regulator: Add helpers for low-level register access
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 int current_uV = _regulator_get_voltage(rdev);
848                 if (current_uV < 0) {
849                         rdev_err(rdev, "failed to get the current voltage\n");
850                         return current_uV;
851                 }
852                 if (current_uV < rdev->constraints->min_uV ||
853                     current_uV > rdev->constraints->max_uV) {
854                         ret = _regulator_do_set_voltage(
855                                 rdev, rdev->constraints->min_uV,
856                                 rdev->constraints->max_uV);
857                         if (ret < 0) {
858                                 rdev_err(rdev,
859                                         "failed to apply %duV constraint\n",
860                                         rdev->constraints->min_uV);
861                                 return ret;
862                         }
863                 }
864         }
865
866         /* constrain machine-level voltage specs to fit
867          * the actual range supported by this regulator.
868          */
869         if (ops->list_voltage && rdev->desc->n_voltages) {
870                 int     count = rdev->desc->n_voltages;
871                 int     i;
872                 int     min_uV = INT_MAX;
873                 int     max_uV = INT_MIN;
874                 int     cmin = constraints->min_uV;
875                 int     cmax = constraints->max_uV;
876
877                 /* it's safe to autoconfigure fixed-voltage supplies
878                    and the constraints are used by list_voltage. */
879                 if (count == 1 && !cmin) {
880                         cmin = 1;
881                         cmax = INT_MAX;
882                         constraints->min_uV = cmin;
883                         constraints->max_uV = cmax;
884                 }
885
886                 /* voltage constraints are optional */
887                 if ((cmin == 0) && (cmax == 0))
888                         return 0;
889
890                 /* else require explicit machine-level constraints */
891                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892                         rdev_err(rdev, "invalid voltage constraints\n");
893                         return -EINVAL;
894                 }
895
896                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897                 for (i = 0; i < count; i++) {
898                         int     value;
899
900                         value = ops->list_voltage(rdev, i);
901                         if (value <= 0)
902                                 continue;
903
904                         /* maybe adjust [min_uV..max_uV] */
905                         if (value >= cmin && value < min_uV)
906                                 min_uV = value;
907                         if (value <= cmax && value > max_uV)
908                                 max_uV = value;
909                 }
910
911                 /* final: [min_uV..max_uV] valid iff constraints valid */
912                 if (max_uV < min_uV) {
913                         rdev_err(rdev,
914                                  "unsupportable voltage constraints %u-%uuV\n",
915                                  min_uV, max_uV);
916                         return -EINVAL;
917                 }
918
919                 /* use regulator's subset of machine constraints */
920                 if (constraints->min_uV < min_uV) {
921                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
922                                  constraints->min_uV, min_uV);
923                         constraints->min_uV = min_uV;
924                 }
925                 if (constraints->max_uV > max_uV) {
926                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
927                                  constraints->max_uV, max_uV);
928                         constraints->max_uV = max_uV;
929                 }
930         }
931
932         return 0;
933 }
934
935 static int machine_constraints_current(struct regulator_dev *rdev,
936         struct regulation_constraints *constraints)
937 {
938         struct regulator_ops *ops = rdev->desc->ops;
939         int ret;
940
941         if (!constraints->min_uA && !constraints->max_uA)
942                 return 0;
943
944         if (constraints->min_uA > constraints->max_uA) {
945                 rdev_err(rdev, "Invalid current constraints\n");
946                 return -EINVAL;
947         }
948
949         if (!ops->set_current_limit || !ops->get_current_limit) {
950                 rdev_warn(rdev, "Operation of current configuration missing\n");
951                 return 0;
952         }
953
954         /* Set regulator current in constraints range */
955         ret = ops->set_current_limit(rdev, constraints->min_uA,
956                         constraints->max_uA);
957         if (ret < 0) {
958                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
959                 return ret;
960         }
961
962         return 0;
963 }
964
965 static int _regulator_do_enable(struct regulator_dev *rdev);
966
967 /**
968  * set_machine_constraints - sets regulator constraints
969  * @rdev: regulator source
970  * @constraints: constraints to apply
971  *
972  * Allows platform initialisation code to define and constrain
973  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
974  * Constraints *must* be set by platform code in order for some
975  * regulator operations to proceed i.e. set_voltage, set_current_limit,
976  * set_mode.
977  */
978 static int set_machine_constraints(struct regulator_dev *rdev,
979         const struct regulation_constraints *constraints)
980 {
981         int ret = 0;
982         struct regulator_ops *ops = rdev->desc->ops;
983
984         if (constraints)
985                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
986                                             GFP_KERNEL);
987         else
988                 rdev->constraints = kzalloc(sizeof(*constraints),
989                                             GFP_KERNEL);
990         if (!rdev->constraints)
991                 return -ENOMEM;
992
993         ret = machine_constraints_voltage(rdev, rdev->constraints);
994         if (ret != 0)
995                 goto out;
996
997         ret = machine_constraints_current(rdev, rdev->constraints);
998         if (ret != 0)
999                 goto out;
1000
1001         /* do we need to setup our suspend state */
1002         if (rdev->constraints->initial_state) {
1003                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004                 if (ret < 0) {
1005                         rdev_err(rdev, "failed to set suspend state\n");
1006                         goto out;
1007                 }
1008         }
1009
1010         if (rdev->constraints->initial_mode) {
1011                 if (!ops->set_mode) {
1012                         rdev_err(rdev, "no set_mode operation\n");
1013                         ret = -EINVAL;
1014                         goto out;
1015                 }
1016
1017                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018                 if (ret < 0) {
1019                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020                         goto out;
1021                 }
1022         }
1023
1024         /* If the constraints say the regulator should be on at this point
1025          * and we have control then make sure it is enabled.
1026          */
1027         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1028                 ret = _regulator_do_enable(rdev);
1029                 if (ret < 0 && ret != -EINVAL) {
1030                         rdev_err(rdev, "failed to enable\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1036                 && ops->set_ramp_delay) {
1037                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1038                 if (ret < 0) {
1039                         rdev_err(rdev, "failed to set ramp_delay\n");
1040                         goto out;
1041                 }
1042         }
1043
1044         print_constraints(rdev);
1045         return 0;
1046 out:
1047         kfree(rdev->constraints);
1048         rdev->constraints = NULL;
1049         return ret;
1050 }
1051
1052 /**
1053  * set_supply - set regulator supply regulator
1054  * @rdev: regulator name
1055  * @supply_rdev: supply regulator name
1056  *
1057  * Called by platform initialisation code to set the supply regulator for this
1058  * regulator. This ensures that a regulators supply will also be enabled by the
1059  * core if it's child is enabled.
1060  */
1061 static int set_supply(struct regulator_dev *rdev,
1062                       struct regulator_dev *supply_rdev)
1063 {
1064         int err;
1065
1066         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1067
1068         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069         if (rdev->supply == NULL) {
1070                 err = -ENOMEM;
1071                 return err;
1072         }
1073         supply_rdev->open_count++;
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080  * @rdev:         regulator source
1081  * @consumer_dev_name: dev_name() string for device supply applies to
1082  * @supply:       symbolic name for supply
1083  *
1084  * Allows platform initialisation code to map physical regulator
1085  * sources to symbolic names for supplies for use by devices.  Devices
1086  * should use these symbolic names to request regulators, avoiding the
1087  * need to provide board-specific regulator names as platform data.
1088  */
1089 static int set_consumer_device_supply(struct regulator_dev *rdev,
1090                                       const char *consumer_dev_name,
1091                                       const char *supply)
1092 {
1093         struct regulator_map *node;
1094         int has_dev;
1095
1096         if (supply == NULL)
1097                 return -EINVAL;
1098
1099         if (consumer_dev_name != NULL)
1100                 has_dev = 1;
1101         else
1102                 has_dev = 0;
1103
1104         list_for_each_entry(node, &regulator_map_list, list) {
1105                 if (node->dev_name && consumer_dev_name) {
1106                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1107                                 continue;
1108                 } else if (node->dev_name || consumer_dev_name) {
1109                         continue;
1110                 }
1111
1112                 if (strcmp(node->supply, supply) != 0)
1113                         continue;
1114
1115                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1116                          consumer_dev_name,
1117                          dev_name(&node->regulator->dev),
1118                          node->regulator->desc->name,
1119                          supply,
1120                          dev_name(&rdev->dev), rdev_get_name(rdev));
1121                 return -EBUSY;
1122         }
1123
1124         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125         if (node == NULL)
1126                 return -ENOMEM;
1127
1128         node->regulator = rdev;
1129         node->supply = supply;
1130
1131         if (has_dev) {
1132                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1133                 if (node->dev_name == NULL) {
1134                         kfree(node);
1135                         return -ENOMEM;
1136                 }
1137         }
1138
1139         list_add(&node->list, &regulator_map_list);
1140         return 0;
1141 }
1142
1143 static void unset_regulator_supplies(struct regulator_dev *rdev)
1144 {
1145         struct regulator_map *node, *n;
1146
1147         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1148                 if (rdev == node->regulator) {
1149                         list_del(&node->list);
1150                         kfree(node->dev_name);
1151                         kfree(node);
1152                 }
1153         }
1154 }
1155
1156 #define REG_STR_SIZE    64
1157
1158 static struct regulator *create_regulator(struct regulator_dev *rdev,
1159                                           struct device *dev,
1160                                           const char *supply_name)
1161 {
1162         struct regulator *regulator;
1163         char buf[REG_STR_SIZE];
1164         int err, size;
1165
1166         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1167         if (regulator == NULL)
1168                 return NULL;
1169
1170         mutex_lock(&rdev->mutex);
1171         regulator->rdev = rdev;
1172         list_add(&regulator->list, &rdev->consumer_list);
1173
1174         if (dev) {
1175                 regulator->dev = dev;
1176
1177                 /* Add a link to the device sysfs entry */
1178                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1179                                  dev->kobj.name, supply_name);
1180                 if (size >= REG_STR_SIZE)
1181                         goto overflow_err;
1182
1183                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1184                 if (regulator->supply_name == NULL)
1185                         goto overflow_err;
1186
1187                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1188                                         buf);
1189                 if (err) {
1190                         rdev_warn(rdev, "could not add device link %s err %d\n",
1191                                   dev->kobj.name, err);
1192                         /* non-fatal */
1193                 }
1194         } else {
1195                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1196                 if (regulator->supply_name == NULL)
1197                         goto overflow_err;
1198         }
1199
1200         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1201                                                 rdev->debugfs);
1202         if (!regulator->debugfs) {
1203                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1204         } else {
1205                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1206                                    &regulator->uA_load);
1207                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1208                                    &regulator->min_uV);
1209                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1210                                    &regulator->max_uV);
1211         }
1212
1213         /*
1214          * Check now if the regulator is an always on regulator - if
1215          * it is then we don't need to do nearly so much work for
1216          * enable/disable calls.
