2461f4f6af294d248fc424c28656061c27db64d6
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait for CISS doorbell communication */
64 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
65 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
66 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
67 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
68 #define MAX_IOCTL_CONFIG_WAIT 1000
69
70 /*define how many times we will try a command because of bus resets */
71 #define MAX_CMD_RETRIES 3
72
73 /* Embedded module documentation macros - see modules.h */
74 MODULE_AUTHOR("Hewlett-Packard Company");
75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76         HPSA_DRIVER_VERSION);
77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
78 MODULE_VERSION(HPSA_DRIVER_VERSION);
79 MODULE_LICENSE("GPL");
80
81 static int hpsa_allow_any;
82 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_allow_any,
84                 "Allow hpsa driver to access unknown HP Smart Array hardware");
85 static int hpsa_simple_mode;
86 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_simple_mode,
88         "Use 'simple mode' rather than 'performant mode'");
89
90 /* define the PCI info for the cards we can control */
91 static const struct pci_device_id hpsa_pci_device_id[] = {
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
132         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
133         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
134         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
135         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
136         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
137         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
138                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139         {0,}
140 };
141
142 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
143
144 /*  board_id = Subsystem Device ID & Vendor ID
145  *  product = Marketing Name for the board
146  *  access = Address of the struct of function pointers
147  */
148 static struct board_type products[] = {
149         {0x3241103C, "Smart Array P212", &SA5_access},
150         {0x3243103C, "Smart Array P410", &SA5_access},
151         {0x3245103C, "Smart Array P410i", &SA5_access},
152         {0x3247103C, "Smart Array P411", &SA5_access},
153         {0x3249103C, "Smart Array P812", &SA5_access},
154         {0x324A103C, "Smart Array P712m", &SA5_access},
155         {0x324B103C, "Smart Array P711m", &SA5_access},
156         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
157         {0x3350103C, "Smart Array P222", &SA5_access},
158         {0x3351103C, "Smart Array P420", &SA5_access},
159         {0x3352103C, "Smart Array P421", &SA5_access},
160         {0x3353103C, "Smart Array P822", &SA5_access},
161         {0x3354103C, "Smart Array P420i", &SA5_access},
162         {0x3355103C, "Smart Array P220i", &SA5_access},
163         {0x3356103C, "Smart Array P721m", &SA5_access},
164         {0x1921103C, "Smart Array P830i", &SA5_access},
165         {0x1922103C, "Smart Array P430", &SA5_access},
166         {0x1923103C, "Smart Array P431", &SA5_access},
167         {0x1924103C, "Smart Array P830", &SA5_access},
168         {0x1926103C, "Smart Array P731m", &SA5_access},
169         {0x1928103C, "Smart Array P230i", &SA5_access},
170         {0x1929103C, "Smart Array P530", &SA5_access},
171         {0x21BD103C, "Smart Array P244br", &SA5_access},
172         {0x21BE103C, "Smart Array P741m", &SA5_access},
173         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
174         {0x21C0103C, "Smart Array P440ar", &SA5_access},
175         {0x21C1103C, "Smart Array P840ar", &SA5_access},
176         {0x21C2103C, "Smart Array P440", &SA5_access},
177         {0x21C3103C, "Smart Array P441", &SA5_access},
178         {0x21C4103C, "Smart Array", &SA5_access},
179         {0x21C5103C, "Smart Array P841", &SA5_access},
180         {0x21C6103C, "Smart HBA H244br", &SA5_access},
181         {0x21C7103C, "Smart HBA H240", &SA5_access},
182         {0x21C8103C, "Smart HBA H241", &SA5_access},
183         {0x21C9103C, "Smart Array", &SA5_access},
184         {0x21CA103C, "Smart Array P246br", &SA5_access},
185         {0x21CB103C, "Smart Array P840", &SA5_access},
186         {0x21CC103C, "Smart Array", &SA5_access},
187         {0x21CD103C, "Smart Array", &SA5_access},
188         {0x21CE103C, "Smart HBA", &SA5_access},
189         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
190         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
191         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
192         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
193         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
194         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
195 };
196
197 static int number_of_controllers;
198
199 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
200 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
201 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
202
203 #ifdef CONFIG_COMPAT
204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
205         void __user *arg);
206 #endif
207
208 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212         int cmd_type);
213 static void hpsa_free_cmd_pool(struct ctlr_info *h);
214 #define VPD_PAGE (1 << 8)
215
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219         unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static int hpsa_slave_configure(struct scsi_device *sdev);
226 static void hpsa_slave_destroy(struct scsi_device *sdev);
227
228 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
229 static int check_for_unit_attention(struct ctlr_info *h,
230         struct CommandList *c);
231 static void check_ioctl_unit_attention(struct ctlr_info *h,
232         struct CommandList *c);
233 /* performant mode helper functions */
234 static void calc_bucket_map(int *bucket, int num_buckets,
235         int nsgs, int min_blocks, u32 *bucket_map);
236 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
237 static inline u32 next_command(struct ctlr_info *h, u8 q);
238 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
239                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
240                                u64 *cfg_offset);
241 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
242                                     unsigned long *memory_bar);
243 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
244 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
245                                      int wait_for_ready);
246 static inline void finish_cmd(struct CommandList *c);
247 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
248 #define BOARD_NOT_READY 0
249 #define BOARD_READY 1
250 static void hpsa_drain_accel_commands(struct ctlr_info *h);
251 static void hpsa_flush_cache(struct ctlr_info *h);
252 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
253         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
254         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
255 static void hpsa_command_resubmit_worker(struct work_struct *work);
256 static u32 lockup_detected(struct ctlr_info *h);
257 static int detect_controller_lockup(struct ctlr_info *h);
258
259 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
260 {
261         unsigned long *priv = shost_priv(sdev->host);
262         return (struct ctlr_info *) *priv;
263 }
264
265 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
266 {
267         unsigned long *priv = shost_priv(sh);
268         return (struct ctlr_info *) *priv;
269 }
270
271 static int check_for_unit_attention(struct ctlr_info *h,
272         struct CommandList *c)
273 {
274         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
275                 return 0;
276
277         switch (c->err_info->SenseInfo[12]) {
278         case STATE_CHANGED:
279                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
280                         "detected, command retried\n", h->ctlr);
281                 break;
282         case LUN_FAILED:
283                 dev_warn(&h->pdev->dev,
284                         HPSA "%d: LUN failure detected\n", h->ctlr);
285                 break;
286         case REPORT_LUNS_CHANGED:
287                 dev_warn(&h->pdev->dev,
288                         HPSA "%d: report LUN data changed\n", h->ctlr);
289         /*
290          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
291          * target (array) devices.
292          */
293                 break;
294         case POWER_OR_RESET:
295                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
296                         "or device reset detected\n", h->ctlr);
297                 break;
298         case UNIT_ATTENTION_CLEARED:
299                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
300                     "cleared by another initiator\n", h->ctlr);
301                 break;
302         default:
303                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
304                         "unit attention detected\n", h->ctlr);
305                 break;
306         }
307         return 1;
308 }
309
310 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
311 {
312         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
313                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
314                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
315                 return 0;
316         dev_warn(&h->pdev->dev, HPSA "device busy");
317         return 1;
318 }
319
320 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
321                                          struct device_attribute *attr,
322                                          const char *buf, size_t count)
323 {
324         int status, len;
325         struct ctlr_info *h;
326         struct Scsi_Host *shost = class_to_shost(dev);
327         char tmpbuf[10];
328
329         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
330                 return -EACCES;
331         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
332         strncpy(tmpbuf, buf, len);
333         tmpbuf[len] = '\0';
334         if (sscanf(tmpbuf, "%d", &status) != 1)
335                 return -EINVAL;
336         h = shost_to_hba(shost);
337         h->acciopath_status = !!status;
338         dev_warn(&h->pdev->dev,
339                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
340                 h->acciopath_status ? "enabled" : "disabled");
341         return count;
342 }
343
344 static ssize_t host_store_raid_offload_debug(struct device *dev,
345                                          struct device_attribute *attr,
346                                          const char *buf, size_t count)
347 {
348         int debug_level, len;
349         struct ctlr_info *h;
350         struct Scsi_Host *shost = class_to_shost(dev);
351         char tmpbuf[10];
352
353         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
354                 return -EACCES;
355         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
356         strncpy(tmpbuf, buf, len);
357         tmpbuf[len] = '\0';
358         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
359                 return -EINVAL;
360         if (debug_level < 0)
361                 debug_level = 0;
362         h = shost_to_hba(shost);
363         h->raid_offload_debug = debug_level;
364         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
365                 h->raid_offload_debug);
366         return count;
367 }
368
369 static ssize_t host_store_rescan(struct device *dev,
370                                  struct device_attribute *attr,
371                                  const char *buf, size_t count)
372 {
373         struct ctlr_info *h;
374         struct Scsi_Host *shost = class_to_shost(dev);
375         h = shost_to_hba(shost);
376         hpsa_scan_start(h->scsi_host);
377         return count;
378 }
379
380 static ssize_t host_show_firmware_revision(struct device *dev,
381              struct device_attribute *attr, char *buf)
382 {
383         struct ctlr_info *h;
384         struct Scsi_Host *shost = class_to_shost(dev);
385         unsigned char *fwrev;
386
387         h = shost_to_hba(shost);
388         if (!h->hba_inquiry_data)
389                 return 0;
390         fwrev = &h->hba_inquiry_data[32];
391         return snprintf(buf, 20, "%c%c%c%c\n",
392                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
393 }
394
395 static ssize_t host_show_commands_outstanding(struct device *dev,
396              struct device_attribute *attr, char *buf)
397 {
398         struct Scsi_Host *shost = class_to_shost(dev);
399         struct ctlr_info *h = shost_to_hba(shost);
400
401         return snprintf(buf, 20, "%d\n",
402                         atomic_read(&h->commands_outstanding));
403 }
404
405 static ssize_t host_show_transport_mode(struct device *dev,
406         struct device_attribute *attr, char *buf)
407 {
408         struct ctlr_info *h;
409         struct Scsi_Host *shost = class_to_shost(dev);
410
411         h = shost_to_hba(shost);
412         return snprintf(buf, 20, "%s\n",
413                 h->transMethod & CFGTBL_Trans_Performant ?
414                         "performant" : "simple");
415 }
416
417 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
418         struct device_attribute *attr, char *buf)
419 {
420         struct ctlr_info *h;
421         struct Scsi_Host *shost = class_to_shost(dev);
422
423         h = shost_to_hba(shost);
424         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
425                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
426 }
427
428 /* List of controllers which cannot be hard reset on kexec with reset_devices */
429 static u32 unresettable_controller[] = {
430         0x324a103C, /* Smart Array P712m */
431         0x324b103C, /* SmartArray P711m */
432         0x3223103C, /* Smart Array P800 */
433         0x3234103C, /* Smart Array P400 */
434         0x3235103C, /* Smart Array P400i */
435         0x3211103C, /* Smart Array E200i */
436         0x3212103C, /* Smart Array E200 */
437         0x3213103C, /* Smart Array E200i */
438         0x3214103C, /* Smart Array E200i */
439         0x3215103C, /* Smart Array E200i */
440         0x3237103C, /* Smart Array E500 */
441         0x323D103C, /* Smart Array P700m */
442         0x40800E11, /* Smart Array 5i */
443         0x409C0E11, /* Smart Array 6400 */
444         0x409D0E11, /* Smart Array 6400 EM */
445         0x40700E11, /* Smart Array 5300 */
446         0x40820E11, /* Smart Array 532 */
447         0x40830E11, /* Smart Array 5312 */
448         0x409A0E11, /* Smart Array 641 */
449         0x409B0E11, /* Smart Array 642 */
450         0x40910E11, /* Smart Array 6i */
451 };
452
453 /* List of controllers which cannot even be soft reset */
454 static u32 soft_unresettable_controller[] = {
455         0x40800E11, /* Smart Array 5i */
456         0x40700E11, /* Smart Array 5300 */
457         0x40820E11, /* Smart Array 532 */
458         0x40830E11, /* Smart Array 5312 */
459         0x409A0E11, /* Smart Array 641 */
460         0x409B0E11, /* Smart Array 642 */
461         0x40910E11, /* Smart Array 6i */
462         /* Exclude 640x boards.  These are two pci devices in one slot
463          * which share a battery backed cache module.  One controls the
464          * cache, the other accesses the cache through the one that controls
465          * it.  If we reset the one controlling the cache, the other will
466          * likely not be happy.  Just forbid resetting this conjoined mess.
467          * The 640x isn't really supported by hpsa anyway.
468          */
469         0x409C0E11, /* Smart Array 6400 */
470         0x409D0E11, /* Smart Array 6400 EM */
471 };
472
473 static int ctlr_is_hard_resettable(u32 board_id)
474 {
475         int i;
476
477         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
478                 if (unresettable_controller[i] == board_id)
479                         return 0;
480         return 1;
481 }
482
483 static int ctlr_is_soft_resettable(u32 board_id)
484 {
485         int i;
486
487         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
488                 if (soft_unresettable_controller[i] == board_id)
489                         return 0;
490         return 1;
491 }
492
493 static int ctlr_is_resettable(u32 board_id)
494 {
495         return ctlr_is_hard_resettable(board_id) ||
496                 ctlr_is_soft_resettable(board_id);
497 }
498
499 static ssize_t host_show_resettable(struct device *dev,
500         struct device_attribute *attr, char *buf)
501 {
502         struct ctlr_info *h;
503         struct Scsi_Host *shost = class_to_shost(dev);
504
505         h = shost_to_hba(shost);
506         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
507 }
508
509 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
510 {
511         return (scsi3addr[3] & 0xC0) == 0x40;
512 }
513
514 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
515         "1(+0)ADM", "UNKNOWN"
516 };
517 #define HPSA_RAID_0     0
518 #define HPSA_RAID_4     1
519 #define HPSA_RAID_1     2       /* also used for RAID 10 */
520 #define HPSA_RAID_5     3       /* also used for RAID 50 */
521 #define HPSA_RAID_51    4
522 #define HPSA_RAID_6     5       /* also used for RAID 60 */
523 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
524 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
525
526 static ssize_t raid_level_show(struct device *dev,
527              struct device_attribute *attr, char *buf)
528 {
529         ssize_t l = 0;
530         unsigned char rlevel;
531         struct ctlr_info *h;
532         struct scsi_device *sdev;
533         struct hpsa_scsi_dev_t *hdev;
534         unsigned long flags;
535
536         sdev = to_scsi_device(dev);
537         h = sdev_to_hba(sdev);
538         spin_lock_irqsave(&h->lock, flags);
539         hdev = sdev->hostdata;
540         if (!hdev) {
541                 spin_unlock_irqrestore(&h->lock, flags);
542                 return -ENODEV;
543         }
544
545         /* Is this even a logical drive? */
546         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
547                 spin_unlock_irqrestore(&h->lock, flags);
548                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
549                 return l;
550         }
551
552         rlevel = hdev->raid_level;
553         spin_unlock_irqrestore(&h->lock, flags);
554         if (rlevel > RAID_UNKNOWN)
555                 rlevel = RAID_UNKNOWN;
556         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
557         return l;
558 }
559
560 static ssize_t lunid_show(struct device *dev,
561              struct device_attribute *attr, char *buf)
562 {
563         struct ctlr_info *h;
564         struct scsi_device *sdev;
565         struct hpsa_scsi_dev_t *hdev;
566         unsigned long flags;
567         unsigned char lunid[8];
568
569         sdev = to_scsi_device(dev);
570         h = sdev_to_hba(sdev);
571         spin_lock_irqsave(&h->lock, flags);
572         hdev = sdev->hostdata;
573         if (!hdev) {
574                 spin_unlock_irqrestore(&h->lock, flags);
575                 return -ENODEV;
576         }
577         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
578         spin_unlock_irqrestore(&h->lock, flags);
579         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
580                 lunid[0], lunid[1], lunid[2], lunid[3],
581                 lunid[4], lunid[5], lunid[6], lunid[7]);
582 }
583
584 static ssize_t unique_id_show(struct device *dev,
585              struct device_attribute *attr, char *buf)
586 {
587         struct ctlr_info *h;
588         struct scsi_device *sdev;
589         struct hpsa_scsi_dev_t *hdev;
590         unsigned long flags;
591         unsigned char sn[16];
592
593         sdev = to_scsi_device(dev);
594         h = sdev_to_hba(sdev);
595         spin_lock_irqsave(&h->lock, flags);
596         hdev = sdev->hostdata;
597         if (!hdev) {
598                 spin_unlock_irqrestore(&h->lock, flags);
599                 return -ENODEV;
600         }
601         memcpy(sn, hdev->device_id, sizeof(sn));
602         spin_unlock_irqrestore(&h->lock, flags);
603         return snprintf(buf, 16 * 2 + 2,
604                         "%02X%02X%02X%02X%02X%02X%02X%02X"
605                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
606                         sn[0], sn[1], sn[2], sn[3],
607                         sn[4], sn[5], sn[6], sn[7],
608                         sn[8], sn[9], sn[10], sn[11],
609                         sn[12], sn[13], sn[14], sn[15]);
610 }
611
612 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
613              struct device_attribute *attr, char *buf)
614 {
615         struct ctlr_info *h;
616         struct scsi_device *sdev;
617         struct hpsa_scsi_dev_t *hdev;
618         unsigned long flags;
619         int offload_enabled;
620
621         sdev = to_scsi_device(dev);
622         h = sdev_to_hba(sdev);
623         spin_lock_irqsave(&h->lock, flags);
624         hdev = sdev->hostdata;
625         if (!hdev) {
626                 spin_unlock_irqrestore(&h->lock, flags);
627                 return -ENODEV;
628         }
629         offload_enabled = hdev->offload_enabled;
630         spin_unlock_irqrestore(&h->lock, flags);
631         return snprintf(buf, 20, "%d\n", offload_enabled);
632 }
633
634 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
635 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
636 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
637 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
638 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
639                         host_show_hp_ssd_smart_path_enabled, NULL);
640 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
641                 host_show_hp_ssd_smart_path_status,
642                 host_store_hp_ssd_smart_path_status);
643 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
644                         host_store_raid_offload_debug);
645 static DEVICE_ATTR(firmware_revision, S_IRUGO,
646         host_show_firmware_revision, NULL);
647 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
648         host_show_commands_outstanding, NULL);
649 static DEVICE_ATTR(transport_mode, S_IRUGO,
650         host_show_transport_mode, NULL);
651 static DEVICE_ATTR(resettable, S_IRUGO,
652         host_show_resettable, NULL);
653
654 static struct device_attribute *hpsa_sdev_attrs[] = {
655         &dev_attr_raid_level,
656         &dev_attr_lunid,
657         &dev_attr_unique_id,
658         &dev_attr_hp_ssd_smart_path_enabled,
659         NULL,
660 };
661
662 static struct device_attribute *hpsa_shost_attrs[] = {
663         &dev_attr_rescan,
664         &dev_attr_firmware_revision,
665         &dev_attr_commands_outstanding,
666         &dev_attr_transport_mode,
667         &dev_attr_resettable,
668         &dev_attr_hp_ssd_smart_path_status,
669         &dev_attr_raid_offload_debug,
670         NULL,
671 };
672
673 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
674                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
675
676 static struct scsi_host_template hpsa_driver_template = {
677         .module                 = THIS_MODULE,
678         .name                   = HPSA,
679         .proc_name              = HPSA,
680         .queuecommand           = hpsa_scsi_queue_command,
681         .scan_start             = hpsa_scan_start,
682         .scan_finished          = hpsa_scan_finished,
683         .change_queue_depth     = hpsa_change_queue_depth,
684         .this_id                = -1,
685         .use_clustering         = ENABLE_CLUSTERING,
686         .eh_abort_handler       = hpsa_eh_abort_handler,
687         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
688         .ioctl                  = hpsa_ioctl,
689         .slave_alloc            = hpsa_slave_alloc,
690         .slave_configure        = hpsa_slave_configure,
691         .slave_destroy          = hpsa_slave_destroy,
692 #ifdef CONFIG_COMPAT
693         .compat_ioctl           = hpsa_compat_ioctl,
694 #endif
695         .sdev_attrs = hpsa_sdev_attrs,
696         .shost_attrs = hpsa_shost_attrs,
697         .max_sectors = 8192,
698         .no_write_same = 1,
699 };
700
701 static inline u32 next_command(struct ctlr_info *h, u8 q)
702 {
703         u32 a;
704         struct reply_queue_buffer *rq = &h->reply_queue[q];
705
706         if (h->transMethod & CFGTBL_Trans_io_accel1)
707                 return h->access.command_completed(h, q);
708
709         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
710                 return h->access.command_completed(h, q);
711
712         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
713                 a = rq->head[rq->current_entry];
714                 rq->current_entry++;
715                 atomic_dec(&h->commands_outstanding);
716         } else {
717                 a = FIFO_EMPTY;
718         }
719         /* Check for wraparound */
720         if (rq->current_entry == h->max_commands) {
721                 rq->current_entry = 0;
722                 rq->wraparound ^= 1;
723         }
724         return a;
725 }
726
727 /*
728  * There are some special bits in the bus address of the
729  * command that we have to set for the controller to know
730  * how to process the command:
731  *
732  * Normal performant mode:
733  * bit 0: 1 means performant mode, 0 means simple mode.
734  * bits 1-3 = block fetch table entry
735  * bits 4-6 = command type (== 0)
736  *
737  * ioaccel1 mode:
738  * bit 0 = "performant mode" bit.
739  * bits 1-3 = block fetch table entry
740  * bits 4-6 = command type (== 110)
741  * (command type is needed because ioaccel1 mode
742  * commands are submitted through the same register as normal
743  * mode commands, so this is how the controller knows whether
744  * the command is normal mode or ioaccel1 mode.)
745  *
746  * ioaccel2 mode:
747  * bit 0 = "performant mode" bit.
748  * bits 1-4 = block fetch table entry (note extra bit)
749  * bits 4-6 = not needed, because ioaccel2 mode has
750  * a separate special register for submitting commands.
751  */
752
753 /*
754  * set_performant_mode: Modify the tag for cciss performant
755  * set bit 0 for pull model, bits 3-1 for block fetch
756  * register number
757  */
758 #define DEFAULT_REPLY_QUEUE (-1)
759 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
760                                         int reply_queue)
761 {
762         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
763                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
764                 if (unlikely(!h->msix_vector))
765                         return;
766                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
767                         c->Header.ReplyQueue =
768                                 raw_smp_processor_id() % h->nreply_queues;
769                 else
770                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
771         }
772 }
773
774 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
775                                                 struct CommandList *c,
776                                                 int reply_queue)
777 {
778         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
779
780         /*
781          * Tell the controller to post the reply to the queue for this
782          * processor.  This seems to give the best I/O throughput.
783          */
784         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
785                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
786         else
787                 cp->ReplyQueue = reply_queue % h->nreply_queues;
788         /*
789          * Set the bits in the address sent down to include:
790          *  - performant mode bit (bit 0)
791          *  - pull count (bits 1-3)
792          *  - command type (bits 4-6)
793          */
794         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
795                                         IOACCEL1_BUSADDR_CMDTYPE;
796 }
797
798 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
799                                                 struct CommandList *c,
800                                                 int reply_queue)
801 {
802         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
803
804         /*
805          * Tell the controller to post the reply to the queue for this
806          * processor.  This seems to give the best I/O throughput.
807          */
808         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
809                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
810         else
811                 cp->reply_queue = reply_queue % h->nreply_queues;
812         /*
813          * Set the bits in the address sent down to include:
814          *  - performant mode bit not used in ioaccel mode 2
815          *  - pull count (bits 0-3)
816          *  - command type isn't needed for ioaccel2
817          */
818         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
819 }
820
821 static int is_firmware_flash_cmd(u8 *cdb)
822 {
823         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
824 }
825
826 /*
827  * During firmware flash, the heartbeat register may not update as frequently
828  * as it should.  So we dial down lockup detection during firmware flash. and
829  * dial it back up when firmware flash completes.
830  */
831 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
832 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
833 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
834                 struct CommandList *c)
835 {
836         if (!is_firmware_flash_cmd(c->Request.CDB))
837                 return;
838         atomic_inc(&h->firmware_flash_in_progress);
839         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
840 }
841
842 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
843                 struct CommandList *c)
844 {
845         if (is_firmware_flash_cmd(c->Request.CDB) &&
846                 atomic_dec_and_test(&h->firmware_flash_in_progress))
847                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
848 }
849
850 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
851         struct CommandList *c, int reply_queue)
852 {
853         dial_down_lockup_detection_during_fw_flash(h, c);
854         atomic_inc(&h->commands_outstanding);
855         switch (c->cmd_type) {
856         case CMD_IOACCEL1:
857                 set_ioaccel1_performant_mode(h, c, reply_queue);
858                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
859                 break;
860         case CMD_IOACCEL2:
861                 set_ioaccel2_performant_mode(h, c, reply_queue);
862                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
863                 break;
864         default:
865                 set_performant_mode(h, c, reply_queue);
866                 h->access.submit_command(h, c);
867         }
868 }
869
870 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
871                                         struct CommandList *c)
872 {
873         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
874 }
875
876 static inline int is_hba_lunid(unsigned char scsi3addr[])
877 {
878         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
879 }
880
881 static inline int is_scsi_rev_5(struct ctlr_info *h)
882 {
883         if (!h->hba_inquiry_data)
884                 return 0;
885         if ((h->hba_inquiry_data[2] & 0x07) == 5)
886                 return 1;
887         return 0;
888 }
889
890 static int hpsa_find_target_lun(struct ctlr_info *h,
891         unsigned char scsi3addr[], int bus, int *target, int *lun)
892 {
893         /* finds an unused bus, target, lun for a new physical device
894          * assumes h->devlock is held
895          */
896         int i, found = 0;
897         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
898
899         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
900
901         for (i = 0; i < h->ndevices; i++) {
902                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
903                         __set_bit(h->dev[i]->target, lun_taken);
904         }
905
906         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
907         if (i < HPSA_MAX_DEVICES) {
908                 /* *bus = 1; */
909                 *target = i;
910                 *lun = 0;
911                 found = 1;
912         }
913         return !found;
914 }
915
916 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
917         struct hpsa_scsi_dev_t *dev, char *description)
918 {
919         dev_printk(level, &h->pdev->dev,
920                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
921                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
922                         description,
923                         scsi_device_type(dev->devtype),
924                         dev->vendor,
925                         dev->model,
926                         dev->raid_level > RAID_UNKNOWN ?
927                                 "RAID-?" : raid_label[dev->raid_level],
928                         dev->offload_config ? '+' : '-',
929                         dev->offload_enabled ? '+' : '-',
930                         dev->expose_state);
931 }
932
933 /* Add an entry into h->dev[] array. */
934 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
935                 struct hpsa_scsi_dev_t *device,
936                 struct hpsa_scsi_dev_t *added[], int *nadded)
937 {
938         /* assumes h->devlock is held */
939         int n = h->ndevices;
940         int i;
941         unsigned char addr1[8], addr2[8];
942         struct hpsa_scsi_dev_t *sd;
943
944         if (n >= HPSA_MAX_DEVICES) {
945                 dev_err(&h->pdev->dev, "too many devices, some will be "
946                         "inaccessible.\n");
947                 return -1;
948         }
949
950         /* physical devices do not have lun or target assigned until now. */
951         if (device->lun != -1)
952                 /* Logical device, lun is already assigned. */
953                 goto lun_assigned;
954
955         /* If this device a non-zero lun of a multi-lun device
956          * byte 4 of the 8-byte LUN addr will contain the logical
957          * unit no, zero otherwise.
958          */
959         if (device->scsi3addr[4] == 0) {
960                 /* This is not a non-zero lun of a multi-lun device */
961                 if (hpsa_find_target_lun(h, device->scsi3addr,
962                         device->bus, &device->target, &device->lun) != 0)
963                         return -1;
964                 goto lun_assigned;
965         }
966
967         /* This is a non-zero lun of a multi-lun device.
968          * Search through our list and find the device which
969          * has the same 8 byte LUN address, excepting byte 4.
970          * Assign the same bus and target for this new LUN.
971          * Use the logical unit number from the firmware.
972          */
973         memcpy(addr1, device->scsi3addr, 8);
974         addr1[4] = 0;
975         for (i = 0; i < n; i++) {
976                 sd = h->dev[i];
977                 memcpy(addr2, sd->scsi3addr, 8);
978                 addr2[4] = 0;
979                 /* differ only in byte 4? */
980                 if (memcmp(addr1, addr2, 8) == 0) {
981                         device->bus = sd->bus;
982                         device->target = sd->target;
983                         device->lun = device->scsi3addr[4];
984                         break;
985                 }
986         }
987         if (device->lun == -1) {
988                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
989                         " suspect firmware bug or unsupported hardware "
990                         "configuration.\n");
991                         return -1;
992         }
993
994 lun_assigned:
995
996         h->dev[n] = device;
997         h->ndevices++;
998         device->offload_to_be_enabled = device->offload_enabled;
999         device->offload_enabled = 0;
1000         added[*nadded] = device;
1001         (*nadded)++;
1002         hpsa_show_dev_msg(KERN_INFO, h, device,
1003                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1004         return 0;
1005 }
1006
1007 /* Update an entry in h->dev[] array. */
1008 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1009         int entry, struct hpsa_scsi_dev_t *new_entry)
1010 {
1011         /* assumes h->devlock is held */
1012         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1013
1014         /* Raid level changed. */
1015         h->dev[entry]->raid_level = new_entry->raid_level;
1016
1017         /* Raid offload parameters changed.  Careful about the ordering. */
1018         if (new_entry->offload_config && new_entry->offload_enabled) {
1019                 /*
1020                  * if drive is newly offload_enabled, we want to copy the
1021                  * raid map data first.  If previously offload_enabled and
1022                  * offload_config were set, raid map data had better be
1023                  * the same as it was before.  if raid map data is changed
1024                  * then it had better be the case that
1025                  * h->dev[entry]->offload_enabled is currently 0.
1026                  */
1027                 h->dev[entry]->raid_map = new_entry->raid_map;
1028                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1029         }
1030         h->dev[entry]->offload_config = new_entry->offload_config;
1031         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1032         h->dev[entry]->queue_depth = new_entry->queue_depth;
1033
1034         /*
1035          * We can turn off ioaccel offload now, but need to delay turning
1036          * it on until we can update h->dev[entry]->phys_disk[], but we
1037          * can't do that until all the devices are updated.
1038          */
1039         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1040         if (!new_entry->offload_enabled)
1041                 h->dev[entry]->offload_enabled = 0;
1042
1043         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1044 }
1045
1046 /* Replace an entry from h->dev[] array. */
1047 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1048         int entry, struct hpsa_scsi_dev_t *new_entry,
1049         struct hpsa_scsi_dev_t *added[], int *nadded,
1050         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1051 {
1052         /* assumes h->devlock is held */
1053         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1054         removed[*nremoved] = h->dev[entry];
1055         (*nremoved)++;
1056
1057         /*
1058          * New physical devices won't have target/lun assigned yet
1059          * so we need to preserve the values in the slot we are replacing.
