rk30/rk2928 hdmi:
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78 static int hpsa_simple_mode;
79 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_simple_mode,
81         "Use 'simple mode' rather than 'performant mode'");
82
83 /* define the PCI info for the cards we can control */
84 static const struct pci_device_id hpsa_pci_device_id[] = {
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
100         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
101                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106
107 /*  board_id = Subsystem Device ID & Vendor ID
108  *  product = Marketing Name for the board
109  *  access = Address of the struct of function pointers
110  */
111 static struct board_type products[] = {
112         {0x3241103C, "Smart Array P212", &SA5_access},
113         {0x3243103C, "Smart Array P410", &SA5_access},
114         {0x3245103C, "Smart Array P410i", &SA5_access},
115         {0x3247103C, "Smart Array P411", &SA5_access},
116         {0x3249103C, "Smart Array P812", &SA5_access},
117         {0x324a103C, "Smart Array P712m", &SA5_access},
118         {0x324b103C, "Smart Array P711m", &SA5_access},
119         {0x3350103C, "Smart Array", &SA5_access},
120         {0x3351103C, "Smart Array", &SA5_access},
121         {0x3352103C, "Smart Array", &SA5_access},
122         {0x3353103C, "Smart Array", &SA5_access},
123         {0x3354103C, "Smart Array", &SA5_access},
124         {0x3355103C, "Smart Array", &SA5_access},
125         {0x3356103C, "Smart Array", &SA5_access},
126         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
127 };
128
129 static int number_of_controllers;
130
131 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
132 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
133 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
134 static void start_io(struct ctlr_info *h);
135
136 #ifdef CONFIG_COMPAT
137 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
138 #endif
139
140 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
141 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
142 static struct CommandList *cmd_alloc(struct ctlr_info *h);
143 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
144 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
145         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
146         int cmd_type);
147
148 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
149 static void hpsa_scan_start(struct Scsi_Host *);
150 static int hpsa_scan_finished(struct Scsi_Host *sh,
151         unsigned long elapsed_time);
152 static int hpsa_change_queue_depth(struct scsi_device *sdev,
153         int qdepth, int reason);
154
155 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
156 static int hpsa_slave_alloc(struct scsi_device *sdev);
157 static void hpsa_slave_destroy(struct scsi_device *sdev);
158
159 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
160 static int check_for_unit_attention(struct ctlr_info *h,
161         struct CommandList *c);
162 static void check_ioctl_unit_attention(struct ctlr_info *h,
163         struct CommandList *c);
164 /* performant mode helper functions */
165 static void calc_bucket_map(int *bucket, int num_buckets,
166         int nsgs, int *bucket_map);
167 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
168 static inline u32 next_command(struct ctlr_info *h);
169 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
170         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
171         u64 *cfg_offset);
172 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
173         unsigned long *memory_bar);
174 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
175 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
176         void __iomem *vaddr, int wait_for_ready);
177 #define BOARD_NOT_READY 0
178 #define BOARD_READY 1
179
180 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 {
182         unsigned long *priv = shost_priv(sdev->host);
183         return (struct ctlr_info *) *priv;
184 }
185
186 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 {
188         unsigned long *priv = shost_priv(sh);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static int check_for_unit_attention(struct ctlr_info *h,
193         struct CommandList *c)
194 {
195         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
196                 return 0;
197
198         switch (c->err_info->SenseInfo[12]) {
199         case STATE_CHANGED:
200                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
201                         "detected, command retried\n", h->ctlr);
202                 break;
203         case LUN_FAILED:
204                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
205                         "detected, action required\n", h->ctlr);
206                 break;
207         case REPORT_LUNS_CHANGED:
208                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
209                         "changed, action required\n", h->ctlr);
210         /*
211          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212          */
213                 break;
214         case POWER_OR_RESET:
215                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
216                         "or device reset detected\n", h->ctlr);
217                 break;
218         case UNIT_ATTENTION_CLEARED:
219                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
220                     "cleared by another initiator\n", h->ctlr);
221                 break;
222         default:
223                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
224                         "unit attention detected\n", h->ctlr);
225                 break;
226         }
227         return 1;
228 }
229
230 static ssize_t host_store_rescan(struct device *dev,
231                                  struct device_attribute *attr,
232                                  const char *buf, size_t count)
233 {
234         struct ctlr_info *h;
235         struct Scsi_Host *shost = class_to_shost(dev);
236         h = shost_to_hba(shost);
237         hpsa_scan_start(h->scsi_host);
238         return count;
239 }
240
241 static ssize_t host_show_firmware_revision(struct device *dev,
242              struct device_attribute *attr, char *buf)
243 {
244         struct ctlr_info *h;
245         struct Scsi_Host *shost = class_to_shost(dev);
246         unsigned char *fwrev;
247
248         h = shost_to_hba(shost);
249         if (!h->hba_inquiry_data)
250                 return 0;
251         fwrev = &h->hba_inquiry_data[32];
252         return snprintf(buf, 20, "%c%c%c%c\n",
253                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
254 }
255
256 static ssize_t host_show_commands_outstanding(struct device *dev,
257              struct device_attribute *attr, char *buf)
258 {
259         struct Scsi_Host *shost = class_to_shost(dev);
260         struct ctlr_info *h = shost_to_hba(shost);
261
262         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
263 }
264
265 static ssize_t host_show_transport_mode(struct device *dev,
266         struct device_attribute *attr, char *buf)
267 {
268         struct ctlr_info *h;
269         struct Scsi_Host *shost = class_to_shost(dev);
270
271         h = shost_to_hba(shost);
272         return snprintf(buf, 20, "%s\n",
273                 h->transMethod & CFGTBL_Trans_Performant ?
274                         "performant" : "simple");
275 }
276
277 /* List of controllers which cannot be hard reset on kexec with reset_devices */
278 static u32 unresettable_controller[] = {
279         0x324a103C, /* Smart Array P712m */
280         0x324b103C, /* SmartArray P711m */
281         0x3223103C, /* Smart Array P800 */
282         0x3234103C, /* Smart Array P400 */
283         0x3235103C, /* Smart Array P400i */
284         0x3211103C, /* Smart Array E200i */
285         0x3212103C, /* Smart Array E200 */
286         0x3213103C, /* Smart Array E200i */
287         0x3214103C, /* Smart Array E200i */
288         0x3215103C, /* Smart Array E200i */
289         0x3237103C, /* Smart Array E500 */
290         0x323D103C, /* Smart Array P700m */
291         0x409C0E11, /* Smart Array 6400 */
292         0x409D0E11, /* Smart Array 6400 EM */
293 };
294
295 /* List of controllers which cannot even be soft reset */
296 static u32 soft_unresettable_controller[] = {
297         /* Exclude 640x boards.  These are two pci devices in one slot
298          * which share a battery backed cache module.  One controls the
299          * cache, the other accesses the cache through the one that controls
300          * it.  If we reset the one controlling the cache, the other will
301          * likely not be happy.  Just forbid resetting this conjoined mess.
302          * The 640x isn't really supported by hpsa anyway.
303          */
304         0x409C0E11, /* Smart Array 6400 */
305         0x409D0E11, /* Smart Array 6400 EM */
306 };
307
308 static int ctlr_is_hard_resettable(u32 board_id)
309 {
310         int i;
311
312         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
313                 if (unresettable_controller[i] == board_id)
314                         return 0;
315         return 1;
316 }
317
318 static int ctlr_is_soft_resettable(u32 board_id)
319 {
320         int i;
321
322         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
323                 if (soft_unresettable_controller[i] == board_id)
324                         return 0;
325         return 1;
326 }
327
328 static int ctlr_is_resettable(u32 board_id)
329 {
330         return ctlr_is_hard_resettable(board_id) ||
331                 ctlr_is_soft_resettable(board_id);
332 }
333
334 static ssize_t host_show_resettable(struct device *dev,
335         struct device_attribute *attr, char *buf)
336 {
337         struct ctlr_info *h;
338         struct Scsi_Host *shost = class_to_shost(dev);
339
340         h = shost_to_hba(shost);
341         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
342 }
343
344 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
345 {
346         return (scsi3addr[3] & 0xC0) == 0x40;
347 }
348
349 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
350         "UNKNOWN"
351 };
352 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
353
354 static ssize_t raid_level_show(struct device *dev,
355              struct device_attribute *attr, char *buf)
356 {
357         ssize_t l = 0;
358         unsigned char rlevel;
359         struct ctlr_info *h;
360         struct scsi_device *sdev;
361         struct hpsa_scsi_dev_t *hdev;
362         unsigned long flags;
363
364         sdev = to_scsi_device(dev);
365         h = sdev_to_hba(sdev);
366         spin_lock_irqsave(&h->lock, flags);
367         hdev = sdev->hostdata;
368         if (!hdev) {
369                 spin_unlock_irqrestore(&h->lock, flags);
370                 return -ENODEV;
371         }
372
373         /* Is this even a logical drive? */
374         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
375                 spin_unlock_irqrestore(&h->lock, flags);
376                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
377                 return l;
378         }
379
380         rlevel = hdev->raid_level;
381         spin_unlock_irqrestore(&h->lock, flags);
382         if (rlevel > RAID_UNKNOWN)
383                 rlevel = RAID_UNKNOWN;
384         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
385         return l;
386 }
387
388 static ssize_t lunid_show(struct device *dev,
389              struct device_attribute *attr, char *buf)
390 {
391         struct ctlr_info *h;
392         struct scsi_device *sdev;
393         struct hpsa_scsi_dev_t *hdev;
394         unsigned long flags;
395         unsigned char lunid[8];
396
397         sdev = to_scsi_device(dev);
398         h = sdev_to_hba(sdev);
399         spin_lock_irqsave(&h->lock, flags);
400         hdev = sdev->hostdata;
401         if (!hdev) {
402                 spin_unlock_irqrestore(&h->lock, flags);
403                 return -ENODEV;
404         }
405         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
406         spin_unlock_irqrestore(&h->lock, flags);
407         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
408                 lunid[0], lunid[1], lunid[2], lunid[3],
409                 lunid[4], lunid[5], lunid[6], lunid[7]);
410 }
411
412 static ssize_t unique_id_show(struct device *dev,
413              struct device_attribute *attr, char *buf)
414 {
415         struct ctlr_info *h;
416         struct scsi_device *sdev;
417         struct hpsa_scsi_dev_t *hdev;
418         unsigned long flags;
419         unsigned char sn[16];
420
421         sdev = to_scsi_device(dev);
422         h = sdev_to_hba(sdev);
423         spin_lock_irqsave(&h->lock, flags);
424         hdev = sdev->hostdata;
425         if (!hdev) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 return -ENODEV;
428         }
429         memcpy(sn, hdev->device_id, sizeof(sn));
430         spin_unlock_irqrestore(&h->lock, flags);
431         return snprintf(buf, 16 * 2 + 2,
432                         "%02X%02X%02X%02X%02X%02X%02X%02X"
433                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
434                         sn[0], sn[1], sn[2], sn[3],
435                         sn[4], sn[5], sn[6], sn[7],
436                         sn[8], sn[9], sn[10], sn[11],
437                         sn[12], sn[13], sn[14], sn[15]);
438 }
439
440 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
441 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
442 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
443 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
444 static DEVICE_ATTR(firmware_revision, S_IRUGO,
445         host_show_firmware_revision, NULL);
446 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
447         host_show_commands_outstanding, NULL);
448 static DEVICE_ATTR(transport_mode, S_IRUGO,
449         host_show_transport_mode, NULL);
450 static DEVICE_ATTR(resettable, S_IRUGO,
451         host_show_resettable, NULL);
452
453 static struct device_attribute *hpsa_sdev_attrs[] = {
454         &dev_attr_raid_level,
455         &dev_attr_lunid,
456         &dev_attr_unique_id,
457         NULL,
458 };
459
460 static struct device_attribute *hpsa_shost_attrs[] = {
461         &dev_attr_rescan,
462         &dev_attr_firmware_revision,
463         &dev_attr_commands_outstanding,
464         &dev_attr_transport_mode,
465         &dev_attr_resettable,
466         NULL,
467 };
468
469 static struct scsi_host_template hpsa_driver_template = {
470         .module                 = THIS_MODULE,
471         .name                   = "hpsa",
472         .proc_name              = "hpsa",
473         .queuecommand           = hpsa_scsi_queue_command,
474         .scan_start             = hpsa_scan_start,
475         .scan_finished          = hpsa_scan_finished,
476         .change_queue_depth     = hpsa_change_queue_depth,
477         .this_id                = -1,
478         .use_clustering         = ENABLE_CLUSTERING,
479         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
480         .ioctl                  = hpsa_ioctl,
481         .slave_alloc            = hpsa_slave_alloc,
482         .slave_destroy          = hpsa_slave_destroy,
483 #ifdef CONFIG_COMPAT
484         .compat_ioctl           = hpsa_compat_ioctl,
485 #endif
486         .sdev_attrs = hpsa_sdev_attrs,
487         .shost_attrs = hpsa_shost_attrs,
488 };
489
490
491 /* Enqueuing and dequeuing functions for cmdlists. */
492 static inline void addQ(struct list_head *list, struct CommandList *c)
493 {
494         list_add_tail(&c->list, list);
495 }
496
497 static inline u32 next_command(struct ctlr_info *h)
498 {
499         u32 a;
500
501         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
502                 return h->access.command_completed(h);
503
504         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
505                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
506                 (h->reply_pool_head)++;
507                 h->commands_outstanding--;
508         } else {
509                 a = FIFO_EMPTY;
510         }
511         /* Check for wraparound */
512         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
513                 h->reply_pool_head = h->reply_pool;
514                 h->reply_pool_wraparound ^= 1;
515         }
516         return a;
517 }
518
519 /* set_performant_mode: Modify the tag for cciss performant
520  * set bit 0 for pull model, bits 3-1 for block fetch
521  * register number
522  */
523 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
524 {
525         if (likely(h->transMethod & CFGTBL_Trans_Performant))
526                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
527 }
528
529 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
530         struct CommandList *c)
531 {
532         unsigned long flags;
533
534         set_performant_mode(h, c);
535         spin_lock_irqsave(&h->lock, flags);
536         addQ(&h->reqQ, c);
537         h->Qdepth++;
538         start_io(h);
539         spin_unlock_irqrestore(&h->lock, flags);
540 }
541
542 static inline void removeQ(struct CommandList *c)
543 {
544         if (WARN_ON(list_empty(&c->list)))
545                 return;
546         list_del_init(&c->list);
547 }
548
549 static inline int is_hba_lunid(unsigned char scsi3addr[])
550 {
551         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
552 }
553
554 static inline int is_scsi_rev_5(struct ctlr_info *h)
555 {
556         if (!h->hba_inquiry_data)
557                 return 0;
558         if ((h->hba_inquiry_data[2] & 0x07) == 5)
559                 return 1;
560         return 0;
561 }
562
563 static int hpsa_find_target_lun(struct ctlr_info *h,
564         unsigned char scsi3addr[], int bus, int *target, int *lun)
565 {
566         /* finds an unused bus, target, lun for a new physical device
567          * assumes h->devlock is held
568          */
569         int i, found = 0;
570         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
571
572         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
573
574         for (i = 0; i < h->ndevices; i++) {
575                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
576                         set_bit(h->dev[i]->target, lun_taken);
577         }
578
579         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
580                 if (!test_bit(i, lun_taken)) {
581                         /* *bus = 1; */
582                         *target = i;
583                         *lun = 0;
584                         found = 1;
585                         break;
586                 }
587         }
588         return !found;
589 }
590
591 /* Add an entry into h->dev[] array. */
592 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
593                 struct hpsa_scsi_dev_t *device,
594                 struct hpsa_scsi_dev_t *added[], int *nadded)
595 {
596         /* assumes h->devlock is held */
597         int n = h->ndevices;
598         int i;
599         unsigned char addr1[8], addr2[8];
600         struct hpsa_scsi_dev_t *sd;
601
602         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
603                 dev_err(&h->pdev->dev, "too many devices, some will be "
604                         "inaccessible.\n");
605                 return -1;
606         }
607
608         /* physical devices do not have lun or target assigned until now. */
609         if (device->lun != -1)
610                 /* Logical device, lun is already assigned. */
611                 goto lun_assigned;
612
613         /* If this device a non-zero lun of a multi-lun device
614          * byte 4 of the 8-byte LUN addr will contain the logical
615          * unit no, zero otherise.