1217          */
1218         if (!_regulator_can_change_status(rdev) &&
1219             _regulator_is_enabled(rdev))
1220                 regulator->always_on = true;
1221
1222         mutex_unlock(&rdev->mutex);
1223         return regulator;
1224 overflow_err:
1225         list_del(&regulator->list);
1226         kfree(regulator);
1227         mutex_unlock(&rdev->mutex);
1228         return NULL;
1229 }
1230
1231 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1232 {
1233         if (rdev->constraints && rdev->constraints->enable_time)
1234                 return rdev->constraints->enable_time;
1235         if (!rdev->desc->ops->enable_time)
1236                 return rdev->desc->enable_time;
1237         return rdev->desc->ops->enable_time(rdev);
1238 }
1239
1240 static struct regulator_supply_alias *regulator_find_supply_alias(
1241                 struct device *dev, const char *supply)
1242 {
1243         struct regulator_supply_alias *map;
1244
1245         list_for_each_entry(map, &regulator_supply_alias_list, list)
1246                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1247                         return map;
1248
1249         return NULL;
1250 }
1251
1252 static void regulator_supply_alias(struct device **dev, const char **supply)
1253 {
1254         struct regulator_supply_alias *map;
1255
1256         map = regulator_find_supply_alias(*dev, *supply);
1257         if (map) {
1258                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1259                                 *supply, map->alias_supply,
1260                                 dev_name(map->alias_dev));
1261                 *dev = map->alias_dev;
1262                 *supply = map->alias_supply;
1263         }
1264 }
1265
1266 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267                                                   const char *supply,
1268                                                   int *ret)
1269 {
1270         struct regulator_dev *r;
1271         struct device_node *node;
1272         struct regulator_map *map;
1273         const char *devname = NULL;
1274
1275         regulator_supply_alias(&dev, &supply);
1276
1277         /* first do a dt based lookup */
1278         if (dev && dev->of_node) {
1279                 node = of_get_regulator(dev, supply);
1280                 if (node) {
1281                         list_for_each_entry(r, &regulator_list, list)
1282                                 if (r->dev.parent &&
1283                                         node == r->dev.of_node)
1284                                         return r;
1285                         *ret = -EPROBE_DEFER;
1286                         return NULL;
1287                 } else {
1288                         /*
1289                          * If we couldn't even get the node then it's
1290                          * not just that the device didn't register
1291                          * yet, there's no node and we'll never
1292                          * succeed.
1293                          */
1294                         *ret = -ENODEV;
1295                 }
1296         }
1297
1298         /* if not found, try doing it non-dt way */
1299         if (dev)
1300                 devname = dev_name(dev);
1301
1302         list_for_each_entry(r, &regulator_list, list)
1303                 if (strcmp(rdev_get_name(r), supply) == 0)
1304                         return r;
1305
1306         list_for_each_entry(map, &regulator_map_list, list) {
1307                 /* If the mapping has a device set up it must match */
1308                 if (map->dev_name &&
1309                     (!devname || strcmp(map->dev_name, devname)))
1310                         continue;
1311
1312                 if (strcmp(map->supply, supply) == 0)
1313                         return map->regulator;
1314         }
1315
1316
1317         return NULL;
1318 }
1319
1320 /* Internal regulator request function */
1321 static struct regulator *_regulator_get(struct device *dev, const char *id,
1322                                         bool exclusive, bool allow_dummy)
1323 {
1324         struct regulator_dev *rdev;
1325         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326         const char *devname = NULL;
1327         int ret;
1328
1329         if (id == NULL) {
1330                 pr_err("get() with no identifier\n");
1331                 return ERR_PTR(-EINVAL);
1332         }
1333
1334         if (dev)
1335                 devname = dev_name(dev);
1336
1337         if (have_full_constraints())
1338                 ret = -ENODEV;
1339         else
1340                 ret = -EPROBE_DEFER;
1341
1342         mutex_lock(&regulator_list_mutex);
1343
1344         rdev = regulator_dev_lookup(dev, id, &ret);
1345         if (rdev)
1346                 goto found;
1347
1348         regulator = ERR_PTR(ret);
1349
1350         /*
1351          * If we have return value from dev_lookup fail, we do not expect to
1352          * succeed, so, quit with appropriate error value
1353          */
1354         if (ret && ret != -ENODEV)
1355                 goto out;
1356
1357         if (!devname)
1358                 devname = "deviceless";
1359
1360         /*
1361          * Assume that a regulator is physically present and enabled
1362          * even if it isn't hooked up and just provide a dummy.
1363          */
1364         if (have_full_constraints() && allow_dummy) {
1365                 pr_warn("%s supply %s not found, using dummy regulator\n",
1366                         devname, id);
1367
1368                 rdev = dummy_regulator_rdev;
1369                 goto found;
1370         /* Don't log an error when called from regulator_get_optional() */
1371         } else if (!have_full_constraints() || exclusive) {
1372                 dev_warn(dev, "dummy supplies not allowed\n");
1373         }
1374
1375         mutex_unlock(&regulator_list_mutex);
1376         return regulator;
1377
1378 found:
1379         if (rdev->exclusive) {
1380                 regulator = ERR_PTR(-EPERM);
1381                 goto out;
1382         }
1383
1384         if (exclusive && rdev->open_count) {
1385                 regulator = ERR_PTR(-EBUSY);
1386                 goto out;
1387         }
1388
1389         if (!try_module_get(rdev->owner))
1390                 goto out;
1391
1392         regulator = create_regulator(rdev, dev, id);
1393         if (regulator == NULL) {
1394                 regulator = ERR_PTR(-ENOMEM);
1395                 module_put(rdev->owner);
1396                 goto out;
1397         }
1398
1399         rdev->open_count++;
1400         if (exclusive) {
1401                 rdev->exclusive = 1;
1402
1403                 ret = _regulator_is_enabled(rdev);
1404                 if (ret > 0)
1405                         rdev->use_count = 1;
1406                 else
1407                         rdev->use_count = 0;
1408         }
1409
1410 out:
1411         mutex_unlock(&regulator_list_mutex);
1412
1413         return regulator;
1414 }
1415
1416 /**
1417  * regulator_get - lookup and obtain a reference to a regulator.
1418  * @dev: device for regulator "consumer"
1419  * @id: Supply name or regulator ID.
1420  *
1421  * Returns a struct regulator corresponding to the regulator producer,
1422  * or IS_ERR() condition containing errno.
1423  *
1424  * Use of supply names configured via regulator_set_device_supply() is
1425  * strongly encouraged.  It is recommended that the supply name used
1426  * should match the name used for the supply and/or the relevant
1427  * device pins in the datasheet.
1428  */
1429 struct regulator *regulator_get(struct device *dev, const char *id)
1430 {
1431         return _regulator_get(dev, id, false, true);
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_get);
1434
1435 /**
1436  * regulator_get_exclusive - obtain exclusive access to a regulator.
1437  * @dev: device for regulator "consumer"
1438  * @id: Supply name or regulator ID.
1439  *
1440  * Returns a struct regulator corresponding to the regulator producer,
1441  * or IS_ERR() condition containing errno.  Other consumers will be
1442  * unable to obtain this regulator while this reference is held and the
1443  * use count for the regulator will be initialised to reflect the current
1444  * state of the regulator.
1445  *
1446  * This is intended for use by consumers which cannot tolerate shared
1447  * use of the regulator such as those which need to force the
1448  * regulator off for correct operation of the hardware they are
1449  * controlling.
1450  *
1451  * Use of supply names configured via regulator_set_device_supply() is
1452  * strongly encouraged.  It is recommended that the supply name used
1453  * should match the name used for the supply and/or the relevant
1454  * device pins in the datasheet.
1455  */
1456 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1457 {
1458         return _regulator_get(dev, id, true, false);
1459 }
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1461
1462 /**
1463  * regulator_get_optional - obtain optional access to a regulator.
1464  * @dev: device for regulator "consumer"
1465  * @id: Supply name or regulator ID.
1466  *
1467  * Returns a struct regulator corresponding to the regulator producer,
1468  * or IS_ERR() condition containing errno.
1469  *
1470  * This is intended for use by consumers for devices which can have
1471  * some supplies unconnected in normal use, such as some MMC devices.
1472  * It can allow the regulator core to provide stub supplies for other
1473  * supplies requested using normal regulator_get() calls without
1474  * disrupting the operation of drivers that can handle absent
1475  * supplies.
1476  *
1477  * Use of supply names configured via regulator_set_device_supply() is
1478  * strongly encouraged.  It is recommended that the supply name used
1479  * should match the name used for the supply and/or the relevant
1480  * device pins in the datasheet.
1481  */
1482 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1483 {
1484         return _regulator_get(dev, id, false, false);
1485 }
1486 EXPORT_SYMBOL_GPL(regulator_get_optional);
1487
1488 /* Locks held by regulator_put() */
1489 static void _regulator_put(struct regulator *regulator)
1490 {
1491         struct regulator_dev *rdev;
1492
1493         if (regulator == NULL || IS_ERR(regulator))
1494                 return;
1495
1496         rdev = regulator->rdev;
1497
1498         debugfs_remove_recursive(regulator->debugfs);
1499
1500         /* remove any sysfs entries */
1501         if (regulator->dev)
1502                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1503         kfree(regulator->supply_name);
1504         list_del(&regulator->list);
1505         kfree(regulator);
1506
1507         rdev->open_count--;
1508         rdev->exclusive = 0;
1509
1510         module_put(rdev->owner);
1511 }
1512
1513 /**
1514  * regulator_put - "free" the regulator source
1515  * @regulator: regulator source
1516  *
1517  * Note: drivers must ensure that all regulator_enable calls made on this
1518  * regulator source are balanced by regulator_disable calls prior to calling
1519  * this function.
1520  */
1521 void regulator_put(struct regulator *regulator)
1522 {
1523         mutex_lock(&regulator_list_mutex);
1524         _regulator_put(regulator);
1525         mutex_unlock(&regulator_list_mutex);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_put);
1528
1529 /**
1530  * regulator_register_supply_alias - Provide device alias for supply lookup
1531  *
1532  * @dev: device that will be given as the regulator "consumer"
1533  * @id: Supply name or regulator ID
1534  * @alias_dev: device that should be used to lookup the supply
1535  * @alias_id: Supply name or regulator ID that should be used to lookup the
1536  * supply
1537  *
1538  * All lookups for id on dev will instead be conducted for alias_id on
1539  * alias_dev.
1540  */
1541 int regulator_register_supply_alias(struct device *dev, const char *id,
1542                                     struct device *alias_dev,
1543                                     const char *alias_id)
1544 {
1545         struct regulator_supply_alias *map;
1546
1547         map = regulator_find_supply_alias(dev, id);
1548         if (map)
1549                 return -EEXIST;
1550
1551         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1552         if (!map)
1553                 return -ENOMEM;
1554
1555         map->src_dev = dev;
1556         map->src_supply = id;
1557         map->alias_dev = alias_dev;
1558         map->alias_supply = alias_id;
1559
1560         list_add(&map->list, &regulator_supply_alias_list);
1561
1562         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1563                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1564
1565         return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1568
1569 /**
1570  * regulator_unregister_supply_alias - Remove device alias
1571  *
1572  * @dev: device that will be given as the regulator "consumer"
1573  * @id: Supply name or regulator ID
1574  *
1575  * Remove a lookup alias if one exists for id on dev.
1576  */
1577 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1578 {
1579         struct regulator_supply_alias *map;
1580
1581         map = regulator_find_supply_alias(dev, id);
1582         if (map) {
1583                 list_del(&map->list);
1584                 kfree(map);
1585         }
1586 }
1587 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1588
1589 /**
1590  * regulator_bulk_register_supply_alias - register multiple aliases
1591  *
1592  * @dev: device that will be given as the regulator "consumer"
1593  * @id: List of supply names or regulator IDs
1594  * @alias_dev: device that should be used to lookup the supply
1595  * @alias_id: List of supply names or regulator IDs that should be used to
1596  * lookup the supply
1597  * @num_id: Number of aliases to register
1598  *
1599  * @return 0 on success, an errno on failure.
1600  *
1601  * This helper function allows drivers to register several supply
1602  * aliases in one operation.  If any of the aliases cannot be
1603  * registered any aliases that were registered will be removed
1604  * before returning to the caller.
1605  */
1606 int regulator_bulk_register_supply_alias(struct device *dev,
1607                                          const char *const *id,
1608                                          struct device *alias_dev,
1609                                          const char *const *alias_id,
1610                                          int num_id)
1611 {
1612         int i;
1613         int ret;
1614
1615         for (i = 0; i < num_id; ++i) {
1616                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1617                                                       alias_id[i]);
1618                 if (ret < 0)
1619                         goto err;
1620         }
1621
1622         return 0;
1623
1624 err:
1625         dev_err(dev,
1626                 "Failed to create supply alias %s,%s -> %s,%s\n",
1627                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1628
1629         while (--i >= 0)
1630                 regulator_unregister_supply_alias(dev, id[i]);
1631
1632         return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1635
1636 /**
1637  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1638  *
1639  * @dev: device that will be given as the regulator "consumer"
1640  * @id: List of supply names or regulator IDs
1641  * @num_id: Number of aliases to unregister
1642  *
1643  * This helper function allows drivers to unregister several supply
1644  * aliases in one operation.
