memstick: mspro_block: add missing curly braces
[firefly-linux-kernel-4.4.55.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45
46 struct cmos_rtc {
47         struct rtc_device       *rtc;
48         struct device           *dev;
49         int                     irq;
50         struct resource         *iomem;
51
52         void                    (*wake_on)(struct device *);
53         void                    (*wake_off)(struct device *);
54
55         u8                      enabled_wake;
56         u8                      suspend_ctrl;
57
58         /* newer hardware extends the original register set */
59         u8                      day_alrm;
60         u8                      mon_alrm;
61         u8                      century;
62 };
63
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)         ((n) > 0)
66
67 static const char driver_name[] = "rtc_cmos";
68
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
74
75 static inline int is_intr(u8 rtc_intr)
76 {
77         if (!(rtc_intr & RTC_IRQF))
78                 return 0;
79         return rtc_intr & RTC_IRQMASK;
80 }
81
82 /*----------------------------------------------------------------*/
83
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97
98 static inline int is_hpet_enabled(void)
99 {
100         return 0;
101 }
102
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105         return 0;
106 }
107
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110         return 0;
111 }
112
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116         return 0;
117 }
118
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121         return 0;
122 }
123
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126         return 0;
127 }
128
129 static inline int hpet_rtc_timer_init(void)
130 {
131         return 0;
132 }
133
134 extern irq_handler_t hpet_rtc_interrupt;
135
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138         return 0;
139 }
140
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143         return 0;
144 }
145
146 #endif
147
148 /*----------------------------------------------------------------*/
149
150 #ifdef RTC_PORT
151
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2       true
157
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160         outb(addr, RTC_PORT(2));
161         return inb(RTC_PORT(3));
162 }
163
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166         outb(addr, RTC_PORT(2));
167         outb(val, RTC_PORT(3));
168 }
169
170 #else
171
172 #define can_bank2       false
173
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176         return 0;
177 }
178
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182
183 #endif
184
185 /*----------------------------------------------------------------*/
186
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189         /* REVISIT:  if the clock has a "century" register, use
190          * that instead of the heuristic in get_rtc_time().
191          * That'll make Y3K compatility (year > 2070) easy!
192          */
193         get_rtc_time(t);
194         return 0;
195 }
196
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199         /* REVISIT:  set the "century" register if available
200          *
201          * NOTE: this ignores the issue whereby updating the seconds
202          * takes effect exactly 500ms after we write the register.
203          * (Also queueing and other delays before we get this far.)
204          */
205         return set_rtc_time(t);
206 }
207
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210         struct cmos_rtc *cmos = dev_get_drvdata(dev);
211         unsigned char   rtc_control;
212
213         if (!is_valid_irq(cmos->irq))
214                 return -EIO;
215
216         /* Basic alarms only support hour, minute, and seconds fields.
217          * Some also support day and month, for alarms up to a year in
218          * the future.
219          */
220         t->time.tm_mday = -1;
221         t->time.tm_mon = -1;
222
223         spin_lock_irq(&rtc_lock);
224         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228         if (cmos->day_alrm) {
229                 /* ignore upper bits on readback per ACPI spec */
230                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231                 if (!t->time.tm_mday)
232                         t->time.tm_mday = -1;
233
234                 if (cmos->mon_alrm) {
235                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236                         if (!t->time.tm_mon)
237                                 t->time.tm_mon = -1;
238                 }
239         }
240
241         rtc_control = CMOS_READ(RTC_CONTROL);
242         spin_unlock_irq(&rtc_lock);
243
244         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245                 if (((unsigned)t->time.tm_sec) < 0x60)
246                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
247                 else
248                         t->time.tm_sec = -1;
249                 if (((unsigned)t->time.tm_min) < 0x60)
250                         t->time.tm_min = bcd2bin(t->time.tm_min);
251                 else
252                         t->time.tm_min = -1;
253                 if (((unsigned)t->time.tm_hour) < 0x24)
254                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
255                 else
256                         t->time.tm_hour = -1;
257
258                 if (cmos->day_alrm) {
259                         if (((unsigned)t->time.tm_mday) <= 0x31)
260                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261                         else
262                                 t->time.tm_mday = -1;
263
264                         if (cmos->mon_alrm) {
265                                 if (((unsigned)t->time.tm_mon) <= 0x12)
266                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267                                 else
268                                         t->time.tm_mon = -1;
269                         }
270                 }
271         }
272         t->time.tm_year = -1;
273