1060          */
1061         if (new_entry->target == -1) {
1062                 new_entry->target = h->dev[entry]->target;
1063                 new_entry->lun = h->dev[entry]->lun;
1064         }
1065
1066         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1067         new_entry->offload_enabled = 0;
1068         h->dev[entry] = new_entry;
1069         added[*nadded] = new_entry;
1070         (*nadded)++;
1071         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1072 }
1073
1074 /* Remove an entry from h->dev[] array. */
1075 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1076         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1077 {
1078         /* assumes h->devlock is held */
1079         int i;
1080         struct hpsa_scsi_dev_t *sd;
1081
1082         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1083
1084         sd = h->dev[entry];
1085         removed[*nremoved] = h->dev[entry];
1086         (*nremoved)++;
1087
1088         for (i = entry; i < h->ndevices-1; i++)
1089                 h->dev[i] = h->dev[i+1];
1090         h->ndevices--;
1091         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1092 }
1093
1094 #define SCSI3ADDR_EQ(a, b) ( \
1095         (a)[7] == (b)[7] && \
1096         (a)[6] == (b)[6] && \
1097         (a)[5] == (b)[5] && \
1098         (a)[4] == (b)[4] && \
1099         (a)[3] == (b)[3] && \
1100         (a)[2] == (b)[2] && \
1101         (a)[1] == (b)[1] && \
1102         (a)[0] == (b)[0])
1103
1104 static void fixup_botched_add(struct ctlr_info *h,
1105         struct hpsa_scsi_dev_t *added)
1106 {
1107         /* called when scsi_add_device fails in order to re-adjust
1108          * h->dev[] to match the mid layer's view.
1109          */
1110         unsigned long flags;
1111         int i, j;
1112
1113         spin_lock_irqsave(&h->lock, flags);
1114         for (i = 0; i < h->ndevices; i++) {
1115                 if (h->dev[i] == added) {
1116                         for (j = i; j < h->ndevices-1; j++)
1117                                 h->dev[j] = h->dev[j+1];
1118                         h->ndevices--;
1119                         break;
1120                 }
1121         }
1122         spin_unlock_irqrestore(&h->lock, flags);
1123         kfree(added);
1124 }
1125
1126 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1127         struct hpsa_scsi_dev_t *dev2)
1128 {
1129         /* we compare everything except lun and target as these
1130          * are not yet assigned.  Compare parts likely
1131          * to differ first
1132          */
1133         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1134                 sizeof(dev1->scsi3addr)) != 0)
1135                 return 0;
1136         if (memcmp(dev1->device_id, dev2->device_id,
1137                 sizeof(dev1->device_id)) != 0)
1138                 return 0;
1139         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1140                 return 0;
1141         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1142                 return 0;
1143         if (dev1->devtype != dev2->devtype)
1144                 return 0;
1145         if (dev1->bus != dev2->bus)
1146                 return 0;
1147         return 1;
1148 }
1149
1150 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1151         struct hpsa_scsi_dev_t *dev2)
1152 {
1153         /* Device attributes that can change, but don't mean
1154          * that the device is a different device, nor that the OS
1155          * needs to be told anything about the change.
1156          */
1157         if (dev1->raid_level != dev2->raid_level)
1158                 return 1;
1159         if (dev1->offload_config != dev2->offload_config)
1160                 return 1;
1161         if (dev1->offload_enabled != dev2->offload_enabled)
1162                 return 1;
1163         if (dev1->queue_depth != dev2->queue_depth)
1164                 return 1;
1165         return 0;
1166 }
1167
1168 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1169  * and return needle location in *index.  If scsi3addr matches, but not
1170  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1171  * location in *index.
1172  * In the case of a minor device attribute change, such as RAID level, just
1173  * return DEVICE_UPDATED, along with the updated device's location in index.
1174  * If needle not found, return DEVICE_NOT_FOUND.
1175  */
1176 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1177         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1178         int *index)
1179 {
1180         int i;
1181 #define DEVICE_NOT_FOUND 0
1182 #define DEVICE_CHANGED 1
1183 #define DEVICE_SAME 2
1184 #define DEVICE_UPDATED 3
1185         for (i = 0; i < haystack_size; i++) {
1186                 if (haystack[i] == NULL) /* previously removed. */
1187                         continue;
1188                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1189                         *index = i;
1190                         if (device_is_the_same(needle, haystack[i])) {
1191                                 if (device_updated(needle, haystack[i]))
1192                                         return DEVICE_UPDATED;
1193                                 return DEVICE_SAME;
1194                         } else {
1195                                 /* Keep offline devices offline */
1196                                 if (needle->volume_offline)
1197                                         return DEVICE_NOT_FOUND;
1198                                 return DEVICE_CHANGED;
1199                         }
1200                 }
1201         }
1202         *index = -1;
1203         return DEVICE_NOT_FOUND;
1204 }
1205
1206 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1207                                         unsigned char scsi3addr[])
1208 {
1209         struct offline_device_entry *device;
1210         unsigned long flags;
1211
1212         /* Check to see if device is already on the list */
1213         spin_lock_irqsave(&h->offline_device_lock, flags);
1214         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1215                 if (memcmp(device->scsi3addr, scsi3addr,
1216                         sizeof(device->scsi3addr)) == 0) {
1217                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1218                         return;
1219                 }
1220         }
1221         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1222
1223         /* Device is not on the list, add it. */
1224         device = kmalloc(sizeof(*device), GFP_KERNEL);
1225         if (!device) {
1226                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1227                 return;
1228         }
1229         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1230         spin_lock_irqsave(&h->offline_device_lock, flags);
1231         list_add_tail(&device->offline_list, &h->offline_device_list);
1232         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1233 }
1234
1235 /* Print a message explaining various offline volume states */
1236 static void hpsa_show_volume_status(struct ctlr_info *h,
1237         struct hpsa_scsi_dev_t *sd)
1238 {
1239         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1240                 dev_info(&h->pdev->dev,
1241                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1242                         h->scsi_host->host_no,
1243                         sd->bus, sd->target, sd->lun);
1244         switch (sd->volume_offline) {
1245         case HPSA_LV_OK:
1246                 break;
1247         case HPSA_LV_UNDERGOING_ERASE:
1248                 dev_info(&h->pdev->dev,
1249                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1250                         h->scsi_host->host_no,
1251                         sd->bus, sd->target, sd->lun);
1252                 break;
1253         case HPSA_LV_UNDERGOING_RPI:
1254                 dev_info(&h->pdev->dev,
1255                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1256                         h->scsi_host->host_no,
1257                         sd->bus, sd->target, sd->lun);
1258                 break;
1259         case HPSA_LV_PENDING_RPI:
1260                 dev_info(&h->pdev->dev,
1261                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1262                                 h->scsi_host->host_no,
1263                                 sd->bus, sd->target, sd->lun);
1264                 break;
1265         case HPSA_LV_ENCRYPTED_NO_KEY:
1266                 dev_info(&h->pdev->dev,
1267                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1268                         h->scsi_host->host_no,
1269                         sd->bus, sd->target, sd->lun);
1270                 break;
1271         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1272                 dev_info(&h->pdev->dev,
1273                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1274                         h->scsi_host->host_no,
1275                         sd->bus, sd->target, sd->lun);
1276                 break;
1277         case HPSA_LV_UNDERGOING_ENCRYPTION:
1278                 dev_info(&h->pdev->dev,
1279                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1280                         h->scsi_host->host_no,
1281                         sd->bus, sd->target, sd->lun);
1282                 break;
1283         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1284                 dev_info(&h->pdev->dev,
1285                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1286                         h->scsi_host->host_no,
1287                         sd->bus, sd->target, sd->lun);
1288                 break;
1289         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1290                 dev_info(&h->pdev->dev,
1291                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1292                         h->scsi_host->host_no,
1293                         sd->bus, sd->target, sd->lun);
1294                 break;
1295         case HPSA_LV_PENDING_ENCRYPTION:
1296                 dev_info(&h->pdev->dev,
1297                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1298                         h->scsi_host->host_no,
1299                         sd->bus, sd->target, sd->lun);
1300                 break;
1301         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1302                 dev_info(&h->pdev->dev,
1303                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1304                         h->scsi_host->host_no,
1305                         sd->bus, sd->target, sd->lun);
1306                 break;
1307         }
1308 }
1309
1310 /*
1311  * Figure the list of physical drive pointers for a logical drive with
1312  * raid offload configured.
1313  */
1314 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1315                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1316                                 struct hpsa_scsi_dev_t *logical_drive)
1317 {
1318         struct raid_map_data *map = &logical_drive->raid_map;
1319         struct raid_map_disk_data *dd = &map->data[0];
1320         int i, j;
1321         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1322                                 le16_to_cpu(map->metadata_disks_per_row);
1323         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1324                                 le16_to_cpu(map->layout_map_count) *
1325                                 total_disks_per_row;
1326         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1327                                 total_disks_per_row;
1328         int qdepth;
1329
1330         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1331                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1332
1333         qdepth = 0;
1334         for (i = 0; i < nraid_map_entries; i++) {
1335                 logical_drive->phys_disk[i] = NULL;
1336                 if (!logical_drive->offload_config)
1337                         continue;
1338                 for (j = 0; j < ndevices; j++) {
1339                         if (dev[j]->devtype != TYPE_DISK)
1340                                 continue;
1341                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1342                                 continue;
1343                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1344                                 continue;
1345
1346                         logical_drive->phys_disk[i] = dev[j];
1347                         if (i < nphys_disk)
1348                                 qdepth = min(h->nr_cmds, qdepth +
1349                                     logical_drive->phys_disk[i]->queue_depth);
1350                         break;
1351                 }
1352
1353                 /*
1354                  * This can happen if a physical drive is removed and
1355                  * the logical drive is degraded.  In that case, the RAID
1356                  * map data will refer to a physical disk which isn't actually
1357                  * present.  And in that case offload_enabled should already
1358                  * be 0, but we'll turn it off here just in case
1359                  */
1360                 if (!logical_drive->phys_disk[i]) {
1361                         logical_drive->offload_enabled = 0;
1362                         logical_drive->offload_to_be_enabled = 0;
1363                         logical_drive->queue_depth = 8;
1364                 }
1365         }
1366         if (nraid_map_entries)
1367                 /*
1368                  * This is correct for reads, too high for full stripe writes,
1369                  * way too high for partial stripe writes
1370                  */
1371                 logical_drive->queue_depth = qdepth;
1372         else
1373                 logical_drive->queue_depth = h->nr_cmds;
1374 }
1375
1376 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1377                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1378 {
1379         int i;
1380
1381         for (i = 0; i < ndevices; i++) {
1382                 if (dev[i]->devtype != TYPE_DISK)
1383                         continue;
1384                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1385                         continue;
1386
1387                 /*
1388                  * If offload is currently enabled, the RAID map and
1389                  * phys_disk[] assignment *better* not be changing
1390                  * and since it isn't changing, we do not need to
1391                  * update it.
1392                  */
1393                 if (dev[i]->offload_enabled)
1394                         continue;
1395
1396                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1397         }
1398 }
1399
1400 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1401         struct hpsa_scsi_dev_t *sd[], int nsds)
1402 {
1403         /* sd contains scsi3 addresses and devtypes, and inquiry
1404          * data.  This function takes what's in sd to be the current
1405          * reality and updates h->dev[] to reflect that reality.
1406          */
1407         int i, entry, device_change, changes = 0;
1408         struct hpsa_scsi_dev_t *csd;
1409         unsigned long flags;
1410         struct hpsa_scsi_dev_t **added, **removed;
1411         int nadded, nremoved;
1412         struct Scsi_Host *sh = NULL;
1413
1414         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1415         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1416
1417         if (!added || !removed) {
1418                 dev_warn(&h->pdev->dev, "out of memory in "
1419                         "adjust_hpsa_scsi_table\n");
1420                 goto free_and_out;
1421         }
1422
1423         spin_lock_irqsave(&h->devlock, flags);
1424
1425         /* find any devices in h->dev[] that are not in
1426          * sd[] and remove them from h->dev[], and for any
1427          * devices which have changed, remove the old device
1428          * info and add the new device info.
1429          * If minor device attributes change, just update
1430          * the existing device structure.
1431          */
1432         i = 0;
1433         nremoved = 0;
1434         nadded = 0;
1435         while (i < h->ndevices) {
1436                 csd = h->dev[i];
1437                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1438                 if (device_change == DEVICE_NOT_FOUND) {
1439                         changes++;
1440                         hpsa_scsi_remove_entry(h, hostno, i,
1441                                 removed, &nremoved);
1442                         continue; /* remove ^^^, hence i not incremented */
1443                 } else if (device_change == DEVICE_CHANGED) {
1444                         changes++;
1445                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1446                                 added, &nadded, removed, &nremoved);
1447                         /* Set it to NULL to prevent it from being freed
1448                          * at the bottom of hpsa_update_scsi_devices()
1449                          */
1450                         sd[entry] = NULL;
1451                 } else if (device_change == DEVICE_UPDATED) {
1452                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1453                 }
1454                 i++;
1455         }
1456
1457         /* Now, make sure every device listed in sd[] is also
1458          * listed in h->dev[], adding them if they aren't found
1459          */
1460
1461         for (i = 0; i < nsds; i++) {
1462                 if (!sd[i]) /* if already added above. */
1463                         continue;
1464
1465                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1466                  * as the SCSI mid-layer does not handle such devices well.
1467                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1468                  * at 160Hz, and prevents the system from coming up.
1469                  */
1470                 if (sd[i]->volume_offline) {
1471                         hpsa_show_volume_status(h, sd[i]);
1472                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1473                         continue;
1474                 }
1475
1476                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1477                                         h->ndevices, &entry);
1478                 if (device_change == DEVICE_NOT_FOUND) {
1479                         changes++;
1480                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1481                                 added, &nadded) != 0)
1482                                 break;
1483                         sd[i] = NULL; /* prevent from being freed later. */
1484                 } else if (device_change == DEVICE_CHANGED) {
1485                         /* should never happen... */
1486                         changes++;
1487                         dev_warn(&h->pdev->dev,
1488                                 "device unexpectedly changed.\n");
1489                         /* but if it does happen, we just ignore that device */
1490                 }
1491         }
1492         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1493
1494         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1495          * any logical drives that need it enabled.
1496          */
1497         for (i = 0; i < h->ndevices; i++)
1498                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1499
1500         spin_unlock_irqrestore(&h->devlock, flags);
1501
1502         /* Monitor devices which are in one of several NOT READY states to be
1503          * brought online later. This must be done without holding h->devlock,
1504          * so don't touch h->dev[]
1505          */
1506         for (i = 0; i < nsds; i++) {
1507                 if (!sd[i]) /* if already added above. */
1508                         continue;
1509                 if (sd[i]->volume_offline)
1510                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1511         }
1512
1513         /* Don't notify scsi mid layer of any changes the first time through
1514          * (or if there are no changes) scsi_scan_host will do it later the
1515          * first time through.
1516          */
1517         if (hostno == -1 || !changes)
1518                 goto free_and_out;
1519
1520         sh = h->scsi_host;
1521         /* Notify scsi mid layer of any removed devices */
1522         for (i = 0; i < nremoved; i++) {
1523                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1524                         struct scsi_device *sdev =
1525                                 scsi_device_lookup(sh, removed[i]->bus,
1526                                         removed[i]->target, removed[i]->lun);
1527                         if (sdev != NULL) {
1528                                 scsi_remove_device(sdev);
1529                                 scsi_device_put(sdev);
1530                         } else {
1531                                 /*
1532                                  * We don't expect to get here.
1533                                  * future cmds to this device will get selection
1534                                  * timeout as if the device was gone.
1535                                  */
1536                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1537                                         "didn't find device for removal.");
1538                         }
1539                 }
1540                 kfree(removed[i]);
1541                 removed[i] = NULL;
1542         }
1543
1544         /* Notify scsi mid layer of any added devices */
1545         for (i = 0; i < nadded; i++) {
1546                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1547                         continue;
1548                 if (scsi_add_device(sh, added[i]->bus,
1549                         added[i]->target, added[i]->lun) == 0)
1550                         continue;
1551                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1552                                         "addition failed, device not added.");
1553                 /* now we have to remove it from h->dev,
1554                  * since it didn't get added to scsi mid layer
1555                  */
1556                 fixup_botched_add(h, added[i]);
1557         }
1558
1559 free_and_out:
1560         kfree(added);
1561         kfree(removed);
1562 }
1563
1564 /*
1565  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1566  * Assume's h->devlock is held.
1567  */
1568 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1569         int bus, int target, int lun)
1570 {
1571         int i;
1572         struct hpsa_scsi_dev_t *sd;
1573
1574         for (i = 0; i < h->ndevices; i++) {
1575                 sd = h->dev[i];
1576                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1577                         return sd;
1578         }
1579         return NULL;
1580 }
1581
1582 static int hpsa_slave_alloc(struct scsi_device *sdev)
1583 {
1584         struct hpsa_scsi_dev_t *sd;
1585         unsigned long flags;
1586         struct ctlr_info *h;
1587
1588         h = sdev_to_hba(sdev);
1589         spin_lock_irqsave(&h->devlock, flags);
1590         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1591                 sdev_id(sdev), sdev->lun);
1592         if (likely(sd)) {
1593                 atomic_set(&sd->ioaccel_cmds_out, 0);
1594                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1595         } else
1596                 sdev->hostdata = NULL;
1597         spin_unlock_irqrestore(&h->devlock, flags);
1598         return 0;
1599 }
1600
1601 /* configure scsi device based on internal per-device structure */
1602 static int hpsa_slave_configure(struct scsi_device *sdev)
1603 {
1604         struct hpsa_scsi_dev_t *sd;
1605         int queue_depth;
1606
1607         sd = sdev->hostdata;
1608         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1609
1610         if (sd)
1611                 queue_depth = sd->queue_depth != 0 ?
1612                         sd->queue_depth : sdev->host->can_queue;
1613         else
1614                 queue_depth = sdev->host->can_queue;
1615
1616         scsi_change_queue_depth(sdev, queue_depth);
1617
1618         return 0;
1619 }
1620
1621 static void hpsa_slave_destroy(struct scsi_device *sdev)
1622 {
1623         /* nothing to do. */
1624 }
1625
1626 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1627 {
1628         int i;
1629
1630         if (!h->cmd_sg_list)
1631                 return;
1632         for (i = 0; i < h->nr_cmds; i++) {
1633                 kfree(h->cmd_sg_list[i]);
1634                 h->cmd_sg_list[i] = NULL;
1635         }
1636         kfree(h->cmd_sg_list);
1637         h->cmd_sg_list = NULL;
1638 }
1639
1640 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1641 {
1642         int i;
1643
1644         if (h->chainsize <= 0)
1645                 return 0;
1646
1647         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1648                                 GFP_KERNEL);
1649         if (!h->cmd_sg_list) {
1650                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1651                 return -ENOMEM;
1652         }
1653         for (i = 0; i < h->nr_cmds; i++) {
1654                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1655                                                 h->chainsize, GFP_KERNEL);
1656                 if (!h->cmd_sg_list[i]) {
1657                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1658                         goto clean;
1659                 }
1660         }
1661         return 0;
1662
1663 clean:
1664         hpsa_free_sg_chain_blocks(h);
1665         return -ENOMEM;
1666 }
1667
1668 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1669         struct CommandList *c)
1670 {
1671         struct SGDescriptor *chain_sg, *chain_block;
1672         u64 temp64;
1673         u32 chain_len;
1674
1675         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1676         chain_block = h->cmd_sg_list[c->cmdindex];
1677         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1678         chain_len = sizeof(*chain_sg) *
1679                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1680         chain_sg->Len = cpu_to_le32(chain_len);
1681         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1682                                 PCI_DMA_TODEVICE);
1683         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1684                 /* prevent subsequent unmapping */
1685                 chain_sg->Addr = cpu_to_le64(0);
1686                 return -1;
1687         }
1688         chain_sg->Addr = cpu_to_le64(temp64);
1689         return 0;
1690 }
1691
1692 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1693         struct CommandList *c)
1694 {
1695         struct SGDescriptor *chain_sg;
1696
1697         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1698                 return;
1699
1700         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1701         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1702                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1703 }
1704
1705
1706 /* Decode the various types of errors on ioaccel2 path.
1707  * Return 1 for any error that should generate a RAID path retry.
1708  * Return 0 for errors that don't require a RAID path retry.
1709  */
1710 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1711                                         struct CommandList *c,
1712                                         struct scsi_cmnd *cmd,
1713                                         struct io_accel2_cmd *c2)
1714 {
1715         int data_len;
1716         int retry = 0;
1717
1718         switch (c2->error_data.serv_response) {
1719         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1720                 switch (c2->error_data.status) {
1721                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1722                         break;
1723                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1724                         dev_warn(&h->pdev->dev,
1725                                 "%s: task complete with check condition.\n",
1726                                 "HP SSD Smart Path");
1727                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1728                         if (c2->error_data.data_present !=
1729                                         IOACCEL2_SENSE_DATA_PRESENT) {
1730                                 memset(cmd->sense_buffer, 0,
1731                                         SCSI_SENSE_BUFFERSIZE);
1732                                 break;
1733                         }
1734                         /* copy the sense data */
1735                         data_len = c2->error_data.sense_data_len;
1736                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1737                                 data_len = SCSI_SENSE_BUFFERSIZE;
1738                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1739                                 data_len =
1740                                         sizeof(c2->error_data.sense_data_buff);
1741                         memcpy(cmd->sense_buffer,
1742                                 c2->error_data.sense_data_buff, data_len);
1743                         retry = 1;
1744                         break;
1745                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1746                         dev_warn(&h->pdev->dev,
1747                                 "%s: task complete with BUSY status.\n",
1748                                 "HP SSD Smart Path");
1749                         retry = 1;
1750                         break;
1751                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1752                         dev_warn(&h->pdev->dev,
1753                                 "%s: task complete with reservation conflict.\n",
1754                                 "HP SSD Smart Path");
1755                         retry = 1;
1756                         break;
1757                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1758                         /* Make scsi midlayer do unlimited retries */
1759                         cmd->result = DID_IMM_RETRY << 16;
1760                         break;
1761                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1762                         dev_warn(&h->pdev->dev,
1763                                 "%s: task complete with aborted status.\n",
1764                                 "HP SSD Smart Path");
1765                         retry = 1;
1766                         break;
1767                 default:
1768                         dev_warn(&h->pdev->dev,
1769                                 "%s: task complete with unrecognized status: 0x%02x\n",
1770                                 "HP SSD Smart Path", c2->error_data.status);
1771                         retry = 1;
1772                         break;
1773                 }
1774                 break;
1775         case IOACCEL2_SERV_RESPONSE_FAILURE:
1776                 /* don't expect to get here. */
1777                 dev_warn(&h->pdev->dev,
1778                         "unexpected delivery or target failure, status = 0x%02x\n",
1779                         c2->error_data.status);
1780                 retry = 1;
1781                 break;
1782         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1783                 break;
1784         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1785                 break;
1786         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1787                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1788                 retry = 1;
1789                 break;
1790         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1791                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1792                 break;
1793         default:
1794                 dev_warn(&h->pdev->dev,
1795                         "%s: Unrecognized server response: 0x%02x\n",
1796                         "HP SSD Smart Path",
1797                         c2->error_data.serv_response);
1798                 retry = 1;
1799                 break;
1800         }
1801
1802         return retry;   /* retry on raid path? */
1803 }
1804
1805 static void process_ioaccel2_completion(struct ctlr_info *h,
1806                 struct CommandList *c, struct scsi_cmnd *cmd,
1807                 struct hpsa_scsi_dev_t *dev)
1808 {
1809         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1810
1811         /* check for good status */
1812         if (likely(c2->error_data.serv_response == 0 &&
1813                         c2->error_data.status == 0)) {
1814                 cmd_free(h, c);
1815                 cmd->scsi_done(cmd);
1816                 return;
1817         }
1818
1819         /* Any RAID offload error results in retry which will use
1820          * the normal I/O path so the controller can handle whatever's
1821          * wrong.
1822          */
1823         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1824                 c2->error_data.serv_response ==
1825                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1826                 if (c2->error_data.status ==
1827                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1828                         dev->offload_enabled = 0;
1829                 goto retry_cmd;
1830         }
1831
1832         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1833                 goto retry_cmd;
1834
1835         cmd_free(h, c);
1836         cmd->scsi_done(cmd);
1837         return;
1838
1839 retry_cmd:
1840         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1841         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1842 }
1843
1844 static void complete_scsi_command(struct CommandList *cp)
1845 {
1846         struct scsi_cmnd *cmd;
1847         struct ctlr_info *h;
1848         struct ErrorInfo *ei;
1849         struct hpsa_scsi_dev_t *dev;
1850
1851         unsigned char sense_key;
1852         unsigned char asc;      /* additional sense code */
1853         unsigned char ascq;     /* additional sense code qualifier */
1854         unsigned long sense_data_size;
1855
1856         ei = cp->err_info;
1857         cmd = cp->scsi_cmd;
1858         h = cp->h;
1859         dev = cmd->device->hostdata;
1860
1861         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1862         if ((cp->cmd_type == CMD_SCSI) &&
1863                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1864                 hpsa_unmap_sg_chain_block(h, cp);
1865
1866         cmd->result = (DID_OK << 16);           /* host byte */
1867         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1868
1869         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1870                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1871
1872         /*
1873          * We check for lockup status here as it may be set for
1874          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
1875          * fail_all_oustanding_cmds()
1876          */
1877         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
1878                 /* DID_NO_CONNECT will prevent a retry */
1879                 cmd->result = DID_NO_CONNECT << 16;
1880                 cmd_free(h, cp);
1881                 cmd->scsi_done(cmd);
1882                 return;
1883         }
1884
1885         if (cp->cmd_type == CMD_IOACCEL2)
1886                 return process_ioaccel2_completion(h, cp, cmd, dev);
1887
1888         cmd->result |= ei->ScsiStatus;
1889
1890         scsi_set_resid(cmd, ei->ResidualCnt);
1891         if (ei->CommandStatus == 0) {
1892                 if (cp->cmd_type == CMD_IOACCEL1)
1893                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1894                 cmd_free(h, cp);
1895                 cmd->scsi_done(cmd);
1896                 return;
1897         }
1898
1899         /* copy the sense data */
1900         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1901                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1902         else
1903                 sense_data_size = sizeof(ei->SenseInfo);
1904         if (ei->SenseLen < sense_data_size)
1905                 sense_data_size = ei->SenseLen;
1906
1907         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1908
1909         /* For I/O accelerator commands, copy over some fields to the normal
1910          * CISS header used below for error handling.
1911          */
1912         if (cp->cmd_type == CMD_IOACCEL1) {
1913                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1914                 cp->Header.SGList = scsi_sg_count(cmd);
1915                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1916                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1917                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
1918                 cp->Header.tag = c->tag;
1919                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1920                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1921
1922                 /* Any RAID offload error results in retry which will use
1923                  * the normal I/O path so the controller can handle whatever's
1924                  * wrong.
1925                  */
1926                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1927                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1928                                 dev->offload_enabled = 0;
1929                         INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1930                         queue_work_on(raw_smp_processor_id(),
1931                                         h->resubmit_wq, &cp->work);
1932                         return;
1933                 }
1934         }
1935
1936         /* an error has occurred */
1937         switch (ei->CommandStatus) {
1938
1939         case CMD_TARGET_STATUS:
1940                 if (ei->ScsiStatus) {
1941                         /* Get sense key */
1942                         sense_key = 0xf & ei->SenseInfo[2];
1943                         /* Get additional sense code */
1944                         asc = ei->SenseInfo[12];
1945                         /* Get addition sense code qualifier */
1946                         ascq = ei->SenseInfo[13];
1947                 }
1948                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1949                         if (sense_key == ABORTED_COMMAND) {
1950                                 cmd->result |= DID_SOFT_ERROR << 16;
1951                                 break;
1952                         }
1953                         break;
1954                 }
1955                 /* Problem was not a check condition
1956                  * Pass it up to the upper layers...
1957                  */
1958                 if (ei->ScsiStatus) {
1959                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1960                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1961                                 "Returning result: 0x%x\n",
1962                                 cp, ei->ScsiStatus,
1963                                 sense_key, asc, ascq,
1964                                 cmd->result);
1965                 } else {  /* scsi status is zero??? How??? */
1966                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1967                                 "Returning no connection.\n", cp),
1968
1969                         /* Ordinarily, this case should never happen,
1970                          * but there is a bug in some released firmware
1971                          * revisions that allows it to happen if, for
1972                          * example, a 4100 backplane loses power and
1973                          * the tape drive is in it.  We assume that
1974                          * it's a fatal error of some kind because we
1975                          * can't show that it wasn't. We will make it
1976                          * look like selection timeout since that is
1977                          * the most common reason for this to occur,
1978                          * and it's severe enough.
1979                          */
1980
1981                         cmd->result = DID_NO_CONNECT << 16;
1982                 }
1983                 break;
1984
1985         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1986                 break;
1987         case CMD_DATA_OVERRUN:
1988                 dev_warn(&h->pdev->dev,
1989                         "CDB %16phN data overrun\n", cp->Request.CDB);
1990                 break;
1991         case CMD_INVALID: {
1992                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1993                 print_cmd(cp); */
1994                 /* We get CMD_INVALID if you address a non-existent device
1995                  * instead of a selection timeout (no response).  You will
1996                  * see this if you yank out a drive, then try to access it.
1997                  * This is kind of a shame because it means that any other
1998                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1999                  * missing target. */
2000                 cmd->result = DID_NO_CONNECT << 16;
2001         }
2002                 break;
2003         case CMD_PROTOCOL_ERR:
2004                 cmd->result = DID_ERROR << 16;
2005                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2006                                 cp->Request.CDB);
2007                 break;
2008         case CMD_HARDWARE_ERR:
2009                 cmd->result = DID_ERROR << 16;
2010                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2011                         cp->Request.CDB);
2012                 break;
2013         case CMD_CONNECTION_LOST:
2014                 cmd->result = DID_ERROR << 16;
2015                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2016                         cp->Request.CDB);
2017                 break;
2018         case CMD_ABORTED:
2019                 cmd->result = DID_ABORT << 16;
2020                 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2021                                 cp->Request.CDB, ei->ScsiStatus);
2022                 break;
2023         case CMD_ABORT_FAILED:
2024                 cmd->result = DID_ERROR << 16;
2025                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2026                         cp->Request.CDB);
2027                 break;
2028         case CMD_UNSOLICITED_ABORT:
2029                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2030                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2031                         cp->Request.CDB);
2032                 break;
2033         case CMD_TIMEOUT:
2034                 cmd->result = DID_TIME_OUT << 16;
2035                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2036                         cp->Request.CDB);
2037                 break;
2038         case CMD_UNABORTABLE:
2039                 cmd->result = DID_ERROR << 16;
2040                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2041                 break;
2042         case CMD_IOACCEL_DISABLED:
2043                 /* This only handles the direct pass-through case since RAID
2044                  * offload is handled above.  Just attempt a retry.