616          */
617         if (device->scsi3addr[4] == 0) {
618                 /* This is not a non-zero lun of a multi-lun device */
619                 if (hpsa_find_target_lun(h, device->scsi3addr,
620                         device->bus, &device->target, &device->lun) != 0)
621                         return -1;
622                 goto lun_assigned;
623         }
624
625         /* This is a non-zero lun of a multi-lun device.
626          * Search through our list and find the device which
627          * has the same 8 byte LUN address, excepting byte 4.
628          * Assign the same bus and target for this new LUN.
629          * Use the logical unit number from the firmware.
630          */
631         memcpy(addr1, device->scsi3addr, 8);
632         addr1[4] = 0;
633         for (i = 0; i < n; i++) {
634                 sd = h->dev[i];
635                 memcpy(addr2, sd->scsi3addr, 8);
636                 addr2[4] = 0;
637                 /* differ only in byte 4? */
638                 if (memcmp(addr1, addr2, 8) == 0) {
639                         device->bus = sd->bus;
640                         device->target = sd->target;
641                         device->lun = device->scsi3addr[4];
642                         break;
643                 }
644         }
645         if (device->lun == -1) {
646                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
647                         " suspect firmware bug or unsupported hardware "
648                         "configuration.\n");
649                         return -1;
650         }
651
652 lun_assigned:
653
654         h->dev[n] = device;
655         h->ndevices++;
656         added[*nadded] = device;
657         (*nadded)++;
658
659         /* initially, (before registering with scsi layer) we don't
660          * know our hostno and we don't want to print anything first
661          * time anyway (the scsi layer's inquiries will show that info)
662          */
663         /* if (hostno != -1) */
664                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
665                         scsi_device_type(device->devtype), hostno,
666                         device->bus, device->target, device->lun);
667         return 0;
668 }
669
670 /* Replace an entry from h->dev[] array. */
671 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
672         int entry, struct hpsa_scsi_dev_t *new_entry,
673         struct hpsa_scsi_dev_t *added[], int *nadded,
674         struct hpsa_scsi_dev_t *removed[], int *nremoved)
675 {
676         /* assumes h->devlock is held */
677         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
678         removed[*nremoved] = h->dev[entry];
679         (*nremoved)++;
680
681         /*
682          * New physical devices won't have target/lun assigned yet
683          * so we need to preserve the values in the slot we are replacing.
684          */
685         if (new_entry->target == -1) {
686                 new_entry->target = h->dev[entry]->target;
687                 new_entry->lun = h->dev[entry]->lun;
688         }
689
690         h->dev[entry] = new_entry;
691         added[*nadded] = new_entry;
692         (*nadded)++;
693         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
694                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
695                         new_entry->target, new_entry->lun);
696 }
697
698 /* Remove an entry from h->dev[] array. */
699 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
700         struct hpsa_scsi_dev_t *removed[], int *nremoved)
701 {
702         /* assumes h->devlock is held */
703         int i;
704         struct hpsa_scsi_dev_t *sd;
705
706         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
707
708         sd = h->dev[entry];
709         removed[*nremoved] = h->dev[entry];
710         (*nremoved)++;
711
712         for (i = entry; i < h->ndevices-1; i++)
713                 h->dev[i] = h->dev[i+1];
714         h->ndevices--;
715         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
716                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
717                 sd->lun);
718 }
719
720 #define SCSI3ADDR_EQ(a, b) ( \
721         (a)[7] == (b)[7] && \
722         (a)[6] == (b)[6] && \
723         (a)[5] == (b)[5] && \
724         (a)[4] == (b)[4] && \
725         (a)[3] == (b)[3] && \
726         (a)[2] == (b)[2] && \
727         (a)[1] == (b)[1] && \
728         (a)[0] == (b)[0])
729
730 static void fixup_botched_add(struct ctlr_info *h,
731         struct hpsa_scsi_dev_t *added)
732 {
733         /* called when scsi_add_device fails in order to re-adjust
734          * h->dev[] to match the mid layer's view.
735          */
736         unsigned long flags;
737         int i, j;
738
739         spin_lock_irqsave(&h->lock, flags);
740         for (i = 0; i < h->ndevices; i++) {
741                 if (h->dev[i] == added) {
742                         for (j = i; j < h->ndevices-1; j++)
743                                 h->dev[j] = h->dev[j+1];
744                         h->ndevices--;
745                         break;
746                 }
747         }
748         spin_unlock_irqrestore(&h->lock, flags);
749         kfree(added);
750 }
751
752 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
753         struct hpsa_scsi_dev_t *dev2)
754 {
755         /* we compare everything except lun and target as these
756          * are not yet assigned.  Compare parts likely
757          * to differ first
758          */
759         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
760                 sizeof(dev1->scsi3addr)) != 0)
761                 return 0;
762         if (memcmp(dev1->device_id, dev2->device_id,
763                 sizeof(dev1->device_id)) != 0)
764                 return 0;
765         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
766                 return 0;
767         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
768                 return 0;
769         if (dev1->devtype != dev2->devtype)
770                 return 0;
771         if (dev1->bus != dev2->bus)
772                 return 0;
773         return 1;
774 }
775
776 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
777  * and return needle location in *index.  If scsi3addr matches, but not
778  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
779  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
780  */
781 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
782         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
783         int *index)
784 {
785         int i;
786 #define DEVICE_NOT_FOUND 0
787 #define DEVICE_CHANGED 1
788 #define DEVICE_SAME 2
789         for (i = 0; i < haystack_size; i++) {
790                 if (haystack[i] == NULL) /* previously removed. */
791                         continue;
792                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
793                         *index = i;
794                         if (device_is_the_same(needle, haystack[i]))
795                                 return DEVICE_SAME;
796                         else
797                                 return DEVICE_CHANGED;
798                 }
799         }
800         *index = -1;
801         return DEVICE_NOT_FOUND;
802 }
803
804 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
805         struct hpsa_scsi_dev_t *sd[], int nsds)
806 {
807         /* sd contains scsi3 addresses and devtypes, and inquiry
808          * data.  This function takes what's in sd to be the current
809          * reality and updates h->dev[] to reflect that reality.
810          */
811         int i, entry, device_change, changes = 0;
812         struct hpsa_scsi_dev_t *csd;
813         unsigned long flags;
814         struct hpsa_scsi_dev_t **added, **removed;
815         int nadded, nremoved;
816         struct Scsi_Host *sh = NULL;
817
818         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
819                 GFP_KERNEL);
820         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
821                 GFP_KERNEL);
822
823         if (!added || !removed) {
824                 dev_warn(&h->pdev->dev, "out of memory in "
825                         "adjust_hpsa_scsi_table\n");
826                 goto free_and_out;
827         }
828
829         spin_lock_irqsave(&h->devlock, flags);
830
831         /* find any devices in h->dev[] that are not in
832          * sd[] and remove them from h->dev[], and for any
833          * devices which have changed, remove the old device
834          * info and add the new device info.
835          */
836         i = 0;
837         nremoved = 0;
838         nadded = 0;
839         while (i < h->ndevices) {
840                 csd = h->dev[i];
841                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
842                 if (device_change == DEVICE_NOT_FOUND) {
843                         changes++;
844                         hpsa_scsi_remove_entry(h, hostno, i,
845                                 removed, &nremoved);
846                         continue; /* remove ^^^, hence i not incremented */
847                 } else if (device_change == DEVICE_CHANGED) {
848                         changes++;
849                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
850                                 added, &nadded, removed, &nremoved);
851                         /* Set it to NULL to prevent it from being freed
852                          * at the bottom of hpsa_update_scsi_devices()
853                          */
854                         sd[entry] = NULL;
855                 }
856                 i++;
857         }
858
859         /* Now, make sure every device listed in sd[] is also
860          * listed in h->dev[], adding them if they aren't found
861          */
862
863         for (i = 0; i < nsds; i++) {
864                 if (!sd[i]) /* if already added above. */
865                         continue;
866                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
867                                         h->ndevices, &entry);
868                 if (device_change == DEVICE_NOT_FOUND) {
869                         changes++;
870                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
871                                 added, &nadded) != 0)
872                                 break;
873                         sd[i] = NULL; /* prevent from being freed later. */
874                 } else if (device_change == DEVICE_CHANGED) {
875                         /* should never happen... */
876                         changes++;
877                         dev_warn(&h->pdev->dev,
878                                 "device unexpectedly changed.\n");
879                         /* but if it does happen, we just ignore that device */
880                 }
881         }
882         spin_unlock_irqrestore(&h->devlock, flags);
883
884         /* Don't notify scsi mid layer of any changes the first time through
885          * (or if there are no changes) scsi_scan_host will do it later the
886          * first time through.
887          */
888         if (hostno == -1 || !changes)
889                 goto free_and_out;
890
891         sh = h->scsi_host;
892         /* Notify scsi mid layer of any removed devices */
893         for (i = 0; i < nremoved; i++) {
894                 struct scsi_device *sdev =
895                         scsi_device_lookup(sh, removed[i]->bus,
896                                 removed[i]->target, removed[i]->lun);
897                 if (sdev != NULL) {
898                         scsi_remove_device(sdev);
899                         scsi_device_put(sdev);
900                 } else {
901                         /* We don't expect to get here.
902                          * future cmds to this device will get selection
903                          * timeout as if the device was gone.
904                          */
905                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
906                                 " for removal.", hostno, removed[i]->bus,
907                                 removed[i]->target, removed[i]->lun);
908                 }
909                 kfree(removed[i]);
910                 removed[i] = NULL;
911         }
912
913         /* Notify scsi mid layer of any added devices */
914         for (i = 0; i < nadded; i++) {
915                 if (scsi_add_device(sh, added[i]->bus,
916                         added[i]->target, added[i]->lun) == 0)
917                         continue;
918                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
919                         "device not added.\n", hostno, added[i]->bus,
920                         added[i]->target, added[i]->lun);
921                 /* now we have to remove it from h->dev,
922                  * since it didn't get added to scsi mid layer
923                  */
924                 fixup_botched_add(h, added[i]);
925         }
926
927 free_and_out:
928         kfree(added);
929         kfree(removed);
930 }
931
932 /*
933  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
934  * Assume's h->devlock is held.
