Merge tag 'v3.12'
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / esas2r / esas2r_io.c
1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_io.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43
44 #include "esas2r.h"
45
46 void esas2r_start_request(struct esas2r_adapter *a, struct esas2r_request *rq)
47 {
48         struct esas2r_target *t = NULL;
49         struct esas2r_request *startrq = rq;
50         unsigned long flags;
51
52         if (unlikely(a->flags & (AF_DEGRADED_MODE | AF_POWER_DOWN))) {
53                 if (rq->vrq->scsi.function == VDA_FUNC_SCSI)
54                         rq->req_stat = RS_SEL2;
55                 else
56                         rq->req_stat = RS_DEGRADED;
57         } else if (likely(rq->vrq->scsi.function == VDA_FUNC_SCSI)) {
58                 t = a->targetdb + rq->target_id;
59
60                 if (unlikely(t >= a->targetdb_end
61                              || !(t->flags & TF_USED))) {
62                         rq->req_stat = RS_SEL;
63                 } else {
64                         /* copy in the target ID. */
65                         rq->vrq->scsi.target_id = cpu_to_le16(t->virt_targ_id);
66
67                         /*
68                          * Test if we want to report RS_SEL for missing target.
69                          * Note that if AF_DISC_PENDING is set than this will
70                          * go on the defer queue.
71                          */
72                         if (unlikely(t->target_state != TS_PRESENT
73                                      && !(a->flags & AF_DISC_PENDING)))
74                                 rq->req_stat = RS_SEL;
75                 }
76         }
77
78         if (unlikely(rq->req_stat != RS_PENDING)) {
79                 esas2r_complete_request(a, rq);
80                 return;
81         }
82
83         esas2r_trace("rq=%p", rq);
84         esas2r_trace("rq->vrq->scsi.handle=%x", rq->vrq->scsi.handle);
85
86         if (rq->vrq->scsi.function == VDA_FUNC_SCSI) {
87                 esas2r_trace("rq->target_id=%d", rq->target_id);
88                 esas2r_trace("rq->vrq->scsi.flags=%x", rq->vrq->scsi.flags);
89         }
90
91         spin_lock_irqsave(&a->queue_lock, flags);
92
93         if (likely(list_empty(&a->defer_list) &&
94                    !(a->flags &
95                      (AF_CHPRST_PENDING | AF_FLASHING | AF_DISC_PENDING))))
96                 esas2r_local_start_request(a, startrq);
97         else
98                 list_add_tail(&startrq->req_list, &a->defer_list);
99
100         spin_unlock_irqrestore(&a->queue_lock, flags);
101 }
102
103 /*
104  * Starts the specified request.  all requests have RS_PENDING set when this
105  * routine is called.  The caller is usually esas2r_start_request, but
106  * esas2r_do_deferred_processes will start request that are deferred.
107  *
108  * The caller must ensure that requests can be started.
109  *
110  * esas2r_start_request will defer a request if there are already requests
111  * waiting or there is a chip reset pending.  once the reset condition clears,
112  * esas2r_do_deferred_processes will call this function to start the request.
113  *
114  * When a request is started, it is placed on the active list and queued to
115  * the controller.
116  */
117 void esas2r_local_start_request(struct esas2r_adapter *a,
118                                 struct esas2r_request *rq)
119 {
120         esas2r_trace_enter();
121         esas2r_trace("rq=%p", rq);
122         esas2r_trace("rq->vrq:%p", rq->vrq);
123         esas2r_trace("rq->vrq_md->phys_addr:%x", rq->vrq_md->phys_addr);
124
125         if (unlikely(rq->vrq->scsi.function == VDA_FUNC_FLASH
126                      && rq->vrq->flash.sub_func == VDA_FLASH_COMMIT))
127                 esas2r_lock_set_flags(&a->flags, AF_FLASHING);
128
129         list_add_tail(&rq->req_list, &a->active_list);
130         esas2r_start_vda_request(a, rq);
131         esas2r_trace_exit();
132         return;
133 }
134
135 void esas2r_start_vda_request(struct esas2r_adapter *a,
136                               struct esas2r_request *rq)
137 {
138         struct esas2r_inbound_list_source_entry *element;
139         u32 dw;
140
141         rq->req_stat = RS_STARTED;
142         /*
143          * Calculate the inbound list entry location and the current state of
144          * toggle bit.
