Merge remote-tracking branches 'regulator/topic/max1586', 'regulator/topic/max77802...
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static void _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /*
636  * These are the only attributes are present for all regulators.
637  * Other attributes are a function of regulator functionality.
638  */
639 static struct attribute *regulator_dev_attrs[] = {
640         &dev_attr_name.attr,
641         &dev_attr_num_users.attr,
642         &dev_attr_type.attr,
643         NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649         struct regulator_dev *rdev = dev_get_drvdata(dev);
650         kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654         .name = "regulator",
655         .dev_release = regulator_dev_release,
656         .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660  * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663         struct regulator *sibling;
664         int current_uA = 0, output_uV, input_uV, err;
665         unsigned int mode;
666
667         err = regulator_check_drms(rdev);
668         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669             (!rdev->desc->ops->get_voltage &&
670              !rdev->desc->ops->get_voltage_sel) ||
671             !rdev->desc->ops->set_mode)
672                 return;
673
674         /* get output voltage */
675         output_uV = _regulator_get_voltage(rdev);
676         if (output_uV <= 0)
677                 return;
678
679         /* get input voltage */
680         input_uV = 0;
681         if (rdev->supply)
682                 input_uV = regulator_get_voltage(rdev->supply);
683         if (input_uV <= 0)
684                 input_uV = rdev->constraints->input_uV;
685         if (input_uV <= 0)
686                 return;
687
688         /* calc total requested load */
689         list_for_each_entry(sibling, &rdev->consumer_list, list)
690                 current_uA += sibling->uA_load;
691
692         /* now get the optimum mode for our new total regulator load */
693         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694                                                   output_uV, current_uA);
695
696         /* check the new mode is allowed */
697         err = regulator_mode_constrain(rdev, &mode);
698         if (err == 0)
699                 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703         struct regulator_state *rstate)
704 {
705         int ret = 0;
706
707         /* If we have no suspend mode configration don't set anything;
708          * only warn if the driver implements set_suspend_voltage or
709          * set_suspend_mode callback.
710          */
711         if (!rstate->enabled && !rstate->disabled) {
712                 if (rdev->desc->ops->set_suspend_voltage ||
713                     rdev->desc->ops->set_suspend_mode)
714                         rdev_warn(rdev, "No configuration\n");
715                 return 0;
716         }
717
718         if (rstate->enabled && rstate->disabled) {
719                 rdev_err(rdev, "invalid configuration\n");
720                 return -EINVAL;
721         }
722
723         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724                 ret = rdev->desc->ops->set_suspend_enable(rdev);
725         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726                 ret = rdev->desc->ops->set_suspend_disable(rdev);
727         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728                 ret = 0;
729
730         if (ret < 0) {
731                 rdev_err(rdev, "failed to enabled/disable\n");
732                 return ret;
733         }
734
735         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737                 if (ret < 0) {
738                         rdev_err(rdev, "failed to set voltage\n");
739                         return ret;
740                 }
741         }
742
743         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745                 if (ret < 0) {
746                         rdev_err(rdev, "failed to set mode\n");
747                         return ret;
748                 }
749         }
750         return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756         if (!rdev->constraints)
757                 return -EINVAL;
758
759         switch (state) {
760         case PM_SUSPEND_STANDBY:
761                 return suspend_set_state(rdev,
762                         &rdev->constraints->state_standby);
763         case PM_SUSPEND_MEM:
764                 return suspend_set_state(rdev,
765                         &rdev->constraints->state_mem);
766         case PM_SUSPEND_MAX:
767                 return suspend_set_state(rdev,
768                         &rdev->constraints->state_disk);
769         default:
770                 return -EINVAL;
771         }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776         struct regulation_constraints *constraints = rdev->constraints;
777         char buf[80] = "";
778         int count = 0;
779         int ret;
780
781         if (constraints->min_uV && constraints->max_uV) {
782                 if (constraints->min_uV == constraints->max_uV)
783                         count += sprintf(buf + count, "%d mV ",
784                                          constraints->min_uV / 1000);
785                 else
786                         count += sprintf(buf + count, "%d <--> %d mV ",
787                                          constraints->min_uV / 1000,
788                                          constraints->max_uV / 1000);
789         }
790
791         if (!constraints->min_uV ||
792             constraints->min_uV != constraints->max_uV) {
793                 ret = _regulator_get_voltage(rdev);
794                 if (ret > 0)
795                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
796         }
797
798         if (constraints->uV_offset)
799                 count += sprintf(buf, "%dmV offset ",
800                                  constraints->uV_offset / 1000);
801
802         if (constraints->min_uA && constraints->max_uA) {
803                 if (constraints->min_uA == constraints->max_uA)
804                         count += sprintf(buf + count, "%d mA ",
805                                          constraints->min_uA / 1000);
806                 else
807                         count += sprintf(buf + count, "%d <--> %d mA ",
808                                          constraints->min_uA / 1000,
809                                          constraints->max_uA / 1000);
810         }
811
812         if (!constraints->min_uA ||
813             constraints->min_uA != constraints->max_uA) {
814                 ret = _regulator_get_current_limit(rdev);
815                 if (ret > 0)
816                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
817         }
818
819         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820                 count += sprintf(buf + count, "fast ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822                 count += sprintf(buf + count, "normal ");
823         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824                 count += sprintf(buf + count, "idle ");
825         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826                 count += sprintf(buf + count, "standby");
827
828         if (!count)
829                 sprintf(buf, "no parameters");
830
831         rdev_info(rdev, "%s\n", buf);
832
833         if ((constraints->min_uV != constraints->max_uV) &&
834             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835                 rdev_warn(rdev,
836                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840         struct regulation_constraints *constraints)
841 {
842         const struct regulator_ops *ops = rdev->desc->ops;
843         int ret;
844
845         /* do we need to apply the constraint voltage */
846         if (rdev->constraints->apply_uV &&
847             rdev->constraints->min_uV == rdev->constraints->max_uV) {
848                 int current_uV = _regulator_get_voltage(rdev);
849                 if (current_uV < 0) {
850                         rdev_err(rdev,
851                                  "failed to get the current voltage(%d)\n",
852                                  current_uV);
853                         return current_uV;
854                 }
855                 if (current_uV < rdev->constraints->min_uV ||
856                     current_uV > rdev->constraints->max_uV) {
857                         ret = _regulator_do_set_voltage(
858                                 rdev, rdev->constraints->min_uV,
859                                 rdev->constraints->max_uV);
860                         if (ret < 0) {
861                                 rdev_err(rdev,
862                                         "failed to apply %duV constraint(%d)\n",
863                                         rdev->constraints->min_uV, ret);
864                                 return ret;
865                         }
866                 }
867         }
868
869         /* constrain machine-level voltage specs to fit
870          * the actual range supported by this regulator.
871          */
872         if (ops->list_voltage && rdev->desc->n_voltages) {
873                 int     count = rdev->desc->n_voltages;
874                 int     i;
875                 int     min_uV = INT_MAX;
876                 int     max_uV = INT_MIN;
877                 int     cmin = constraints->min_uV;
878                 int     cmax = constraints->max_uV;
879
880                 /* it's safe to autoconfigure fixed-voltage supplies
881                    and the constraints are used by list_voltage. */
882                 if (count == 1 && !cmin) {
883                         cmin = 1;
884                         cmax = INT_MAX;
885                         constraints->min_uV = cmin;
886                         constraints->max_uV = cmax;
887                 }
888
889                 /* voltage constraints are optional */
890                 if ((cmin == 0) && (cmax == 0))
891                         return 0;
892
893                 /* else require explicit machine-level constraints */
894                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895                         rdev_err(rdev, "invalid voltage constraints\n");
896                         return -EINVAL;
897                 }
898
899                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900                 for (i = 0; i < count; i++) {
901                         int     value;
902
903                         value = ops->list_voltage(rdev, i);
904                         if (value <= 0)
905                                 continue;
906
907                         /* maybe adjust [min_uV..max_uV] */
908                         if (value >= cmin && value < min_uV)
909                                 min_uV = value;
910                         if (value <= cmax && value > max_uV)
911                                 max_uV = value;
912                 }
913
914                 /* final: [min_uV..max_uV] valid iff constraints valid */
915                 if (max_uV < min_uV) {
916                         rdev_err(rdev,
917                                  "unsupportable voltage constraints %u-%uuV\n",
918                                  min_uV, max_uV);
919                         return -EINVAL;
920                 }
921
922                 /* use regulator's subset of machine constraints */
923                 if (constraints->min_uV < min_uV) {
924                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925                                  constraints->min_uV, min_uV);
926                         constraints->min_uV = min_uV;
927                 }
928                 if (constraints->max_uV > max_uV) {
929                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930                                  constraints->max_uV, max_uV);
931                         constraints->max_uV = max_uV;
932                 }
933         }
934
935         return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939         struct regulation_constraints *constraints)
940 {
941         const struct regulator_ops *ops = rdev->desc->ops;
942         int ret;
943
944         if (!constraints->min_uA && !constraints->max_uA)
945                 return 0;
946
947         if (constraints->min_uA > constraints->max_uA) {
948                 rdev_err(rdev, "Invalid current constraints\n");
949                 return -EINVAL;
950         }
951
952         if (!ops->set_current_limit || !ops->get_current_limit) {
953                 rdev_warn(rdev, "Operation of current configuration missing\n");
954                 return 0;
955         }
956
957         /* Set regulator current in constraints range */
958         ret = ops->set_current_limit(rdev, constraints->min_uA,
959                         constraints->max_uA);
960         if (ret < 0) {
961                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962                 return ret;
963         }
964
965         return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971  * set_machine_constraints - sets regulator constraints
972  * @rdev: regulator source
973  * @constraints: constraints to apply
974  *
975  * Allows platform initialisation code to define and constrain
976  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977  * Constraints *must* be set by platform code in order for some
978  * regulator operations to proceed i.e. set_voltage, set_current_limit,
979  * set_mode.
980  */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982         const struct regulation_constraints *constraints)
983 {
984         int ret = 0;
985         const struct regulator_ops *ops = rdev->desc->ops;
986
987         if (constraints)
988                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989                                             GFP_KERNEL);
990         else
991                 rdev->constraints = kzalloc(sizeof(*constraints),
992                                             GFP_KERNEL);
993         if (!rdev->constraints)
994                 return -ENOMEM;
995
996         ret = machine_constraints_voltage(rdev, rdev->constraints);
997         if (ret != 0)
998                 goto out;
999
1000         ret = machine_constraints_current(rdev, rdev->constraints);
1001         if (ret != 0)
1002                 goto out;
1003
1004         /* do we need to setup our suspend state */
1005         if (rdev->constraints->initial_state) {
1006                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007                 if (ret < 0) {
1008                         rdev_err(rdev, "failed to set suspend state\n");
1009                         goto out;
1010                 }
1011         }
1012
1013         if (rdev->constraints->initial_mode) {
1014                 if (!ops->set_mode) {
1015                         rdev_err(rdev, "no set_mode operation\n");
1016                         ret = -EINVAL;
1017                         goto out;
1018                 }
1019
1020                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021                 if (ret < 0) {
1022                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023                         goto out;
1024                 }
1025         }
1026
1027         /* If the constraints say the regulator should be on at this point
1028          * and we have control then make sure it is enabled.
1029          */
1030         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031                 ret = _regulator_do_enable(rdev);
1032                 if (ret < 0 && ret != -EINVAL) {
1033                         rdev_err(rdev, "failed to enable\n");
1034                         goto out;
1035                 }
1036         }
1037
1038         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039                 && ops->set_ramp_delay) {
1040                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set ramp_delay\n");
1043                         goto out;
1044                 }
1045         }
1046
1047         print_constraints(rdev);
1048         return 0;
1049 out:
1050         kfree(rdev->constraints);
1051         rdev->constraints = NULL;
1052         return ret;
1053 }
1054
1055 /**
1056  * set_supply - set regulator supply regulator
1057  * @rdev: regulator name
1058  * @supply_rdev: supply regulator name
1059  *
1060  * Called by platform initialisation code to set the supply regulator for this
1061  * regulator. This ensures that a regulators supply will also be enabled by the
1062  * core if it's child is enabled.