274         t->enabled = !!(rtc_control & RTC_AIE);
275         t->pending = 0;
276
277         return 0;
278 }
279
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282         unsigned char   rtc_intr;
283
284         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285          * allegedly some older rtcs need that to handle irqs properly
286          */
287         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289         if (is_hpet_enabled())
290                 return;
291
292         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293         if (is_intr(rtc_intr))
294                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299         unsigned char   rtc_control;
300
301         /* flush any pending IRQ status, notably for update irqs,
302          * before we enable new IRQs
303          */
304         rtc_control = CMOS_READ(RTC_CONTROL);
305         cmos_checkintr(cmos, rtc_control);
306
307         rtc_control |= mask;
308         CMOS_WRITE(rtc_control, RTC_CONTROL);
309         hpet_set_rtc_irq_bit(mask);
310
311         cmos_checkintr(cmos, rtc_control);
312 }
313
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316         unsigned char   rtc_control;
317
318         rtc_control = CMOS_READ(RTC_CONTROL);
319         rtc_control &= ~mask;
320         CMOS_WRITE(rtc_control, RTC_CONTROL);
321         hpet_mask_rtc_irq_bit(mask);
322
323         cmos_checkintr(cmos, rtc_control);
324 }
325
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328         struct cmos_rtc *cmos = dev_get_drvdata(dev);
329        unsigned char   mon, mday, hrs, min, sec, rtc_control;
330
331         if (!is_valid_irq(cmos->irq))
332                 return -EIO;
333
334         mon = t->time.tm_mon + 1;
335         mday = t->time.tm_mday;
336         hrs = t->time.tm_hour;
337         min = t->time.tm_min;
338         sec = t->time.tm_sec;
339
340         rtc_control = CMOS_READ(RTC_CONTROL);
341         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342                 /* Writing 0xff means "don't care" or "match all".  */
343                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346                 min = (min < 60) ? bin2bcd(min) : 0xff;
347                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348         }
349
350         spin_lock_irq(&rtc_lock);
351
352         /* next rtc irq must not be from previous alarm setting */
353         cmos_irq_disable(cmos, RTC_AIE);
354
355         /* update alarm */
356         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357         CMOS_WRITE(min, RTC_MINUTES_ALARM);
358         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360         /* the system may support an "enhanced" alarm */
361         if (cmos->day_alrm) {
362                 CMOS_WRITE(mday, cmos->day_alrm);
363                 if (cmos->mon_alrm)
364                         CMOS_WRITE(mon, cmos->mon_alrm);
365         }
366
367         /* FIXME the HPET alarm glue currently ignores day_alrm
368          * and mon_alrm ...
369          */
370         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372         if (t->enabled)
373                 cmos_irq_enable(cmos, RTC_AIE);
374
375         spin_unlock_irq(&rtc_lock);
376
377         return 0;
378 }
379
380 /*
381  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382  */
383 static bool alarm_disable_quirk;
384
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387         alarm_disable_quirk = true;
388         pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389         pr_info("RTC alarms disabled\n");
390         return 0;
391 }
392
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394         /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395         {
396                 .callback = set_alarm_disable_quirk,
397                 .ident    = "IBM Truman",
398                 .matches  = {
399                         DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400                         DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401                 },
402         },
403         /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404         {
405                 .callback = set_alarm_disable_quirk,
406                 .ident    = "Gigabyte GA-990XA-UD3",
407                 .matches  = {
408                         DMI_MATCH(DMI_SYS_VENDOR,
409                                         "Gigabyte Technology Co., Ltd."),
410                         DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411                 },
412         },
413         /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414         {
415                 .callback = set_alarm_disable_quirk,
416                 .ident    = "Toshiba Satellite L300",
417                 .matches  = {
418                         DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419                         DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420                 },
421         },
422         {}
423 };
424
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427         struct cmos_rtc *cmos = dev_get_drvdata(dev);
428         unsigned long   flags;
429
430         if (!is_valid_irq(cmos->irq))
431                 return -EINVAL;
432
433         if (alarm_disable_quirk)
434                 return 0;
435
436         spin_lock_irqsave(&rtc_lock, flags);
437
438         if (enabled)
439                 cmos_irq_enable(cmos, RTC_AIE);
440         else
441                 cmos_irq_disable(cmos, RTC_AIE);
442
443         spin_unlock_irqrestore(&rtc_lock, flags);
444         return 0;
445 }
446
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451         struct cmos_rtc *cmos = dev_get_drvdata(dev);
452         unsigned char   rtc_control, valid;
453
454         spin_lock_irq(&rtc_lock);
455         rtc_control = CMOS_READ(RTC_CONTROL);
456         valid = CMOS_READ(RTC_VALID);
457         spin_unlock_irq(&rtc_lock);
458
459         /* NOTE:  at least ICH6 reports battery status using a different
460          * (non-RTC) bit; and SQWE is ignored on many current systems.
