315
1316                         list_for_each_entry(setting, &state->settings, node) {
1317                                 struct pinctrl_dev *pctldev = setting->pctldev;
1318
1319                                 seq_printf(s, "    type: %s controller %s ",
1320                                            map_type(setting->type),
1321                                            pinctrl_dev_get_name(pctldev));
1322
1323                                 switch (setting->type) {
1324                                 case PIN_MAP_TYPE_MUX_GROUP:
1325                                         pinmux_show_setting(s, setting);
1326                                         break;
1327                                 case PIN_MAP_TYPE_CONFIGS_PIN:
1328                                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1329                                         pinconf_show_setting(s, setting);
1330                                         break;
1331                                 default:
1332                                         break;
1333                                 }
1334                         }
1335                 }
1336         }
1337
1338         mutex_unlock(&pinctrl_mutex);
1339
1340         return 0;
1341 }
1342
1343 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1344 {
1345         return single_open(file, pinctrl_pins_show, inode->i_private);
1346 }
1347
1348 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1349 {
1350         return single_open(file, pinctrl_groups_show, inode->i_private);
1351 }
1352
1353 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1354 {
1355         return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1356 }
1357
1358 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1359 {
1360         return single_open(file, pinctrl_devices_show, NULL);
1361 }
1362
1363 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1364 {
1365         return single_open(file, pinctrl_maps_show, NULL);
1366 }
1367
1368 static int pinctrl_open(struct inode *inode, struct file *file)
1369 {
1370         return single_open(file, pinctrl_show, NULL);
1371 }
1372
1373 static const struct file_operations pinctrl_pins_ops = {
1374         .open           = pinctrl_pins_open,
1375         .read           = seq_read,
1376         .llseek         = seq_lseek,
1377         .release        = single_release,
1378 };
1379
1380 static const struct file_operations pinctrl_groups_ops = {
1381         .open           = pinctrl_groups_open,
1382         .read           = seq_read,
1383         .llseek         = seq_lseek,
1384         .release        = single_release,
1385 };
1386
1387 static const struct file_operations pinctrl_gpioranges_ops = {
1388         .open           = pinctrl_gpioranges_open,
1389         .read           = seq_read,
1390         .llseek         = seq_lseek,
1391         .release        = single_release,
1392 };
1393
1394 static const struct file_operations pinctrl_devices_ops = {
1395         .open           = pinctrl_devices_open,
1396         .read           = seq_read,
1397         .llseek         = seq_lseek,
1398         .release        = single_release,
1399 };
1400
1401 static const struct file_operations pinctrl_maps_ops = {
1402         .open           = pinctrl_maps_open,
1403         .read           = seq_read,
1404         .llseek         = seq_lseek,
1405         .release        = single_release,
1406 };
1407
1408 static const struct file_operations pinctrl_ops = {
1409         .open           = pinctrl_open,
1410         .read           = seq_read,
1411         .llseek         = seq_lseek,
1412         .release        = single_release,
1413 };
1414
1415 static struct dentry *debugfs_root;
1416
1417 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1418 {
1419         struct dentry *device_root;
1420
1421         device_root = debugfs_create_dir(dev_name(pctldev->dev),
1422                                          debugfs_root);
1423         pctldev->device_root = device_root;
1424
1425         if (IS_ERR(device_root) || !device_root) {
1426                 pr_warn("failed to create debugfs directory for %s\n",
1427                         dev_name(pctldev->dev));
1428                 return;
1429         }
1430         debugfs_create_file("pins", S_IFREG | S_IRUGO,
1431                             device_root, pctldev, &pinctrl_pins_ops);
1432         debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1433                             device_root, pctldev, &pinctrl_groups_ops);
1434         debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1435                             device_root, pctldev, &pinctrl_gpioranges_ops);
1436         pinmux_init_device_debugfs(device_root, pctldev);
1437         pinconf_init_device_debugfs(device_root, pctldev);
1438 }
1439
1440 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1441 {
1442         debugfs_remove_recursive(pctldev->device_root);
1443 }
1444
1445 static void pinctrl_init_debugfs(void)
1446 {
1447         debugfs_root = debugfs_create_dir("pinctrl", NULL);
1448         if (IS_ERR(debugfs_root) || !debugfs_root) {
1449                 pr_warn("failed to create debugfs directory\n");
1450                 debugfs_root = NULL;
1451                 return;
1452         }
1453
1454         debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1455                             debugfs_root, NULL, &pinctrl_devices_ops);
1456         debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1457                             debugfs_root, NULL, &pinctrl_maps_ops);
1458         debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1459                             debugfs_root, NULL, &pinctrl_ops);
1460 }
1461
1462 #else /* CONFIG_DEBUG_FS */
1463
1464 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1465 {
1466 }
1467