1063  */
1064 static int set_supply(struct regulator_dev *rdev,
1065                       struct regulator_dev *supply_rdev)
1066 {
1067         int err;
1068
1069         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072         if (rdev->supply == NULL) {
1073                 err = -ENOMEM;
1074                 return err;
1075         }
1076         supply_rdev->open_count++;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083  * @rdev:         regulator source
1084  * @consumer_dev_name: dev_name() string for device supply applies to
1085  * @supply:       symbolic name for supply
1086  *
1087  * Allows platform initialisation code to map physical regulator
1088  * sources to symbolic names for supplies for use by devices.  Devices
1089  * should use these symbolic names to request regulators, avoiding the
1090  * need to provide board-specific regulator names as platform data.
1091  */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093                                       const char *consumer_dev_name,
1094                                       const char *supply)
1095 {
1096         struct regulator_map *node;
1097         int has_dev;
1098
1099         if (supply == NULL)
1100                 return -EINVAL;
1101
1102         if (consumer_dev_name != NULL)
1103                 has_dev = 1;
1104         else
1105                 has_dev = 0;
1106
1107         list_for_each_entry(node, &regulator_map_list, list) {
1108                 if (node->dev_name && consumer_dev_name) {
1109                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110                                 continue;
1111                 } else if (node->dev_name || consumer_dev_name) {
1112                         continue;
1113                 }
1114
1115                 if (strcmp(node->supply, supply) != 0)
1116                         continue;
1117
1118                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119                          consumer_dev_name,
1120                          dev_name(&node->regulator->dev),
1121                          node->regulator->desc->name,
1122                          supply,
1123                          dev_name(&rdev->dev), rdev_get_name(rdev));
1124                 return -EBUSY;
1125         }
1126
1127         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128         if (node == NULL)
1129                 return -ENOMEM;
1130
1131         node->regulator = rdev;
1132         node->supply = supply;
1133
1134         if (has_dev) {
1135                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136                 if (node->dev_name == NULL) {
1137                         kfree(node);
1138                         return -ENOMEM;
1139                 }
1140         }
1141
1142         list_add(&node->list, &regulator_map_list);
1143         return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148         struct regulator_map *node, *n;
1149
1150         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151                 if (rdev == node->regulator) {
1152                         list_del(&node->list);
1153                         kfree(node->dev_name);
1154                         kfree(node);
1155                 }
1156         }
1157 }
1158
1159 #define REG_STR_SIZE    64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162                                           struct device *dev,
1163                                           const char *supply_name)
1164 {
1165         struct regulator *regulator;
1166         char buf[REG_STR_SIZE];
1167         int err, size;
1168
1169         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170         if (regulator == NULL)
1171                 return NULL;
1172
1173         mutex_lock(&rdev->mutex);
1174         regulator->rdev = rdev;
1175         list_add(&regulator->list, &rdev->consumer_list);
1176
1177         if (dev) {
1178                 regulator->dev = dev;
1179
1180                 /* Add a link to the device sysfs entry */
1181                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182                                  dev->kobj.name, supply_name);
1183                 if (size >= REG_STR_SIZE)
1184                         goto overflow_err;
1185
1186                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189
1190                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191                                         buf);
1192                 if (err) {
1193                         rdev_warn(rdev, "could not add device link %s err %d\n",
1194                                   dev->kobj.name, err);
1195                         /* non-fatal */
1196                 }
1197         } else {
1198                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199                 if (regulator->supply_name == NULL)
1200                         goto overflow_err;
1201         }
1202
1203         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204                                                 rdev->debugfs);
1205         if (!regulator->debugfs) {
1206                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207         } else {
1208                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209                                    &regulator->uA_load);
1210                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211                                    &regulator->min_uV);
1212                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213                                    &regulator->max_uV);
1214         }
1215
1216         /*
1217          * Check now if the regulator is an always on regulator - if
1218          * it is then we don't need to do nearly so much work for
1219          * enable/disable calls.
1220          */
1221         if (!_regulator_can_change_status(rdev) &&
1222             _regulator_is_enabled(rdev))
1223                 regulator->always_on = true;
1224
1225         mutex_unlock(&rdev->mutex);
1226         return regulator;
1227 overflow_err:
1228         list_del(&regulator->list);
1229         kfree(regulator);
1230         mutex_unlock(&rdev->mutex);
1231         return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236         if (rdev->constraints && rdev->constraints->enable_time)
1237                 return rdev->constraints->enable_time;
1238         if (!rdev->desc->ops->enable_time)
1239                 return rdev->desc->enable_time;
1240         return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244                 struct device *dev, const char *supply)
1245 {
1246         struct regulator_supply_alias *map;
1247
1248         list_for_each_entry(map, &regulator_supply_alias_list, list)
1249                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250                         return map;
1251
1252         return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257         struct regulator_supply_alias *map;
1258
1259         map = regulator_find_supply_alias(*dev, *supply);
1260         if (map) {
1261                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262                                 *supply, map->alias_supply,
1263                                 dev_name(map->alias_dev));
1264                 *dev = map->alias_dev;
1265                 *supply = map->alias_supply;
1266         }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270                                                   const char *supply,
1271                                                   int *ret)
1272 {
1273         struct regulator_dev *r;
1274         struct device_node *node;
1275         struct regulator_map *map;
1276         const char *devname = NULL;
1277
1278         regulator_supply_alias(&dev, &supply);
1279
1280         /* first do a dt based lookup */
1281         if (dev && dev->of_node) {
1282                 node = of_get_regulator(dev, supply);
1283                 if (node) {
1284                         list_for_each_entry(r, &regulator_list, list)
1285                                 if (r->dev.parent &&
1286                                         node == r->dev.of_node)
1287                                         return r;
1288                         *ret = -EPROBE_DEFER;
1289                         return NULL;
1290                 } else {
1291                         /*
1292                          * If we couldn't even get the node then it's
1293                          * not just that the device didn't register
1294                          * yet, there's no node and we'll never
1295                          * succeed.
1296                          */
1297                         *ret = -ENODEV;
1298                 }
1299         }
1300
1301         /* if not found, try doing it non-dt way */
1302         if (dev)
1303                 devname = dev_name(dev);
1304
1305         list_for_each_entry(r, &regulator_list, list)
1306                 if (strcmp(rdev_get_name(r), supply) == 0)
1307                         return r;
1308
1309         list_for_each_entry(map, &regulator_map_list, list) {
1310                 /* If the mapping has a device set up it must match */
1311                 if (map->dev_name &&
1312                     (!devname || strcmp(map->dev_name, devname)))
1313                         continue;
1314
1315                 if (strcmp(map->supply, supply) == 0)
1316                         return map->regulator;
1317         }
1318
1319
1320         return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325                                         bool exclusive, bool allow_dummy)
1326 {
1327         struct regulator_dev *rdev;
1328         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329         const char *devname = NULL;
1330         int ret;
1331
1332         if (id == NULL) {
1333                 pr_err("get() with no identifier\n");
1334                 return ERR_PTR(-EINVAL);
1335         }
1336
1337         if (dev)
1338                 devname = dev_name(dev);
1339
1340         if (have_full_constraints())
1341                 ret = -ENODEV;
1342         else
1343                 ret = -EPROBE_DEFER;
1344
1345         mutex_lock(&regulator_list_mutex);
1346
1347         rdev = regulator_dev_lookup(dev, id, &ret);
1348         if (rdev)
1349                 goto found;
1350
1351         regulator = ERR_PTR(ret);
1352
1353         /*
1354          * If we have return value from dev_lookup fail, we do not expect to
1355          * succeed, so, quit with appropriate error value
1356          */
1357         if (ret && ret != -ENODEV)
1358                 goto out;
1359
1360         if (!devname)
1361                 devname = "deviceless";
1362
1363         /*
1364          * Assume that a regulator is physically present and enabled
1365          * even if it isn't hooked up and just provide a dummy.
1366          */
1367         if (have_full_constraints() && allow_dummy) {
1368                 pr_warn("%s supply %s not found, using dummy regulator\n",
1369                         devname, id);
1370
1371                 rdev = dummy_regulator_rdev;
1372                 goto found;
1373         /* Don't log an error when called from regulator_get_optional() */
1374         } else if (!have_full_constraints() || exclusive) {
1375                 dev_warn(dev, "dummy supplies not allowed\n");
1376         }
1377
1378         mutex_unlock(&regulator_list_mutex);
1379         return regulator;
1380
1381 found:
1382         if (rdev->exclusive) {
1383                 regulator = ERR_PTR(-EPERM);
1384                 goto out;
1385         }
1386
1387         if (exclusive && rdev->open_count) {
1388                 regulator = ERR_PTR(-EBUSY);
1389                 goto out;
1390         }
1391
1392         if (!try_module_get(rdev->owner))
1393                 goto out;
1394
1395         regulator = create_regulator(rdev, dev, id);
1396         if (regulator == NULL) {
1397                 regulator = ERR_PTR(-ENOMEM);
1398                 module_put(rdev->owner);
1399                 goto out;
1400         }
1401
1402         rdev->open_count++;
1403         if (exclusive) {
1404                 rdev->exclusive = 1;
1405
1406                 ret = _regulator_is_enabled(rdev);
1407                 if (ret > 0)
1408                         rdev->use_count = 1;
1409                 else
1410                         rdev->use_count = 0;
1411         }
1412
1413 out:
1414         mutex_unlock(&regulator_list_mutex);
1415
1416         return regulator;
1417 }
1418
1419 /**
1420  * regulator_get - lookup and obtain a reference to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.
1426  *
1427  * Use of supply names configured via regulator_set_device_supply() is
1428  * strongly encouraged.  It is recommended that the supply name used
1429  * should match the name used for the supply and/or the relevant
1430  * device pins in the datasheet.
1431  */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434         return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439  * regulator_get_exclusive - obtain exclusive access to a regulator.
1440  * @dev: device for regulator "consumer"
1441  * @id: Supply name or regulator ID.
1442  *
1443  * Returns a struct regulator corresponding to the regulator producer,
1444  * or IS_ERR() condition containing errno.  Other consumers will be
1445  * unable to obtain this regulator while this reference is held and the
1446  * use count for the regulator will be initialised to reflect the current
1447  * state of the regulator.
1448  *
1449  * This is intended for use by consumers which cannot tolerate shared
1450  * use of the regulator such as those which need to force the
1451  * regulator off for correct operation of the hardware they are
1452  * controlling.
1453  *
1454  * Use of supply names configured via regulator_set_device_supply() is
1455  * strongly encouraged.  It is recommended that the supply name used
1456  * should match the name used for the supply and/or the relevant
1457  * device pins in the datasheet.
1458  */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461         return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466  * regulator_get_optional - obtain optional access to a regulator.
1467  * @dev: device for regulator "consumer"
1468  * @id: Supply name or regulator ID.
1469  *
1470  * Returns a struct regulator corresponding to the regulator producer,
1471  * or IS_ERR() condition containing errno.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487         return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494         struct regulator_dev *rdev;
1495
1496         if (regulator == NULL || IS_ERR(regulator))
1497                 return;
1498
1499         rdev = regulator->rdev;
1500
1501         debugfs_remove_recursive(regulator->debugfs);
1502
1503         /* remove any sysfs entries */
1504         if (regulator->dev)
1505                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506         kfree(regulator->supply_name);
1507         list_del(&regulator->list);
1508         kfree(regulator);
1509
1510         rdev->open_count--;
1511         rdev->exclusive = 0;
1512
1513         module_put(rdev->owner);
1514 }
1515
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526         mutex_lock(&regulator_list_mutex);
1527         _regulator_put(regulator);
1528         mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                     struct device *alias_dev,
1546                                     const char *alias_id)
1547 {
1548         struct regulator_supply_alias *map;
1549
1550         map = regulator_find_supply_alias(dev, id);
1551         if (map)
1552                 return -EEXIST;
1553
1554         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555         if (!map)
1556                 return -ENOMEM;
1557
1558         map->src_dev = dev;
1559         map->src_supply = id;
1560         map->alias_dev = alias_dev;
1561         map->alias_supply = alias_id;
1562
1563         list_add(&map->list, &regulator_supply_alias_list);
1564
1565         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568         return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582         struct regulator_supply_alias *map;
1583
1584         map = regulator_find_supply_alias(dev, id);
1585         if (map) {
1586                 list_del(&map->list);
1587                 kfree(map);
1588         }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610                                          const char *const *id,
1611                                          struct device *alias_dev,
1612                                          const char *const *alias_id,
1613                                          int num_id)
1614 {
1615         int i;
1616         int ret;
1617
1618         for (i = 0; i < num_id; ++i) {
1619                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620                                                       alias_id[i]);
1621                 if (ret < 0)
1622                         goto err;
1623         }
1624
1625         return 0;
1626
1627 err:
1628         dev_err(dev,
1629                 "Failed to create supply alias %s,%s -> %s,%s\n",
1630                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632         while (--i >= 0)
1633                 regulator_unregister_supply_alias(dev, id[i]);
1634
1635         return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641  *
1642  * @dev: device that will be given as the regulator "consumer"
1643  * @id: List of supply names or regulator IDs
1644  * @num_id: Number of aliases to unregister
1645  *
1646  * This helper function allows drivers to unregister several supply
1647  * aliases in one operation.