1645  */
1646 void regulator_bulk_unregister_supply_alias(struct device *dev,
1647                                             const char *const *id,
1648                                             int num_id)
1649 {
1650         int i;
1651
1652         for (i = 0; i < num_id; ++i)
1653                 regulator_unregister_supply_alias(dev, id[i]);
1654 }
1655 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1656
1657
1658 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1659 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1660                                 const struct regulator_config *config)
1661 {
1662         struct regulator_enable_gpio *pin;
1663         int ret;
1664
1665         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1666                 if (pin->gpio == config->ena_gpio) {
1667                         rdev_dbg(rdev, "GPIO %d is already used\n",
1668                                 config->ena_gpio);
1669                         goto update_ena_gpio_to_rdev;
1670                 }
1671         }
1672
1673         ret = gpio_request_one(config->ena_gpio,
1674                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1675                                 rdev_get_name(rdev));
1676         if (ret)
1677                 return ret;
1678
1679         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1680         if (pin == NULL) {
1681                 gpio_free(config->ena_gpio);
1682                 return -ENOMEM;
1683         }
1684
1685         pin->gpio = config->ena_gpio;
1686         pin->ena_gpio_invert = config->ena_gpio_invert;
1687         list_add(&pin->list, &regulator_ena_gpio_list);
1688
1689 update_ena_gpio_to_rdev:
1690         pin->request_count++;
1691         rdev->ena_pin = pin;
1692         return 0;
1693 }
1694
1695 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1696 {
1697         struct regulator_enable_gpio *pin, *n;
1698
1699         if (!rdev->ena_pin)
1700                 return;
1701
1702         /* Free the GPIO only in case of no use */
1703         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1704                 if (pin->gpio == rdev->ena_pin->gpio) {
1705                         if (pin->request_count <= 1) {
1706                                 pin->request_count = 0;
1707                                 gpio_free(pin->gpio);
1708                                 list_del(&pin->list);
1709                                 kfree(pin);
1710                         } else {
1711                                 pin->request_count--;
1712                         }
1713                 }
1714         }
1715 }
1716
1717 /**
1718  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1719  * @rdev: regulator_dev structure
1720  * @enable: enable GPIO at initial use?
1721  *
1722  * GPIO is enabled in case of initial use. (enable_count is 0)
1723  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1724  */
1725 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1726 {
1727         struct regulator_enable_gpio *pin = rdev->ena_pin;
1728
1729         if (!pin)
1730                 return -EINVAL;
1731
1732         if (enable) {
1733                 /* Enable GPIO at initial use */
1734                 if (pin->enable_count == 0)
1735                         gpio_set_value_cansleep(pin->gpio,
1736                                                 !pin->ena_gpio_invert);
1737
1738                 pin->enable_count++;
1739         } else {
1740                 if (pin->enable_count > 1) {
1741                         pin->enable_count--;
1742                         return 0;
1743                 }
1744
1745                 /* Disable GPIO if not used */
1746                 if (pin->enable_count <= 1) {
1747                         gpio_set_value_cansleep(pin->gpio,
1748                                                 pin->ena_gpio_invert);
1749                         pin->enable_count = 0;
1750                 }
1751         }
1752
1753         return 0;
1754 }
1755
1756 static int _regulator_do_enable(struct regulator_dev *rdev)
1757 {
1758         int ret, delay;
1759
1760         /* Query before enabling in case configuration dependent.  */
1761         ret = _regulator_get_enable_time(rdev);
1762         if (ret >= 0) {
1763                 delay = ret;
1764         } else {
1765                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1766                 delay = 0;
1767         }
1768
1769         trace_regulator_enable(rdev_get_name(rdev));
1770
1771         if (rdev->ena_pin) {
1772                 ret = regulator_ena_gpio_ctrl(rdev, true);
1773                 if (ret < 0)
1774                         return ret;
1775                 rdev->ena_gpio_state = 1;
1776         } else if (rdev->desc->ops->enable) {
1777                 ret = rdev->desc->ops->enable(rdev);
1778                 if (ret < 0)
1779                         return ret;
1780         } else {
1781                 return -EINVAL;
1782         }
1783
1784         /* Allow the regulator to ramp; it would be useful to extend
1785          * this for bulk operations so that the regulators can ramp
1786          * together.  */
1787         trace_regulator_enable_delay(rdev_get_name(rdev));
1788
1789         /*
1790          * Delay for the requested amount of time as per the guidelines in:
1791          *
1792          *     Documentation/timers/timers-howto.txt
1793          *
1794          * The assumption here is that regulators will never be enabled in
1795          * atomic context and therefore sleeping functions can be used.
1796          */
1797         if (delay) {
1798                 unsigned int ms = delay / 1000;
1799                 unsigned int us = delay % 1000;
1800
1801                 if (ms > 0) {
1802                         /*
1803                          * For small enough values, handle super-millisecond
1804                          * delays in the usleep_range() call below.
1805                          */
1806                         if (ms < 20)
1807                                 us += ms * 1000;
1808                         else
1809                                 msleep(ms);
1810                 }
1811
1812                 /*
1813                  * Give the scheduler some room to coalesce with any other
1814                  * wakeup sources. For delays shorter than 10 us, don't even
1815                  * bother setting up high-resolution timers and just busy-
1816                  * loop.
1817                  */
1818                 if (us >= 10)
1819                         usleep_range(us, us + 100);
1820                 else
1821                         udelay(us);
1822         }
1823
1824         trace_regulator_enable_complete(rdev_get_name(rdev));
1825
1826         return 0;
1827 }
1828
1829 /* locks held by regulator_enable() */
1830 static int _regulator_enable(struct regulator_dev *rdev)
1831 {
1832         int ret;
1833
1834         /* check voltage and requested load before enabling */
1835         if (rdev->constraints &&
1836             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1837                 drms_uA_update(rdev);
1838
1839         if (rdev->use_count == 0) {
1840                 /* The regulator may on if it's not switchable or left on */
1841                 ret = _regulator_is_enabled(rdev);
1842                 if (ret == -EINVAL || ret == 0) {
1843                         if (!_regulator_can_change_status(rdev))
1844                                 return -EPERM;
1845
1846                         ret = _regulator_do_enable(rdev);
1847                         if (ret < 0)
1848                                 return ret;
1849
1850                 } else if (ret < 0) {
1851                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1852                         return ret;
1853                 }
1854                 /* Fallthrough on positive return values - already enabled */
1855         }
1856
1857         rdev->use_count++;
1858
1859         return 0;
1860 }
1861
1862 /**
1863  * regulator_enable - enable regulator output
1864  * @regulator: regulator source
1865  *
1866  * Request that the regulator be enabled with the regulator output at
1867  * the predefined voltage or current value.  Calls to regulator_enable()
1868  * must be balanced with calls to regulator_disable().
1869  *
1870  * NOTE: the output value can be set by other drivers, boot loader or may be
1871  * hardwired in the regulator.
1872  */
1873 int regulator_enable(struct regulator *regulator)
1874 {
1875         struct regulator_dev *rdev = regulator->rdev;
1876         int ret = 0;
1877
1878         if (regulator->always_on)
1879                 return 0;
1880
1881         if (rdev->supply) {
1882                 ret = regulator_enable(rdev->supply);
1883                 if (ret != 0)
1884                         return ret;
1885         }
1886
1887         mutex_lock(&rdev->mutex);
1888         ret = _regulator_enable(rdev);
1889         mutex_unlock(&rdev->mutex);
1890
1891         if (ret != 0 && rdev->supply)
1892                 regulator_disable(rdev->supply);
1893
1894         return ret;
1895 }
1896 EXPORT_SYMBOL_GPL(regulator_enable);
1897
1898 static int _regulator_do_disable(struct regulator_dev *rdev)
1899 {
1900         int ret;
1901
1902         trace_regulator_disable(rdev_get_name(rdev));
1903
1904         if (rdev->ena_pin) {
1905                 ret = regulator_ena_gpio_ctrl(rdev, false);
1906                 if (ret < 0)
1907                         return ret;
1908                 rdev->ena_gpio_state = 0;
1909
1910         } else if (rdev->desc->ops->disable) {
1911                 ret = rdev->desc->ops->disable(rdev);
1912                 if (ret != 0)
1913                         return ret;
1914         }
1915
1916         trace_regulator_disable_complete(rdev_get_name(rdev));
1917
1918         return 0;
1919 }
1920
1921 /* locks held by regulator_disable() */
1922 static int _regulator_disable(struct regulator_dev *rdev)
1923 {
1924         int ret = 0;
1925
1926         if (WARN(rdev->use_count <= 0,
1927                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1928                 return -EIO;
1929
1930         /* are we the last user and permitted to disable ? */
1931         if (rdev->use_count == 1 &&
1932             (rdev->constraints && !rdev->constraints->always_on)) {
1933
1934                 /* we are last user */
1935                 if (_regulator_can_change_status(rdev)) {
1936                         ret = _regulator_do_disable(rdev);
1937                         if (ret < 0) {
1938                                 rdev_err(rdev, "failed to disable\n");
1939                                 return ret;
1940                         }
1941                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1942                                         NULL);
1943                 }
1944
1945                 rdev->use_count = 0;
1946         } else if (rdev->use_count > 1) {
1947
1948                 if (rdev->constraints &&
1949                         (rdev->constraints->valid_ops_mask &
1950                         REGULATOR_CHANGE_DRMS))
1951                         drms_uA_update(rdev);
1952
1953                 rdev->use_count--;
1954         }
1955
1956         return ret;
1957 }
1958
1959 /**
1960  * regulator_disable - disable regulator output
1961  * @regulator: regulator source
1962  *
1963  * Disable the regulator output voltage or current.  Calls to
1964  * regulator_enable() must be balanced with calls to
1965  * regulator_disable().
1966  *
1967  * NOTE: this will only disable the regulator output if no other consumer
1968  * devices have it enabled, the regulator device supports disabling and
1969  * machine constraints permit this operation.
1970  */
1971 int regulator_disable(struct regulator *regulator)
1972 {
1973         struct regulator_dev *rdev = regulator->rdev;
1974         int ret = 0;
1975
1976         if (regulator->always_on)
1977                 return 0;
1978
1979         mutex_lock(&rdev->mutex);
1980         ret = _regulator_disable(rdev);
1981         mutex_unlock(&rdev->mutex);
1982
1983         if (ret == 0 && rdev->supply)
1984                 regulator_disable(rdev->supply);
1985
1986         return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(regulator_disable);
1989
1990 /* locks held by regulator_force_disable() */
1991 static int _regulator_force_disable(struct regulator_dev *rdev)
1992 {
1993         int ret = 0;
1994
1995         ret = _regulator_do_disable(rdev);
1996         if (ret < 0) {
1997                 rdev_err(rdev, "failed to force disable\n");
1998                 return ret;
1999         }
2000
2001         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2002                         REGULATOR_EVENT_DISABLE, NULL);
2003
2004         return 0;
2005 }
2006
2007 /**
2008  * regulator_force_disable - force disable regulator output
2009  * @regulator: regulator source
2010  *
2011  * Forcibly disable the regulator output voltage or current.