461          */
462         return seq_printf(seq,
463                         "periodic_IRQ\t: %s\n"
464                         "update_IRQ\t: %s\n"
465                         "HPET_emulated\t: %s\n"
466                         // "square_wave\t: %s\n"
467                         "BCD\t\t: %s\n"
468                         "DST_enable\t: %s\n"
469                         "periodic_freq\t: %d\n"
470                         "batt_status\t: %s\n",
471                         (rtc_control & RTC_PIE) ? "yes" : "no",
472                         (rtc_control & RTC_UIE) ? "yes" : "no",
473                         is_hpet_enabled() ? "yes" : "no",
474                         // (rtc_control & RTC_SQWE) ? "yes" : "no",
475                         (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476                         (rtc_control & RTC_DST_EN) ? "yes" : "no",
477                         cmos->rtc->irq_freq,
478                         (valid & RTC_VRT) ? "okay" : "dead");
479 }
480
481 #else
482 #define cmos_procfs     NULL
483 #endif
484
485 static const struct rtc_class_ops cmos_rtc_ops = {
486         .read_time              = cmos_read_time,
487         .set_time               = cmos_set_time,
488         .read_alarm             = cmos_read_alarm,
489         .set_alarm              = cmos_set_alarm,
490         .proc                   = cmos_procfs,
491         .alarm_irq_enable       = cmos_alarm_irq_enable,
492 };
493
494 /*----------------------------------------------------------------*/
495
496 /*
497  * All these chips have at least 64 bytes of address space, shared by
498  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
499  * by boot firmware.  Modern chips have 128 or 256 bytes.
500  */
501
502 #define NVRAM_OFFSET    (RTC_REG_D + 1)
503
504 static ssize_t
505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506                 struct bin_attribute *attr,
507                 char *buf, loff_t off, size_t count)
508 {
509         int     retval;
510
511         if (unlikely(off >= attr->size))
512                 return 0;
513         if (unlikely(off < 0))
514                 return -EINVAL;
515         if ((off + count) > attr->size)
516                 count = attr->size - off;
517
518         off += NVRAM_OFFSET;
519         spin_lock_irq(&rtc_lock);
520         for (retval = 0; count; count--, off++, retval++) {
521                 if (off < 128)
522                         *buf++ = CMOS_READ(off);
523                 else if (can_bank2)
524                         *buf++ = cmos_read_bank2(off);
525                 else
526                         break;
527         }
528         spin_unlock_irq(&rtc_lock);
529
530         return retval;
531 }
532
533 static ssize_t
534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535                 struct bin_attribute *attr,
536                 char *buf, loff_t off, size_t count)
537 {
538         struct cmos_rtc *cmos;
539         int             retval;
540
541         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542         if (unlikely(off >= attr->size))
543                 return -EFBIG;
544         if (unlikely(off < 0))
545                 return -EINVAL;
546         if ((off + count) > attr->size)
547                 count = attr->size - off;
548
549         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
550          * checksum on part of the NVRAM data.  That's currently ignored
551          * here.  If userspace is smart enough to know what fields of
552          * NVRAM to update, updating checksums is also part of its job.
