regulator: core: replace sprintf with scnprintf
[firefly-linux-kernel-4.4.55.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode &&
652             !rdev->desc->ops->set_load)
653                 return 0;
654
655         if (!rdev->desc->ops->set_mode &&
656             !rdev->desc->ops->set_load)
657                 return -EINVAL;
658
659         /* get output voltage */
660         output_uV = _regulator_get_voltage(rdev);
661         if (output_uV <= 0) {
662                 rdev_err(rdev, "invalid output voltage found\n");
663                 return -EINVAL;
664         }
665
666         /* get input voltage */
667         input_uV = 0;
668         if (rdev->supply)
669                 input_uV = regulator_get_voltage(rdev->supply);
670         if (input_uV <= 0)
671                 input_uV = rdev->constraints->input_uV;
672         if (input_uV <= 0) {
673                 rdev_err(rdev, "invalid input voltage found\n");
674                 return -EINVAL;
675         }
676
677         /* calc total requested load */
678         list_for_each_entry(sibling, &rdev->consumer_list, list)
679                 current_uA += sibling->uA_load;
680
681         if (rdev->desc->ops->set_load) {
682                 /* set the optimum mode for our new total regulator load */
683                 err = rdev->desc->ops->set_load(rdev, current_uA);
684                 if (err < 0)
685                         rdev_err(rdev, "failed to set load %d\n", current_uA);
686         } else {
687                 /* now get the optimum mode for our new total regulator load */
688                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                          output_uV, current_uA);
690
691                 /* check the new mode is allowed */
692                 err = regulator_mode_constrain(rdev, &mode);
693                 if (err < 0) {
694                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
695                                  current_uA, input_uV, output_uV);
696                         return err;
697                 }
698
699                 err = rdev->desc->ops->set_mode(rdev, mode);
700                 if (err < 0)
701                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
702         }
703
704         return err;
705 }
706
707 static int suspend_set_state(struct regulator_dev *rdev,
708         struct regulator_state *rstate)
709 {
710         int ret = 0;
711
712         /* If we have no suspend mode configration don't set anything;
713          * only warn if the driver implements set_suspend_voltage or
714          * set_suspend_mode callback.
715          */
716         if (!rstate->enabled && !rstate->disabled) {
717                 if (rdev->desc->ops->set_suspend_voltage ||
718                     rdev->desc->ops->set_suspend_mode)
719                         rdev_warn(rdev, "No configuration\n");
720                 return 0;
721         }
722
723         if (rstate->enabled && rstate->disabled) {
724                 rdev_err(rdev, "invalid configuration\n");
725                 return -EINVAL;
726         }
727
728         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729                 ret = rdev->desc->ops->set_suspend_enable(rdev);
730         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731                 ret = rdev->desc->ops->set_suspend_disable(rdev);
732         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733                 ret = 0;
734
735         if (ret < 0) {
736                 rdev_err(rdev, "failed to enabled/disable\n");
737                 return ret;
738         }
739
740         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742                 if (ret < 0) {
743                         rdev_err(rdev, "failed to set voltage\n");
744                         return ret;
745                 }
746         }
747
748         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750                 if (ret < 0) {
751                         rdev_err(rdev, "failed to set mode\n");
752                         return ret;
753                 }
754         }
755         return ret;
756 }
757
758 /* locks held by caller */
759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761         if (!rdev->constraints)
762                 return -EINVAL;
763
764         switch (state) {
765         case PM_SUSPEND_STANDBY:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_standby);
768         case PM_SUSPEND_MEM:
769                 return suspend_set_state(rdev,
770                         &rdev->constraints->state_mem);
771         case PM_SUSPEND_MAX:
772                 return suspend_set_state(rdev,
773                         &rdev->constraints->state_disk);
774         default:
775                 return -EINVAL;
776         }
777 }
778
779 static void print_constraints(struct regulator_dev *rdev)
780 {
781         struct regulation_constraints *constraints = rdev->constraints;
782         char buf[160] = "";
783         size_t len = sizeof(buf) - 1;
784         int count = 0;
785         int ret;
786
787         if (constraints->min_uV && constraints->max_uV) {
788                 if (constraints->min_uV == constraints->max_uV)
789                         count += scnprintf(buf + count, len - count, "%d mV ",
790                                            constraints->min_uV / 1000);
791                 else
792                         count += scnprintf(buf + count, len - count,
793                                            "%d <--> %d mV ",
794                                            constraints->min_uV / 1000,
795                                            constraints->max_uV / 1000);
796         }
797
798         if (!constraints->min_uV ||
799             constraints->min_uV != constraints->max_uV) {
800                 ret = _regulator_get_voltage(rdev);
801                 if (ret > 0)
802                         count += scnprintf(buf + count, len - count,
803                                            "at %d mV ", ret / 1000);
804         }
805
806         if (constraints->uV_offset)
807                 count += scnprintf(buf + count, len - count, "%dmV offset ",
808                                    constraints->uV_offset / 1000);
809
810         if (constraints->min_uA && constraints->max_uA) {
811                 if (constraints->min_uA == constraints->max_uA)
812                         count += scnprintf(buf + count, len - count, "%d mA ",
813                                            constraints->min_uA / 1000);
814                 else
815                         count += scnprintf(buf + count, len - count,
816                                            "%d <--> %d mA ",
817                                            constraints->min_uA / 1000,
818                                            constraints->max_uA / 1000);
819         }
820
821         if (!constraints->min_uA ||
822             constraints->min_uA != constraints->max_uA) {
823                 ret = _regulator_get_current_limit(rdev);
824                 if (ret > 0)
825                         count += scnprintf(buf + count, len - count,
826                                            "at %d mA ", ret / 1000);
827         }
828
829         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
830                 count += scnprintf(buf + count, len - count, "fast ");
831         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
832                 count += scnprintf(buf + count, len - count, "normal ");
833         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
834                 count += scnprintf(buf + count, len - count, "idle ");
835         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
836                 count += scnprintf(buf + count, len - count, "standby");
837
838         if (!count)
839                 scnprintf(buf, len, "no parameters");
840
841         rdev_dbg(rdev, "%s\n", buf);
842
843         if ((constraints->min_uV != constraints->max_uV) &&
844             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
845                 rdev_warn(rdev,
846                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
847 }
848
849 static int machine_constraints_voltage(struct regulator_dev *rdev,
850         struct regulation_constraints *constraints)
851 {
852         const struct regulator_ops *ops = rdev->desc->ops;
853         int ret;
854
855         /* do we need to apply the constraint voltage */
856         if (rdev->constraints->apply_uV &&
857             rdev->constraints->min_uV == rdev->constraints->max_uV) {
858                 int current_uV = _regulator_get_voltage(rdev);
859                 if (current_uV < 0) {
860                         rdev_err(rdev,
861                                  "failed to get the current voltage(%d)\n",
862                                  current_uV);
863                         return current_uV;
864                 }
865                 if (current_uV < rdev->constraints->min_uV ||
866                     current_uV > rdev->constraints->max_uV) {
867                         ret = _regulator_do_set_voltage(
868                                 rdev, rdev->constraints->min_uV,
869                                 rdev->constraints->max_uV);
870                         if (ret < 0) {
871                                 rdev_err(rdev,
872                                         "failed to apply %duV constraint(%d)\n",
873                                         rdev->constraints->min_uV, ret);
874                                 return ret;
875                         }
876                 }
877         }
878
879         /* constrain machine-level voltage specs to fit
880          * the actual range supported by this regulator.
881          */
882         if (ops->list_voltage && rdev->desc->n_voltages) {
883                 int     count = rdev->desc->n_voltages;
884                 int     i;
885                 int     min_uV = INT_MAX;
886                 int     max_uV = INT_MIN;
887                 int     cmin = constraints->min_uV;
888                 int     cmax = constraints->max_uV;
889
890                 /* it's safe to autoconfigure fixed-voltage supplies
891                    and the constraints are used by list_voltage. */
892                 if (count == 1 && !cmin) {
893                         cmin = 1;
894                         cmax = INT_MAX;
895                         constraints->min_uV = cmin;
896                         constraints->max_uV = cmax;
897                 }
898
899                 /* voltage constraints are optional */
900                 if ((cmin == 0) && (cmax == 0))
901                         return 0;
902
903                 /* else require explicit machine-level constraints */
904                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
905                         rdev_err(rdev, "invalid voltage constraints\n");
906                         return -EINVAL;
907                 }
908
909                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
910                 for (i = 0; i < count; i++) {
911                         int     value;
912
913                         value = ops->list_voltage(rdev, i);
914                         if (value <= 0)
915                                 continue;
916
917                         /* maybe adjust [min_uV..max_uV] */
918                         if (value >= cmin && value < min_uV)
919                                 min_uV = value;
920                         if (value <= cmax && value > max_uV)
921                                 max_uV = value;
922                 }
923
924                 /* final: [min_uV..max_uV] valid iff constraints valid */
925                 if (max_uV < min_uV) {
926                         rdev_err(rdev,
927                                  "unsupportable voltage constraints %u-%uuV\n",
928                                  min_uV, max_uV);
929                         return -EINVAL;
930                 }
931
932                 /* use regulator's subset of machine constraints */
933                 if (constraints->min_uV < min_uV) {
934                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
935                                  constraints->min_uV, min_uV);
936                         constraints->min_uV = min_uV;
937                 }
938                 if (constraints->max_uV > max_uV) {
939                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
940                                  constraints->max_uV, max_uV);
941                         constraints->max_uV = max_uV;
942                 }
943         }
944
945         return 0;
946 }
947
948 static int machine_constraints_current(struct regulator_dev *rdev,
949         struct regulation_constraints *constraints)
950 {
951         const struct regulator_ops *ops = rdev->desc->ops;
952         int ret;
953
954         if (!constraints->min_uA && !constraints->max_uA)
955                 return 0;
956
957         if (constraints->min_uA > constraints->max_uA) {
958                 rdev_err(rdev, "Invalid current constraints\n");
959                 return -EINVAL;
960         }
961
962         if (!ops->set_current_limit || !ops->get_current_limit) {
963                 rdev_warn(rdev, "Operation of current configuration missing\n");
964                 return 0;
965         }
966
967         /* Set regulator current in constraints range */
968         ret = ops->set_current_limit(rdev, constraints->min_uA,
969                         constraints->max_uA);
970         if (ret < 0) {
971                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
972                 return ret;
973         }
974
975         return 0;
976 }
977
978 static int _regulator_do_enable(struct regulator_dev *rdev);
979
980 /**
981  * set_machine_constraints - sets regulator constraints
982  * @rdev: regulator source
983  * @constraints: constraints to apply
984  *
985  * Allows platform initialisation code to define and constrain
986  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
987  * Constraints *must* be set by platform code in order for some
988  * regulator operations to proceed i.e. set_voltage, set_current_limit,
989  * set_mode.
990  */
991 static int set_machine_constraints(struct regulator_dev *rdev,
992         const struct regulation_constraints *constraints)
993 {
994         int ret = 0;
995         const struct regulator_ops *ops = rdev->desc->ops;
996
997         if (constraints)
998                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
999                                             GFP_KERNEL);
1000         else
1001                 rdev->constraints = kzalloc(sizeof(*constraints),
1002                                             GFP_KERNEL);
1003         if (!rdev->constraints)
1004                 return -ENOMEM;
1005
1006         ret = machine_constraints_voltage(rdev, rdev->constraints);
1007         if (ret != 0)
1008                 goto out;
1009
1010         ret = machine_constraints_current(rdev, rdev->constraints);
1011         if (ret != 0)
1012                 goto out;
1013
1014         /* do we need to setup our suspend state */
1015         if (rdev->constraints->initial_state) {
1016                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1017                 if (ret < 0) {
1018                         rdev_err(rdev, "failed to set suspend state\n");
1019                         goto out;
1020                 }
1021         }
1022
1023         if (rdev->constraints->initial_mode) {
1024                 if (!ops->set_mode) {
1025                         rdev_err(rdev, "no set_mode operation\n");
1026                         ret = -EINVAL;
1027                         goto out;
1028                 }
1029
1030                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1031                 if (ret < 0) {
1032                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1033                         goto out;
1034                 }
1035         }
1036
1037         /* If the constraints say the regulator should be on at this point
1038          * and we have control then make sure it is enabled.
1039          */
1040         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1041                 ret = _regulator_do_enable(rdev);
1042                 if (ret < 0 && ret != -EINVAL) {
1043                         rdev_err(rdev, "failed to enable\n");
1044                         goto out;
1045                 }
1046         }
1047
1048         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1049                 && ops->set_ramp_delay) {
1050                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1051                 if (ret < 0) {
1052                         rdev_err(rdev, "failed to set ramp_delay\n");
1053                         goto out;
1054                 }
1055         }
1056
1057         print_constraints(rdev);
1058         return 0;
1059 out:
1060         kfree(rdev->constraints);
1061         rdev->constraints = NULL;
1062         return ret;
1063 }
1064
1065 /**
1066  * set_supply - set regulator supply regulator
1067  * @rdev: regulator name
1068  * @supply_rdev: supply regulator name
1069  *
1070  * Called by platform initialisation code to set the supply regulator for this
1071  * regulator. This ensures that a regulators supply will also be enabled by the
1072  * core if it's child is enabled.