2045                  */
2046                 cmd->result = DID_SOFT_ERROR << 16;
2047                 dev_warn(&h->pdev->dev,
2048                                 "cp %p had HP SSD Smart Path error\n", cp);
2049                 break;
2050         default:
2051                 cmd->result = DID_ERROR << 16;
2052                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2053                                 cp, ei->CommandStatus);
2054         }
2055         cmd_free(h, cp);
2056         cmd->scsi_done(cmd);
2057 }
2058
2059 static void hpsa_pci_unmap(struct pci_dev *pdev,
2060         struct CommandList *c, int sg_used, int data_direction)
2061 {
2062         int i;
2063
2064         for (i = 0; i < sg_used; i++)
2065                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2066                                 le32_to_cpu(c->SG[i].Len),
2067                                 data_direction);
2068 }
2069
2070 static int hpsa_map_one(struct pci_dev *pdev,
2071                 struct CommandList *cp,
2072                 unsigned char *buf,
2073                 size_t buflen,
2074                 int data_direction)
2075 {
2076         u64 addr64;
2077
2078         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2079                 cp->Header.SGList = 0;
2080                 cp->Header.SGTotal = cpu_to_le16(0);
2081                 return 0;
2082         }
2083
2084         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2085         if (dma_mapping_error(&pdev->dev, addr64)) {
2086                 /* Prevent subsequent unmap of something never mapped */
2087                 cp->Header.SGList = 0;
2088                 cp->Header.SGTotal = cpu_to_le16(0);
2089                 return -1;
2090         }
2091         cp->SG[0].Addr = cpu_to_le64(addr64);
2092         cp->SG[0].Len = cpu_to_le32(buflen);
2093         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2094         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2095         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2096         return 0;
2097 }
2098
2099 #define NO_TIMEOUT ((unsigned long) -1)
2100 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2101 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2102         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2103 {
2104         DECLARE_COMPLETION_ONSTACK(wait);
2105
2106         c->waiting = &wait;
2107         __enqueue_cmd_and_start_io(h, c, reply_queue);
2108         if (timeout_msecs == NO_TIMEOUT) {
2109                 /* TODO: get rid of this no-timeout thing */
2110                 wait_for_completion_io(&wait);
2111                 return IO_OK;
2112         }
2113         if (!wait_for_completion_io_timeout(&wait,
2114                                         msecs_to_jiffies(timeout_msecs))) {
2115                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2116                 return -ETIMEDOUT;
2117         }
2118         return IO_OK;
2119 }
2120
2121 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2122                                    int reply_queue, unsigned long timeout_msecs)
2123 {
2124         if (unlikely(lockup_detected(h))) {
2125                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2126                 return IO_OK;
2127         }
2128         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2129 }
2130
2131 static u32 lockup_detected(struct ctlr_info *h)
2132 {
2133         int cpu;
2134         u32 rc, *lockup_detected;
2135
2136         cpu = get_cpu();
2137         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2138         rc = *lockup_detected;
2139         put_cpu();
2140         return rc;
2141 }
2142
2143 #define MAX_DRIVER_CMD_RETRIES 25
2144 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2145         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2146 {
2147         int backoff_time = 10, retry_count = 0;
2148         int rc;
2149
2150         do {
2151                 memset(c->err_info, 0, sizeof(*c->err_info));
2152                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2153                                                   timeout_msecs);
2154                 if (rc)
2155                         break;
2156                 retry_count++;
2157                 if (retry_count > 3) {
2158                         msleep(backoff_time);
2159                         if (backoff_time < 1000)
2160                                 backoff_time *= 2;
2161                 }
2162         } while ((check_for_unit_attention(h, c) ||
2163                         check_for_busy(h, c)) &&
2164                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2165         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2166         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2167                 rc = -EIO;
2168         return rc;
2169 }
2170
2171 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2172                                 struct CommandList *c)
2173 {
2174         const u8 *cdb = c->Request.CDB;
2175         const u8 *lun = c->Header.LUN.LunAddrBytes;
2176
2177         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2178         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2179                 txt, lun[0], lun[1], lun[2], lun[3],
2180                 lun[4], lun[5], lun[6], lun[7],
2181                 cdb[0], cdb[1], cdb[2], cdb[3],
2182                 cdb[4], cdb[5], cdb[6], cdb[7],
2183                 cdb[8], cdb[9], cdb[10], cdb[11],
2184                 cdb[12], cdb[13], cdb[14], cdb[15]);
2185 }
2186
2187 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2188                         struct CommandList *cp)
2189 {
2190         const struct ErrorInfo *ei = cp->err_info;
2191         struct device *d = &cp->h->pdev->dev;
2192         const u8 *sd = ei->SenseInfo;
2193
2194         switch (ei->CommandStatus) {
2195         case CMD_TARGET_STATUS:
2196                 hpsa_print_cmd(h, "SCSI status", cp);
2197                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2198                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2199                                 sd[2] & 0x0f, sd[12], sd[13]);
2200                 else
2201                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2202                 if (ei->ScsiStatus == 0)
2203                         dev_warn(d, "SCSI status is abnormally zero.  "
2204                         "(probably indicates selection timeout "
2205                         "reported incorrectly due to a known "
2206                         "firmware bug, circa July, 2001.)\n");
2207                 break;
2208         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2209                 break;
2210         case CMD_DATA_OVERRUN:
2211                 hpsa_print_cmd(h, "overrun condition", cp);
2212                 break;
2213         case CMD_INVALID: {
2214                 /* controller unfortunately reports SCSI passthru's
2215                  * to non-existent targets as invalid commands.
2216                  */
2217                 hpsa_print_cmd(h, "invalid command", cp);
2218                 dev_warn(d, "probably means device no longer present\n");
2219                 }
2220                 break;
2221         case CMD_PROTOCOL_ERR:
2222                 hpsa_print_cmd(h, "protocol error", cp);
2223                 break;
2224         case CMD_HARDWARE_ERR:
2225                 hpsa_print_cmd(h, "hardware error", cp);
2226                 break;
2227         case CMD_CONNECTION_LOST:
2228                 hpsa_print_cmd(h, "connection lost", cp);
2229                 break;
2230         case CMD_ABORTED:
2231                 hpsa_print_cmd(h, "aborted", cp);
2232                 break;
2233         case CMD_ABORT_FAILED:
2234                 hpsa_print_cmd(h, "abort failed", cp);
2235                 break;
2236         case CMD_UNSOLICITED_ABORT:
2237                 hpsa_print_cmd(h, "unsolicited abort", cp);
2238                 break;
2239         case CMD_TIMEOUT:
2240                 hpsa_print_cmd(h, "timed out", cp);
2241                 break;
2242         case CMD_UNABORTABLE:
2243                 hpsa_print_cmd(h, "unabortable", cp);
2244                 break;
2245         case CMD_CTLR_LOCKUP:
2246                 hpsa_print_cmd(h, "controller lockup detected", cp);
2247                 break;
2248         default:
2249                 hpsa_print_cmd(h, "unknown status", cp);
2250                 dev_warn(d, "Unknown command status %x\n",
2251                                 ei->CommandStatus);
2252         }
2253 }
2254
2255 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2256                         u16 page, unsigned char *buf,
2257                         unsigned char bufsize)
2258 {
2259         int rc = IO_OK;
2260         struct CommandList *c;
2261         struct ErrorInfo *ei;
2262
2263         c = cmd_alloc(h);
2264
2265         if (c == NULL) {
2266                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2267                 return -ENOMEM;
2268         }
2269
2270         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2271                         page, scsi3addr, TYPE_CMD)) {
2272                 rc = -1;
2273                 goto out;
2274         }
2275         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2276                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2277         if (rc)
2278                 goto out;
2279         ei = c->err_info;
2280         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2281                 hpsa_scsi_interpret_error(h, c);
2282                 rc = -1;
2283         }
2284 out:
2285         cmd_free(h, c);
2286         return rc;
2287 }
2288
2289 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2290                 unsigned char *scsi3addr, unsigned char page,
2291                 struct bmic_controller_parameters *buf, size_t bufsize)
2292 {
2293         int rc = IO_OK;
2294         struct CommandList *c;
2295         struct ErrorInfo *ei;
2296
2297         c = cmd_alloc(h);
2298         if (c == NULL) {                        /* trouble... */
2299                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2300                 return -ENOMEM;
2301         }
2302
2303         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2304                         page, scsi3addr, TYPE_CMD)) {
2305                 rc = -1;
2306                 goto out;
2307         }
2308         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2309                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2310         if (rc)
2311                 goto out;
2312         ei = c->err_info;
2313         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2314                 hpsa_scsi_interpret_error(h, c);
2315                 rc = -1;
2316         }
2317 out:
2318         cmd_free(h, c);
2319         return rc;
2320         }
2321
2322 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2323         u8 reset_type, int reply_queue)
2324 {
2325         int rc = IO_OK;
2326         struct CommandList *c;
2327         struct ErrorInfo *ei;
2328
2329         c = cmd_alloc(h);
2330
2331         if (c == NULL) {                        /* trouble... */
2332                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2333                 return -ENOMEM;
2334         }
2335
2336         /* fill_cmd can't fail here, no data buffer to map. */
2337         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2338                         scsi3addr, TYPE_MSG);
2339         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2340         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2341         if (rc) {
2342                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2343                 goto out;
2344         }
2345         /* no unmap needed here because no data xfer. */
2346
2347         ei = c->err_info;
2348         if (ei->CommandStatus != 0) {
2349                 hpsa_scsi_interpret_error(h, c);
2350                 rc = -1;
2351         }
2352 out:
2353         cmd_free(h, c);
2354         return rc;
2355 }
2356
2357 static void hpsa_get_raid_level(struct ctlr_info *h,
2358         unsigned char *scsi3addr, unsigned char *raid_level)
2359 {
2360         int rc;
2361         unsigned char *buf;
2362
2363         *raid_level = RAID_UNKNOWN;
2364         buf = kzalloc(64, GFP_KERNEL);
2365         if (!buf)
2366                 return;
2367         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2368         if (rc == 0)
2369                 *raid_level = buf[8];
2370         if (*raid_level > RAID_UNKNOWN)
2371                 *raid_level = RAID_UNKNOWN;
2372         kfree(buf);
2373         return;
2374 }
2375
2376 #define HPSA_MAP_DEBUG
2377 #ifdef HPSA_MAP_DEBUG
2378 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2379                                 struct raid_map_data *map_buff)
2380 {
2381         struct raid_map_disk_data *dd = &map_buff->data[0];
2382         int map, row, col;
2383         u16 map_cnt, row_cnt, disks_per_row;
2384
2385         if (rc != 0)
2386                 return;
2387
2388         /* Show details only if debugging has been activated. */
2389         if (h->raid_offload_debug < 2)
2390                 return;
2391
2392         dev_info(&h->pdev->dev, "structure_size = %u\n",
2393                                 le32_to_cpu(map_buff->structure_size));
2394         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2395                         le32_to_cpu(map_buff->volume_blk_size));
2396         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2397                         le64_to_cpu(map_buff->volume_blk_cnt));
2398         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2399                         map_buff->phys_blk_shift);
2400         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2401                         map_buff->parity_rotation_shift);
2402         dev_info(&h->pdev->dev, "strip_size = %u\n",
2403                         le16_to_cpu(map_buff->strip_size));
2404         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2405                         le64_to_cpu(map_buff->disk_starting_blk));
2406         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2407                         le64_to_cpu(map_buff->disk_blk_cnt));
2408         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2409                         le16_to_cpu(map_buff->data_disks_per_row));
2410         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2411                         le16_to_cpu(map_buff->metadata_disks_per_row));
2412         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2413                         le16_to_cpu(map_buff->row_cnt));
2414         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2415                         le16_to_cpu(map_buff->layout_map_count));
2416         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2417                         le16_to_cpu(map_buff->flags));
2418         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2419                         le16_to_cpu(map_buff->flags) &
2420                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2421         dev_info(&h->pdev->dev, "dekindex = %u\n",
2422                         le16_to_cpu(map_buff->dekindex));
2423         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2424         for (map = 0; map < map_cnt; map++) {
2425                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2426                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2427                 for (row = 0; row < row_cnt; row++) {
2428                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2429                         disks_per_row =
2430                                 le16_to_cpu(map_buff->data_disks_per_row);
2431                         for (col = 0; col < disks_per_row; col++, dd++)
2432                                 dev_info(&h->pdev->dev,
2433                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2434                                         col, dd->ioaccel_handle,
2435                                         dd->xor_mult[0], dd->xor_mult[1]);
2436                         disks_per_row =
2437                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2438                         for (col = 0; col < disks_per_row; col++, dd++)
2439                                 dev_info(&h->pdev->dev,
2440                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2441                                         col, dd->ioaccel_handle,
2442                                         dd->xor_mult[0], dd->xor_mult[1]);
2443                 }
2444         }
2445 }
2446 #else
2447 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2448                         __attribute__((unused)) int rc,
2449                         __attribute__((unused)) struct raid_map_data *map_buff)
2450 {
2451 }
2452 #endif
2453
2454 static int hpsa_get_raid_map(struct ctlr_info *h,
2455         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2456 {
2457         int rc = 0;
2458         struct CommandList *c;
2459         struct ErrorInfo *ei;
2460
2461         c = cmd_alloc(h);
2462         if (c == NULL) {
2463                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2464                 return -ENOMEM;
2465         }
2466         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2467                         sizeof(this_device->raid_map), 0,
2468                         scsi3addr, TYPE_CMD)) {
2469                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2470                 rc = -ENOMEM;
2471                 goto out;
2472         }
2473         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2474                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2475         if (rc)
2476                 goto out;
2477         ei = c->err_info;
2478         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2479                 hpsa_scsi_interpret_error(h, c);
2480                 rc = -1;
2481                 goto out;
2482         }
2483         cmd_free(h, c);
2484
2485         /* @todo in the future, dynamically allocate RAID map memory */
2486         if (le32_to_cpu(this_device->raid_map.structure_size) >
2487                                 sizeof(this_device->raid_map)) {
2488                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2489                 rc = -1;
2490         }
2491         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2492         return rc;
2493 out:
2494         cmd_free(h, c);
2495         return rc;
2496 }
2497
2498 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2499                 unsigned char scsi3addr[], u16 bmic_device_index,
2500                 struct bmic_identify_physical_device *buf, size_t bufsize)
2501 {
2502         int rc = IO_OK;
2503         struct CommandList *c;
2504         struct ErrorInfo *ei;
2505
2506         c = cmd_alloc(h);
2507         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2508                 0, RAID_CTLR_LUNID, TYPE_CMD);
2509         if (rc)
2510                 goto out;
2511
2512         c->Request.CDB[2] = bmic_device_index & 0xff;
2513         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2514
2515         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2516                                                 NO_TIMEOUT);
2517         ei = c->err_info;
2518         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2519                 hpsa_scsi_interpret_error(h, c);
2520                 rc = -1;
2521         }
2522 out:
2523         cmd_free(h, c);
2524         return rc;
2525 }
2526
2527 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2528         unsigned char scsi3addr[], u8 page)
2529 {
2530         int rc;
2531         int i;
2532         int pages;
2533         unsigned char *buf, bufsize;
2534
2535         buf = kzalloc(256, GFP_KERNEL);
2536         if (!buf)
2537                 return 0;
2538
2539         /* Get the size of the page list first */
2540         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2541                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2542                                 buf, HPSA_VPD_HEADER_SZ);
2543         if (rc != 0)
2544                 goto exit_unsupported;
2545         pages = buf[3];
2546         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2547                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2548         else
2549                 bufsize = 255;
2550
2551         /* Get the whole VPD page list */
2552         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2553                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2554                                 buf, bufsize);
2555         if (rc != 0)
2556                 goto exit_unsupported;
2557
2558         pages = buf[3];
2559         for (i = 1; i <= pages; i++)
2560                 if (buf[3 + i] == page)
2561                         goto exit_supported;
2562 exit_unsupported:
2563         kfree(buf);
2564         return 0;
2565 exit_supported:
2566         kfree(buf);
2567         return 1;
2568 }
2569
2570 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2571         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2572 {
2573         int rc;
2574         unsigned char *buf;
2575         u8 ioaccel_status;
2576
2577         this_device->offload_config = 0;
2578         this_device->offload_enabled = 0;
2579         this_device->offload_to_be_enabled = 0;
2580
2581         buf = kzalloc(64, GFP_KERNEL);
2582         if (!buf)
2583                 return;
2584         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2585                 goto out;
2586         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2587                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2588         if (rc != 0)
2589                 goto out;
2590
2591 #define IOACCEL_STATUS_BYTE 4
2592 #define OFFLOAD_CONFIGURED_BIT 0x01
2593 #define OFFLOAD_ENABLED_BIT 0x02
2594         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2595         this_device->offload_config =
2596                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2597         if (this_device->offload_config) {
2598                 this_device->offload_enabled =
2599                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2600                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2601                         this_device->offload_enabled = 0;
2602         }
2603         this_device->offload_to_be_enabled = this_device->offload_enabled;
2604 out:
2605         kfree(buf);
2606         return;
2607 }
2608
2609 /* Get the device id from inquiry page 0x83 */
2610 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2611         unsigned char *device_id, int buflen)
2612 {
2613         int rc;
2614         unsigned char *buf;
2615
2616         if (buflen > 16)
2617                 buflen = 16;
2618         buf = kzalloc(64, GFP_KERNEL);
2619         if (!buf)
2620                 return -ENOMEM;
2621         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2622         if (rc == 0)
2623                 memcpy(device_id, &buf[8], buflen);
2624         kfree(buf);
2625         return rc != 0;
2626 }
2627
2628 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2629                 void *buf, int bufsize,
2630                 int extended_response)
2631 {
2632         int rc = IO_OK;
2633         struct CommandList *c;
2634         unsigned char scsi3addr[8];
2635         struct ErrorInfo *ei;
2636
2637         c = cmd_alloc(h);
2638         if (c == NULL) {                        /* trouble... */
2639                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2640                 return -1;
2641         }
2642         /* address the controller */
2643         memset(scsi3addr, 0, sizeof(scsi3addr));
2644         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2645                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2646                 rc = -1;
2647                 goto out;
2648         }
2649         if (extended_response)
2650                 c->Request.CDB[1] = extended_response;
2651         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2652                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2653         if (rc)
2654                 goto out;
2655         ei = c->err_info;
2656         if (ei->CommandStatus != 0 &&
2657             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2658                 hpsa_scsi_interpret_error(h, c);
2659                 rc = -1;
2660         } else {
2661                 struct ReportLUNdata *rld = buf;
2662
2663                 if (rld->extended_response_flag != extended_response) {
2664                         dev_err(&h->pdev->dev,
2665                                 "report luns requested format %u, got %u\n",
2666                                 extended_response,
2667                                 rld->extended_response_flag);
2668                         rc = -1;
2669                 }
2670         }
2671 out:
2672         cmd_free(h, c);
2673         return rc;
2674 }
2675
2676 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2677                 struct ReportExtendedLUNdata *buf, int bufsize)
2678 {
2679         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2680                                                 HPSA_REPORT_PHYS_EXTENDED);
2681 }
2682
2683 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2684                 struct ReportLUNdata *buf, int bufsize)
2685 {
2686         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2687 }
2688
2689 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2690         int bus, int target, int lun)
2691 {
2692         device->bus = bus;
2693         device->target = target;
2694         device->lun = lun;
2695 }
2696
2697 /* Use VPD inquiry to get details of volume status */
2698 static int hpsa_get_volume_status(struct ctlr_info *h,
2699                                         unsigned char scsi3addr[])
2700 {
2701         int rc;
2702         int status;
2703         int size;
2704         unsigned char *buf;
2705
2706         buf = kzalloc(64, GFP_KERNEL);
2707         if (!buf)
2708                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2709
2710         /* Does controller have VPD for logical volume status? */
2711         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2712                 goto exit_failed;
2713
2714         /* Get the size of the VPD return buffer */
2715         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2716                                         buf, HPSA_VPD_HEADER_SZ);
2717         if (rc != 0)
2718                 goto exit_failed;
2719         size = buf[3];
2720
2721         /* Now get the whole VPD buffer */
2722         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2723                                         buf, size + HPSA_VPD_HEADER_SZ);
2724         if (rc != 0)
2725                 goto exit_failed;
2726         status = buf[4]; /* status byte */
2727
2728         kfree(buf);
2729         return status;
2730 exit_failed:
2731         kfree(buf);
2732         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2733 }
2734
2735 /* Determine offline status of a volume.
2736  * Return either:
2737  *  0 (not offline)
2738  *  0xff (offline for unknown reasons)
2739  *  # (integer code indicating one of several NOT READY states
2740  *     describing why a volume is to be kept offline)
2741  */
2742 static int hpsa_volume_offline(struct ctlr_info *h,
2743                                         unsigned char scsi3addr[])
2744 {
2745         struct CommandList *c;
2746         unsigned char *sense, sense_key, asc, ascq;
2747         int rc, ldstat = 0;
2748         u16 cmd_status;
2749         u8 scsi_status;
2750 #define ASC_LUN_NOT_READY 0x04
2751 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2752 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2753
2754         c = cmd_alloc(h);
2755         if (!c)
2756                 return 0;
2757         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2758         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
2759         if (rc) {
2760                 cmd_free(h, c);
2761                 return 0;
2762         }
2763         sense = c->err_info->SenseInfo;
2764         sense_key = sense[2];
2765         asc = sense[12];
2766         ascq = sense[13];
2767         cmd_status = c->err_info->CommandStatus;
2768         scsi_status = c->err_info->ScsiStatus;
2769         cmd_free(h, c);
2770         /* Is the volume 'not ready'? */
2771         if (cmd_status != CMD_TARGET_STATUS ||
2772                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2773                 sense_key != NOT_READY ||
2774                 asc != ASC_LUN_NOT_READY)  {
2775                 return 0;
2776         }
2777
2778         /* Determine the reason for not ready state */
2779         ldstat = hpsa_get_volume_status(h, scsi3addr);
2780
2781         /* Keep volume offline in certain cases: */
2782         switch (ldstat) {
2783         case HPSA_LV_UNDERGOING_ERASE:
2784         case HPSA_LV_UNDERGOING_RPI:
2785         case HPSA_LV_PENDING_RPI:
2786         case HPSA_LV_ENCRYPTED_NO_KEY:
2787         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2788         case HPSA_LV_UNDERGOING_ENCRYPTION:
2789         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2790         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2791                 return ldstat;
2792         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2793                 /* If VPD status page isn't available,
2794                  * use ASC/ASCQ to determine state
2795                  */
2796                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2797                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2798                         return ldstat;
2799                 break;
2800         default:
2801                 break;
2802         }
2803         return 0;
2804 }
2805
2806 static int hpsa_update_device_info(struct ctlr_info *h,
2807         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2808         unsigned char *is_OBDR_device)
2809 {
2810
2811 #define OBDR_SIG_OFFSET 43
2812 #define OBDR_TAPE_SIG "$DR-10"
2813 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2814 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2815
2816         unsigned char *inq_buff;
2817         unsigned char *obdr_sig;
2818
2819         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2820         if (!inq_buff)
2821                 goto bail_out;
2822
2823         /* Do an inquiry to the device to see what it is. */
2824         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2825                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2826                 /* Inquiry failed (msg printed already) */
2827                 dev_err(&h->pdev->dev,
2828                         "hpsa_update_device_info: inquiry failed\n");
2829                 goto bail_out;
2830         }
2831
2832         this_device->devtype = (inq_buff[0] & 0x1f);
2833         memcpy(this_device->scsi3addr, scsi3addr, 8);
2834         memcpy(this_device->vendor, &inq_buff[8],
2835                 sizeof(this_device->vendor));
2836         memcpy(this_device->model, &inq_buff[16],
2837                 sizeof(this_device->model));
2838         memset(this_device->device_id, 0,
2839                 sizeof(this_device->device_id));
2840         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2841                 sizeof(this_device->device_id));
2842
2843         if (this_device->devtype == TYPE_DISK &&
2844                 is_logical_dev_addr_mode(scsi3addr)) {
2845                 int volume_offline;
2846
2847                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2848                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2849                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2850                 volume_offline = hpsa_volume_offline(h, scsi3addr);
2851                 if (volume_offline < 0 || volume_offline > 0xff)
2852                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2853                 this_device->volume_offline = volume_offline & 0xff;
2854         } else {
2855                 this_device->raid_level = RAID_UNKNOWN;
2856                 this_device->offload_config = 0;
2857                 this_device->offload_enabled = 0;
2858                 this_device->offload_to_be_enabled = 0;
2859                 this_device->volume_offline = 0;
2860                 this_device->queue_depth = h->nr_cmds;
2861         }
2862
2863         if (is_OBDR_device) {
2864                 /* See if this is a One-Button-Disaster-Recovery device
2865                  * by looking for "$DR-10" at offset 43 in inquiry data.
2866                  */
2867                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2868                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2869                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2870                                                 OBDR_SIG_LEN) == 0);
2871         }
2872
2873         kfree(inq_buff);
2874         return 0;
2875
2876 bail_out:
2877         kfree(inq_buff);
2878         return 1;
2879 }
2880
2881 static unsigned char *ext_target_model[] = {
2882         "MSA2012",
2883         "MSA2024",
2884         "MSA2312",
2885         "MSA2324",
2886         "P2000 G3 SAS",
2887         "MSA 2040 SAS",
2888         NULL,
2889 };
2890
2891 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2892 {
2893         int i;
2894
2895         for (i = 0; ext_target_model[i]; i++)
2896                 if (strncmp(device->model, ext_target_model[i],
2897                         strlen(ext_target_model[i])) == 0)
2898                         return 1;
2899         return 0;
2900 }
2901
2902 /* Helper function to assign bus, target, lun mapping of devices.
2903  * Puts non-external target logical volumes on bus 0, external target logical
2904  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2905  * Logical drive target and lun are assigned at this time, but
2906  * physical device lun and target assignment are deferred (assigned
2907  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2908  */
2909 static void figure_bus_target_lun(struct ctlr_info *h,
2910         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2911 {
2912         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2913
2914         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2915                 /* physical device, target and lun filled in later */
2916                 if (is_hba_lunid(lunaddrbytes))
2917                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2918                 else
2919                         /* defer target, lun assignment for physical devices */
2920                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2921                 return;
2922         }
2923         /* It's a logical device */
2924         if (is_ext_target(h, device)) {
2925                 /* external target way, put logicals on bus 1
2926                  * and match target/lun numbers box
2927                  * reports, other smart array, bus 0, target 0, match lunid
2928                  */
2929                 hpsa_set_bus_target_lun(device,
2930                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2931                 return;
2932         }
2933         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2934 }
2935
2936 /*
2937  * If there is no lun 0 on a target, linux won't find any devices.
2938  * For the external targets (arrays), we have to manually detect the enclosure
2939  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2940  * it for some reason.  *tmpdevice is the target we're adding,
2941  * this_device is a pointer into the current element of currentsd[]
2942  * that we're building up in update_scsi_devices(), below.
2943  * lunzerobits is a bitmap that tracks which targets already have a
2944  * lun 0 assigned.
2945  * Returns 1 if an enclosure was added, 0 if not.
2946  */
2947 static int add_ext_target_dev(struct ctlr_info *h,
2948         struct hpsa_scsi_dev_t *tmpdevice,
2949         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2950         unsigned long lunzerobits[], int *n_ext_target_devs)
2951 {
2952         unsigned char scsi3addr[8];
2953
2954         if (test_bit(tmpdevice->target, lunzerobits))
2955                 return 0; /* There is already a lun 0 on this target. */
2956
2957         if (!is_logical_dev_addr_mode(lunaddrbytes))
2958                 return 0; /* It's the logical targets that may lack lun 0. */
2959
2960         if (!is_ext_target(h, tmpdevice))
2961                 return 0; /* Only external target devices have this problem. */
2962
2963         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2964                 return 0;
2965
2966         memset(scsi3addr, 0, 8);
2967         scsi3addr[3] = tmpdevice->target;
2968         if (is_hba_lunid(scsi3addr))
2969                 return 0; /* Don't add the RAID controller here. */
2970
2971         if (is_scsi_rev_5(h))
2972                 return 0; /* p1210m doesn't need to do this. */
2973
2974         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2975                 dev_warn(&h->pdev->dev, "Maximum number of external "
2976                         "target devices exceeded.  Check your hardware "
2977                         "configuration.");
2978                 return 0;
2979         }
2980
2981         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2982                 return 0;
2983         (*n_ext_target_devs)++;
2984         hpsa_set_bus_target_lun(this_device,
2985                                 tmpdevice->bus, tmpdevice->target, 0);
2986         set_bit(tmpdevice->target, lunzerobits);
2987         return 1;
2988 }
2989
2990 /*
2991  * Get address of physical disk used for an ioaccel2 mode command:
2992  *      1. Extract ioaccel2 handle from the command.
2993  *      2. Find a matching ioaccel2 handle from list of physical disks.
2994  *      3. Return:
2995  *              1 and set scsi3addr to address of matching physical
2996  *              0 if no matching physical disk was found.
2997  */
2998 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2999         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3000 {
3001         struct io_accel2_cmd *c2 =
3002                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3003         unsigned long flags;
3004         int i;
3005
3006         spin_lock_irqsave(&h->devlock, flags);
3007         for (i = 0; i < h->ndevices; i++)
3008                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3009                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3010                                 sizeof(h->dev[i]->scsi3addr));
3011                         spin_unlock_irqrestore(&h->devlock, flags);
3012                         return 1;
3013                 }
3014         spin_unlock_irqrestore(&h->devlock, flags);
3015         return 0;
3016 }
3017
3018 /*
3019  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3020  * logdev.  The number of luns in physdev and logdev are returned in
3021  * *nphysicals and *nlogicals, respectively.
3022  * Returns 0 on success, -1 otherwise.