1648  */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650                                             const char *const *id,
1651                                             int num_id)
1652 {
1653         int i;
1654
1655         for (i = 0; i < num_id; ++i)
1656                 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663                                 const struct regulator_config *config)
1664 {
1665         struct regulator_enable_gpio *pin;
1666         struct gpio_desc *gpiod;
1667         int ret;
1668
1669         gpiod = gpio_to_desc(config->ena_gpio);
1670
1671         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672                 if (pin->gpiod == gpiod) {
1673                         rdev_dbg(rdev, "GPIO %d is already used\n",
1674                                 config->ena_gpio);
1675                         goto update_ena_gpio_to_rdev;
1676                 }
1677         }
1678
1679         ret = gpio_request_one(config->ena_gpio,
1680                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681                                 rdev_get_name(rdev));
1682         if (ret)
1683                 return ret;
1684
1685         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686         if (pin == NULL) {
1687                 gpio_free(config->ena_gpio);
1688                 return -ENOMEM;
1689         }
1690
1691         pin->gpiod = gpiod;
1692         pin->ena_gpio_invert = config->ena_gpio_invert;
1693         list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696         pin->request_count++;
1697         rdev->ena_pin = pin;
1698         return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703         struct regulator_enable_gpio *pin, *n;
1704
1705         if (!rdev->ena_pin)
1706                 return;
1707
1708         /* Free the GPIO only in case of no use */
1709         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711                         if (pin->request_count <= 1) {
1712                                 pin->request_count = 0;
1713                                 gpiod_put(pin->gpiod);
1714                                 list_del(&pin->list);
1715                                 kfree(pin);
1716                         } else {
1717                                 pin->request_count--;
1718                         }
1719                 }
1720         }
1721 }
1722
1723 /**
1724  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725  * @rdev: regulator_dev structure
1726  * @enable: enable GPIO at initial use?
1727  *
1728  * GPIO is enabled in case of initial use. (enable_count is 0)
1729  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730  */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733         struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735         if (!pin)
1736                 return -EINVAL;
1737
1738         if (enable) {
1739                 /* Enable GPIO at initial use */
1740                 if (pin->enable_count == 0)
1741                         gpiod_set_value_cansleep(pin->gpiod,
1742                                                  !pin->ena_gpio_invert);
1743
1744                 pin->enable_count++;
1745         } else {
1746                 if (pin->enable_count > 1) {
1747                         pin->enable_count--;
1748                         return 0;
1749                 }
1750
1751                 /* Disable GPIO if not used */
1752                 if (pin->enable_count <= 1) {
1753                         gpiod_set_value_cansleep(pin->gpiod,
1754                                                  pin->ena_gpio_invert);
1755                         pin->enable_count = 0;
1756                 }
1757         }
1758
1759         return 0;
1760 }
1761
1762 /**
1763  * _regulator_enable_delay - a delay helper function
1764  * @delay: time to delay in microseconds
1765  *
1766  * Delay for the requested amount of time as per the guidelines in:
1767  *
1768  *     Documentation/timers/timers-howto.txt
1769  *
1770  * The assumption here is that regulators will never be enabled in
1771  * atomic context and therefore sleeping functions can be used.
1772  */
1773 static void _regulator_enable_delay(unsigned int delay)
1774 {
1775         unsigned int ms = delay / 1000;
1776         unsigned int us = delay % 1000;
1777
1778         if (ms > 0) {
1779                 /*
1780                  * For small enough values, handle super-millisecond
1781                  * delays in the usleep_range() call below.
1782                  */
1783                 if (ms < 20)
1784                         us += ms * 1000;
1785                 else
1786                         msleep(ms);
1787         }
1788
1789         /*
1790          * Give the scheduler some room to coalesce with any other
1791          * wakeup sources. For delays shorter than 10 us, don't even
1792          * bother setting up high-resolution timers and just busy-
1793          * loop.
1794          */
1795         if (us >= 10)
1796                 usleep_range(us, us + 100);
1797         else
1798                 udelay(us);
1799 }
1800
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1802 {
1803         int ret, delay;
1804
1805         /* Query before enabling in case configuration dependent.  */
1806         ret = _regulator_get_enable_time(rdev);
1807         if (ret >= 0) {
1808                 delay = ret;
1809         } else {
1810                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811                 delay = 0;
1812         }
1813
1814         trace_regulator_enable(rdev_get_name(rdev));
1815
1816         if (rdev->desc->off_on_delay) {
1817                 /* if needed, keep a distance of off_on_delay from last time
1818                  * this regulator was disabled.
1819                  */
1820                 unsigned long start_jiffy = jiffies;
1821                 unsigned long intended, max_delay, remaining;
1822
1823                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824                 intended = rdev->last_off_jiffy + max_delay;
1825
1826                 if (time_before(start_jiffy, intended)) {
1827                         /* calc remaining jiffies to deal with one-time
1828                          * timer wrapping.
1829                          * in case of multiple timer wrapping, either it can be
1830                          * detected by out-of-range remaining, or it cannot be
1831                          * detected and we gets a panelty of
1832                          * _regulator_enable_delay().
1833                          */
1834                         remaining = intended - start_jiffy;
1835                         if (remaining <= max_delay)
1836                                 _regulator_enable_delay(
1837                                                 jiffies_to_usecs(remaining));
1838                 }
1839         }
1840
1841         if (rdev->ena_pin) {
1842                 ret = regulator_ena_gpio_ctrl(rdev, true);
1843                 if (ret < 0)
1844                         return ret;
1845                 rdev->ena_gpio_state = 1;
1846         } else if (rdev->desc->ops->enable) {
1847                 ret = rdev->desc->ops->enable(rdev);
1848                 if (ret < 0)
1849                         return ret;
1850         } else {
1851                 return -EINVAL;
1852         }
1853
1854         /* Allow the regulator to ramp; it would be useful to extend
1855          * this for bulk operations so that the regulators can ramp
1856          * together.  */
1857         trace_regulator_enable_delay(rdev_get_name(rdev));
1858
1859         _regulator_enable_delay(delay);
1860
1861         trace_regulator_enable_complete(rdev_get_name(rdev));
1862
1863         return 0;
1864 }
1865
1866 /* locks held by regulator_enable() */
1867 static int _regulator_enable(struct regulator_dev *rdev)
1868 {
1869         int ret;
1870
1871         /* check voltage and requested load before enabling */
1872         if (rdev->constraints &&
1873             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874                 drms_uA_update(rdev);
1875
1876         if (rdev->use_count == 0) {
1877                 /* The regulator may on if it's not switchable or left on */
1878                 ret = _regulator_is_enabled(rdev);
1879                 if (ret == -EINVAL || ret == 0) {
1880                         if (!_regulator_can_change_status(rdev))
1881                                 return -EPERM;
1882
1883                         ret = _regulator_do_enable(rdev);
1884                         if (ret < 0)
1885                                 return ret;
1886
1887                 } else if (ret < 0) {
1888                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889                         return ret;
1890                 }
1891                 /* Fallthrough on positive return values - already enabled */
1892         }
1893
1894         rdev->use_count++;
1895
1896         return 0;
1897 }
1898
1899 /**
1900  * regulator_enable - enable regulator output
1901  * @regulator: regulator source
1902  *
1903  * Request that the regulator be enabled with the regulator output at
1904  * the predefined voltage or current value.  Calls to regulator_enable()
1905  * must be balanced with calls to regulator_disable().
1906  *
1907  * NOTE: the output value can be set by other drivers, boot loader or may be
1908  * hardwired in the regulator.
1909  */
1910 int regulator_enable(struct regulator *regulator)
1911 {
1912         struct regulator_dev *rdev = regulator->rdev;
1913         int ret = 0;
1914
1915         if (regulator->always_on)
1916                 return 0;
1917
1918         if (rdev->supply) {
1919                 ret = regulator_enable(rdev->supply);
1920                 if (ret != 0)
1921                         return ret;
1922         }
1923
1924         mutex_lock(&rdev->mutex);
1925         ret = _regulator_enable(rdev);
1926         mutex_unlock(&rdev->mutex);
1927
1928         if (ret != 0 && rdev->supply)
1929                 regulator_disable(rdev->supply);
1930
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(regulator_enable);
1934
1935 static int _regulator_do_disable(struct regulator_dev *rdev)
1936 {
1937         int ret;
1938
1939         trace_regulator_disable(rdev_get_name(rdev));
1940
1941         if (rdev->ena_pin) {
1942                 ret = regulator_ena_gpio_ctrl(rdev, false);
1943                 if (ret < 0)
1944                         return ret;
1945                 rdev->ena_gpio_state = 0;
1946
1947         } else if (rdev->desc->ops->disable) {
1948                 ret = rdev->desc->ops->disable(rdev);
1949                 if (ret != 0)
1950                         return ret;
1951         }
1952
1953         /* cares about last_off_jiffy only if off_on_delay is required by
1954          * device.
1955          */
1956         if (rdev->desc->off_on_delay)
1957                 rdev->last_off_jiffy = jiffies;
1958
1959         trace_regulator_disable_complete(rdev_get_name(rdev));
1960
1961         return 0;
1962 }
1963
1964 /* locks held by regulator_disable() */
1965 static int _regulator_disable(struct regulator_dev *rdev)
1966 {
1967         int ret = 0;
1968
1969         if (WARN(rdev->use_count <= 0,
1970                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1971                 return -EIO;
1972
1973         /* are we the last user and permitted to disable ? */
1974         if (rdev->use_count == 1 &&
1975             (rdev->constraints && !rdev->constraints->always_on)) {
1976
1977                 /* we are last user */
1978                 if (_regulator_can_change_status(rdev)) {
1979                         ret = _regulator_do_disable(rdev);
1980                         if (ret < 0) {
1981                                 rdev_err(rdev, "failed to disable\n");
1982                                 return ret;
1983                         }
1984                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1985                                         NULL);
1986                 }
1987
1988                 rdev->use_count = 0;
1989         } else if (rdev->use_count > 1) {
1990
1991                 if (rdev->constraints &&
1992                         (rdev->constraints->valid_ops_mask &
1993                         REGULATOR_CHANGE_DRMS))
1994                         drms_uA_update(rdev);
1995
1996                 rdev->use_count--;
1997         }
1998
1999         return ret;
2000 }
2001
2002 /**
2003  * regulator_disable - disable regulator output
2004  * @regulator: regulator source
2005  *
2006  * Disable the regulator output voltage or current.  Calls to
2007  * regulator_enable() must be balanced with calls to
2008  * regulator_disable().
2009  *
2010  * NOTE: this will only disable the regulator output if no other consumer
2011  * devices have it enabled, the regulator device supports disabling and
2012  * machine constraints permit this operation.
2013  */
2014 int regulator_disable(struct regulator *regulator)
2015 {
2016         struct regulator_dev *rdev = regulator->rdev;
2017         int ret = 0;
2018
2019         if (regulator->always_on)
2020                 return 0;
2021
2022         mutex_lock(&rdev->mutex);
2023         ret = _regulator_disable(rdev);
2024         mutex_unlock(&rdev->mutex);
2025
2026         if (ret == 0 && rdev->supply)
2027                 regulator_disable(rdev->supply);
2028
2029         return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_disable);
2032
2033 /* locks held by regulator_force_disable() */
2034 static int _regulator_force_disable(struct regulator_dev *rdev)
2035 {
2036         int ret = 0;
2037
2038         ret = _regulator_do_disable(rdev);
2039         if (ret < 0) {
2040                 rdev_err(rdev, "failed to force disable\n");
2041                 return ret;
2042         }
2043
2044         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2045                         REGULATOR_EVENT_DISABLE, NULL);
2046
2047         return 0;
2048 }
2049
2050 /**
2051  * regulator_force_disable - force disable regulator output
2052  * @regulator: regulator source
2053  *
2054  * Forcibly disable the regulator output voltage or current.