145          */
146         a->last_write++;
147         if (a->last_write >= a->list_size) {
148                 a->last_write = 0;
149                 /* update the toggle bit */
150                 if (a->flags & AF_COMM_LIST_TOGGLE)
151                         esas2r_lock_clear_flags(&a->flags,
152                                                 AF_COMM_LIST_TOGGLE);
153                 else
154                         esas2r_lock_set_flags(&a->flags, AF_COMM_LIST_TOGGLE);
155         }
156
157         element =
158                 (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.
159                 virt_addr
160                 + a->last_write;
161
162         /* Set the VDA request size if it was never modified */
163         if (rq->vda_req_sz == RQ_SIZE_DEFAULT)
164                 rq->vda_req_sz = (u16)(a->max_vdareq_size / sizeof(u32));
165
166         element->address = cpu_to_le64(rq->vrq_md->phys_addr);
167         element->length = cpu_to_le32(rq->vda_req_sz);
168
169         /* Update the write pointer */
170         dw = a->last_write;
171
172         if (a->flags & AF_COMM_LIST_TOGGLE)
173                 dw |= MU_ILW_TOGGLE;
174
175         esas2r_trace("rq->vrq->scsi.handle:%x", rq->vrq->scsi.handle);
176         esas2r_trace("dw:%x", dw);
177         esas2r_trace("rq->vda_req_sz:%x", rq->vda_req_sz);
178         esas2r_write_register_dword(a, MU_IN_LIST_WRITE, dw);
179 }
180
181 /*
182  * Build the scatter/gather list for an I/O request according to the
183  * specifications placed in the s/g context.  The caller must initialize
184  * context prior to the initial call by calling esas2r_sgc_init().
185  */
186 bool esas2r_build_sg_list_sge(struct esas2r_adapter *a,
187                               struct esas2r_sg_context *sgc)
188 {
189         struct esas2r_request *rq = sgc->first_req;
190         union atto_vda_req *vrq = rq->vrq;
191
192         while (sgc->length) {
193                 u32 rem = 0;
194                 u64 addr;
195                 u32 len;
196
197                 len = (*sgc->get_phys_addr)(sgc, &addr);
198
199                 if (unlikely(len == 0))
200                         return false;
201
202                 /* if current length is more than what's left, stop there */
203                 if (unlikely(len > sgc->length))
204                         len = sgc->length;
205
206 another_entry:
207                 /* limit to a round number less than the maximum length */
208                 if (len > SGE_LEN_MAX) {
209                         /*
210                          * Save the remainder of the split.  Whenever we limit
211                          * an entry we come back around to build entries out
212                          * of the leftover.  We do this to prevent multiple
213                          * calls to the get_phys_addr() function for an SGE
214                          * that is too large.
215                          */
216                         rem = len - SGE_LEN_MAX;
217                         len = SGE_LEN_MAX;
218                 }
219
220                 /* See if we need to allocate a new SGL */
221                 if (unlikely(sgc->sge.a64.curr > sgc->sge.a64.limit)) {
222                         u8 sgelen;
223                         struct esas2r_mem_desc *sgl;
224
225                         /*
226                          * If no SGls are available, return failure.  The
227                          * caller can call us later with the current context
228                          * to pick up here.
229                          */
230                         sgl = esas2r_alloc_sgl(a);
231
232                         if (unlikely(sgl == NULL))
233                                 return false;
234
235                         /* Calculate the length of the last SGE filled in */
236                         sgelen = (u8)((u8 *)sgc->sge.a64.curr
237                                       - (u8 *)sgc->sge.a64.last);
238
239                         /*
240                          * Copy the last SGE filled in to the first entry of
241                          * the new SGL to make room for the chain entry.
242                          */
243                         memcpy(sgl->virt_addr, sgc->sge.a64.last, sgelen);
244
245                         /* Figure out the new curr pointer in the new segment */
246                         sgc->sge.a64.curr =
247                                 (struct atto_vda_sge *)((u8 *)sgl->virt_addr +
248                                                         sgelen);
249
250                         /* Set the limit pointer and build the chain entry */
251                         sgc->sge.a64.limit =
252                                 (struct atto_vda_sge *)((u8 *)sgl->virt_addr
253                                                         + sgl_page_size
254                                                         - sizeof(struct
255                                                                  atto_vda_sge));
256                         sgc->sge.a64.last->length = cpu_to_le32(
257                                 SGE_CHAIN | SGE_ADDR_64);
258                         sgc->sge.a64.last->address =
259                                 cpu_to_le64(sgl->phys_addr);
260
261                         /*
262                          * Now, if there was a previous chain entry, then
263                          * update it to contain the length of this segment
264                          * and size of this chain.  otherwise this is the
265                          * first SGL, so set the chain_offset in the request.