1073  */
1074 static int set_supply(struct regulator_dev *rdev,
1075                       struct regulator_dev *supply_rdev)
1076 {
1077         int err;
1078
1079         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1080
1081         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1082         if (rdev->supply == NULL) {
1083                 err = -ENOMEM;
1084                 return err;
1085         }
1086         supply_rdev->open_count++;
1087
1088         return 0;
1089 }
1090
1091 /**
1092  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1093  * @rdev:         regulator source
1094  * @consumer_dev_name: dev_name() string for device supply applies to
1095  * @supply:       symbolic name for supply
1096  *
1097  * Allows platform initialisation code to map physical regulator
1098  * sources to symbolic names for supplies for use by devices.  Devices
1099  * should use these symbolic names to request regulators, avoiding the
1100  * need to provide board-specific regulator names as platform data.
1101  */
1102 static int set_consumer_device_supply(struct regulator_dev *rdev,
1103                                       const char *consumer_dev_name,
1104                                       const char *supply)
1105 {
1106         struct regulator_map *node;
1107         int has_dev;
1108
1109         if (supply == NULL)
1110                 return -EINVAL;
1111
1112         if (consumer_dev_name != NULL)
1113                 has_dev = 1;
1114         else
1115                 has_dev = 0;
1116
1117         list_for_each_entry(node, &regulator_map_list, list) {
1118                 if (node->dev_name && consumer_dev_name) {
1119                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1120                                 continue;
1121                 } else if (node->dev_name || consumer_dev_name) {
1122                         continue;
1123                 }
1124
1125                 if (strcmp(node->supply, supply) != 0)
1126                         continue;
1127
1128                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1129                          consumer_dev_name,
1130                          dev_name(&node->regulator->dev),
1131                          node->regulator->desc->name,
1132                          supply,
1133                          dev_name(&rdev->dev), rdev_get_name(rdev));
1134                 return -EBUSY;
1135         }
1136
1137         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1138         if (node == NULL)
1139                 return -ENOMEM;
1140
1141         node->regulator = rdev;
1142         node->supply = supply;
1143
1144         if (has_dev) {
1145                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1146                 if (node->dev_name == NULL) {
1147                         kfree(node);
1148                         return -ENOMEM;
1149                 }
1150         }
1151
1152         list_add(&node->list, &regulator_map_list);
1153         return 0;
1154 }
1155
1156 static void unset_regulator_supplies(struct regulator_dev *rdev)
1157 {
1158         struct regulator_map *node, *n;
1159
1160         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1161                 if (rdev == node->regulator) {
1162                         list_del(&node->list);
1163                         kfree(node->dev_name);
1164                         kfree(node);
1165                 }
1166         }
1167 }
1168
1169 #define REG_STR_SIZE    64
1170
1171 static struct regulator *create_regulator(struct regulator_dev *rdev,
1172                                           struct device *dev,
1173                                           const char *supply_name)
1174 {
1175         struct regulator *regulator;
1176         char buf[REG_STR_SIZE];
1177         int err, size;
1178
1179         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1180         if (regulator == NULL)
1181                 return NULL;
1182
1183         mutex_lock(&rdev->mutex);
1184         regulator->rdev = rdev;
1185         list_add(&regulator->list, &rdev->consumer_list);
1186
1187         if (dev) {
1188                 regulator->dev = dev;
1189
1190                 /* Add a link to the device sysfs entry */
1191                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1192                                  dev->kobj.name, supply_name);
1193                 if (size >= REG_STR_SIZE)
1194                         goto overflow_err;
1195
1196                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1197                 if (regulator->supply_name == NULL)
1198                         goto overflow_err;
1199
1200                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1201                                         buf);
1202                 if (err) {
1203                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1204                                   dev->kobj.name, err);
1205                         /* non-fatal */
1206                 }
1207         } else {
1208                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1209                 if (regulator->supply_name == NULL)
1210                         goto overflow_err;
1211         }
1212
1213         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1214                                                 rdev->debugfs);
1215         if (!regulator->debugfs) {
1216                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1217         } else {
1218                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1219                                    &regulator->uA_load);
1220                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1221                                    &regulator->min_uV);
1222                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1223                                    &regulator->max_uV);
1224         }
1225
1226         /*
1227          * Check now if the regulator is an always on regulator - if
1228          * it is then we don't need to do nearly so much work for
1229          * enable/disable calls.
1230          */
1231         if (!_regulator_can_change_status(rdev) &&
1232             _regulator_is_enabled(rdev))
1233                 regulator->always_on = true;
1234
1235         mutex_unlock(&rdev->mutex);
1236         return regulator;
1237 overflow_err:
1238         list_del(&regulator->list);
1239         kfree(regulator);
1240         mutex_unlock(&rdev->mutex);
1241         return NULL;
1242 }
1243
1244 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1245 {
1246         if (rdev->constraints && rdev->constraints->enable_time)
1247                 return rdev->constraints->enable_time;
1248         if (!rdev->desc->ops->enable_time)
1249                 return rdev->desc->enable_time;
1250         return rdev->desc->ops->enable_time(rdev);
1251 }
1252
1253 static struct regulator_supply_alias *regulator_find_supply_alias(
1254                 struct device *dev, const char *supply)
1255 {
1256         struct regulator_supply_alias *map;
1257
1258         list_for_each_entry(map, &regulator_supply_alias_list, list)
1259                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1260                         return map;
1261
1262         return NULL;
1263 }
1264
1265 static void regulator_supply_alias(struct device **dev, const char **supply)
1266 {
1267         struct regulator_supply_alias *map;
1268
1269         map = regulator_find_supply_alias(*dev, *supply);
1270         if (map) {
1271                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1272                                 *supply, map->alias_supply,
1273                                 dev_name(map->alias_dev));
1274                 *dev = map->alias_dev;
1275                 *supply = map->alias_supply;
1276         }
1277 }
1278
1279 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1280                                                   const char *supply,
1281                                                   int *ret)
1282 {
1283         struct regulator_dev *r;
1284         struct device_node *node;
1285         struct regulator_map *map;
1286         const char *devname = NULL;
1287
1288         regulator_supply_alias(&dev, &supply);
1289
1290         /* first do a dt based lookup */
1291         if (dev && dev->of_node) {
1292                 node = of_get_regulator(dev, supply);
1293                 if (node) {
1294                         list_for_each_entry(r, &regulator_list, list)
1295                                 if (r->dev.parent &&
1296                                         node == r->dev.of_node)
1297                                         return r;
1298                         *ret = -EPROBE_DEFER;
1299                         return NULL;
1300                 } else {
1301                         /*
1302                          * If we couldn't even get the node then it's
1303                          * not just that the device didn't register
1304                          * yet, there's no node and we'll never
1305                          * succeed.
1306                          */
1307                         *ret = -ENODEV;
1308                 }
1309         }
1310
1311         /* if not found, try doing it non-dt way */
1312         if (dev)
1313                 devname = dev_name(dev);
1314
1315         list_for_each_entry(r, &regulator_list, list)
1316                 if (strcmp(rdev_get_name(r), supply) == 0)
1317                         return r;
1318
1319         list_for_each_entry(map, &regulator_map_list, list) {
1320                 /* If the mapping has a device set up it must match */
1321                 if (map->dev_name &&
1322                     (!devname || strcmp(map->dev_name, devname)))
1323                         continue;
1324
1325                 if (strcmp(map->supply, supply) == 0)
1326                         return map->regulator;
1327         }
1328
1329
1330         return NULL;
1331 }
1332
1333 static int regulator_resolve_supply(struct regulator_dev *rdev)
1334 {
1335         struct regulator_dev *r;
1336         struct device *dev = rdev->dev.parent;
1337         int ret;
1338
1339         /* No supply to resovle? */
1340         if (!rdev->supply_name)
1341                 return 0;
1342
1343         /* Supply already resolved? */
1344         if (rdev->supply)
1345                 return 0;
1346
1347         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1348         if (ret == -ENODEV) {
1349                 /*
1350                  * No supply was specified for this regulator and
1351                  * there will never be one.
1352                  */
1353                 return 0;
1354         }
1355
1356         if (!r) {
1357                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1358                         rdev->supply_name, rdev->desc->name);
1359                 return -EPROBE_DEFER;
1360         }
1361
1362         /* Recursively resolve the supply of the supply */
1363         ret = regulator_resolve_supply(r);
1364         if (ret < 0)
1365                 return ret;
1366
1367         ret = set_supply(rdev, r);
1368         if (ret < 0)
1369                 return ret;
1370
1371         /* Cascade always-on state to supply */
1372         if (_regulator_is_enabled(rdev)) {
1373                 ret = regulator_enable(rdev->supply);
1374                 if (ret < 0)
1375                         return ret;
1376         }
1377
1378         return 0;
1379 }
1380
1381 /* Internal regulator request function */
1382 static struct regulator *_regulator_get(struct device *dev, const char *id,
1383                                         bool exclusive, bool allow_dummy)
1384 {
1385         struct regulator_dev *rdev;
1386         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1387         const char *devname = NULL;
1388         int ret;
1389
1390         if (id == NULL) {
1391                 pr_err("get() with no identifier\n");
1392                 return ERR_PTR(-EINVAL);
1393         }
1394
1395         if (dev)
1396                 devname = dev_name(dev);
1397
1398         if (have_full_constraints())
1399                 ret = -ENODEV;
1400         else
1401                 ret = -EPROBE_DEFER;
1402
1403         mutex_lock(&regulator_list_mutex);
1404
1405         rdev = regulator_dev_lookup(dev, id, &ret);
1406         if (rdev)
1407                 goto found;
1408
1409         regulator = ERR_PTR(ret);
1410
1411         /*
1412          * If we have return value from dev_lookup fail, we do not expect to
1413          * succeed, so, quit with appropriate error value
1414          */
1415         if (ret && ret != -ENODEV)
1416                 goto out;
1417
1418         if (!devname)
1419                 devname = "deviceless";
1420
1421         /*
1422          * Assume that a regulator is physically present and enabled
1423          * even if it isn't hooked up and just provide a dummy.
1424          */
1425         if (have_full_constraints() && allow_dummy) {
1426                 pr_warn("%s supply %s not found, using dummy regulator\n",
1427                         devname, id);
1428
1429                 rdev = dummy_regulator_rdev;
1430                 goto found;
1431         /* Don't log an error when called from regulator_get_optional() */
1432         } else if (!have_full_constraints() || exclusive) {
1433                 dev_warn(dev, "dummy supplies not allowed\n");
1434         }
1435
1436         mutex_unlock(&regulator_list_mutex);
1437         return regulator;
1438
1439 found:
1440         if (rdev->exclusive) {
1441                 regulator = ERR_PTR(-EPERM);
1442                 goto out;
1443         }
1444
1445         if (exclusive && rdev->open_count) {
1446                 regulator = ERR_PTR(-EBUSY);
1447                 goto out;
1448         }
1449
1450         ret = regulator_resolve_supply(rdev);
1451         if (ret < 0) {
1452                 regulator = ERR_PTR(ret);
1453                 goto out;
1454         }
1455
1456         if (!try_module_get(rdev->owner))
1457                 goto out;
1458
1459         regulator = create_regulator(rdev, dev, id);
1460         if (regulator == NULL) {
1461                 regulator = ERR_PTR(-ENOMEM);
1462                 module_put(rdev->owner);
1463                 goto out;
1464         }
1465
1466         rdev->open_count++;
1467         if (exclusive) {
1468                 rdev->exclusive = 1;
1469
1470                 ret = _regulator_is_enabled(rdev);
1471                 if (ret > 0)
1472                         rdev->use_count = 1;
1473                 else
1474                         rdev->use_count = 0;
1475         }
1476
1477 out:
1478         mutex_unlock(&regulator_list_mutex);
1479
1480         return regulator;
1481 }
1482
1483 /**
1484  * regulator_get - lookup and obtain a reference to a regulator.
1485  * @dev: device for regulator "consumer"
1486  * @id: Supply name or regulator ID.
1487  *
1488  * Returns a struct regulator corresponding to the regulator producer,
1489  * or IS_ERR() condition containing errno.
1490  *
1491  * Use of supply names configured via regulator_set_device_supply() is
1492  * strongly encouraged.  It is recommended that the supply name used
1493  * should match the name used for the supply and/or the relevant
1494  * device pins in the datasheet.
1495  */
1496 struct regulator *regulator_get(struct device *dev, const char *id)
1497 {
1498         return _regulator_get(dev, id, false, true);
1499 }
1500 EXPORT_SYMBOL_GPL(regulator_get);
1501
1502 /**
1503  * regulator_get_exclusive - obtain exclusive access to a regulator.
1504  * @dev: device for regulator "consumer"
1505  * @id: Supply name or regulator ID.
1506  *
1507  * Returns a struct regulator corresponding to the regulator producer,
1508  * or IS_ERR() condition containing errno.  Other consumers will be
1509  * unable to obtain this regulator while this reference is held and the
1510  * use count for the regulator will be initialised to reflect the current
1511  * state of the regulator.
1512  *
1513  * This is intended for use by consumers which cannot tolerate shared
1514  * use of the regulator such as those which need to force the
1515  * regulator off for correct operation of the hardware they are
1516  * controlling.
1517  *
1518  * Use of supply names configured via regulator_set_device_supply() is
1519  * strongly encouraged.  It is recommended that the supply name used
1520  * should match the name used for the supply and/or the relevant
1521  * device pins in the datasheet.
1522  */
1523 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1524 {
1525         return _regulator_get(dev, id, true, false);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1528
1529 /**
1530  * regulator_get_optional - obtain optional access to a regulator.
1531  * @dev: device for regulator "consumer"
1532  * @id: Supply name or regulator ID.
1533  *
1534  * Returns a struct regulator corresponding to the regulator producer,
1535  * or IS_ERR() condition containing errno.
1536  *
1537  * This is intended for use by consumers for devices which can have
1538  * some supplies unconnected in normal use, such as some MMC devices.