3023  */
3024 static int hpsa_gather_lun_info(struct ctlr_info *h,
3025         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3026         struct ReportLUNdata *logdev, u32 *nlogicals)
3027 {
3028         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3029                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3030                 return -1;
3031         }
3032         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3033         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3034                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3035                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3036                 *nphysicals = HPSA_MAX_PHYS_LUN;
3037         }
3038         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3039                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3040                 return -1;
3041         }
3042         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3043         /* Reject Logicals in excess of our max capability. */
3044         if (*nlogicals > HPSA_MAX_LUN) {
3045                 dev_warn(&h->pdev->dev,
3046                         "maximum logical LUNs (%d) exceeded.  "
3047                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3048                         *nlogicals - HPSA_MAX_LUN);
3049                         *nlogicals = HPSA_MAX_LUN;
3050         }
3051         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3052                 dev_warn(&h->pdev->dev,
3053                         "maximum logical + physical LUNs (%d) exceeded. "
3054                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3055                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3056                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3057         }
3058         return 0;
3059 }
3060
3061 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3062         int i, int nphysicals, int nlogicals,
3063         struct ReportExtendedLUNdata *physdev_list,
3064         struct ReportLUNdata *logdev_list)
3065 {
3066         /* Helper function, figure out where the LUN ID info is coming from
3067          * given index i, lists of physical and logical devices, where in
3068          * the list the raid controller is supposed to appear (first or last)
3069          */
3070
3071         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3072         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3073
3074         if (i == raid_ctlr_position)
3075                 return RAID_CTLR_LUNID;
3076
3077         if (i < logicals_start)
3078                 return &physdev_list->LUN[i -
3079                                 (raid_ctlr_position == 0)].lunid[0];
3080
3081         if (i < last_device)
3082                 return &logdev_list->LUN[i - nphysicals -
3083                         (raid_ctlr_position == 0)][0];
3084         BUG();
3085         return NULL;
3086 }
3087
3088 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3089 {
3090         int rc;
3091         int hba_mode_enabled;
3092         struct bmic_controller_parameters *ctlr_params;
3093         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3094                 GFP_KERNEL);
3095
3096         if (!ctlr_params)
3097                 return -ENOMEM;
3098         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3099                 sizeof(struct bmic_controller_parameters));
3100         if (rc) {
3101                 kfree(ctlr_params);
3102                 return rc;
3103         }
3104
3105         hba_mode_enabled =
3106                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3107         kfree(ctlr_params);
3108         return hba_mode_enabled;
3109 }
3110
3111 /* get physical drive ioaccel handle and queue depth */
3112 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3113                 struct hpsa_scsi_dev_t *dev,
3114                 u8 *lunaddrbytes,
3115                 struct bmic_identify_physical_device *id_phys)
3116 {
3117         int rc;
3118         struct ext_report_lun_entry *rle =
3119                 (struct ext_report_lun_entry *) lunaddrbytes;
3120
3121         dev->ioaccel_handle = rle->ioaccel_handle;
3122         memset(id_phys, 0, sizeof(*id_phys));
3123         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3124                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3125                         sizeof(*id_phys));
3126         if (!rc)
3127                 /* Reserve space for FW operations */
3128 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3129 #define DRIVE_QUEUE_DEPTH 7
3130                 dev->queue_depth =
3131                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3132                                 DRIVE_CMDS_RESERVED_FOR_FW;
3133         else
3134                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3135         atomic_set(&dev->ioaccel_cmds_out, 0);
3136 }
3137
3138 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3139 {
3140         /* the idea here is we could get notified
3141          * that some devices have changed, so we do a report
3142          * physical luns and report logical luns cmd, and adjust
3143          * our list of devices accordingly.
3144          *
3145          * The scsi3addr's of devices won't change so long as the
3146          * adapter is not reset.  That means we can rescan and
3147          * tell which devices we already know about, vs. new
3148          * devices, vs.  disappearing devices.
3149          */
3150         struct ReportExtendedLUNdata *physdev_list = NULL;
3151         struct ReportLUNdata *logdev_list = NULL;
3152         struct bmic_identify_physical_device *id_phys = NULL;
3153         u32 nphysicals = 0;
3154         u32 nlogicals = 0;
3155         u32 ndev_allocated = 0;
3156         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3157         int ncurrent = 0;
3158         int i, n_ext_target_devs, ndevs_to_allocate;
3159         int raid_ctlr_position;
3160         int rescan_hba_mode;
3161         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3162
3163         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3164         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3165         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3166         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3167         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3168
3169         if (!currentsd || !physdev_list || !logdev_list ||
3170                 !tmpdevice || !id_phys) {
3171                 dev_err(&h->pdev->dev, "out of memory\n");
3172                 goto out;
3173         }
3174         memset(lunzerobits, 0, sizeof(lunzerobits));
3175
3176         rescan_hba_mode = hpsa_hba_mode_enabled(h);
3177         if (rescan_hba_mode < 0)
3178                 goto out;
3179
3180         if (!h->hba_mode_enabled && rescan_hba_mode)
3181                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3182         else if (h->hba_mode_enabled && !rescan_hba_mode)
3183                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3184
3185         h->hba_mode_enabled = rescan_hba_mode;
3186
3187         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3188                         logdev_list, &nlogicals))
3189                 goto out;
3190
3191         /* We might see up to the maximum number of logical and physical disks
3192          * plus external target devices, and a device for the local RAID
3193          * controller.
3194          */
3195         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3196
3197         /* Allocate the per device structures */
3198         for (i = 0; i < ndevs_to_allocate; i++) {
3199                 if (i >= HPSA_MAX_DEVICES) {
3200                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3201                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3202                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3203                         break;
3204                 }
3205
3206                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3207                 if (!currentsd[i]) {
3208                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3209                                 __FILE__, __LINE__);
3210                         goto out;
3211                 }
3212                 ndev_allocated++;
3213         }
3214
3215         if (is_scsi_rev_5(h))
3216                 raid_ctlr_position = 0;
3217         else
3218                 raid_ctlr_position = nphysicals + nlogicals;
3219
3220         /* adjust our table of devices */
3221         n_ext_target_devs = 0;
3222         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3223                 u8 *lunaddrbytes, is_OBDR = 0;
3224
3225                 /* Figure out where the LUN ID info is coming from */
3226                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3227                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3228
3229                 /* skip masked non-disk devices */
3230                 if (MASKED_DEVICE(lunaddrbytes))
3231                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3232                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3233                                 continue;
3234
3235                 /* Get device type, vendor, model, device id */
3236                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3237                                                         &is_OBDR))
3238                         continue; /* skip it if we can't talk to it. */
3239                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3240                 this_device = currentsd[ncurrent];
3241
3242                 /*
3243                  * For external target devices, we have to insert a LUN 0 which
3244                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3245                  * is nonetheless an enclosure device there.  We have to
3246                  * present that otherwise linux won't find anything if
3247                  * there is no lun 0.
3248                  */
3249                 if (add_ext_target_dev(h, tmpdevice, this_device,
3250                                 lunaddrbytes, lunzerobits,
3251                                 &n_ext_target_devs)) {
3252                         ncurrent++;
3253                         this_device = currentsd[ncurrent];
3254                 }
3255
3256                 *this_device = *tmpdevice;
3257
3258                 /* do not expose masked devices */
3259                 if (MASKED_DEVICE(lunaddrbytes) &&
3260                         i < nphysicals + (raid_ctlr_position == 0)) {
3261                         if (h->hba_mode_enabled)
3262                                 dev_warn(&h->pdev->dev,
3263                                         "Masked physical device detected\n");
3264                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3265                 } else {
3266                         this_device->expose_state =
3267                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3268                 }
3269
3270                 switch (this_device->devtype) {
3271                 case TYPE_ROM:
3272                         /* We don't *really* support actual CD-ROM devices,
3273                          * just "One Button Disaster Recovery" tape drive
3274                          * which temporarily pretends to be a CD-ROM drive.
3275                          * So we check that the device is really an OBDR tape
3276                          * device by checking for "$DR-10" in bytes 43-48 of
3277                          * the inquiry data.
3278                          */
3279                         if (is_OBDR)
3280                                 ncurrent++;
3281                         break;
3282                 case TYPE_DISK:
3283                         if (h->hba_mode_enabled) {
3284                                 /* never use raid mapper in HBA mode */
3285                                 this_device->offload_enabled = 0;
3286                                 ncurrent++;
3287                                 break;
3288                         } else if (h->acciopath_status) {
3289                                 if (i >= nphysicals) {
3290                                         ncurrent++;
3291                                         break;
3292                                 }
3293                         } else {
3294                                 if (i < nphysicals)
3295                                         break;
3296                                 ncurrent++;
3297                                 break;
3298                         }
3299                         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3300                                 h->transMethod & CFGTBL_Trans_io_accel2) {
3301                                 hpsa_get_ioaccel_drive_info(h, this_device,
3302                                                         lunaddrbytes, id_phys);
3303                                 atomic_set(&this_device->ioaccel_cmds_out, 0);
3304                                 ncurrent++;
3305                         }
3306                         break;
3307                 case TYPE_TAPE:
3308                 case TYPE_MEDIUM_CHANGER:
3309                         ncurrent++;
3310                         break;
3311                 case TYPE_ENCLOSURE:
3312                         if (h->hba_mode_enabled)
3313                                 ncurrent++;
3314                         break;
3315                 case TYPE_RAID:
3316                         /* Only present the Smartarray HBA as a RAID controller.
3317                          * If it's a RAID controller other than the HBA itself
3318                          * (an external RAID controller, MSA500 or similar)
3319                          * don't present it.
3320                          */
3321                         if (!is_hba_lunid(lunaddrbytes))
3322                                 break;
3323                         ncurrent++;
3324                         break;
3325                 default:
3326                         break;
3327                 }
3328                 if (ncurrent >= HPSA_MAX_DEVICES)
3329                         break;
3330         }
3331         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3332 out:
3333         kfree(tmpdevice);
3334         for (i = 0; i < ndev_allocated; i++)
3335                 kfree(currentsd[i]);
3336         kfree(currentsd);
3337         kfree(physdev_list);
3338         kfree(logdev_list);
3339         kfree(id_phys);
3340 }
3341
3342 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3343                                    struct scatterlist *sg)
3344 {
3345         u64 addr64 = (u64) sg_dma_address(sg);
3346         unsigned int len = sg_dma_len(sg);
3347
3348         desc->Addr = cpu_to_le64(addr64);
3349         desc->Len = cpu_to_le32(len);
3350         desc->Ext = 0;
3351 }
3352
3353 /*
3354  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3355  * dma mapping  and fills in the scatter gather entries of the
3356  * hpsa command, cp.
3357  */
3358 static int hpsa_scatter_gather(struct ctlr_info *h,
3359                 struct CommandList *cp,
3360                 struct scsi_cmnd *cmd)
3361 {
3362         struct scatterlist *sg;
3363         int use_sg, i, sg_index, chained;
3364         struct SGDescriptor *curr_sg;
3365
3366         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3367
3368         use_sg = scsi_dma_map(cmd);
3369         if (use_sg < 0)
3370                 return use_sg;
3371
3372         if (!use_sg)
3373                 goto sglist_finished;
3374
3375         curr_sg = cp->SG;
3376         chained = 0;
3377         sg_index = 0;
3378         scsi_for_each_sg(cmd, sg, use_sg, i) {
3379                 if (i == h->max_cmd_sg_entries - 1 &&
3380                         use_sg > h->max_cmd_sg_entries) {
3381                         chained = 1;
3382                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3383                         sg_index = 0;
3384                 }
3385                 hpsa_set_sg_descriptor(curr_sg, sg);
3386                 curr_sg++;
3387         }
3388
3389         /* Back the pointer up to the last entry and mark it as "last". */
3390         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3391
3392         if (use_sg + chained > h->maxSG)
3393                 h->maxSG = use_sg + chained;
3394
3395         if (chained) {
3396                 cp->Header.SGList = h->max_cmd_sg_entries;
3397                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3398                 if (hpsa_map_sg_chain_block(h, cp)) {
3399                         scsi_dma_unmap(cmd);
3400                         return -1;
3401                 }
3402                 return 0;
3403         }
3404
3405 sglist_finished:
3406
3407         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3408         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3409         return 0;
3410 }
3411
3412 #define IO_ACCEL_INELIGIBLE (1)
3413 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3414 {
3415         int is_write = 0;
3416         u32 block;
3417         u32 block_cnt;
3418
3419         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3420         switch (cdb[0]) {
3421         case WRITE_6:
3422         case WRITE_12:
3423                 is_write = 1;
3424         case READ_6:
3425         case READ_12:
3426                 if (*cdb_len == 6) {
3427                         block = (((u32) cdb[2]) << 8) | cdb[3];
3428                         block_cnt = cdb[4];
3429                 } else {
3430                         BUG_ON(*cdb_len != 12);
3431                         block = (((u32) cdb[2]) << 24) |
3432                                 (((u32) cdb[3]) << 16) |
3433                                 (((u32) cdb[4]) << 8) |
3434                                 cdb[5];
3435                         block_cnt =
3436                                 (((u32) cdb[6]) << 24) |
3437                                 (((u32) cdb[7]) << 16) |
3438                                 (((u32) cdb[8]) << 8) |
3439                                 cdb[9];
3440                 }
3441                 if (block_cnt > 0xffff)
3442                         return IO_ACCEL_INELIGIBLE;
3443
3444                 cdb[0] = is_write ? WRITE_10 : READ_10;
3445                 cdb[1] = 0;
3446                 cdb[2] = (u8) (block >> 24);
3447                 cdb[3] = (u8) (block >> 16);
3448                 cdb[4] = (u8) (block >> 8);
3449                 cdb[5] = (u8) (block);
3450                 cdb[6] = 0;
3451                 cdb[7] = (u8) (block_cnt >> 8);
3452                 cdb[8] = (u8) (block_cnt);
3453                 cdb[9] = 0;
3454                 *cdb_len = 10;
3455                 break;
3456         }
3457         return 0;
3458 }
3459
3460 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3461         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3462         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3463 {
3464         struct scsi_cmnd *cmd = c->scsi_cmd;
3465         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3466         unsigned int len;
3467         unsigned int total_len = 0;
3468         struct scatterlist *sg;
3469         u64 addr64;
3470         int use_sg, i;
3471         struct SGDescriptor *curr_sg;
3472         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3473
3474         /* TODO: implement chaining support */
3475         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3476                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3477                 return IO_ACCEL_INELIGIBLE;
3478         }
3479
3480         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3481
3482         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3483                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3484                 return IO_ACCEL_INELIGIBLE;
3485         }
3486
3487         c->cmd_type = CMD_IOACCEL1;
3488
3489         /* Adjust the DMA address to point to the accelerated command buffer */
3490         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3491                                 (c->cmdindex * sizeof(*cp));
3492         BUG_ON(c->busaddr & 0x0000007F);
3493
3494         use_sg = scsi_dma_map(cmd);
3495         if (use_sg < 0) {
3496                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3497                 return use_sg;
3498         }
3499
3500         if (use_sg) {
3501                 curr_sg = cp->SG;
3502                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3503                         addr64 = (u64) sg_dma_address(sg);
3504                         len  = sg_dma_len(sg);
3505                         total_len += len;
3506                         curr_sg->Addr = cpu_to_le64(addr64);
3507                         curr_sg->Len = cpu_to_le32(len);
3508                         curr_sg->Ext = cpu_to_le32(0);
3509                         curr_sg++;
3510                 }
3511                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3512
3513                 switch (cmd->sc_data_direction) {
3514                 case DMA_TO_DEVICE:
3515                         control |= IOACCEL1_CONTROL_DATA_OUT;
3516                         break;
3517                 case DMA_FROM_DEVICE:
3518                         control |= IOACCEL1_CONTROL_DATA_IN;
3519                         break;
3520                 case DMA_NONE:
3521                         control |= IOACCEL1_CONTROL_NODATAXFER;
3522                         break;
3523                 default:
3524                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3525                         cmd->sc_data_direction);
3526                         BUG();
3527                         break;
3528                 }
3529         } else {
3530                 control |= IOACCEL1_CONTROL_NODATAXFER;
3531         }
3532
3533         c->Header.SGList = use_sg;
3534         /* Fill out the command structure to submit */
3535         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3536         cp->transfer_len = cpu_to_le32(total_len);
3537         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3538                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3539         cp->control = cpu_to_le32(control);
3540         memcpy(cp->CDB, cdb, cdb_len);
3541         memcpy(cp->CISS_LUN, scsi3addr, 8);
3542         /* Tag was already set at init time. */
3543         enqueue_cmd_and_start_io(h, c);
3544         return 0;
3545 }
3546
3547 /*
3548  * Queue a command directly to a device behind the controller using the
3549  * I/O accelerator path.
3550  */
3551 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3552         struct CommandList *c)
3553 {
3554         struct scsi_cmnd *cmd = c->scsi_cmd;
3555         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3556
3557         c->phys_disk = dev;
3558
3559         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3560                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3561 }
3562
3563 /*
3564  * Set encryption parameters for the ioaccel2 request
3565  */
3566 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3567         struct CommandList *c, struct io_accel2_cmd *cp)
3568 {
3569         struct scsi_cmnd *cmd = c->scsi_cmd;
3570         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3571         struct raid_map_data *map = &dev->raid_map;
3572         u64 first_block;
3573
3574         /* Are we doing encryption on this device */
3575         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3576                 return;
3577         /* Set the data encryption key index. */
3578         cp->dekindex = map->dekindex;
3579
3580         /* Set the encryption enable flag, encoded into direction field. */
3581         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3582
3583         /* Set encryption tweak values based on logical block address
3584          * If block size is 512, tweak value is LBA.
3585          * For other block sizes, tweak is (LBA * block size)/ 512)
3586          */
3587         switch (cmd->cmnd[0]) {
3588         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3589         case WRITE_6:
3590         case READ_6:
3591                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3592                 break;
3593         case WRITE_10:
3594         case READ_10:
3595         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3596         case WRITE_12:
3597         case READ_12:
3598                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3599                 break;
3600         case WRITE_16:
3601         case READ_16:
3602                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3603                 break;
3604         default:
3605                 dev_err(&h->pdev->dev,
3606                         "ERROR: %s: size (0x%x) not supported for encryption\n",
3607                         __func__, cmd->cmnd[0]);
3608                 BUG();
3609                 break;
3610         }
3611
3612         if (le32_to_cpu(map->volume_blk_size) != 512)
3613                 first_block = first_block *
3614                                 le32_to_cpu(map->volume_blk_size)/512;
3615
3616         cp->tweak_lower = cpu_to_le32(first_block);
3617         cp->tweak_upper = cpu_to_le32(first_block >> 32);
3618 }
3619
3620 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3621         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3622         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3623 {
3624         struct scsi_cmnd *cmd = c->scsi_cmd;
3625         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3626         struct ioaccel2_sg_element *curr_sg;
3627         int use_sg, i;
3628         struct scatterlist *sg;
3629         u64 addr64;
3630         u32 len;
3631         u32 total_len = 0;
3632
3633         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3634                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3635                 return IO_ACCEL_INELIGIBLE;
3636         }
3637
3638         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3639                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3640                 return IO_ACCEL_INELIGIBLE;
3641         }
3642
3643         c->cmd_type = CMD_IOACCEL2;
3644         /* Adjust the DMA address to point to the accelerated command buffer */
3645         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3646                                 (c->cmdindex * sizeof(*cp));
3647         BUG_ON(c->busaddr & 0x0000007F);
3648
3649         memset(cp, 0, sizeof(*cp));
3650         cp->IU_type = IOACCEL2_IU_TYPE;
3651
3652         use_sg = scsi_dma_map(cmd);
3653         if (use_sg < 0) {
3654                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3655                 return use_sg;
3656         }
3657
3658         if (use_sg) {
3659                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3660                 curr_sg = cp->sg;
3661                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3662                         addr64 = (u64) sg_dma_address(sg);
3663                         len  = sg_dma_len(sg);
3664                         total_len += len;
3665                         curr_sg->address = cpu_to_le64(addr64);
3666                         curr_sg->length = cpu_to_le32(len);
3667                         curr_sg->reserved[0] = 0;
3668                         curr_sg->reserved[1] = 0;
3669                         curr_sg->reserved[2] = 0;
3670                         curr_sg->chain_indicator = 0;
3671                         curr_sg++;
3672                 }
3673
3674                 switch (cmd->sc_data_direction) {
3675                 case DMA_TO_DEVICE:
3676                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3677                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3678                         break;
3679                 case DMA_FROM_DEVICE:
3680                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3681                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3682                         break;
3683                 case DMA_NONE:
3684                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3685                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3686                         break;
3687                 default:
3688                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3689                                 cmd->sc_data_direction);
3690                         BUG();
3691                         break;
3692                 }
3693         } else {
3694                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3695                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3696         }
3697
3698         /* Set encryption parameters, if necessary */
3699         set_encrypt_ioaccel2(h, c, cp);
3700
3701         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3702         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3703         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3704
3705         /* fill in sg elements */
3706         cp->sg_count = (u8) use_sg;
3707
3708         cp->data_len = cpu_to_le32(total_len);
3709         cp->err_ptr = cpu_to_le64(c->busaddr +
3710                         offsetof(struct io_accel2_cmd, error_data));
3711         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3712
3713         enqueue_cmd_and_start_io(h, c);
3714         return 0;
3715 }
3716
3717 /*
3718  * Queue a command to the correct I/O accelerator path.
3719  */
3720 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3721         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3722         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3723 {
3724         /* Try to honor the device's queue depth */
3725         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3726                                         phys_disk->queue_depth) {
3727                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3728                 return IO_ACCEL_INELIGIBLE;
3729         }
3730         if (h->transMethod & CFGTBL_Trans_io_accel1)
3731                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3732                                                 cdb, cdb_len, scsi3addr,
3733                                                 phys_disk);
3734         else
3735                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3736                                                 cdb, cdb_len, scsi3addr,
3737                                                 phys_disk);
3738 }
3739
3740 static void raid_map_helper(struct raid_map_data *map,
3741                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3742 {
3743         if (offload_to_mirror == 0)  {
3744                 /* use physical disk in the first mirrored group. */
3745                 *map_index %= le16_to_cpu(map->data_disks_per_row);
3746                 return;
3747         }
3748         do {
3749                 /* determine mirror group that *map_index indicates */
3750                 *current_group = *map_index /
3751                         le16_to_cpu(map->data_disks_per_row);
3752                 if (offload_to_mirror == *current_group)
3753                         continue;
3754                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3755                         /* select map index from next group */
3756                         *map_index += le16_to_cpu(map->data_disks_per_row);
3757                         (*current_group)++;
3758                 } else {
3759                         /* select map index from first group */
3760                         *map_index %= le16_to_cpu(map->data_disks_per_row);
3761                         *current_group = 0;
3762                 }
3763         } while (offload_to_mirror != *current_group);
3764 }
3765
3766 /*
3767  * Attempt to perform offload RAID mapping for a logical volume I/O.
3768  */
3769 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3770         struct CommandList *c)
3771 {
3772         struct scsi_cmnd *cmd = c->scsi_cmd;
3773         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3774         struct raid_map_data *map = &dev->raid_map;
3775         struct raid_map_disk_data *dd = &map->data[0];
3776         int is_write = 0;
3777         u32 map_index;
3778         u64 first_block, last_block;
3779         u32 block_cnt;
3780         u32 blocks_per_row;
3781         u64 first_row, last_row;
3782         u32 first_row_offset, last_row_offset;
3783         u32 first_column, last_column;
3784         u64 r0_first_row, r0_last_row;
3785         u32 r5or6_blocks_per_row;
3786         u64 r5or6_first_row, r5or6_last_row;
3787         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3788         u32 r5or6_first_column, r5or6_last_column;
3789         u32 total_disks_per_row;
3790         u32 stripesize;
3791         u32 first_group, last_group, current_group;
3792         u32 map_row;
3793         u32 disk_handle;
3794         u64 disk_block;
3795         u32 disk_block_cnt;
3796         u8 cdb[16];
3797         u8 cdb_len;
3798         u16 strip_size;
3799 #if BITS_PER_LONG == 32
3800         u64 tmpdiv;
3801 #endif
3802         int offload_to_mirror;
3803
3804         /* check for valid opcode, get LBA and block count */
3805         switch (cmd->cmnd[0]) {
3806         case WRITE_6:
3807                 is_write = 1;
3808         case READ_6:
3809                 first_block =
3810                         (((u64) cmd->cmnd[2]) << 8) |
3811                         cmd->cmnd[3];
3812                 block_cnt = cmd->cmnd[4];
3813                 if (block_cnt == 0)
3814                         block_cnt = 256;
3815                 break;
3816         case WRITE_10:
3817                 is_write = 1;
3818         case READ_10:
3819                 first_block =
3820                         (((u64) cmd->cmnd[2]) << 24) |
3821                         (((u64) cmd->cmnd[3]) << 16) |
3822                         (((u64) cmd->cmnd[4]) << 8) |
3823                         cmd->cmnd[5];
3824                 block_cnt =
3825                         (((u32) cmd->cmnd[7]) << 8) |
3826                         cmd->cmnd[8];
3827                 break;
3828         case WRITE_12:
3829                 is_write = 1;
3830         case READ_12:
3831                 first_block =
3832                         (((u64) cmd->cmnd[2]) << 24) |
3833                         (((u64) cmd->cmnd[3]) << 16) |
3834                         (((u64) cmd->cmnd[4]) << 8) |
3835                         cmd->cmnd[5];
3836                 block_cnt =
3837                         (((u32) cmd->cmnd[6]) << 24) |
3838                         (((u32) cmd->cmnd[7]) << 16) |
3839                         (((u32) cmd->cmnd[8]) << 8) |
3840                 cmd->cmnd[9];
3841                 break;
3842         case WRITE_16:
3843                 is_write = 1;
3844         case READ_16:
3845                 first_block =
3846                         (((u64) cmd->cmnd[2]) << 56) |
3847                         (((u64) cmd->cmnd[3]) << 48) |
3848                         (((u64) cmd->cmnd[4]) << 40) |
3849                         (((u64) cmd->cmnd[5]) << 32) |
3850                         (((u64) cmd->cmnd[6]) << 24) |
3851                         (((u64) cmd->cmnd[7]) << 16) |
3852                         (((u64) cmd->cmnd[8]) << 8) |
3853                         cmd->cmnd[9];
3854                 block_cnt =
3855                         (((u32) cmd->cmnd[10]) << 24) |
3856                         (((u32) cmd->cmnd[11]) << 16) |
3857                         (((u32) cmd->cmnd[12]) << 8) |
3858                         cmd->cmnd[13];
3859                 break;
3860         default:
3861                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3862         }
3863         last_block = first_block + block_cnt - 1;
3864
3865         /* check for write to non-RAID-0 */
3866         if (is_write && dev->raid_level != 0)
3867                 return IO_ACCEL_INELIGIBLE;
3868
3869         /* check for invalid block or wraparound */
3870         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3871                 last_block < first_block)
3872                 return IO_ACCEL_INELIGIBLE;
3873
3874         /* calculate stripe information for the request */
3875         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3876                                 le16_to_cpu(map->strip_size);
3877         strip_size = le16_to_cpu(map->strip_size);
3878 #if BITS_PER_LONG == 32
3879         tmpdiv = first_block;
3880         (void) do_div(tmpdiv, blocks_per_row);
3881         first_row = tmpdiv;
3882         tmpdiv = last_block;
3883         (void) do_div(tmpdiv, blocks_per_row);
3884         last_row = tmpdiv;
3885         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3886         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3887         tmpdiv = first_row_offset;
3888         (void) do_div(tmpdiv, strip_size);
3889         first_column = tmpdiv;
3890         tmpdiv = last_row_offset;
3891         (void) do_div(tmpdiv, strip_size);
3892         last_column = tmpdiv;
3893 #else
3894         first_row = first_block / blocks_per_row;
3895         last_row = last_block / blocks_per_row;
3896         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3897         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3898         first_column = first_row_offset / strip_size;
3899         last_column = last_row_offset / strip_size;
3900 #endif
3901
3902         /* if this isn't a single row/column then give to the controller */
3903         if ((first_row != last_row) || (first_column != last_column))
3904                 return IO_ACCEL_INELIGIBLE;
3905
3906         /* proceeding with driver mapping */
3907         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3908                                 le16_to_cpu(map->metadata_disks_per_row);
3909         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3910                                 le16_to_cpu(map->row_cnt);
3911         map_index = (map_row * total_disks_per_row) + first_column;
3912
3913         switch (dev->raid_level) {
3914         case HPSA_RAID_0:
3915                 break; /* nothing special to do */
3916         case HPSA_RAID_1:
3917                 /* Handles load balance across RAID 1 members.
3918                  * (2-drive R1 and R10 with even # of drives.)
3919                  * Appropriate for SSDs, not optimal for HDDs
3920                  */
3921                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3922                 if (dev->offload_to_mirror)
3923                         map_index += le16_to_cpu(map->data_disks_per_row);
3924                 dev->offload_to_mirror = !dev->offload_to_mirror;
3925                 break;
3926         case HPSA_RAID_ADM:
3927                 /* Handles N-way mirrors  (R1-ADM)
3928                  * and R10 with # of drives divisible by 3.)
3929                  */
3930                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3931
3932                 offload_to_mirror = dev->offload_to_mirror;
3933                 raid_map_helper(map, offload_to_mirror,
3934                                 &map_index, &current_group);
3935                 /* set mirror group to use next time */
3936                 offload_to_mirror =
3937                         (offload_to_mirror >=
3938                         le16_to_cpu(map->layout_map_count) - 1)
3939                         ? 0 : offload_to_mirror + 1;
3940                 dev->offload_to_mirror = offload_to_mirror;
3941                 /* Avoid direct use of dev->offload_to_mirror within this
3942                  * function since multiple threads might simultaneously
3943                  * increment it beyond the range of dev->layout_map_count -1.