553          */
554         off += NVRAM_OFFSET;
555         spin_lock_irq(&rtc_lock);
556         for (retval = 0; count; count--, off++, retval++) {
557                 /* don't trash RTC registers */
558                 if (off == cmos->day_alrm
559                                 || off == cmos->mon_alrm
560                                 || off == cmos->century)
561                         buf++;
562                 else if (off < 128)
563                         CMOS_WRITE(*buf++, off);
564                 else if (can_bank2)
565                         cmos_write_bank2(*buf++, off);
566                 else
567                         break;
568         }
569         spin_unlock_irq(&rtc_lock);
570
571         return retval;
572 }
573
574 static struct bin_attribute nvram = {
575         .attr = {
576                 .name   = "nvram",
577                 .mode   = S_IRUGO | S_IWUSR,
578         },
579
580         .read   = cmos_nvram_read,
581         .write  = cmos_nvram_write,
582         /* size gets set up later */
583 };
584
585 /*----------------------------------------------------------------*/
586
587 static struct cmos_rtc  cmos_rtc;
588
589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591         u8              irqstat;
592         u8              rtc_control;
593
594         spin_lock(&rtc_lock);
595
596         /* When the HPET interrupt handler calls us, the interrupt
597          * status is passed as arg1 instead of the irq number.  But
598          * always clear irq status, even when HPET is in the way.
599          *
600          * Note that HPET and RTC are almost certainly out of phase,
601          * giving different IRQ status ...
602          */
603         irqstat = CMOS_READ(RTC_INTR_FLAGS);
604         rtc_control = CMOS_READ(RTC_CONTROL);
605         if (is_hpet_enabled())
606                 irqstat = (unsigned long)irq & 0xF0;
607         irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
608
609         /* All Linux RTC alarms should be treated as if they were oneshot.
610          * Similar code may be needed in system wakeup paths, in case the
611          * alarm woke the system.
612          */
613         if (irqstat & RTC_AIE) {
614                 rtc_control &= ~RTC_AIE;
615                 CMOS_WRITE(rtc_control, RTC_CONTROL);
616                 hpet_mask_rtc_irq_bit(RTC_AIE);
617
618                 CMOS_READ(RTC_INTR_FLAGS);
619         }
620         spin_unlock(&rtc_lock);
621
622         if (is_intr(irqstat)) {
623                 rtc_update_irq(p, 1, irqstat);
624                 return IRQ_HANDLED;
625         } else
626                 return IRQ_NONE;
627 }
628
629 #ifdef  CONFIG_PNP
630 #define INITSECTION
631
632 #else
633 #define INITSECTION     __init
634 #endif
635
636 static int INITSECTION
637 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
638 {
639         struct cmos_rtc_board_info      *info = dev->platform_data;
640         int                             retval = 0;
641         unsigned char                   rtc_control;
642         unsigned                        address_space;
643
644         /* there can be only one ... */
645         if (cmos_rtc.dev)
646                 return -EBUSY;
647
648         if (!ports)
649                 return -ENODEV;
650
651         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
652          *
653          * REVISIT non-x86 systems may instead use memory space resources
654          * (needing ioremap etc), not i/o space resources like this ...
655          */
656         ports = request_region(ports->start,
657                         resource_size(ports),
658                         driver_name);
659         if (!ports) {
660                 dev_dbg(dev, "i/o registers already in use\n");
661                 return -EBUSY;
662         }
663
664         cmos_rtc.irq = rtc_irq;
665         cmos_rtc.iomem = ports;
666
667         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
668          * driver did, but don't reject unknown configs.   Old hardware
669          * won't address 128 bytes.  Newer chips have multiple banks,
670          * though they may not be listed in one I/O resource.
671          */
672 #if     defined(CONFIG_ATARI)
673         address_space = 64;
674 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
675                         || defined(__sparc__) || defined(__mips__) \
676                         || defined(__powerpc__)
677         address_space = 128;
678 #else
679 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
680         address_space = 128;
681 #endif
682         if (can_bank2 && ports->end > (ports->start + 1))
683                 address_space = 256;
684
685         /* For ACPI systems extension info comes from the FADT.  On others,
686          * board specific setup provides it as appropriate.  Systems where
687          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
688          * some almost-clones) can provide hooks to make that behave.
689          *
690          * Note that ACPI doesn't preclude putting these registers into
691          * "extended" areas of the chip, including some that we won't yet
692          * expect CMOS_READ and friends to handle.