1539  * It can allow the regulator core to provide stub supplies for other
1540  * supplies requested using normal regulator_get() calls without
1541  * disrupting the operation of drivers that can handle absent
1542  * supplies.
1543  *
1544  * Use of supply names configured via regulator_set_device_supply() is
1545  * strongly encouraged.  It is recommended that the supply name used
1546  * should match the name used for the supply and/or the relevant
1547  * device pins in the datasheet.
1548  */
1549 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1550 {
1551         return _regulator_get(dev, id, false, false);
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_get_optional);
1554
1555 /* regulator_list_mutex lock held by regulator_put() */
1556 static void _regulator_put(struct regulator *regulator)
1557 {
1558         struct regulator_dev *rdev;
1559
1560         if (regulator == NULL || IS_ERR(regulator))
1561                 return;
1562
1563         rdev = regulator->rdev;
1564
1565         debugfs_remove_recursive(regulator->debugfs);
1566
1567         /* remove any sysfs entries */
1568         if (regulator->dev)
1569                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1570         mutex_lock(&rdev->mutex);
1571         kfree(regulator->supply_name);
1572         list_del(&regulator->list);
1573         kfree(regulator);
1574
1575         rdev->open_count--;
1576         rdev->exclusive = 0;
1577         mutex_unlock(&rdev->mutex);
1578
1579         module_put(rdev->owner);
1580 }
1581
1582 /**
1583  * regulator_put - "free" the regulator source
1584  * @regulator: regulator source
1585  *
1586  * Note: drivers must ensure that all regulator_enable calls made on this
1587  * regulator source are balanced by regulator_disable calls prior to calling
1588  * this function.
1589  */
1590 void regulator_put(struct regulator *regulator)
1591 {
1592         mutex_lock(&regulator_list_mutex);
1593         _regulator_put(regulator);
1594         mutex_unlock(&regulator_list_mutex);
1595 }
1596 EXPORT_SYMBOL_GPL(regulator_put);
1597
1598 /**
1599  * regulator_register_supply_alias - Provide device alias for supply lookup
1600  *
1601  * @dev: device that will be given as the regulator "consumer"
1602  * @id: Supply name or regulator ID
1603  * @alias_dev: device that should be used to lookup the supply
1604  * @alias_id: Supply name or regulator ID that should be used to lookup the
1605  * supply
1606  *
1607  * All lookups for id on dev will instead be conducted for alias_id on
1608  * alias_dev.
1609  */
1610 int regulator_register_supply_alias(struct device *dev, const char *id,
1611                                     struct device *alias_dev,
1612                                     const char *alias_id)
1613 {
1614         struct regulator_supply_alias *map;
1615
1616         map = regulator_find_supply_alias(dev, id);
1617         if (map)
1618                 return -EEXIST;
1619
1620         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1621         if (!map)
1622                 return -ENOMEM;
1623
1624         map->src_dev = dev;
1625         map->src_supply = id;
1626         map->alias_dev = alias_dev;
1627         map->alias_supply = alias_id;
1628
1629         list_add(&map->list, &regulator_supply_alias_list);
1630
1631         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1632                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1633
1634         return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1637
1638 /**
1639  * regulator_unregister_supply_alias - Remove device alias
1640  *
1641  * @dev: device that will be given as the regulator "consumer"
1642  * @id: Supply name or regulator ID
1643  *
1644  * Remove a lookup alias if one exists for id on dev.
1645  */
1646 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1647 {
1648         struct regulator_supply_alias *map;
1649
1650         map = regulator_find_supply_alias(dev, id);
1651         if (map) {
1652                 list_del(&map->list);
1653                 kfree(map);
1654         }
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1657
1658 /**
1659  * regulator_bulk_register_supply_alias - register multiple aliases
1660  *
1661  * @dev: device that will be given as the regulator "consumer"
1662  * @id: List of supply names or regulator IDs
1663  * @alias_dev: device that should be used to lookup the supply
1664  * @alias_id: List of supply names or regulator IDs that should be used to
1665  * lookup the supply
1666  * @num_id: Number of aliases to register
1667  *
1668  * @return 0 on success, an errno on failure.
1669  *
1670  * This helper function allows drivers to register several supply
1671  * aliases in one operation.  If any of the aliases cannot be
1672  * registered any aliases that were registered will be removed
1673  * before returning to the caller.
1674  */
1675 int regulator_bulk_register_supply_alias(struct device *dev,
1676                                          const char *const *id,
1677                                          struct device *alias_dev,
1678                                          const char *const *alias_id,
1679                                          int num_id)
1680 {
1681         int i;
1682         int ret;
1683
1684         for (i = 0; i < num_id; ++i) {
1685                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1686                                                       alias_id[i]);
1687                 if (ret < 0)
1688                         goto err;
1689         }
1690
1691         return 0;
1692
1693 err:
1694         dev_err(dev,
1695                 "Failed to create supply alias %s,%s -> %s,%s\n",
1696                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1697
1698         while (--i >= 0)
1699                 regulator_unregister_supply_alias(dev, id[i]);
1700
1701         return ret;
1702 }
1703 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1704
1705 /**
1706  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1707  *
1708  * @dev: device that will be given as the regulator "consumer"
1709  * @id: List of supply names or regulator IDs
1710  * @num_id: Number of aliases to unregister
1711  *
1712  * This helper function allows drivers to unregister several supply
1713  * aliases in one operation.
1714  */
1715 void regulator_bulk_unregister_supply_alias(struct device *dev,
1716                                             const char *const *id,
1717                                             int num_id)
1718 {
1719         int i;
1720
1721         for (i = 0; i < num_id; ++i)
1722                 regulator_unregister_supply_alias(dev, id[i]);
1723 }
1724 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1725
1726
1727 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1728 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1729                                 const struct regulator_config *config)
1730 {
1731         struct regulator_enable_gpio *pin;
1732         struct gpio_desc *gpiod;
1733         int ret;
1734
1735         gpiod = gpio_to_desc(config->ena_gpio);
1736
1737         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1738                 if (pin->gpiod == gpiod) {
1739                         rdev_dbg(rdev, "GPIO %d is already used\n",
1740                                 config->ena_gpio);
1741                         goto update_ena_gpio_to_rdev;
1742                 }
1743         }
1744
1745         ret = gpio_request_one(config->ena_gpio,
1746                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1747                                 rdev_get_name(rdev));
1748         if (ret)
1749                 return ret;
1750
1751         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1752         if (pin == NULL) {
1753                 gpio_free(config->ena_gpio);
1754                 return -ENOMEM;
1755         }
1756
1757         pin->gpiod = gpiod;
1758         pin->ena_gpio_invert = config->ena_gpio_invert;
1759         list_add(&pin->list, &regulator_ena_gpio_list);
1760
1761 update_ena_gpio_to_rdev:
1762         pin->request_count++;
1763         rdev->ena_pin = pin;
1764         return 0;
1765 }
1766
1767 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1768 {
1769         struct regulator_enable_gpio *pin, *n;
1770
1771         if (!rdev->ena_pin)
1772                 return;
1773
1774         /* Free the GPIO only in case of no use */
1775         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1776                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1777                         if (pin->request_count <= 1) {
1778                                 pin->request_count = 0;
1779                                 gpiod_put(pin->gpiod);
1780                                 list_del(&pin->list);
1781                                 kfree(pin);
1782                                 rdev->ena_pin = NULL;
1783                                 return;
1784                         } else {
1785                                 pin->request_count--;
1786                         }
1787                 }
1788         }
1789 }
1790
1791 /**
1792  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1793  * @rdev: regulator_dev structure
1794  * @enable: enable GPIO at initial use?
1795  *
1796  * GPIO is enabled in case of initial use. (enable_count is 0)
1797  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1798  */
1799 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1800 {
1801         struct regulator_enable_gpio *pin = rdev->ena_pin;
1802
1803         if (!pin)
1804                 return -EINVAL;
1805
1806         if (enable) {
1807                 /* Enable GPIO at initial use */
1808                 if (pin->enable_count == 0)
1809                         gpiod_set_value_cansleep(pin->gpiod,
1810                                                  !pin->ena_gpio_invert);
1811
1812                 pin->enable_count++;
1813         } else {
1814                 if (pin->enable_count > 1) {
1815                         pin->enable_count--;
1816                         return 0;
1817                 }
1818
1819                 /* Disable GPIO if not used */
1820                 if (pin->enable_count <= 1) {
1821                         gpiod_set_value_cansleep(pin->gpiod,
1822                                                  pin->ena_gpio_invert);
1823                         pin->enable_count = 0;
1824                 }
1825         }
1826
1827         return 0;
1828 }
1829
1830 /**
1831  * _regulator_enable_delay - a delay helper function
1832  * @delay: time to delay in microseconds
1833  *
1834  * Delay for the requested amount of time as per the guidelines in:
1835  *
1836  *     Documentation/timers/timers-howto.txt
1837  *
1838  * The assumption here is that regulators will never be enabled in
1839  * atomic context and therefore sleeping functions can be used.
1840  */
1841 static void _regulator_enable_delay(unsigned int delay)
1842 {
1843         unsigned int ms = delay / 1000;
1844         unsigned int us = delay % 1000;
1845
1846         if (ms > 0) {
1847                 /*
1848                  * For small enough values, handle super-millisecond
1849                  * delays in the usleep_range() call below.
1850                  */
1851                 if (ms < 20)
1852                         us += ms * 1000;
1853                 else
1854                         msleep(ms);
1855         }
1856
1857         /*
1858          * Give the scheduler some room to coalesce with any other
1859          * wakeup sources. For delays shorter than 10 us, don't even
1860          * bother setting up high-resolution timers and just busy-
1861          * loop.
1862          */
1863         if (us >= 10)
1864                 usleep_range(us, us + 100);
1865         else
1866                 udelay(us);
1867 }
1868
1869 static int _regulator_do_enable(struct regulator_dev *rdev)
1870 {
1871         int ret, delay;
1872
1873         /* Query before enabling in case configuration dependent.  */
1874         ret = _regulator_get_enable_time(rdev);
1875         if (ret >= 0) {
1876                 delay = ret;
1877         } else {
1878                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1879                 delay = 0;
1880         }
1881
1882         trace_regulator_enable(rdev_get_name(rdev));
1883
1884         if (rdev->desc->off_on_delay) {
1885                 /* if needed, keep a distance of off_on_delay from last time
1886                  * this regulator was disabled.
1887                  */
1888                 unsigned long start_jiffy = jiffies;
1889                 unsigned long intended, max_delay, remaining;
1890
1891                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1892                 intended = rdev->last_off_jiffy + max_delay;
1893
1894                 if (time_before(start_jiffy, intended)) {
1895                         /* calc remaining jiffies to deal with one-time
1896                          * timer wrapping.
1897                          * in case of multiple timer wrapping, either it can be
1898                          * detected by out-of-range remaining, or it cannot be
1899                          * detected and we gets a panelty of
1900                          * _regulator_enable_delay().
1901                          */
1902                         remaining = intended - start_jiffy;
1903                         if (remaining <= max_delay)
1904                                 _regulator_enable_delay(
1905                                                 jiffies_to_usecs(remaining));
1906                 }
1907         }
1908
1909         if (rdev->ena_pin) {
1910                 if (!rdev->ena_gpio_state) {
1911                         ret = regulator_ena_gpio_ctrl(rdev, true);
1912                         if (ret < 0)
1913                                 return ret;
1914                         rdev->ena_gpio_state = 1;
1915                 }
1916         } else if (rdev->desc->ops->enable) {
1917                 ret = rdev->desc->ops->enable(rdev);
1918                 if (ret < 0)
1919                         return ret;
1920         } else {
1921                 return -EINVAL;
1922         }
1923
1924         /* Allow the regulator to ramp; it would be useful to extend
1925          * this for bulk operations so that the regulators can ramp
1926          * together.  */
1927         trace_regulator_enable_delay(rdev_get_name(rdev));
1928
1929         _regulator_enable_delay(delay);
1930
1931         trace_regulator_enable_complete(rdev_get_name(rdev));
1932
1933         return 0;
1934 }
1935
1936 /* locks held by regulator_enable() */
1937 static int _regulator_enable(struct regulator_dev *rdev)
1938 {
1939         int ret;
1940
1941         /* check voltage and requested load before enabling */
1942         if (rdev->constraints &&
1943             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1944                 drms_uA_update(rdev);
1945
1946         if (rdev->use_count == 0) {
1947                 /* The regulator may on if it's not switchable or left on */
1948                 ret = _regulator_is_enabled(rdev);
1949                 if (ret == -EINVAL || ret == 0) {
1950                         if (!_regulator_can_change_status(rdev))
1951                                 return -EPERM;
1952
1953                         ret = _regulator_do_enable(rdev);
1954                         if (ret < 0)
1955                                 return ret;
1956
1957                 } else if (ret < 0) {
1958                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1959                         return ret;
1960                 }
1961                 /* Fallthrough on positive return values - already enabled */
1962         }
1963
1964         rdev->use_count++;
1965
1966         return 0;
1967 }
1968
1969 /**
1970  * regulator_enable - enable regulator output
1971  * @regulator: regulator source
1972  *
1973  * Request that the regulator be enabled with the regulator output at
1974  * the predefined voltage or current value.  Calls to regulator_enable()
1975  * must be balanced with calls to regulator_disable().
1976  *
1977  * NOTE: the output value can be set by other drivers, boot loader or may be
1978  * hardwired in the regulator.