2055  * NOTE: this *will* disable the regulator output even if other consumer
2056  * devices have it enabled. This should be used for situations when device
2057  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2058  */
2059 int regulator_force_disable(struct regulator *regulator)
2060 {
2061         struct regulator_dev *rdev = regulator->rdev;
2062         int ret;
2063
2064         mutex_lock(&rdev->mutex);
2065         regulator->uA_load = 0;
2066         ret = _regulator_force_disable(regulator->rdev);
2067         mutex_unlock(&rdev->mutex);
2068
2069         if (rdev->supply)
2070                 while (rdev->open_count--)
2071                         regulator_disable(rdev->supply);
2072
2073         return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(regulator_force_disable);
2076
2077 static void regulator_disable_work(struct work_struct *work)
2078 {
2079         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2080                                                   disable_work.work);
2081         int count, i, ret;
2082
2083         mutex_lock(&rdev->mutex);
2084
2085         BUG_ON(!rdev->deferred_disables);
2086
2087         count = rdev->deferred_disables;
2088         rdev->deferred_disables = 0;
2089
2090         for (i = 0; i < count; i++) {
2091                 ret = _regulator_disable(rdev);
2092                 if (ret != 0)
2093                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2094         }
2095
2096         mutex_unlock(&rdev->mutex);
2097
2098         if (rdev->supply) {
2099                 for (i = 0; i < count; i++) {
2100                         ret = regulator_disable(rdev->supply);
2101                         if (ret != 0) {
2102                                 rdev_err(rdev,
2103                                          "Supply disable failed: %d\n", ret);
2104                         }
2105                 }
2106         }
2107 }
2108
2109 /**
2110  * regulator_disable_deferred - disable regulator output with delay
2111  * @regulator: regulator source
2112  * @ms: miliseconds until the regulator is disabled
2113  *
2114  * Execute regulator_disable() on the regulator after a delay.  This
2115  * is intended for use with devices that require some time to quiesce.
2116  *
2117  * NOTE: this will only disable the regulator output if no other consumer
2118  * devices have it enabled, the regulator device supports disabling and
2119  * machine constraints permit this operation.
2120  */
2121 int regulator_disable_deferred(struct regulator *regulator, int ms)
2122 {
2123         struct regulator_dev *rdev = regulator->rdev;
2124         int ret;
2125
2126         if (regulator->always_on)
2127                 return 0;
2128
2129         if (!ms)
2130                 return regulator_disable(regulator);
2131
2132         mutex_lock(&rdev->mutex);
2133         rdev->deferred_disables++;
2134         mutex_unlock(&rdev->mutex);
2135
2136         ret = queue_delayed_work(system_power_efficient_wq,
2137                                  &rdev->disable_work,
2138                                  msecs_to_jiffies(ms));
2139         if (ret < 0)
2140                 return ret;
2141         else
2142                 return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2145
2146 static int _regulator_is_enabled(struct regulator_dev *rdev)
2147 {
2148         /* A GPIO control always takes precedence */
2149         if (rdev->ena_pin)
2150                 return rdev->ena_gpio_state;
2151
2152         /* If we don't know then assume that the regulator is always on */
2153         if (!rdev->desc->ops->is_enabled)
2154                 return 1;
2155
2156         return rdev->desc->ops->is_enabled(rdev);
2157 }
2158
2159 /**
2160  * regulator_is_enabled - is the regulator output enabled
2161  * @regulator: regulator source
2162  *
2163  * Returns positive if the regulator driver backing the source/client
2164  * has requested that the device be enabled, zero if it hasn't, else a
2165  * negative errno code.
2166  *
2167  * Note that the device backing this regulator handle can have multiple
2168  * users, so it might be enabled even if regulator_enable() was never
2169  * called for this particular source.
2170  */
2171 int regulator_is_enabled(struct regulator *regulator)
2172 {
2173         int ret;
2174
2175         if (regulator->always_on)
2176                 return 1;
2177
2178         mutex_lock(&regulator->rdev->mutex);
2179         ret = _regulator_is_enabled(regulator->rdev);
2180         mutex_unlock(&regulator->rdev->mutex);
2181
2182         return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2185
2186 /**
2187  * regulator_can_change_voltage - check if regulator can change voltage
2188  * @regulator: regulator source
2189  *
2190  * Returns positive if the regulator driver backing the source/client
2191  * can change its voltage, false otherwise. Useful for detecting fixed
2192  * or dummy regulators and disabling voltage change logic in the client
2193  * driver.
2194  */
2195 int regulator_can_change_voltage(struct regulator *regulator)
2196 {
2197         struct regulator_dev    *rdev = regulator->rdev;
2198
2199         if (rdev->constraints &&
2200             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2201                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2202                         return 1;
2203
2204                 if (rdev->desc->continuous_voltage_range &&
2205                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2206                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2207                         return 1;
2208         }
2209
2210         return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2213
2214 /**
2215  * regulator_count_voltages - count regulator_list_voltage() selectors
2216  * @regulator: regulator source
2217  *
2218  * Returns number of selectors, or negative errno.  Selectors are
2219  * numbered starting at zero, and typically correspond to bitfields
2220  * in hardware registers.
2221  */
2222 int regulator_count_voltages(struct regulator *regulator)
2223 {
2224         struct regulator_dev    *rdev = regulator->rdev;
2225
2226         if (rdev->desc->n_voltages)
2227                 return rdev->desc->n_voltages;
2228
2229         if (!rdev->supply)
2230                 return -EINVAL;
2231
2232         return regulator_count_voltages(rdev->supply);
2233 }
2234 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2235
2236 /**
2237  * regulator_list_voltage - enumerate supported voltages
2238  * @regulator: regulator source
2239  * @selector: identify voltage to list
2240  * Context: can sleep
2241  *
2242  * Returns a voltage that can be passed to @regulator_set_voltage(),
2243  * zero if this selector code can't be used on this system, or a
2244  * negative errno.
2245  */
2246 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2247 {
2248         struct regulator_dev *rdev = regulator->rdev;
2249         const struct regulator_ops *ops = rdev->desc->ops;
2250         int ret;
2251
2252         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2253                 return rdev->desc->fixed_uV;
2254
2255         if (ops->list_voltage) {
2256                 if (selector >= rdev->desc->n_voltages)
2257                         return -EINVAL;
2258                 mutex_lock(&rdev->mutex);
2259                 ret = ops->list_voltage(rdev, selector);
2260                 mutex_unlock(&rdev->mutex);
2261         } else if (rdev->supply) {
2262                 ret = regulator_list_voltage(rdev->supply, selector);
2263         } else {
2264                 return -EINVAL;
2265         }
2266
2267         if (ret > 0) {
2268                 if (ret < rdev->constraints->min_uV)
2269                         ret = 0;
2270                 else if (ret > rdev->constraints->max_uV)
2271                         ret = 0;
2272         }
2273
2274         return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2277
2278 /**
2279  * regulator_get_regmap - get the regulator's register map
2280  * @regulator: regulator source
2281  *
2282  * Returns the register map for the given regulator, or an ERR_PTR value
2283  * if the regulator doesn't use regmap.
2284  */
2285 struct regmap *regulator_get_regmap(struct regulator *regulator)
2286 {
2287         struct regmap *map = regulator->rdev->regmap;
2288
2289         return map ? map : ERR_PTR(-EOPNOTSUPP);
2290 }
2291
2292 /**
2293  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2294  * @regulator: regulator source
2295  * @vsel_reg: voltage selector register, output parameter
2296  * @vsel_mask: mask for voltage selector bitfield, output parameter
2297  *
2298  * Returns the hardware register offset and bitmask used for setting the
2299  * regulator voltage. This might be useful when configuring voltage-scaling
2300  * hardware or firmware that can make I2C requests behind the kernel's back,
2301  * for example.
2302  *
2303  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2304  * and 0 is returned, otherwise a negative errno is returned.
2305  */
2306 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2307                                          unsigned *vsel_reg,
2308                                          unsigned *vsel_mask)
2309 {
2310         struct regulator_dev *rdev = regulator->rdev;
2311         const struct regulator_ops *ops = rdev->desc->ops;
2312
2313         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2314                 return -EOPNOTSUPP;
2315
2316          *vsel_reg = rdev->desc->vsel_reg;
2317          *vsel_mask = rdev->desc->vsel_mask;
2318
2319          return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2322
2323 /**
2324  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2325  * @regulator: regulator source
2326  * @selector: identify voltage to list
2327  *
2328  * Converts the selector to a hardware-specific voltage selector that can be
2329  * directly written to the regulator registers. The address of the voltage
2330  * register can be determined by calling @regulator_get_hardware_vsel_register.
2331  *
2332  * On error a negative errno is returned.
2333  */
2334 int regulator_list_hardware_vsel(struct regulator *regulator,
2335                                  unsigned selector)
2336 {
2337         struct regulator_dev *rdev = regulator->rdev;
2338         const struct regulator_ops *ops = rdev->desc->ops;
2339
2340         if (selector >= rdev->desc->n_voltages)
2341                 return -EINVAL;
2342         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2343                 return -EOPNOTSUPP;
2344
2345         return selector;
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2348
2349 /**
2350  * regulator_get_linear_step - return the voltage step size between VSEL values
2351  * @regulator: regulator source
2352  *
2353  * Returns the voltage step size between VSEL values for linear
2354  * regulators, or return 0 if the regulator isn't a linear regulator.
2355  */
2356 unsigned int regulator_get_linear_step(struct regulator *regulator)
2357 {
2358         struct regulator_dev *rdev = regulator->rdev;
2359
2360         return rdev->desc->uV_step;
2361 }
2362 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2363
2364 /**
2365  * regulator_is_supported_voltage - check if a voltage range can be supported
2366  *
2367  * @regulator: Regulator to check.
2368  * @min_uV: Minimum required voltage in uV.
2369  * @max_uV: Maximum required voltage in uV.
2370  *
2371  * Returns a boolean or a negative error code.
2372  */
2373 int regulator_is_supported_voltage(struct regulator *regulator,
2374                                    int min_uV, int max_uV)
2375 {
2376         struct regulator_dev *rdev = regulator->rdev;
2377         int i, voltages, ret;
2378
2379         /* If we can't change voltage check the current voltage */
2380         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2381                 ret = regulator_get_voltage(regulator);
2382                 if (ret >= 0)
2383                         return min_uV <= ret && ret <= max_uV;
2384                 else
2385                         return ret;
2386         }
2387
2388         /* Any voltage within constrains range is fine? */
2389         if (rdev->desc->continuous_voltage_range)
2390                 return min_uV >= rdev->constraints->min_uV &&
2391                                 max_uV <= rdev->constraints->max_uV;
2392
2393         ret = regulator_count_voltages(regulator);
2394         if (ret < 0)
2395                 return ret;
2396         voltages = ret;
2397
2398         for (i = 0; i < voltages; i++) {
2399                 ret = regulator_list_voltage(regulator, i);
2400
2401                 if (ret >= min_uV && ret <= max_uV)
2402                         return 1;
2403         }
2404
2405         return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2408
2409 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2410                                      int min_uV, int max_uV)
2411 {
2412         int ret;
2413         int delay = 0;
2414         int best_val = 0;
2415         unsigned int selector;
2416         int old_selector = -1;
2417
2418         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2419
2420         min_uV += rdev->constraints->uV_offset;
2421         max_uV += rdev->constraints->uV_offset;
2422
2423         /*
2424          * If we can't obtain the old selector there is not enough
2425          * info to call set_voltage_time_sel().