2012  * NOTE: this *will* disable the regulator output even if other consumer
2013  * devices have it enabled. This should be used for situations when device
2014  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2015  */
2016 int regulator_force_disable(struct regulator *regulator)
2017 {
2018         struct regulator_dev *rdev = regulator->rdev;
2019         int ret;
2020
2021         mutex_lock(&rdev->mutex);
2022         regulator->uA_load = 0;
2023         ret = _regulator_force_disable(regulator->rdev);
2024         mutex_unlock(&rdev->mutex);
2025
2026         if (rdev->supply)
2027                 while (rdev->open_count--)
2028                         regulator_disable(rdev->supply);
2029
2030         return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_force_disable);
2033
2034 static void regulator_disable_work(struct work_struct *work)
2035 {
2036         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2037                                                   disable_work.work);
2038         int count, i, ret;
2039
2040         mutex_lock(&rdev->mutex);
2041
2042         BUG_ON(!rdev->deferred_disables);
2043
2044         count = rdev->deferred_disables;
2045         rdev->deferred_disables = 0;
2046
2047         for (i = 0; i < count; i++) {
2048                 ret = _regulator_disable(rdev);
2049                 if (ret != 0)
2050                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2051         }
2052
2053         mutex_unlock(&rdev->mutex);
2054
2055         if (rdev->supply) {
2056                 for (i = 0; i < count; i++) {
2057                         ret = regulator_disable(rdev->supply);
2058                         if (ret != 0) {
2059                                 rdev_err(rdev,
2060                                          "Supply disable failed: %d\n", ret);
2061                         }
2062                 }
2063         }
2064 }
2065
2066 /**
2067  * regulator_disable_deferred - disable regulator output with delay
2068  * @regulator: regulator source
2069  * @ms: miliseconds until the regulator is disabled
2070  *
2071  * Execute regulator_disable() on the regulator after a delay.  This
2072  * is intended for use with devices that require some time to quiesce.
2073  *
2074  * NOTE: this will only disable the regulator output if no other consumer
2075  * devices have it enabled, the regulator device supports disabling and
2076  * machine constraints permit this operation.
2077  */
2078 int regulator_disable_deferred(struct regulator *regulator, int ms)
2079 {
2080         struct regulator_dev *rdev = regulator->rdev;
2081         int ret;
2082
2083         if (regulator->always_on)
2084                 return 0;
2085
2086         if (!ms)
2087                 return regulator_disable(regulator);
2088
2089         mutex_lock(&rdev->mutex);
2090         rdev->deferred_disables++;
2091         mutex_unlock(&rdev->mutex);
2092
2093         ret = queue_delayed_work(system_power_efficient_wq,
2094                                  &rdev->disable_work,
2095                                  msecs_to_jiffies(ms));
2096         if (ret < 0)
2097                 return ret;
2098         else
2099                 return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2102
2103 static int _regulator_is_enabled(struct regulator_dev *rdev)
2104 {
2105         /* A GPIO control always takes precedence */
2106         if (rdev->ena_pin)
2107                 return rdev->ena_gpio_state;
2108
2109         /* If we don't know then assume that the regulator is always on */
2110         if (!rdev->desc->ops->is_enabled)
2111                 return 1;
2112
2113         return rdev->desc->ops->is_enabled(rdev);
2114 }
2115
2116 /**
2117  * regulator_is_enabled - is the regulator output enabled
2118  * @regulator: regulator source
2119  *
2120  * Returns positive if the regulator driver backing the source/client
2121  * has requested that the device be enabled, zero if it hasn't, else a
2122  * negative errno code.
2123  *
2124  * Note that the device backing this regulator handle can have multiple
2125  * users, so it might be enabled even if regulator_enable() was never
2126  * called for this particular source.
2127  */
2128 int regulator_is_enabled(struct regulator *regulator)
2129 {
2130         int ret;
2131
2132         if (regulator->always_on)
2133                 return 1;
2134
2135         mutex_lock(&regulator->rdev->mutex);
2136         ret = _regulator_is_enabled(regulator->rdev);
2137         mutex_unlock(&regulator->rdev->mutex);
2138
2139         return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2142
2143 /**
2144  * regulator_can_change_voltage - check if regulator can change voltage
2145  * @regulator: regulator source
2146  *
2147  * Returns positive if the regulator driver backing the source/client
2148  * can change its voltage, false otherwise. Useful for detecting fixed
2149  * or dummy regulators and disabling voltage change logic in the client
2150  * driver.
2151  */
2152 int regulator_can_change_voltage(struct regulator *regulator)
2153 {
2154         struct regulator_dev    *rdev = regulator->rdev;
2155
2156         if (rdev->constraints &&
2157             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2158                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2159                         return 1;
2160
2161                 if (rdev->desc->continuous_voltage_range &&
2162                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2163                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2164                         return 1;
2165         }
2166
2167         return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2170
2171 /**
2172  * regulator_count_voltages - count regulator_list_voltage() selectors
2173  * @regulator: regulator source
2174  *
2175  * Returns number of selectors, or negative errno.  Selectors are
2176  * numbered starting at zero, and typically correspond to bitfields
2177  * in hardware registers.
2178  */
2179 int regulator_count_voltages(struct regulator *regulator)
2180 {
2181         struct regulator_dev    *rdev = regulator->rdev;
2182
2183         return rdev->desc->n_voltages ? : -EINVAL;
2184 }
2185 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2186
2187 /**
2188  * regulator_list_voltage - enumerate supported voltages
2189  * @regulator: regulator source
2190  * @selector: identify voltage to list
2191  * Context: can sleep
2192  *
2193  * Returns a voltage that can be passed to @regulator_set_voltage(),
2194  * zero if this selector code can't be used on this system, or a
2195  * negative errno.
2196  */
2197 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2198 {
2199         struct regulator_dev    *rdev = regulator->rdev;
2200         struct regulator_ops    *ops = rdev->desc->ops;
2201         int                     ret;
2202
2203         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2204                 return rdev->desc->fixed_uV;
2205
2206         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2207                 return -EINVAL;
2208
2209         mutex_lock(&rdev->mutex);
2210         ret = ops->list_voltage(rdev, selector);
2211         mutex_unlock(&rdev->mutex);
2212
2213         if (ret > 0) {
2214                 if (ret < rdev->constraints->min_uV)
2215                         ret = 0;
2216                 else if (ret > rdev->constraints->max_uV)
2217                         ret = 0;
2218         }
2219
2220         return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2223
2224 /**
2225  * regulator_get_regmap - get the regulator's register map
2226  * @regulator: regulator source
2227  *
2228  * Returns the register map for the given regulator, or an ERR_PTR value
2229  * if the regulator doesn't use regmap.
2230  */
2231 struct regmap *regulator_get_regmap(struct regulator *regulator)
2232 {
2233         struct regmap *map = regulator->rdev->regmap;
2234
2235         return map ? map : ERR_PTR(-EOPNOTSUPP);
2236 }
2237
2238 /**
2239  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2240  * @regulator: regulator source
2241  * @vsel_reg: voltage selector register, output parameter
2242  * @vsel_mask: mask for voltage selector bitfield, output parameter
2243  *
2244  * Returns the hardware register offset and bitmask used for setting the
2245  * regulator voltage. This might be useful when configuring voltage-scaling
2246  * hardware or firmware that can make I2C requests behind the kernel's back,
2247  * for example.
2248  *
2249  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2250  * and 0 is returned, otherwise a negative errno is returned.
2251  */
2252 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2253                                          unsigned *vsel_reg,
2254                                          unsigned *vsel_mask)
2255 {
2256         struct regulator_dev    *rdev = regulator->rdev;
2257         struct regulator_ops    *ops = rdev->desc->ops;
2258
2259         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2260                 return -EOPNOTSUPP;
2261
2262          *vsel_reg = rdev->desc->vsel_reg;
2263          *vsel_mask = rdev->desc->vsel_mask;
2264
2265          return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2268
2269 /**
2270  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2271  * @regulator: regulator source
2272  * @selector: identify voltage to list
2273  *
2274  * Converts the selector to a hardware-specific voltage selector that can be
2275  * directly written to the regulator registers. The address of the voltage
2276  * register can be determined by calling @regulator_get_hardware_vsel_register.
2277  *
2278  * On error a negative errno is returned.
2279  */
2280 int regulator_list_hardware_vsel(struct regulator *regulator,
2281                                  unsigned selector)
2282 {
2283         struct regulator_dev    *rdev = regulator->rdev;
2284         struct regulator_ops    *ops = rdev->desc->ops;
2285
2286         if (selector >= rdev->desc->n_voltages)
2287                 return -EINVAL;
2288         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2289                 return -EOPNOTSUPP;
2290
2291         return selector;
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2294
2295 /**
2296  * regulator_get_linear_step - return the voltage step size between VSEL values
2297  * @regulator: regulator source
2298  *
2299  * Returns the voltage step size between VSEL values for linear
2300  * regulators, or return 0 if the regulator isn't a linear regulator.
2301  */
2302 unsigned int regulator_get_linear_step(struct regulator *regulator)
2303 {
2304         struct regulator_dev *rdev = regulator->rdev;
2305
2306         return rdev->desc->uV_step;
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2309
2310 /**
2311  * regulator_is_supported_voltage - check if a voltage range can be supported
2312  *
2313  * @regulator: Regulator to check.
2314  * @min_uV: Minimum required voltage in uV.
2315  * @max_uV: Maximum required voltage in uV.
2316  *
2317  * Returns a boolean or a negative error code.
2318  */
2319 int regulator_is_supported_voltage(struct regulator *regulator,
2320                                    int min_uV, int max_uV)
2321 {
2322         struct regulator_dev *rdev = regulator->rdev;
2323         int i, voltages, ret;
2324
2325         /* If we can't change voltage check the current voltage */
2326         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2327                 ret = regulator_get_voltage(regulator);
2328                 if (ret >= 0)
2329                         return min_uV <= ret && ret <= max_uV;
2330                 else
2331                         return ret;
2332         }
2333
2334         /* Any voltage within constrains range is fine? */
2335         if (rdev->desc->continuous_voltage_range)
2336                 return min_uV >= rdev->constraints->min_uV &&
2337                                 max_uV <= rdev->constraints->max_uV;
2338
2339         ret = regulator_count_voltages(regulator);
2340         if (ret < 0)
2341                 return ret;
2342         voltages = ret;
2343
2344         for (i = 0; i < voltages; i++) {
2345                 ret = regulator_list_voltage(regulator, i);
2346
2347                 if (ret >= min_uV && ret <= max_uV)
2348                         return 1;
2349         }
2350
2351         return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2354
2355 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2356                                      int min_uV, int max_uV)
2357 {
2358         int ret;
2359         int delay = 0;
2360         int best_val = 0;
2361         unsigned int selector;
2362         int old_selector = -1;
2363
2364         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2365
2366         min_uV += rdev->constraints->uV_offset;
2367         max_uV += rdev->constraints->uV_offset;
2368
2369         /*
2370          * If we can't obtain the old selector there is not enough
2371          * info to call set_voltage_time_sel().