266                          */
267                         if (sgc->sge.a64.chain) {
268                                 sgc->sge.a64.chain->length |=
269                                         cpu_to_le32(
270                                                 ((u8 *)(sgc->sge.a64.
271                                                         last + 1)
272                                                  - (u8 *)rq->sg_table->
273                                                  virt_addr)
274                                                 + sizeof(struct atto_vda_sge) *
275                                                 LOBIT(SGE_CHAIN_SZ));
276                         } else {
277                                 vrq->scsi.chain_offset = (u8)
278                                                          ((u8 *)sgc->
279                                                           sge.a64.last -
280                                                           (u8 *)vrq);
281
282                                 /*
283                                  * This is the first SGL, so set the
284                                  * chain_offset and the VDA request size in
285                                  * the request.
286                                  */
287                                 rq->vda_req_sz =
288                                         (vrq->scsi.chain_offset +
289                                          sizeof(struct atto_vda_sge) +
290                                          3)
291                                         / sizeof(u32);
292                         }
293
294                         /*
295                          * Remember this so when we get a new SGL filled in we
296                          * can update the length of this chain entry.
297                          */
298                         sgc->sge.a64.chain = sgc->sge.a64.last;
299
300                         /* Now link the new SGL onto the primary request. */
301                         list_add(&sgl->next_desc, &rq->sg_table_head);
302                 }
303
304                 /* Update last one filled in */
305                 sgc->sge.a64.last = sgc->sge.a64.curr;
306
307                 /* Build the new SGE and update the S/G context */
308                 sgc->sge.a64.curr->length = cpu_to_le32(SGE_ADDR_64 | len);
309                 sgc->sge.a64.curr->address = cpu_to_le32(addr);
310                 sgc->sge.a64.curr++;
311                 sgc->cur_offset += len;
312                 sgc->length -= len;
313
314                 /*
315                  * Check if we previously split an entry.  If so we have to
316                  * pick up where we left off.
317                  */
318                 if (rem) {
319                         addr += len;
320                         len = rem;
321                         rem = 0;
322                         goto another_entry;
323                 }
324         }
325
326         /* Mark the end of the SGL */
327         sgc->sge.a64.last->length |= cpu_to_le32(SGE_LAST);
328
329         /*
330          * If there was a previous chain entry, update the length to indicate
331          * the length of this last segment.
332          */
333         if (sgc->sge.a64.chain) {
334                 sgc->sge.a64.chain->length |= cpu_to_le32(
335                         ((u8 *)(sgc->sge.a64.curr) -
336                          (u8 *)rq->sg_table->virt_addr));
337         } else {
338                 u16 reqsize;
339
340                 /*
341                  * The entire VDA request was not used so lets
342                  * set the size of the VDA request to be DMA'd
343                  */
344                 reqsize =
345                         ((u16)((u8 *)sgc->sge.a64.last - (u8 *)vrq)
346                          + sizeof(struct atto_vda_sge) + 3) / sizeof(u32);
347
348                 /*
349                  * Only update the request size if it is bigger than what is
350                  * already there.  We can come in here twice for some management
351                  * commands.
352                  */
353                 if (reqsize > rq->vda_req_sz)
354                         rq->vda_req_sz = reqsize;
355         }
356         return true;
357 }
358
359
360 /*
361  * Create PRD list for each I-block consumed by the command. This routine
362  * determines how much data is required from each I-block being consumed
363  * by the command. The first and last I-blocks can be partials and all of
364  * the I-blocks in between are for a full I-block of data.
365  *
366  * The interleave size is used to determine the number of bytes in the 1st
367  * I-block and the remaining I-blocks are what remeains.