935  */
936 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
937         int bus, int target, int lun)
938 {
939         int i;
940         struct hpsa_scsi_dev_t *sd;
941
942         for (i = 0; i < h->ndevices; i++) {
943                 sd = h->dev[i];
944                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
945                         return sd;
946         }
947         return NULL;
948 }
949
950 /* link sdev->hostdata to our per-device structure. */
951 static int hpsa_slave_alloc(struct scsi_device *sdev)
952 {
953         struct hpsa_scsi_dev_t *sd;
954         unsigned long flags;
955         struct ctlr_info *h;
956
957         h = sdev_to_hba(sdev);
958         spin_lock_irqsave(&h->devlock, flags);
959         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
960                 sdev_id(sdev), sdev->lun);
961         if (sd != NULL)
962                 sdev->hostdata = sd;
963         spin_unlock_irqrestore(&h->devlock, flags);
964         return 0;
965 }
966
967 static void hpsa_slave_destroy(struct scsi_device *sdev)
968 {
969         /* nothing to do. */
970 }
971
972 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
973 {
974         int i;
975
976         if (!h->cmd_sg_list)
977                 return;
978         for (i = 0; i < h->nr_cmds; i++) {
979                 kfree(h->cmd_sg_list[i]);
980                 h->cmd_sg_list[i] = NULL;
981         }
982         kfree(h->cmd_sg_list);
983         h->cmd_sg_list = NULL;
984 }
985
986 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
987 {
988         int i;
989
990         if (h->chainsize <= 0)
991                 return 0;
992
993         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
994                                 GFP_KERNEL);
995         if (!h->cmd_sg_list)
996                 return -ENOMEM;
997         for (i = 0; i < h->nr_cmds; i++) {
998                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
999                                                 h->chainsize, GFP_KERNEL);
1000                 if (!h->cmd_sg_list[i])
1001                         goto clean;
1002         }
1003         return 0;
1004
1005 clean:
1006         hpsa_free_sg_chain_blocks(h);
1007         return -ENOMEM;
1008 }
1009
1010 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1011         struct CommandList *c)
1012 {
1013         struct SGDescriptor *chain_sg, *chain_block;
1014         u64 temp64;
1015
1016         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1017         chain_block = h->cmd_sg_list[c->cmdindex];
1018         chain_sg->Ext = HPSA_SG_CHAIN;
1019         chain_sg->Len = sizeof(*chain_sg) *
1020                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1021         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1022                                 PCI_DMA_TODEVICE);
1023         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1024         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1025 }
1026
1027 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1028         struct CommandList *c)
1029 {
1030         struct SGDescriptor *chain_sg;
1031         union u64bit temp64;
1032
1033         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1034                 return;
1035
1036         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1037         temp64.val32.lower = chain_sg->Addr.lower;
1038         temp64.val32.upper = chain_sg->Addr.upper;
1039         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1040 }
1041
1042 static void complete_scsi_command(struct CommandList *cp)
1043 {
1044         struct scsi_cmnd *cmd;
1045         struct ctlr_info *h;
1046         struct ErrorInfo *ei;
1047
1048         unsigned char sense_key;
1049         unsigned char asc;      /* additional sense code */
1050         unsigned char ascq;     /* additional sense code qualifier */
1051         unsigned long sense_data_size;
1052
1053         ei = cp->err_info;
1054         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1055         h = cp->h;
1056
1057         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1058         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1059                 hpsa_unmap_sg_chain_block(h, cp);
1060
1061         cmd->result = (DID_OK << 16);           /* host byte */
1062         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1063         cmd->result |= ei->ScsiStatus;
1064
1065         /* copy the sense data whether we need to or not. */
1066         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1067                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1068         else
1069                 sense_data_size = sizeof(ei->SenseInfo);
1070         if (ei->SenseLen < sense_data_size)
1071                 sense_data_size = ei->SenseLen;
1072
1073         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1074         scsi_set_resid(cmd, ei->ResidualCnt);
1075
1076         if (ei->CommandStatus == 0) {
1077                 cmd->scsi_done(cmd);
1078                 cmd_free(h, cp);
1079                 return;
1080         }
1081
1082         /* an error has occurred */
1083         switch (ei->CommandStatus) {
1084
1085         case CMD_TARGET_STATUS:
1086                 if (ei->ScsiStatus) {
1087                         /* Get sense key */
1088                         sense_key = 0xf & ei->SenseInfo[2];
1089                         /* Get additional sense code */
1090                         asc = ei->SenseInfo[12];
1091                         /* Get addition sense code qualifier */
1092                         ascq = ei->SenseInfo[13];
1093                 }
1094
1095                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1096                         if (check_for_unit_attention(h, cp)) {
1097                                 cmd->result = DID_SOFT_ERROR << 16;
1098                                 break;
1099                         }
1100                         if (sense_key == ILLEGAL_REQUEST) {
1101                                 /*
1102                                  * SCSI REPORT_LUNS is commonly unsupported on
1103                                  * Smart Array.  Suppress noisy complaint.
1104                                  */
1105                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1106                                         break;
1107
1108                                 /* If ASC/ASCQ indicate Logical Unit
1109                                  * Not Supported condition,
1110                                  */
1111                                 if ((asc == 0x25) && (ascq == 0x0)) {
1112                                         dev_warn(&h->pdev->dev, "cp %p "
1113                                                 "has check condition\n", cp);
1114                                         break;
1115                                 }
1116                         }
1117
1118                         if (sense_key == NOT_READY) {
1119                                 /* If Sense is Not Ready, Logical Unit
1120                                  * Not ready, Manual Intervention
1121                                  * required
1122                                  */
1123                                 if ((asc == 0x04) && (ascq == 0x03)) {
1124                                         dev_warn(&h->pdev->dev, "cp %p "
1125                                                 "has check condition: unit "
1126                                                 "not ready, manual "
1127                                                 "intervention required\n", cp);
1128                                         break;
1129                                 }
1130                         }
1131                         if (sense_key == ABORTED_COMMAND) {
1132                                 /* Aborted command is retryable */
1133                                 dev_warn(&h->pdev->dev, "cp %p "
1134                                         "has check condition: aborted command: "
1135                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1136                                         cp, asc, ascq);
1137                                 cmd->result = DID_SOFT_ERROR << 16;
1138                                 break;
1139                         }
1140                         /* Must be some other type of check condition */
1141                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1142                                         "unknown type: "
1143                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1144                                         "Returning result: 0x%x, "
1145                                         "cmd=[%02x %02x %02x %02x %02x "
1146                                         "%02x %02x %02x %02x %02x %02x "
1147                                         "%02x %02x %02x %02x %02x]\n",
1148                                         cp, sense_key, asc, ascq,
1149                                         cmd->result,
1150                                         cmd->cmnd[0], cmd->cmnd[1],
1151                                         cmd->cmnd[2], cmd->cmnd[3],
1152                                         cmd->cmnd[4], cmd->cmnd[5],
1153                                         cmd->cmnd[6], cmd->cmnd[7],
1154                                         cmd->cmnd[8], cmd->cmnd[9],
1155                                         cmd->cmnd[10], cmd->cmnd[11],
1156                                         cmd->cmnd[12], cmd->cmnd[13],
1157                                         cmd->cmnd[14], cmd->cmnd[15]);
1158                         break;
1159                 }
1160
1161
1162                 /* Problem was not a check condition
1163                  * Pass it up to the upper layers...
1164                  */
1165                 if (ei->ScsiStatus) {
1166                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1167                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1168                                 "Returning result: 0x%x\n",
1169                                 cp, ei->ScsiStatus,
1170                                 sense_key, asc, ascq,
1171                                 cmd->result);
1172                 } else {  /* scsi status is zero??? How??? */
1173                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1174                                 "Returning no connection.\n", cp),
1175
1176                         /* Ordinarily, this case should never happen,
1177                          * but there is a bug in some released firmware
1178                          * revisions that allows it to happen if, for
1179                          * example, a 4100 backplane loses power and
1180                          * the tape drive is in it.  We assume that
1181                          * it's a fatal error of some kind because we
1182                          * can't show that it wasn't. We will make it
1183                          * look like selection timeout since that is
1184                          * the most common reason for this to occur,
1185                          * and it's severe enough.
1186                          */
1187
1188                         cmd->result = DID_NO_CONNECT << 16;
1189                 }
1190                 break;
1191
1192         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1193                 break;
1194         case CMD_DATA_OVERRUN:
1195                 dev_warn(&h->pdev->dev, "cp %p has"
1196                         " completed with data overrun "
1197                         "reported\n", cp);
1198                 break;
1199         case CMD_INVALID: {
1200                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1201                 print_cmd(cp); */
1202                 /* We get CMD_INVALID if you address a non-existent device
1203                  * instead of a selection timeout (no response).  You will
1204                  * see this if you yank out a drive, then try to access it.
1205                  * This is kind of a shame because it means that any other
1206                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1207                  * missing target. */
1208                 cmd->result = DID_NO_CONNECT << 16;
1209         }
1210                 break;
1211         case CMD_PROTOCOL_ERR:
1212                 dev_warn(&h->pdev->dev, "cp %p has "
1213                         "protocol error \n", cp);
1214                 break;
1215         case CMD_HARDWARE_ERR:
1216                 cmd->result = DID_ERROR << 16;
1217                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1218                 break;
1219         case CMD_CONNECTION_LOST:
1220                 cmd->result = DID_ERROR << 16;
1221                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1222                 break;
1223         case CMD_ABORTED:
1224                 cmd->result = DID_ABORT << 16;
1225                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1226                                 cp, ei->ScsiStatus);
1227                 break;
1228         case CMD_ABORT_FAILED:
1229                 cmd->result = DID_ERROR << 16;
1230                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1231                 break;
1232         case CMD_UNSOLICITED_ABORT:
1233                 cmd->result = DID_RESET << 16;
1234                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1235                         "abort\n", cp);
1236                 break;
1237         case CMD_TIMEOUT:
1238                 cmd->result = DID_TIME_OUT << 16;
1239                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1240                 break;
1241         case CMD_UNABORTABLE:
1242                 cmd->result = DID_ERROR << 16;
1243                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1244                 break;
1245         default:
1246                 cmd->result = DID_ERROR << 16;
1247                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1248                                 cp, ei->CommandStatus);
1249         }
1250         cmd->scsi_done(cmd);
1251         cmd_free(h, cp);
1252 }
1253
1254 static int hpsa_scsi_detect(struct ctlr_info *h)
1255 {
1256         struct Scsi_Host *sh;
1257         int error;
1258
1259         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1260         if (sh == NULL)
1261                 goto fail;
1262
1263         sh->io_port = 0;
1264         sh->n_io_port = 0;
1265         sh->this_id = -1;
1266         sh->max_channel = 3;
1267         sh->max_cmd_len = MAX_COMMAND_SIZE;
1268         sh->max_lun = HPSA_MAX_LUN;
1269         sh->max_id = HPSA_MAX_LUN;
1270         sh->can_queue = h->nr_cmds;
1271         sh->cmd_per_lun = h->nr_cmds;
1272         sh->sg_tablesize = h->maxsgentries;
1273         h->scsi_host = sh;
1274         sh->hostdata[0] = (unsigned long) h;
1275         sh->irq = h->intr[h->intr_mode];
1276         sh->unique_id = sh->irq;
1277         error = scsi_add_host(sh, &h->pdev->dev);
1278         if (error)
1279                 goto fail_host_put;
1280         scsi_scan_host(sh);
1281         return 0;
1282
1283  fail_host_put:
1284         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1285                 " failed for controller %d\n", h->ctlr);
1286         scsi_host_put(sh);
1287         return error;
1288  fail:
1289         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1290                 " failed for controller %d\n", h->ctlr);
1291         return -ENOMEM;
1292 }
1293
1294 static void hpsa_pci_unmap(struct pci_dev *pdev,
1295         struct CommandList *c, int sg_used, int data_direction)
1296 {
1297         int i;
1298         union u64bit addr64;
1299
1300         for (i = 0; i < sg_used; i++) {
1301                 addr64.val32.lower = c->SG[i].Addr.lower;
1302                 addr64.val32.upper = c->SG[i].Addr.upper;
1303                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1304                         data_direction);
1305         }
1306 }
1307
1308 static void hpsa_map_one(struct pci_dev *pdev,
1309                 struct CommandList *cp,
1310                 unsigned char *buf,
1311                 size_t buflen,
1312                 int data_direction)
1313 {
1314         u64 addr64;
1315
1316         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1317                 cp->Header.SGList = 0;
1318                 cp->Header.SGTotal = 0;
1319                 return;
1320         }
1321
1322         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1323         cp->SG[0].Addr.lower =
1324           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1325         cp->SG[0].Addr.upper =
1326           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1327         cp->SG[0].Len = buflen;
1328         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1329         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1330 }
1331
1332 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1333         struct CommandList *c)
1334 {
1335         DECLARE_COMPLETION_ONSTACK(wait);
1336
1337         c->waiting = &wait;
1338         enqueue_cmd_and_start_io(h, c);
1339         wait_for_completion(&wait);
1340 }
1341
1342 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1343         struct CommandList *c, int data_direction)
1344 {
1345         int retry_count = 0;
1346
1347         do {
1348                 memset(c->err_info, 0, sizeof(*c->err_info));
1349                 hpsa_scsi_do_simple_cmd_core(h, c);
1350                 retry_count++;
1351         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1352         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1353 }
1354
1355 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1356 {
1357         struct ErrorInfo *ei;
1358         struct device *d = &cp->h->pdev->dev;
1359
1360         ei = cp->err_info;
1361         switch (ei->CommandStatus) {
1362         case CMD_TARGET_STATUS:
1363                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1364                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1365                                 ei->ScsiStatus);
1366                 if (ei->ScsiStatus == 0)
1367                         dev_warn(d, "SCSI status is abnormally zero.  "
1368                         "(probably indicates selection timeout "
1369                         "reported incorrectly due to a known "
1370                         "firmware bug, circa July, 2001.)\n");
1371                 break;
1372         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1373                         dev_info(d, "UNDERRUN\n");
1374                 break;
1375         case CMD_DATA_OVERRUN:
1376                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1377                 break;
1378         case CMD_INVALID: {
1379                 /* controller unfortunately reports SCSI passthru's
1380                  * to non-existent targets as invalid commands.