2372          */
2373         if (_regulator_is_enabled(rdev) &&
2374             rdev->desc->ops->set_voltage_time_sel &&
2375             rdev->desc->ops->get_voltage_sel) {
2376                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2377                 if (old_selector < 0)
2378                         return old_selector;
2379         }
2380
2381         if (rdev->desc->ops->set_voltage) {
2382                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2383                                                    &selector);
2384
2385                 if (ret >= 0) {
2386                         if (rdev->desc->ops->list_voltage)
2387                                 best_val = rdev->desc->ops->list_voltage(rdev,
2388                                                                          selector);
2389                         else
2390                                 best_val = _regulator_get_voltage(rdev);
2391                 }
2392
2393         } else if (rdev->desc->ops->set_voltage_sel) {
2394                 if (rdev->desc->ops->map_voltage) {
2395                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2396                                                            max_uV);
2397                 } else {
2398                         if (rdev->desc->ops->list_voltage ==
2399                             regulator_list_voltage_linear)
2400                                 ret = regulator_map_voltage_linear(rdev,
2401                                                                 min_uV, max_uV);
2402                         else if (rdev->desc->ops->list_voltage ==
2403                                  regulator_list_voltage_linear_range)
2404                                 ret = regulator_map_voltage_linear_range(rdev,
2405                                                                 min_uV, max_uV);
2406                         else
2407                                 ret = regulator_map_voltage_iterate(rdev,
2408                                                                 min_uV, max_uV);
2409                 }
2410
2411                 if (ret >= 0) {
2412                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2413                         if (min_uV <= best_val && max_uV >= best_val) {
2414                                 selector = ret;
2415                                 if (old_selector == selector)
2416                                         ret = 0;
2417                                 else
2418                                         ret = rdev->desc->ops->set_voltage_sel(
2419                                                                 rdev, ret);
2420                         } else {
2421                                 ret = -EINVAL;
2422                         }
2423                 }
2424         } else {
2425                 ret = -EINVAL;
2426         }
2427
2428         /* Call set_voltage_time_sel if successfully obtained old_selector */
2429         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2430                 && old_selector != selector) {
2431
2432                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2433                                                 old_selector, selector);
2434                 if (delay < 0) {
2435                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2436                                   delay);
2437                         delay = 0;
2438                 }
2439
2440                 /* Insert any necessary delays */
2441                 if (delay >= 1000) {
2442                         mdelay(delay / 1000);
2443                         udelay(delay % 1000);
2444                 } else if (delay) {
2445                         udelay(delay);
2446                 }
2447         }
2448
2449         if (ret == 0 && best_val >= 0) {
2450                 unsigned long data = best_val;
2451
2452                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2453                                      (void *)data);
2454         }
2455
2456         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2457
2458         return ret;
2459 }
2460
2461 /**
2462  * regulator_set_voltage - set regulator output voltage
2463  * @regulator: regulator source
2464  * @min_uV: Minimum required voltage in uV
2465  * @max_uV: Maximum acceptable voltage in uV
2466  *
2467  * Sets a voltage regulator to the desired output voltage. This can be set
2468  * during any regulator state. IOW, regulator can be disabled or enabled.
2469  *
2470  * If the regulator is enabled then the voltage will change to the new value
2471  * immediately otherwise if the regulator is disabled the regulator will
2472  * output at the new voltage when enabled.
2473  *
2474  * NOTE: If the regulator is shared between several devices then the lowest
2475  * request voltage that meets the system constraints will be used.
2476  * Regulator system constraints must be set for this regulator before
2477  * calling this function otherwise this call will fail.
2478  */
2479 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2480 {
2481         struct regulator_dev *rdev = regulator->rdev;
2482         int ret = 0;
2483         int old_min_uV, old_max_uV;
2484         int current_uV;
2485
2486         mutex_lock(&rdev->mutex);
2487
2488         /* If we're setting the same range as last time the change
2489          * should be a noop (some cpufreq implementations use the same
2490          * voltage for multiple frequencies, for example).
2491          */
2492         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2493                 goto out;
2494
2495         /* If we're trying to set a range that overlaps the current voltage,
2496          * return succesfully even though the regulator does not support
2497          * changing the voltage.
2498          */
2499         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2500                 current_uV = _regulator_get_voltage(rdev);
2501                 if (min_uV <= current_uV && current_uV <= max_uV) {
2502                         regulator->min_uV = min_uV;
2503                         regulator->max_uV = max_uV;
2504                         goto out;
2505                 }
2506         }
2507
2508         /* sanity check */
2509         if (!rdev->desc->ops->set_voltage &&
2510             !rdev->desc->ops->set_voltage_sel) {
2511                 ret = -EINVAL;
2512                 goto out;
2513         }
2514
2515         /* constraints check */
2516         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2517         if (ret < 0)
2518                 goto out;
2519
2520         /* restore original values in case of error */
2521         old_min_uV = regulator->min_uV;
2522         old_max_uV = regulator->max_uV;
2523         regulator->min_uV = min_uV;
2524         regulator->max_uV = max_uV;
2525
2526         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2527         if (ret < 0)
2528                 goto out2;
2529
2530         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2531         if (ret < 0)
2532                 goto out2;
2533
2534 out:
2535         mutex_unlock(&rdev->mutex);
2536         return ret;
2537 out2:
2538         regulator->min_uV = old_min_uV;
2539         regulator->max_uV = old_max_uV;
2540         mutex_unlock(&rdev->mutex);
2541         return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2544
2545 /**
2546  * regulator_set_voltage_time - get raise/fall time
2547  * @regulator: regulator source
2548  * @old_uV: starting voltage in microvolts
2549  * @new_uV: target voltage in microvolts
2550  *
2551  * Provided with the starting and ending voltage, this function attempts to
2552  * calculate the time in microseconds required to rise or fall to this new
2553  * voltage.
2554  */
2555 int regulator_set_voltage_time(struct regulator *regulator,
2556                                int old_uV, int new_uV)
2557 {
2558         struct regulator_dev    *rdev = regulator->rdev;
2559         struct regulator_ops    *ops = rdev->desc->ops;
2560         int old_sel = -1;
2561         int new_sel = -1;
2562         int voltage;
2563         int i;
2564
2565         /* Currently requires operations to do this */
2566         if (!ops->list_voltage || !ops->set_voltage_time_sel
2567             || !rdev->desc->n_voltages)
2568                 return -EINVAL;
2569
2570         for (i = 0; i < rdev->desc->n_voltages; i++) {
2571                 /* We only look for exact voltage matches here */
2572                 voltage = regulator_list_voltage(regulator, i);
2573                 if (voltage < 0)
2574                         return -EINVAL;
2575                 if (voltage == 0)
2576                         continue;
2577                 if (voltage == old_uV)
2578                         old_sel = i;
2579                 if (voltage == new_uV)
2580                         new_sel = i;
2581         }
2582
2583         if (old_sel < 0 || new_sel < 0)
2584                 return -EINVAL;
2585
2586         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2587 }
2588 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2589
2590 /**
2591  * regulator_set_voltage_time_sel - get raise/fall time
2592  * @rdev: regulator source device
2593  * @old_selector: selector for starting voltage
2594  * @new_selector: selector for target voltage
2595  *
2596  * Provided with the starting and target voltage selectors, this function
2597  * returns time in microseconds required to rise or fall to this new voltage
2598  *
2599  * Drivers providing ramp_delay in regulation_constraints can use this as their
2600  * set_voltage_time_sel() operation.
2601  */
2602 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2603                                    unsigned int old_selector,
2604                                    unsigned int new_selector)
2605 {
2606         unsigned int ramp_delay = 0;
2607         int old_volt, new_volt;
2608
2609         if (rdev->constraints->ramp_delay)
2610                 ramp_delay = rdev->constraints->ramp_delay;
2611         else if (rdev->desc->ramp_delay)
2612                 ramp_delay = rdev->desc->ramp_delay;
2613
2614         if (ramp_delay == 0) {
2615                 rdev_warn(rdev, "ramp_delay not set\n");
2616                 return 0;
2617         }
2618
2619         /* sanity check */
2620         if (!rdev->desc->ops->list_voltage)
2621                 return -EINVAL;
2622
2623         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2624         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2625
2626         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2629
2630 /**
2631  * regulator_sync_voltage - re-apply last regulator output voltage
2632  * @regulator: regulator source
2633  *
2634  * Re-apply the last configured voltage.  This is intended to be used
2635  * where some external control source the consumer is cooperating with
2636  * has caused the configured voltage to change.
2637  */
2638 int regulator_sync_voltage(struct regulator *regulator)
2639 {
2640         struct regulator_dev *rdev = regulator->rdev;
2641         int ret, min_uV, max_uV;
2642
2643         mutex_lock(&rdev->mutex);
2644
2645         if (!rdev->desc->ops->set_voltage &&
2646             !rdev->desc->ops->set_voltage_sel) {
2647                 ret = -EINVAL;
2648                 goto out;
2649         }
2650
2651         /* This is only going to work if we've had a voltage configured. */
2652         if (!regulator->min_uV && !regulator->max_uV) {
2653                 ret = -EINVAL;
2654                 goto out;
2655         }
2656
2657         min_uV = regulator->min_uV;
2658         max_uV = regulator->max_uV;
2659
2660         /* This should be a paranoia check... */
2661         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2662         if (ret < 0)
2663                 goto out;
2664
2665         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2666         if (ret < 0)
2667                 goto out;
2668
2669         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2670
2671 out:
2672         mutex_unlock(&rdev->mutex);
2673         return ret;
2674 }
2675 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2676
2677 static int _regulator_get_voltage(struct regulator_dev *rdev)
2678 {
2679         int sel, ret;
2680
2681         if (rdev->desc->ops->get_voltage_sel) {
2682                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2683                 if (sel < 0)
2684                         return sel;
2685                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2686         } else if (rdev->desc->ops->get_voltage) {
2687                 ret = rdev->desc->ops->get_voltage(rdev);
2688         } else if (rdev->desc->ops->list_voltage) {
2689                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2690         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2691                 ret = rdev->desc->fixed_uV;
2692         } else {
2693                 return -EINVAL;
2694         }
2695
2696         if (ret < 0)
2697                 return ret;
2698         return ret - rdev->constraints->uV_offset;
2699 }
2700
2701 /**
2702  * regulator_get_voltage - get regulator output voltage
2703  * @regulator: regulator source
2704  *
2705  * This returns the current regulator voltage in uV.
2706  *
2707  * NOTE: If the regulator is disabled it will return the voltage value. This
2708  * function should not be used to determine regulator state.
2709  */
2710 int regulator_get_voltage(struct regulator *regulator)
2711 {
2712         int ret;
2713
2714         mutex_lock(&regulator->rdev->mutex);
2715
2716         ret = _regulator_get_voltage(regulator->rdev);
2717
2718         mutex_unlock(&regulator->rdev->mutex);
2719
2720         return ret;
2721 }
2722 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2723
2724 /**
2725  * regulator_set_current_limit - set regulator output current limit
2726  * @regulator: regulator source
2727  * @min_uA: Minimum supported current in uA
2728  * @max_uA: Maximum supported current in uA
2729  *
2730  * Sets current sink to the desired output current. This can be set during
2731  * any regulator state. IOW, regulator can be disabled or enabled.
2732  *
2733  * If the regulator is enabled then the current will change to the new value
2734  * immediately otherwise if the regulator is disabled the regulator will
2735  * output at the new current when enabled.
2736  *
2737  * NOTE: Regulator system constraints must be set for this regulator before
2738  * calling this function otherwise this call will fail.
2739  */
2740 int regulator_set_current_limit(struct regulator *regulator,
2741                                int min_uA, int max_uA)
2742 {
2743         struct regulator_dev *rdev = regulator->rdev;
2744         int ret;
2745
2746         mutex_lock(&rdev->mutex);
2747
2748         /* sanity check */
2749         if (!rdev->desc->ops->set_current_limit) {
2750                 ret = -EINVAL;
2751                 goto out;
2752         }
2753
2754         /* constraints check */
2755         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2756         if (ret < 0)
2757                 goto out;
2758
2759         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2760 out:
2761         mutex_unlock(&rdev->mutex);
2762         return ret;
2763 }
2764 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2765
2766 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2767 {
2768         int ret;
2769
2770         mutex_lock(&rdev->mutex);
2771
2772         /* sanity check */
2773         if (!rdev->desc->ops->get_current_limit) {
2774                 ret = -EINVAL;
2775                 goto out;
2776         }
2777
2778         ret = rdev->desc->ops->get_current_limit(rdev);
2779 out:
2780         mutex_unlock(&rdev->mutex);
2781         return ret;
2782 }
2783
2784 /**
2785  * regulator_get_current_limit - get regulator output current
2786  * @regulator: regulator source
2787  *
2788  * This returns the current supplied by the specified current sink in uA.
2789  *
2790  * NOTE: If the regulator is disabled it will return the current value. This
2791  * function should not be used to determine regulator state.
2792  */
2793 int regulator_get_current_limit(struct regulator *regulator)
2794 {
2795         return _regulator_get_current_limit(regulator->rdev);
2796 }
2797 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2798
2799 /**
2800  * regulator_set_mode - set regulator operating mode
2801  * @regulator: regulator source
2802  * @mode: operating mode - one of the REGULATOR_MODE constants
2803  *
2804  * Set regulator operating mode to increase regulator efficiency or improve
2805  * regulation performance.