1979  */
1980 int regulator_enable(struct regulator *regulator)
1981 {
1982         struct regulator_dev *rdev = regulator->rdev;
1983         int ret = 0;
1984
1985         if (regulator->always_on)
1986                 return 0;
1987
1988         if (rdev->supply) {
1989                 ret = regulator_enable(rdev->supply);
1990                 if (ret != 0)
1991                         return ret;
1992         }
1993
1994         mutex_lock(&rdev->mutex);
1995         ret = _regulator_enable(rdev);
1996         mutex_unlock(&rdev->mutex);
1997
1998         if (ret != 0 && rdev->supply)
1999                 regulator_disable(rdev->supply);
2000
2001         return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regulator_enable);
2004
2005 static int _regulator_do_disable(struct regulator_dev *rdev)
2006 {
2007         int ret;
2008
2009         trace_regulator_disable(rdev_get_name(rdev));
2010
2011         if (rdev->ena_pin) {
2012                 if (rdev->ena_gpio_state) {
2013                         ret = regulator_ena_gpio_ctrl(rdev, false);
2014                         if (ret < 0)
2015                                 return ret;
2016                         rdev->ena_gpio_state = 0;
2017                 }
2018
2019         } else if (rdev->desc->ops->disable) {
2020                 ret = rdev->desc->ops->disable(rdev);
2021                 if (ret != 0)
2022                         return ret;
2023         }
2024
2025         /* cares about last_off_jiffy only if off_on_delay is required by
2026          * device.
2027          */
2028         if (rdev->desc->off_on_delay)
2029                 rdev->last_off_jiffy = jiffies;
2030
2031         trace_regulator_disable_complete(rdev_get_name(rdev));
2032
2033         return 0;
2034 }
2035
2036 /* locks held by regulator_disable() */
2037 static int _regulator_disable(struct regulator_dev *rdev)
2038 {
2039         int ret = 0;
2040
2041         if (WARN(rdev->use_count <= 0,
2042                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2043                 return -EIO;
2044
2045         /* are we the last user and permitted to disable ? */
2046         if (rdev->use_count == 1 &&
2047             (rdev->constraints && !rdev->constraints->always_on)) {
2048
2049                 /* we are last user */
2050                 if (_regulator_can_change_status(rdev)) {
2051                         ret = _notifier_call_chain(rdev,
2052                                                    REGULATOR_EVENT_PRE_DISABLE,
2053                                                    NULL);
2054                         if (ret & NOTIFY_STOP_MASK)
2055                                 return -EINVAL;
2056
2057                         ret = _regulator_do_disable(rdev);
2058                         if (ret < 0) {
2059                                 rdev_err(rdev, "failed to disable\n");
2060                                 _notifier_call_chain(rdev,
2061                                                 REGULATOR_EVENT_ABORT_DISABLE,
2062                                                 NULL);
2063                                 return ret;
2064                         }
2065                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2066                                         NULL);
2067                 }
2068
2069                 rdev->use_count = 0;
2070         } else if (rdev->use_count > 1) {
2071
2072                 if (rdev->constraints &&
2073                         (rdev->constraints->valid_ops_mask &
2074                         REGULATOR_CHANGE_DRMS))
2075                         drms_uA_update(rdev);
2076
2077                 rdev->use_count--;
2078         }
2079
2080         return ret;
2081 }
2082
2083 /**
2084  * regulator_disable - disable regulator output
2085  * @regulator: regulator source
2086  *
2087  * Disable the regulator output voltage or current.  Calls to
2088  * regulator_enable() must be balanced with calls to
2089  * regulator_disable().
2090  *
2091  * NOTE: this will only disable the regulator output if no other consumer
2092  * devices have it enabled, the regulator device supports disabling and
2093  * machine constraints permit this operation.
2094  */
2095 int regulator_disable(struct regulator *regulator)
2096 {
2097         struct regulator_dev *rdev = regulator->rdev;
2098         int ret = 0;
2099
2100         if (regulator->always_on)
2101                 return 0;
2102
2103         mutex_lock(&rdev->mutex);
2104         ret = _regulator_disable(rdev);
2105         mutex_unlock(&rdev->mutex);
2106
2107         if (ret == 0 && rdev->supply)
2108                 regulator_disable(rdev->supply);
2109
2110         return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(regulator_disable);
2113
2114 /* locks held by regulator_force_disable() */
2115 static int _regulator_force_disable(struct regulator_dev *rdev)
2116 {
2117         int ret = 0;
2118
2119         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2120                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2121         if (ret & NOTIFY_STOP_MASK)
2122                 return -EINVAL;
2123
2124         ret = _regulator_do_disable(rdev);
2125         if (ret < 0) {
2126                 rdev_err(rdev, "failed to force disable\n");
2127                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2129                 return ret;
2130         }
2131
2132         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2133                         REGULATOR_EVENT_DISABLE, NULL);
2134
2135         return 0;
2136 }
2137
2138 /**
2139  * regulator_force_disable - force disable regulator output
2140  * @regulator: regulator source
2141  *
2142  * Forcibly disable the regulator output voltage or current.
2143  * NOTE: this *will* disable the regulator output even if other consumer
2144  * devices have it enabled. This should be used for situations when device
2145  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2146  */
2147 int regulator_force_disable(struct regulator *regulator)
2148 {
2149         struct regulator_dev *rdev = regulator->rdev;
2150         int ret;
2151
2152         mutex_lock(&rdev->mutex);
2153         regulator->uA_load = 0;
2154         ret = _regulator_force_disable(regulator->rdev);
2155         mutex_unlock(&rdev->mutex);
2156
2157         if (rdev->supply)
2158                 while (rdev->open_count--)
2159                         regulator_disable(rdev->supply);
2160
2161         return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(regulator_force_disable);
2164
2165 static void regulator_disable_work(struct work_struct *work)
2166 {
2167         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2168                                                   disable_work.work);
2169         int count, i, ret;
2170
2171         mutex_lock(&rdev->mutex);
2172
2173         BUG_ON(!rdev->deferred_disables);
2174
2175         count = rdev->deferred_disables;
2176         rdev->deferred_disables = 0;
2177
2178         for (i = 0; i < count; i++) {
2179                 ret = _regulator_disable(rdev);
2180                 if (ret != 0)
2181                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2182         }
2183
2184         mutex_unlock(&rdev->mutex);
2185
2186         if (rdev->supply) {
2187                 for (i = 0; i < count; i++) {
2188                         ret = regulator_disable(rdev->supply);
2189                         if (ret != 0) {
2190                                 rdev_err(rdev,
2191                                          "Supply disable failed: %d\n", ret);
2192                         }
2193                 }
2194         }
2195 }
2196
2197 /**
2198  * regulator_disable_deferred - disable regulator output with delay
2199  * @regulator: regulator source
2200  * @ms: miliseconds until the regulator is disabled
2201  *
2202  * Execute regulator_disable() on the regulator after a delay.  This
2203  * is intended for use with devices that require some time to quiesce.
2204  *
2205  * NOTE: this will only disable the regulator output if no other consumer
2206  * devices have it enabled, the regulator device supports disabling and
2207  * machine constraints permit this operation.
2208  */
2209 int regulator_disable_deferred(struct regulator *regulator, int ms)
2210 {
2211         struct regulator_dev *rdev = regulator->rdev;
2212         int ret;
2213
2214         if (regulator->always_on)
2215                 return 0;
2216
2217         if (!ms)
2218                 return regulator_disable(regulator);
2219
2220         mutex_lock(&rdev->mutex);
2221         rdev->deferred_disables++;
2222         mutex_unlock(&rdev->mutex);
2223
2224         ret = queue_delayed_work(system_power_efficient_wq,
2225                                  &rdev->disable_work,
2226                                  msecs_to_jiffies(ms));
2227         if (ret < 0)
2228                 return ret;
2229         else
2230                 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2233
2234 static int _regulator_is_enabled(struct regulator_dev *rdev)
2235 {
2236         /* A GPIO control always takes precedence */
2237         if (rdev->ena_pin)
2238                 return rdev->ena_gpio_state;
2239
2240         /* If we don't know then assume that the regulator is always on */
2241         if (!rdev->desc->ops->is_enabled)
2242                 return 1;
2243
2244         return rdev->desc->ops->is_enabled(rdev);
2245 }
2246
2247 /**
2248  * regulator_is_enabled - is the regulator output enabled
2249  * @regulator: regulator source
2250  *
2251  * Returns positive if the regulator driver backing the source/client
2252  * has requested that the device be enabled, zero if it hasn't, else a
2253  * negative errno code.
2254  *
2255  * Note that the device backing this regulator handle can have multiple
2256  * users, so it might be enabled even if regulator_enable() was never
2257  * called for this particular source.
2258  */
2259 int regulator_is_enabled(struct regulator *regulator)
2260 {
2261         int ret;
2262
2263         if (regulator->always_on)
2264                 return 1;
2265
2266         mutex_lock(&regulator->rdev->mutex);
2267         ret = _regulator_is_enabled(regulator->rdev);
2268         mutex_unlock(&regulator->rdev->mutex);
2269
2270         return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2273
2274 /**
2275  * regulator_can_change_voltage - check if regulator can change voltage
2276  * @regulator: regulator source
2277  *
2278  * Returns positive if the regulator driver backing the source/client
2279  * can change its voltage, false otherwise. Useful for detecting fixed
2280  * or dummy regulators and disabling voltage change logic in the client
2281  * driver.
2282  */
2283 int regulator_can_change_voltage(struct regulator *regulator)
2284 {
2285         struct regulator_dev    *rdev = regulator->rdev;
2286
2287         if (rdev->constraints &&
2288             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2289                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2290                         return 1;
2291
2292                 if (rdev->desc->continuous_voltage_range &&
2293                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2294                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2295                         return 1;
2296         }
2297
2298         return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2301
2302 /**
2303  * regulator_count_voltages - count regulator_list_voltage() selectors
2304  * @regulator: regulator source
2305  *
2306  * Returns number of selectors, or negative errno.  Selectors are
2307  * numbered starting at zero, and typically correspond to bitfields
2308  * in hardware registers.
2309  */
2310 int regulator_count_voltages(struct regulator *regulator)
2311 {
2312         struct regulator_dev    *rdev = regulator->rdev;
2313
2314         if (rdev->desc->n_voltages)
2315                 return rdev->desc->n_voltages;
2316
2317         if (!rdev->supply)
2318                 return -EINVAL;
2319
2320         return regulator_count_voltages(rdev->supply);
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2323
2324 /**
2325  * regulator_list_voltage - enumerate supported voltages
2326  * @regulator: regulator source
2327  * @selector: identify voltage to list
2328  * Context: can sleep
2329  *
2330  * Returns a voltage that can be passed to @regulator_set_voltage(),
2331  * zero if this selector code can't be used on this system, or a
2332  * negative errno.
2333  */
2334 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2335 {
2336         struct regulator_dev *rdev = regulator->rdev;
2337         const struct regulator_ops *ops = rdev->desc->ops;
2338         int ret;
2339
2340         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2341                 return rdev->desc->fixed_uV;
2342
2343         if (ops->list_voltage) {
2344                 if (selector >= rdev->desc->n_voltages)
2345                         return -EINVAL;
2346                 mutex_lock(&rdev->mutex);
2347                 ret = ops->list_voltage(rdev, selector);
2348                 mutex_unlock(&rdev->mutex);
2349         } else if (rdev->supply) {
2350                 ret = regulator_list_voltage(rdev->supply, selector);
2351         } else {
2352                 return -EINVAL;
2353         }
2354
2355         if (ret > 0) {
2356                 if (ret < rdev->constraints->min_uV)
2357                         ret = 0;
2358                 else if (ret > rdev->constraints->max_uV)
2359                         ret = 0;
2360         }
2361
2362         return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2365
2366 /**
2367  * regulator_get_regmap - get the regulator's register map
2368  * @regulator: regulator source
2369  *
2370  * Returns the register map for the given regulator, or an ERR_PTR value
2371  * if the regulator doesn't use regmap.
2372  */
2373 struct regmap *regulator_get_regmap(struct regulator *regulator)
2374 {
2375         struct regmap *map = regulator->rdev->regmap;
2376
2377         return map ? map : ERR_PTR(-EOPNOTSUPP);
2378 }
2379
2380 /**
2381  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2382  * @regulator: regulator source
2383  * @vsel_reg: voltage selector register, output parameter
2384  * @vsel_mask: mask for voltage selector bitfield, output parameter
2385  *
2386  * Returns the hardware register offset and bitmask used for setting the
2387  * regulator voltage. This might be useful when configuring voltage-scaling
2388  * hardware or firmware that can make I2C requests behind the kernel's back,
2389  * for example.
2390  *
2391  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2392  * and 0 is returned, otherwise a negative errno is returned.
2393  */
2394 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2395                                          unsigned *vsel_reg,
2396                                          unsigned *vsel_mask)
2397 {
2398         struct regulator_dev *rdev = regulator->rdev;
2399         const struct regulator_ops *ops = rdev->desc->ops;
2400
2401         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2402                 return -EOPNOTSUPP;
2403
2404          *vsel_reg = rdev->desc->vsel_reg;
2405          *vsel_mask = rdev->desc->vsel_mask;
2406
2407          return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2410
2411 /**
2412  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2413  * @regulator: regulator source
2414  * @selector: identify voltage to list
2415  *
2416  * Converts the selector to a hardware-specific voltage selector that can be
2417  * directly written to the regulator registers. The address of the voltage
2418  * register can be determined by calling @regulator_get_hardware_vsel_register.
2419  *
2420  * On error a negative errno is returned.