3944                  */
3945                 break;
3946         case HPSA_RAID_5:
3947         case HPSA_RAID_6:
3948                 if (le16_to_cpu(map->layout_map_count) <= 1)
3949                         break;
3950
3951                 /* Verify first and last block are in same RAID group */
3952                 r5or6_blocks_per_row =
3953                         le16_to_cpu(map->strip_size) *
3954                         le16_to_cpu(map->data_disks_per_row);
3955                 BUG_ON(r5or6_blocks_per_row == 0);
3956                 stripesize = r5or6_blocks_per_row *
3957                         le16_to_cpu(map->layout_map_count);
3958 #if BITS_PER_LONG == 32
3959                 tmpdiv = first_block;
3960                 first_group = do_div(tmpdiv, stripesize);
3961                 tmpdiv = first_group;
3962                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3963                 first_group = tmpdiv;
3964                 tmpdiv = last_block;
3965                 last_group = do_div(tmpdiv, stripesize);
3966                 tmpdiv = last_group;
3967                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3968                 last_group = tmpdiv;
3969 #else
3970                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3971                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3972 #endif
3973                 if (first_group != last_group)
3974                         return IO_ACCEL_INELIGIBLE;
3975
3976                 /* Verify request is in a single row of RAID 5/6 */
3977 #if BITS_PER_LONG == 32
3978                 tmpdiv = first_block;
3979                 (void) do_div(tmpdiv, stripesize);
3980                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3981                 tmpdiv = last_block;
3982                 (void) do_div(tmpdiv, stripesize);
3983                 r5or6_last_row = r0_last_row = tmpdiv;
3984 #else
3985                 first_row = r5or6_first_row = r0_first_row =
3986                                                 first_block / stripesize;
3987                 r5or6_last_row = r0_last_row = last_block / stripesize;
3988 #endif
3989                 if (r5or6_first_row != r5or6_last_row)
3990                         return IO_ACCEL_INELIGIBLE;
3991
3992
3993                 /* Verify request is in a single column */
3994 #if BITS_PER_LONG == 32
3995                 tmpdiv = first_block;
3996                 first_row_offset = do_div(tmpdiv, stripesize);
3997                 tmpdiv = first_row_offset;
3998                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3999                 r5or6_first_row_offset = first_row_offset;
4000                 tmpdiv = last_block;
4001                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4002                 tmpdiv = r5or6_last_row_offset;
4003                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4004                 tmpdiv = r5or6_first_row_offset;
4005                 (void) do_div(tmpdiv, map->strip_size);
4006                 first_column = r5or6_first_column = tmpdiv;
4007                 tmpdiv = r5or6_last_row_offset;
4008                 (void) do_div(tmpdiv, map->strip_size);
4009                 r5or6_last_column = tmpdiv;
4010 #else
4011                 first_row_offset = r5or6_first_row_offset =
4012                         (u32)((first_block % stripesize) %
4013                                                 r5or6_blocks_per_row);
4014
4015                 r5or6_last_row_offset =
4016                         (u32)((last_block % stripesize) %
4017                                                 r5or6_blocks_per_row);
4018
4019                 first_column = r5or6_first_column =
4020                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4021                 r5or6_last_column =
4022                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4023 #endif
4024                 if (r5or6_first_column != r5or6_last_column)
4025                         return IO_ACCEL_INELIGIBLE;
4026
4027                 /* Request is eligible */
4028                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4029                         le16_to_cpu(map->row_cnt);
4030
4031                 map_index = (first_group *
4032                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4033                         (map_row * total_disks_per_row) + first_column;
4034                 break;
4035         default:
4036                 return IO_ACCEL_INELIGIBLE;
4037         }
4038
4039         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4040                 return IO_ACCEL_INELIGIBLE;
4041
4042         c->phys_disk = dev->phys_disk[map_index];
4043
4044         disk_handle = dd[map_index].ioaccel_handle;
4045         disk_block = le64_to_cpu(map->disk_starting_blk) +
4046                         first_row * le16_to_cpu(map->strip_size) +
4047                         (first_row_offset - first_column *
4048                         le16_to_cpu(map->strip_size));
4049         disk_block_cnt = block_cnt;
4050
4051         /* handle differing logical/physical block sizes */
4052         if (map->phys_blk_shift) {
4053                 disk_block <<= map->phys_blk_shift;
4054                 disk_block_cnt <<= map->phys_blk_shift;
4055         }
4056         BUG_ON(disk_block_cnt > 0xffff);
4057
4058         /* build the new CDB for the physical disk I/O */
4059         if (disk_block > 0xffffffff) {
4060                 cdb[0] = is_write ? WRITE_16 : READ_16;
4061                 cdb[1] = 0;
4062                 cdb[2] = (u8) (disk_block >> 56);
4063                 cdb[3] = (u8) (disk_block >> 48);
4064                 cdb[4] = (u8) (disk_block >> 40);
4065                 cdb[5] = (u8) (disk_block >> 32);
4066                 cdb[6] = (u8) (disk_block >> 24);
4067                 cdb[7] = (u8) (disk_block >> 16);
4068                 cdb[8] = (u8) (disk_block >> 8);
4069                 cdb[9] = (u8) (disk_block);
4070                 cdb[10] = (u8) (disk_block_cnt >> 24);
4071                 cdb[11] = (u8) (disk_block_cnt >> 16);
4072                 cdb[12] = (u8) (disk_block_cnt >> 8);
4073                 cdb[13] = (u8) (disk_block_cnt);
4074                 cdb[14] = 0;
4075                 cdb[15] = 0;
4076                 cdb_len = 16;
4077         } else {
4078                 cdb[0] = is_write ? WRITE_10 : READ_10;
4079                 cdb[1] = 0;
4080                 cdb[2] = (u8) (disk_block >> 24);
4081                 cdb[3] = (u8) (disk_block >> 16);
4082                 cdb[4] = (u8) (disk_block >> 8);
4083                 cdb[5] = (u8) (disk_block);
4084                 cdb[6] = 0;
4085                 cdb[7] = (u8) (disk_block_cnt >> 8);
4086                 cdb[8] = (u8) (disk_block_cnt);
4087                 cdb[9] = 0;
4088                 cdb_len = 10;
4089         }
4090         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4091                                                 dev->scsi3addr,
4092                                                 dev->phys_disk[map_index]);
4093 }
4094
4095 /*
4096  * Submit commands down the "normal" RAID stack path
4097  * All callers to hpsa_ciss_submit must check lockup_detected
4098  * beforehand, before (opt.) and after calling cmd_alloc
4099  */
4100 static int hpsa_ciss_submit(struct ctlr_info *h,
4101         struct CommandList *c, struct scsi_cmnd *cmd,
4102         unsigned char scsi3addr[])
4103 {
4104         cmd->host_scribble = (unsigned char *) c;
4105         c->cmd_type = CMD_SCSI;
4106         c->scsi_cmd = cmd;
4107         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4108         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4109         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4110
4111         /* Fill in the request block... */
4112
4113         c->Request.Timeout = 0;
4114         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4115         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4116         c->Request.CDBLen = cmd->cmd_len;
4117         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4118         switch (cmd->sc_data_direction) {
4119         case DMA_TO_DEVICE:
4120                 c->Request.type_attr_dir =
4121                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4122                 break;
4123         case DMA_FROM_DEVICE:
4124                 c->Request.type_attr_dir =
4125                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4126                 break;
4127         case DMA_NONE:
4128                 c->Request.type_attr_dir =
4129                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4130                 break;
4131         case DMA_BIDIRECTIONAL:
4132                 /* This can happen if a buggy application does a scsi passthru
4133                  * and sets both inlen and outlen to non-zero. ( see
4134                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4135                  */
4136
4137                 c->Request.type_attr_dir =
4138                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4139                 /* This is technically wrong, and hpsa controllers should
4140                  * reject it with CMD_INVALID, which is the most correct
4141                  * response, but non-fibre backends appear to let it
4142                  * slide by, and give the same results as if this field
4143                  * were set correctly.  Either way is acceptable for
4144                  * our purposes here.
4145                  */
4146
4147                 break;
4148
4149         default:
4150                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4151                         cmd->sc_data_direction);
4152                 BUG();
4153                 break;
4154         }
4155
4156         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4157                 cmd_free(h, c);
4158                 return SCSI_MLQUEUE_HOST_BUSY;
4159         }
4160         enqueue_cmd_and_start_io(h, c);
4161         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4162         return 0;
4163 }
4164
4165 static void hpsa_command_resubmit_worker(struct work_struct *work)
4166 {
4167         struct scsi_cmnd *cmd;
4168         struct hpsa_scsi_dev_t *dev;
4169         struct CommandList *c =
4170                         container_of(work, struct CommandList, work);
4171
4172         cmd = c->scsi_cmd;
4173         dev = cmd->device->hostdata;
4174         if (!dev) {
4175                 cmd->result = DID_NO_CONNECT << 16;
4176                 cmd->scsi_done(cmd);
4177                 return;
4178         }
4179         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4180                 /*
4181                  * If we get here, it means dma mapping failed. Try
4182                  * again via scsi mid layer, which will then get
4183                  * SCSI_MLQUEUE_HOST_BUSY.
4184                  */
4185                 cmd->result = DID_IMM_RETRY << 16;
4186                 cmd->scsi_done(cmd);
4187         }
4188 }
4189
4190 /* Running in struct Scsi_Host->host_lock less mode */
4191 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4192 {
4193         struct ctlr_info *h;
4194         struct hpsa_scsi_dev_t *dev;
4195         unsigned char scsi3addr[8];
4196         struct CommandList *c;
4197         int rc = 0;
4198
4199         /* Get the ptr to our adapter structure out of cmd->host. */
4200         h = sdev_to_hba(cmd->device);
4201         dev = cmd->device->hostdata;
4202         if (!dev) {
4203                 cmd->result = DID_NO_CONNECT << 16;
4204                 cmd->scsi_done(cmd);
4205                 return 0;
4206         }
4207         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4208
4209         if (unlikely(lockup_detected(h))) {
4210                 cmd->result = DID_NO_CONNECT << 16;
4211                 cmd->scsi_done(cmd);
4212                 return 0;
4213         }
4214         c = cmd_alloc(h);
4215         if (c == NULL) {                        /* trouble... */
4216                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4217                 return SCSI_MLQUEUE_HOST_BUSY;
4218         }
4219         if (unlikely(lockup_detected(h))) {
4220                 cmd->result = DID_NO_CONNECT << 16;
4221                 cmd_free(h, c);
4222                 cmd->scsi_done(cmd);
4223                 return 0;
4224         }
4225
4226         /*
4227          * Call alternate submit routine for I/O accelerated commands.
4228          * Retries always go down the normal I/O path.
4229          */
4230         if (likely(cmd->retries == 0 &&
4231                 cmd->request->cmd_type == REQ_TYPE_FS &&
4232                 h->acciopath_status)) {
4233
4234                 cmd->host_scribble = (unsigned char *) c;
4235                 c->cmd_type = CMD_SCSI;
4236                 c->scsi_cmd = cmd;
4237
4238                 if (dev->offload_enabled) {
4239                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
4240                         if (rc == 0)
4241                                 return 0; /* Sent on ioaccel path */
4242                         if (rc < 0) {   /* scsi_dma_map failed. */
4243                                 cmd_free(h, c);
4244                                 return SCSI_MLQUEUE_HOST_BUSY;
4245                         }
4246                 } else if (dev->ioaccel_handle) {
4247                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
4248                         if (rc == 0)
4249                                 return 0; /* Sent on direct map path */
4250                         if (rc < 0) {   /* scsi_dma_map failed. */
4251                                 cmd_free(h, c);
4252                                 return SCSI_MLQUEUE_HOST_BUSY;
4253                         }
4254                 }
4255         }
4256         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4257 }
4258
4259 static void hpsa_scan_complete(struct ctlr_info *h)
4260 {
4261         unsigned long flags;
4262
4263         spin_lock_irqsave(&h->scan_lock, flags);
4264         h->scan_finished = 1;
4265         wake_up_all(&h->scan_wait_queue);
4266         spin_unlock_irqrestore(&h->scan_lock, flags);
4267 }
4268
4269 static void hpsa_scan_start(struct Scsi_Host *sh)
4270 {
4271         struct ctlr_info *h = shost_to_hba(sh);
4272         unsigned long flags;
4273
4274         /*
4275          * Don't let rescans be initiated on a controller known to be locked
4276          * up.  If the controller locks up *during* a rescan, that thread is
4277          * probably hosed, but at least we can prevent new rescan threads from
4278          * piling up on a locked up controller.
4279          */
4280         if (unlikely(lockup_detected(h)))
4281                 return hpsa_scan_complete(h);
4282
4283         /* wait until any scan already in progress is finished. */
4284         while (1) {
4285                 spin_lock_irqsave(&h->scan_lock, flags);
4286                 if (h->scan_finished)
4287                         break;
4288                 spin_unlock_irqrestore(&h->scan_lock, flags);
4289                 wait_event(h->scan_wait_queue, h->scan_finished);
4290                 /* Note: We don't need to worry about a race between this
4291                  * thread and driver unload because the midlayer will
4292                  * have incremented the reference count, so unload won't
4293                  * happen if we're in here.
4294                  */
4295         }
4296         h->scan_finished = 0; /* mark scan as in progress */
4297         spin_unlock_irqrestore(&h->scan_lock, flags);
4298
4299         if (unlikely(lockup_detected(h)))
4300                 return hpsa_scan_complete(h);
4301
4302         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4303
4304         hpsa_scan_complete(h);
4305 }
4306
4307 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4308 {
4309         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4310
4311         if (!logical_drive)
4312                 return -ENODEV;
4313
4314         if (qdepth < 1)
4315                 qdepth = 1;
4316         else if (qdepth > logical_drive->queue_depth)
4317                 qdepth = logical_drive->queue_depth;
4318
4319         return scsi_change_queue_depth(sdev, qdepth);
4320 }
4321
4322 static int hpsa_scan_finished(struct Scsi_Host *sh,
4323         unsigned long elapsed_time)
4324 {
4325         struct ctlr_info *h = shost_to_hba(sh);
4326         unsigned long flags;
4327         int finished;
4328
4329         spin_lock_irqsave(&h->scan_lock, flags);
4330         finished = h->scan_finished;
4331         spin_unlock_irqrestore(&h->scan_lock, flags);
4332         return finished;
4333 }
4334
4335 static void hpsa_unregister_scsi(struct ctlr_info *h)
4336 {
4337         /* we are being forcibly unloaded, and may not refuse. */
4338         scsi_remove_host(h->scsi_host);
4339         scsi_host_put(h->scsi_host);
4340         h->scsi_host = NULL;
4341 }
4342
4343 static int hpsa_register_scsi(struct ctlr_info *h)
4344 {
4345         struct Scsi_Host *sh;
4346         int error;
4347
4348         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4349         if (sh == NULL)
4350                 goto fail;
4351
4352         sh->io_port = 0;
4353         sh->n_io_port = 0;
4354         sh->this_id = -1;
4355         sh->max_channel = 3;
4356         sh->max_cmd_len = MAX_COMMAND_SIZE;
4357         sh->max_lun = HPSA_MAX_LUN;
4358         sh->max_id = HPSA_MAX_LUN;
4359         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4360         sh->cmd_per_lun = sh->can_queue;
4361         sh->sg_tablesize = h->maxsgentries;
4362         h->scsi_host = sh;
4363         sh->hostdata[0] = (unsigned long) h;
4364         sh->irq = h->intr[h->intr_mode];
4365         sh->unique_id = sh->irq;
4366         error = scsi_add_host(sh, &h->pdev->dev);
4367         if (error)
4368                 goto fail_host_put;
4369         scsi_scan_host(sh);
4370         return 0;
4371
4372  fail_host_put:
4373         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4374                 " failed for controller %d\n", __func__, h->ctlr);
4375         scsi_host_put(sh);
4376         return error;
4377  fail:
4378         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4379                 " failed for controller %d\n", __func__, h->ctlr);
4380         return -ENOMEM;
4381 }
4382
4383 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4384         unsigned char lunaddr[])
4385 {
4386         int rc;
4387         int count = 0;
4388         int waittime = 1; /* seconds */
4389         struct CommandList *c;
4390
4391         c = cmd_alloc(h);
4392         if (!c) {
4393                 dev_warn(&h->pdev->dev, "out of memory in "
4394                         "wait_for_device_to_become_ready.\n");
4395                 return IO_ERROR;
4396         }
4397
4398         /* Send test unit ready until device ready, or give up. */
4399         while (count < HPSA_TUR_RETRY_LIMIT) {
4400
4401                 /* Wait for a bit.  do this first, because if we send
4402                  * the TUR right away, the reset will just abort it.
4403                  */
4404                 msleep(1000 * waittime);
4405                 count++;
4406                 rc = 0; /* Device ready. */
4407
4408                 /* Increase wait time with each try, up to a point. */
4409                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4410                         waittime = waittime * 2;
4411
4412                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4413                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4414                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4415                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
4416                                                 NO_TIMEOUT);
4417                 if (rc)
4418                         goto do_it_again;
4419                 /* no unmap needed here because no data xfer. */
4420
4421                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4422                         break;
4423
4424                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4425                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4426                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4427                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4428                         break;
4429 do_it_again:
4430                 dev_warn(&h->pdev->dev, "waiting %d secs "
4431                         "for device to become ready.\n", waittime);
4432                 rc = 1; /* device not ready. */
4433         }
4434
4435         if (rc)
4436                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4437         else
4438                 dev_warn(&h->pdev->dev, "device is ready.\n");
4439
4440         cmd_free(h, c);
4441         return rc;
4442 }
4443
4444 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4445  * complaining.  Doing a host- or bus-reset can't do anything good here.
4446  */
4447 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4448 {
4449         int rc;
4450         struct ctlr_info *h;
4451         struct hpsa_scsi_dev_t *dev;
4452
4453         /* find the controller to which the command to be aborted was sent */
4454         h = sdev_to_hba(scsicmd->device);
4455         if (h == NULL) /* paranoia */
4456                 return FAILED;
4457
4458         if (lockup_detected(h))
4459                 return FAILED;
4460
4461         dev = scsicmd->device->hostdata;
4462         if (!dev) {
4463                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4464                         "device lookup failed.\n");
4465                 return FAILED;
4466         }
4467
4468         /* if controller locked up, we can guarantee command won't complete */
4469         if (lockup_detected(h)) {
4470                 dev_warn(&h->pdev->dev,
4471                         "scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
4472                         h->scsi_host->host_no, dev->bus, dev->target,
4473                         dev->lun);
4474                 return FAILED;
4475         }
4476
4477         /* this reset request might be the result of a lockup; check */
4478         if (detect_controller_lockup(h)) {
4479                 dev_warn(&h->pdev->dev,
4480                          "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
4481                          h->scsi_host->host_no, dev->bus, dev->target,
4482                          dev->lun);
4483                 return FAILED;
4484         }
4485
4486         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
4487
4488         /* send a reset to the SCSI LUN which the command was sent to */
4489         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
4490                              DEFAULT_REPLY_QUEUE);
4491         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4492                 return SUCCESS;
4493
4494         dev_warn(&h->pdev->dev,
4495                 "scsi %d:%d:%d:%d reset failed\n",
4496                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4497         return FAILED;
4498 }
4499
4500 static void swizzle_abort_tag(u8 *tag)
4501 {
4502         u8 original_tag[8];
4503
4504         memcpy(original_tag, tag, 8);
4505         tag[0] = original_tag[3];
4506         tag[1] = original_tag[2];
4507         tag[2] = original_tag[1];
4508         tag[3] = original_tag[0];
4509         tag[4] = original_tag[7];
4510         tag[5] = original_tag[6];
4511         tag[6] = original_tag[5];
4512         tag[7] = original_tag[4];
4513 }
4514
4515 static void hpsa_get_tag(struct ctlr_info *h,
4516         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4517 {
4518         u64 tag;
4519         if (c->cmd_type == CMD_IOACCEL1) {
4520                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4521                         &h->ioaccel_cmd_pool[c->cmdindex];
4522                 tag = le64_to_cpu(cm1->tag);
4523                 *tagupper = cpu_to_le32(tag >> 32);
4524                 *taglower = cpu_to_le32(tag);
4525                 return;
4526         }
4527         if (c->cmd_type == CMD_IOACCEL2) {
4528                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4529                         &h->ioaccel2_cmd_pool[c->cmdindex];
4530                 /* upper tag not used in ioaccel2 mode */
4531                 memset(tagupper, 0, sizeof(*tagupper));
4532                 *taglower = cm2->Tag;
4533                 return;
4534         }
4535         tag = le64_to_cpu(c->Header.tag);
4536         *tagupper = cpu_to_le32(tag >> 32);
4537         *taglower = cpu_to_le32(tag);
4538 }
4539
4540 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4541         struct CommandList *abort, int swizzle, int reply_queue)
4542 {
4543         int rc = IO_OK;
4544         struct CommandList *c;
4545         struct ErrorInfo *ei;
4546         __le32 tagupper, taglower;
4547
4548         c = cmd_alloc(h);
4549         if (c == NULL) {        /* trouble... */
4550                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4551                 return -ENOMEM;
4552         }
4553
4554         /* fill_cmd can't fail here, no buffer to map */
4555         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4556                 0, 0, scsi3addr, TYPE_MSG);
4557         if (swizzle)
4558                 swizzle_abort_tag(&c->Request.CDB[4]);
4559         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4560         hpsa_get_tag(h, abort, &taglower, &tagupper);
4561         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
4562                 __func__, tagupper, taglower);
4563         /* no unmap needed here because no data xfer. */
4564
4565         ei = c->err_info;
4566         switch (ei->CommandStatus) {
4567         case CMD_SUCCESS:
4568                 break;
4569         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4570                 rc = -1;
4571                 break;
4572         default:
4573                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4574                         __func__, tagupper, taglower);
4575                 hpsa_scsi_interpret_error(h, c);
4576                 rc = -1;
4577                 break;
4578         }
4579         cmd_free(h, c);
4580         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4581                 __func__, tagupper, taglower);
4582         return rc;
4583 }
4584
4585 /* ioaccel2 path firmware cannot handle abort task requests.
4586  * Change abort requests to physical target reset, and send to the
4587  * address of the physical disk used for the ioaccel 2 command.
4588  * Return 0 on success (IO_OK)
4589  *       -1 on failure
4590  */
4591
4592 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4593         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4594 {
4595         int rc = IO_OK;
4596         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4597         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4598         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4599         unsigned char *psa = &phys_scsi3addr[0];
4600
4601         /* Get a pointer to the hpsa logical device. */
4602         scmd = abort->scsi_cmd;
4603         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4604         if (dev == NULL) {
4605                 dev_warn(&h->pdev->dev,
4606                         "Cannot abort: no device pointer for command.\n");
4607                         return -1; /* not abortable */
4608         }
4609
4610         if (h->raid_offload_debug > 0)
4611                 dev_info(&h->pdev->dev,
4612                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4613                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4614                         "Reset as abort",
4615                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4616                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4617
4618         if (!dev->offload_enabled) {
4619                 dev_warn(&h->pdev->dev,
4620                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4621                 return -1; /* not abortable */
4622         }
4623
4624         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4625         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4626                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4627                 return -1; /* not abortable */
4628         }
4629
4630         /* send the reset */
4631         if (h->raid_offload_debug > 0)
4632                 dev_info(&h->pdev->dev,
4633                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4634                         psa[0], psa[1], psa[2], psa[3],
4635                         psa[4], psa[5], psa[6], psa[7]);
4636         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
4637         if (rc != 0) {
4638                 dev_warn(&h->pdev->dev,
4639                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4640                         psa[0], psa[1], psa[2], psa[3],
4641                         psa[4], psa[5], psa[6], psa[7]);
4642                 return rc; /* failed to reset */
4643         }
4644
4645         /* wait for device to recover */
4646         if (wait_for_device_to_become_ready(h, psa) != 0) {
4647                 dev_warn(&h->pdev->dev,
4648                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4649                         psa[0], psa[1], psa[2], psa[3],
4650                         psa[4], psa[5], psa[6], psa[7]);
4651                 return -1;  /* failed to recover */
4652         }
4653
4654         /* device recovered */
4655         dev_info(&h->pdev->dev,
4656                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4657                 psa[0], psa[1], psa[2], psa[3],
4658                 psa[4], psa[5], psa[6], psa[7]);
4659
4660         return rc; /* success */
4661 }
4662
4663 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4664  * tell which kind we're dealing with, so we send the abort both ways.  There
4665  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4666  * way we construct our tags but we check anyway in case the assumptions which
4667  * make this true someday become false.
4668  */
4669 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4670         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4671 {
4672         /* ioccelerator mode 2 commands should be aborted via the
4673          * accelerated path, since RAID path is unaware of these commands,
4674          * but underlying firmware can't handle abort TMF.
4675          * Change abort to physical device reset.
4676          */
4677         if (abort->cmd_type == CMD_IOACCEL2)
4678                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
4679                                                         abort, reply_queue);
4680
4681         return hpsa_send_abort(h, scsi3addr, abort, 0, reply_queue) &&
4682                         hpsa_send_abort(h, scsi3addr, abort, 1, reply_queue);
4683 }
4684
4685 /* Find out which reply queue a command was meant to return on */
4686 static int hpsa_extract_reply_queue(struct ctlr_info *h,
4687                                         struct CommandList *c)
4688 {
4689         if (c->cmd_type == CMD_IOACCEL2)
4690                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
4691         return c->Header.ReplyQueue;
4692 }
4693
4694 /* Send an abort for the specified command.
4695  *      If the device and controller support it,
4696  *              send a task abort request.
4697  */
4698 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4699 {
4700
4701         int i, rc;
4702         struct ctlr_info *h;
4703         struct hpsa_scsi_dev_t *dev;
4704         struct CommandList *abort; /* pointer to command to be aborted */
4705         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4706         char msg[256];          /* For debug messaging. */
4707         int ml = 0;
4708         __le32 tagupper, taglower;
4709         int refcount, reply_queue;
4710
4711         if (sc == NULL)
4712                 return FAILED;
4713
4714         /* Find the controller of the command to be aborted */
4715         h = sdev_to_hba(sc->device);
4716         if (WARN(h == NULL,
4717                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4718                 return FAILED;
4719
4720         /* Find the device of the command to be aborted */
4721         dev = sc->device->hostdata;
4722         if (!dev) {
4723                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4724                                 msg);
4725                 return FAILED;
4726         }
4727
4728         /* If controller locked up, we can guarantee command won't complete */
4729         if (lockup_detected(h)) {
4730                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4731                                         "ABORT FAILED, lockup detected");
4732                 return FAILED;
4733         }
4734
4735         /* This is a good time to check if controller lockup has occurred */
4736         if (detect_controller_lockup(h)) {
4737                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4738                                         "ABORT FAILED, new lockup detected");
4739                 return FAILED;
4740         }
4741
4742         /* Check that controller supports some kind of task abort */
4743         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4744                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4745                 return FAILED;
4746
4747         memset(msg, 0, sizeof(msg));
4748         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s",
4749                 h->scsi_host->host_no, sc->device->channel,
4750                 sc->device->id, sc->device->lun,
4751                 "Aborting command");
4752
4753         /* Get SCSI command to be aborted */
4754         abort = (struct CommandList *) sc->host_scribble;
4755         if (abort == NULL) {
4756                 /* This can happen if the command already completed. */
4757                 return SUCCESS;
4758         }
4759         refcount = atomic_inc_return(&abort->refcount);
4760         if (refcount == 1) { /* Command is done already. */
4761                 cmd_free(h, abort);
4762                 return SUCCESS;
4763         }
4764         hpsa_get_tag(h, abort, &taglower, &tagupper);
4765         reply_queue = hpsa_extract_reply_queue(h, abort);
4766         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4767         as  = abort->scsi_cmd;
4768         if (as != NULL)
4769                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4770                         as->cmnd[0], as->serial_number);
4771         dev_dbg(&h->pdev->dev, "%s\n", msg);
4772         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4773         /*
4774          * Command is in flight, or possibly already completed
4775          * by the firmware (but not to the scsi mid layer) but we can't
4776          * distinguish which.  Send the abort down.
4777          */
4778         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
4779         if (rc != 0) {
4780                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4781                                         "FAILED to abort command");
4782                 cmd_free(h, abort);
4783                 return FAILED;
4784         }
4785         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4786
4787         /* If the abort(s) above completed and actually aborted the
4788          * command, then the command to be aborted should already be
4789          * completed.  If not, wait around a bit more to see if they
4790          * manage to complete normally.
4791          */
4792 #define ABORT_COMPLETE_WAIT_SECS 30
4793         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4794                 refcount = atomic_read(&abort->refcount);
4795                 if (refcount < 2) {
4796                         cmd_free(h, abort);
4797                         return SUCCESS;
4798                 } else {
4799                         msleep(100);
4800                 }
4801         }
4802         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4803                 msg, ABORT_COMPLETE_WAIT_SECS);
4804         cmd_free(h, abort);
4805         return FAILED;
4806 }
4807
4808 /*
4809  * For operations that cannot sleep, a command block is allocated at init,
4810  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4811  * which ones are free or in use.  Lock must be held when calling this.
4812  * cmd_free() is the complement.
4813  */
4814
4815 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4816 {
4817         struct CommandList *c;
4818         int i;
4819         union u64bit temp64;
4820         dma_addr_t cmd_dma_handle, err_dma_handle;
4821         int refcount;
4822         unsigned long offset;
4823
4824         /*
4825          * There is some *extremely* small but non-zero chance that that
4826          * multiple threads could get in here, and one thread could
4827          * be scanning through the list of bits looking for a free
4828          * one, but the free ones are always behind him, and other
4829          * threads sneak in behind him and eat them before he can
4830          * get to them, so that while there is always a free one, a
4831          * very unlucky thread might be starved anyway, never able to
4832          * beat the other threads.  In reality, this happens so
4833          * infrequently as to be indistinguishable from never.