1468 static void pinctrl_init_debugfs(void)
1469 {
1470 }
1471
1472 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1473 {
1474 }
1475
1476 #endif
1477
1478 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1479 {
1480         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1481
1482         if (!ops ||
1483             !ops->get_groups_count ||
1484             !ops->get_group_name ||
1485             !ops->get_group_pins)
1486                 return -EINVAL;
1487
1488         if (ops->dt_node_to_map && !ops->dt_free_map)
1489                 return -EINVAL;
1490
1491         return 0;
1492 }
1493
1494 /**
1495  * pinctrl_register() - register a pin controller device
1496  * @pctldesc: descriptor for this pin controller
1497  * @dev: parent device for this pin controller
1498  * @driver_data: private pin controller data for this pin controller
1499  */
1500 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1501                                     struct device *dev, void *driver_data)
1502 {
1503         struct pinctrl_dev *pctldev;
1504         int ret;
1505
1506         if (!pctldesc)
1507                 return NULL;
1508         if (!pctldesc->name)
1509                 return NULL;
1510
1511         pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1512         if (pctldev == NULL) {
1513                 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1514                 return NULL;
1515         }
1516
1517         /* Initialize pin control device struct */
1518         pctldev->owner = pctldesc->owner;
1519         pctldev->desc = pctldesc;
1520         pctldev->driver_data = driver_data;
1521         INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1522         INIT_LIST_HEAD(&pctldev->gpio_ranges);
1523         pctldev->dev = dev;
1524
1525         /* check core ops for sanity */
1526         if (pinctrl_check_ops(pctldev)) {
1527                 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1528                 goto out_err;
1529         }
1530
1531         /* If we're implementing pinmuxing, check the ops for sanity */
1532         if (pctldesc->pmxops) {
1533                 if (pinmux_check_ops(pctldev))
1534                         goto out_err;
1535         }
1536
1537         /* If we're implementing pinconfig, check the ops for sanity */
1538         if (pctldesc->confops) {
1539                 if (pinconf_check_ops(pctldev))
1540                         goto out_err;
1541         }
1542
1543         /* Register all the pins */
1544         dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1545         ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1546         if (ret) {
1547                 dev_err(dev, "error during pin registration\n");
1548                 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1549                                       pctldesc->npins);
1550                 goto out_err;
1551         }
1552
1553         mutex_lock(&pinctrl_mutex);
1554
1555         list_add_tail(&pctldev->node, &pinctrldev_list);
1556
1557         pctldev->p = pinctrl_get_locked(pctldev->dev);
1558         if (!IS_ERR(pctldev->p)) {
1559                 pctldev->hog_default =
1560                         pinctrl_lookup_state_locked(pctldev->p,
1561                                                     PINCTRL_STATE_DEFAULT);
1562                 if (IS_ERR(pctldev->hog_default)) {
1563                         dev_dbg(dev, "failed to lookup the default state\n");
1564                 } else {
1565                         if (pinctrl_select_state_locked(pctldev->p,
1566                                                 pctldev->hog_default))
1567                                 dev_err(dev,
1568                                         "failed to select default state\n");
1569                 }
1570
1571                 pctldev->hog_sleep =
1572                         pinctrl_lookup_state_locked(pctldev->p,
1573                                                     PINCTRL_STATE_SLEEP);
1574                 if (IS_ERR(pctldev->hog_sleep))
1575                         dev_dbg(dev, "failed to lookup the sleep state\n");
1576         }
1577
1578         mutex_unlock(&pinctrl_mutex);
1579
1580         pinctrl_init_device_debugfs(pctldev);
1581
1582         return pctldev;
1583
1584 out_err:
1585         kfree(pctldev);
1586         return NULL;
1587 }
1588 EXPORT_SYMBOL_GPL(pinctrl_register);
1589
1590 /**
1591  * pinctrl_unregister() - unregister pinmux
1592  * @pctldev: pin controller to unregister
1593  *
1594  * Called by pinmux drivers to unregister a pinmux.
1595  */
1596 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1597 {
1598         struct pinctrl_gpio_range *range, *n;
1599         if (pctldev == NULL)
1600                 return;
1601
1602         pinctrl_remove_device_debugfs(pctldev);
1603
1604         mutex_lock(&pinctrl_mutex);
1605
1606         if (!IS_ERR(pctldev->p))
1607                 pinctrl_put_locked(pctldev->p, true);
1608
1609         /* TODO: check that no pinmuxes are still active? */
1610         list_del(&pctldev->node);
1611         /* Destroy descriptor tree */
1612         pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1613                               pctldev->desc->npins);
1614         /* remove gpio ranges map */
1615         list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1616                 list_del(&range->node);
1617
1618         kfree(pctldev);
1619
1620         mutex_unlock(&pinctrl_mutex);
1621 }
1622 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1623
1624 static int __init pinctrl_init(void)
1625 {
1626         pr_info("initialized pinctrl subsystem\n");
1627         pinctrl_init_debugfs();
1628         return 0;
1629 }
1630
1631 /* init early since many drivers really need to initialized pinmux early */
1632 core_initcall(pinctrl_init);