693          */
694         if (info) {
695                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
696                         cmos_rtc.day_alrm = info->rtc_day_alarm;
697                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
698                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
699                 if (info->rtc_century && info->rtc_century < 128)
700                         cmos_rtc.century = info->rtc_century;
701
702                 if (info->wake_on && info->wake_off) {
703                         cmos_rtc.wake_on = info->wake_on;
704                         cmos_rtc.wake_off = info->wake_off;
705                 }
706         }
707
708         cmos_rtc.dev = dev;
709         dev_set_drvdata(dev, &cmos_rtc);
710
711         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
712                                 &cmos_rtc_ops, THIS_MODULE);
713         if (IS_ERR(cmos_rtc.rtc)) {
714                 retval = PTR_ERR(cmos_rtc.rtc);
715                 goto cleanup0;
716         }
717
718         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
719
720         spin_lock_irq(&rtc_lock);
721
722         /* force periodic irq to CMOS reset default of 1024Hz;
723          *
724          * REVISIT it's been reported that at least one x86_64 ALI mobo
725          * doesn't use 32KHz here ... for portability we might need to
726          * do something about other clock frequencies.
727          */
728         cmos_rtc.rtc->irq_freq = 1024;
729         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
730         CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
731
732         /* disable irqs */
733         cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
734
735         rtc_control = CMOS_READ(RTC_CONTROL);
736
737         spin_unlock_irq(&rtc_lock);
738
739         /* FIXME:
740          * <asm-generic/rtc.h> doesn't know 12-hour mode either.
741          */
742        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
743                 dev_warn(dev, "only 24-hr supported\n");
744                 retval = -ENXIO;
745                 goto cleanup1;
746         }
747
748         if (is_valid_irq(rtc_irq)) {
749                 irq_handler_t rtc_cmos_int_handler;
750
751                 if (is_hpet_enabled()) {
752                         int err;
753
754                         rtc_cmos_int_handler = hpet_rtc_interrupt;
755                         err = hpet_register_irq_handler(cmos_interrupt);
756                         if (err != 0) {
757                                 dev_warn(dev, "hpet_register_irq_handler "
758                                                 " failed in rtc_init().");
759                                 goto cleanup1;
760                         }
761                 } else
762                         rtc_cmos_int_handler = cmos_interrupt;
763
764                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
765                                 0, dev_name(&cmos_rtc.rtc->dev),
766                                 cmos_rtc.rtc);
767                 if (retval < 0) {
768                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
769                         goto cleanup1;
770                 }
771         }
772         hpet_rtc_timer_init();
773
774         /* export at least the first block of NVRAM */
775         nvram.size = address_space - NVRAM_OFFSET;
776         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
777         if (retval < 0) {
778                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
779                 goto cleanup2;
780         }
781
782         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
783                 !is_valid_irq(rtc_irq) ? "no alarms" :
784                         cmos_rtc.mon_alrm ? "alarms up to one year" :
785                         cmos_rtc.day_alrm ? "alarms up to one month" :
786                         "alarms up to one day",
787                 cmos_rtc.century ? ", y3k" : "",
788                 nvram.size,
789                 is_hpet_enabled() ? ", hpet irqs" : "");
790
791         return 0;
792
793 cleanup2:
794         if (is_valid_irq(rtc_irq))
795                 free_irq(rtc_irq, cmos_rtc.rtc);
796 cleanup1:
797         cmos_rtc.dev = NULL;
798         rtc_device_unregister(cmos_rtc.rtc);
799 cleanup0:
800         release_region(ports->start, resource_size(ports));
801         return retval;
802 }
803
804 static void cmos_do_shutdown(void)
805 {
806         spin_lock_irq(&rtc_lock);
807         cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
808         spin_unlock_irq(&rtc_lock);
809 }
810
811 static void __exit cmos_do_remove(struct device *dev)
812 {
813         struct cmos_rtc *cmos = dev_get_drvdata(dev);
814         struct resource *ports;
815
816         cmos_do_shutdown();
817
818         sysfs_remove_bin_file(&dev->kobj, &nvram);
819
820         if (is_valid_irq(cmos->irq)) {
821                 free_irq(cmos->irq, cmos->rtc);
822                 hpet_unregister_irq_handler(cmos_interrupt);