368  */
369 static bool esas2r_build_prd_iblk(struct esas2r_adapter *a,
370                                   struct esas2r_sg_context *sgc)
371 {
372         struct esas2r_request *rq = sgc->first_req;
373         u64 addr;
374         u32 len;
375         struct esas2r_mem_desc *sgl;
376         u32 numchain = 1;
377         u32 rem = 0;
378
379         while (sgc->length) {
380                 /* Get the next address/length pair */
381
382                 len = (*sgc->get_phys_addr)(sgc, &addr);
383
384                 if (unlikely(len == 0))
385                         return false;
386
387                 /* If current length is more than what's left, stop there */
388
389                 if (unlikely(len > sgc->length))
390                         len = sgc->length;
391
392 another_entry:
393                 /* Limit to a round number less than the maximum length */
394
395                 if (len > PRD_LEN_MAX) {
396                         /*
397                          * Save the remainder of the split.  whenever we limit
398                          * an entry we come back around to build entries out
399                          * of the leftover.  We do this to prevent multiple
400                          * calls to the get_phys_addr() function for an SGE
401                          * that is too large.
402                          */
403                         rem = len - PRD_LEN_MAX;
404                         len = PRD_LEN_MAX;
405                 }
406
407                 /* See if we need to allocate a new SGL */
408                 if (sgc->sge.prd.sge_cnt == 0) {
409                         if (len == sgc->length) {
410                                 /*
411                                  * We only have 1 PRD entry left.
412                                  * It can be placed where the chain
413                                  * entry would have gone
414                                  */
415
416                                 /* Build the simple SGE */
417                                 sgc->sge.prd.curr->ctl_len = cpu_to_le32(
418                                         PRD_DATA | len);
419                                 sgc->sge.prd.curr->address = cpu_to_le64(addr);
420
421                                 /* Adjust length related fields */
422                                 sgc->cur_offset += len;
423                                 sgc->length -= len;
424
425                                 /* We use the reserved chain entry for data */
426                                 numchain = 0;
427
428                                 break;
429                         }
430
431                         if (sgc->sge.prd.chain) {
432                                 /*
433                                  * Fill # of entries of current SGL in previous
434                                  * chain the length of this current SGL may not
435                                  * full.
436                                  */
437
438                                 sgc->sge.prd.chain->ctl_len |= cpu_to_le32(
439                                         sgc->sge.prd.sgl_max_cnt);
440                         }
441
442                         /*
443                          * If no SGls are available, return failure.  The
444                          * caller can call us later with the current context
445                          * to pick up here.
446                          */
447
448                         sgl = esas2r_alloc_sgl(a);
449
450                         if (unlikely(sgl == NULL))
451                                 return false;
452
453                         /*
454                          * Link the new SGL onto the chain
455                          * They are in reverse order
456                          */
457                         list_add(&sgl->next_desc, &rq->sg_table_head);
458
459                         /*
460                          * An SGL was just filled in and we are starting
461                          * a new SGL. Prime the chain of the ending SGL with
462                          * info that points to the new SGL. The length gets
463                          * filled in when the new SGL is filled or ended
464                          */
465
466                         sgc->sge.prd.chain = sgc->sge.prd.curr;
467
468                         sgc->sge.prd.chain->ctl_len = cpu_to_le32(PRD_CHAIN);
469                         sgc->sge.prd.chain->address =
470                                 cpu_to_le64(sgl->phys_addr);
471
472                         /*
473                          * Start a new segment.
474                          * Take one away and save for chain SGE
475                          */
476
477                         sgc->sge.prd.curr =
478                                 (struct atto_physical_region_description *)sgl
479                                 ->
480                                 virt_addr;
481                         sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1;
482                 }
483
484                 sgc->sge.prd.sge_cnt--;
485                 /* Build the simple SGE */
486                 sgc->sge.prd.curr->ctl_len = cpu_to_le32(PRD_DATA | len);
487                 sgc->sge.prd.curr->address = cpu_to_le64(addr);
488
489                 /* Used another element.  Point to the next one */
490
491                 sgc->sge.prd.curr++;
492
493                 /* Adjust length related fields */
494
495                 sgc->cur_offset += len;
496                 sgc->length -= len;
497
498                 /*
499                  * Check if we previously split an entry.  If so we have to
500                  * pick up where we left off.