2421  */
2422 int regulator_list_hardware_vsel(struct regulator *regulator,
2423                                  unsigned selector)
2424 {
2425         struct regulator_dev *rdev = regulator->rdev;
2426         const struct regulator_ops *ops = rdev->desc->ops;
2427
2428         if (selector >= rdev->desc->n_voltages)
2429                 return -EINVAL;
2430         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2431                 return -EOPNOTSUPP;
2432
2433         return selector;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2436
2437 /**
2438  * regulator_get_linear_step - return the voltage step size between VSEL values
2439  * @regulator: regulator source
2440  *
2441  * Returns the voltage step size between VSEL values for linear
2442  * regulators, or return 0 if the regulator isn't a linear regulator.
2443  */
2444 unsigned int regulator_get_linear_step(struct regulator *regulator)
2445 {
2446         struct regulator_dev *rdev = regulator->rdev;
2447
2448         return rdev->desc->uV_step;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2451
2452 /**
2453  * regulator_is_supported_voltage - check if a voltage range can be supported
2454  *
2455  * @regulator: Regulator to check.
2456  * @min_uV: Minimum required voltage in uV.
2457  * @max_uV: Maximum required voltage in uV.
2458  *
2459  * Returns a boolean or a negative error code.
2460  */
2461 int regulator_is_supported_voltage(struct regulator *regulator,
2462                                    int min_uV, int max_uV)
2463 {
2464         struct regulator_dev *rdev = regulator->rdev;
2465         int i, voltages, ret;
2466
2467         /* If we can't change voltage check the current voltage */
2468         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2469                 ret = regulator_get_voltage(regulator);
2470                 if (ret >= 0)
2471                         return min_uV <= ret && ret <= max_uV;
2472                 else
2473                         return ret;
2474         }
2475
2476         /* Any voltage within constrains range is fine? */
2477         if (rdev->desc->continuous_voltage_range)
2478                 return min_uV >= rdev->constraints->min_uV &&
2479                                 max_uV <= rdev->constraints->max_uV;
2480
2481         ret = regulator_count_voltages(regulator);
2482         if (ret < 0)
2483                 return ret;
2484         voltages = ret;
2485
2486         for (i = 0; i < voltages; i++) {
2487                 ret = regulator_list_voltage(regulator, i);
2488
2489                 if (ret >= min_uV && ret <= max_uV)
2490                         return 1;
2491         }
2492
2493         return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2496
2497 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2498                                        int min_uV, int max_uV,
2499                                        unsigned *selector)
2500 {
2501         struct pre_voltage_change_data data;
2502         int ret;
2503
2504         data.old_uV = _regulator_get_voltage(rdev);
2505         data.min_uV = min_uV;
2506         data.max_uV = max_uV;
2507         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2508                                    &data);
2509         if (ret & NOTIFY_STOP_MASK)
2510                 return -EINVAL;
2511
2512         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2513         if (ret >= 0)
2514                 return ret;
2515
2516         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2517                              (void *)data.old_uV);
2518
2519         return ret;
2520 }
2521
2522 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2523                                            int uV, unsigned selector)
2524 {
2525         struct pre_voltage_change_data data;
2526         int ret;
2527
2528         data.old_uV = _regulator_get_voltage(rdev);
2529         data.min_uV = uV;
2530         data.max_uV = uV;
2531         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2532                                    &data);
2533         if (ret & NOTIFY_STOP_MASK)
2534                 return -EINVAL;
2535
2536         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2537         if (ret >= 0)
2538                 return ret;
2539
2540         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2541                              (void *)data.old_uV);
2542
2543         return ret;
2544 }
2545
2546 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2547                                      int min_uV, int max_uV)
2548 {
2549         int ret;
2550         int delay = 0;
2551         int best_val = 0;
2552         unsigned int selector;
2553         int old_selector = -1;
2554
2555         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2556
2557         min_uV += rdev->constraints->uV_offset;
2558         max_uV += rdev->constraints->uV_offset;
2559
2560         /*
2561          * If we can't obtain the old selector there is not enough
2562          * info to call set_voltage_time_sel().
2563          */
2564         if (_regulator_is_enabled(rdev) &&
2565             rdev->desc->ops->set_voltage_time_sel &&
2566             rdev->desc->ops->get_voltage_sel) {
2567                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2568                 if (old_selector < 0)
2569                         return old_selector;
2570         }
2571
2572         if (rdev->desc->ops->set_voltage) {
2573                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2574                                                   &selector);
2575
2576                 if (ret >= 0) {
2577                         if (rdev->desc->ops->list_voltage)
2578                                 best_val = rdev->desc->ops->list_voltage(rdev,
2579                                                                          selector);
2580                         else
2581                                 best_val = _regulator_get_voltage(rdev);
2582                 }
2583
2584         } else if (rdev->desc->ops->set_voltage_sel) {
2585                 if (rdev->desc->ops->map_voltage) {
2586                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2587                                                            max_uV);
2588                 } else {
2589                         if (rdev->desc->ops->list_voltage ==
2590                             regulator_list_voltage_linear)
2591                                 ret = regulator_map_voltage_linear(rdev,
2592                                                                 min_uV, max_uV);
2593                         else if (rdev->desc->ops->list_voltage ==
2594                                  regulator_list_voltage_linear_range)
2595                                 ret = regulator_map_voltage_linear_range(rdev,
2596                                                                 min_uV, max_uV);
2597                         else
2598                                 ret = regulator_map_voltage_iterate(rdev,
2599                                                                 min_uV, max_uV);
2600                 }
2601
2602                 if (ret >= 0) {
2603                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2604                         if (min_uV <= best_val && max_uV >= best_val) {
2605                                 selector = ret;
2606                                 if (old_selector == selector)
2607                                         ret = 0;
2608                                 else
2609                                         ret = _regulator_call_set_voltage_sel(
2610                                                 rdev, best_val, selector);
2611                         } else {
2612                                 ret = -EINVAL;
2613                         }
2614                 }
2615         } else {
2616                 ret = -EINVAL;
2617         }
2618
2619         /* Call set_voltage_time_sel if successfully obtained old_selector */
2620         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2621                 && old_selector != selector) {
2622
2623                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2624                                                 old_selector, selector);
2625                 if (delay < 0) {
2626                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2627                                   delay);
2628                         delay = 0;
2629                 }
2630
2631                 /* Insert any necessary delays */
2632                 if (delay >= 1000) {
2633                         mdelay(delay / 1000);
2634                         udelay(delay % 1000);
2635                 } else if (delay) {
2636                         udelay(delay);
2637                 }
2638         }
2639
2640         if (ret == 0 && best_val >= 0) {
2641                 unsigned long data = best_val;
2642
2643                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2644                                      (void *)data);
2645         }
2646
2647         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2648
2649         return ret;
2650 }
2651
2652 /**
2653  * regulator_set_voltage - set regulator output voltage
2654  * @regulator: regulator source
2655  * @min_uV: Minimum required voltage in uV
2656  * @max_uV: Maximum acceptable voltage in uV
2657  *
2658  * Sets a voltage regulator to the desired output voltage. This can be set
2659  * during any regulator state. IOW, regulator can be disabled or enabled.
2660  *
2661  * If the regulator is enabled then the voltage will change to the new value
2662  * immediately otherwise if the regulator is disabled the regulator will
2663  * output at the new voltage when enabled.
2664  *
2665  * NOTE: If the regulator is shared between several devices then the lowest
2666  * request voltage that meets the system constraints will be used.
2667  * Regulator system constraints must be set for this regulator before
2668  * calling this function otherwise this call will fail.
2669  */
2670 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2671 {
2672         struct regulator_dev *rdev = regulator->rdev;
2673         int ret = 0;
2674         int old_min_uV, old_max_uV;
2675         int current_uV;
2676
2677         mutex_lock(&rdev->mutex);
2678
2679         /* If we're setting the same range as last time the change
2680          * should be a noop (some cpufreq implementations use the same
2681          * voltage for multiple frequencies, for example).
2682          */
2683         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2684                 goto out;
2685
2686         /* If we're trying to set a range that overlaps the current voltage,
2687          * return succesfully even though the regulator does not support
2688          * changing the voltage.
2689          */
2690         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2691                 current_uV = _regulator_get_voltage(rdev);
2692                 if (min_uV <= current_uV && current_uV <= max_uV) {
2693                         regulator->min_uV = min_uV;
2694                         regulator->max_uV = max_uV;
2695                         goto out;
2696                 }
2697         }
2698
2699         /* sanity check */
2700         if (!rdev->desc->ops->set_voltage &&
2701             !rdev->desc->ops->set_voltage_sel) {
2702                 ret = -EINVAL;
2703                 goto out;
2704         }
2705
2706         /* constraints check */
2707         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2708         if (ret < 0)
2709                 goto out;
2710
2711         /* restore original values in case of error */
2712         old_min_uV = regulator->min_uV;
2713         old_max_uV = regulator->max_uV;
2714         regulator->min_uV = min_uV;
2715         regulator->max_uV = max_uV;
2716
2717         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2718         if (ret < 0)
2719                 goto out2;
2720
2721         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2722         if (ret < 0)
2723                 goto out2;
2724
2725 out:
2726         mutex_unlock(&rdev->mutex);
2727         return ret;
2728 out2:
2729         regulator->min_uV = old_min_uV;
2730         regulator->max_uV = old_max_uV;
2731         mutex_unlock(&rdev->mutex);
2732         return ret;
2733 }
2734 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2735
2736 /**
2737  * regulator_set_voltage_time - get raise/fall time
2738  * @regulator: regulator source
2739  * @old_uV: starting voltage in microvolts
2740  * @new_uV: target voltage in microvolts
2741  *
2742  * Provided with the starting and ending voltage, this function attempts to
2743  * calculate the time in microseconds required to rise or fall to this new
2744  * voltage.
2745  */
2746 int regulator_set_voltage_time(struct regulator *regulator,
2747                                int old_uV, int new_uV)
2748 {
2749         struct regulator_dev *rdev = regulator->rdev;
2750         const struct regulator_ops *ops = rdev->desc->ops;
2751         int old_sel = -1;
2752         int new_sel = -1;
2753         int voltage;
2754         int i;
2755
2756         /* Currently requires operations to do this */
2757         if (!ops->list_voltage || !ops->set_voltage_time_sel
2758             || !rdev->desc->n_voltages)
2759                 return -EINVAL;
2760
2761         for (i = 0; i < rdev->desc->n_voltages; i++) {
2762                 /* We only look for exact voltage matches here */
2763                 voltage = regulator_list_voltage(regulator, i);
2764                 if (voltage < 0)
2765                         return -EINVAL;
2766                 if (voltage == 0)
2767                         continue;
2768                 if (voltage == old_uV)
2769                         old_sel = i;
2770                 if (voltage == new_uV)
2771                         new_sel = i;
2772         }
2773
2774         if (old_sel < 0 || new_sel < 0)
2775                 return -EINVAL;
2776
2777         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2778 }
2779 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2780
2781 /**
2782  * regulator_set_voltage_time_sel - get raise/fall time
2783  * @rdev: regulator source device
2784  * @old_selector: selector for starting voltage
2785  * @new_selector: selector for target voltage
2786  *
2787  * Provided with the starting and target voltage selectors, this function
2788  * returns time in microseconds required to rise or fall to this new voltage
2789  *
2790  * Drivers providing ramp_delay in regulation_constraints can use this as their
2791  * set_voltage_time_sel() operation.
2792  */
2793 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2794                                    unsigned int old_selector,
2795                                    unsigned int new_selector)
2796 {
2797         unsigned int ramp_delay = 0;
2798         int old_volt, new_volt;
2799
2800         if (rdev->constraints->ramp_delay)
2801                 ramp_delay = rdev->constraints->ramp_delay;
2802         else if (rdev->desc->ramp_delay)
2803                 ramp_delay = rdev->desc->ramp_delay;
2804
2805         if (ramp_delay == 0) {
2806                 rdev_warn(rdev, "ramp_delay not set\n");
2807                 return 0;
2808         }
2809
2810         /* sanity check */
2811         if (!rdev->desc->ops->list_voltage)
2812                 return -EINVAL;
2813
2814         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2815         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2816
2817         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2818 }
2819 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2820
2821 /**
2822  * regulator_sync_voltage - re-apply last regulator output voltage
2823  * @regulator: regulator source
2824  *
2825  * Re-apply the last configured voltage.  This is intended to be used
2826  * where some external control source the consumer is cooperating with
2827  * has caused the configured voltage to change.
2828  */
2829 int regulator_sync_voltage(struct regulator *regulator)
2830 {
2831         struct regulator_dev *rdev = regulator->rdev;
2832         int ret, min_uV, max_uV;
2833
2834         mutex_lock(&rdev->mutex);
2835
2836         if (!rdev->desc->ops->set_voltage &&
2837             !rdev->desc->ops->set_voltage_sel) {
2838                 ret = -EINVAL;
2839                 goto out;
2840         }
2841
2842         /* This is only going to work if we've had a voltage configured. */
2843         if (!regulator->min_uV && !regulator->max_uV) {
2844                 ret = -EINVAL;
2845                 goto out;
2846         }
2847
2848         min_uV = regulator->min_uV;
2849         max_uV = regulator->max_uV;
2850
2851         /* This should be a paranoia check... */
2852         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2853         if (ret < 0)
2854                 goto out;
2855
2856         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2857         if (ret < 0)
2858                 goto out;
2859
2860         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2861
2862 out:
2863         mutex_unlock(&rdev->mutex);
2864         return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2867
2868 static int _regulator_get_voltage(struct regulator_dev *rdev)
2869 {
2870         int sel, ret;
2871
2872         if (rdev->desc->ops->get_voltage_sel) {
2873                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2874                 if (sel < 0)
2875                         return sel;
2876                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2877         } else if (rdev->desc->ops->get_voltage) {
2878                 ret = rdev->desc->ops->get_voltage(rdev);
2879         } else if (rdev->desc->ops->list_voltage) {
2880                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2881         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2882                 ret = rdev->desc->fixed_uV;
2883         } else if (rdev->supply) {
2884                 ret = regulator_get_voltage(rdev->supply);
2885         } else {
2886                 return -EINVAL;
2887         }
2888
2889         if (ret < 0)
2890                 return ret;
2891         return ret - rdev->constraints->uV_offset;
2892 }
2893
2894 /**
2895  * regulator_get_voltage - get regulator output voltage
2896  * @regulator: regulator source
2897  *
2898  * This returns the current regulator voltage in uV.