4834          */
4835
4836         offset = h->last_allocation; /* benignly racy */
4837         for (;;) {
4838                 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
4839                 if (unlikely(i == h->nr_cmds)) {
4840                         offset = 0;
4841                         continue;
4842                 }
4843                 c = h->cmd_pool + i;
4844                 refcount = atomic_inc_return(&c->refcount);
4845                 if (unlikely(refcount > 1)) {
4846                         cmd_free(h, c); /* already in use */
4847                         offset = (i + 1) % h->nr_cmds;
4848                         continue;
4849                 }
4850                 set_bit(i & (BITS_PER_LONG - 1),
4851                         h->cmd_pool_bits + (i / BITS_PER_LONG));
4852                 break; /* it's ours now. */
4853         }
4854         h->last_allocation = i; /* benignly racy */
4855
4856         /* Zero out all of commandlist except the last field, refcount */
4857         memset(c, 0, offsetof(struct CommandList, refcount));
4858         c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4859         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4860         c->err_info = h->errinfo_pool + i;
4861         memset(c->err_info, 0, sizeof(*c->err_info));
4862         err_dma_handle = h->errinfo_pool_dhandle
4863             + i * sizeof(*c->err_info);
4864
4865         c->cmdindex = i;
4866
4867         c->busaddr = (u32) cmd_dma_handle;
4868         temp64.val = (u64) err_dma_handle;
4869         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4870         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4871
4872         c->h = h;
4873         return c;
4874 }
4875
4876 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4877 {
4878         if (atomic_dec_and_test(&c->refcount)) {
4879                 int i;
4880
4881                 i = c - h->cmd_pool;
4882                 clear_bit(i & (BITS_PER_LONG - 1),
4883                           h->cmd_pool_bits + (i / BITS_PER_LONG));
4884         }
4885 }
4886
4887 #ifdef CONFIG_COMPAT
4888
4889 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4890         void __user *arg)
4891 {
4892         IOCTL32_Command_struct __user *arg32 =
4893             (IOCTL32_Command_struct __user *) arg;
4894         IOCTL_Command_struct arg64;
4895         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4896         int err;
4897         u32 cp;
4898
4899         memset(&arg64, 0, sizeof(arg64));
4900         err = 0;
4901         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4902                            sizeof(arg64.LUN_info));
4903         err |= copy_from_user(&arg64.Request, &arg32->Request,
4904                            sizeof(arg64.Request));
4905         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4906                            sizeof(arg64.error_info));
4907         err |= get_user(arg64.buf_size, &arg32->buf_size);
4908         err |= get_user(cp, &arg32->buf);
4909         arg64.buf = compat_ptr(cp);
4910         err |= copy_to_user(p, &arg64, sizeof(arg64));
4911
4912         if (err)
4913                 return -EFAULT;
4914
4915         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4916         if (err)
4917                 return err;
4918         err |= copy_in_user(&arg32->error_info, &p->error_info,
4919                          sizeof(arg32->error_info));
4920         if (err)
4921                 return -EFAULT;
4922         return err;
4923 }
4924
4925 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4926         int cmd, void __user *arg)
4927 {
4928         BIG_IOCTL32_Command_struct __user *arg32 =
4929             (BIG_IOCTL32_Command_struct __user *) arg;
4930         BIG_IOCTL_Command_struct arg64;
4931         BIG_IOCTL_Command_struct __user *p =
4932             compat_alloc_user_space(sizeof(arg64));
4933         int err;
4934         u32 cp;
4935
4936         memset(&arg64, 0, sizeof(arg64));
4937         err = 0;
4938         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4939                            sizeof(arg64.LUN_info));
4940         err |= copy_from_user(&arg64.Request, &arg32->Request,
4941                            sizeof(arg64.Request));
4942         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4943                            sizeof(arg64.error_info));
4944         err |= get_user(arg64.buf_size, &arg32->buf_size);
4945         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4946         err |= get_user(cp, &arg32->buf);
4947         arg64.buf = compat_ptr(cp);
4948         err |= copy_to_user(p, &arg64, sizeof(arg64));
4949
4950         if (err)
4951                 return -EFAULT;
4952
4953         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4954         if (err)
4955                 return err;
4956         err |= copy_in_user(&arg32->error_info, &p->error_info,
4957                          sizeof(arg32->error_info));
4958         if (err)
4959                 return -EFAULT;
4960         return err;
4961 }
4962
4963 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4964 {
4965         switch (cmd) {
4966         case CCISS_GETPCIINFO:
4967         case CCISS_GETINTINFO:
4968         case CCISS_SETINTINFO:
4969         case CCISS_GETNODENAME:
4970         case CCISS_SETNODENAME:
4971         case CCISS_GETHEARTBEAT:
4972         case CCISS_GETBUSTYPES:
4973         case CCISS_GETFIRMVER:
4974         case CCISS_GETDRIVVER:
4975         case CCISS_REVALIDVOLS:
4976         case CCISS_DEREGDISK:
4977         case CCISS_REGNEWDISK:
4978         case CCISS_REGNEWD:
4979         case CCISS_RESCANDISK:
4980         case CCISS_GETLUNINFO:
4981                 return hpsa_ioctl(dev, cmd, arg);
4982
4983         case CCISS_PASSTHRU32:
4984                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4985         case CCISS_BIG_PASSTHRU32:
4986                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4987
4988         default:
4989                 return -ENOIOCTLCMD;
4990         }
4991 }
4992 #endif
4993
4994 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4995 {
4996         struct hpsa_pci_info pciinfo;
4997
4998         if (!argp)
4999                 return -EINVAL;
5000         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5001         pciinfo.bus = h->pdev->bus->number;
5002         pciinfo.dev_fn = h->pdev->devfn;
5003         pciinfo.board_id = h->board_id;
5004         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5005                 return -EFAULT;
5006         return 0;
5007 }
5008
5009 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5010 {
5011         DriverVer_type DriverVer;
5012         unsigned char vmaj, vmin, vsubmin;
5013         int rc;
5014
5015         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5016                 &vmaj, &vmin, &vsubmin);
5017         if (rc != 3) {
5018                 dev_info(&h->pdev->dev, "driver version string '%s' "
5019                         "unrecognized.", HPSA_DRIVER_VERSION);
5020                 vmaj = 0;
5021                 vmin = 0;
5022                 vsubmin = 0;
5023         }
5024         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5025         if (!argp)
5026                 return -EINVAL;
5027         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5028                 return -EFAULT;
5029         return 0;
5030 }
5031
5032 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5033 {
5034         IOCTL_Command_struct iocommand;
5035         struct CommandList *c;
5036         char *buff = NULL;
5037         u64 temp64;
5038         int rc = 0;
5039
5040         if (!argp)
5041                 return -EINVAL;
5042         if (!capable(CAP_SYS_RAWIO))
5043                 return -EPERM;
5044         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5045                 return -EFAULT;
5046         if ((iocommand.buf_size < 1) &&
5047             (iocommand.Request.Type.Direction != XFER_NONE)) {
5048                 return -EINVAL;
5049         }
5050         if (iocommand.buf_size > 0) {
5051                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5052                 if (buff == NULL)
5053                         return -EFAULT;
5054                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5055                         /* Copy the data into the buffer we created */
5056                         if (copy_from_user(buff, iocommand.buf,
5057                                 iocommand.buf_size)) {
5058                                 rc = -EFAULT;
5059                                 goto out_kfree;
5060                         }
5061                 } else {
5062                         memset(buff, 0, iocommand.buf_size);
5063                 }
5064         }
5065         c = cmd_alloc(h);
5066         if (c == NULL) {
5067                 rc = -ENOMEM;
5068                 goto out_kfree;
5069         }
5070         /* Fill in the command type */
5071         c->cmd_type = CMD_IOCTL_PEND;
5072         /* Fill in Command Header */
5073         c->Header.ReplyQueue = 0; /* unused in simple mode */
5074         if (iocommand.buf_size > 0) {   /* buffer to fill */
5075                 c->Header.SGList = 1;
5076                 c->Header.SGTotal = cpu_to_le16(1);
5077         } else  { /* no buffers to fill */
5078                 c->Header.SGList = 0;
5079                 c->Header.SGTotal = cpu_to_le16(0);
5080         }
5081         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5082
5083         /* Fill in Request block */
5084         memcpy(&c->Request, &iocommand.Request,
5085                 sizeof(c->Request));
5086
5087         /* Fill in the scatter gather information */
5088         if (iocommand.buf_size > 0) {
5089                 temp64 = pci_map_single(h->pdev, buff,
5090                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5091                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5092                         c->SG[0].Addr = cpu_to_le64(0);
5093                         c->SG[0].Len = cpu_to_le32(0);
5094                         rc = -ENOMEM;
5095                         goto out;
5096                 }
5097                 c->SG[0].Addr = cpu_to_le64(temp64);
5098                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5099                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5100         }
5101         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5102         if (iocommand.buf_size > 0)
5103                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5104         check_ioctl_unit_attention(h, c);
5105         if (rc) {
5106                 rc = -EIO;
5107                 goto out;
5108         }
5109
5110         /* Copy the error information out */
5111         memcpy(&iocommand.error_info, c->err_info,
5112                 sizeof(iocommand.error_info));
5113         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5114                 rc = -EFAULT;
5115                 goto out;
5116         }
5117         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5118                 iocommand.buf_size > 0) {
5119                 /* Copy the data out of the buffer we created */
5120                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5121                         rc = -EFAULT;
5122                         goto out;
5123                 }
5124         }
5125 out:
5126         cmd_free(h, c);
5127 out_kfree:
5128         kfree(buff);
5129         return rc;
5130 }
5131
5132 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5133 {
5134         BIG_IOCTL_Command_struct *ioc;
5135         struct CommandList *c;
5136         unsigned char **buff = NULL;
5137         int *buff_size = NULL;
5138         u64 temp64;
5139         BYTE sg_used = 0;
5140         int status = 0;
5141         u32 left;
5142         u32 sz;
5143         BYTE __user *data_ptr;
5144
5145         if (!argp)
5146                 return -EINVAL;
5147         if (!capable(CAP_SYS_RAWIO))
5148                 return -EPERM;
5149         ioc = (BIG_IOCTL_Command_struct *)
5150             kmalloc(sizeof(*ioc), GFP_KERNEL);
5151         if (!ioc) {
5152                 status = -ENOMEM;
5153                 goto cleanup1;
5154         }
5155         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5156                 status = -EFAULT;
5157                 goto cleanup1;
5158         }
5159         if ((ioc->buf_size < 1) &&
5160             (ioc->Request.Type.Direction != XFER_NONE)) {
5161                 status = -EINVAL;
5162                 goto cleanup1;
5163         }
5164         /* Check kmalloc limits  using all SGs */
5165         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5166                 status = -EINVAL;
5167                 goto cleanup1;
5168         }
5169         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5170                 status = -EINVAL;
5171                 goto cleanup1;
5172         }
5173         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5174         if (!buff) {
5175                 status = -ENOMEM;
5176                 goto cleanup1;
5177         }
5178         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5179         if (!buff_size) {
5180                 status = -ENOMEM;
5181                 goto cleanup1;
5182         }
5183         left = ioc->buf_size;
5184         data_ptr = ioc->buf;
5185         while (left) {
5186                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5187                 buff_size[sg_used] = sz;
5188                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5189                 if (buff[sg_used] == NULL) {
5190                         status = -ENOMEM;
5191                         goto cleanup1;
5192                 }
5193                 if (ioc->Request.Type.Direction & XFER_WRITE) {
5194                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5195                                 status = -EFAULT;
5196                                 goto cleanup1;
5197                         }
5198                 } else
5199                         memset(buff[sg_used], 0, sz);
5200                 left -= sz;
5201                 data_ptr += sz;
5202                 sg_used++;
5203         }
5204         c = cmd_alloc(h);
5205         if (c == NULL) {
5206                 status = -ENOMEM;
5207                 goto cleanup1;
5208         }
5209         c->cmd_type = CMD_IOCTL_PEND;
5210         c->Header.ReplyQueue = 0;
5211         c->Header.SGList = (u8) sg_used;
5212         c->Header.SGTotal = cpu_to_le16(sg_used);
5213         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5214         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5215         if (ioc->buf_size > 0) {
5216                 int i;
5217                 for (i = 0; i < sg_used; i++) {
5218                         temp64 = pci_map_single(h->pdev, buff[i],
5219                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
5220                         if (dma_mapping_error(&h->pdev->dev,
5221                                                         (dma_addr_t) temp64)) {
5222                                 c->SG[i].Addr = cpu_to_le64(0);
5223                                 c->SG[i].Len = cpu_to_le32(0);
5224                                 hpsa_pci_unmap(h->pdev, c, i,
5225                                         PCI_DMA_BIDIRECTIONAL);
5226                                 status = -ENOMEM;
5227                                 goto cleanup0;
5228                         }
5229                         c->SG[i].Addr = cpu_to_le64(temp64);
5230                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
5231                         c->SG[i].Ext = cpu_to_le32(0);
5232                 }
5233                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5234         }
5235         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5236         if (sg_used)
5237                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5238         check_ioctl_unit_attention(h, c);
5239         if (status) {
5240                 status = -EIO;
5241                 goto cleanup0;
5242         }
5243
5244         /* Copy the error information out */
5245         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5246         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5247                 status = -EFAULT;
5248                 goto cleanup0;
5249         }
5250         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5251                 int i;
5252
5253                 /* Copy the data out of the buffer we created */
5254                 BYTE __user *ptr = ioc->buf;
5255                 for (i = 0; i < sg_used; i++) {
5256                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
5257                                 status = -EFAULT;
5258                                 goto cleanup0;
5259                         }
5260                         ptr += buff_size[i];
5261                 }
5262         }
5263         status = 0;
5264 cleanup0:
5265         cmd_free(h, c);
5266 cleanup1:
5267         if (buff) {
5268                 int i;
5269
5270                 for (i = 0; i < sg_used; i++)
5271                         kfree(buff[i]);
5272                 kfree(buff);
5273         }
5274         kfree(buff_size);
5275         kfree(ioc);
5276         return status;
5277 }
5278
5279 static void check_ioctl_unit_attention(struct ctlr_info *h,
5280         struct CommandList *c)
5281 {
5282         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5283                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5284                 (void) check_for_unit_attention(h, c);
5285 }
5286
5287 /*
5288  * ioctl
5289  */
5290 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5291 {
5292         struct ctlr_info *h;
5293         void __user *argp = (void __user *)arg;
5294         int rc;
5295
5296         h = sdev_to_hba(dev);
5297
5298         switch (cmd) {
5299         case CCISS_DEREGDISK:
5300         case CCISS_REGNEWDISK:
5301         case CCISS_REGNEWD:
5302                 hpsa_scan_start(h->scsi_host);
5303                 return 0;
5304         case CCISS_GETPCIINFO:
5305                 return hpsa_getpciinfo_ioctl(h, argp);
5306         case CCISS_GETDRIVVER:
5307                 return hpsa_getdrivver_ioctl(h, argp);
5308         case CCISS_PASSTHRU:
5309                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5310                         return -EAGAIN;
5311                 rc = hpsa_passthru_ioctl(h, argp);
5312                 atomic_inc(&h->passthru_cmds_avail);
5313                 return rc;
5314         case CCISS_BIG_PASSTHRU:
5315                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5316                         return -EAGAIN;
5317                 rc = hpsa_big_passthru_ioctl(h, argp);
5318                 atomic_inc(&h->passthru_cmds_avail);
5319                 return rc;
5320         default:
5321                 return -ENOTTY;
5322         }
5323 }
5324
5325 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5326                                 u8 reset_type)
5327 {
5328         struct CommandList *c;
5329
5330         c = cmd_alloc(h);
5331         if (!c)
5332                 return -ENOMEM;
5333         /* fill_cmd can't fail here, no data buffer to map */
5334         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5335                 RAID_CTLR_LUNID, TYPE_MSG);
5336         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5337         c->waiting = NULL;
5338         enqueue_cmd_and_start_io(h, c);
5339         /* Don't wait for completion, the reset won't complete.  Don't free
5340          * the command either.  This is the last command we will send before
5341          * re-initializing everything, so it doesn't matter and won't leak.
5342          */
5343         return 0;
5344 }
5345
5346 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5347         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5348         int cmd_type)
5349 {
5350         int pci_dir = XFER_NONE;
5351         struct CommandList *a; /* for commands to be aborted */
5352
5353         c->cmd_type = CMD_IOCTL_PEND;
5354         c->Header.ReplyQueue = 0;
5355         if (buff != NULL && size > 0) {
5356                 c->Header.SGList = 1;
5357                 c->Header.SGTotal = cpu_to_le16(1);
5358         } else {
5359                 c->Header.SGList = 0;
5360                 c->Header.SGTotal = cpu_to_le16(0);
5361         }
5362         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5363
5364         if (cmd_type == TYPE_CMD) {
5365                 switch (cmd) {
5366                 case HPSA_INQUIRY:
5367                         /* are we trying to read a vital product page */
5368                         if (page_code & VPD_PAGE) {
5369                                 c->Request.CDB[1] = 0x01;
5370                                 c->Request.CDB[2] = (page_code & 0xff);
5371                         }
5372                         c->Request.CDBLen = 6;
5373                         c->Request.type_attr_dir =
5374                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5375                         c->Request.Timeout = 0;
5376                         c->Request.CDB[0] = HPSA_INQUIRY;
5377                         c->Request.CDB[4] = size & 0xFF;
5378                         break;
5379                 case HPSA_REPORT_LOG:
5380                 case HPSA_REPORT_PHYS:
5381                         /* Talking to controller so It's a physical command
5382                            mode = 00 target = 0.  Nothing to write.
5383                          */
5384                         c->Request.CDBLen = 12;
5385                         c->Request.type_attr_dir =
5386                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5387                         c->Request.Timeout = 0;
5388                         c->Request.CDB[0] = cmd;
5389                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5390                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5391                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5392                         c->Request.CDB[9] = size & 0xFF;
5393                         break;
5394                 case HPSA_CACHE_FLUSH:
5395                         c->Request.CDBLen = 12;
5396                         c->Request.type_attr_dir =
5397                                         TYPE_ATTR_DIR(cmd_type,
5398                                                 ATTR_SIMPLE, XFER_WRITE);
5399                         c->Request.Timeout = 0;
5400                         c->Request.CDB[0] = BMIC_WRITE;
5401                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5402                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5403                         c->Request.CDB[8] = size & 0xFF;
5404                         break;
5405                 case TEST_UNIT_READY:
5406                         c->Request.CDBLen = 6;
5407                         c->Request.type_attr_dir =
5408                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5409                         c->Request.Timeout = 0;
5410                         break;
5411                 case HPSA_GET_RAID_MAP:
5412                         c->Request.CDBLen = 12;
5413                         c->Request.type_attr_dir =
5414                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5415                         c->Request.Timeout = 0;
5416                         c->Request.CDB[0] = HPSA_CISS_READ;
5417                         c->Request.CDB[1] = cmd;
5418                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5419                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5420                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5421                         c->Request.CDB[9] = size & 0xFF;
5422                         break;
5423                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5424                         c->Request.CDBLen = 10;
5425                         c->Request.type_attr_dir =
5426                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5427                         c->Request.Timeout = 0;
5428                         c->Request.CDB[0] = BMIC_READ;
5429                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5430                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5431                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5432                         break;
5433                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5434                         c->Request.CDBLen = 10;
5435                         c->Request.type_attr_dir =
5436                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5437                         c->Request.Timeout = 0;
5438                         c->Request.CDB[0] = BMIC_READ;
5439                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5440                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5441                         c->Request.CDB[8] = (size >> 8) & 0XFF;
5442                         break;
5443                 default:
5444                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5445                         BUG();
5446                         return -1;
5447                 }
5448         } else if (cmd_type == TYPE_MSG) {
5449                 switch (cmd) {
5450
5451                 case  HPSA_DEVICE_RESET_MSG:
5452                         c->Request.CDBLen = 16;
5453                         c->Request.type_attr_dir =
5454                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5455                         c->Request.Timeout = 0; /* Don't time out */
5456                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5457                         c->Request.CDB[0] =  cmd;
5458                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5459                         /* If bytes 4-7 are zero, it means reset the */
5460                         /* LunID device */
5461                         c->Request.CDB[4] = 0x00;
5462                         c->Request.CDB[5] = 0x00;
5463                         c->Request.CDB[6] = 0x00;
5464                         c->Request.CDB[7] = 0x00;
5465                         break;
5466                 case  HPSA_ABORT_MSG:
5467                         a = buff;       /* point to command to be aborted */
5468                         dev_dbg(&h->pdev->dev,
5469                                 "Abort Tag:0x%016llx request Tag:0x%016llx",
5470                                 a->Header.tag, c->Header.tag);
5471                         c->Request.CDBLen = 16;
5472                         c->Request.type_attr_dir =
5473                                         TYPE_ATTR_DIR(cmd_type,
5474                                                 ATTR_SIMPLE, XFER_WRITE);
5475                         c->Request.Timeout = 0; /* Don't time out */
5476                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5477                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5478                         c->Request.CDB[2] = 0x00; /* reserved */
5479                         c->Request.CDB[3] = 0x00; /* reserved */
5480                         /* Tag to abort goes in CDB[4]-CDB[11] */
5481                         memcpy(&c->Request.CDB[4], &a->Header.tag,
5482                                 sizeof(a->Header.tag));
5483                         c->Request.CDB[12] = 0x00; /* reserved */
5484                         c->Request.CDB[13] = 0x00; /* reserved */
5485                         c->Request.CDB[14] = 0x00; /* reserved */
5486                         c->Request.CDB[15] = 0x00; /* reserved */
5487                 break;
5488                 default:
5489                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5490                                 cmd);
5491                         BUG();
5492                 }
5493         } else {
5494                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5495                 BUG();
5496         }
5497
5498         switch (GET_DIR(c->Request.type_attr_dir)) {
5499         case XFER_READ:
5500                 pci_dir = PCI_DMA_FROMDEVICE;
5501                 break;
5502         case XFER_WRITE:
5503                 pci_dir = PCI_DMA_TODEVICE;
5504                 break;
5505         case XFER_NONE:
5506                 pci_dir = PCI_DMA_NONE;
5507                 break;
5508         default:
5509                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5510         }
5511         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5512                 return -1;
5513         return 0;
5514 }
5515
5516 /*
5517  * Map (physical) PCI mem into (virtual) kernel space
5518  */
5519 static void __iomem *remap_pci_mem(ulong base, ulong size)
5520 {
5521         ulong page_base = ((ulong) base) & PAGE_MASK;
5522         ulong page_offs = ((ulong) base) - page_base;
5523         void __iomem *page_remapped = ioremap_nocache(page_base,
5524                 page_offs + size);
5525
5526         return page_remapped ? (page_remapped + page_offs) : NULL;
5527 }
5528
5529 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5530 {
5531         return h->access.command_completed(h, q);
5532 }
5533
5534 static inline bool interrupt_pending(struct ctlr_info *h)
5535 {
5536         return h->access.intr_pending(h);
5537 }
5538
5539 static inline long interrupt_not_for_us(struct ctlr_info *h)
5540 {
5541         return (h->access.intr_pending(h) == 0) ||
5542                 (h->interrupts_enabled == 0);
5543 }
5544
5545 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5546         u32 raw_tag)
5547 {
5548         if (unlikely(tag_index >= h->nr_cmds)) {
5549                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5550                 return 1;
5551         }
5552         return 0;
5553 }
5554
5555 static inline void finish_cmd(struct CommandList *c)
5556 {
5557         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5558         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5559                         || c->cmd_type == CMD_IOACCEL2))
5560                 complete_scsi_command(c);
5561         else if (c->cmd_type == CMD_IOCTL_PEND)
5562                 complete(c->waiting);
5563 }
5564
5565
5566 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5567 {
5568 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5569 #define HPSA_SIMPLE_ERROR_BITS 0x03
5570         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5571                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5572         return tag & ~HPSA_PERF_ERROR_BITS;
5573 }
5574
5575 /* process completion of an indexed ("direct lookup") command */
5576 static inline void process_indexed_cmd(struct ctlr_info *h,
5577         u32 raw_tag)
5578 {
5579         u32 tag_index;
5580         struct CommandList *c;
5581
5582         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5583         if (!bad_tag(h, tag_index, raw_tag)) {
5584                 c = h->cmd_pool + tag_index;
5585                 finish_cmd(c);
5586         }
5587 }
5588
5589 /* Some controllers, like p400, will give us one interrupt
5590  * after a soft reset, even if we turned interrupts off.
5591  * Only need to check for this in the hpsa_xxx_discard_completions
5592  * functions.
5593  */
5594 static int ignore_bogus_interrupt(struct ctlr_info *h)
5595 {
5596         if (likely(!reset_devices))
5597                 return 0;
5598
5599         if (likely(h->interrupts_enabled))
5600                 return 0;
5601
5602         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5603                 "(known firmware bug.)  Ignoring.\n");
5604
5605         return 1;
5606 }
5607
5608 /*
5609  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5610  * Relies on (h-q[x] == x) being true for x such that
5611  * 0 <= x < MAX_REPLY_QUEUES.
5612  */
5613 static struct ctlr_info *queue_to_hba(u8 *queue)
5614 {
5615         return container_of((queue - *queue), struct ctlr_info, q[0]);
5616 }
5617
5618 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5619 {
5620         struct ctlr_info *h = queue_to_hba(queue);
5621         u8 q = *(u8 *) queue;
5622         u32 raw_tag;
5623
5624         if (ignore_bogus_interrupt(h))
5625                 return IRQ_NONE;
5626
5627         if (interrupt_not_for_us(h))
5628                 return IRQ_NONE;
5629         h->last_intr_timestamp = get_jiffies_64();
5630         while (interrupt_pending(h)) {
5631                 raw_tag = get_next_completion(h, q);
5632                 while (raw_tag != FIFO_EMPTY)
5633                         raw_tag = next_command(h, q);
5634         }
5635         return IRQ_HANDLED;
5636 }
5637
5638 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5639 {
5640         struct ctlr_info *h = queue_to_hba(queue);
5641         u32 raw_tag;
5642         u8 q = *(u8 *) queue;
5643
5644         if (ignore_bogus_interrupt(h))
5645                 return IRQ_NONE;
5646
5647         h->last_intr_timestamp = get_jiffies_64();
5648         raw_tag = get_next_completion(h, q);
5649         while (raw_tag != FIFO_EMPTY)
5650                 raw_tag = next_command(h, q);
5651         return IRQ_HANDLED;
5652 }
5653
5654 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5655 {
5656         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5657         u32 raw_tag;
5658         u8 q = *(u8 *) queue;
5659
5660         if (interrupt_not_for_us(h))
5661                 return IRQ_NONE;
5662         h->last_intr_timestamp = get_jiffies_64();
5663         while (interrupt_pending(h)) {
5664                 raw_tag = get_next_completion(h, q);
5665                 while (raw_tag != FIFO_EMPTY) {
5666                         process_indexed_cmd(h, raw_tag);
5667                         raw_tag = next_command(h, q);
5668                 }
5669         }
5670         return IRQ_HANDLED;
5671 }
5672
5673 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5674 {
5675         struct ctlr_info *h = queue_to_hba(queue);
5676         u32 raw_tag;
5677         u8 q = *(u8 *) queue;
5678
5679         h->last_intr_timestamp = get_jiffies_64();
5680         raw_tag = get_next_completion(h, q);
5681         while (raw_tag != FIFO_EMPTY) {
5682                 process_indexed_cmd(h, raw_tag);
5683                 raw_tag = next_command(h, q);
5684         }
5685         return IRQ_HANDLED;
5686 }
5687
5688 /* Send a message CDB to the firmware. Careful, this only works
5689  * in simple mode, not performant mode due to the tag lookup.
5690  * We only ever use this immediately after a controller reset.
5691  */
5692 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5693                         unsigned char type)
5694 {
5695         struct Command {
5696                 struct CommandListHeader CommandHeader;
5697                 struct RequestBlock Request;
5698                 struct ErrDescriptor ErrorDescriptor;
5699         };
5700         struct Command *cmd;
5701         static const size_t cmd_sz = sizeof(*cmd) +
5702                                         sizeof(cmd->ErrorDescriptor);
5703         dma_addr_t paddr64;
5704         __le32 paddr32;
5705         u32 tag;
5706         void __iomem *vaddr;
5707         int i, err;
5708
5709         vaddr = pci_ioremap_bar(pdev, 0);
5710         if (vaddr == NULL)
5711                 return -ENOMEM;
5712
5713         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5714          * CCISS commands, so they must be allocated from the lower 4GiB of
5715          * memory.
5716          */
5717         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5718         if (err) {
5719                 iounmap(vaddr);
5720                 return err;
5721         }
5722
5723         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5724         if (cmd == NULL) {
5725                 iounmap(vaddr);
5726                 return -ENOMEM;
5727         }
5728
5729         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5730          * although there's no guarantee, we assume that the address is at
5731          * least 4-byte aligned (most likely, it's page-aligned).
5732          */
5733         paddr32 = cpu_to_le32(paddr64);
5734
5735         cmd->CommandHeader.ReplyQueue = 0;
5736         cmd->CommandHeader.SGList = 0;
5737         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5738         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5739         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5740
5741         cmd->Request.CDBLen = 16;
5742         cmd->Request.type_attr_dir =
5743                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5744         cmd->Request.Timeout = 0; /* Don't time out */
5745         cmd->Request.CDB[0] = opcode;
5746         cmd->Request.CDB[1] = type;
5747         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5748         cmd->ErrorDescriptor.Addr =
5749                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5750         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5751
5752         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5753
5754         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5755                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5756                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5757                         break;
5758                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5759         }
5760
5761         iounmap(vaddr);
5762
5763         /* we leak the DMA buffer here ... no choice since the controller could
5764          *  still complete the command.
5765          */
5766         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5767                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5768                         opcode, type);
5769                 return -ETIMEDOUT;
5770         }
5771
5772         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5773
5774         if (tag & HPSA_ERROR_BIT) {
5775                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5776                         opcode, type);
5777                 return -EIO;
5778         }
5779
5780         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5781                 opcode, type);
5782         return 0;
5783 }
5784
5785 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5786
5787 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5788         void __iomem *vaddr, u32 use_doorbell)
5789 {
5790
5791         if (use_doorbell) {
5792                 /* For everything after the P600, the PCI power state method
5793                  * of resetting the controller doesn't work, so we have this
5794                  * other way using the doorbell register.
5795                  */
5796                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5797                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5798
5799                 /* PMC hardware guys tell us we need a 10 second delay after
5800                  * doorbell reset and before any attempt to talk to the board
5801                  * at all to ensure that this actually works and doesn't fall
5802                  * over in some weird corner cases.
5803                  */
5804                 msleep(10000);
5805         } else { /* Try to do it the PCI power state way */
5806
5807                 /* Quoting from the Open CISS Specification: "The Power
5808                  * Management Control/Status Register (CSR) controls the power
5809                  * state of the device.  The normal operating state is D0,
5810                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5811                  * the controller, place the interface device in D3 then to D0,
5812                  * this causes a secondary PCI reset which will reset the
5813                  * controller." */
5814
5815                 int rc = 0;
5816
5817                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5818
5819                 /* enter the D3hot power management state */
5820                 rc = pci_set_power_state(pdev, PCI_D3hot);
5821                 if (rc)
5822                         return rc;
5823
5824                 msleep(500);
5825
5826                 /* enter the D0 power management state */
5827                 rc = pci_set_power_state(pdev, PCI_D0);
5828                 if (rc)
5829                         return rc;
5830
5831                 /*
5832                  * The P600 requires a small delay when changing states.
5833                  * Otherwise we may think the board did not reset and we bail.
5834                  * This for kdump only and is particular to the P600.
5835                  */
5836                 msleep(500);
5837         }
5838         return 0;
5839 }
5840
5841 static void init_driver_version(char *driver_version, int len)
5842 {
5843         memset(driver_version, 0, len);
5844         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5845 }
5846
5847 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5848 {
5849         char *driver_version;
5850         int i, size = sizeof(cfgtable->driver_version);
5851
5852         driver_version = kmalloc(size, GFP_KERNEL);
5853         if (!driver_version)
5854                 return -ENOMEM;
5855
5856         init_driver_version(driver_version, size);
5857         for (i = 0; i < size; i++)
5858                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5859         kfree(driver_version);
5860         return 0;
5861 }
5862
5863 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5864                                           unsigned char *driver_ver)
5865 {
5866         int i;
5867
5868         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5869                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5870 }
5871
5872 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5873 {
5874
5875         char *driver_ver, *old_driver_ver;
5876         int rc, size = sizeof(cfgtable->driver_version);
5877
5878         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5879         if (!old_driver_ver)
5880                 return -ENOMEM;
5881         driver_ver = old_driver_ver + size;
5882
5883         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5884          * should have been changed, otherwise we know the reset failed.
5885          */
5886         init_driver_version(old_driver_ver, size);
5887         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5888         rc = !memcmp(driver_ver, old_driver_ver, size);
5889         kfree(old_driver_ver);
5890         return rc;
5891 }
5892 /* This does a hard reset of the controller using PCI power management
5893  * states or the using the doorbell register.
5894  */
5895 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
5896 {
5897         u64 cfg_offset;
5898         u32 cfg_base_addr;
5899         u64 cfg_base_addr_index;
5900         void __iomem *vaddr;
5901         unsigned long paddr;
5902         u32 misc_fw_support;
5903         int rc;
5904         struct CfgTable __iomem *cfgtable;
5905         u32 use_doorbell;
5906         u16 command_register;
5907
5908         /* For controllers as old as the P600, this is very nearly
5909          * the same thing as
5910          *
5911          * pci_save_state(pci_dev);
5912          * pci_set_power_state(pci_dev, PCI_D3hot);
5913          * pci_set_power_state(pci_dev, PCI_D0);
5914          * pci_restore_state(pci_dev);
5915          *
5916          * For controllers newer than the P600, the pci power state
5917          * method of resetting doesn't work so we have another way
5918          * using the doorbell register.