501                  */
502
503                 if (rem) {
504                         addr += len;
505                         len = rem;
506                         rem = 0;
507                         goto another_entry;
508                 }
509         }
510
511         if (!list_empty(&rq->sg_table_head)) {
512                 if (sgc->sge.prd.chain) {
513                         sgc->sge.prd.chain->ctl_len |=
514                                 cpu_to_le32(sgc->sge.prd.sgl_max_cnt
515                                             - sgc->sge.prd.sge_cnt
516                                             - numchain);
517                 }
518         }
519
520         return true;
521 }
522
523 bool esas2r_build_sg_list_prd(struct esas2r_adapter *a,
524                               struct esas2r_sg_context *sgc)
525 {
526         struct esas2r_request *rq = sgc->first_req;
527         u32 len = sgc->length;
528         struct esas2r_target *t = a->targetdb + rq->target_id;
529         u8 is_i_o = 0;
530         u16 reqsize;
531         struct atto_physical_region_description *curr_iblk_chn;
532         u8 *cdb = (u8 *)&rq->vrq->scsi.cdb[0];
533
534         /*
535          * extract LBA from command so we can determine
536          * the I-Block boundary
537          */
538
539         if (rq->vrq->scsi.function == VDA_FUNC_SCSI
540             && t->target_state == TS_PRESENT
541             && !(t->flags & TF_PASS_THRU)) {
542                 u32 lbalo = 0;
543
544                 switch (rq->vrq->scsi.cdb[0]) {
545                 case    READ_16:
546                 case    WRITE_16:
547                 {
548                         lbalo =
549                                 MAKEDWORD(MAKEWORD(cdb[9],
550                                                    cdb[8]),
551                                           MAKEWORD(cdb[7],
552                                                    cdb[6]));
553                         is_i_o = 1;
554                         break;
555                 }
556
557                 case    READ_12:
558                 case    WRITE_12:
559                 case    READ_10:
560                 case    WRITE_10:
561                 {
562                         lbalo =
563                                 MAKEDWORD(MAKEWORD(cdb[5],
564                                                    cdb[4]),
565                                           MAKEWORD(cdb[3],
566                                                    cdb[2]));
567                         is_i_o = 1;
568                         break;
569                 }
570
571                 case    READ_6:
572                 case    WRITE_6:
573                 {
574                         lbalo =
575                                 MAKEDWORD(MAKEWORD(cdb[3],
576                                                    cdb[2]),
577                                           MAKEWORD(cdb[1] & 0x1F,
578                                                    0));
579                         is_i_o = 1;
580                         break;
581                 }
582
583                 default:
584                         break;
585                 }
586
587                 if (is_i_o) {
588                         u32 startlba;
589
590                         rq->vrq->scsi.iblk_cnt_prd = 0;
591
592                         /* Determine size of 1st I-block PRD list       */
593                         startlba = t->inter_block - (lbalo & (t->inter_block -
594                                                               1));
595                         sgc->length = startlba * t->block_size;
596
597                         /* Chk if the 1st iblk chain starts at base of Iblock */
598                         if ((lbalo & (t->inter_block - 1)) == 0)
599                                 rq->flags |= RF_1ST_IBLK_BASE;
600
601                         if (sgc->length > len)
602                                 sgc->length = len;
603                 } else {
604                         sgc->length = len;
605                 }
606         } else {
607                 sgc->length = len;
608         }
609
610         /* get our starting chain address   */
611
612         curr_iblk_chn =
613                 (struct atto_physical_region_description *)sgc->sge.a64.curr;
614
615         sgc->sge.prd.sgl_max_cnt = sgl_page_size /
616                                    sizeof(struct
617                                           atto_physical_region_description);
618
619         /* create all of the I-block PRD lists          */
620
621         while (len) {
622                 sgc->sge.prd.sge_cnt = 0;
623                 sgc->sge.prd.chain = NULL;
624                 sgc->sge.prd.curr = curr_iblk_chn;
625
626                 /* increment to next I-Block    */
627
628                 len -= sgc->length;
629
630                 /* go build the next I-Block PRD list   */
631
632                 if (unlikely(!esas2r_build_prd_iblk(a, sgc)))
633                         return false;
634
635                 curr_iblk_chn++;
636
637                 if (is_i_o) {
638                         rq->vrq->scsi.iblk_cnt_prd++;
639
640                         if (len > t->inter_byte)
641                                 sgc->length = t->inter_byte;
642                         else
643                                 sgc->length = len;
644                 }
645         }
646
647         /* figure out the size used of the VDA request */
648
649         reqsize = ((u16)((u8 *)curr_iblk_chn - (u8 *)rq->vrq))
650                   / sizeof(u32);
651
652         /*
653          * only update the request size if it is bigger than what is
654          * already there.  we can come in here twice for some management
655          * commands.