2426          */
2427         if (_regulator_is_enabled(rdev) &&
2428             rdev->desc->ops->set_voltage_time_sel &&
2429             rdev->desc->ops->get_voltage_sel) {
2430                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2431                 if (old_selector < 0)
2432                         return old_selector;
2433         }
2434
2435         if (rdev->desc->ops->set_voltage) {
2436                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2437                                                    &selector);
2438
2439                 if (ret >= 0) {
2440                         if (rdev->desc->ops->list_voltage)
2441                                 best_val = rdev->desc->ops->list_voltage(rdev,
2442                                                                          selector);
2443                         else
2444                                 best_val = _regulator_get_voltage(rdev);
2445                 }
2446
2447         } else if (rdev->desc->ops->set_voltage_sel) {
2448                 if (rdev->desc->ops->map_voltage) {
2449                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2450                                                            max_uV);
2451                 } else {
2452                         if (rdev->desc->ops->list_voltage ==
2453                             regulator_list_voltage_linear)
2454                                 ret = regulator_map_voltage_linear(rdev,
2455                                                                 min_uV, max_uV);
2456                         else if (rdev->desc->ops->list_voltage ==
2457                                  regulator_list_voltage_linear_range)
2458                                 ret = regulator_map_voltage_linear_range(rdev,
2459                                                                 min_uV, max_uV);
2460                         else
2461                                 ret = regulator_map_voltage_iterate(rdev,
2462                                                                 min_uV, max_uV);
2463                 }
2464
2465                 if (ret >= 0) {
2466                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2467                         if (min_uV <= best_val && max_uV >= best_val) {
2468                                 selector = ret;
2469                                 if (old_selector == selector)
2470                                         ret = 0;
2471                                 else
2472                                         ret = rdev->desc->ops->set_voltage_sel(
2473                                                                 rdev, ret);
2474                         } else {
2475                                 ret = -EINVAL;
2476                         }
2477                 }
2478         } else {
2479                 ret = -EINVAL;
2480         }
2481
2482         /* Call set_voltage_time_sel if successfully obtained old_selector */
2483         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2484                 && old_selector != selector) {
2485
2486                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2487                                                 old_selector, selector);
2488                 if (delay < 0) {
2489                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2490                                   delay);
2491                         delay = 0;
2492                 }
2493
2494                 /* Insert any necessary delays */
2495                 if (delay >= 1000) {
2496                         mdelay(delay / 1000);
2497                         udelay(delay % 1000);
2498                 } else if (delay) {
2499                         udelay(delay);
2500                 }
2501         }
2502
2503         if (ret == 0 && best_val >= 0) {
2504                 unsigned long data = best_val;
2505
2506                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2507                                      (void *)data);
2508         }
2509
2510         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2511
2512         return ret;
2513 }
2514
2515 /**
2516  * regulator_set_voltage - set regulator output voltage
2517  * @regulator: regulator source
2518  * @min_uV: Minimum required voltage in uV
2519  * @max_uV: Maximum acceptable voltage in uV
2520  *
2521  * Sets a voltage regulator to the desired output voltage. This can be set
2522  * during any regulator state. IOW, regulator can be disabled or enabled.
2523  *
2524  * If the regulator is enabled then the voltage will change to the new value
2525  * immediately otherwise if the regulator is disabled the regulator will
2526  * output at the new voltage when enabled.
2527  *
2528  * NOTE: If the regulator is shared between several devices then the lowest
2529  * request voltage that meets the system constraints will be used.
2530  * Regulator system constraints must be set for this regulator before
2531  * calling this function otherwise this call will fail.
2532  */
2533 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2534 {
2535         struct regulator_dev *rdev = regulator->rdev;
2536         int ret = 0;
2537         int old_min_uV, old_max_uV;
2538         int current_uV;
2539
2540         mutex_lock(&rdev->mutex);
2541
2542         /* If we're setting the same range as last time the change
2543          * should be a noop (some cpufreq implementations use the same
2544          * voltage for multiple frequencies, for example).
2545          */
2546         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2547                 goto out;
2548
2549         /* If we're trying to set a range that overlaps the current voltage,
2550          * return succesfully even though the regulator does not support
2551          * changing the voltage.
2552          */
2553         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2554                 current_uV = _regulator_get_voltage(rdev);
2555                 if (min_uV <= current_uV && current_uV <= max_uV) {
2556                         regulator->min_uV = min_uV;
2557                         regulator->max_uV = max_uV;
2558                         goto out;
2559                 }
2560         }
2561
2562         /* sanity check */
2563         if (!rdev->desc->ops->set_voltage &&
2564             !rdev->desc->ops->set_voltage_sel) {
2565                 ret = -EINVAL;
2566                 goto out;
2567         }
2568
2569         /* constraints check */
2570         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2571         if (ret < 0)
2572                 goto out;
2573
2574         /* restore original values in case of error */
2575         old_min_uV = regulator->min_uV;
2576         old_max_uV = regulator->max_uV;
2577         regulator->min_uV = min_uV;
2578         regulator->max_uV = max_uV;
2579
2580         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2581         if (ret < 0)
2582                 goto out2;
2583
2584         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2585         if (ret < 0)
2586                 goto out2;
2587
2588 out:
2589         mutex_unlock(&rdev->mutex);
2590         return ret;
2591 out2:
2592         regulator->min_uV = old_min_uV;
2593         regulator->max_uV = old_max_uV;
2594         mutex_unlock(&rdev->mutex);
2595         return ret;
2596 }
2597 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2598
2599 /**
2600  * regulator_set_voltage_time - get raise/fall time
2601  * @regulator: regulator source
2602  * @old_uV: starting voltage in microvolts
2603  * @new_uV: target voltage in microvolts
2604  *
2605  * Provided with the starting and ending voltage, this function attempts to
2606  * calculate the time in microseconds required to rise or fall to this new
2607  * voltage.
2608  */
2609 int regulator_set_voltage_time(struct regulator *regulator,
2610                                int old_uV, int new_uV)
2611 {
2612         struct regulator_dev *rdev = regulator->rdev;
2613         const struct regulator_ops *ops = rdev->desc->ops;
2614         int old_sel = -1;
2615         int new_sel = -1;
2616         int voltage;
2617         int i;
2618
2619         /* Currently requires operations to do this */
2620         if (!ops->list_voltage || !ops->set_voltage_time_sel
2621             || !rdev->desc->n_voltages)
2622                 return -EINVAL;
2623
2624         for (i = 0; i < rdev->desc->n_voltages; i++) {
2625                 /* We only look for exact voltage matches here */
2626                 voltage = regulator_list_voltage(regulator, i);
2627                 if (voltage < 0)
2628                         return -EINVAL;
2629                 if (voltage == 0)
2630                         continue;
2631                 if (voltage == old_uV)
2632                         old_sel = i;
2633                 if (voltage == new_uV)
2634                         new_sel = i;
2635         }
2636
2637         if (old_sel < 0 || new_sel < 0)
2638                 return -EINVAL;
2639
2640         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2641 }
2642 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2643
2644 /**
2645  * regulator_set_voltage_time_sel - get raise/fall time
2646  * @rdev: regulator source device
2647  * @old_selector: selector for starting voltage
2648  * @new_selector: selector for target voltage
2649  *
2650  * Provided with the starting and target voltage selectors, this function
2651  * returns time in microseconds required to rise or fall to this new voltage
2652  *
2653  * Drivers providing ramp_delay in regulation_constraints can use this as their
2654  * set_voltage_time_sel() operation.
2655  */
2656 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2657                                    unsigned int old_selector,
2658                                    unsigned int new_selector)
2659 {
2660         unsigned int ramp_delay = 0;
2661         int old_volt, new_volt;
2662
2663         if (rdev->constraints->ramp_delay)
2664                 ramp_delay = rdev->constraints->ramp_delay;
2665         else if (rdev->desc->ramp_delay)
2666                 ramp_delay = rdev->desc->ramp_delay;
2667
2668         if (ramp_delay == 0) {
2669                 rdev_warn(rdev, "ramp_delay not set\n");
2670                 return 0;
2671         }
2672
2673         /* sanity check */
2674         if (!rdev->desc->ops->list_voltage)
2675                 return -EINVAL;
2676
2677         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2678         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2679
2680         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2681 }
2682 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2683
2684 /**
2685  * regulator_sync_voltage - re-apply last regulator output voltage
2686  * @regulator: regulator source
2687  *
2688  * Re-apply the last configured voltage.  This is intended to be used
2689  * where some external control source the consumer is cooperating with
2690  * has caused the configured voltage to change.
2691  */
2692 int regulator_sync_voltage(struct regulator *regulator)
2693 {
2694         struct regulator_dev *rdev = regulator->rdev;
2695         int ret, min_uV, max_uV;
2696
2697         mutex_lock(&rdev->mutex);
2698
2699         if (!rdev->desc->ops->set_voltage &&
2700             !rdev->desc->ops->set_voltage_sel) {
2701                 ret = -EINVAL;
2702                 goto out;
2703         }
2704
2705         /* This is only going to work if we've had a voltage configured. */
2706         if (!regulator->min_uV && !regulator->max_uV) {
2707                 ret = -EINVAL;
2708                 goto out;
2709         }
2710
2711         min_uV = regulator->min_uV;
2712         max_uV = regulator->max_uV;
2713
2714         /* This should be a paranoia check... */
2715         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2716         if (ret < 0)
2717                 goto out;
2718
2719         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2720         if (ret < 0)
2721                 goto out;
2722
2723         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2724
2725 out:
2726         mutex_unlock(&rdev->mutex);
2727         return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2730
2731 static int _regulator_get_voltage(struct regulator_dev *rdev)
2732 {
2733         int sel, ret;
2734
2735         if (rdev->desc->ops->get_voltage_sel) {
2736                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2737                 if (sel < 0)
2738                         return sel;
2739                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2740         } else if (rdev->desc->ops->get_voltage) {
2741                 ret = rdev->desc->ops->get_voltage(rdev);
2742         } else if (rdev->desc->ops->list_voltage) {
2743                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2744         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2745                 ret = rdev->desc->fixed_uV;
2746         } else if (rdev->supply) {
2747                 ret = regulator_get_voltage(rdev->supply);
2748         } else {
2749                 return -EINVAL;
2750         }
2751
2752         if (ret < 0)
2753                 return ret;
2754         return ret - rdev->constraints->uV_offset;
2755 }
2756
2757 /**
2758  * regulator_get_voltage - get regulator output voltage
2759  * @regulator: regulator source
2760  *
2761  * This returns the current regulator voltage in uV.
2762  *
2763  * NOTE: If the regulator is disabled it will return the voltage value. This
2764  * function should not be used to determine regulator state.
2765  */
2766 int regulator_get_voltage(struct regulator *regulator)
2767 {
2768         int ret;
2769
2770         mutex_lock(&regulator->rdev->mutex);
2771
2772         ret = _regulator_get_voltage(regulator->rdev);
2773
2774         mutex_unlock(&regulator->rdev->mutex);
2775
2776         return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2779
2780 /**
2781  * regulator_set_current_limit - set regulator output current limit
2782  * @regulator: regulator source
2783  * @min_uA: Minimum supported current in uA
2784  * @max_uA: Maximum supported current in uA
2785  *
2786  * Sets current sink to the desired output current. This can be set during
2787  * any regulator state. IOW, regulator can be disabled or enabled.
2788  *
2789  * If the regulator is enabled then the current will change to the new value
2790  * immediately otherwise if the regulator is disabled the regulator will
2791  * output at the new current when enabled.
2792  *
2793  * NOTE: Regulator system constraints must be set for this regulator before
2794  * calling this function otherwise this call will fail.
2795  */
2796 int regulator_set_current_limit(struct regulator *regulator,
2797                                int min_uA, int max_uA)
2798 {
2799         struct regulator_dev *rdev = regulator->rdev;
2800         int ret;
2801
2802         mutex_lock(&rdev->mutex);
2803
2804         /* sanity check */
2805         if (!rdev->desc->ops->set_current_limit) {
2806                 ret = -EINVAL;
2807                 goto out;
2808         }
2809
2810         /* constraints check */
2811         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2812         if (ret < 0)
2813                 goto out;
2814
2815         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2816 out:
2817         mutex_unlock(&rdev->mutex);
2818         return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2821
2822 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2823 {
2824         int ret;
2825
2826         mutex_lock(&rdev->mutex);
2827
2828         /* sanity check */
2829         if (!rdev->desc->ops->get_current_limit) {
2830                 ret = -EINVAL;
2831                 goto out;
2832         }
2833
2834         ret = rdev->desc->ops->get_current_limit(rdev);
2835 out:
2836         mutex_unlock(&rdev->mutex);
2837         return ret;
2838 }
2839
2840 /**
2841  * regulator_get_current_limit - get regulator output current
2842  * @regulator: regulator source
2843  *
2844  * This returns the current supplied by the specified current sink in uA.