823         }
824
825         rtc_device_unregister(cmos->rtc);
826         cmos->rtc = NULL;
827
828         ports = cmos->iomem;
829         release_region(ports->start, resource_size(ports));
830         cmos->iomem = NULL;
831
832         cmos->dev = NULL;
833         dev_set_drvdata(dev, NULL);
834 }
835
836 #ifdef  CONFIG_PM
837
838 static int cmos_suspend(struct device *dev)
839 {
840         struct cmos_rtc *cmos = dev_get_drvdata(dev);
841         unsigned char   tmp;
842
843         /* only the alarm might be a wakeup event source */
844         spin_lock_irq(&rtc_lock);
845         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
846         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
847                 unsigned char   mask;
848
849                 if (device_may_wakeup(dev))
850                         mask = RTC_IRQMASK & ~RTC_AIE;
851                 else
852                         mask = RTC_IRQMASK;
853                 tmp &= ~mask;
854                 CMOS_WRITE(tmp, RTC_CONTROL);
855                 hpet_mask_rtc_irq_bit(mask);
856
857                 cmos_checkintr(cmos, tmp);
858         }
859         spin_unlock_irq(&rtc_lock);
860
861         if (tmp & RTC_AIE) {
862                 cmos->enabled_wake = 1;
863                 if (cmos->wake_on)
864                         cmos->wake_on(dev);
865                 else
866                         enable_irq_wake(cmos->irq);
867         }
868
869         dev_dbg(dev, "suspend%s, ctrl %02x\n",
870                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
871                         tmp);
872
873         return 0;
874 }
875
876 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
877  * after a detour through G3 "mechanical off", although the ACPI spec
878  * says wakeup should only work from G1/S4 "hibernate".  To most users,
879  * distinctions between S4 and S5 are pointless.  So when the hardware
880  * allows, don't draw that distinction.
881  */
882 static inline int cmos_poweroff(struct device *dev)
883 {
884         return cmos_suspend(dev);
885 }
886
887 static int cmos_resume(struct device *dev)
888 {
889         struct cmos_rtc *cmos = dev_get_drvdata(dev);
890         unsigned char   tmp = cmos->suspend_ctrl;
891
892         /* re-enable any irqs previously active */
893         if (tmp & RTC_IRQMASK) {
894                 unsigned char   mask;
895
896                 if (cmos->enabled_wake) {
897                         if (cmos->wake_off)
898                                 cmos->wake_off(dev);
899                         else
900                                 disable_irq_wake(cmos->irq);
901                         cmos->enabled_wake = 0;
902                 }
903
904                 spin_lock_irq(&rtc_lock);
905                 if (device_may_wakeup(dev))
906                         hpet_rtc_timer_init();
907
908                 do {
909                         CMOS_WRITE(tmp, RTC_CONTROL);
910                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
911
912                         mask = CMOS_READ(RTC_INTR_FLAGS);
913                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
914                         if (!is_hpet_enabled() || !is_intr(mask))
915                                 break;
916
917                         /* force one-shot behavior if HPET blocked
918                          * the wake alarm's irq
919                          */
920                         rtc_update_irq(cmos->rtc, 1, mask);
921                         tmp &= ~RTC_AIE;
922                         hpet_mask_rtc_irq_bit(RTC_AIE);
923                 } while (mask & RTC_AIE);
924                 spin_unlock_irq(&rtc_lock);
925         }
926
927         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
928
929         return 0;
930 }
931
932 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
933
934 #else
935
936 static inline int cmos_poweroff(struct device *dev)
937 {
938         return -ENOSYS;
939 }
940
941 #endif
942
943 /*----------------------------------------------------------------*/
944
945 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
946  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
947  * probably list them in similar PNPBIOS tables; so PNP is more common.
948  *
949  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
950  * predate even PNPBIOS should set up platform_bus devices.
951  */
952
953 #ifdef  CONFIG_ACPI
954
955 #include <linux/acpi.h>
956
957 static u32 rtc_handler(void *context)
958 {
959         struct device *dev = context;
960
961         pm_wakeup_event(dev, 0);
962         acpi_clear_event(ACPI_EVENT_RTC);
963         acpi_disable_event(ACPI_EVENT_RTC, 0);
964         return ACPI_INTERRUPT_HANDLED;
965 }
966
967 static inline void rtc_wake_setup(struct device *dev)
968 {
969         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
970         /*
971          * After the RTC handler is installed, the Fixed_RTC event should
972          * be disabled. Only when the RTC alarm is set will it be enabled.