2806  *
2807  * NOTE: Regulator system constraints must be set for this regulator before
2808  * calling this function otherwise this call will fail.
2809  */
2810 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2811 {
2812         struct regulator_dev *rdev = regulator->rdev;
2813         int ret;
2814         int regulator_curr_mode;
2815
2816         mutex_lock(&rdev->mutex);
2817
2818         /* sanity check */
2819         if (!rdev->desc->ops->set_mode) {
2820                 ret = -EINVAL;
2821                 goto out;
2822         }
2823
2824         /* return if the same mode is requested */
2825         if (rdev->desc->ops->get_mode) {
2826                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2827                 if (regulator_curr_mode == mode) {
2828                         ret = 0;
2829                         goto out;
2830                 }
2831         }
2832
2833         /* constraints check */
2834         ret = regulator_mode_constrain(rdev, &mode);
2835         if (ret < 0)
2836                 goto out;
2837
2838         ret = rdev->desc->ops->set_mode(rdev, mode);
2839 out:
2840         mutex_unlock(&rdev->mutex);
2841         return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_set_mode);
2844
2845 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2846 {
2847         int ret;
2848
2849         mutex_lock(&rdev->mutex);
2850
2851         /* sanity check */
2852         if (!rdev->desc->ops->get_mode) {
2853                 ret = -EINVAL;
2854                 goto out;
2855         }
2856
2857         ret = rdev->desc->ops->get_mode(rdev);
2858 out:
2859         mutex_unlock(&rdev->mutex);
2860         return ret;
2861 }
2862
2863 /**
2864  * regulator_get_mode - get regulator operating mode
2865  * @regulator: regulator source
2866  *
2867  * Get the current regulator operating mode.
2868  */
2869 unsigned int regulator_get_mode(struct regulator *regulator)
2870 {
2871         return _regulator_get_mode(regulator->rdev);
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_get_mode);
2874
2875 /**
2876  * regulator_set_optimum_mode - set regulator optimum operating mode
2877  * @regulator: regulator source
2878  * @uA_load: load current
2879  *
2880  * Notifies the regulator core of a new device load. This is then used by
2881  * DRMS (if enabled by constraints) to set the most efficient regulator
2882  * operating mode for the new regulator loading.
2883  *
2884  * Consumer devices notify their supply regulator of the maximum power
2885  * they will require (can be taken from device datasheet in the power
2886  * consumption tables) when they change operational status and hence power
2887  * state. Examples of operational state changes that can affect power
2888  * consumption are :-
2889  *
2890  *    o Device is opened / closed.
2891  *    o Device I/O is about to begin or has just finished.
2892  *    o Device is idling in between work.
2893  *
2894  * This information is also exported via sysfs to userspace.
2895  *
2896  * DRMS will sum the total requested load on the regulator and change
2897  * to the most efficient operating mode if platform constraints allow.
2898  *
2899  * Returns the new regulator mode or error.
2900  */
2901 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2902 {
2903         struct regulator_dev *rdev = regulator->rdev;
2904         struct regulator *consumer;
2905         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2906         unsigned int mode;
2907
2908         if (rdev->supply)
2909                 input_uV = regulator_get_voltage(rdev->supply);
2910
2911         mutex_lock(&rdev->mutex);
2912
2913         /*
2914          * first check to see if we can set modes at all, otherwise just
2915          * tell the consumer everything is OK.
2916          */
2917         regulator->uA_load = uA_load;
2918         ret = regulator_check_drms(rdev);
2919         if (ret < 0) {
2920                 ret = 0;
2921                 goto out;
2922         }
2923
2924         if (!rdev->desc->ops->get_optimum_mode)
2925                 goto out;
2926
2927         /*
2928          * we can actually do this so any errors are indicators of
2929          * potential real failure.
2930          */
2931         ret = -EINVAL;
2932
2933         if (!rdev->desc->ops->set_mode)
2934                 goto out;
2935
2936         /* get output voltage */
2937         output_uV = _regulator_get_voltage(rdev);
2938         if (output_uV <= 0) {
2939                 rdev_err(rdev, "invalid output voltage found\n");
2940                 goto out;
2941         }
2942
2943         /* No supply? Use constraint voltage */
2944         if (input_uV <= 0)
2945                 input_uV = rdev->constraints->input_uV;
2946         if (input_uV <= 0) {
2947                 rdev_err(rdev, "invalid input voltage found\n");
2948                 goto out;
2949         }
2950
2951         /* calc total requested load for this regulator */
2952         list_for_each_entry(consumer, &rdev->consumer_list, list)
2953                 total_uA_load += consumer->uA_load;
2954
2955         mode = rdev->desc->ops->get_optimum_mode(rdev,
2956                                                  input_uV, output_uV,
2957                                                  total_uA_load);
2958         ret = regulator_mode_constrain(rdev, &mode);
2959         if (ret < 0) {
2960                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2961                          total_uA_load, input_uV, output_uV);
2962                 goto out;
2963         }
2964
2965         ret = rdev->desc->ops->set_mode(rdev, mode);
2966         if (ret < 0) {
2967                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2968                 goto out;
2969         }
2970         ret = mode;
2971 out:
2972         mutex_unlock(&rdev->mutex);
2973         return ret;
2974 }
2975 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2976
2977 /**
2978  * regulator_allow_bypass - allow the regulator to go into bypass mode
2979  *
2980  * @regulator: Regulator to configure
2981  * @enable: enable or disable bypass mode
2982  *
2983  * Allow the regulator to go into bypass mode if all other consumers
2984  * for the regulator also enable bypass mode and the machine
2985  * constraints allow this.  Bypass mode means that the regulator is
2986  * simply passing the input directly to the output with no regulation.
2987  */
2988 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2989 {
2990         struct regulator_dev *rdev = regulator->rdev;
2991         int ret = 0;
2992
2993         if (!rdev->desc->ops->set_bypass)
2994                 return 0;
2995
2996         if (rdev->constraints &&
2997             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2998                 return 0;
2999
3000         mutex_lock(&rdev->mutex);
3001
3002         if (enable && !regulator->bypass) {
3003                 rdev->bypass_count++;
3004
3005                 if (rdev->bypass_count == rdev->open_count) {
3006                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3007                         if (ret != 0)
3008                                 rdev->bypass_count--;
3009                 }
3010
3011         } else if (!enable && regulator->bypass) {
3012                 rdev->bypass_count--;
3013
3014                 if (rdev->bypass_count != rdev->open_count) {
3015                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3016                         if (ret != 0)
3017                                 rdev->bypass_count++;
3018                 }
3019         }
3020
3021         if (ret == 0)
3022                 regulator->bypass = enable;
3023
3024         mutex_unlock(&rdev->mutex);
3025
3026         return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3029
3030 /**
3031  * regulator_register_notifier - register regulator event notifier
3032  * @regulator: regulator source
3033  * @nb: notifier block
3034  *
3035  * Register notifier block to receive regulator events.
3036  */
3037 int regulator_register_notifier(struct regulator *regulator,
3038                               struct notifier_block *nb)
3039 {
3040         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3041                                                 nb);
3042 }
3043 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3044
3045 /**
3046  * regulator_unregister_notifier - unregister regulator event notifier
3047  * @regulator: regulator source
3048  * @nb: notifier block
3049  *
3050  * Unregister regulator event notifier block.
3051  */
3052 int regulator_unregister_notifier(struct regulator *regulator,
3053                                 struct notifier_block *nb)
3054 {
3055         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3056                                                   nb);
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3059
3060 /* notify regulator consumers and downstream regulator consumers.
3061  * Note mutex must be held by caller.
3062  */
3063 static void _notifier_call_chain(struct regulator_dev *rdev,
3064                                   unsigned long event, void *data)
3065 {
3066         /* call rdev chain first */
3067         blocking_notifier_call_chain(&rdev->notifier, event, data);
3068 }
3069
3070 /**
3071  * regulator_bulk_get - get multiple regulator consumers
3072  *
3073  * @dev:           Device to supply
3074  * @num_consumers: Number of consumers to register
3075  * @consumers:     Configuration of consumers; clients are stored here.
3076  *
3077  * @return 0 on success, an errno on failure.
3078  *
3079  * This helper function allows drivers to get several regulator
3080  * consumers in one operation.  If any of the regulators cannot be
3081  * acquired then any regulators that were allocated will be freed
3082  * before returning to the caller.
3083  */
3084 int regulator_bulk_get(struct device *dev, int num_consumers,
3085                        struct regulator_bulk_data *consumers)
3086 {
3087         int i;
3088         int ret;
3089
3090         for (i = 0; i < num_consumers; i++)
3091                 consumers[i].consumer = NULL;
3092
3093         for (i = 0; i < num_consumers; i++) {
3094                 consumers[i].consumer = regulator_get(dev,
3095                                                       consumers[i].supply);
3096                 if (IS_ERR(consumers[i].consumer)) {
3097                         ret = PTR_ERR(consumers[i].consumer);
3098                         dev_err(dev, "Failed to get supply '%s': %d\n",
3099                                 consumers[i].supply, ret);
3100                         consumers[i].consumer = NULL;
3101                         goto err;
3102                 }
3103         }
3104
3105         return 0;
3106
3107 err:
3108         while (--i >= 0)
3109                 regulator_put(consumers[i].consumer);
3110
3111         return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3114
3115 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3116 {
3117         struct regulator_bulk_data *bulk = data;
3118
3119         bulk->ret = regulator_enable(bulk->consumer);
3120 }
3121
3122 /**
3123  * regulator_bulk_enable - enable multiple regulator consumers
3124  *
3125  * @num_consumers: Number of consumers
3126  * @consumers:     Consumer data; clients are stored here.
3127  * @return         0 on success, an errno on failure
3128  *
3129  * This convenience API allows consumers to enable multiple regulator
3130  * clients in a single API call.  If any consumers cannot be enabled
3131  * then any others that were enabled will be disabled again prior to
3132  * return.
3133  */
3134 int regulator_bulk_enable(int num_consumers,
3135                           struct regulator_bulk_data *consumers)
3136 {
3137         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3138         int i;
3139         int ret = 0;
3140
3141         for (i = 0; i < num_consumers; i++) {
3142                 if (consumers[i].consumer->always_on)
3143                         consumers[i].ret = 0;
3144                 else
3145                         async_schedule_domain(regulator_bulk_enable_async,
3146                                               &consumers[i], &async_domain);
3147         }
3148
3149         async_synchronize_full_domain(&async_domain);
3150
3151         /* If any consumer failed we need to unwind any that succeeded */
3152         for (i = 0; i < num_consumers; i++) {
3153                 if (consumers[i].ret != 0) {
3154                         ret = consumers[i].ret;
3155                         goto err;
3156                 }
3157         }
3158
3159         return 0;
3160
3161 err:
3162         for (i = 0; i < num_consumers; i++) {
3163                 if (consumers[i].ret < 0)
3164                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3165                                consumers[i].ret);
3166                 else
3167                         regulator_disable(consumers[i].consumer);
3168         }
3169
3170         return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3173
3174 /**
3175  * regulator_bulk_disable - disable multiple regulator consumers
3176  *
3177  * @num_consumers: Number of consumers
3178  * @consumers:     Consumer data; clients are stored here.
3179  * @return         0 on success, an errno on failure
3180  *
3181  * This convenience API allows consumers to disable multiple regulator
3182  * clients in a single API call.  If any consumers cannot be disabled
3183  * then any others that were disabled will be enabled again prior to
3184  * return.