2845  *
2846  * NOTE: If the regulator is disabled it will return the current value. This
2847  * function should not be used to determine regulator state.
2848  */
2849 int regulator_get_current_limit(struct regulator *regulator)
2850 {
2851         return _regulator_get_current_limit(regulator->rdev);
2852 }
2853 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2854
2855 /**
2856  * regulator_set_mode - set regulator operating mode
2857  * @regulator: regulator source
2858  * @mode: operating mode - one of the REGULATOR_MODE constants
2859  *
2860  * Set regulator operating mode to increase regulator efficiency or improve
2861  * regulation performance.
2862  *
2863  * NOTE: Regulator system constraints must be set for this regulator before
2864  * calling this function otherwise this call will fail.
2865  */
2866 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2867 {
2868         struct regulator_dev *rdev = regulator->rdev;
2869         int ret;
2870         int regulator_curr_mode;
2871
2872         mutex_lock(&rdev->mutex);
2873
2874         /* sanity check */
2875         if (!rdev->desc->ops->set_mode) {
2876                 ret = -EINVAL;
2877                 goto out;
2878         }
2879
2880         /* return if the same mode is requested */
2881         if (rdev->desc->ops->get_mode) {
2882                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2883                 if (regulator_curr_mode == mode) {
2884                         ret = 0;
2885                         goto out;
2886                 }
2887         }
2888
2889         /* constraints check */
2890         ret = regulator_mode_constrain(rdev, &mode);
2891         if (ret < 0)
2892                 goto out;
2893
2894         ret = rdev->desc->ops->set_mode(rdev, mode);
2895 out:
2896         mutex_unlock(&rdev->mutex);
2897         return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_set_mode);
2900
2901 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2902 {
2903         int ret;
2904
2905         mutex_lock(&rdev->mutex);
2906
2907         /* sanity check */
2908         if (!rdev->desc->ops->get_mode) {
2909                 ret = -EINVAL;
2910                 goto out;
2911         }
2912
2913         ret = rdev->desc->ops->get_mode(rdev);
2914 out:
2915         mutex_unlock(&rdev->mutex);
2916         return ret;
2917 }
2918
2919 /**
2920  * regulator_get_mode - get regulator operating mode
2921  * @regulator: regulator source
2922  *
2923  * Get the current regulator operating mode.
2924  */
2925 unsigned int regulator_get_mode(struct regulator *regulator)
2926 {
2927         return _regulator_get_mode(regulator->rdev);
2928 }
2929 EXPORT_SYMBOL_GPL(regulator_get_mode);
2930
2931 /**
2932  * regulator_set_optimum_mode - set regulator optimum operating mode
2933  * @regulator: regulator source
2934  * @uA_load: load current
2935  *
2936  * Notifies the regulator core of a new device load. This is then used by
2937  * DRMS (if enabled by constraints) to set the most efficient regulator
2938  * operating mode for the new regulator loading.
2939  *
2940  * Consumer devices notify their supply regulator of the maximum power
2941  * they will require (can be taken from device datasheet in the power
2942  * consumption tables) when they change operational status and hence power
2943  * state. Examples of operational state changes that can affect power
2944  * consumption are :-
2945  *
2946  *    o Device is opened / closed.
2947  *    o Device I/O is about to begin or has just finished.
2948  *    o Device is idling in between work.
2949  *
2950  * This information is also exported via sysfs to userspace.
2951  *
2952  * DRMS will sum the total requested load on the regulator and change
2953  * to the most efficient operating mode if platform constraints allow.
2954  *
2955  * Returns the new regulator mode or error.
2956  */
2957 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2958 {
2959         struct regulator_dev *rdev = regulator->rdev;
2960         struct regulator *consumer;
2961         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2962         unsigned int mode;
2963
2964         if (rdev->supply)
2965                 input_uV = regulator_get_voltage(rdev->supply);
2966
2967         mutex_lock(&rdev->mutex);
2968
2969         /*
2970          * first check to see if we can set modes at all, otherwise just
2971          * tell the consumer everything is OK.
2972          */
2973         regulator->uA_load = uA_load;
2974         ret = regulator_check_drms(rdev);
2975         if (ret < 0) {
2976                 ret = 0;
2977                 goto out;
2978         }
2979
2980         if (!rdev->desc->ops->get_optimum_mode)
2981                 goto out;
2982
2983         /*
2984          * we can actually do this so any errors are indicators of
2985          * potential real failure.
2986          */
2987         ret = -EINVAL;
2988
2989         if (!rdev->desc->ops->set_mode)
2990                 goto out;
2991
2992         /* get output voltage */
2993         output_uV = _regulator_get_voltage(rdev);
2994         if (output_uV <= 0) {
2995                 rdev_err(rdev, "invalid output voltage found\n");
2996                 goto out;
2997         }
2998
2999         /* No supply? Use constraint voltage */
3000         if (input_uV <= 0)
3001                 input_uV = rdev->constraints->input_uV;
3002         if (input_uV <= 0) {
3003                 rdev_err(rdev, "invalid input voltage found\n");
3004                 goto out;
3005         }
3006
3007         /* calc total requested load for this regulator */
3008         list_for_each_entry(consumer, &rdev->consumer_list, list)
3009                 total_uA_load += consumer->uA_load;
3010
3011         mode = rdev->desc->ops->get_optimum_mode(rdev,
3012                                                  input_uV, output_uV,
3013                                                  total_uA_load);
3014         ret = regulator_mode_constrain(rdev, &mode);
3015         if (ret < 0) {
3016                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3017                          total_uA_load, input_uV, output_uV);
3018                 goto out;
3019         }
3020
3021         ret = rdev->desc->ops->set_mode(rdev, mode);
3022         if (ret < 0) {
3023                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3024                 goto out;
3025         }
3026         ret = mode;
3027 out:
3028         mutex_unlock(&rdev->mutex);
3029         return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3032
3033 /**
3034  * regulator_allow_bypass - allow the regulator to go into bypass mode
3035  *
3036  * @regulator: Regulator to configure
3037  * @enable: enable or disable bypass mode
3038  *
3039  * Allow the regulator to go into bypass mode if all other consumers
3040  * for the regulator also enable bypass mode and the machine
3041  * constraints allow this.  Bypass mode means that the regulator is
3042  * simply passing the input directly to the output with no regulation.
3043  */
3044 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3045 {
3046         struct regulator_dev *rdev = regulator->rdev;
3047         int ret = 0;
3048
3049         if (!rdev->desc->ops->set_bypass)
3050                 return 0;
3051
3052         if (rdev->constraints &&
3053             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3054                 return 0;
3055
3056         mutex_lock(&rdev->mutex);
3057
3058         if (enable && !regulator->bypass) {
3059                 rdev->bypass_count++;
3060
3061                 if (rdev->bypass_count == rdev->open_count) {
3062                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3063                         if (ret != 0)
3064                                 rdev->bypass_count--;
3065                 }
3066
3067         } else if (!enable && regulator->bypass) {
3068                 rdev->bypass_count--;
3069
3070                 if (rdev->bypass_count != rdev->open_count) {
3071                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3072                         if (ret != 0)
3073                                 rdev->bypass_count++;
3074                 }
3075         }
3076
3077         if (ret == 0)
3078                 regulator->bypass = enable;
3079
3080         mutex_unlock(&rdev->mutex);
3081
3082         return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3085
3086 /**
3087  * regulator_register_notifier - register regulator event notifier
3088  * @regulator: regulator source
3089  * @nb: notifier block
3090  *
3091  * Register notifier block to receive regulator events.
3092  */
3093 int regulator_register_notifier(struct regulator *regulator,
3094                               struct notifier_block *nb)
3095 {
3096         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3097                                                 nb);
3098 }
3099 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3100
3101 /**
3102  * regulator_unregister_notifier - unregister regulator event notifier
3103  * @regulator: regulator source
3104  * @nb: notifier block
3105  *
3106  * Unregister regulator event notifier block.
3107  */
3108 int regulator_unregister_notifier(struct regulator *regulator,
3109                                 struct notifier_block *nb)
3110 {
3111         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3112                                                   nb);
3113 }
3114 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3115
3116 /* notify regulator consumers and downstream regulator consumers.
3117  * Note mutex must be held by caller.
3118  */
3119 static void _notifier_call_chain(struct regulator_dev *rdev,
3120                                   unsigned long event, void *data)
3121 {
3122         /* call rdev chain first */
3123         blocking_notifier_call_chain(&rdev->notifier, event, data);
3124 }
3125
3126 /**
3127  * regulator_bulk_get - get multiple regulator consumers
3128  *
3129  * @dev:           Device to supply
3130  * @num_consumers: Number of consumers to register
3131  * @consumers:     Configuration of consumers; clients are stored here.
3132  *
3133  * @return 0 on success, an errno on failure.
3134  *
3135  * This helper function allows drivers to get several regulator
3136  * consumers in one operation.  If any of the regulators cannot be
3137  * acquired then any regulators that were allocated will be freed
3138  * before returning to the caller.
3139  */
3140 int regulator_bulk_get(struct device *dev, int num_consumers,
3141                        struct regulator_bulk_data *consumers)
3142 {
3143         int i;
3144         int ret;
3145
3146         for (i = 0; i < num_consumers; i++)
3147                 consumers[i].consumer = NULL;
3148
3149         for (i = 0; i < num_consumers; i++) {
3150                 consumers[i].consumer = regulator_get(dev,
3151                                                       consumers[i].supply);
3152                 if (IS_ERR(consumers[i].consumer)) {
3153                         ret = PTR_ERR(consumers[i].consumer);
3154                         dev_err(dev, "Failed to get supply '%s': %d\n",
3155                                 consumers[i].supply, ret);
3156                         consumers[i].consumer = NULL;
3157                         goto err;
3158                 }
3159         }
3160
3161         return 0;
3162
3163 err:
3164         while (--i >= 0)
3165                 regulator_put(consumers[i].consumer);
3166
3167         return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3170
3171 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3172 {
3173         struct regulator_bulk_data *bulk = data;
3174
3175         bulk->ret = regulator_enable(bulk->consumer);
3176 }
3177
3178 /**
3179  * regulator_bulk_enable - enable multiple regulator consumers
3180  *
3181  * @num_consumers: Number of consumers
3182  * @consumers:     Consumer data; clients are stored here.
3183  * @return         0 on success, an errno on failure
3184  *
3185  * This convenience API allows consumers to enable multiple regulator
3186  * clients in a single API call.  If any consumers cannot be enabled
3187  * then any others that were enabled will be disabled again prior to
3188  * return.
3189  */
3190 int regulator_bulk_enable(int num_consumers,
3191                           struct regulator_bulk_data *consumers)
3192 {
3193         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3194         int i;
3195         int ret = 0;
3196
3197         for (i = 0; i < num_consumers; i++) {
3198                 if (consumers[i].consumer->always_on)
3199                         consumers[i].ret = 0;
3200                 else
3201                         async_schedule_domain(regulator_bulk_enable_async,
3202                                               &consumers[i], &async_domain);
3203         }
3204
3205         async_synchronize_full_domain(&async_domain);
3206
3207         /* If any consumer failed we need to unwind any that succeeded */
3208         for (i = 0; i < num_consumers; i++) {
3209                 if (consumers[i].ret != 0) {
3210                         ret = consumers[i].ret;
3211                         goto err;
3212                 }
3213         }
3214
3215         return 0;
3216
3217 err:
3218         for (i = 0; i < num_consumers; i++) {
3219                 if (consumers[i].ret < 0)
3220                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3221                                consumers[i].ret);
3222                 else
3223                         regulator_disable(consumers[i].consumer);
3224         }
3225
3226         return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3229
3230 /**
3231  * regulator_bulk_disable - disable multiple regulator consumers
3232  *
3233  * @num_consumers: Number of consumers
3234  * @consumers:     Consumer data; clients are stored here.