1381                  */
1382                 dev_warn(d, "cp %p is reported invalid (probably means "
1383                         "target device no longer present)\n", cp);
1384                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1385                 print_cmd(cp);  */
1386                 }
1387                 break;
1388         case CMD_PROTOCOL_ERR:
1389                 dev_warn(d, "cp %p has protocol error \n", cp);
1390                 break;
1391         case CMD_HARDWARE_ERR:
1392                 /* cmd->result = DID_ERROR << 16; */
1393                 dev_warn(d, "cp %p had hardware error\n", cp);
1394                 break;
1395         case CMD_CONNECTION_LOST:
1396                 dev_warn(d, "cp %p had connection lost\n", cp);
1397                 break;
1398         case CMD_ABORTED:
1399                 dev_warn(d, "cp %p was aborted\n", cp);
1400                 break;
1401         case CMD_ABORT_FAILED:
1402                 dev_warn(d, "cp %p reports abort failed\n", cp);
1403                 break;
1404         case CMD_UNSOLICITED_ABORT:
1405                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1406                 break;
1407         case CMD_TIMEOUT:
1408                 dev_warn(d, "cp %p timed out\n", cp);
1409                 break;
1410         case CMD_UNABORTABLE:
1411                 dev_warn(d, "Command unabortable\n");
1412                 break;
1413         default:
1414                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1415                                 ei->CommandStatus);
1416         }
1417 }
1418
1419 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1420                         unsigned char page, unsigned char *buf,
1421                         unsigned char bufsize)
1422 {
1423         int rc = IO_OK;
1424         struct CommandList *c;
1425         struct ErrorInfo *ei;
1426
1427         c = cmd_special_alloc(h);
1428
1429         if (c == NULL) {                        /* trouble... */
1430                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1431                 return -ENOMEM;
1432         }
1433
1434         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1435         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1436         ei = c->err_info;
1437         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1438                 hpsa_scsi_interpret_error(c);
1439                 rc = -1;
1440         }
1441         cmd_special_free(h, c);
1442         return rc;
1443 }
1444
1445 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1446 {
1447         int rc = IO_OK;
1448         struct CommandList *c;
1449         struct ErrorInfo *ei;
1450
1451         c = cmd_special_alloc(h);
1452
1453         if (c == NULL) {                        /* trouble... */
1454                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1455                 return -ENOMEM;
1456         }
1457
1458         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1459         hpsa_scsi_do_simple_cmd_core(h, c);
1460         /* no unmap needed here because no data xfer. */
1461
1462         ei = c->err_info;
1463         if (ei->CommandStatus != 0) {
1464                 hpsa_scsi_interpret_error(c);
1465                 rc = -1;
1466         }
1467         cmd_special_free(h, c);
1468         return rc;
1469 }
1470
1471 static void hpsa_get_raid_level(struct ctlr_info *h,
1472         unsigned char *scsi3addr, unsigned char *raid_level)
1473 {
1474         int rc;
1475         unsigned char *buf;
1476
1477         *raid_level = RAID_UNKNOWN;
1478         buf = kzalloc(64, GFP_KERNEL);
1479         if (!buf)
1480                 return;
1481         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1482         if (rc == 0)
1483                 *raid_level = buf[8];
1484         if (*raid_level > RAID_UNKNOWN)
1485                 *raid_level = RAID_UNKNOWN;
1486         kfree(buf);
1487         return;
1488 }
1489
1490 /* Get the device id from inquiry page 0x83 */
1491 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1492         unsigned char *device_id, int buflen)
1493 {
1494         int rc;
1495         unsigned char *buf;
1496
1497         if (buflen > 16)
1498                 buflen = 16;
1499         buf = kzalloc(64, GFP_KERNEL);
1500         if (!buf)
1501                 return -1;
1502         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1503         if (rc == 0)
1504                 memcpy(device_id, &buf[8], buflen);
1505         kfree(buf);
1506         return rc != 0;
1507 }
1508
1509 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1510                 struct ReportLUNdata *buf, int bufsize,
1511                 int extended_response)
1512 {
1513         int rc = IO_OK;
1514         struct CommandList *c;
1515         unsigned char scsi3addr[8];
1516         struct ErrorInfo *ei;
1517
1518         c = cmd_special_alloc(h);
1519         if (c == NULL) {                        /* trouble... */
1520                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1521                 return -1;
1522         }
1523         /* address the controller */
1524         memset(scsi3addr, 0, sizeof(scsi3addr));
1525         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1526                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1527         if (extended_response)
1528                 c->Request.CDB[1] = extended_response;
1529         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1530         ei = c->err_info;
1531         if (ei->CommandStatus != 0 &&
1532             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1533                 hpsa_scsi_interpret_error(c);
1534                 rc = -1;
1535         }
1536         cmd_special_free(h, c);
1537         return rc;
1538 }
1539
1540 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1541                 struct ReportLUNdata *buf,
1542                 int bufsize, int extended_response)
1543 {
1544         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1545 }
1546
1547 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1548                 struct ReportLUNdata *buf, int bufsize)
1549 {
1550         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1551 }
1552
1553 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1554         int bus, int target, int lun)
1555 {
1556         device->bus = bus;
1557         device->target = target;
1558         device->lun = lun;
1559 }
1560
1561 static int hpsa_update_device_info(struct ctlr_info *h,
1562         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1563         unsigned char *is_OBDR_device)
1564 {
1565
1566 #define OBDR_SIG_OFFSET 43
1567 #define OBDR_TAPE_SIG "$DR-10"
1568 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1569 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1570
1571         unsigned char *inq_buff;
1572         unsigned char *obdr_sig;
1573
1574         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1575         if (!inq_buff)
1576                 goto bail_out;
1577
1578         /* Do an inquiry to the device to see what it is. */
1579         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1580                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1581                 /* Inquiry failed (msg printed already) */
1582                 dev_err(&h->pdev->dev,
1583                         "hpsa_update_device_info: inquiry failed\n");
1584                 goto bail_out;
1585         }
1586
1587         this_device->devtype = (inq_buff[0] & 0x1f);
1588         memcpy(this_device->scsi3addr, scsi3addr, 8);
1589         memcpy(this_device->vendor, &inq_buff[8],
1590                 sizeof(this_device->vendor));
1591         memcpy(this_device->model, &inq_buff[16],
1592                 sizeof(this_device->model));
1593         memset(this_device->device_id, 0,
1594                 sizeof(this_device->device_id));
1595         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1596                 sizeof(this_device->device_id));
1597
1598         if (this_device->devtype == TYPE_DISK &&
1599                 is_logical_dev_addr_mode(scsi3addr))
1600                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1601         else
1602                 this_device->raid_level = RAID_UNKNOWN;
1603
1604         if (is_OBDR_device) {
1605                 /* See if this is a One-Button-Disaster-Recovery device
1606                  * by looking for "$DR-10" at offset 43 in inquiry data.
1607                  */
1608                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1609                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1610                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1611                                                 OBDR_SIG_LEN) == 0);
1612         }
1613
1614         kfree(inq_buff);
1615         return 0;
1616
1617 bail_out:
1618         kfree(inq_buff);
1619         return 1;
1620 }
1621
1622 static unsigned char *msa2xxx_model[] = {
1623         "MSA2012",
1624         "MSA2024",
1625         "MSA2312",
1626         "MSA2324",
1627         "P2000 G3 SAS",
1628         NULL,
1629 };
1630
1631 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1632 {
1633         int i;
1634
1635         for (i = 0; msa2xxx_model[i]; i++)
1636                 if (strncmp(device->model, msa2xxx_model[i],
1637                         strlen(msa2xxx_model[i])) == 0)
1638                         return 1;
1639         return 0;
1640 }
1641
1642 /* Helper function to assign bus, target, lun mapping of devices.
1643  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1644  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1645  * Logical drive target and lun are assigned at this time, but
1646  * physical device lun and target assignment are deferred (assigned
1647  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1648  */
1649 static void figure_bus_target_lun(struct ctlr_info *h,
1650         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1651         struct hpsa_scsi_dev_t *device)
1652 {
1653         u32 lunid;
1654
1655         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1656                 /* logical device */
1657                 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1658                 if (is_msa2xxx(h, device)) {
1659                         /* msa2xxx way, put logicals on bus 1
1660                          * and match target/lun numbers box
1661                          * reports.
1662                          */
1663                         *bus = 1;
1664                         *target = (lunid >> 16) & 0x3fff;
1665                         *lun = lunid & 0x00ff;
1666                 } else {
1667                         if (likely(is_scsi_rev_5(h))) {
1668                                 /* All current smart arrays (circa 2011) */
1669                                 *bus = 0;
1670                                 *target = 0;
1671                                 *lun = (lunid & 0x3fff) + 1;
1672                         } else {
1673                                 /* Traditional old smart array way. */
1674                                 *bus = 0;
1675                                 *target = lunid & 0x3fff;
1676                                 *lun = 0;
1677                         }
1678                 }
1679         } else {
1680                 /* physical device */
1681                 if (is_hba_lunid(lunaddrbytes))
1682                         if (unlikely(is_scsi_rev_5(h))) {
1683                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1684                                 *target = 0;
1685                                 *lun = 0;
1686                                 return;
1687                         } else
1688                                 *bus = 3; /* traditional smartarray */
1689                 else
1690                         *bus = 2; /* physical disk */
1691                 *target = -1;
1692                 *lun = -1; /* we will fill these in later. */
1693         }
1694 }
1695
1696 /*
1697  * If there is no lun 0 on a target, linux won't find any devices.
1698  * For the MSA2xxx boxes, we have to manually detect the enclosure
1699  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1700  * it for some reason.  *tmpdevice is the target we're adding,
1701  * this_device is a pointer into the current element of currentsd[]
1702  * that we're building up in update_scsi_devices(), below.
1703  * lunzerobits is a bitmap that tracks which targets already have a
1704  * lun 0 assigned.
1705  * Returns 1 if an enclosure was added, 0 if not.
1706  */
1707 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1708         struct hpsa_scsi_dev_t *tmpdevice,
1709         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1710         int bus, int target, int lun, unsigned long lunzerobits[],
1711         int *nmsa2xxx_enclosures)
1712 {
1713         unsigned char scsi3addr[8];
1714
1715         if (test_bit(target, lunzerobits))
1716                 return 0; /* There is already a lun 0 on this target. */
1717
1718         if (!is_logical_dev_addr_mode(lunaddrbytes))
1719                 return 0; /* It's the logical targets that may lack lun 0. */
1720
1721         if (!is_msa2xxx(h, tmpdevice))
1722                 return 0; /* It's only the MSA2xxx that have this problem. */
1723
1724         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1725                 return 0;
1726
1727         memset(scsi3addr, 0, 8);
1728         scsi3addr[3] = target;
1729         if (is_hba_lunid(scsi3addr))
1730                 return 0; /* Don't add the RAID controller here. */
1731
1732         if (is_scsi_rev_5(h))
1733                 return 0; /* p1210m doesn't need to do this. */
1734
1735 #define MAX_MSA2XXX_ENCLOSURES 32
1736         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1737                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1738                         "enclosures exceeded.  Check your hardware "
1739                         "configuration.");
1740                 return 0;
1741         }
1742
1743         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1744                 return 0;
1745         (*nmsa2xxx_enclosures)++;
1746         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1747         set_bit(target, lunzerobits);
1748         return 1;
1749 }
1750
1751 /*
1752  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1753  * logdev.  The number of luns in physdev and logdev are returned in
1754  * *nphysicals and *nlogicals, respectively.
1755  * Returns 0 on success, -1 otherwise.