973          */
974         acpi_clear_event(ACPI_EVENT_RTC);
975         acpi_disable_event(ACPI_EVENT_RTC, 0);
976 }
977
978 static void rtc_wake_on(struct device *dev)
979 {
980         acpi_clear_event(ACPI_EVENT_RTC);
981         acpi_enable_event(ACPI_EVENT_RTC, 0);
982 }
983
984 static void rtc_wake_off(struct device *dev)
985 {
986         acpi_disable_event(ACPI_EVENT_RTC, 0);
987 }
988
989 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
990  * its device node and pass extra config data.  This helps its driver use
991  * capabilities that the now-obsolete mc146818 didn't have, and informs it
992  * that this board's RTC is wakeup-capable (per ACPI spec).
993  */
994 static struct cmos_rtc_board_info acpi_rtc_info;
995
996 static void cmos_wake_setup(struct device *dev)
997 {
998         if (acpi_disabled)
999                 return;
1000
1001         rtc_wake_setup(dev);
1002         acpi_rtc_info.wake_on = rtc_wake_on;
1003         acpi_rtc_info.wake_off = rtc_wake_off;
1004
1005         /* workaround bug in some ACPI tables */
1006         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1007                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1008                         acpi_gbl_FADT.month_alarm);
1009                 acpi_gbl_FADT.month_alarm = 0;
1010         }
1011
1012         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1013         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1014         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1015
1016         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1017         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1018                 dev_info(dev, "RTC can wake from S4\n");
1019
1020         dev->platform_data = &acpi_rtc_info;
1021
1022         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1023         device_init_wakeup(dev, 1);
1024 }
1025
1026 #else
1027
1028 static void cmos_wake_setup(struct device *dev)
1029 {
1030 }
1031
1032 #endif
1033
1034 #ifdef  CONFIG_PNP
1035
1036 #include <linux/pnp.h>
1037
1038 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1039 {
1040         cmos_wake_setup(&pnp->dev);
1041
1042         if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1043                 /* Some machines contain a PNP entry for the RTC, but
1044                  * don't define the IRQ. It should always be safe to
1045                  * hardcode it in these cases
1046                  */
1047                 return cmos_do_probe(&pnp->dev,
1048                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1049         else
1050                 return cmos_do_probe(&pnp->dev,
1051                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1052                                 pnp_irq(pnp, 0));
1053 }
1054
1055 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1056 {
1057         cmos_do_remove(&pnp->dev);
1058 }
1059
1060 #ifdef  CONFIG_PM
1061
1062 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1063 {
1064         return cmos_suspend(&pnp->dev);
1065 }
1066
1067 static int cmos_pnp_resume(struct pnp_dev *pnp)
1068 {
1069         return cmos_resume(&pnp->dev);
1070 }
1071
1072 #else
1073 #define cmos_pnp_suspend        NULL
1074 #define cmos_pnp_resume         NULL
1075 #endif
1076
1077 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1078 {
1079         if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1080                 return;
1081
1082         cmos_do_shutdown();
1083 }
1084
1085 static const struct pnp_device_id rtc_ids[] = {
1086         { .id = "PNP0b00", },
1087         { .id = "PNP0b01", },
1088         { .id = "PNP0b02", },
1089         { },
1090 };
1091 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1092
1093 static struct pnp_driver cmos_pnp_driver = {
1094         .name           = (char *) driver_name,
1095         .id_table       = rtc_ids,
1096         .probe          = cmos_pnp_probe,
1097         .remove         = __exit_p(cmos_pnp_remove),
1098         .shutdown       = cmos_pnp_shutdown,
1099
1100         /* flag ensures resume() gets called, and stops syslog spam */
1101         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1102         .suspend        = cmos_pnp_suspend,
1103         .resume         = cmos_pnp_resume,