2899  *
2900  * NOTE: If the regulator is disabled it will return the voltage value. This
2901  * function should not be used to determine regulator state.
2902  */
2903 int regulator_get_voltage(struct regulator *regulator)
2904 {
2905         int ret;
2906
2907         mutex_lock(&regulator->rdev->mutex);
2908
2909         ret = _regulator_get_voltage(regulator->rdev);
2910
2911         mutex_unlock(&regulator->rdev->mutex);
2912
2913         return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2916
2917 /**
2918  * regulator_set_current_limit - set regulator output current limit
2919  * @regulator: regulator source
2920  * @min_uA: Minimum supported current in uA
2921  * @max_uA: Maximum supported current in uA
2922  *
2923  * Sets current sink to the desired output current. This can be set during
2924  * any regulator state. IOW, regulator can be disabled or enabled.
2925  *
2926  * If the regulator is enabled then the current will change to the new value
2927  * immediately otherwise if the regulator is disabled the regulator will
2928  * output at the new current when enabled.
2929  *
2930  * NOTE: Regulator system constraints must be set for this regulator before
2931  * calling this function otherwise this call will fail.
2932  */
2933 int regulator_set_current_limit(struct regulator *regulator,
2934                                int min_uA, int max_uA)
2935 {
2936         struct regulator_dev *rdev = regulator->rdev;
2937         int ret;
2938
2939         mutex_lock(&rdev->mutex);
2940
2941         /* sanity check */
2942         if (!rdev->desc->ops->set_current_limit) {
2943                 ret = -EINVAL;
2944                 goto out;
2945         }
2946
2947         /* constraints check */
2948         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2949         if (ret < 0)
2950                 goto out;
2951
2952         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2953 out:
2954         mutex_unlock(&rdev->mutex);
2955         return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2958
2959 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2960 {
2961         int ret;
2962
2963         mutex_lock(&rdev->mutex);
2964
2965         /* sanity check */
2966         if (!rdev->desc->ops->get_current_limit) {
2967                 ret = -EINVAL;
2968                 goto out;
2969         }
2970
2971         ret = rdev->desc->ops->get_current_limit(rdev);
2972 out:
2973         mutex_unlock(&rdev->mutex);
2974         return ret;
2975 }
2976
2977 /**
2978  * regulator_get_current_limit - get regulator output current
2979  * @regulator: regulator source
2980  *
2981  * This returns the current supplied by the specified current sink in uA.
2982  *
2983  * NOTE: If the regulator is disabled it will return the current value. This
2984  * function should not be used to determine regulator state.
2985  */
2986 int regulator_get_current_limit(struct regulator *regulator)
2987 {
2988         return _regulator_get_current_limit(regulator->rdev);
2989 }
2990 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2991
2992 /**
2993  * regulator_set_mode - set regulator operating mode
2994  * @regulator: regulator source
2995  * @mode: operating mode - one of the REGULATOR_MODE constants
2996  *
2997  * Set regulator operating mode to increase regulator efficiency or improve
2998  * regulation performance.
2999  *
3000  * NOTE: Regulator system constraints must be set for this regulator before
3001  * calling this function otherwise this call will fail.
3002  */
3003 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3004 {
3005         struct regulator_dev *rdev = regulator->rdev;
3006         int ret;
3007         int regulator_curr_mode;
3008
3009         mutex_lock(&rdev->mutex);
3010
3011         /* sanity check */
3012         if (!rdev->desc->ops->set_mode) {
3013                 ret = -EINVAL;
3014                 goto out;
3015         }
3016
3017         /* return if the same mode is requested */
3018         if (rdev->desc->ops->get_mode) {
3019                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3020                 if (regulator_curr_mode == mode) {
3021                         ret = 0;
3022                         goto out;
3023                 }
3024         }
3025
3026         /* constraints check */
3027         ret = regulator_mode_constrain(rdev, &mode);
3028         if (ret < 0)
3029                 goto out;
3030
3031         ret = rdev->desc->ops->set_mode(rdev, mode);
3032 out:
3033         mutex_unlock(&rdev->mutex);
3034         return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(regulator_set_mode);
3037
3038 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3039 {
3040         int ret;
3041
3042         mutex_lock(&rdev->mutex);
3043
3044         /* sanity check */
3045         if (!rdev->desc->ops->get_mode) {
3046                 ret = -EINVAL;
3047                 goto out;
3048         }
3049
3050         ret = rdev->desc->ops->get_mode(rdev);
3051 out:
3052         mutex_unlock(&rdev->mutex);
3053         return ret;
3054 }
3055
3056 /**
3057  * regulator_get_mode - get regulator operating mode
3058  * @regulator: regulator source
3059  *
3060  * Get the current regulator operating mode.
3061  */
3062 unsigned int regulator_get_mode(struct regulator *regulator)
3063 {
3064         return _regulator_get_mode(regulator->rdev);
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_get_mode);
3067
3068 /**
3069  * regulator_set_load - set regulator load
3070  * @regulator: regulator source
3071  * @uA_load: load current
3072  *
3073  * Notifies the regulator core of a new device load. This is then used by
3074  * DRMS (if enabled by constraints) to set the most efficient regulator
3075  * operating mode for the new regulator loading.
3076  *
3077  * Consumer devices notify their supply regulator of the maximum power
3078  * they will require (can be taken from device datasheet in the power
3079  * consumption tables) when they change operational status and hence power
3080  * state. Examples of operational state changes that can affect power
3081  * consumption are :-
3082  *
3083  *    o Device is opened / closed.
3084  *    o Device I/O is about to begin or has just finished.
3085  *    o Device is idling in between work.
3086  *
3087  * This information is also exported via sysfs to userspace.
3088  *
3089  * DRMS will sum the total requested load on the regulator and change
3090  * to the most efficient operating mode if platform constraints allow.
3091  *
3092  * On error a negative errno is returned.
3093  */
3094 int regulator_set_load(struct regulator *regulator, int uA_load)
3095 {
3096         struct regulator_dev *rdev = regulator->rdev;
3097         int ret;
3098
3099         mutex_lock(&rdev->mutex);
3100         regulator->uA_load = uA_load;
3101         ret = drms_uA_update(rdev);
3102         mutex_unlock(&rdev->mutex);
3103
3104         return ret;
3105 }
3106 EXPORT_SYMBOL_GPL(regulator_set_load);
3107
3108 /**
3109  * regulator_allow_bypass - allow the regulator to go into bypass mode
3110  *
3111  * @regulator: Regulator to configure
3112  * @enable: enable or disable bypass mode
3113  *
3114  * Allow the regulator to go into bypass mode if all other consumers
3115  * for the regulator also enable bypass mode and the machine
3116  * constraints allow this.  Bypass mode means that the regulator is
3117  * simply passing the input directly to the output with no regulation.
3118  */
3119 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3120 {
3121         struct regulator_dev *rdev = regulator->rdev;
3122         int ret = 0;
3123
3124         if (!rdev->desc->ops->set_bypass)
3125                 return 0;
3126
3127         if (rdev->constraints &&
3128             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3129                 return 0;
3130
3131         mutex_lock(&rdev->mutex);
3132
3133         if (enable && !regulator->bypass) {
3134                 rdev->bypass_count++;
3135
3136                 if (rdev->bypass_count == rdev->open_count) {
3137                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3138                         if (ret != 0)
3139                                 rdev->bypass_count--;
3140                 }
3141
3142         } else if (!enable && regulator->bypass) {
3143                 rdev->bypass_count--;
3144
3145                 if (rdev->bypass_count != rdev->open_count) {
3146                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3147                         if (ret != 0)
3148                                 rdev->bypass_count++;
3149                 }
3150         }
3151
3152         if (ret == 0)
3153                 regulator->bypass = enable;
3154
3155         mutex_unlock(&rdev->mutex);
3156
3157         return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3160
3161 /**
3162  * regulator_register_notifier - register regulator event notifier
3163  * @regulator: regulator source
3164  * @nb: notifier block
3165  *
3166  * Register notifier block to receive regulator events.
3167  */
3168 int regulator_register_notifier(struct regulator *regulator,
3169                               struct notifier_block *nb)
3170 {
3171         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3172                                                 nb);
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3175
3176 /**
3177  * regulator_unregister_notifier - unregister regulator event notifier
3178  * @regulator: regulator source
3179  * @nb: notifier block
3180  *
3181  * Unregister regulator event notifier block.
3182  */
3183 int regulator_unregister_notifier(struct regulator *regulator,
3184                                 struct notifier_block *nb)
3185 {
3186         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3187                                                   nb);
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3190
3191 /* notify regulator consumers and downstream regulator consumers.
3192  * Note mutex must be held by caller.
3193  */
3194 static int _notifier_call_chain(struct regulator_dev *rdev,
3195                                   unsigned long event, void *data)
3196 {
3197         /* call rdev chain first */
3198         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3199 }
3200
3201 /**
3202  * regulator_bulk_get - get multiple regulator consumers
3203  *
3204  * @dev:           Device to supply
3205  * @num_consumers: Number of consumers to register
3206  * @consumers:     Configuration of consumers; clients are stored here.
3207  *
3208  * @return 0 on success, an errno on failure.
3209  *
3210  * This helper function allows drivers to get several regulator
3211  * consumers in one operation.  If any of the regulators cannot be
3212  * acquired then any regulators that were allocated will be freed
3213  * before returning to the caller.
3214  */
3215 int regulator_bulk_get(struct device *dev, int num_consumers,
3216                        struct regulator_bulk_data *consumers)
3217 {
3218         int i;
3219         int ret;
3220
3221         for (i = 0; i < num_consumers; i++)
3222                 consumers[i].consumer = NULL;
3223
3224         for (i = 0; i < num_consumers; i++) {
3225                 consumers[i].consumer = regulator_get(dev,
3226                                                       consumers[i].supply);
3227                 if (IS_ERR(consumers[i].consumer)) {
3228                         ret = PTR_ERR(consumers[i].consumer);
3229                         dev_err(dev, "Failed to get supply '%s': %d\n",
3230                                 consumers[i].supply, ret);
3231                         consumers[i].consumer = NULL;
3232                         goto err;
3233                 }
3234         }
3235
3236         return 0;
3237
3238 err:
3239         while (--i >= 0)
3240                 regulator_put(consumers[i].consumer);
3241
3242         return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3245
3246 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3247 {
3248         struct regulator_bulk_data *bulk = data;
3249
3250         bulk->ret = regulator_enable(bulk->consumer);
3251 }
3252
3253 /**
3254  * regulator_bulk_enable - enable multiple regulator consumers
3255  *
3256  * @num_consumers: Number of consumers
3257  * @consumers:     Consumer data; clients are stored here.
3258  * @return         0 on success, an errno on failure
3259  *
3260  * This convenience API allows consumers to enable multiple regulator
3261  * clients in a single API call.  If any consumers cannot be enabled
3262  * then any others that were enabled will be disabled again prior to
3263  * return.
3264  */
3265 int regulator_bulk_enable(int num_consumers,
3266                           struct regulator_bulk_data *consumers)
3267 {
3268         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3269         int i;
3270         int ret = 0;
3271
3272         for (i = 0; i < num_consumers; i++) {
3273                 if (consumers[i].consumer->always_on)
3274                         consumers[i].ret = 0;
3275                 else
3276                         async_schedule_domain(regulator_bulk_enable_async,
3277                                               &consumers[i], &async_domain);
3278         }
3279
3280         async_synchronize_full_domain(&async_domain);
3281
3282         /* If any consumer failed we need to unwind any that succeeded */
3283         for (i = 0; i < num_consumers; i++) {
3284                 if (consumers[i].ret != 0) {
3285                         ret = consumers[i].ret;
3286                         goto err;
3287                 }
3288         }
3289
3290         return 0;
3291
3292 err:
3293         for (i = 0; i < num_consumers; i++) {
3294                 if (consumers[i].ret < 0)
3295                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3296                                consumers[i].ret);
3297                 else
3298                         regulator_disable(consumers[i].consumer);
3299         }
3300
3301         return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3304
3305 /**
3306  * regulator_bulk_disable - disable multiple regulator consumers
3307  *
3308  * @num_consumers: Number of consumers
3309  * @consumers:     Consumer data; clients are stored here.
3310  * @return         0 on success, an errno on failure
3311  *
3312  * This convenience API allows consumers to disable multiple regulator
3313  * clients in a single API call.  If any consumers cannot be disabled
3314  * then any others that were disabled will be enabled again prior to
3315  * return.
3316  */
3317 int regulator_bulk_disable(int num_consumers,
3318                            struct regulator_bulk_data *consumers)
3319 {
3320         int i;
3321         int ret, r;
3322
3323         for (i = num_consumers - 1; i >= 0; --i) {
3324                 ret = regulator_disable(consumers[i].consumer);
3325                 if (ret != 0)
3326                         goto err;
3327         }
3328
3329         return 0;
3330
3331 err:
3332         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3333         for (++i; i < num_consumers; ++i) {
3334                 r = regulator_enable(consumers[i].consumer);
3335                 if (r != 0)
3336                         pr_err("Failed to reename %s: %d\n",
3337                                consumers[i].supply, r);
3338         }
3339
3340         return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3343
3344 /**
3345  * regulator_bulk_force_disable - force disable multiple regulator consumers
3346  *
3347  * @num_consumers: Number of consumers
3348  * @consumers:     Consumer data; clients are stored here.