1756  */
1757 static int hpsa_gather_lun_info(struct ctlr_info *h,
1758         int reportlunsize,
1759         struct ReportLUNdata *physdev, u32 *nphysicals,
1760         struct ReportLUNdata *logdev, u32 *nlogicals)
1761 {
1762         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1763                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1764                 return -1;
1765         }
1766         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1767         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1768                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1769                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1770                         *nphysicals - HPSA_MAX_PHYS_LUN);
1771                 *nphysicals = HPSA_MAX_PHYS_LUN;
1772         }
1773         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1774                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1775                 return -1;
1776         }
1777         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1778         /* Reject Logicals in excess of our max capability. */
1779         if (*nlogicals > HPSA_MAX_LUN) {
1780                 dev_warn(&h->pdev->dev,
1781                         "maximum logical LUNs (%d) exceeded.  "
1782                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1783                         *nlogicals - HPSA_MAX_LUN);
1784                         *nlogicals = HPSA_MAX_LUN;
1785         }
1786         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1787                 dev_warn(&h->pdev->dev,
1788                         "maximum logical + physical LUNs (%d) exceeded. "
1789                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1790                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1791                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1792         }
1793         return 0;
1794 }
1795
1796 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1797         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1798         struct ReportLUNdata *logdev_list)
1799 {
1800         /* Helper function, figure out where the LUN ID info is coming from
1801          * given index i, lists of physical and logical devices, where in
1802          * the list the raid controller is supposed to appear (first or last)
1803          */
1804
1805         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1806         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1807
1808         if (i == raid_ctlr_position)
1809                 return RAID_CTLR_LUNID;
1810
1811         if (i < logicals_start)
1812                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1813
1814         if (i < last_device)
1815                 return &logdev_list->LUN[i - nphysicals -
1816                         (raid_ctlr_position == 0)][0];
1817         BUG();
1818         return NULL;
1819 }
1820
1821 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1822 {
1823         /* the idea here is we could get notified
1824          * that some devices have changed, so we do a report
1825          * physical luns and report logical luns cmd, and adjust
1826          * our list of devices accordingly.
1827          *
1828          * The scsi3addr's of devices won't change so long as the
1829          * adapter is not reset.  That means we can rescan and
1830          * tell which devices we already know about, vs. new
1831          * devices, vs.  disappearing devices.
1832          */
1833         struct ReportLUNdata *physdev_list = NULL;
1834         struct ReportLUNdata *logdev_list = NULL;
1835         u32 nphysicals = 0;
1836         u32 nlogicals = 0;
1837         u32 ndev_allocated = 0;
1838         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1839         int ncurrent = 0;
1840         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1841         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1842         int bus, target, lun;
1843         int raid_ctlr_position;
1844         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1845
1846         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1847                 GFP_KERNEL);
1848         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1849         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1850         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1851
1852         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1853                 dev_err(&h->pdev->dev, "out of memory\n");
1854                 goto out;
1855         }
1856         memset(lunzerobits, 0, sizeof(lunzerobits));
1857
1858         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1859                         logdev_list, &nlogicals))
1860                 goto out;
1861
1862         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1863          * but each of them 4 times through different paths.  The plus 1
1864          * is for the RAID controller.
1865          */
1866         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1867
1868         /* Allocate the per device structures */
1869         for (i = 0; i < ndevs_to_allocate; i++) {
1870                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1871                 if (!currentsd[i]) {
1872                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1873                                 __FILE__, __LINE__);
1874                         goto out;
1875                 }
1876                 ndev_allocated++;
1877         }
1878
1879         if (unlikely(is_scsi_rev_5(h)))
1880                 raid_ctlr_position = 0;
1881         else
1882                 raid_ctlr_position = nphysicals + nlogicals;
1883
1884         /* adjust our table of devices */
1885         nmsa2xxx_enclosures = 0;
1886         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1887                 u8 *lunaddrbytes, is_OBDR = 0;
1888
1889                 /* Figure out where the LUN ID info is coming from */
1890                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1891                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1892                 /* skip masked physical devices. */
1893                 if (lunaddrbytes[3] & 0xC0 &&
1894                         i < nphysicals + (raid_ctlr_position == 0))
1895                         continue;
1896
1897                 /* Get device type, vendor, model, device id */
1898                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1899                                                         &is_OBDR))
1900                         continue; /* skip it if we can't talk to it. */
1901                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1902                         tmpdevice);
1903                 this_device = currentsd[ncurrent];
1904
1905                 /*
1906                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1907                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1908                  * is nonetheless an enclosure device there.  We have to
1909                  * present that otherwise linux won't find anything if
1910                  * there is no lun 0.
1911                  */
1912                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1913                                 lunaddrbytes, bus, target, lun, lunzerobits,
1914                                 &nmsa2xxx_enclosures)) {
1915                         ncurrent++;
1916                         this_device = currentsd[ncurrent];
1917                 }
1918
1919                 *this_device = *tmpdevice;
1920                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1921
1922                 switch (this_device->devtype) {
1923                 case TYPE_ROM:
1924                         /* We don't *really* support actual CD-ROM devices,
1925                          * just "One Button Disaster Recovery" tape drive
1926                          * which temporarily pretends to be a CD-ROM drive.
1927                          * So we check that the device is really an OBDR tape
1928                          * device by checking for "$DR-10" in bytes 43-48 of
1929                          * the inquiry data.
1930                          */
1931                         if (is_OBDR)
1932                                 ncurrent++;
1933                         break;
1934                 case TYPE_DISK:
1935                         if (i < nphysicals)
1936                                 break;
1937                         ncurrent++;
1938                         break;
1939                 case TYPE_TAPE:
1940                 case TYPE_MEDIUM_CHANGER:
1941                         ncurrent++;
1942                         break;
1943                 case TYPE_RAID:
1944                         /* Only present the Smartarray HBA as a RAID controller.
1945                          * If it's a RAID controller other than the HBA itself
1946                          * (an external RAID controller, MSA500 or similar)
1947                          * don't present it.
1948                          */
1949                         if (!is_hba_lunid(lunaddrbytes))
1950                                 break;
1951                         ncurrent++;
1952                         break;
1953                 default:
1954                         break;
1955                 }
1956                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1957                         break;
1958         }
1959         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1960 out:
1961         kfree(tmpdevice);
1962         for (i = 0; i < ndev_allocated; i++)
1963                 kfree(currentsd[i]);
1964         kfree(currentsd);
1965         kfree(physdev_list);
1966         kfree(logdev_list);
1967 }
1968
1969 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1970  * dma mapping  and fills in the scatter gather entries of the
1971  * hpsa command, cp.
1972  */
1973 static int hpsa_scatter_gather(struct ctlr_info *h,
1974                 struct CommandList *cp,
1975                 struct scsi_cmnd *cmd)
1976 {
1977         unsigned int len;
1978         struct scatterlist *sg;
1979         u64 addr64;
1980         int use_sg, i, sg_index, chained;
1981         struct SGDescriptor *curr_sg;
1982
1983         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1984
1985         use_sg = scsi_dma_map(cmd);
1986         if (use_sg < 0)
1987                 return use_sg;
1988
1989         if (!use_sg)
1990                 goto sglist_finished;
1991
1992         curr_sg = cp->SG;
1993         chained = 0;
1994         sg_index = 0;
1995         scsi_for_each_sg(cmd, sg, use_sg, i) {
1996                 if (i == h->max_cmd_sg_entries - 1 &&
1997                         use_sg > h->max_cmd_sg_entries) {
1998                         chained = 1;
1999                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2000                         sg_index = 0;
2001                 }
2002                 addr64 = (u64) sg_dma_address(sg);
2003                 len  = sg_dma_len(sg);
2004                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2005                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2006                 curr_sg->Len = len;
2007                 curr_sg->Ext = 0;  /* we are not chaining */
2008                 curr_sg++;
2009         }
2010
2011         if (use_sg + chained > h->maxSG)
2012                 h->maxSG = use_sg + chained;
2013
2014         if (chained) {
2015                 cp->Header.SGList = h->max_cmd_sg_entries;
2016                 cp->Header.SGTotal = (u16) (use_sg + 1);
2017                 hpsa_map_sg_chain_block(h, cp);
2018                 return 0;
2019         }
2020
2021 sglist_finished:
2022
2023         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2024         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2025         return 0;
2026 }
2027
2028
2029 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2030         void (*done)(struct scsi_cmnd *))
2031 {
2032         struct ctlr_info *h;
2033         struct hpsa_scsi_dev_t *dev;
2034         unsigned char scsi3addr[8];
2035         struct CommandList *c;
2036         unsigned long flags;
2037
2038         /* Get the ptr to our adapter structure out of cmd->host. */
2039         h = sdev_to_hba(cmd->device);
2040         dev = cmd->device->hostdata;
2041         if (!dev) {
2042                 cmd->result = DID_NO_CONNECT << 16;
2043                 done(cmd);
2044                 return 0;
2045         }
2046         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2047
2048         /* Need a lock as this is being allocated from the pool */
2049         spin_lock_irqsave(&h->lock, flags);
2050         c = cmd_alloc(h);
2051         spin_unlock_irqrestore(&h->lock, flags);
2052         if (c == NULL) {                        /* trouble... */
2053                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2054                 return SCSI_MLQUEUE_HOST_BUSY;
2055         }
2056
2057         /* Fill in the command list header */
2058
2059         cmd->scsi_done = done;    /* save this for use by completion code */
2060
2061         /* save c in case we have to abort it  */
2062         cmd->host_scribble = (unsigned char *) c;
2063
2064         c->cmd_type = CMD_SCSI;
2065         c->scsi_cmd = cmd;
2066         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2067         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2068         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2069         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2070
2071         /* Fill in the request block... */
2072
2073         c->Request.Timeout = 0;
2074         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2075         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2076         c->Request.CDBLen = cmd->cmd_len;
2077         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2078         c->Request.Type.Type = TYPE_CMD;
2079         c->Request.Type.Attribute = ATTR_SIMPLE;
2080         switch (cmd->sc_data_direction) {
2081         case DMA_TO_DEVICE:
2082                 c->Request.Type.Direction = XFER_WRITE;
2083                 break;
2084         case DMA_FROM_DEVICE:
2085                 c->Request.Type.Direction = XFER_READ;
2086                 break;
2087         case DMA_NONE:
2088                 c->Request.Type.Direction = XFER_NONE;
2089                 break;
2090         case DMA_BIDIRECTIONAL:
2091                 /* This can happen if a buggy application does a scsi passthru
2092                  * and sets both inlen and outlen to non-zero. ( see
2093                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2094                  */
2095
2096                 c->Request.Type.Direction = XFER_RSVD;
2097                 /* This is technically wrong, and hpsa controllers should
2098                  * reject it with CMD_INVALID, which is the most correct
2099                  * response, but non-fibre backends appear to let it
2100                  * slide by, and give the same results as if this field
2101                  * were set correctly.  Either way is acceptable for
2102                  * our purposes here.
2103                  */
2104
2105                 break;
2106
2107         default:
2108                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2109                         cmd->sc_data_direction);
2110                 BUG();
2111                 break;
2112         }
2113
2114         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2115                 cmd_free(h, c);
2116                 return SCSI_MLQUEUE_HOST_BUSY;
2117         }
2118         enqueue_cmd_and_start_io(h, c);
2119         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2120         return 0;
2121 }
2122
2123 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2124
2125 static void hpsa_scan_start(struct Scsi_Host *sh)
2126 {
2127         struct ctlr_info *h = shost_to_hba(sh);
2128         unsigned long flags;
2129
2130         /* wait until any scan already in progress is finished. */
2131         while (1) {
2132                 spin_lock_irqsave(&h->scan_lock, flags);
2133                 if (h->scan_finished)
2134                         break;
2135                 spin_unlock_irqrestore(&h->scan_lock, flags);
2136                 wait_event(h->scan_wait_queue, h->scan_finished);
2137                 /* Note: We don't need to worry about a race between this
2138                  * thread and driver unload because the midlayer will
2139                  * have incremented the reference count, so unload won't
2140                  * happen if we're in here.