3185  */
3186 int regulator_bulk_disable(int num_consumers,
3187                            struct regulator_bulk_data *consumers)
3188 {
3189         int i;
3190         int ret, r;
3191
3192         for (i = num_consumers - 1; i >= 0; --i) {
3193                 ret = regulator_disable(consumers[i].consumer);
3194                 if (ret != 0)
3195                         goto err;
3196         }
3197
3198         return 0;
3199
3200 err:
3201         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3202         for (++i; i < num_consumers; ++i) {
3203                 r = regulator_enable(consumers[i].consumer);
3204                 if (r != 0)
3205                         pr_err("Failed to reename %s: %d\n",
3206                                consumers[i].supply, r);
3207         }
3208
3209         return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3212
3213 /**
3214  * regulator_bulk_force_disable - force disable multiple regulator consumers
3215  *
3216  * @num_consumers: Number of consumers
3217  * @consumers:     Consumer data; clients are stored here.
3218  * @return         0 on success, an errno on failure
3219  *
3220  * This convenience API allows consumers to forcibly disable multiple regulator
3221  * clients in a single API call.
3222  * NOTE: This should be used for situations when device damage will
3223  * likely occur if the regulators are not disabled (e.g. over temp).
3224  * Although regulator_force_disable function call for some consumers can
3225  * return error numbers, the function is called for all consumers.
3226  */
3227 int regulator_bulk_force_disable(int num_consumers,
3228                            struct regulator_bulk_data *consumers)
3229 {
3230         int i;
3231         int ret;
3232
3233         for (i = 0; i < num_consumers; i++)
3234                 consumers[i].ret =
3235                             regulator_force_disable(consumers[i].consumer);
3236
3237         for (i = 0; i < num_consumers; i++) {
3238                 if (consumers[i].ret != 0) {
3239                         ret = consumers[i].ret;
3240                         goto out;
3241                 }
3242         }
3243
3244         return 0;
3245 out:
3246         return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3249
3250 /**
3251  * regulator_bulk_free - free multiple regulator consumers
3252  *
3253  * @num_consumers: Number of consumers
3254  * @consumers:     Consumer data; clients are stored here.
3255  *
3256  * This convenience API allows consumers to free multiple regulator
3257  * clients in a single API call.
3258  */
3259 void regulator_bulk_free(int num_consumers,
3260                          struct regulator_bulk_data *consumers)
3261 {
3262         int i;
3263
3264         for (i = 0; i < num_consumers; i++) {
3265                 regulator_put(consumers[i].consumer);
3266                 consumers[i].consumer = NULL;
3267         }
3268 }
3269 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3270
3271 /**
3272  * regulator_notifier_call_chain - call regulator event notifier
3273  * @rdev: regulator source
3274  * @event: notifier block
3275  * @data: callback-specific data.
3276  *
3277  * Called by regulator drivers to notify clients a regulator event has
3278  * occurred. We also notify regulator clients downstream.
3279  * Note lock must be held by caller.
3280  */
3281 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3282                                   unsigned long event, void *data)
3283 {
3284         _notifier_call_chain(rdev, event, data);
3285         return NOTIFY_DONE;
3286
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3289
3290 /**
3291  * regulator_mode_to_status - convert a regulator mode into a status
3292  *
3293  * @mode: Mode to convert
3294  *
3295  * Convert a regulator mode into a status.
3296  */
3297 int regulator_mode_to_status(unsigned int mode)
3298 {
3299         switch (mode) {
3300         case REGULATOR_MODE_FAST:
3301                 return REGULATOR_STATUS_FAST;
3302         case REGULATOR_MODE_NORMAL:
3303                 return REGULATOR_STATUS_NORMAL;
3304         case REGULATOR_MODE_IDLE:
3305                 return REGULATOR_STATUS_IDLE;
3306         case REGULATOR_MODE_STANDBY:
3307                 return REGULATOR_STATUS_STANDBY;
3308         default:
3309                 return REGULATOR_STATUS_UNDEFINED;
3310         }
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3313
3314 /*
3315  * To avoid cluttering sysfs (and memory) with useless state, only
3316  * create attributes that can be meaningfully displayed.
3317  */
3318 static int add_regulator_attributes(struct regulator_dev *rdev)
3319 {
3320         struct device           *dev = &rdev->dev;
3321         struct regulator_ops    *ops = rdev->desc->ops;
3322         int                     status = 0;
3323
3324         /* some attributes need specific methods to be displayed */
3325         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3326             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3327             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3328                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3329                 status = device_create_file(dev, &dev_attr_microvolts);
3330                 if (status < 0)
3331                         return status;
3332         }
3333         if (ops->get_current_limit) {
3334                 status = device_create_file(dev, &dev_attr_microamps);
3335                 if (status < 0)
3336                         return status;
3337         }
3338         if (ops->get_mode) {
3339                 status = device_create_file(dev, &dev_attr_opmode);
3340                 if (status < 0)
3341                         return status;
3342         }
3343         if (rdev->ena_pin || ops->is_enabled) {
3344                 status = device_create_file(dev, &dev_attr_state);
3345                 if (status < 0)
3346                         return status;
3347         }
3348         if (ops->get_status) {
3349                 status = device_create_file(dev, &dev_attr_status);
3350                 if (status < 0)
3351                         return status;
3352         }
3353         if (ops->get_bypass) {
3354                 status = device_create_file(dev, &dev_attr_bypass);
3355                 if (status < 0)
3356                         return status;
3357         }
3358
3359         /* some attributes are type-specific */
3360         if (rdev->desc->type == REGULATOR_CURRENT) {
3361                 status = device_create_file(dev, &dev_attr_requested_microamps);
3362                 if (status < 0)
3363                         return status;
3364         }
3365
3366         /* all the other attributes exist to support constraints;
3367          * don't show them if there are no constraints, or if the
3368          * relevant supporting methods are missing.
3369          */
3370         if (!rdev->constraints)
3371                 return status;
3372
3373         /* constraints need specific supporting methods */
3374         if (ops->set_voltage || ops->set_voltage_sel) {
3375                 status = device_create_file(dev, &dev_attr_min_microvolts);
3376                 if (status < 0)
3377                         return status;
3378                 status = device_create_file(dev, &dev_attr_max_microvolts);
3379                 if (status < 0)
3380                         return status;
3381         }
3382         if (ops->set_current_limit) {
3383                 status = device_create_file(dev, &dev_attr_min_microamps);
3384                 if (status < 0)
3385                         return status;
3386                 status = device_create_file(dev, &dev_attr_max_microamps);
3387                 if (status < 0)
3388                         return status;
3389         }
3390
3391         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3392         if (status < 0)
3393                 return status;
3394         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3395         if (status < 0)
3396                 return status;
3397         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3398         if (status < 0)
3399                 return status;
3400
3401         if (ops->set_suspend_voltage) {
3402                 status = device_create_file(dev,
3403                                 &dev_attr_suspend_standby_microvolts);
3404                 if (status < 0)
3405                         return status;
3406                 status = device_create_file(dev,
3407                                 &dev_attr_suspend_mem_microvolts);
3408                 if (status < 0)
3409                         return status;
3410                 status = device_create_file(dev,
3411                                 &dev_attr_suspend_disk_microvolts);
3412                 if (status < 0)
3413                         return status;
3414         }
3415
3416         if (ops->set_suspend_mode) {
3417                 status = device_create_file(dev,
3418                                 &dev_attr_suspend_standby_mode);
3419                 if (status < 0)
3420                         return status;
3421                 status = device_create_file(dev,
3422                                 &dev_attr_suspend_mem_mode);
3423                 if (status < 0)
3424                         return status;
3425                 status = device_create_file(dev,
3426                                 &dev_attr_suspend_disk_mode);
3427                 if (status < 0)
3428                         return status;
3429         }
3430
3431         return status;
3432 }
3433
3434 static void rdev_init_debugfs(struct regulator_dev *rdev)
3435 {
3436         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3437         if (!rdev->debugfs) {
3438                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3439                 return;
3440         }
3441
3442         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3443                            &rdev->use_count);
3444         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3445                            &rdev->open_count);
3446         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3447                            &rdev->bypass_count);
3448 }
3449
3450 /**
3451  * regulator_register - register regulator
3452  * @regulator_desc: regulator to register
3453  * @config: runtime configuration for regulator
3454  *
3455  * Called by regulator drivers to register a regulator.
3456  * Returns a valid pointer to struct regulator_dev on success
3457  * or an ERR_PTR() on error.
3458  */
3459 struct regulator_dev *
3460 regulator_register(const struct regulator_desc *regulator_desc,
3461                    const struct regulator_config *config)
3462 {
3463         const struct regulation_constraints *constraints = NULL;
3464         const struct regulator_init_data *init_data;
3465         static atomic_t regulator_no = ATOMIC_INIT(0);
3466         struct regulator_dev *rdev;
3467         struct device *dev;
3468         int ret, i;
3469         const char *supply = NULL;
3470
3471         if (regulator_desc == NULL || config == NULL)
3472                 return ERR_PTR(-EINVAL);
3473
3474         dev = config->dev;
3475         WARN_ON(!dev);
3476
3477         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3478                 return ERR_PTR(-EINVAL);
3479
3480         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3481             regulator_desc->type != REGULATOR_CURRENT)
3482                 return ERR_PTR(-EINVAL);
3483
3484         /* Only one of each should be implemented */
3485         WARN_ON(regulator_desc->ops->get_voltage &&
3486                 regulator_desc->ops->get_voltage_sel);
3487         WARN_ON(regulator_desc->ops->set_voltage &&
3488                 regulator_desc->ops->set_voltage_sel);
3489
3490         /* If we're using selectors we must implement list_voltage. */
3491         if (regulator_desc->ops->get_voltage_sel &&
3492             !regulator_desc->ops->list_voltage) {
3493                 return ERR_PTR(-EINVAL);
3494         }
3495         if (regulator_desc->ops->set_voltage_sel &&
3496             !regulator_desc->ops->list_voltage) {
3497                 return ERR_PTR(-EINVAL);
3498         }
3499
3500         init_data = config->init_data;
3501
3502         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3503         if (rdev == NULL)
3504                 return ERR_PTR(-ENOMEM);
3505
3506         mutex_lock(&regulator_list_mutex);
3507
3508         mutex_init(&rdev->mutex);
3509         rdev->reg_data = config->driver_data;
3510         rdev->owner = regulator_desc->owner;
3511         rdev->desc = regulator_desc;
3512         if (config->regmap)
3513                 rdev->regmap = config->regmap;
3514         else if (dev_get_regmap(dev, NULL))
3515                 rdev->regmap = dev_get_regmap(dev, NULL);
3516         else if (dev->parent)
3517                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3518         INIT_LIST_HEAD(&rdev->consumer_list);
3519         INIT_LIST_HEAD(&rdev->list);
3520         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3521         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3522
3523         /* preform any regulator specific init */
3524         if (init_data && init_data->regulator_init) {
3525                 ret = init_data->regulator_init(rdev->reg_data);
3526                 if (ret < 0)
3527                         goto clean;
3528         }
3529
3530         /* register with sysfs */
3531         rdev->dev.class = &regulator_class;
3532         rdev->dev.of_node = of_node_get(config->of_node);
3533         rdev->dev.parent = dev;
3534         dev_set_name(&rdev->dev, "regulator.%d",
3535                      atomic_inc_return(&regulator_no) - 1);
3536         ret = device_register(&rdev->dev);
3537         if (ret != 0) {
3538                 put_device(&rdev->dev);
3539                 goto clean;
3540         }
3541
3542         dev_set_drvdata(&rdev->dev, rdev);
3543
3544         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3545                 ret = regulator_ena_gpio_request(rdev, config);
3546                 if (ret != 0) {
3547                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3548                                  config->ena_gpio, ret);
3549                         goto wash;
3550                 }
3551
3552                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3553                         rdev->ena_gpio_state = 1;
3554
3555                 if (config->ena_gpio_invert)
3556                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3557         }
3558
3559         /* set regulator constraints */
3560         if (init_data)
3561                 constraints = &init_data->constraints;
3562
3563         ret = set_machine_constraints(rdev, constraints);
3564         if (ret < 0)
3565                 goto scrub;
3566
3567         /* add attributes supported by this regulator */
3568         ret = add_regulator_attributes(rdev);
3569         if (ret < 0)
3570                 goto scrub;
3571
3572         if (init_data && init_data->supply_regulator)
3573                 supply = init_data->supply_regulator;
3574         else if (regulator_desc->supply_name)
3575                 supply = regulator_desc->supply_name;
3576
3577         if (supply) {
3578                 struct regulator_dev *r;
3579
3580                 r = regulator_dev_lookup(dev, supply, &ret);
3581
3582                 if (ret == -ENODEV) {
3583                         /*
3584                          * No supply was specified for this regulator and
3585                          * there will never be one.