1104 };
1105
1106 #endif  /* CONFIG_PNP */
1107
1108 #ifdef CONFIG_OF
1109 static const struct of_device_id of_cmos_match[] = {
1110         {
1111                 .compatible = "motorola,mc146818",
1112         },
1113         { },
1114 };
1115 MODULE_DEVICE_TABLE(of, of_cmos_match);
1116
1117 static __init void cmos_of_init(struct platform_device *pdev)
1118 {
1119         struct device_node *node = pdev->dev.of_node;
1120         struct rtc_time time;
1121         int ret;
1122         const __be32 *val;
1123
1124         if (!node)
1125                 return;
1126
1127         val = of_get_property(node, "ctrl-reg", NULL);
1128         if (val)
1129                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1130
1131         val = of_get_property(node, "freq-reg", NULL);
1132         if (val)
1133                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1134
1135         get_rtc_time(&time);
1136         ret = rtc_valid_tm(&time);
1137         if (ret) {
1138                 struct rtc_time def_time = {
1139                         .tm_year = 1,
1140                         .tm_mday = 1,
1141                 };
1142                 set_rtc_time(&def_time);
1143         }
1144 }
1145 #else
1146 static inline void cmos_of_init(struct platform_device *pdev) {}
1147 #endif
1148 /*----------------------------------------------------------------*/
1149
1150 /* Platform setup should have set up an RTC device, when PNP is
1151  * unavailable ... this could happen even on (older) PCs.
1152  */
1153
1154 static int __init cmos_platform_probe(struct platform_device *pdev)
1155 {
1156         cmos_of_init(pdev);
1157         cmos_wake_setup(&pdev->dev);
1158         return cmos_do_probe(&pdev->dev,
1159                         platform_get_resource(pdev, IORESOURCE_IO, 0),
1160                         platform_get_irq(pdev, 0));
1161 }
1162
1163 static int __exit cmos_platform_remove(struct platform_device *pdev)
1164 {
1165         cmos_do_remove(&pdev->dev);
1166         return 0;
1167 }
1168
1169 static void cmos_platform_shutdown(struct platform_device *pdev)
1170 {
1171         if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1172                 return;
1173
1174         cmos_do_shutdown();
1175 }
1176
1177 /* work with hotplug and coldplug */
1178 MODULE_ALIAS("platform:rtc_cmos");
1179
1180 static struct platform_driver cmos_platform_driver = {
1181         .remove         = __exit_p(cmos_platform_remove),
1182         .shutdown       = cmos_platform_shutdown,
1183         .driver = {
1184                 .name           = (char *) driver_name,
1185 #ifdef CONFIG_PM
1186                 .pm             = &cmos_pm_ops,
1187 #endif
1188                 .of_match_table = of_match_ptr(of_cmos_match),
1189         }
1190 };
1191
1192 #ifdef CONFIG_PNP
1193 static bool pnp_driver_registered;
1194 #endif
1195 static bool platform_driver_registered;
1196
1197 static int __init cmos_init(void)
1198 {
1199         int retval = 0;
1200
1201 #ifdef  CONFIG_PNP
1202         retval = pnp_register_driver(&cmos_pnp_driver);
1203         if (retval == 0)
1204                 pnp_driver_registered = true;
1205 #endif
1206
1207         if (!cmos_rtc.dev) {
1208                 retval = platform_driver_probe(&cmos_platform_driver,
1209                                                cmos_platform_probe);
1210                 if (retval == 0)
1211                         platform_driver_registered = true;
1212         }
1213
1214         dmi_check_system(rtc_quirks);
1215
1216         if (retval == 0)
1217                 return 0;
1218
1219 #ifdef  CONFIG_PNP
1220         if (pnp_driver_registered)
1221                 pnp_unregister_driver(&cmos_pnp_driver);
1222 #endif
1223         return retval;
1224 }
1225 module_init(cmos_init);
1226
1227 static void __exit cmos_exit(void)
1228 {
1229 #ifdef  CONFIG_PNP
1230         if (pnp_driver_registered)
1231                 pnp_unregister_driver(&cmos_pnp_driver);
1232 #endif
1233         if (platform_driver_registered)
1234                 platform_driver_unregister(&cmos_platform_driver);
1235 }
1236 module_exit(cmos_exit);
1237
1238
1239 MODULE_AUTHOR("David Brownell");
1240 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1241 MODULE_LICENSE("GPL");