3349  * @return         0 on success, an errno on failure
3350  *
3351  * This convenience API allows consumers to forcibly disable multiple regulator
3352  * clients in a single API call.
3353  * NOTE: This should be used for situations when device damage will
3354  * likely occur if the regulators are not disabled (e.g. over temp).
3355  * Although regulator_force_disable function call for some consumers can
3356  * return error numbers, the function is called for all consumers.
3357  */
3358 int regulator_bulk_force_disable(int num_consumers,
3359                            struct regulator_bulk_data *consumers)
3360 {
3361         int i;
3362         int ret;
3363
3364         for (i = 0; i < num_consumers; i++)
3365                 consumers[i].ret =
3366                             regulator_force_disable(consumers[i].consumer);
3367
3368         for (i = 0; i < num_consumers; i++) {
3369                 if (consumers[i].ret != 0) {
3370                         ret = consumers[i].ret;
3371                         goto out;
3372                 }
3373         }
3374
3375         return 0;
3376 out:
3377         return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3380
3381 /**
3382  * regulator_bulk_free - free multiple regulator consumers
3383  *
3384  * @num_consumers: Number of consumers
3385  * @consumers:     Consumer data; clients are stored here.
3386  *
3387  * This convenience API allows consumers to free multiple regulator
3388  * clients in a single API call.
3389  */
3390 void regulator_bulk_free(int num_consumers,
3391                          struct regulator_bulk_data *consumers)
3392 {
3393         int i;
3394
3395         for (i = 0; i < num_consumers; i++) {
3396                 regulator_put(consumers[i].consumer);
3397                 consumers[i].consumer = NULL;
3398         }
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3401
3402 /**
3403  * regulator_notifier_call_chain - call regulator event notifier
3404  * @rdev: regulator source
3405  * @event: notifier block
3406  * @data: callback-specific data.
3407  *
3408  * Called by regulator drivers to notify clients a regulator event has
3409  * occurred. We also notify regulator clients downstream.
3410  * Note lock must be held by caller.
3411  */
3412 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3413                                   unsigned long event, void *data)
3414 {
3415         _notifier_call_chain(rdev, event, data);
3416         return NOTIFY_DONE;
3417
3418 }
3419 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3420
3421 /**
3422  * regulator_mode_to_status - convert a regulator mode into a status
3423  *
3424  * @mode: Mode to convert
3425  *
3426  * Convert a regulator mode into a status.
3427  */
3428 int regulator_mode_to_status(unsigned int mode)
3429 {
3430         switch (mode) {
3431         case REGULATOR_MODE_FAST:
3432                 return REGULATOR_STATUS_FAST;
3433         case REGULATOR_MODE_NORMAL:
3434                 return REGULATOR_STATUS_NORMAL;
3435         case REGULATOR_MODE_IDLE:
3436                 return REGULATOR_STATUS_IDLE;
3437         case REGULATOR_MODE_STANDBY:
3438                 return REGULATOR_STATUS_STANDBY;
3439         default:
3440                 return REGULATOR_STATUS_UNDEFINED;
3441         }
3442 }
3443 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3444
3445 static struct attribute *regulator_dev_attrs[] = {
3446         &dev_attr_name.attr,
3447         &dev_attr_num_users.attr,
3448         &dev_attr_type.attr,
3449         &dev_attr_microvolts.attr,
3450         &dev_attr_microamps.attr,
3451         &dev_attr_opmode.attr,
3452         &dev_attr_state.attr,
3453         &dev_attr_status.attr,
3454         &dev_attr_bypass.attr,
3455         &dev_attr_requested_microamps.attr,
3456         &dev_attr_min_microvolts.attr,
3457         &dev_attr_max_microvolts.attr,
3458         &dev_attr_min_microamps.attr,
3459         &dev_attr_max_microamps.attr,
3460         &dev_attr_suspend_standby_state.attr,
3461         &dev_attr_suspend_mem_state.attr,
3462         &dev_attr_suspend_disk_state.attr,
3463         &dev_attr_suspend_standby_microvolts.attr,
3464         &dev_attr_suspend_mem_microvolts.attr,
3465         &dev_attr_suspend_disk_microvolts.attr,
3466         &dev_attr_suspend_standby_mode.attr,
3467         &dev_attr_suspend_mem_mode.attr,
3468         &dev_attr_suspend_disk_mode.attr,
3469         NULL
3470 };
3471
3472 /*
3473  * To avoid cluttering sysfs (and memory) with useless state, only
3474  * create attributes that can be meaningfully displayed.
3475  */
3476 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3477                                          struct attribute *attr, int idx)
3478 {
3479         struct device *dev = kobj_to_dev(kobj);
3480         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3481         const struct regulator_ops *ops = rdev->desc->ops;
3482         umode_t mode = attr->mode;
3483
3484         /* these three are always present */
3485         if (attr == &dev_attr_name.attr ||
3486             attr == &dev_attr_num_users.attr ||
3487             attr == &dev_attr_type.attr)
3488                 return mode;
3489
3490         /* some attributes need specific methods to be displayed */
3491         if (attr == &dev_attr_microvolts.attr) {
3492                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3493                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3494                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3495                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3496                         return mode;
3497                 return 0;
3498         }
3499
3500         if (attr == &dev_attr_microamps.attr)
3501                 return ops->get_current_limit ? mode : 0;
3502
3503         if (attr == &dev_attr_opmode.attr)
3504                 return ops->get_mode ? mode : 0;
3505
3506         if (attr == &dev_attr_state.attr)
3507                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3508
3509         if (attr == &dev_attr_status.attr)
3510                 return ops->get_status ? mode : 0;
3511
3512         if (attr == &dev_attr_bypass.attr)
3513                 return ops->get_bypass ? mode : 0;
3514
3515         /* some attributes are type-specific */
3516         if (attr == &dev_attr_requested_microamps.attr)
3517                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3518
3519         /* constraints need specific supporting methods */
3520         if (attr == &dev_attr_min_microvolts.attr ||
3521             attr == &dev_attr_max_microvolts.attr)
3522                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3523
3524         if (attr == &dev_attr_min_microamps.attr ||
3525             attr == &dev_attr_max_microamps.attr)
3526                 return ops->set_current_limit ? mode : 0;
3527
3528         if (attr == &dev_attr_suspend_standby_state.attr ||
3529             attr == &dev_attr_suspend_mem_state.attr ||
3530             attr == &dev_attr_suspend_disk_state.attr)
3531                 return mode;
3532
3533         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3534             attr == &dev_attr_suspend_mem_microvolts.attr ||
3535             attr == &dev_attr_suspend_disk_microvolts.attr)
3536                 return ops->set_suspend_voltage ? mode : 0;
3537
3538         if (attr == &dev_attr_suspend_standby_mode.attr ||
3539             attr == &dev_attr_suspend_mem_mode.attr ||
3540             attr == &dev_attr_suspend_disk_mode.attr)
3541                 return ops->set_suspend_mode ? mode : 0;
3542
3543         return mode;
3544 }
3545
3546 static const struct attribute_group regulator_dev_group = {
3547         .attrs = regulator_dev_attrs,
3548         .is_visible = regulator_attr_is_visible,
3549 };
3550
3551 static const struct attribute_group *regulator_dev_groups[] = {
3552         &regulator_dev_group,
3553         NULL
3554 };
3555
3556 static void regulator_dev_release(struct device *dev)
3557 {
3558         struct regulator_dev *rdev = dev_get_drvdata(dev);
3559         kfree(rdev);
3560 }
3561
3562 static struct class regulator_class = {
3563         .name = "regulator",
3564         .dev_release = regulator_dev_release,
3565         .dev_groups = regulator_dev_groups,
3566 };
3567
3568 static void rdev_init_debugfs(struct regulator_dev *rdev)
3569 {
3570         struct device *parent = rdev->dev.parent;
3571         const char *rname = rdev_get_name(rdev);
3572         char name[NAME_MAX];
3573
3574         /* Avoid duplicate debugfs directory names */
3575         if (parent && rname == rdev->desc->name) {
3576                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3577                          rname);
3578                 rname = name;
3579         }
3580
3581         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3582         if (!rdev->debugfs) {
3583                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3584                 return;
3585         }
3586
3587         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3588                            &rdev->use_count);
3589         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3590                            &rdev->open_count);
3591         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3592                            &rdev->bypass_count);
3593 }
3594
3595 /**
3596  * regulator_register - register regulator
3597  * @regulator_desc: regulator to register
3598  * @cfg: runtime configuration for regulator
3599  *
3600  * Called by regulator drivers to register a regulator.
3601  * Returns a valid pointer to struct regulator_dev on success
3602  * or an ERR_PTR() on error.
3603  */
3604 struct regulator_dev *
3605 regulator_register(const struct regulator_desc *regulator_desc,
3606                    const struct regulator_config *cfg)
3607 {
3608         const struct regulation_constraints *constraints = NULL;
3609         const struct regulator_init_data *init_data;
3610         struct regulator_config *config = NULL;
3611         static atomic_t regulator_no = ATOMIC_INIT(-1);
3612         struct regulator_dev *rdev;
3613         struct device *dev;
3614         int ret, i;
3615
3616         if (regulator_desc == NULL || cfg == NULL)
3617                 return ERR_PTR(-EINVAL);
3618
3619         dev = cfg->dev;
3620         WARN_ON(!dev);
3621
3622         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3623                 return ERR_PTR(-EINVAL);
3624
3625         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3626             regulator_desc->type != REGULATOR_CURRENT)
3627                 return ERR_PTR(-EINVAL);
3628
3629         /* Only one of each should be implemented */
3630         WARN_ON(regulator_desc->ops->get_voltage &&
3631                 regulator_desc->ops->get_voltage_sel);
3632         WARN_ON(regulator_desc->ops->set_voltage &&
3633                 regulator_desc->ops->set_voltage_sel);
3634
3635         /* If we're using selectors we must implement list_voltage. */
3636         if (regulator_desc->ops->get_voltage_sel &&
3637             !regulator_desc->ops->list_voltage) {
3638                 return ERR_PTR(-EINVAL);
3639         }
3640         if (regulator_desc->ops->set_voltage_sel &&
3641             !regulator_desc->ops->list_voltage) {
3642                 return ERR_PTR(-EINVAL);
3643         }
3644
3645         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3646         if (rdev == NULL)
3647                 return ERR_PTR(-ENOMEM);
3648
3649         /*
3650          * Duplicate the config so the driver could override it after
3651          * parsing init data.
3652          */
3653         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3654         if (config == NULL) {
3655                 kfree(rdev);
3656                 return ERR_PTR(-ENOMEM);
3657         }
3658
3659         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3660                                                &rdev->dev.of_node);
3661         if (!init_data) {
3662                 init_data = config->init_data;
3663                 rdev->dev.of_node = of_node_get(config->of_node);
3664         }
3665
3666         mutex_lock(&regulator_list_mutex);
3667
3668         mutex_init(&rdev->mutex);
3669         rdev->reg_data = config->driver_data;
3670         rdev->owner = regulator_desc->owner;
3671         rdev->desc = regulator_desc;
3672         if (config->regmap)
3673                 rdev->regmap = config->regmap;
3674         else if (dev_get_regmap(dev, NULL))
3675                 rdev->regmap = dev_get_regmap(dev, NULL);
3676         else if (dev->parent)
3677                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3678         INIT_LIST_HEAD(&rdev->consumer_list);
3679         INIT_LIST_HEAD(&rdev->list);
3680         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3681         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3682
3683         /* preform any regulator specific init */
3684         if (init_data && init_data->regulator_init) {
3685                 ret = init_data->regulator_init(rdev->reg_data);
3686                 if (ret < 0)
3687                         goto clean;
3688         }
3689
3690         /* register with sysfs */
3691         rdev->dev.class = &regulator_class;
3692         rdev->dev.parent = dev;
3693         dev_set_name(&rdev->dev, "regulator.%lu",
3694                     (unsigned long) atomic_inc_return(&regulator_no));
3695         ret = device_register(&rdev->dev);
3696         if (ret != 0) {
3697                 put_device(&rdev->dev);
3698                 goto clean;
3699         }
3700
3701         dev_set_drvdata(&rdev->dev, rdev);
3702
3703         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3704             gpio_is_valid(config->ena_gpio)) {
3705                 ret = regulator_ena_gpio_request(rdev, config);
3706                 if (ret != 0) {
3707                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3708                                  config->ena_gpio, ret);
3709                         goto wash;
3710                 }
3711         }
3712
3713         /* set regulator constraints */
3714         if (init_data)
3715                 constraints = &init_data->constraints;
3716
3717         ret = set_machine_constraints(rdev, constraints);
3718         if (ret < 0)
3719                 goto scrub;
3720
3721         if (init_data && init_data->supply_regulator)
3722                 rdev->supply_name = init_data->supply_regulator;
3723         else if (regulator_desc->supply_name)
3724                 rdev->supply_name = regulator_desc->supply_name;
3725
3726         /* add consumers devices */
3727         if (init_data) {
3728                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3729                         ret = set_consumer_device_supply(rdev,
3730                                 init_data->consumer_supplies[i].dev_name,
3731                                 init_data->consumer_supplies[i].supply);
3732                         if (ret < 0) {
3733                                 dev_err(dev, "Failed to set supply %s\n",
3734                                         init_data->consumer_supplies[i].supply);
3735                                 goto unset_supplies;
3736                         }
3737                 }
3738         }
3739
3740         list_add(&rdev->list, &regulator_list);
3741
3742         rdev_init_debugfs(rdev);
3743 out:
3744         mutex_unlock(&regulator_list_mutex);
3745         kfree(config);
3746         return rdev;
3747
3748 unset_supplies:
3749         unset_regulator_supplies(rdev);
3750
3751 scrub:
3752         regulator_ena_gpio_free(rdev);
3753         kfree(rdev->constraints);
3754 wash:
3755         device_unregister(&rdev->dev);
3756         /* device core frees rdev */
3757         rdev = ERR_PTR(ret);
3758         goto out;
3759
3760 clean:
3761         kfree(rdev);
3762         rdev = ERR_PTR(ret);
3763         goto out;
3764 }
3765 EXPORT_SYMBOL_GPL(regulator_register);
3766
3767 /**
3768  * regulator_unregister - unregister regulator
3769  * @rdev: regulator to unregister
3770  *
3771  * Called by regulator drivers to unregister a regulator.