5919          */
5920
5921         if (!ctlr_is_resettable(board_id)) {
5922                 dev_warn(&pdev->dev, "Controller not resettable\n");
5923                 return -ENODEV;
5924         }
5925
5926         /* if controller is soft- but not hard resettable... */
5927         if (!ctlr_is_hard_resettable(board_id))
5928                 return -ENOTSUPP; /* try soft reset later. */
5929
5930         /* Save the PCI command register */
5931         pci_read_config_word(pdev, 4, &command_register);
5932         pci_save_state(pdev);
5933
5934         /* find the first memory BAR, so we can find the cfg table */
5935         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5936         if (rc)
5937                 return rc;
5938         vaddr = remap_pci_mem(paddr, 0x250);
5939         if (!vaddr)
5940                 return -ENOMEM;
5941
5942         /* find cfgtable in order to check if reset via doorbell is supported */
5943         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5944                                         &cfg_base_addr_index, &cfg_offset);
5945         if (rc)
5946                 goto unmap_vaddr;
5947         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5948                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5949         if (!cfgtable) {
5950                 rc = -ENOMEM;
5951                 goto unmap_vaddr;
5952         }
5953         rc = write_driver_ver_to_cfgtable(cfgtable);
5954         if (rc)
5955                 goto unmap_cfgtable;
5956
5957         /* If reset via doorbell register is supported, use that.
5958          * There are two such methods.  Favor the newest method.
5959          */
5960         misc_fw_support = readl(&cfgtable->misc_fw_support);
5961         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5962         if (use_doorbell) {
5963                 use_doorbell = DOORBELL_CTLR_RESET2;
5964         } else {
5965                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5966                 if (use_doorbell) {
5967                         dev_warn(&pdev->dev,
5968                                 "Soft reset not supported. Firmware update is required.\n");
5969                         rc = -ENOTSUPP; /* try soft reset */
5970                         goto unmap_cfgtable;
5971                 }
5972         }
5973
5974         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5975         if (rc)
5976                 goto unmap_cfgtable;
5977
5978         pci_restore_state(pdev);
5979         pci_write_config_word(pdev, 4, command_register);
5980
5981         /* Some devices (notably the HP Smart Array 5i Controller)
5982            need a little pause here */
5983         msleep(HPSA_POST_RESET_PAUSE_MSECS);
5984
5985         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5986         if (rc) {
5987                 dev_warn(&pdev->dev,
5988                         "Failed waiting for board to become ready after hard reset\n");
5989                 goto unmap_cfgtable;
5990         }
5991
5992         rc = controller_reset_failed(vaddr);
5993         if (rc < 0)
5994                 goto unmap_cfgtable;
5995         if (rc) {
5996                 dev_warn(&pdev->dev, "Unable to successfully reset "
5997                         "controller. Will try soft reset.\n");
5998                 rc = -ENOTSUPP;
5999         } else {
6000                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6001         }
6002
6003 unmap_cfgtable:
6004         iounmap(cfgtable);
6005
6006 unmap_vaddr:
6007         iounmap(vaddr);
6008         return rc;
6009 }
6010
6011 /*
6012  *  We cannot read the structure directly, for portability we must use
6013  *   the io functions.
6014  *   This is for debug only.
6015  */
6016 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6017 {
6018 #ifdef HPSA_DEBUG
6019         int i;
6020         char temp_name[17];
6021
6022         dev_info(dev, "Controller Configuration information\n");
6023         dev_info(dev, "------------------------------------\n");
6024         for (i = 0; i < 4; i++)
6025                 temp_name[i] = readb(&(tb->Signature[i]));
6026         temp_name[4] = '\0';
6027         dev_info(dev, "   Signature = %s\n", temp_name);
6028         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6029         dev_info(dev, "   Transport methods supported = 0x%x\n",
6030                readl(&(tb->TransportSupport)));
6031         dev_info(dev, "   Transport methods active = 0x%x\n",
6032                readl(&(tb->TransportActive)));
6033         dev_info(dev, "   Requested transport Method = 0x%x\n",
6034                readl(&(tb->HostWrite.TransportRequest)));
6035         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6036                readl(&(tb->HostWrite.CoalIntDelay)));
6037         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6038                readl(&(tb->HostWrite.CoalIntCount)));
6039         dev_info(dev, "   Max outstanding commands = %d\n",
6040                readl(&(tb->CmdsOutMax)));
6041         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6042         for (i = 0; i < 16; i++)
6043                 temp_name[i] = readb(&(tb->ServerName[i]));
6044         temp_name[16] = '\0';
6045         dev_info(dev, "   Server Name = %s\n", temp_name);
6046         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6047                 readl(&(tb->HeartBeat)));
6048 #endif                          /* HPSA_DEBUG */
6049 }
6050
6051 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6052 {
6053         int i, offset, mem_type, bar_type;
6054
6055         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6056                 return 0;
6057         offset = 0;
6058         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6059                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6060                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6061                         offset += 4;
6062                 else {
6063                         mem_type = pci_resource_flags(pdev, i) &
6064                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6065                         switch (mem_type) {
6066                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6067                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6068                                 offset += 4;    /* 32 bit */
6069                                 break;
6070                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6071                                 offset += 8;
6072                                 break;
6073                         default:        /* reserved in PCI 2.2 */
6074                                 dev_warn(&pdev->dev,
6075                                        "base address is invalid\n");
6076                                 return -1;
6077                                 break;
6078                         }
6079                 }
6080                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6081                         return i + 1;
6082         }
6083         return -1;
6084 }
6085
6086 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6087  * controllers that are capable. If not, we use legacy INTx mode.
6088  */
6089
6090 static void hpsa_interrupt_mode(struct ctlr_info *h)
6091 {
6092 #ifdef CONFIG_PCI_MSI
6093         int err, i;
6094         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6095
6096         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6097                 hpsa_msix_entries[i].vector = 0;
6098                 hpsa_msix_entries[i].entry = i;
6099         }
6100
6101         /* Some boards advertise MSI but don't really support it */
6102         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6103             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6104                 goto default_int_mode;
6105         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6106                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6107                 h->msix_vector = MAX_REPLY_QUEUES;
6108                 if (h->msix_vector > num_online_cpus())
6109                         h->msix_vector = num_online_cpus();
6110                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6111                                             1, h->msix_vector);
6112                 if (err < 0) {
6113                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6114                         h->msix_vector = 0;
6115                         goto single_msi_mode;
6116                 } else if (err < h->msix_vector) {
6117                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6118                                "available\n", err);
6119                 }
6120                 h->msix_vector = err;
6121                 for (i = 0; i < h->msix_vector; i++)
6122                         h->intr[i] = hpsa_msix_entries[i].vector;
6123                 return;
6124         }
6125 single_msi_mode:
6126         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6127                 dev_info(&h->pdev->dev, "MSI capable controller\n");
6128                 if (!pci_enable_msi(h->pdev))
6129                         h->msi_vector = 1;
6130                 else
6131                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6132         }
6133 default_int_mode:
6134 #endif                          /* CONFIG_PCI_MSI */
6135         /* if we get here we're going to use the default interrupt mode */
6136         h->intr[h->intr_mode] = h->pdev->irq;
6137 }
6138
6139 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6140 {
6141         int i;
6142         u32 subsystem_vendor_id, subsystem_device_id;
6143
6144         subsystem_vendor_id = pdev->subsystem_vendor;
6145         subsystem_device_id = pdev->subsystem_device;
6146         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6147                     subsystem_vendor_id;
6148
6149         for (i = 0; i < ARRAY_SIZE(products); i++)
6150                 if (*board_id == products[i].board_id)
6151                         return i;
6152
6153         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6154                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6155                 !hpsa_allow_any) {
6156                 dev_warn(&pdev->dev, "unrecognized board ID: "
6157                         "0x%08x, ignoring.\n", *board_id);
6158                         return -ENODEV;
6159         }
6160         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6161 }
6162
6163 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6164                                     unsigned long *memory_bar)
6165 {
6166         int i;
6167
6168         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6169                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6170                         /* addressing mode bits already removed */
6171                         *memory_bar = pci_resource_start(pdev, i);
6172                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6173                                 *memory_bar);
6174                         return 0;
6175                 }
6176         dev_warn(&pdev->dev, "no memory BAR found\n");
6177         return -ENODEV;
6178 }
6179
6180 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6181                                      int wait_for_ready)
6182 {
6183         int i, iterations;
6184         u32 scratchpad;
6185         if (wait_for_ready)
6186                 iterations = HPSA_BOARD_READY_ITERATIONS;
6187         else
6188                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6189
6190         for (i = 0; i < iterations; i++) {
6191                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6192                 if (wait_for_ready) {
6193                         if (scratchpad == HPSA_FIRMWARE_READY)
6194                                 return 0;
6195                 } else {
6196                         if (scratchpad != HPSA_FIRMWARE_READY)
6197                                 return 0;
6198                 }
6199                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6200         }
6201         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6202         return -ENODEV;
6203 }
6204
6205 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6206                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6207                                u64 *cfg_offset)
6208 {
6209         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6210         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6211         *cfg_base_addr &= (u32) 0x0000ffff;
6212         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6213         if (*cfg_base_addr_index == -1) {
6214                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6215                 return -ENODEV;
6216         }
6217         return 0;
6218 }
6219
6220 static int hpsa_find_cfgtables(struct ctlr_info *h)
6221 {
6222         u64 cfg_offset;
6223         u32 cfg_base_addr;
6224         u64 cfg_base_addr_index;
6225         u32 trans_offset;
6226         int rc;
6227
6228         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6229                 &cfg_base_addr_index, &cfg_offset);
6230         if (rc)
6231                 return rc;
6232         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6233                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6234         if (!h->cfgtable) {
6235                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6236                 return -ENOMEM;
6237         }
6238         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6239         if (rc)
6240                 return rc;
6241         /* Find performant mode table. */
6242         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6243         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6244                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6245                                 sizeof(*h->transtable));
6246         if (!h->transtable)
6247                 return -ENOMEM;
6248         return 0;
6249 }
6250
6251 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6252 {
6253 #define MIN_MAX_COMMANDS 16
6254         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
6255
6256         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6257
6258         /* Limit commands in memory limited kdump scenario. */
6259         if (reset_devices && h->max_commands > 32)
6260                 h->max_commands = 32;
6261
6262         if (h->max_commands < MIN_MAX_COMMANDS) {
6263                 dev_warn(&h->pdev->dev,
6264                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
6265                         h->max_commands,
6266                         MIN_MAX_COMMANDS);
6267                 h->max_commands = MIN_MAX_COMMANDS;
6268         }
6269 }
6270
6271 /* If the controller reports that the total max sg entries is greater than 512,
6272  * then we know that chained SG blocks work.  (Original smart arrays did not
6273  * support chained SG blocks and would return zero for max sg entries.)
6274  */
6275 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6276 {
6277         return h->maxsgentries > 512;
6278 }
6279
6280 /* Interrogate the hardware for some limits:
6281  * max commands, max SG elements without chaining, and with chaining,
6282  * SG chain block size, etc.
6283  */
6284 static void hpsa_find_board_params(struct ctlr_info *h)
6285 {
6286         hpsa_get_max_perf_mode_cmds(h);
6287         h->nr_cmds = h->max_commands;
6288         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6289         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6290         if (hpsa_supports_chained_sg_blocks(h)) {
6291                 /* Limit in-command s/g elements to 32 save dma'able memory. */
6292                 h->max_cmd_sg_entries = 32;
6293                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6294                 h->maxsgentries--; /* save one for chain pointer */
6295         } else {
6296                 /*
6297                  * Original smart arrays supported at most 31 s/g entries
6298                  * embedded inline in the command (trying to use more
6299                  * would lock up the controller)
6300                  */
6301                 h->max_cmd_sg_entries = 31;
6302                 h->maxsgentries = 31; /* default to traditional values */
6303                 h->chainsize = 0;
6304         }
6305
6306         /* Find out what task management functions are supported and cache */
6307         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6308         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6309                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6310         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6311                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6312 }
6313
6314 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6315 {
6316         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6317                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6318                 return false;
6319         }
6320         return true;
6321 }
6322
6323 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6324 {
6325         u32 driver_support;
6326
6327         driver_support = readl(&(h->cfgtable->driver_support));
6328         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6329 #ifdef CONFIG_X86
6330         driver_support |= ENABLE_SCSI_PREFETCH;
6331 #endif
6332         driver_support |= ENABLE_UNIT_ATTN;
6333         writel(driver_support, &(h->cfgtable->driver_support));
6334 }
6335
6336 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6337  * in a prefetch beyond physical memory.
6338  */
6339 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6340 {
6341         u32 dma_prefetch;
6342
6343         if (h->board_id != 0x3225103C)
6344                 return;
6345         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6346         dma_prefetch |= 0x8000;
6347         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6348 }
6349
6350 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6351 {
6352         int i;
6353         u32 doorbell_value;
6354         unsigned long flags;
6355         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6356         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6357                 spin_lock_irqsave(&h->lock, flags);
6358                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6359                 spin_unlock_irqrestore(&h->lock, flags);
6360                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6361                         goto done;
6362                 /* delay and try again */
6363                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
6364         }
6365         return -ENODEV;
6366 done:
6367         return 0;
6368 }
6369
6370 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6371 {
6372         int i;
6373         u32 doorbell_value;
6374         unsigned long flags;
6375
6376         /* under certain very rare conditions, this can take awhile.
6377          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6378          * as we enter this code.)
6379          */
6380         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6381                 if (h->remove_in_progress)
6382                         goto done;
6383                 spin_lock_irqsave(&h->lock, flags);
6384                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6385                 spin_unlock_irqrestore(&h->lock, flags);
6386                 if (!(doorbell_value & CFGTBL_ChangeReq))
6387                         goto done;
6388                 /* delay and try again */
6389                 msleep(MODE_CHANGE_WAIT_INTERVAL);
6390         }
6391         return -ENODEV;
6392 done:
6393         return 0;
6394 }
6395
6396 /* return -ENODEV or other reason on error, 0 on success */
6397 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6398 {
6399         u32 trans_support;
6400
6401         trans_support = readl(&(h->cfgtable->TransportSupport));
6402         if (!(trans_support & SIMPLE_MODE))
6403                 return -ENOTSUPP;
6404
6405         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6406
6407         /* Update the field, and then ring the doorbell */
6408         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6409         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6410         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6411         if (hpsa_wait_for_mode_change_ack(h))
6412                 goto error;
6413         print_cfg_table(&h->pdev->dev, h->cfgtable);
6414         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6415                 goto error;
6416         h->transMethod = CFGTBL_Trans_Simple;
6417         return 0;
6418 error:
6419         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6420         return -ENODEV;
6421 }
6422
6423 static int hpsa_pci_init(struct ctlr_info *h)
6424 {
6425         int prod_index, err;
6426
6427         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6428         if (prod_index < 0)
6429                 return prod_index;
6430         h->product_name = products[prod_index].product_name;
6431         h->access = *(products[prod_index].access);
6432
6433         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6434                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6435
6436         err = pci_enable_device(h->pdev);
6437         if (err) {
6438                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6439                 return err;
6440         }
6441
6442         err = pci_request_regions(h->pdev, HPSA);
6443         if (err) {
6444                 dev_err(&h->pdev->dev,
6445                         "cannot obtain PCI resources, aborting\n");
6446                 return err;
6447         }
6448
6449         pci_set_master(h->pdev);
6450
6451         hpsa_interrupt_mode(h);
6452         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6453         if (err)
6454                 goto err_out_free_res;
6455         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6456         if (!h->vaddr) {
6457                 err = -ENOMEM;
6458                 goto err_out_free_res;
6459         }
6460         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6461         if (err)
6462                 goto err_out_free_res;
6463         err = hpsa_find_cfgtables(h);
6464         if (err)
6465                 goto err_out_free_res;
6466         hpsa_find_board_params(h);
6467
6468         if (!hpsa_CISS_signature_present(h)) {
6469                 err = -ENODEV;
6470                 goto err_out_free_res;
6471         }
6472         hpsa_set_driver_support_bits(h);
6473         hpsa_p600_dma_prefetch_quirk(h);
6474         err = hpsa_enter_simple_mode(h);
6475         if (err)
6476                 goto err_out_free_res;
6477         return 0;
6478
6479 err_out_free_res:
6480         if (h->transtable)
6481                 iounmap(h->transtable);
6482         if (h->cfgtable)
6483                 iounmap(h->cfgtable);
6484         if (h->vaddr)
6485                 iounmap(h->vaddr);
6486         pci_disable_device(h->pdev);
6487         pci_release_regions(h->pdev);
6488         return err;
6489 }
6490
6491 static void hpsa_hba_inquiry(struct ctlr_info *h)
6492 {
6493         int rc;
6494
6495 #define HBA_INQUIRY_BYTE_COUNT 64
6496         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6497         if (!h->hba_inquiry_data)
6498                 return;
6499         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6500                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6501         if (rc != 0) {
6502                 kfree(h->hba_inquiry_data);
6503                 h->hba_inquiry_data = NULL;
6504         }
6505 }
6506
6507 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
6508 {
6509         int rc, i;
6510         void __iomem *vaddr;
6511
6512         if (!reset_devices)
6513                 return 0;
6514
6515         /* kdump kernel is loading, we don't know in which state is
6516          * the pci interface. The dev->enable_cnt is equal zero
6517          * so we call enable+disable, wait a while and switch it on.
6518          */
6519         rc = pci_enable_device(pdev);
6520         if (rc) {
6521                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6522                 return -ENODEV;
6523         }
6524         pci_disable_device(pdev);
6525         msleep(260);                    /* a randomly chosen number */
6526         rc = pci_enable_device(pdev);
6527         if (rc) {
6528                 dev_warn(&pdev->dev, "failed to enable device.\n");
6529                 return -ENODEV;
6530         }
6531
6532         pci_set_master(pdev);
6533
6534         vaddr = pci_ioremap_bar(pdev, 0);
6535         if (vaddr == NULL) {
6536                 rc = -ENOMEM;
6537                 goto out_disable;
6538         }
6539         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6540         iounmap(vaddr);
6541
6542         /* Reset the controller with a PCI power-cycle or via doorbell */
6543         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
6544
6545         /* -ENOTSUPP here means we cannot reset the controller
6546          * but it's already (and still) up and running in
6547          * "performant mode".  Or, it might be 640x, which can't reset
6548          * due to concerns about shared bbwc between 6402/6404 pair.
6549          */
6550         if (rc)
6551                 goto out_disable;
6552
6553         /* Now try to get the controller to respond to a no-op */
6554         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6555         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6556                 if (hpsa_noop(pdev) == 0)
6557                         break;
6558                 else
6559                         dev_warn(&pdev->dev, "no-op failed%s\n",
6560                                         (i < 11 ? "; re-trying" : ""));
6561         }
6562
6563 out_disable:
6564
6565         pci_disable_device(pdev);
6566         return rc;
6567 }
6568
6569 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6570 {
6571         h->cmd_pool_bits = kzalloc(
6572                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6573                 sizeof(unsigned long), GFP_KERNEL);
6574         h->cmd_pool = pci_alloc_consistent(h->pdev,
6575                     h->nr_cmds * sizeof(*h->cmd_pool),
6576                     &(h->cmd_pool_dhandle));
6577         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6578                     h->nr_cmds * sizeof(*h->errinfo_pool),
6579                     &(h->errinfo_pool_dhandle));
6580         if ((h->cmd_pool_bits == NULL)
6581             || (h->cmd_pool == NULL)
6582             || (h->errinfo_pool == NULL)) {
6583                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6584                 goto clean_up;
6585         }
6586         return 0;
6587 clean_up:
6588         hpsa_free_cmd_pool(h);
6589         return -ENOMEM;
6590 }
6591
6592 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6593 {
6594         kfree(h->cmd_pool_bits);
6595         if (h->cmd_pool)
6596                 pci_free_consistent(h->pdev,
6597                             h->nr_cmds * sizeof(struct CommandList),
6598                             h->cmd_pool, h->cmd_pool_dhandle);
6599         if (h->ioaccel2_cmd_pool)
6600                 pci_free_consistent(h->pdev,
6601                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6602                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6603         if (h->errinfo_pool)
6604                 pci_free_consistent(h->pdev,
6605                             h->nr_cmds * sizeof(struct ErrorInfo),
6606                             h->errinfo_pool,
6607                             h->errinfo_pool_dhandle);
6608         if (h->ioaccel_cmd_pool)
6609                 pci_free_consistent(h->pdev,
6610                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6611                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6612 }
6613
6614 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6615 {
6616         int i, cpu;
6617
6618         cpu = cpumask_first(cpu_online_mask);
6619         for (i = 0; i < h->msix_vector; i++) {
6620                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6621                 cpu = cpumask_next(cpu, cpu_online_mask);
6622         }
6623 }
6624
6625 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6626 static void hpsa_free_irqs(struct ctlr_info *h)
6627 {
6628         int i;
6629
6630         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6631                 /* Single reply queue, only one irq to free */
6632                 i = h->intr_mode;
6633                 irq_set_affinity_hint(h->intr[i], NULL);
6634                 free_irq(h->intr[i], &h->q[i]);
6635                 return;
6636         }
6637
6638         for (i = 0; i < h->msix_vector; i++) {
6639                 irq_set_affinity_hint(h->intr[i], NULL);
6640                 free_irq(h->intr[i], &h->q[i]);
6641         }
6642         for (; i < MAX_REPLY_QUEUES; i++)
6643                 h->q[i] = 0;
6644 }
6645
6646 /* returns 0 on success; cleans up and returns -Enn on error */
6647 static int hpsa_request_irqs(struct ctlr_info *h,
6648         irqreturn_t (*msixhandler)(int, void *),
6649         irqreturn_t (*intxhandler)(int, void *))
6650 {
6651         int rc, i;
6652
6653         /*
6654          * initialize h->q[x] = x so that interrupt handlers know which
6655          * queue to process.
6656          */
6657         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6658                 h->q[i] = (u8) i;
6659
6660         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6661                 /* If performant mode and MSI-X, use multiple reply queues */
6662                 for (i = 0; i < h->msix_vector; i++) {
6663                         rc = request_irq(h->intr[i], msixhandler,
6664                                         0, h->devname,
6665                                         &h->q[i]);
6666                         if (rc) {
6667                                 int j;
6668
6669                                 dev_err(&h->pdev->dev,
6670                                         "failed to get irq %d for %s\n",
6671                                        h->intr[i], h->devname);
6672                                 for (j = 0; j < i; j++) {
6673                                         free_irq(h->intr[j], &h->q[j]);
6674                                         h->q[j] = 0;
6675                                 }
6676                                 for (; j < MAX_REPLY_QUEUES; j++)
6677                                         h->q[j] = 0;
6678                                 return rc;
6679                         }
6680                 }
6681                 hpsa_irq_affinity_hints(h);
6682         } else {
6683                 /* Use single reply pool */
6684                 if (h->msix_vector > 0 || h->msi_vector) {
6685                         rc = request_irq(h->intr[h->intr_mode],
6686                                 msixhandler, 0, h->devname,
6687                                 &h->q[h->intr_mode]);
6688                 } else {
6689                         rc = request_irq(h->intr[h->intr_mode],
6690                                 intxhandler, IRQF_SHARED, h->devname,
6691                                 &h->q[h->intr_mode]);
6692                 }
6693         }
6694         if (rc) {
6695                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6696                        h->intr[h->intr_mode], h->devname);
6697                 return -ENODEV;
6698         }
6699         return 0;
6700 }
6701
6702 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6703 {
6704         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6705                 HPSA_RESET_TYPE_CONTROLLER)) {
6706                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6707                 return -EIO;
6708         }
6709
6710         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6711         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6712                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6713                 return -1;
6714         }
6715
6716         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6717         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6718                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6719                         "after soft reset.\n");
6720                 return -1;
6721         }
6722
6723         return 0;
6724 }
6725
6726 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6727 {
6728         hpsa_free_irqs(h);
6729 #ifdef CONFIG_PCI_MSI
6730         if (h->msix_vector) {
6731                 if (h->pdev->msix_enabled)
6732                         pci_disable_msix(h->pdev);
6733         } else if (h->msi_vector) {
6734                 if (h->pdev->msi_enabled)
6735                         pci_disable_msi(h->pdev);
6736         }
6737 #endif /* CONFIG_PCI_MSI */
6738 }
6739
6740 static void hpsa_free_reply_queues(struct ctlr_info *h)
6741 {
6742         int i;
6743
6744         for (i = 0; i < h->nreply_queues; i++) {
6745                 if (!h->reply_queue[i].head)
6746                         continue;
6747                 pci_free_consistent(h->pdev, h->reply_queue_size,
6748                         h->reply_queue[i].head, h->reply_queue[i].busaddr);
6749                 h->reply_queue[i].head = NULL;
6750                 h->reply_queue[i].busaddr = 0;
6751         }
6752 }
6753
6754 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6755 {
6756         hpsa_free_irqs_and_disable_msix(h);
6757         hpsa_free_sg_chain_blocks(h);
6758         hpsa_free_cmd_pool(h);
6759         kfree(h->ioaccel1_blockFetchTable);
6760         kfree(h->blockFetchTable);
6761         hpsa_free_reply_queues(h);
6762         if (h->vaddr)
6763                 iounmap(h->vaddr);
6764         if (h->transtable)
6765                 iounmap(h->transtable);
6766         if (h->cfgtable)
6767                 iounmap(h->cfgtable);
6768         pci_disable_device(h->pdev);
6769         pci_release_regions(h->pdev);
6770         kfree(h);
6771 }
6772
6773 /* Called when controller lockup detected. */
6774 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6775 {
6776         int i, refcount;
6777         struct CommandList *c;
6778         int failcount = 0;
6779
6780         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6781         for (i = 0; i < h->nr_cmds; i++) {
6782                 c = h->cmd_pool + i;
6783                 refcount = atomic_inc_return(&c->refcount);
6784                 if (refcount > 1) {
6785                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
6786                         finish_cmd(c);
6787                         failcount++;
6788                 }
6789                 cmd_free(h, c);
6790         }
6791         dev_warn(&h->pdev->dev,
6792                 "failed %d commands in fail_all\n", failcount);
6793 }
6794
6795 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6796 {
6797         int cpu;
6798
6799         for_each_online_cpu(cpu) {
6800                 u32 *lockup_detected;
6801                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6802                 *lockup_detected = value;
6803         }
6804         wmb(); /* be sure the per-cpu variables are out to memory */
6805 }
6806
6807 static void controller_lockup_detected(struct ctlr_info *h)
6808 {
6809         unsigned long flags;
6810         u32 lockup_detected;
6811
6812         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6813         spin_lock_irqsave(&h->lock, flags);
6814         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6815         if (!lockup_detected) {
6816                 /* no heartbeat, but controller gave us a zero. */
6817                 dev_warn(&h->pdev->dev,
6818                         "lockup detected after %d but scratchpad register is zero\n",
6819                         h->heartbeat_sample_interval / HZ);
6820                 lockup_detected = 0xffffffff;
6821         }
6822         set_lockup_detected_for_all_cpus(h, lockup_detected);
6823         spin_unlock_irqrestore(&h->lock, flags);
6824         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
6825                         lockup_detected, h->heartbeat_sample_interval / HZ);
6826         pci_disable_device(h->pdev);
6827         fail_all_outstanding_cmds(h);
6828 }
6829
6830 static int detect_controller_lockup(struct ctlr_info *h)
6831 {
6832         u64 now;
6833         u32 heartbeat;
6834         unsigned long flags;
6835
6836         now = get_jiffies_64();
6837         /* If we've received an interrupt recently, we're ok. */
6838         if (time_after64(h->last_intr_timestamp +
6839                                 (h->heartbeat_sample_interval), now))
6840                 return false;
6841
6842         /*
6843          * If we've already checked the heartbeat recently, we're ok.
6844          * This could happen if someone sends us a signal. We
6845          * otherwise don't care about signals in this thread.
6846          */
6847         if (time_after64(h->last_heartbeat_timestamp +
6848                                 (h->heartbeat_sample_interval), now))
6849                 return false;
6850
6851         /* If heartbeat has not changed since we last looked, we're not ok. */
6852         spin_lock_irqsave(&h->lock, flags);
6853         heartbeat = readl(&h->cfgtable->HeartBeat);
6854         spin_unlock_irqrestore(&h->lock, flags);
6855         if (h->last_heartbeat == heartbeat) {
6856                 controller_lockup_detected(h);
6857                 return true;
6858         }
6859
6860         /* We're ok. */
6861         h->last_heartbeat = heartbeat;
6862         h->last_heartbeat_timestamp = now;
6863         return false;
6864 }
6865
6866 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6867 {
6868         int i;
6869         char *event_type;
6870
6871         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6872                 return;
6873
6874         /* Ask the controller to clear the events we're handling. */
6875         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6876                         | CFGTBL_Trans_io_accel2)) &&
6877                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6878                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6879
6880                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6881                         event_type = "state change";
6882                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6883                         event_type = "configuration change";
6884                 /* Stop sending new RAID offload reqs via the IO accelerator */
6885                 scsi_block_requests(h->scsi_host);
6886                 for (i = 0; i < h->ndevices; i++)
6887                         h->dev[i]->offload_enabled = 0;
6888                 hpsa_drain_accel_commands(h);
6889                 /* Set 'accelerator path config change' bit */
6890                 dev_warn(&h->pdev->dev,
6891                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6892                         h->events, event_type);
6893                 writel(h->events, &(h->cfgtable->clear_event_notify));
6894                 /* Set the "clear event notify field update" bit 6 */
6895                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6896                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6897                 hpsa_wait_for_clear_event_notify_ack(h);
6898                 scsi_unblock_requests(h->scsi_host);
6899         } else {
6900                 /* Acknowledge controller notification events. */
6901                 writel(h->events, &(h->cfgtable->clear_event_notify));
6902                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6903                 hpsa_wait_for_clear_event_notify_ack(h);
6904 #if 0
6905                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6906                 hpsa_wait_for_mode_change_ack(h);
6907 #endif
6908         }
6909         return;
6910 }
6911
6912 /* Check a register on the controller to see if there are configuration
6913  * changes (added/changed/removed logical drives, etc.) which mean that
6914  * we should rescan the controller for devices.
6915  * Also check flag for driver-initiated rescan.