656          */
657
658         if (reqsize > rq->vda_req_sz)
659                 rq->vda_req_sz = reqsize;
660
661         return true;
662 }
663
664 static void esas2r_handle_pending_reset(struct esas2r_adapter *a, u32 currtime)
665 {
666         u32 delta = currtime - a->chip_init_time;
667
668         if (delta <= ESAS2R_CHPRST_WAIT_TIME) {
669                 /* Wait before accessing registers */
670         } else if (delta >= ESAS2R_CHPRST_TIME) {
671                 /*
672                  * The last reset failed so try again. Reset
673                  * processing will give up after three tries.
674                  */
675                 esas2r_local_reset_adapter(a);
676         } else {
677                 /* We can now see if the firmware is ready */
678                 u32 doorbell;
679
680                 doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
681                 if (doorbell == 0xFFFFFFFF || !(doorbell & DRBL_FORCE_INT)) {
682                         esas2r_force_interrupt(a);
683                 } else {
684                         u32 ver = (doorbell & DRBL_FW_VER_MSK);
685
686                         /* Driver supports API version 0 and 1 */
687                         esas2r_write_register_dword(a, MU_DOORBELL_OUT,
688                                                     doorbell);
689                         if (ver == DRBL_FW_VER_0) {
690                                 esas2r_lock_set_flags(&a->flags,
691                                                       AF_CHPRST_DETECTED);
692                                 esas2r_lock_set_flags(&a->flags,
693                                                       AF_LEGACY_SGE_MODE);
694
695                                 a->max_vdareq_size = 128;
696                                 a->build_sgl = esas2r_build_sg_list_sge;
697                         } else if (ver == DRBL_FW_VER_1) {
698                                 esas2r_lock_set_flags(&a->flags,
699                                                       AF_CHPRST_DETECTED);
700                                 esas2r_lock_clear_flags(&a->flags,
701                                                         AF_LEGACY_SGE_MODE);
702
703                                 a->max_vdareq_size = 1024;
704                                 a->build_sgl = esas2r_build_sg_list_prd;
705                         } else {
706                                 esas2r_local_reset_adapter(a);
707                         }
708                 }
709         }
710 }
711
712
713 /* This function must be called once per timer tick */
714 void esas2r_timer_tick(struct esas2r_adapter *a)
715 {
716         u32 currtime = jiffies_to_msecs(jiffies);
717         u32 deltatime = currtime - a->last_tick_time;
718
719         a->last_tick_time = currtime;
720
721         /* count down the uptime */
722         if (a->chip_uptime
723             && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
724                 if (deltatime >= a->chip_uptime)
725                         a->chip_uptime = 0;
726                 else
727                         a->chip_uptime -= deltatime;
728         }
729
730         if (a->flags & AF_CHPRST_PENDING) {
731                 if (!(a->flags & AF_CHPRST_NEEDED)
732                     && !(a->flags & AF_CHPRST_DETECTED))
733                         esas2r_handle_pending_reset(a, currtime);
734         } else {
735                 if (a->flags & AF_DISC_PENDING)
736                         esas2r_disc_check_complete(a);
737
738                 if (a->flags & AF_HEARTBEAT_ENB) {
739                         if (a->flags & AF_HEARTBEAT) {
740                                 if ((currtime - a->heartbeat_time) >=
741                                     ESAS2R_HEARTBEAT_TIME) {
742                                         esas2r_lock_clear_flags(&a->flags,
743                                                                 AF_HEARTBEAT);
744                                         esas2r_hdebug("heartbeat failed");
745                                         esas2r_log(ESAS2R_LOG_CRIT,
746                                                    "heartbeat failed");
747                                         esas2r_bugon();
748                                         esas2r_local_reset_adapter(a);
749                                 }
750                         } else {
751                                 esas2r_lock_set_flags(&a->flags, AF_HEARTBEAT);
752                                 a->heartbeat_time = currtime;
753                                 esas2r_force_interrupt(a);
754                         }
755                 }
756         }
757
758         if (atomic_read(&a->disable_cnt) == 0)
759                 esas2r_do_deferred_processes(a);
760 }
761
762 /*
763  * Send the specified task management function to the target and LUN
764  * specified in rqaux.  in addition, immediately abort any commands that
765  * are queued but not sent to the device according to the rules specified
766  * by the task management function.