3586                          */
3587                         ret = 0;
3588                         goto add_dev;
3589                 } else if (!r) {
3590                         dev_err(dev, "Failed to find supply %s\n", supply);
3591                         ret = -EPROBE_DEFER;
3592                         goto scrub;
3593                 }
3594
3595                 ret = set_supply(rdev, r);
3596                 if (ret < 0)
3597                         goto scrub;
3598
3599                 /* Enable supply if rail is enabled */
3600                 if (_regulator_is_enabled(rdev)) {
3601                         ret = regulator_enable(rdev->supply);
3602                         if (ret < 0)
3603                                 goto scrub;
3604                 }
3605         }
3606
3607 add_dev:
3608         /* add consumers devices */
3609         if (init_data) {
3610                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3611                         ret = set_consumer_device_supply(rdev,
3612                                 init_data->consumer_supplies[i].dev_name,
3613                                 init_data->consumer_supplies[i].supply);
3614                         if (ret < 0) {
3615                                 dev_err(dev, "Failed to set supply %s\n",
3616                                         init_data->consumer_supplies[i].supply);
3617                                 goto unset_supplies;
3618                         }
3619                 }
3620         }
3621
3622         list_add(&rdev->list, &regulator_list);
3623
3624         rdev_init_debugfs(rdev);
3625 out:
3626         mutex_unlock(&regulator_list_mutex);
3627         return rdev;
3628
3629 unset_supplies:
3630         unset_regulator_supplies(rdev);
3631
3632 scrub:
3633         if (rdev->supply)
3634                 _regulator_put(rdev->supply);
3635         regulator_ena_gpio_free(rdev);
3636         kfree(rdev->constraints);
3637 wash:
3638         device_unregister(&rdev->dev);
3639         /* device core frees rdev */
3640         rdev = ERR_PTR(ret);
3641         goto out;
3642
3643 clean:
3644         kfree(rdev);
3645         rdev = ERR_PTR(ret);
3646         goto out;
3647 }
3648 EXPORT_SYMBOL_GPL(regulator_register);
3649
3650 /**
3651  * regulator_unregister - unregister regulator
3652  * @rdev: regulator to unregister
3653  *
3654  * Called by regulator drivers to unregister a regulator.
3655  */
3656 void regulator_unregister(struct regulator_dev *rdev)
3657 {
3658         if (rdev == NULL)
3659                 return;
3660
3661         if (rdev->supply) {
3662                 while (rdev->use_count--)
3663                         regulator_disable(rdev->supply);
3664                 regulator_put(rdev->supply);
3665         }
3666         mutex_lock(&regulator_list_mutex);
3667         debugfs_remove_recursive(rdev->debugfs);
3668         flush_work(&rdev->disable_work.work);
3669         WARN_ON(rdev->open_count);
3670         unset_regulator_supplies(rdev);
3671         list_del(&rdev->list);
3672         kfree(rdev->constraints);
3673         regulator_ena_gpio_free(rdev);
3674         of_node_put(rdev->dev.of_node);
3675         device_unregister(&rdev->dev);
3676         mutex_unlock(&regulator_list_mutex);
3677 }
3678 EXPORT_SYMBOL_GPL(regulator_unregister);
3679
3680 /**
3681  * regulator_suspend_prepare - prepare regulators for system wide suspend
3682  * @state: system suspend state
3683  *
3684  * Configure each regulator with it's suspend operating parameters for state.
3685  * This will usually be called by machine suspend code prior to supending.
3686  */
3687 int regulator_suspend_prepare(suspend_state_t state)
3688 {
3689         struct regulator_dev *rdev;
3690         int ret = 0;
3691
3692         /* ON is handled by regulator active state */
3693         if (state == PM_SUSPEND_ON)
3694                 return -EINVAL;
3695
3696         mutex_lock(&regulator_list_mutex);
3697         list_for_each_entry(rdev, &regulator_list, list) {
3698
3699                 mutex_lock(&rdev->mutex);
3700                 ret = suspend_prepare(rdev, state);
3701                 mutex_unlock(&rdev->mutex);
3702
3703                 if (ret < 0) {
3704                         rdev_err(rdev, "failed to prepare\n");
3705                         goto out;
3706                 }
3707         }
3708 out:
3709         mutex_unlock(&regulator_list_mutex);
3710         return ret;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3713
3714 /**
3715  * regulator_suspend_finish - resume regulators from system wide suspend
3716  *
3717  * Turn on regulators that might be turned off by regulator_suspend_prepare
3718  * and that should be turned on according to the regulators properties.
3719  */
3720 int regulator_suspend_finish(void)
3721 {
3722         struct regulator_dev *rdev;
3723         int ret = 0, error;
3724
3725         mutex_lock(&regulator_list_mutex);
3726         list_for_each_entry(rdev, &regulator_list, list) {
3727                 mutex_lock(&rdev->mutex);
3728                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3729                         error = _regulator_do_enable(rdev);
3730                         if (error)
3731                                 ret = error;
3732                 } else {
3733                         if (!have_full_constraints())
3734                                 goto unlock;
3735                         if (!_regulator_is_enabled(rdev))
3736                                 goto unlock;
3737
3738                         error = _regulator_do_disable(rdev);
3739                         if (error)
3740                                 ret = error;
3741                 }
3742 unlock:
3743                 mutex_unlock(&rdev->mutex);
3744         }
3745         mutex_unlock(&regulator_list_mutex);
3746         return ret;
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3749
3750 /**
3751  * regulator_has_full_constraints - the system has fully specified constraints
3752  *
3753  * Calling this function will cause the regulator API to disable all
3754  * regulators which have a zero use count and don't have an always_on
3755  * constraint in a late_initcall.
3756  *
3757  * The intention is that this will become the default behaviour in a
3758  * future kernel release so users are encouraged to use this facility
3759  * now.
3760  */
3761 void regulator_has_full_constraints(void)
3762 {
3763         has_full_constraints = 1;
3764 }
3765 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3766
3767 /**
3768  * rdev_get_drvdata - get rdev regulator driver data
3769  * @rdev: regulator
3770  *
3771  * Get rdev regulator driver private data. This call can be used in the
3772  * regulator driver context.
3773  */
3774 void *rdev_get_drvdata(struct regulator_dev *rdev)
3775 {
3776         return rdev->reg_data;
3777 }
3778 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3779
3780 /**
3781  * regulator_get_drvdata - get regulator driver data
3782  * @regulator: regulator
3783  *
3784  * Get regulator driver private data. This call can be used in the consumer
3785  * driver context when non API regulator specific functions need to be called.
3786  */
3787 void *regulator_get_drvdata(struct regulator *regulator)
3788 {
3789         return regulator->rdev->reg_data;
3790 }
3791 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3792
3793 /**
3794  * regulator_set_drvdata - set regulator driver data
3795  * @regulator: regulator
3796  * @data: data
3797  */
3798 void regulator_set_drvdata(struct regulator *regulator, void *data)
3799 {
3800         regulator->rdev->reg_data = data;
3801 }
3802 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3803
3804 /**
3805  * regulator_get_id - get regulator ID
3806  * @rdev: regulator
3807  */
3808 int rdev_get_id(struct regulator_dev *rdev)
3809 {
3810         return rdev->desc->id;
3811 }
3812 EXPORT_SYMBOL_GPL(rdev_get_id);
3813
3814 struct device *rdev_get_dev(struct regulator_dev *rdev)
3815 {
3816         return &rdev->dev;
3817 }
3818 EXPORT_SYMBOL_GPL(rdev_get_dev);
3819
3820 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3821 {
3822         return reg_init_data->driver_data;
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3825
3826 #ifdef CONFIG_DEBUG_FS
3827 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3828                                     size_t count, loff_t *ppos)
3829 {
3830         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3831         ssize_t len, ret = 0;
3832         struct regulator_map *map;
3833
3834         if (!buf)
3835                 return -ENOMEM;
3836
3837         list_for_each_entry(map, &regulator_map_list, list) {
3838                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3839                                "%s -> %s.%s\n",
3840                                rdev_get_name(map->regulator), map->dev_name,
3841                                map->supply);
3842                 if (len >= 0)
3843                         ret += len;
3844                 if (ret > PAGE_SIZE) {
3845                         ret = PAGE_SIZE;
3846                         break;
3847                 }
3848         }
3849
3850         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3851
3852         kfree(buf);
3853
3854         return ret;
3855 }
3856 #endif
3857
3858 static const struct file_operations supply_map_fops = {
3859 #ifdef CONFIG_DEBUG_FS
3860         .read = supply_map_read_file,
3861         .llseek = default_llseek,
3862 #endif
3863 };
3864
3865 static int __init regulator_init(void)
3866 {
3867         int ret;
3868
3869         ret = class_register(&regulator_class);
3870
3871         debugfs_root = debugfs_create_dir("regulator", NULL);
3872         if (!debugfs_root)
3873                 pr_warn("regulator: Failed to create debugfs directory\n");
3874
3875         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3876                             &supply_map_fops);
3877
3878         regulator_dummy_init();
3879
3880         return ret;
3881 }
3882
3883 /* init early to allow our consumers to complete system booting */
3884 core_initcall(regulator_init);
3885
3886 static int __init regulator_init_complete(void)
3887 {
3888         struct regulator_dev *rdev;
3889         struct regulator_ops *ops;
3890         struct regulation_constraints *c;
3891         int enabled, ret;
3892
3893         /*
3894          * Since DT doesn't provide an idiomatic mechanism for
3895          * enabling full constraints and since it's much more natural
3896          * with DT to provide them just assume that a DT enabled
3897          * system has full constraints.
3898          */
3899         if (of_have_populated_dt())
3900                 has_full_constraints = true;
3901
3902         mutex_lock(&regulator_list_mutex);
3903
3904         /* If we have a full configuration then disable any regulators
3905          * we have permission to change the status for and which are
3906          * not in use or always_on.  This is effectively the default
3907          * for DT and ACPI as they have full constraints.
3908          */
3909         list_for_each_entry(rdev, &regulator_list, list) {
3910                 ops = rdev->desc->ops;
3911                 c = rdev->constraints;
3912
3913                 if (c && c->always_on)
3914                         continue;
3915
3916                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3917                         continue;
3918
3919                 mutex_lock(&rdev->mutex);
3920
3921                 if (rdev->use_count)
3922                         goto unlock;
3923
3924                 /* If we can't read the status assume it's on. */
3925                 if (ops->is_enabled)
3926                         enabled = ops->is_enabled(rdev);
3927                 else
3928                         enabled = 1;
3929
3930                 if (!enabled)
3931                         goto unlock;
3932
3933                 if (have_full_constraints()) {
3934                         /* We log since this may kill the system if it
3935                          * goes wrong. */
3936                         rdev_info(rdev, "disabling\n");
3937                         ret = _regulator_do_disable(rdev);
3938                         if (ret != 0)
3939                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3940                 } else {
3941                         /* The intention is that in future we will
3942                          * assume that full constraints are provided
3943                          * so warn even if we aren't going to do
3944                          * anything here.
3945                          */
3946                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3947                 }
3948
3949 unlock:
3950                 mutex_unlock(&rdev->mutex);
3951         }
3952
3953         mutex_unlock(&regulator_list_mutex);
3954
3955         return 0;
3956 }
3957 late_initcall_sync(regulator_init_complete);