3235  * @return         0 on success, an errno on failure
3236  *
3237  * This convenience API allows consumers to disable multiple regulator
3238  * clients in a single API call.  If any consumers cannot be disabled
3239  * then any others that were disabled will be enabled again prior to
3240  * return.
3241  */
3242 int regulator_bulk_disable(int num_consumers,
3243                            struct regulator_bulk_data *consumers)
3244 {
3245         int i;
3246         int ret, r;
3247
3248         for (i = num_consumers - 1; i >= 0; --i) {
3249                 ret = regulator_disable(consumers[i].consumer);
3250                 if (ret != 0)
3251                         goto err;
3252         }
3253
3254         return 0;
3255
3256 err:
3257         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3258         for (++i; i < num_consumers; ++i) {
3259                 r = regulator_enable(consumers[i].consumer);
3260                 if (r != 0)
3261                         pr_err("Failed to reename %s: %d\n",
3262                                consumers[i].supply, r);
3263         }
3264
3265         return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3268
3269 /**
3270  * regulator_bulk_force_disable - force disable multiple regulator consumers
3271  *
3272  * @num_consumers: Number of consumers
3273  * @consumers:     Consumer data; clients are stored here.
3274  * @return         0 on success, an errno on failure
3275  *
3276  * This convenience API allows consumers to forcibly disable multiple regulator
3277  * clients in a single API call.
3278  * NOTE: This should be used for situations when device damage will
3279  * likely occur if the regulators are not disabled (e.g. over temp).
3280  * Although regulator_force_disable function call for some consumers can
3281  * return error numbers, the function is called for all consumers.
3282  */
3283 int regulator_bulk_force_disable(int num_consumers,
3284                            struct regulator_bulk_data *consumers)
3285 {
3286         int i;
3287         int ret;
3288
3289         for (i = 0; i < num_consumers; i++)
3290                 consumers[i].ret =
3291                             regulator_force_disable(consumers[i].consumer);
3292
3293         for (i = 0; i < num_consumers; i++) {
3294                 if (consumers[i].ret != 0) {
3295                         ret = consumers[i].ret;
3296                         goto out;
3297                 }
3298         }
3299
3300         return 0;
3301 out:
3302         return ret;
3303 }
3304 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3305
3306 /**
3307  * regulator_bulk_free - free multiple regulator consumers
3308  *
3309  * @num_consumers: Number of consumers
3310  * @consumers:     Consumer data; clients are stored here.
3311  *
3312  * This convenience API allows consumers to free multiple regulator
3313  * clients in a single API call.
3314  */
3315 void regulator_bulk_free(int num_consumers,
3316                          struct regulator_bulk_data *consumers)
3317 {
3318         int i;
3319
3320         for (i = 0; i < num_consumers; i++) {
3321                 regulator_put(consumers[i].consumer);
3322                 consumers[i].consumer = NULL;
3323         }
3324 }
3325 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3326
3327 /**
3328  * regulator_notifier_call_chain - call regulator event notifier
3329  * @rdev: regulator source
3330  * @event: notifier block
3331  * @data: callback-specific data.
3332  *
3333  * Called by regulator drivers to notify clients a regulator event has
3334  * occurred. We also notify regulator clients downstream.
3335  * Note lock must be held by caller.
3336  */
3337 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3338                                   unsigned long event, void *data)
3339 {
3340         _notifier_call_chain(rdev, event, data);
3341         return NOTIFY_DONE;
3342
3343 }
3344 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3345
3346 /**
3347  * regulator_mode_to_status - convert a regulator mode into a status
3348  *
3349  * @mode: Mode to convert
3350  *
3351  * Convert a regulator mode into a status.
3352  */
3353 int regulator_mode_to_status(unsigned int mode)
3354 {
3355         switch (mode) {
3356         case REGULATOR_MODE_FAST:
3357                 return REGULATOR_STATUS_FAST;
3358         case REGULATOR_MODE_NORMAL:
3359                 return REGULATOR_STATUS_NORMAL;
3360         case REGULATOR_MODE_IDLE:
3361                 return REGULATOR_STATUS_IDLE;
3362         case REGULATOR_MODE_STANDBY:
3363                 return REGULATOR_STATUS_STANDBY;
3364         default:
3365                 return REGULATOR_STATUS_UNDEFINED;
3366         }
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3369
3370 /*
3371  * To avoid cluttering sysfs (and memory) with useless state, only
3372  * create attributes that can be meaningfully displayed.
3373  */
3374 static int add_regulator_attributes(struct regulator_dev *rdev)
3375 {
3376         struct device *dev = &rdev->dev;
3377         const struct regulator_ops *ops = rdev->desc->ops;
3378         int status = 0;
3379
3380         /* some attributes need specific methods to be displayed */
3381         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3382             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3383             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3384                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3385                 status = device_create_file(dev, &dev_attr_microvolts);
3386                 if (status < 0)
3387                         return status;
3388         }
3389         if (ops->get_current_limit) {
3390                 status = device_create_file(dev, &dev_attr_microamps);
3391                 if (status < 0)
3392                         return status;
3393         }
3394         if (ops->get_mode) {
3395                 status = device_create_file(dev, &dev_attr_opmode);
3396                 if (status < 0)
3397                         return status;
3398         }
3399         if (rdev->ena_pin || ops->is_enabled) {
3400                 status = device_create_file(dev, &dev_attr_state);
3401                 if (status < 0)
3402                         return status;
3403         }
3404         if (ops->get_status) {
3405                 status = device_create_file(dev, &dev_attr_status);
3406                 if (status < 0)
3407                         return status;
3408         }
3409         if (ops->get_bypass) {
3410                 status = device_create_file(dev, &dev_attr_bypass);
3411                 if (status < 0)
3412                         return status;
3413         }
3414
3415         /* some attributes are type-specific */
3416         if (rdev->desc->type == REGULATOR_CURRENT) {
3417                 status = device_create_file(dev, &dev_attr_requested_microamps);
3418                 if (status < 0)
3419                         return status;
3420         }
3421
3422         /* all the other attributes exist to support constraints;
3423          * don't show them if there are no constraints, or if the
3424          * relevant supporting methods are missing.
3425          */
3426         if (!rdev->constraints)
3427                 return status;
3428
3429         /* constraints need specific supporting methods */
3430         if (ops->set_voltage || ops->set_voltage_sel) {
3431                 status = device_create_file(dev, &dev_attr_min_microvolts);
3432                 if (status < 0)
3433                         return status;
3434                 status = device_create_file(dev, &dev_attr_max_microvolts);
3435                 if (status < 0)
3436                         return status;
3437         }
3438         if (ops->set_current_limit) {
3439                 status = device_create_file(dev, &dev_attr_min_microamps);
3440                 if (status < 0)
3441                         return status;
3442                 status = device_create_file(dev, &dev_attr_max_microamps);
3443                 if (status < 0)
3444                         return status;
3445         }
3446
3447         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3448         if (status < 0)
3449                 return status;
3450         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3451         if (status < 0)
3452                 return status;
3453         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3454         if (status < 0)
3455                 return status;
3456
3457         if (ops->set_suspend_voltage) {
3458                 status = device_create_file(dev,
3459                                 &dev_attr_suspend_standby_microvolts);
3460                 if (status < 0)
3461                         return status;
3462                 status = device_create_file(dev,
3463                                 &dev_attr_suspend_mem_microvolts);
3464                 if (status < 0)
3465                         return status;
3466                 status = device_create_file(dev,
3467                                 &dev_attr_suspend_disk_microvolts);
3468                 if (status < 0)
3469                         return status;
3470         }
3471
3472         if (ops->set_suspend_mode) {
3473                 status = device_create_file(dev,
3474                                 &dev_attr_suspend_standby_mode);
3475                 if (status < 0)
3476                         return status;
3477                 status = device_create_file(dev,
3478                                 &dev_attr_suspend_mem_mode);
3479                 if (status < 0)
3480                         return status;
3481                 status = device_create_file(dev,
3482                                 &dev_attr_suspend_disk_mode);
3483                 if (status < 0)
3484                         return status;
3485         }
3486
3487         return status;
3488 }
3489
3490 static void rdev_init_debugfs(struct regulator_dev *rdev)
3491 {
3492         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3493         if (!rdev->debugfs) {
3494                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3495                 return;
3496         }
3497
3498         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3499                            &rdev->use_count);
3500         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3501                            &rdev->open_count);
3502         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3503                            &rdev->bypass_count);
3504 }
3505
3506 /**
3507  * regulator_register - register regulator
3508  * @regulator_desc: regulator to register
3509  * @config: runtime configuration for regulator
3510  *
3511  * Called by regulator drivers to register a regulator.
3512  * Returns a valid pointer to struct regulator_dev on success
3513  * or an ERR_PTR() on error.
3514  */
3515 struct regulator_dev *
3516 regulator_register(const struct regulator_desc *regulator_desc,
3517                    const struct regulator_config *config)
3518 {
3519         const struct regulation_constraints *constraints = NULL;
3520         const struct regulator_init_data *init_data;
3521         static atomic_t regulator_no = ATOMIC_INIT(0);
3522         struct regulator_dev *rdev;
3523         struct device *dev;
3524         int ret, i;
3525         const char *supply = NULL;
3526
3527         if (regulator_desc == NULL || config == NULL)
3528                 return ERR_PTR(-EINVAL);
3529
3530         dev = config->dev;
3531         WARN_ON(!dev);
3532
3533         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3534                 return ERR_PTR(-EINVAL);
3535
3536         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3537             regulator_desc->type != REGULATOR_CURRENT)
3538                 return ERR_PTR(-EINVAL);
3539
3540         /* Only one of each should be implemented */
3541         WARN_ON(regulator_desc->ops->get_voltage &&
3542                 regulator_desc->ops->get_voltage_sel);
3543         WARN_ON(regulator_desc->ops->set_voltage &&
3544                 regulator_desc->ops->set_voltage_sel);
3545
3546         /* If we're using selectors we must implement list_voltage. */
3547         if (regulator_desc->ops->get_voltage_sel &&
3548             !regulator_desc->ops->list_voltage) {
3549                 return ERR_PTR(-EINVAL);
3550         }
3551         if (regulator_desc->ops->set_voltage_sel &&
3552             !regulator_desc->ops->list_voltage) {
3553                 return ERR_PTR(-EINVAL);
3554         }
3555
3556         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3557         if (rdev == NULL)
3558                 return ERR_PTR(-ENOMEM);
3559
3560         init_data = regulator_of_get_init_data(dev, regulator_desc,
3561                                                &rdev->dev.of_node);
3562         if (!init_data) {
3563                 init_data = config->init_data;
3564                 rdev->dev.of_node = of_node_get(config->of_node);
3565         }
3566
3567         mutex_lock(&regulator_list_mutex);
3568
3569         mutex_init(&rdev->mutex);
3570         rdev->reg_data = config->driver_data;
3571         rdev->owner = regulator_desc->owner;
3572         rdev->desc = regulator_desc;
3573         if (config->regmap)
3574                 rdev->regmap = config->regmap;
3575         else if (dev_get_regmap(dev, NULL))
3576                 rdev->regmap = dev_get_regmap(dev, NULL);
3577         else if (dev->parent)
3578                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3579         INIT_LIST_HEAD(&rdev->consumer_list);
3580         INIT_LIST_HEAD(&rdev->list);
3581         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3582         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3583
3584         /* preform any regulator specific init */
3585         if (init_data && init_data->regulator_init) {
3586                 ret = init_data->regulator_init(rdev->reg_data);
3587                 if (ret < 0)
3588                         goto clean;
3589         }
3590
3591         /* register with sysfs */
3592         rdev->dev.class = &regulator_class;
3593         rdev->dev.parent = dev;
3594         dev_set_name(&rdev->dev, "regulator.%d",
3595                      atomic_inc_return(&regulator_no) - 1);
3596         ret = device_register(&rdev->dev);
3597         if (ret != 0) {
3598                 put_device(&rdev->dev);
3599                 goto clean;
3600         }
3601
3602         dev_set_drvdata(&rdev->dev, rdev);
3603
3604         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3605                 ret = regulator_ena_gpio_request(rdev, config);
3606                 if (ret != 0) {
3607                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3608                                  config->ena_gpio, ret);
3609                         goto wash;
3610                 }
3611
3612                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3613                         rdev->ena_gpio_state = 1;
3614
3615                 if (config->ena_gpio_invert)
3616                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3617         }
3618
3619         /* set regulator constraints */
3620         if (init_data)
3621                 constraints = &init_data->constraints;
3622
3623         ret = set_machine_constraints(rdev, constraints);
3624         if (ret < 0)
3625                 goto scrub;
3626
3627         /* add attributes supported by this regulator */
3628         ret = add_regulator_attributes(rdev);
3629         if (ret < 0)
3630                 goto scrub;
3631
3632         if (init_data && init_data->supply_regulator)
3633                 supply = init_data->supply_regulator;
3634         else if (regulator_desc->supply_name)
3635                 supply = regulator_desc->supply_name;
3636
3637         if (supply) {
3638                 struct regulator_dev *r;
3639
3640                 r = regulator_dev_lookup(dev, supply, &ret);
3641
3642                 if (ret == -ENODEV) {
3643                         /*
3644                          * No supply was specified for this regulator and
3645                          * there will never be one.