767  */
768 bool esas2r_send_task_mgmt(struct esas2r_adapter *a,
769                            struct esas2r_request *rqaux, u8 task_mgt_func)
770 {
771         u16 targetid = rqaux->target_id;
772         u8 lun = (u8)le32_to_cpu(rqaux->vrq->scsi.flags);
773         bool ret = false;
774         struct esas2r_request *rq;
775         struct list_head *next, *element;
776         unsigned long flags;
777
778         LIST_HEAD(comp_list);
779
780         esas2r_trace_enter();
781         esas2r_trace("rqaux:%p", rqaux);
782         esas2r_trace("task_mgt_func:%x", task_mgt_func);
783         spin_lock_irqsave(&a->queue_lock, flags);
784
785         /* search the defer queue looking for requests for the device */
786         list_for_each_safe(element, next, &a->defer_list) {
787                 rq = list_entry(element, struct esas2r_request, req_list);
788
789                 if (rq->vrq->scsi.function == VDA_FUNC_SCSI
790                     && rq->target_id == targetid
791                     && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
792                         || task_mgt_func == 0x20)) { /* target reset */
793                         /* Found a request affected by the task management */
794                         if (rq->req_stat == RS_PENDING) {
795                                 /*
796                                  * The request is pending or waiting.  We can
797                                  * safelycomplete the request now.
798                                  */
799                                 if (esas2r_ioreq_aborted(a, rq, RS_ABORTED))
800                                         list_add_tail(&rq->comp_list,
801                                                       &comp_list);
802                         }
803                 }
804         }
805
806         /* Send the task management request to the firmware */
807         rqaux->sense_len = 0;
808         rqaux->vrq->scsi.length = 0;
809         rqaux->target_id = targetid;
810         rqaux->vrq->scsi.flags |= cpu_to_le32(lun);
811         memset(rqaux->vrq->scsi.cdb, 0, sizeof(rqaux->vrq->scsi.cdb));
812         rqaux->vrq->scsi.flags |=
813                 cpu_to_le16(task_mgt_func * LOBIT(FCP_CMND_TM_MASK));
814
815         if (a->flags & AF_FLASHING) {
816                 /* Assume success.  if there are active requests, return busy */
817                 rqaux->req_stat = RS_SUCCESS;
818
819                 list_for_each_safe(element, next, &a->active_list) {
820                         rq = list_entry(element, struct esas2r_request,
821                                         req_list);
822                         if (rq->vrq->scsi.function == VDA_FUNC_SCSI
823                             && rq->target_id == targetid
824                             && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
825                                 || task_mgt_func == 0x20))  /* target reset */
826                                 rqaux->req_stat = RS_BUSY;
827                 }
828
829                 ret = true;
830         }
831
832         spin_unlock_irqrestore(&a->queue_lock, flags);
833
834         if (!(a->flags & AF_FLASHING))
835                 esas2r_start_request(a, rqaux);
836
837         esas2r_comp_list_drain(a, &comp_list);
838
839         if (atomic_read(&a->disable_cnt) == 0)
840                 esas2r_do_deferred_processes(a);
841
842         esas2r_trace_exit();
843
844         return ret;
845 }
846
847 void esas2r_reset_bus(struct esas2r_adapter *a)
848 {
849         esas2r_log(ESAS2R_LOG_INFO, "performing a bus reset");
850
851         if (!(a->flags & AF_DEGRADED_MODE)
852             && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
853                 esas2r_lock_set_flags(&a->flags, AF_BUSRST_NEEDED);
854                 esas2r_lock_set_flags(&a->flags, AF_BUSRST_PENDING);
855                 esas2r_lock_set_flags(&a->flags, AF_OS_RESET);
856
857                 esas2r_schedule_tasklet(a);
858         }
859 }
860
861 bool esas2r_ioreq_aborted(struct esas2r_adapter *a, struct esas2r_request *rq,
862                           u8 status)
863 {
864         esas2r_trace_enter();
865         esas2r_trace("rq:%p", rq);
866         list_del_init(&rq->req_list);
867         if (rq->timeout > RQ_MAX_TIMEOUT) {
868                 /*
869                  * The request timed out, but we could not abort it because a
870                  * chip reset occurred.  Return busy status.
871                  */
872                 rq->req_stat = RS_BUSY;
873                 esas2r_trace_exit();
874                 return true;
875         }
876
877         rq->req_stat = status;
878         esas2r_trace_exit();
879         return true;
880 }