2141                  */
2142         }
2143         h->scan_finished = 0; /* mark scan as in progress */
2144         spin_unlock_irqrestore(&h->scan_lock, flags);
2145
2146         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2147
2148         spin_lock_irqsave(&h->scan_lock, flags);
2149         h->scan_finished = 1; /* mark scan as finished. */
2150         wake_up_all(&h->scan_wait_queue);
2151         spin_unlock_irqrestore(&h->scan_lock, flags);
2152 }
2153
2154 static int hpsa_scan_finished(struct Scsi_Host *sh,
2155         unsigned long elapsed_time)
2156 {
2157         struct ctlr_info *h = shost_to_hba(sh);
2158         unsigned long flags;
2159         int finished;
2160
2161         spin_lock_irqsave(&h->scan_lock, flags);
2162         finished = h->scan_finished;
2163         spin_unlock_irqrestore(&h->scan_lock, flags);
2164         return finished;
2165 }
2166
2167 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2168         int qdepth, int reason)
2169 {
2170         struct ctlr_info *h = sdev_to_hba(sdev);
2171
2172         if (reason != SCSI_QDEPTH_DEFAULT)
2173                 return -ENOTSUPP;
2174
2175         if (qdepth < 1)
2176                 qdepth = 1;
2177         else
2178                 if (qdepth > h->nr_cmds)
2179                         qdepth = h->nr_cmds;
2180         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2181         return sdev->queue_depth;
2182 }
2183
2184 static void hpsa_unregister_scsi(struct ctlr_info *h)
2185 {
2186         /* we are being forcibly unloaded, and may not refuse. */
2187         scsi_remove_host(h->scsi_host);
2188         scsi_host_put(h->scsi_host);
2189         h->scsi_host = NULL;
2190 }
2191
2192 static int hpsa_register_scsi(struct ctlr_info *h)
2193 {
2194         int rc;
2195
2196         rc = hpsa_scsi_detect(h);
2197         if (rc != 0)
2198                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2199                         " hpsa_scsi_detect(), rc is %d\n", rc);
2200         return rc;
2201 }
2202
2203 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2204         unsigned char lunaddr[])
2205 {
2206         int rc = 0;
2207         int count = 0;
2208         int waittime = 1; /* seconds */
2209         struct CommandList *c;
2210
2211         c = cmd_special_alloc(h);
2212         if (!c) {
2213                 dev_warn(&h->pdev->dev, "out of memory in "
2214                         "wait_for_device_to_become_ready.\n");
2215                 return IO_ERROR;
2216         }
2217
2218         /* Send test unit ready until device ready, or give up. */
2219         while (count < HPSA_TUR_RETRY_LIMIT) {
2220
2221                 /* Wait for a bit.  do this first, because if we send
2222                  * the TUR right away, the reset will just abort it.
2223                  */
2224                 msleep(1000 * waittime);
2225                 count++;
2226
2227                 /* Increase wait time with each try, up to a point. */
2228                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2229                         waittime = waittime * 2;
2230
2231                 /* Send the Test Unit Ready */
2232                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2233                 hpsa_scsi_do_simple_cmd_core(h, c);
2234                 /* no unmap needed here because no data xfer. */
2235
2236                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2237                         break;
2238
2239                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2240                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2241                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2242                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2243                         break;
2244
2245                 dev_warn(&h->pdev->dev, "waiting %d secs "
2246                         "for device to become ready.\n", waittime);
2247                 rc = 1; /* device not ready. */
2248         }
2249
2250         if (rc)
2251                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2252         else
2253                 dev_warn(&h->pdev->dev, "device is ready.\n");
2254
2255         cmd_special_free(h, c);
2256         return rc;
2257 }
2258
2259 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2260  * complaining.  Doing a host- or bus-reset can't do anything good here.
2261  */
2262 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2263 {
2264         int rc;
2265         struct ctlr_info *h;
2266         struct hpsa_scsi_dev_t *dev;
2267
2268         /* find the controller to which the command to be aborted was sent */
2269         h = sdev_to_hba(scsicmd->device);
2270         if (h == NULL) /* paranoia */
2271                 return FAILED;
2272         dev = scsicmd->device->hostdata;
2273         if (!dev) {
2274                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2275                         "device lookup failed.\n");
2276                 return FAILED;
2277         }
2278         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2279                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2280         /* send a reset to the SCSI LUN which the command was sent to */
2281         rc = hpsa_send_reset(h, dev->scsi3addr);
2282         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2283                 return SUCCESS;
2284
2285         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2286         return FAILED;
2287 }
2288
2289 /*
2290  * For operations that cannot sleep, a command block is allocated at init,
2291  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2292  * which ones are free or in use.  Lock must be held when calling this.
2293  * cmd_free() is the complement.
2294  */
2295 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2296 {
2297         struct CommandList *c;
2298         int i;
2299         union u64bit temp64;
2300         dma_addr_t cmd_dma_handle, err_dma_handle;
2301
2302         do {
2303                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2304                 if (i == h->nr_cmds)
2305                         return NULL;
2306         } while (test_and_set_bit
2307                  (i & (BITS_PER_LONG - 1),
2308                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2309         c = h->cmd_pool + i;
2310         memset(c, 0, sizeof(*c));
2311         cmd_dma_handle = h->cmd_pool_dhandle
2312             + i * sizeof(*c);
2313         c->err_info = h->errinfo_pool + i;
2314         memset(c->err_info, 0, sizeof(*c->err_info));
2315         err_dma_handle = h->errinfo_pool_dhandle
2316             + i * sizeof(*c->err_info);
2317         h->nr_allocs++;
2318
2319         c->cmdindex = i;
2320
2321         INIT_LIST_HEAD(&c->list);
2322         c->busaddr = (u32) cmd_dma_handle;
2323         temp64.val = (u64) err_dma_handle;
2324         c->ErrDesc.Addr.lower = temp64.val32.lower;
2325         c->ErrDesc.Addr.upper = temp64.val32.upper;
2326         c->ErrDesc.Len = sizeof(*c->err_info);
2327
2328         c->h = h;
2329         return c;
2330 }
2331
2332 /* For operations that can wait for kmalloc to possibly sleep,
2333  * this routine can be called. Lock need not be held to call
2334  * cmd_special_alloc. cmd_special_free() is the complement.
2335  */
2336 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2337 {
2338         struct CommandList *c;
2339         union u64bit temp64;
2340         dma_addr_t cmd_dma_handle, err_dma_handle;
2341
2342         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2343         if (c == NULL)
2344                 return NULL;
2345         memset(c, 0, sizeof(*c));
2346
2347         c->cmdindex = -1;
2348
2349         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2350                     &err_dma_handle);
2351
2352         if (c->err_info == NULL) {
2353                 pci_free_consistent(h->pdev,
2354                         sizeof(*c), c, cmd_dma_handle);
2355                 return NULL;
2356         }
2357         memset(c->err_info, 0, sizeof(*c->err_info));
2358
2359         INIT_LIST_HEAD(&c->list);
2360         c->busaddr = (u32) cmd_dma_handle;
2361         temp64.val = (u64) err_dma_handle;
2362         c->ErrDesc.Addr.lower = temp64.val32.lower;
2363         c->ErrDesc.Addr.upper = temp64.val32.upper;
2364         c->ErrDesc.Len = sizeof(*c->err_info);
2365
2366         c->h = h;
2367         return c;
2368 }
2369
2370 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2371 {
2372         int i;
2373
2374         i = c - h->cmd_pool;
2375         clear_bit(i & (BITS_PER_LONG - 1),
2376                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2377         h->nr_frees++;
2378 }
2379
2380 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2381 {
2382         union u64bit temp64;
2383
2384         temp64.val32.lower = c->ErrDesc.Addr.lower;
2385         temp64.val32.upper = c->ErrDesc.Addr.upper;
2386         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2387                             c->err_info, (dma_addr_t) temp64.val);
2388         pci_free_consistent(h->pdev, sizeof(*c),
2389                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2390 }
2391
2392 #ifdef CONFIG_COMPAT
2393
2394 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2395 {
2396         IOCTL32_Command_struct __user *arg32 =
2397             (IOCTL32_Command_struct __user *) arg;
2398         IOCTL_Command_struct arg64;
2399         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2400         int err;
2401         u32 cp;
2402
2403         memset(&arg64, 0, sizeof(arg64));
2404         err = 0;
2405         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2406                            sizeof(arg64.LUN_info));
2407         err |= copy_from_user(&arg64.Request, &arg32->Request,
2408                            sizeof(arg64.Request));
2409         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2410                            sizeof(arg64.error_info));
2411         err |= get_user(arg64.buf_size, &arg32->buf_size);
2412         err |= get_user(cp, &arg32->buf);
2413         arg64.buf = compat_ptr(cp);
2414         err |= copy_to_user(p, &arg64, sizeof(arg64));
2415
2416         if (err)
2417                 return -EFAULT;
2418
2419         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2420         if (err)
2421                 return err;
2422         err |= copy_in_user(&arg32->error_info, &p->error_info,
2423                          sizeof(arg32->error_info));
2424         if (err)
2425                 return -EFAULT;
2426         return err;
2427 }
2428
2429 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2430         int cmd, void *arg)
2431 {
2432         BIG_IOCTL32_Command_struct __user *arg32 =
2433             (BIG_IOCTL32_Command_struct __user *) arg;
2434         BIG_IOCTL_Command_struct arg64;
2435         BIG_IOCTL_Command_struct __user *p =
2436             compat_alloc_user_space(sizeof(arg64));
2437         int err;
2438         u32 cp;
2439
2440         memset(&arg64, 0, sizeof(arg64));
2441         err = 0;
2442         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2443                            sizeof(arg64.LUN_info));
2444         err |= copy_from_user(&arg64.Request, &arg32->Request,
2445                            sizeof(arg64.Request));
2446         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2447                            sizeof(arg64.error_info));
2448         err |= get_user(arg64.buf_size, &arg32->buf_size);
2449         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2450         err |= get_user(cp, &arg32->buf);
2451         arg64.buf = compat_ptr(cp);
2452         err |= copy_to_user(p, &arg64, sizeof(arg64));
2453
2454         if (err)
2455                 return -EFAULT;
2456
2457         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2458         if (err)
2459                 return err;
2460         err |= copy_in_user(&arg32->error_info, &p->error_info,
2461                          sizeof(arg32->error_info));
2462         if (err)
2463                 return -EFAULT;
2464         return err;
2465 }
2466
2467 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2468 {
2469         switch (cmd) {
2470         case CCISS_GETPCIINFO:
2471         case CCISS_GETINTINFO:
2472         case CCISS_SETINTINFO:
2473         case CCISS_GETNODENAME:
2474         case CCISS_SETNODENAME:
2475         case CCISS_GETHEARTBEAT:
2476         case CCISS_GETBUSTYPES:
2477         case CCISS_GETFIRMVER:
2478         case CCISS_GETDRIVVER:
2479         case CCISS_REVALIDVOLS:
2480         case CCISS_DEREGDISK:
2481         case CCISS_REGNEWDISK:
2482         case CCISS_REGNEWD:
2483         case CCISS_RESCANDISK:
2484         case CCISS_GETLUNINFO:
2485                 return hpsa_ioctl(dev, cmd, arg);
2486
2487         case CCISS_PASSTHRU32:
2488                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2489         case CCISS_BIG_PASSTHRU32:
2490                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2491
2492         default:
2493                 return -ENOIOCTLCMD;
2494         }
2495 }
2496 #endif
2497
2498 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2499 {
2500         struct hpsa_pci_info pciinfo;
2501
2502         if (!argp)
2503                 return -EINVAL;
2504         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2505         pciinfo.bus = h->pdev->bus->number;
2506         pciinfo.dev_fn = h->pdev->devfn;
2507         pciinfo.board_id = h->board_id;
2508         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2509                 return -EFAULT;
2510         return 0;
2511 }
2512
2513 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2514 {
2515         DriverVer_type DriverVer;
2516         unsigned char vmaj, vmin, vsubmin;
2517         int rc;
2518
2519         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2520                 &vmaj, &vmin, &vsubmin);
2521         if (rc != 3) {
2522                 dev_info(&h->pdev->dev, "driver version string '%s' "
2523                         "unrecognized.", HPSA_DRIVER_VERSION);
2524                 vmaj = 0;
2525                 vmin = 0;
2526                 vsubmin = 0;
2527         }
2528         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2529         if (!argp)
2530                 return -EINVAL;
2531         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2532                 return -EFAULT;
2533         return 0;
2534 }
2535
2536 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2537 {
2538         IOCTL_Command_struct iocommand;
2539         struct CommandList *c;
2540         char *buff = NULL;
2541         union u64bit temp64;
2542
2543         if (!argp)
2544                 return -EINVAL;
2545         if (!capable(CAP_SYS_RAWIO))
2546                 return -EPERM;
2547         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2548                 return -EFAULT;
2549         if ((iocommand.buf_size < 1) &&
2550             (iocommand.Request.Type.Direction != XFER_NONE)) {
2551                 return -EINVAL;
2552         }
2553         if (iocommand.buf_size > 0) {
2554                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2555                 if (buff == NULL)
2556                         return -EFAULT;
2557                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2558                         /* Copy the data into the buffer we created */
2559                         if (copy_from_user(buff, iocommand.buf,
2560                                 iocommand.buf_size)) {
2561                                 kfree(buff);
2562                                 return -EFAULT;
2563                         }
2564                 } else {