6916  */
6917 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6918 {
6919         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6920                 return 0;
6921
6922         h->events = readl(&(h->cfgtable->event_notify));
6923         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6924 }
6925
6926 /*
6927  * Check if any of the offline devices have become ready
6928  */
6929 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6930 {
6931         unsigned long flags;
6932         struct offline_device_entry *d;
6933         struct list_head *this, *tmp;
6934
6935         spin_lock_irqsave(&h->offline_device_lock, flags);
6936         list_for_each_safe(this, tmp, &h->offline_device_list) {
6937                 d = list_entry(this, struct offline_device_entry,
6938                                 offline_list);
6939                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6940                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6941                         spin_lock_irqsave(&h->offline_device_lock, flags);
6942                         list_del(&d->offline_list);
6943                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6944                         return 1;
6945                 }
6946                 spin_lock_irqsave(&h->offline_device_lock, flags);
6947         }
6948         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6949         return 0;
6950 }
6951
6952 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
6953 {
6954         unsigned long flags;
6955         struct ctlr_info *h = container_of(to_delayed_work(work),
6956                                         struct ctlr_info, rescan_ctlr_work);
6957
6958
6959         if (h->remove_in_progress)
6960                 return;
6961
6962         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6963                 scsi_host_get(h->scsi_host);
6964                 hpsa_ack_ctlr_events(h);
6965                 hpsa_scan_start(h->scsi_host);
6966                 scsi_host_put(h->scsi_host);
6967         }
6968         spin_lock_irqsave(&h->lock, flags);
6969         if (!h->remove_in_progress)
6970                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
6971                                 h->heartbeat_sample_interval);
6972         spin_unlock_irqrestore(&h->lock, flags);
6973 }
6974
6975 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6976 {
6977         unsigned long flags;
6978         struct ctlr_info *h = container_of(to_delayed_work(work),
6979                                         struct ctlr_info, monitor_ctlr_work);
6980
6981         detect_controller_lockup(h);
6982         if (lockup_detected(h))
6983                 return;
6984
6985         spin_lock_irqsave(&h->lock, flags);
6986         if (!h->remove_in_progress)
6987                 schedule_delayed_work(&h->monitor_ctlr_work,
6988                                 h->heartbeat_sample_interval);
6989         spin_unlock_irqrestore(&h->lock, flags);
6990 }
6991
6992 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
6993                                                 char *name)
6994 {
6995         struct workqueue_struct *wq = NULL;
6996
6997         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6998         if (!wq)
6999                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7000
7001         return wq;
7002 }
7003
7004 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7005 {
7006         int dac, rc;
7007         struct ctlr_info *h;
7008         int try_soft_reset = 0;
7009         unsigned long flags;
7010         u32 board_id;
7011
7012         if (number_of_controllers == 0)
7013                 printk(KERN_INFO DRIVER_NAME "\n");
7014
7015         rc = hpsa_lookup_board_id(pdev, &board_id);
7016         if (rc < 0) {
7017                 dev_warn(&pdev->dev, "Board ID not found\n");
7018                 return rc;
7019         }
7020
7021         rc = hpsa_init_reset_devices(pdev, board_id);
7022         if (rc) {
7023                 if (rc != -ENOTSUPP)
7024                         return rc;
7025                 /* If the reset fails in a particular way (it has no way to do
7026                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
7027                  * a soft reset once we get the controller configured up to the
7028                  * point that it can accept a command.
7029                  */
7030                 try_soft_reset = 1;
7031                 rc = 0;
7032         }
7033
7034 reinit_after_soft_reset:
7035
7036         /* Command structures must be aligned on a 32-byte boundary because
7037          * the 5 lower bits of the address are used by the hardware. and by
7038          * the driver.  See comments in hpsa.h for more info.
7039          */
7040         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7041         h = kzalloc(sizeof(*h), GFP_KERNEL);
7042         if (!h)
7043                 return -ENOMEM;
7044
7045         h->pdev = pdev;
7046         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7047         INIT_LIST_HEAD(&h->offline_device_list);
7048         spin_lock_init(&h->lock);
7049         spin_lock_init(&h->offline_device_lock);
7050         spin_lock_init(&h->scan_lock);
7051         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7052
7053         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
7054         if (!h->rescan_ctlr_wq) {
7055                 rc = -ENOMEM;
7056                 goto clean1;
7057         }
7058
7059         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
7060         if (!h->resubmit_wq) {
7061                 rc = -ENOMEM;
7062                 goto clean1;
7063         }
7064
7065         /* Allocate and clear per-cpu variable lockup_detected */
7066         h->lockup_detected = alloc_percpu(u32);
7067         if (!h->lockup_detected) {
7068                 rc = -ENOMEM;
7069                 goto clean1;
7070         }
7071         set_lockup_detected_for_all_cpus(h, 0);
7072
7073         rc = hpsa_pci_init(h);
7074         if (rc != 0)
7075                 goto clean1;
7076
7077         sprintf(h->devname, HPSA "%d", number_of_controllers);
7078         h->ctlr = number_of_controllers;
7079         number_of_controllers++;
7080
7081         /* configure PCI DMA stuff */
7082         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7083         if (rc == 0) {
7084                 dac = 1;
7085         } else {
7086                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7087                 if (rc == 0) {
7088                         dac = 0;
7089                 } else {
7090                         dev_err(&pdev->dev, "no suitable DMA available\n");
7091                         goto clean1;
7092                 }
7093         }
7094
7095         /* make sure the board interrupts are off */
7096         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7097
7098         if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7099                 goto clean2;
7100         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7101                h->devname, pdev->device,
7102                h->intr[h->intr_mode], dac ? "" : " not");
7103         rc = hpsa_allocate_cmd_pool(h);
7104         if (rc)
7105                 goto clean2_and_free_irqs;
7106         if (hpsa_allocate_sg_chain_blocks(h))
7107                 goto clean4;
7108         init_waitqueue_head(&h->scan_wait_queue);
7109         h->scan_finished = 1; /* no scan currently in progress */
7110
7111         pci_set_drvdata(pdev, h);
7112         h->ndevices = 0;
7113         h->hba_mode_enabled = 0;
7114         h->scsi_host = NULL;
7115         spin_lock_init(&h->devlock);
7116         hpsa_put_ctlr_into_performant_mode(h);
7117
7118         /* At this point, the controller is ready to take commands.
7119          * Now, if reset_devices and the hard reset didn't work, try
7120          * the soft reset and see if that works.
7121          */
7122         if (try_soft_reset) {
7123
7124                 /* This is kind of gross.  We may or may not get a completion
7125                  * from the soft reset command, and if we do, then the value
7126                  * from the fifo may or may not be valid.  So, we wait 10 secs
7127                  * after the reset throwing away any completions we get during
7128                  * that time.  Unregister the interrupt handler and register
7129                  * fake ones to scoop up any residual completions.
7130                  */
7131                 spin_lock_irqsave(&h->lock, flags);
7132                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7133                 spin_unlock_irqrestore(&h->lock, flags);
7134                 hpsa_free_irqs(h);
7135                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7136                                         hpsa_intx_discard_completions);
7137                 if (rc) {
7138                         dev_warn(&h->pdev->dev,
7139                                 "Failed to request_irq after soft reset.\n");
7140                         goto clean4;
7141                 }
7142
7143                 rc = hpsa_kdump_soft_reset(h);
7144                 if (rc)
7145                         /* Neither hard nor soft reset worked, we're hosed. */
7146                         goto clean4;
7147
7148                 dev_info(&h->pdev->dev, "Board READY.\n");
7149                 dev_info(&h->pdev->dev,
7150                         "Waiting for stale completions to drain.\n");
7151                 h->access.set_intr_mask(h, HPSA_INTR_ON);
7152                 msleep(10000);
7153                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7154
7155                 rc = controller_reset_failed(h->cfgtable);
7156                 if (rc)
7157                         dev_info(&h->pdev->dev,
7158                                 "Soft reset appears to have failed.\n");
7159
7160                 /* since the controller's reset, we have to go back and re-init
7161                  * everything.  Easiest to just forget what we've done and do it
7162                  * all over again.
7163                  */
7164                 hpsa_undo_allocations_after_kdump_soft_reset(h);
7165                 try_soft_reset = 0;
7166                 if (rc)
7167                         /* don't go to clean4, we already unallocated */
7168                         return -ENODEV;
7169
7170                 goto reinit_after_soft_reset;
7171         }
7172
7173                 /* Enable Accelerated IO path at driver layer */
7174                 h->acciopath_status = 1;
7175
7176
7177         /* Turn the interrupts on so we can service requests */
7178         h->access.set_intr_mask(h, HPSA_INTR_ON);
7179
7180         hpsa_hba_inquiry(h);
7181         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
7182
7183         /* Monitor the controller for firmware lockups */
7184         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7185         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7186         schedule_delayed_work(&h->monitor_ctlr_work,
7187                                 h->heartbeat_sample_interval);
7188         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7189         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7190                                 h->heartbeat_sample_interval);
7191         return 0;
7192
7193 clean4:
7194         hpsa_free_sg_chain_blocks(h);
7195         hpsa_free_cmd_pool(h);
7196 clean2_and_free_irqs:
7197         hpsa_free_irqs(h);
7198 clean2:
7199 clean1:
7200         if (h->resubmit_wq)
7201                 destroy_workqueue(h->resubmit_wq);
7202         if (h->rescan_ctlr_wq)
7203                 destroy_workqueue(h->rescan_ctlr_wq);
7204         if (h->lockup_detected)
7205                 free_percpu(h->lockup_detected);
7206         kfree(h);
7207         return rc;
7208 }
7209
7210 static void hpsa_flush_cache(struct ctlr_info *h)
7211 {
7212         char *flush_buf;
7213         struct CommandList *c;
7214         int rc;
7215
7216         /* Don't bother trying to flush the cache if locked up */
7217         /* FIXME not necessary if do_simple_cmd does the check */
7218         if (unlikely(lockup_detected(h)))
7219                 return;
7220         flush_buf = kzalloc(4, GFP_KERNEL);
7221         if (!flush_buf)
7222                 return;
7223
7224         c = cmd_alloc(h);
7225         if (!c) {
7226                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7227                 goto out_of_memory;
7228         }
7229         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7230                 RAID_CTLR_LUNID, TYPE_CMD)) {
7231                 goto out;
7232         }
7233         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
7234                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
7235         if (rc)
7236                 goto out;
7237         if (c->err_info->CommandStatus != 0)
7238 out:
7239                 dev_warn(&h->pdev->dev,
7240                         "error flushing cache on controller\n");
7241         cmd_free(h, c);
7242 out_of_memory:
7243         kfree(flush_buf);
7244 }
7245
7246 static void hpsa_shutdown(struct pci_dev *pdev)
7247 {
7248         struct ctlr_info *h;
7249
7250         h = pci_get_drvdata(pdev);
7251         /* Turn board interrupts off  and send the flush cache command
7252          * sendcmd will turn off interrupt, and send the flush...
7253          * To write all data in the battery backed cache to disks
7254          */
7255         hpsa_flush_cache(h);
7256         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7257         hpsa_free_irqs_and_disable_msix(h);
7258 }
7259
7260 static void hpsa_free_device_info(struct ctlr_info *h)
7261 {
7262         int i;
7263
7264         for (i = 0; i < h->ndevices; i++)
7265                 kfree(h->dev[i]);
7266 }
7267
7268 static void hpsa_remove_one(struct pci_dev *pdev)
7269 {
7270         struct ctlr_info *h;
7271         unsigned long flags;
7272
7273         if (pci_get_drvdata(pdev) == NULL) {
7274                 dev_err(&pdev->dev, "unable to remove device\n");
7275                 return;
7276         }
7277         h = pci_get_drvdata(pdev);
7278
7279         /* Get rid of any controller monitoring work items */
7280         spin_lock_irqsave(&h->lock, flags);
7281         h->remove_in_progress = 1;
7282         spin_unlock_irqrestore(&h->lock, flags);
7283         cancel_delayed_work_sync(&h->monitor_ctlr_work);
7284         cancel_delayed_work_sync(&h->rescan_ctlr_work);
7285         destroy_workqueue(h->rescan_ctlr_wq);
7286         destroy_workqueue(h->resubmit_wq);
7287         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7288         hpsa_shutdown(pdev);
7289         iounmap(h->vaddr);
7290         iounmap(h->transtable);
7291         iounmap(h->cfgtable);
7292         hpsa_free_device_info(h);
7293         hpsa_free_sg_chain_blocks(h);
7294         pci_free_consistent(h->pdev,
7295                 h->nr_cmds * sizeof(struct CommandList),
7296                 h->cmd_pool, h->cmd_pool_dhandle);
7297         pci_free_consistent(h->pdev,
7298                 h->nr_cmds * sizeof(struct ErrorInfo),
7299                 h->errinfo_pool, h->errinfo_pool_dhandle);
7300         hpsa_free_reply_queues(h);
7301         kfree(h->cmd_pool_bits);
7302         kfree(h->blockFetchTable);
7303         kfree(h->ioaccel1_blockFetchTable);
7304         kfree(h->ioaccel2_blockFetchTable);
7305         kfree(h->hba_inquiry_data);
7306         pci_disable_device(pdev);
7307         pci_release_regions(pdev);
7308         free_percpu(h->lockup_detected);
7309         kfree(h);
7310 }
7311
7312 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7313         __attribute__((unused)) pm_message_t state)
7314 {
7315         return -ENOSYS;
7316 }
7317
7318 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7319 {
7320         return -ENOSYS;
7321 }
7322
7323 static struct pci_driver hpsa_pci_driver = {
7324         .name = HPSA,
7325         .probe = hpsa_init_one,
7326         .remove = hpsa_remove_one,
7327         .id_table = hpsa_pci_device_id, /* id_table */
7328         .shutdown = hpsa_shutdown,
7329         .suspend = hpsa_suspend,
7330         .resume = hpsa_resume,
7331 };
7332
7333 /* Fill in bucket_map[], given nsgs (the max number of
7334  * scatter gather elements supported) and bucket[],
7335  * which is an array of 8 integers.  The bucket[] array
7336  * contains 8 different DMA transfer sizes (in 16
7337  * byte increments) which the controller uses to fetch
7338  * commands.  This function fills in bucket_map[], which
7339  * maps a given number of scatter gather elements to one of
7340  * the 8 DMA transfer sizes.  The point of it is to allow the
7341  * controller to only do as much DMA as needed to fetch the
7342  * command, with the DMA transfer size encoded in the lower
7343  * bits of the command address.
7344  */
7345 static void  calc_bucket_map(int bucket[], int num_buckets,
7346         int nsgs, int min_blocks, u32 *bucket_map)
7347 {
7348         int i, j, b, size;
7349
7350         /* Note, bucket_map must have nsgs+1 entries. */
7351         for (i = 0; i <= nsgs; i++) {
7352                 /* Compute size of a command with i SG entries */
7353                 size = i + min_blocks;
7354                 b = num_buckets; /* Assume the biggest bucket */
7355                 /* Find the bucket that is just big enough */
7356                 for (j = 0; j < num_buckets; j++) {
7357                         if (bucket[j] >= size) {
7358                                 b = j;
7359                                 break;
7360                         }
7361                 }
7362                 /* for a command with i SG entries, use bucket b. */
7363                 bucket_map[i] = b;
7364         }
7365 }
7366
7367 /* return -ENODEV or other reason on error, 0 on success */
7368 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7369 {
7370         int i;
7371         unsigned long register_value;
7372         unsigned long transMethod = CFGTBL_Trans_Performant |
7373                         (trans_support & CFGTBL_Trans_use_short_tags) |
7374                                 CFGTBL_Trans_enable_directed_msix |
7375                         (trans_support & (CFGTBL_Trans_io_accel1 |
7376                                 CFGTBL_Trans_io_accel2));
7377         struct access_method access = SA5_performant_access;
7378
7379         /* This is a bit complicated.  There are 8 registers on
7380          * the controller which we write to to tell it 8 different
7381          * sizes of commands which there may be.  It's a way of
7382          * reducing the DMA done to fetch each command.  Encoded into
7383          * each command's tag are 3 bits which communicate to the controller
7384          * which of the eight sizes that command fits within.  The size of
7385          * each command depends on how many scatter gather entries there are.
7386          * Each SG entry requires 16 bytes.  The eight registers are programmed
7387          * with the number of 16-byte blocks a command of that size requires.
7388          * The smallest command possible requires 5 such 16 byte blocks.
7389          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7390          * blocks.  Note, this only extends to the SG entries contained
7391          * within the command block, and does not extend to chained blocks
7392          * of SG elements.   bft[] contains the eight values we write to
7393          * the registers.  They are not evenly distributed, but have more
7394          * sizes for small commands, and fewer sizes for larger commands.
7395          */
7396         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7397 #define MIN_IOACCEL2_BFT_ENTRY 5
7398 #define HPSA_IOACCEL2_HEADER_SZ 4
7399         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7400                         13, 14, 15, 16, 17, 18, 19,
7401                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7402         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7403         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7404         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7405                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7406         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7407         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7408         /*  5 = 1 s/g entry or 4k
7409          *  6 = 2 s/g entry or 8k
7410          *  8 = 4 s/g entry or 16k
7411          * 10 = 6 s/g entry or 24k
7412          */
7413
7414         /* If the controller supports either ioaccel method then
7415          * we can also use the RAID stack submit path that does not
7416          * perform the superfluous readl() after each command submission.
7417          */
7418         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7419                 access = SA5_performant_access_no_read;
7420
7421         /* Controller spec: zero out this buffer. */
7422         for (i = 0; i < h->nreply_queues; i++)
7423                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7424
7425         bft[7] = SG_ENTRIES_IN_CMD + 4;
7426         calc_bucket_map(bft, ARRAY_SIZE(bft),
7427                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7428         for (i = 0; i < 8; i++)
7429                 writel(bft[i], &h->transtable->BlockFetch[i]);
7430
7431         /* size of controller ring buffer */
7432         writel(h->max_commands, &h->transtable->RepQSize);
7433         writel(h->nreply_queues, &h->transtable->RepQCount);
7434         writel(0, &h->transtable->RepQCtrAddrLow32);
7435         writel(0, &h->transtable->RepQCtrAddrHigh32);
7436
7437         for (i = 0; i < h->nreply_queues; i++) {
7438                 writel(0, &h->transtable->RepQAddr[i].upper);
7439                 writel(h->reply_queue[i].busaddr,
7440                         &h->transtable->RepQAddr[i].lower);
7441         }
7442
7443         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7444         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7445         /*
7446          * enable outbound interrupt coalescing in accelerator mode;
7447          */
7448         if (trans_support & CFGTBL_Trans_io_accel1) {
7449                 access = SA5_ioaccel_mode1_access;
7450                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7451                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7452         } else {
7453                 if (trans_support & CFGTBL_Trans_io_accel2) {
7454                         access = SA5_ioaccel_mode2_access;
7455                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7456                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7457                 }
7458         }
7459         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7460         if (hpsa_wait_for_mode_change_ack(h)) {
7461                 dev_err(&h->pdev->dev,
7462                         "performant mode problem - doorbell timeout\n");
7463                 return -ENODEV;
7464         }
7465         register_value = readl(&(h->cfgtable->TransportActive));
7466         if (!(register_value & CFGTBL_Trans_Performant)) {
7467                 dev_err(&h->pdev->dev,
7468                         "performant mode problem - transport not active\n");
7469                 return -ENODEV;
7470         }
7471         /* Change the access methods to the performant access methods */
7472         h->access = access;
7473         h->transMethod = transMethod;
7474
7475         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7476                 (trans_support & CFGTBL_Trans_io_accel2)))
7477                 return 0;
7478
7479         if (trans_support & CFGTBL_Trans_io_accel1) {
7480                 /* Set up I/O accelerator mode */
7481                 for (i = 0; i < h->nreply_queues; i++) {
7482                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7483                         h->reply_queue[i].current_entry =
7484                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7485                 }
7486                 bft[7] = h->ioaccel_maxsg + 8;
7487                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7488                                 h->ioaccel1_blockFetchTable);
7489
7490                 /* initialize all reply queue entries to unused */
7491                 for (i = 0; i < h->nreply_queues; i++)
7492                         memset(h->reply_queue[i].head,
7493                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7494                                 h->reply_queue_size);
7495
7496                 /* set all the constant fields in the accelerator command
7497                  * frames once at init time to save CPU cycles later.
7498                  */
7499                 for (i = 0; i < h->nr_cmds; i++) {
7500                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7501
7502                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7503                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7504                                         (i * sizeof(struct ErrorInfo)));
7505                         cp->err_info_len = sizeof(struct ErrorInfo);
7506                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7507                         cp->host_context_flags =
7508                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7509                         cp->timeout_sec = 0;
7510                         cp->ReplyQueue = 0;
7511                         cp->tag =
7512                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7513                         cp->host_addr =
7514                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7515                                         (i * sizeof(struct io_accel1_cmd)));
7516                 }
7517         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7518                 u64 cfg_offset, cfg_base_addr_index;
7519                 u32 bft2_offset, cfg_base_addr;
7520                 int rc;
7521
7522                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7523                         &cfg_base_addr_index, &cfg_offset);
7524                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7525                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7526                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7527                                 4, h->ioaccel2_blockFetchTable);
7528                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7529                 BUILD_BUG_ON(offsetof(struct CfgTable,
7530                                 io_accel_request_size_offset) != 0xb8);
7531                 h->ioaccel2_bft2_regs =
7532                         remap_pci_mem(pci_resource_start(h->pdev,
7533                                         cfg_base_addr_index) +
7534                                         cfg_offset + bft2_offset,
7535                                         ARRAY_SIZE(bft2) *
7536                                         sizeof(*h->ioaccel2_bft2_regs));
7537                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7538                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7539         }
7540         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7541         if (hpsa_wait_for_mode_change_ack(h)) {
7542                 dev_err(&h->pdev->dev,
7543                         "performant mode problem - enabling ioaccel mode\n");
7544                 return -ENODEV;
7545         }
7546         return 0;
7547 }
7548
7549 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7550 {
7551         h->ioaccel_maxsg =
7552                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7553         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7554                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7555
7556         /* Command structures must be aligned on a 128-byte boundary
7557          * because the 7 lower bits of the address are used by the
7558          * hardware.
7559          */
7560         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7561                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7562         h->ioaccel_cmd_pool =
7563                 pci_alloc_consistent(h->pdev,
7564                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7565                         &(h->ioaccel_cmd_pool_dhandle));
7566
7567         h->ioaccel1_blockFetchTable =
7568                 kmalloc(((h->ioaccel_maxsg + 1) *
7569                                 sizeof(u32)), GFP_KERNEL);
7570
7571         if ((h->ioaccel_cmd_pool == NULL) ||
7572                 (h->ioaccel1_blockFetchTable == NULL))
7573                 goto clean_up;
7574
7575         memset(h->ioaccel_cmd_pool, 0,
7576                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7577         return 0;
7578
7579 clean_up:
7580         if (h->ioaccel_cmd_pool)
7581                 pci_free_consistent(h->pdev,
7582                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7583                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7584         kfree(h->ioaccel1_blockFetchTable);
7585         return 1;
7586 }
7587
7588 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7589 {
7590         /* Allocate ioaccel2 mode command blocks and block fetch table */
7591
7592         h->ioaccel_maxsg =
7593                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7594         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7595                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7596
7597         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7598                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7599         h->ioaccel2_cmd_pool =
7600                 pci_alloc_consistent(h->pdev,
7601                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7602                         &(h->ioaccel2_cmd_pool_dhandle));
7603
7604         h->ioaccel2_blockFetchTable =
7605                 kmalloc(((h->ioaccel_maxsg + 1) *
7606                                 sizeof(u32)), GFP_KERNEL);
7607
7608         if ((h->ioaccel2_cmd_pool == NULL) ||
7609                 (h->ioaccel2_blockFetchTable == NULL))
7610                 goto clean_up;
7611
7612         memset(h->ioaccel2_cmd_pool, 0,
7613                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7614         return 0;
7615
7616 clean_up:
7617         if (h->ioaccel2_cmd_pool)
7618                 pci_free_consistent(h->pdev,
7619                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7620                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7621         kfree(h->ioaccel2_blockFetchTable);
7622         return 1;
7623 }
7624
7625 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7626 {
7627         u32 trans_support;
7628         unsigned long transMethod = CFGTBL_Trans_Performant |
7629                                         CFGTBL_Trans_use_short_tags;
7630         int i;
7631
7632         if (hpsa_simple_mode)
7633                 return;
7634
7635         trans_support = readl(&(h->cfgtable->TransportSupport));
7636         if (!(trans_support & PERFORMANT_MODE))
7637                 return;
7638
7639         /* Check for I/O accelerator mode support */
7640         if (trans_support & CFGTBL_Trans_io_accel1) {
7641                 transMethod |= CFGTBL_Trans_io_accel1 |
7642                                 CFGTBL_Trans_enable_directed_msix;
7643                 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7644                         goto clean_up;
7645         } else {
7646                 if (trans_support & CFGTBL_Trans_io_accel2) {
7647                                 transMethod |= CFGTBL_Trans_io_accel2 |
7648                                 CFGTBL_Trans_enable_directed_msix;
7649                 if (ioaccel2_alloc_cmds_and_bft(h))
7650                         goto clean_up;
7651                 }
7652         }
7653
7654         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7655         hpsa_get_max_perf_mode_cmds(h);
7656         /* Performant mode ring buffer and supporting data structures */
7657         h->reply_queue_size = h->max_commands * sizeof(u64);
7658
7659         for (i = 0; i < h->nreply_queues; i++) {
7660                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7661                                                 h->reply_queue_size,
7662                                                 &(h->reply_queue[i].busaddr));
7663                 if (!h->reply_queue[i].head)
7664                         goto clean_up;
7665                 h->reply_queue[i].size = h->max_commands;
7666                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7667                 h->reply_queue[i].current_entry = 0;
7668         }
7669
7670         /* Need a block fetch table for performant mode */
7671         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7672                                 sizeof(u32)), GFP_KERNEL);
7673         if (!h->blockFetchTable)
7674                 goto clean_up;
7675
7676         hpsa_enter_performant_mode(h, trans_support);
7677         return;
7678
7679 clean_up:
7680         hpsa_free_reply_queues(h);
7681         kfree(h->blockFetchTable);
7682 }
7683
7684 static int is_accelerated_cmd(struct CommandList *c)
7685 {
7686         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7687 }
7688
7689 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7690 {
7691         struct CommandList *c = NULL;
7692         int i, accel_cmds_out;
7693         int refcount;
7694
7695         do { /* wait for all outstanding ioaccel commands to drain out */
7696                 accel_cmds_out = 0;
7697                 for (i = 0; i < h->nr_cmds; i++) {
7698                         c = h->cmd_pool + i;
7699                         refcount = atomic_inc_return(&c->refcount);
7700                         if (refcount > 1) /* Command is allocated */
7701                                 accel_cmds_out += is_accelerated_cmd(c);
7702                         cmd_free(h, c);
7703                 }
7704                 if (accel_cmds_out <= 0)
7705                         break;
7706                 msleep(100);
7707         } while (1);
7708 }
7709
7710 /*
7711  *  This is it.  Register the PCI driver information for the cards we control
7712  *  the OS will call our registered routines when it finds one of our cards.
7713  */
7714 static int __init hpsa_init(void)
7715 {
7716         return pci_register_driver(&hpsa_pci_driver);
7717 }
7718
7719 static void __exit hpsa_cleanup(void)
7720 {
7721         pci_unregister_driver(&hpsa_pci_driver);
7722 }
7723
7724 static void __attribute__((unused)) verify_offsets(void)
7725 {
7726 #define VERIFY_OFFSET(member, offset) \
7727         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7728
7729         VERIFY_OFFSET(structure_size, 0);
7730         VERIFY_OFFSET(volume_blk_size, 4);
7731         VERIFY_OFFSET(volume_blk_cnt, 8);
7732         VERIFY_OFFSET(phys_blk_shift, 16);
7733         VERIFY_OFFSET(parity_rotation_shift, 17);
7734         VERIFY_OFFSET(strip_size, 18);
7735         VERIFY_OFFSET(disk_starting_blk, 20);
7736         VERIFY_OFFSET(disk_blk_cnt, 28);
7737         VERIFY_OFFSET(data_disks_per_row, 36);
7738         VERIFY_OFFSET(metadata_disks_per_row, 38);
7739         VERIFY_OFFSET(row_cnt, 40);
7740         VERIFY_OFFSET(layout_map_count, 42);
7741         VERIFY_OFFSET(flags, 44);
7742         VERIFY_OFFSET(dekindex, 46);
7743         /* VERIFY_OFFSET(reserved, 48 */
7744         VERIFY_OFFSET(data, 64);
7745
7746 #undef VERIFY_OFFSET
7747
7748 #define VERIFY_OFFSET(member, offset) \
7749         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7750
7751         VERIFY_OFFSET(IU_type, 0);
7752         VERIFY_OFFSET(direction, 1);
7753         VERIFY_OFFSET(reply_queue, 2);
7754         /* VERIFY_OFFSET(reserved1, 3);  */
7755         VERIFY_OFFSET(scsi_nexus, 4);
7756         VERIFY_OFFSET(Tag, 8);
7757         VERIFY_OFFSET(cdb, 16);
7758         VERIFY_OFFSET(cciss_lun, 32);
7759         VERIFY_OFFSET(data_len, 40);
7760         VERIFY_OFFSET(cmd_priority_task_attr, 44);
7761         VERIFY_OFFSET(sg_count, 45);
7762         /* VERIFY_OFFSET(reserved3 */
7763         VERIFY_OFFSET(err_ptr, 48);
7764         VERIFY_OFFSET(err_len, 56);
7765         /* VERIFY_OFFSET(reserved4  */
7766         VERIFY_OFFSET(sg, 64);
7767
7768 #undef VERIFY_OFFSET
7769
7770 #define VERIFY_OFFSET(member, offset) \
7771         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7772
7773         VERIFY_OFFSET(dev_handle, 0x00);
7774         VERIFY_OFFSET(reserved1, 0x02);
7775         VERIFY_OFFSET(function, 0x03);
7776         VERIFY_OFFSET(reserved2, 0x04);
7777         VERIFY_OFFSET(err_info, 0x0C);
7778         VERIFY_OFFSET(reserved3, 0x10);
7779         VERIFY_OFFSET(err_info_len, 0x12);
7780         VERIFY_OFFSET(reserved4, 0x13);
7781         VERIFY_OFFSET(sgl_offset, 0x14);
7782         VERIFY_OFFSET(reserved5, 0x15);
7783         VERIFY_OFFSET(transfer_len, 0x1C);
7784         VERIFY_OFFSET(reserved6, 0x20);
7785         VERIFY_OFFSET(io_flags, 0x24);
7786         VERIFY_OFFSET(reserved7, 0x26);
7787         VERIFY_OFFSET(LUN, 0x34);
7788         VERIFY_OFFSET(control, 0x3C);
7789         VERIFY_OFFSET(CDB, 0x40);
7790         VERIFY_OFFSET(reserved8, 0x50);
7791         VERIFY_OFFSET(host_context_flags, 0x60);
7792         VERIFY_OFFSET(timeout_sec, 0x62);
7793         VERIFY_OFFSET(ReplyQueue, 0x64);
7794         VERIFY_OFFSET(reserved9, 0x65);
7795         VERIFY_OFFSET(tag, 0x68);
7796         VERIFY_OFFSET(host_addr, 0x70);
7797         VERIFY_OFFSET(CISS_LUN, 0x78);
7798         VERIFY_OFFSET(SG, 0x78 + 8);
7799 #undef VERIFY_OFFSET
7800 }
7801
7802 module_init(hpsa_init);
7803 module_exit(hpsa_cleanup);