3772  */
3773 void regulator_unregister(struct regulator_dev *rdev)
3774 {
3775         if (rdev == NULL)
3776                 return;
3777
3778         if (rdev->supply) {
3779                 while (rdev->use_count--)
3780                         regulator_disable(rdev->supply);
3781                 regulator_put(rdev->supply);
3782         }
3783         mutex_lock(&regulator_list_mutex);
3784         debugfs_remove_recursive(rdev->debugfs);
3785         flush_work(&rdev->disable_work.work);
3786         WARN_ON(rdev->open_count);
3787         unset_regulator_supplies(rdev);
3788         list_del(&rdev->list);
3789         kfree(rdev->constraints);
3790         regulator_ena_gpio_free(rdev);
3791         of_node_put(rdev->dev.of_node);
3792         device_unregister(&rdev->dev);
3793         mutex_unlock(&regulator_list_mutex);
3794 }
3795 EXPORT_SYMBOL_GPL(regulator_unregister);
3796
3797 /**
3798  * regulator_suspend_prepare - prepare regulators for system wide suspend
3799  * @state: system suspend state
3800  *
3801  * Configure each regulator with it's suspend operating parameters for state.
3802  * This will usually be called by machine suspend code prior to supending.
3803  */
3804 int regulator_suspend_prepare(suspend_state_t state)
3805 {
3806         struct regulator_dev *rdev;
3807         int ret = 0;
3808
3809         /* ON is handled by regulator active state */
3810         if (state == PM_SUSPEND_ON)
3811                 return -EINVAL;
3812
3813         mutex_lock(&regulator_list_mutex);
3814         list_for_each_entry(rdev, &regulator_list, list) {
3815
3816                 mutex_lock(&rdev->mutex);
3817                 ret = suspend_prepare(rdev, state);
3818                 mutex_unlock(&rdev->mutex);
3819
3820                 if (ret < 0) {
3821                         rdev_err(rdev, "failed to prepare\n");
3822                         goto out;
3823                 }
3824         }
3825 out:
3826         mutex_unlock(&regulator_list_mutex);
3827         return ret;
3828 }
3829 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3830
3831 /**
3832  * regulator_suspend_finish - resume regulators from system wide suspend
3833  *
3834  * Turn on regulators that might be turned off by regulator_suspend_prepare
3835  * and that should be turned on according to the regulators properties.
3836  */
3837 int regulator_suspend_finish(void)
3838 {
3839         struct regulator_dev *rdev;
3840         int ret = 0, error;
3841
3842         mutex_lock(&regulator_list_mutex);
3843         list_for_each_entry(rdev, &regulator_list, list) {
3844                 mutex_lock(&rdev->mutex);
3845                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3846                         if (!_regulator_is_enabled(rdev)) {
3847                                 error = _regulator_do_enable(rdev);
3848                                 if (error)
3849                                         ret = error;
3850                         }
3851                 } else {
3852                         if (!have_full_constraints())
3853                                 goto unlock;
3854                         if (!_regulator_is_enabled(rdev))
3855                                 goto unlock;
3856
3857                         error = _regulator_do_disable(rdev);
3858                         if (error)
3859                                 ret = error;
3860                 }
3861 unlock:
3862                 mutex_unlock(&rdev->mutex);
3863         }
3864         mutex_unlock(&regulator_list_mutex);
3865         return ret;
3866 }
3867 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3868
3869 /**
3870  * regulator_has_full_constraints - the system has fully specified constraints
3871  *
3872  * Calling this function will cause the regulator API to disable all
3873  * regulators which have a zero use count and don't have an always_on
3874  * constraint in a late_initcall.
3875  *
3876  * The intention is that this will become the default behaviour in a
3877  * future kernel release so users are encouraged to use this facility
3878  * now.
3879  */
3880 void regulator_has_full_constraints(void)
3881 {
3882         has_full_constraints = 1;
3883 }
3884 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3885
3886 /**
3887  * rdev_get_drvdata - get rdev regulator driver data
3888  * @rdev: regulator
3889  *
3890  * Get rdev regulator driver private data. This call can be used in the
3891  * regulator driver context.
3892  */
3893 void *rdev_get_drvdata(struct regulator_dev *rdev)
3894 {
3895         return rdev->reg_data;
3896 }
3897 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3898
3899 /**
3900  * regulator_get_drvdata - get regulator driver data
3901  * @regulator: regulator
3902  *
3903  * Get regulator driver private data. This call can be used in the consumer
3904  * driver context when non API regulator specific functions need to be called.
3905  */
3906 void *regulator_get_drvdata(struct regulator *regulator)
3907 {
3908         return regulator->rdev->reg_data;
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3911
3912 /**
3913  * regulator_set_drvdata - set regulator driver data
3914  * @regulator: regulator
3915  * @data: data
3916  */
3917 void regulator_set_drvdata(struct regulator *regulator, void *data)
3918 {
3919         regulator->rdev->reg_data = data;
3920 }
3921 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3922
3923 /**
3924  * regulator_get_id - get regulator ID
3925  * @rdev: regulator
3926  */
3927 int rdev_get_id(struct regulator_dev *rdev)
3928 {
3929         return rdev->desc->id;
3930 }
3931 EXPORT_SYMBOL_GPL(rdev_get_id);
3932
3933 struct device *rdev_get_dev(struct regulator_dev *rdev)
3934 {
3935         return &rdev->dev;
3936 }
3937 EXPORT_SYMBOL_GPL(rdev_get_dev);
3938
3939 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3940 {
3941         return reg_init_data->driver_data;
3942 }
3943 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3944
3945 #ifdef CONFIG_DEBUG_FS
3946 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3947                                     size_t count, loff_t *ppos)
3948 {
3949         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3950         ssize_t len, ret = 0;
3951         struct regulator_map *map;
3952
3953         if (!buf)
3954                 return -ENOMEM;
3955
3956         list_for_each_entry(map, &regulator_map_list, list) {
3957                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3958                                "%s -> %s.%s\n",
3959                                rdev_get_name(map->regulator), map->dev_name,
3960                                map->supply);
3961                 if (len >= 0)
3962                         ret += len;
3963                 if (ret > PAGE_SIZE) {
3964                         ret = PAGE_SIZE;
3965                         break;
3966                 }
3967         }
3968
3969         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3970
3971         kfree(buf);
3972
3973         return ret;
3974 }
3975 #endif
3976
3977 static const struct file_operations supply_map_fops = {
3978 #ifdef CONFIG_DEBUG_FS
3979         .read = supply_map_read_file,
3980         .llseek = default_llseek,
3981 #endif
3982 };
3983
3984 #ifdef CONFIG_DEBUG_FS
3985 static void regulator_summary_show_subtree(struct seq_file *s,
3986                                            struct regulator_dev *rdev,
3987                                            int level)
3988 {
3989         struct list_head *list = s->private;
3990         struct regulator_dev *child;
3991         struct regulation_constraints *c;
3992         struct regulator *consumer;
3993
3994         if (!rdev)
3995                 return;
3996
3997         seq_printf(s, "%*s%-*s %3d %4d %6d ",
3998                    level * 3 + 1, "",
3999                    30 - level * 3, rdev_get_name(rdev),
4000                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4001
4002         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4003         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4004
4005         c = rdev->constraints;
4006         if (c) {
4007                 switch (rdev->desc->type) {
4008                 case REGULATOR_VOLTAGE:
4009                         seq_printf(s, "%5dmV %5dmV ",
4010                                    c->min_uV / 1000, c->max_uV / 1000);
4011                         break;
4012                 case REGULATOR_CURRENT:
4013                         seq_printf(s, "%5dmA %5dmA ",
4014                                    c->min_uA / 1000, c->max_uA / 1000);
4015                         break;
4016                 }
4017         }
4018
4019         seq_puts(s, "\n");
4020
4021         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4022                 if (consumer->dev->class == &regulator_class)
4023                         continue;
4024
4025                 seq_printf(s, "%*s%-*s ",
4026                            (level + 1) * 3 + 1, "",
4027                            30 - (level + 1) * 3, dev_name(consumer->dev));
4028
4029                 switch (rdev->desc->type) {
4030                 case REGULATOR_VOLTAGE:
4031                         seq_printf(s, "%37dmV %5dmV",
4032                                    consumer->min_uV / 1000,
4033                                    consumer->max_uV / 1000);
4034                         break;
4035                 case REGULATOR_CURRENT:
4036                         break;
4037                 }
4038
4039                 seq_puts(s, "\n");
4040         }
4041
4042         list_for_each_entry(child, list, list) {
4043                 /* handle only non-root regulators supplied by current rdev */
4044                 if (!child->supply || child->supply->rdev != rdev)
4045                         continue;
4046
4047                 regulator_summary_show_subtree(s, child, level + 1);
4048         }
4049 }
4050
4051 static int regulator_summary_show(struct seq_file *s, void *data)
4052 {
4053         struct list_head *list = s->private;
4054         struct regulator_dev *rdev;
4055
4056         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4057         seq_puts(s, "-------------------------------------------------------------------------------\n");
4058
4059         mutex_lock(&regulator_list_mutex);
4060
4061         list_for_each_entry(rdev, list, list) {
4062                 if (rdev->supply)
4063                         continue;
4064
4065                 regulator_summary_show_subtree(s, rdev, 0);
4066         }
4067
4068         mutex_unlock(&regulator_list_mutex);
4069
4070         return 0;
4071 }
4072
4073 static int regulator_summary_open(struct inode *inode, struct file *file)
4074 {
4075         return single_open(file, regulator_summary_show, inode->i_private);
4076 }
4077 #endif
4078
4079 static const struct file_operations regulator_summary_fops = {
4080 #ifdef CONFIG_DEBUG_FS
4081         .open           = regulator_summary_open,
4082         .read           = seq_read,
4083         .llseek         = seq_lseek,
4084         .release        = single_release,
4085 #endif
4086 };
4087
4088 static int __init regulator_init(void)
4089 {
4090         int ret;
4091
4092         ret = class_register(&regulator_class);
4093
4094         debugfs_root = debugfs_create_dir("regulator", NULL);
4095         if (!debugfs_root)
4096                 pr_warn("regulator: Failed to create debugfs directory\n");
4097
4098         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4099                             &supply_map_fops);
4100
4101         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4102                             &regulator_list, &regulator_summary_fops);
4103
4104         regulator_dummy_init();
4105
4106         return ret;
4107 }
4108
4109 /* init early to allow our consumers to complete system booting */
4110 core_initcall(regulator_init);
4111
4112 static int __init regulator_init_complete(void)
4113 {
4114         struct regulator_dev *rdev;
4115         const struct regulator_ops *ops;
4116         struct regulation_constraints *c;
4117         int enabled, ret;
4118
4119         /*
4120          * Since DT doesn't provide an idiomatic mechanism for
4121          * enabling full constraints and since it's much more natural
4122          * with DT to provide them just assume that a DT enabled
4123          * system has full constraints.
4124          */
4125         if (of_have_populated_dt())
4126                 has_full_constraints = true;
4127
4128         mutex_lock(&regulator_list_mutex);
4129
4130         /* If we have a full configuration then disable any regulators
4131          * we have permission to change the status for and which are
4132          * not in use or always_on.  This is effectively the default
4133          * for DT and ACPI as they have full constraints.
4134          */
4135         list_for_each_entry(rdev, &regulator_list, list) {
4136                 ops = rdev->desc->ops;
4137                 c = rdev->constraints;
4138
4139                 if (c && c->always_on)
4140                         continue;
4141
4142                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4143                         continue;
4144
4145                 mutex_lock(&rdev->mutex);
4146
4147                 if (rdev->use_count)
4148                         goto unlock;
4149
4150                 /* If we can't read the status assume it's on. */
4151                 if (ops->is_enabled)
4152                         enabled = ops->is_enabled(rdev);
4153                 else
4154                         enabled = 1;
4155
4156                 if (!enabled)
4157                         goto unlock;
4158
4159                 if (have_full_constraints()) {
4160                         /* We log since this may kill the system if it
4161                          * goes wrong. */
4162                         rdev_info(rdev, "disabling\n");
4163                         ret = _regulator_do_disable(rdev);
4164                         if (ret != 0)
4165                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4166                 } else {
4167                         /* The intention is that in future we will
4168                          * assume that full constraints are provided
4169                          * so warn even if we aren't going to do
4170                          * anything here.
4171                          */
4172                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4173                 }
4174
4175 unlock:
4176                 mutex_unlock(&rdev->mutex);
4177         }
4178
4179         mutex_unlock(&regulator_list_mutex);
4180
4181         return 0;
4182 }
4183 late_initcall_sync(regulator_init_complete);