3646                          */
3647                         ret = 0;
3648                         goto add_dev;
3649                 } else if (!r) {
3650                         dev_err(dev, "Failed to find supply %s\n", supply);
3651                         ret = -EPROBE_DEFER;
3652                         goto scrub;
3653                 }
3654
3655                 ret = set_supply(rdev, r);
3656                 if (ret < 0)
3657                         goto scrub;
3658
3659                 /* Enable supply if rail is enabled */
3660                 if (_regulator_is_enabled(rdev)) {
3661                         ret = regulator_enable(rdev->supply);
3662                         if (ret < 0)
3663                                 goto scrub;
3664                 }
3665         }
3666
3667 add_dev:
3668         /* add consumers devices */
3669         if (init_data) {
3670                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3671                         ret = set_consumer_device_supply(rdev,
3672                                 init_data->consumer_supplies[i].dev_name,
3673                                 init_data->consumer_supplies[i].supply);
3674                         if (ret < 0) {
3675                                 dev_err(dev, "Failed to set supply %s\n",
3676                                         init_data->consumer_supplies[i].supply);
3677                                 goto unset_supplies;
3678                         }
3679                 }
3680         }
3681
3682         list_add(&rdev->list, &regulator_list);
3683
3684         rdev_init_debugfs(rdev);
3685 out:
3686         mutex_unlock(&regulator_list_mutex);
3687         return rdev;
3688
3689 unset_supplies:
3690         unset_regulator_supplies(rdev);
3691
3692 scrub:
3693         if (rdev->supply)
3694                 _regulator_put(rdev->supply);
3695         regulator_ena_gpio_free(rdev);
3696         kfree(rdev->constraints);
3697 wash:
3698         device_unregister(&rdev->dev);
3699         /* device core frees rdev */
3700         rdev = ERR_PTR(ret);
3701         goto out;
3702
3703 clean:
3704         kfree(rdev);
3705         rdev = ERR_PTR(ret);
3706         goto out;
3707 }
3708 EXPORT_SYMBOL_GPL(regulator_register);
3709
3710 /**
3711  * regulator_unregister - unregister regulator
3712  * @rdev: regulator to unregister
3713  *
3714  * Called by regulator drivers to unregister a regulator.
3715  */
3716 void regulator_unregister(struct regulator_dev *rdev)
3717 {
3718         if (rdev == NULL)
3719                 return;
3720
3721         if (rdev->supply) {
3722                 while (rdev->use_count--)
3723                         regulator_disable(rdev->supply);
3724                 regulator_put(rdev->supply);
3725         }
3726         mutex_lock(&regulator_list_mutex);
3727         debugfs_remove_recursive(rdev->debugfs);
3728         flush_work(&rdev->disable_work.work);
3729         WARN_ON(rdev->open_count);
3730         unset_regulator_supplies(rdev);
3731         list_del(&rdev->list);
3732         kfree(rdev->constraints);
3733         regulator_ena_gpio_free(rdev);
3734         of_node_put(rdev->dev.of_node);
3735         device_unregister(&rdev->dev);
3736         mutex_unlock(&regulator_list_mutex);
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740 /**
3741  * regulator_suspend_prepare - prepare regulators for system wide suspend
3742  * @state: system suspend state
3743  *
3744  * Configure each regulator with it's suspend operating parameters for state.
3745  * This will usually be called by machine suspend code prior to supending.
3746  */
3747 int regulator_suspend_prepare(suspend_state_t state)
3748 {
3749         struct regulator_dev *rdev;
3750         int ret = 0;
3751
3752         /* ON is handled by regulator active state */
3753         if (state == PM_SUSPEND_ON)
3754                 return -EINVAL;
3755
3756         mutex_lock(&regulator_list_mutex);
3757         list_for_each_entry(rdev, &regulator_list, list) {
3758
3759                 mutex_lock(&rdev->mutex);
3760                 ret = suspend_prepare(rdev, state);
3761                 mutex_unlock(&rdev->mutex);
3762
3763                 if (ret < 0) {
3764                         rdev_err(rdev, "failed to prepare\n");
3765                         goto out;
3766                 }
3767         }
3768 out:
3769         mutex_unlock(&regulator_list_mutex);
3770         return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774 /**
3775  * regulator_suspend_finish - resume regulators from system wide suspend
3776  *
3777  * Turn on regulators that might be turned off by regulator_suspend_prepare
3778  * and that should be turned on according to the regulators properties.
3779  */
3780 int regulator_suspend_finish(void)
3781 {
3782         struct regulator_dev *rdev;
3783         int ret = 0, error;
3784
3785         mutex_lock(&regulator_list_mutex);
3786         list_for_each_entry(rdev, &regulator_list, list) {
3787                 mutex_lock(&rdev->mutex);
3788                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3789                         error = _regulator_do_enable(rdev);
3790                         if (error)
3791                                 ret = error;
3792                 } else {
3793                         if (!have_full_constraints())
3794                                 goto unlock;
3795                         if (!_regulator_is_enabled(rdev))
3796                                 goto unlock;
3797
3798                         error = _regulator_do_disable(rdev);
3799                         if (error)
3800                                 ret = error;
3801                 }
3802 unlock:
3803                 mutex_unlock(&rdev->mutex);
3804         }
3805         mutex_unlock(&regulator_list_mutex);
3806         return ret;
3807 }
3808 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3809
3810 /**
3811  * regulator_has_full_constraints - the system has fully specified constraints
3812  *
3813  * Calling this function will cause the regulator API to disable all
3814  * regulators which have a zero use count and don't have an always_on
3815  * constraint in a late_initcall.
3816  *
3817  * The intention is that this will become the default behaviour in a
3818  * future kernel release so users are encouraged to use this facility
3819  * now.
3820  */
3821 void regulator_has_full_constraints(void)
3822 {
3823         has_full_constraints = 1;
3824 }
3825 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3826
3827 /**
3828  * rdev_get_drvdata - get rdev regulator driver data
3829  * @rdev: regulator
3830  *
3831  * Get rdev regulator driver private data. This call can be used in the
3832  * regulator driver context.
3833  */
3834 void *rdev_get_drvdata(struct regulator_dev *rdev)
3835 {
3836         return rdev->reg_data;
3837 }
3838 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3839
3840 /**
3841  * regulator_get_drvdata - get regulator driver data
3842  * @regulator: regulator
3843  *
3844  * Get regulator driver private data. This call can be used in the consumer
3845  * driver context when non API regulator specific functions need to be called.
3846  */
3847 void *regulator_get_drvdata(struct regulator *regulator)
3848 {
3849         return regulator->rdev->reg_data;
3850 }
3851 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3852
3853 /**
3854  * regulator_set_drvdata - set regulator driver data
3855  * @regulator: regulator
3856  * @data: data
3857  */
3858 void regulator_set_drvdata(struct regulator *regulator, void *data)
3859 {
3860         regulator->rdev->reg_data = data;
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3863
3864 /**
3865  * regulator_get_id - get regulator ID
3866  * @rdev: regulator
3867  */
3868 int rdev_get_id(struct regulator_dev *rdev)
3869 {
3870         return rdev->desc->id;
3871 }
3872 EXPORT_SYMBOL_GPL(rdev_get_id);
3873
3874 struct device *rdev_get_dev(struct regulator_dev *rdev)
3875 {
3876         return &rdev->dev;
3877 }
3878 EXPORT_SYMBOL_GPL(rdev_get_dev);
3879
3880 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3881 {
3882         return reg_init_data->driver_data;
3883 }
3884 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3885
3886 #ifdef CONFIG_DEBUG_FS
3887 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3888                                     size_t count, loff_t *ppos)
3889 {
3890         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3891         ssize_t len, ret = 0;
3892         struct regulator_map *map;
3893
3894         if (!buf)
3895                 return -ENOMEM;
3896
3897         list_for_each_entry(map, &regulator_map_list, list) {
3898                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3899                                "%s -> %s.%s\n",
3900                                rdev_get_name(map->regulator), map->dev_name,
3901                                map->supply);
3902                 if (len >= 0)
3903                         ret += len;
3904                 if (ret > PAGE_SIZE) {
3905                         ret = PAGE_SIZE;
3906                         break;
3907                 }
3908         }
3909
3910         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3911
3912         kfree(buf);
3913
3914         return ret;
3915 }
3916 #endif
3917
3918 static const struct file_operations supply_map_fops = {
3919 #ifdef CONFIG_DEBUG_FS
3920         .read = supply_map_read_file,
3921         .llseek = default_llseek,
3922 #endif
3923 };
3924
3925 static int __init regulator_init(void)
3926 {
3927         int ret;
3928
3929         ret = class_register(&regulator_class);
3930
3931         debugfs_root = debugfs_create_dir("regulator", NULL);
3932         if (!debugfs_root)
3933                 pr_warn("regulator: Failed to create debugfs directory\n");
3934
3935         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3936                             &supply_map_fops);
3937
3938         regulator_dummy_init();
3939
3940         return ret;
3941 }
3942
3943 /* init early to allow our consumers to complete system booting */
3944 core_initcall(regulator_init);
3945
3946 static int __init regulator_init_complete(void)
3947 {
3948         struct regulator_dev *rdev;
3949         const struct regulator_ops *ops;
3950         struct regulation_constraints *c;
3951         int enabled, ret;
3952
3953         /*
3954          * Since DT doesn't provide an idiomatic mechanism for
3955          * enabling full constraints and since it's much more natural
3956          * with DT to provide them just assume that a DT enabled
3957          * system has full constraints.
3958          */
3959         if (of_have_populated_dt())
3960                 has_full_constraints = true;
3961
3962         mutex_lock(&regulator_list_mutex);
3963
3964         /* If we have a full configuration then disable any regulators
3965          * we have permission to change the status for and which are
3966          * not in use or always_on.  This is effectively the default
3967          * for DT and ACPI as they have full constraints.
3968          */
3969         list_for_each_entry(rdev, &regulator_list, list) {
3970                 ops = rdev->desc->ops;
3971                 c = rdev->constraints;
3972
3973                 if (c && c->always_on)
3974                         continue;
3975
3976                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3977                         continue;
3978
3979                 mutex_lock(&rdev->mutex);
3980
3981                 if (rdev->use_count)
3982                         goto unlock;
3983
3984                 /* If we can't read the status assume it's on. */
3985                 if (ops->is_enabled)
3986                         enabled = ops->is_enabled(rdev);
3987                 else
3988                         enabled = 1;
3989
3990                 if (!enabled)
3991                         goto unlock;
3992
3993                 if (have_full_constraints()) {
3994                         /* We log since this may kill the system if it
3995                          * goes wrong. */
3996                         rdev_info(rdev, "disabling\n");
3997                         ret = _regulator_do_disable(rdev);
3998                         if (ret != 0)
3999                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4000                 } else {
4001                         /* The intention is that in future we will
4002                          * assume that full constraints are provided
4003                          * so warn even if we aren't going to do
4004                          * anything here.
4005                          */
4006                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4007                 }
4008
4009 unlock:
4010                 mutex_unlock(&rdev->mutex);
4011         }
4012
4013         mutex_unlock(&regulator_list_mutex);
4014
4015         return 0;
4016 }
4017 late_initcall_sync(regulator_init_complete);