2565                         memset(buff, 0, iocommand.buf_size);
2566                 }
2567         }
2568         c = cmd_special_alloc(h);
2569         if (c == NULL) {
2570                 kfree(buff);
2571                 return -ENOMEM;
2572         }
2573         /* Fill in the command type */
2574         c->cmd_type = CMD_IOCTL_PEND;
2575         /* Fill in Command Header */
2576         c->Header.ReplyQueue = 0; /* unused in simple mode */
2577         if (iocommand.buf_size > 0) {   /* buffer to fill */
2578                 c->Header.SGList = 1;
2579                 c->Header.SGTotal = 1;
2580         } else  { /* no buffers to fill */
2581                 c->Header.SGList = 0;
2582                 c->Header.SGTotal = 0;
2583         }
2584         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2585         /* use the kernel address the cmd block for tag */
2586         c->Header.Tag.lower = c->busaddr;
2587
2588         /* Fill in Request block */
2589         memcpy(&c->Request, &iocommand.Request,
2590                 sizeof(c->Request));
2591
2592         /* Fill in the scatter gather information */
2593         if (iocommand.buf_size > 0) {
2594                 temp64.val = pci_map_single(h->pdev, buff,
2595                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2596                 c->SG[0].Addr.lower = temp64.val32.lower;
2597                 c->SG[0].Addr.upper = temp64.val32.upper;
2598                 c->SG[0].Len = iocommand.buf_size;
2599                 c->SG[0].Ext = 0; /* we are not chaining*/
2600         }
2601         hpsa_scsi_do_simple_cmd_core(h, c);
2602         if (iocommand.buf_size > 0)
2603                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2604         check_ioctl_unit_attention(h, c);
2605
2606         /* Copy the error information out */
2607         memcpy(&iocommand.error_info, c->err_info,
2608                 sizeof(iocommand.error_info));
2609         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2610                 kfree(buff);
2611                 cmd_special_free(h, c);
2612                 return -EFAULT;
2613         }
2614         if (iocommand.Request.Type.Direction == XFER_READ &&
2615                 iocommand.buf_size > 0) {
2616                 /* Copy the data out of the buffer we created */
2617                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2618                         kfree(buff);
2619                         cmd_special_free(h, c);
2620                         return -EFAULT;
2621                 }
2622         }
2623         kfree(buff);
2624         cmd_special_free(h, c);
2625         return 0;
2626 }
2627
2628 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2629 {
2630         BIG_IOCTL_Command_struct *ioc;
2631         struct CommandList *c;
2632         unsigned char **buff = NULL;
2633         int *buff_size = NULL;
2634         union u64bit temp64;
2635         BYTE sg_used = 0;
2636         int status = 0;
2637         int i;
2638         u32 left;
2639         u32 sz;
2640         BYTE __user *data_ptr;
2641
2642         if (!argp)
2643                 return -EINVAL;
2644         if (!capable(CAP_SYS_RAWIO))
2645                 return -EPERM;
2646         ioc = (BIG_IOCTL_Command_struct *)
2647             kmalloc(sizeof(*ioc), GFP_KERNEL);
2648         if (!ioc) {
2649                 status = -ENOMEM;
2650                 goto cleanup1;
2651         }
2652         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2653                 status = -EFAULT;
2654                 goto cleanup1;
2655         }
2656         if ((ioc->buf_size < 1) &&
2657             (ioc->Request.Type.Direction != XFER_NONE)) {
2658                 status = -EINVAL;
2659                 goto cleanup1;
2660         }
2661         /* Check kmalloc limits  using all SGs */
2662         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2663                 status = -EINVAL;
2664                 goto cleanup1;
2665         }
2666         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2667                 status = -EINVAL;
2668                 goto cleanup1;
2669         }
2670         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2671         if (!buff) {
2672                 status = -ENOMEM;
2673                 goto cleanup1;
2674         }
2675         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2676         if (!buff_size) {
2677                 status = -ENOMEM;
2678                 goto cleanup1;
2679         }
2680         left = ioc->buf_size;
2681         data_ptr = ioc->buf;
2682         while (left) {
2683                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2684                 buff_size[sg_used] = sz;
2685                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2686                 if (buff[sg_used] == NULL) {
2687                         status = -ENOMEM;
2688                         goto cleanup1;
2689                 }
2690                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2691                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2692                                 status = -ENOMEM;
2693                                 goto cleanup1;
2694                         }
2695                 } else
2696                         memset(buff[sg_used], 0, sz);
2697                 left -= sz;
2698                 data_ptr += sz;
2699                 sg_used++;
2700         }
2701         c = cmd_special_alloc(h);
2702         if (c == NULL) {
2703                 status = -ENOMEM;
2704                 goto cleanup1;
2705         }
2706         c->cmd_type = CMD_IOCTL_PEND;
2707         c->Header.ReplyQueue = 0;
2708         c->Header.SGList = c->Header.SGTotal = sg_used;
2709         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2710         c->Header.Tag.lower = c->busaddr;
2711         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2712         if (ioc->buf_size > 0) {
2713                 int i;
2714                 for (i = 0; i < sg_used; i++) {
2715                         temp64.val = pci_map_single(h->pdev, buff[i],
2716                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2717                         c->SG[i].Addr.lower = temp64.val32.lower;
2718                         c->SG[i].Addr.upper = temp64.val32.upper;
2719                         c->SG[i].Len = buff_size[i];
2720                         /* we are not chaining */
2721                         c->SG[i].Ext = 0;
2722                 }
2723         }
2724         hpsa_scsi_do_simple_cmd_core(h, c);
2725         if (sg_used)
2726                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2727         check_ioctl_unit_attention(h, c);
2728         /* Copy the error information out */
2729         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2730         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2731                 cmd_special_free(h, c);
2732                 status = -EFAULT;
2733                 goto cleanup1;
2734         }
2735         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2736                 /* Copy the data out of the buffer we created */
2737                 BYTE __user *ptr = ioc->buf;
2738                 for (i = 0; i < sg_used; i++) {
2739                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2740                                 cmd_special_free(h, c);
2741                                 status = -EFAULT;
2742                                 goto cleanup1;
2743                         }
2744                         ptr += buff_size[i];
2745                 }
2746         }
2747         cmd_special_free(h, c);
2748         status = 0;
2749 cleanup1:
2750         if (buff) {
2751                 for (i = 0; i < sg_used; i++)
2752                         kfree(buff[i]);
2753                 kfree(buff);
2754         }
2755         kfree(buff_size);
2756         kfree(ioc);
2757         return status;
2758 }
2759
2760 static void check_ioctl_unit_attention(struct ctlr_info *h,
2761         struct CommandList *c)
2762 {
2763         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2764                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2765                 (void) check_for_unit_attention(h, c);
2766 }
2767 /*
2768  * ioctl
2769  */
2770 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2771 {
2772         struct ctlr_info *h;
2773         void __user *argp = (void __user *)arg;
2774
2775         h = sdev_to_hba(dev);
2776
2777         switch (cmd) {
2778         case CCISS_DEREGDISK:
2779         case CCISS_REGNEWDISK:
2780         case CCISS_REGNEWD:
2781                 hpsa_scan_start(h->scsi_host);
2782                 return 0;
2783         case CCISS_GETPCIINFO:
2784                 return hpsa_getpciinfo_ioctl(h, argp);
2785         case CCISS_GETDRIVVER:
2786                 return hpsa_getdrivver_ioctl(h, argp);
2787         case CCISS_PASSTHRU:
2788                 return hpsa_passthru_ioctl(h, argp);
2789         case CCISS_BIG_PASSTHRU:
2790                 return hpsa_big_passthru_ioctl(h, argp);
2791         default:
2792                 return -ENOTTY;
2793         }
2794 }
2795
2796 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2797         unsigned char *scsi3addr, u8 reset_type)
2798 {
2799         struct CommandList *c;
2800
2801         c = cmd_alloc(h);
2802         if (!c)
2803                 return -ENOMEM;
2804         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2805                 RAID_CTLR_LUNID, TYPE_MSG);
2806         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2807         c->waiting = NULL;
2808         enqueue_cmd_and_start_io(h, c);
2809         /* Don't wait for completion, the reset won't complete.  Don't free
2810          * the command either.  This is the last command we will send before
2811          * re-initializing everything, so it doesn't matter and won't leak.
2812          */
2813         return 0;
2814 }
2815
2816 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2817         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2818         int cmd_type)
2819 {
2820         int pci_dir = XFER_NONE;
2821
2822         c->cmd_type = CMD_IOCTL_PEND;
2823         c->Header.ReplyQueue = 0;
2824         if (buff != NULL && size > 0) {
2825                 c->Header.SGList = 1;
2826                 c->Header.SGTotal = 1;
2827         } else {
2828                 c->Header.SGList = 0;
2829                 c->Header.SGTotal = 0;
2830         }
2831         c->Header.Tag.lower = c->busaddr;
2832         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2833
2834         c->Request.Type.Type = cmd_type;
2835         if (cmd_type == TYPE_CMD) {
2836                 switch (cmd) {
2837                 case HPSA_INQUIRY:
2838                         /* are we trying to read a vital product page */
2839                         if (page_code != 0) {
2840                                 c->Request.CDB[1] = 0x01;
2841                                 c->Request.CDB[2] = page_code;
2842                         }
2843                         c->Request.CDBLen = 6;
2844                         c->Request.Type.Attribute = ATTR_SIMPLE;
2845                         c->Request.Type.Direction = XFER_READ;
2846                         c->Request.Timeout = 0;
2847                         c->Request.CDB[0] = HPSA_INQUIRY;
2848                         c->Request.CDB[4] = size & 0xFF;
2849                         break;
2850                 case HPSA_REPORT_LOG:
2851                 case HPSA_REPORT_PHYS:
2852                         /* Talking to controller so It's a physical command
2853                            mode = 00 target = 0.  Nothing to write.
2854                          */
2855                         c->Request.CDBLen = 12;
2856                         c->Request.Type.Attribute = ATTR_SIMPLE;
2857                         c->Request.Type.Direction = XFER_READ;
2858                         c->Request.Timeout = 0;
2859                         c->Request.CDB[0] = cmd;
2860                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2861                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2862                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2863                         c->Request.CDB[9] = size & 0xFF;
2864                         break;
2865                 case HPSA_CACHE_FLUSH:
2866                         c->Request.CDBLen = 12;
2867                         c->Request.Type.Attribute = ATTR_SIMPLE;
2868                         c->Request.Type.Direction = XFER_WRITE;
2869                         c->Request.Timeout = 0;
2870                         c->Request.CDB[0] = BMIC_WRITE;
2871                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2872                         break;
2873                 case TEST_UNIT_READY:
2874                         c->Request.CDBLen = 6;
2875                         c->Request.Type.Attribute = ATTR_SIMPLE;
2876                         c->Request.Type.Direction = XFER_NONE;
2877                         c->Request.Timeout = 0;
2878                         break;
2879                 default:
2880                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2881                         BUG();
2882                         return;
2883                 }
2884         } else if (cmd_type == TYPE_MSG) {
2885                 switch (cmd) {
2886
2887                 case  HPSA_DEVICE_RESET_MSG:
2888                         c->Request.CDBLen = 16;
2889                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2890                         c->Request.Type.Attribute = ATTR_SIMPLE;
2891                         c->Request.Type.Direction = XFER_NONE;
2892                         c->Request.Timeout = 0; /* Don't time out */
2893                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2894                         c->Request.CDB[0] =  cmd;
2895                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2896                         /* If bytes 4-7 are zero, it means reset the */
2897                         /* LunID device */
2898                         c->Request.CDB[4] = 0x00;
2899                         c->Request.CDB[5] = 0x00;
2900                         c->Request.CDB[6] = 0x00;
2901                         c->Request.CDB[7] = 0x00;
2902                 break;
2903
2904                 default:
2905                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2906                                 cmd);
2907                         BUG();
2908                 }
2909         } else {
2910                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2911                 BUG();
2912         }
2913
2914         switch (c->Request.Type.Direction) {
2915         case XFER_READ:
2916                 pci_dir = PCI_DMA_FROMDEVICE;
2917                 break;
2918         case XFER_WRITE:
2919                 pci_dir = PCI_DMA_TODEVICE;
2920                 break;
2921         case XFER_NONE:
2922                 pci_dir = PCI_DMA_NONE;
2923                 break;
2924         default:
2925                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2926         }
2927
2928         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2929
2930         return;
2931 }
2932
2933 /*
2934  * Map (physical) PCI mem into (virtual) kernel space
2935  */
2936 static void __iomem *remap_pci_mem(ulong base, ulong size)
2937 {
2938         ulong page_base = ((ulong) base) & PAGE_MASK;
2939         ulong page_offs = ((ulong) base) - page_base;
2940         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2941
2942         return page_remapped ? (page_remapped + page_offs) : NULL;
2943 }
2944
2945 /* Takes cmds off the submission queue and sends them to the hardware,
2946  * then puts them on the queue of cmds waiting for completion.
2947  */
2948 static void start_io(struct ctlr_info *h)
2949 {
2950         struct CommandList *c;
2951
2952         while (!list_empty(&h->reqQ)) {
2953                 c = list_entry(h->reqQ.next, struct CommandList, list);
2954                 /* can't do anything if fifo is full */
2955                 if ((h->access.fifo_full(h))) {
2956                         dev_warn(&h->pdev->dev, "fifo full\n");
2957                         break;
2958                 }
2959
2960                 /* Get the first entry from the Request Q */
2961                 removeQ(c);
2962                 h->Qdepth--;
2963
2964                 /* Tell the controller execute command */
2965                 h->access.submit_command(h, c);
2966
2967                 /* Put job onto the completed Q */
2968                 addQ(&h->cmpQ, c);
2969         }
2970 }
2971
2972 static inline unsigned long get_next_completion(struct ctlr_info *h)
2973 {
2974         return h->access.command_completed(h);
2975 }
2976
2977 static inline bool interrupt_pending(struct ctlr_info *h)
2978 {
2979         return h->access.intr_pending(h);
2980 }
2981
2982 static inline long interrupt_not_for_us(struct ctlr_info *h)
2983 {
2984         return (h->access.intr_pending(h) == 0) ||
2985                 (h->interrupts_enabled == 0);
2986 }
2987
2988 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2989         u32 raw_tag)
2990 {
2991         if (unlikely(tag_index >= h->nr_cmds)) {
2992                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2993                 return 1;
2994         }
2995         return 0;
2996 }
2997
2998 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2999 {
3000         removeQ(c);
3001         if (likely(c->cmd_type == CMD_SCSI))
3002                 complete_scsi_command(c);
3003         else if (c->cmd_type == CMD_IOCTL_PEND)
3004                 complete(c->waiting);
3005 }
3006
3007 static inline u32 hpsa_tag_contains_index(u32 tag)
3008 {
3009         return tag & DIRECT_LOOKUP_BIT;
3010 }
3011
3012 static inline u32 hpsa_tag_to_index(u32 tag)
3013 {
3014         return tag >> DIRECT_LOOKUP_SHIFT;
3015 }
3016
3017
3018 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3019 {
3020 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3021 #define HPSA_SIMPLE_ERROR_BITS 0x03
3022         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3023                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3024         return tag & ~HPSA_PERF_ERROR_BITS;
3025 }
3026
3027 /* process completion of an indexed ("direct lookup") command */
3028 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3029         u32 raw_tag)
3030 {
3031         u32 tag_index;
3032         struct CommandList *c;
3033
3034         tag_index = hpsa_tag_to_index(raw_tag);
3035         if (bad_tag(h, tag_index, raw_tag))
3036                 return next_command(h);
3037         c = h->cmd_pool + tag_index;
3038         finish_cmd(c, raw_tag);
3039         return next_command(h);
3040 }
3041
3042 /* process completion of a non-indexed command */
3043 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3044         u32 raw_tag)
3045 {
3046         u32 tag;
3047         struct CommandList *c = NULL;
3048
3049         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3050         list_for_each_entry(c, &h->cmpQ, list) {
3051                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3052                         finish_cmd(c, raw_tag);
3053                         return next_command(h);
3054                 }
3055         }
3056         bad_tag(h, h->nr_cmds + 1, raw_tag);
3057         return next_command(h);
3058 }
3059
3060 /* Some controllers, like p400, will give us one interrupt
3061  * after a soft reset, even if we turned interrupts off.
3062  * Only need to check for this in the hpsa_xxx_discard_completions
3063  * functions.
3064  */
3065 static int ignore_bogus_interrupt(struct ctlr_info *h)
3066 {
3067         if (likely(!reset_devices))
3068                 return 0;
3069
3070         if (likely(h->interrupts_enabled))
3071                 return 0;
3072
3073         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3074                 "(known firmware bug.)  Ignoring.\n");
3075
3076         return 1;
3077 }
3078
3079 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3080 {
3081         struct ctlr_info *h = dev_id;
3082         unsigned long flags;
3083         u32 raw_tag;
3084
3085         if (ignore_bogus_interrupt(h))
3086                 return IRQ_NONE;
3087
3088         if (interrupt_not_for_us(h))
3089                 return IRQ_NONE;
3090         spin_lock_irqsave(&h->lock, flags);
3091         while (interrupt_pending(h)) {
3092                 raw_tag = get_next_completion(h);
3093                 while (raw_tag != FIFO_EMPTY)
3094                         raw_tag = next_command(h);
3095         }
3096         spin_unlock_irqrestore(&h->lock, flags);
3097         return IRQ_HANDLED;
3098 }
3099
3100 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3101 {
3102         struct ctlr_info *h = dev_id;
3103         unsigned long flags;
3104         u32 raw_tag;
3105
3106         if (ignore_bogus_interrupt(h))
3107                 return IRQ_NONE;
3108
3109         spin_lock_irqsave(&h->lock, flags);
3110         raw_tag = get_next_completion(h);
3111         while (raw_tag != FIFO_EMPTY)
3112                 raw_tag = next_command(h);
3113         spin_unlock_irqrestore(&h->lock, flags);
3114         return IRQ_HANDLED;
3115 }
3116
3117 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3118 {
3119         struct ctlr_info *h = dev_id;
3120         unsigned long flags;
3121         u32 raw_tag;
3122
3123         if (interrupt_not_for_us(h))
3124                 return IRQ_NONE;
3125         spin_lock_irqsave(&h->lock, flags);
3126         while (interrupt_pending(h)) {
3127                 raw_tag = get_next_completion(h);
3128                 while (raw_tag != FIFO_EMPTY) {
3129                         if (hpsa_tag_contains_index(raw_tag))
3130                                 raw_tag = process_indexed_cmd(h, raw_tag);
3131                         else
3132                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3133                 }
3134         }
3135         spin_unlock_irqrestore(&h->lock, flags);
3136         return IRQ_HANDLED;
3137 }
3138
3139 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3140 {
3141         struct ctlr_info *h = dev_id;
3142         unsigned long flags;
3143         u32 raw_tag;
3144
3145         spin_lock_irqsave(&h->lock, flags);
3146         raw_tag = get_next_completion(h);
3147         while (raw_tag != FIFO_EMPTY) {
3148                 if (hpsa_tag_contains_index(raw_tag))
3149                         raw_tag = process_indexed_cmd(h, raw_tag);
3150                 else
3151                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3152         }
3153         spin_unlock_irqrestore(&h->lock, flags);
3154         return IRQ_HANDLED;
3155 }
3156
3157 /* Send a message CDB to the firmware. Careful, this only works
3158  * in simple mode, not performant mode due to the tag lookup.
3159  * We only ever use this immediately after a controller reset.
3160  */
3161 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3162                                                 unsigned char type)
3163 {
3164         struct Command {
3165                 struct CommandListHeader CommandHeader;
3166                 struct RequestBlock Request;
3167                 struct ErrDescriptor ErrorDescriptor;
3168         };
3169         struct Command *cmd;
3170         static const size_t cmd_sz = sizeof(*cmd) +
3171                                         sizeof(cmd->ErrorDescriptor);
3172         dma_addr_t paddr64;
3173         uint32_t paddr32, tag;
3174         void __iomem *vaddr;
3175         int i, err;
3176
3177         vaddr = pci_ioremap_bar(pdev, 0);
3178         if (vaddr == NULL)
3179                 return -ENOMEM;
3180
3181         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3182          * CCISS commands, so they must be allocated from the lower 4GiB of
3183          * memory.
3184          */
3185         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3186         if (err) {
3187                 iounmap(vaddr);
3188                 return -ENOMEM;
3189         }
3190
3191         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3192         if (cmd == NULL) {
3193                 iounmap(vaddr);
3194                 return -ENOMEM;
3195         }
3196
3197         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3198          * although there's no guarantee, we assume that the address is at
3199          * least 4-byte aligned (most likely, it's page-aligned).
3200          */
3201         paddr32 = paddr64;
3202
3203         cmd->CommandHeader.ReplyQueue = 0;
3204         cmd->CommandHeader.SGList = 0;
3205         cmd->CommandHeader.SGTotal = 0;
3206         cmd->CommandHeader.Tag.lower = paddr32;
3207         cmd->CommandHeader.Tag.upper = 0;
3208         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3209
3210         cmd->Request.CDBLen = 16;
3211         cmd->Request.Type.Type = TYPE_MSG;
3212         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3213         cmd->Request.Type.Direction = XFER_NONE;
3214         cmd->Request.Timeout = 0; /* Don't time out */
3215         cmd->Request.CDB[0] = opcode;
3216         cmd->Request.CDB[1] = type;
3217         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3218         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3219         cmd->ErrorDescriptor.Addr.upper = 0;
3220         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3221
3222         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3223
3224         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3225                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3226                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3227                         break;
3228                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3229         }
3230
3231         iounmap(vaddr);
3232
3233         /* we leak the DMA buffer here ... no choice since the controller could
3234          *  still complete the command.
3235          */
3236         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3237                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3238                         opcode, type);
3239                 return -ETIMEDOUT;
3240         }
3241
3242         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3243
3244         if (tag & HPSA_ERROR_BIT) {
3245                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3246                         opcode, type);
3247                 return -EIO;
3248         }
3249
3250         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3251                 opcode, type);
3252         return 0;
3253 }
3254
3255 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3256
3257 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3258         void * __iomem vaddr, u32 use_doorbell)
3259 {
3260         u16 pmcsr;
3261         int pos;
3262
3263         if (use_doorbell) {
3264                 /* For everything after the P600, the PCI power state method
3265                  * of resetting the controller doesn't work, so we have this
3266                  * other way using the doorbell register.
3267                  */
3268                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3269                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3270         } else { /* Try to do it the PCI power state way */
3271
3272                 /* Quoting from the Open CISS Specification: "The Power
3273                  * Management Control/Status Register (CSR) controls the power
3274                  * state of the device.  The normal operating state is D0,
3275                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3276                  * the controller, place the interface device in D3 then to D0,
3277                  * this causes a secondary PCI reset which will reset the
3278                  * controller." */
3279
3280                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3281                 if (pos == 0) {
3282                         dev_err(&pdev->dev,
3283                                 "hpsa_reset_controller: "
3284                                 "PCI PM not supported\n");
3285                         return -ENODEV;
3286                 }
3287                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3288                 /* enter the D3hot power management state */
3289                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3290                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3291                 pmcsr |= PCI_D3hot;
3292                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3293
3294                 msleep(500);
3295
3296                 /* enter the D0 power management state */
3297                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3298                 pmcsr |= PCI_D0;
3299                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3300
3301                 /*
3302                  * The P600 requires a small delay when changing states.
3303                  * Otherwise we may think the board did not reset and we bail.
3304                  * This for kdump only and is particular to the P600.
3305                  */
3306                 msleep(500);
3307         }
3308         return 0;
3309 }
3310
3311 static __devinit void init_driver_version(char *driver_version, int len)
3312 {
3313         memset(driver_version, 0, len);
3314         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3315 }
3316
3317 static __devinit int write_driver_ver_to_cfgtable(
3318         struct CfgTable __iomem *cfgtable)
3319 {
3320         char *driver_version;
3321         int i, size = sizeof(cfgtable->driver_version);
3322
3323         driver_version = kmalloc(size, GFP_KERNEL);
3324         if (!driver_version)
3325                 return -ENOMEM;
3326
3327         init_driver_version(driver_version, size);
3328         for (i = 0; i < size; i++)
3329                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3330         kfree(driver_version);
3331         return 0;
3332 }
3333
3334 static __devinit void read_driver_ver_from_cfgtable(
3335         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3336 {
3337         int i;
3338
3339         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3340                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3341 }
3342
3343 static __devinit int controller_reset_failed(
3344         struct CfgTable __iomem *cfgtable)
3345 {
3346
3347         char *driver_ver, *old_driver_ver;
3348         int rc, size = sizeof(cfgtable->driver_version);
3349
3350         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3351         if (!old_driver_ver)
3352                 return -ENOMEM;
3353         driver_ver = old_driver_ver + size;
3354
3355         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3356          * should have been changed, otherwise we know the reset failed.
3357          */
3358         init_driver_version(old_driver_ver, size);
3359         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3360         rc = !memcmp(driver_ver, old_driver_ver, size);
3361         kfree(old_driver_ver);
3362         return rc;
3363 }
3364 /* This does a hard reset of the controller using PCI power management
3365  * states or the using the doorbell register.
3366  */
3367 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3368 {
3369         u64 cfg_offset;
3370         u32 cfg_base_addr;
3371         u64 cfg_base_addr_index;
3372         void __iomem *vaddr;
3373         unsigned long paddr;
3374         u32 misc_fw_support;
3375         int rc;
3376         struct CfgTable __iomem *cfgtable;
3377         u32 use_doorbell;
3378         u32 board_id;
3379         u16 command_register;
3380
3381         /* For controllers as old as the P600, this is very nearly
3382          * the same thing as
3383          *
3384          * pci_save_state(pci_dev);
3385          * pci_set_power_state(pci_dev, PCI_D3hot);
3386          * pci_set_power_state(pci_dev, PCI_D0);
3387          * pci_restore_state(pci_dev);
3388          *
3389          * For controllers newer than the P600, the pci power state
3390          * method of resetting doesn't work so we have another way
3391          * using the doorbell register.
3392          */
3393
3394         rc = hpsa_lookup_board_id(pdev, &board_id);
3395         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3396                 dev_warn(&pdev->dev, "Not resetting device.\n");
3397                 return -ENODEV;
3398         }
3399
3400         /* if controller is soft- but not hard resettable... */
3401         if (!ctlr_is_hard_resettable(board_id))
3402                 return -ENOTSUPP; /* try soft reset later. */
3403
3404         /* Save the PCI command register */
3405         pci_read_config_word(pdev, 4, &command_register);
3406         /* Turn the board off.  This is so that later pci_restore_state()
3407          * won't turn the board on before the rest of config space is ready.
3408          */
3409         pci_disable_device(pdev);
3410         pci_save_state(pdev);
3411
3412         /* find the first memory BAR, so we can find the cfg table */
3413         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3414         if (rc)
3415                 return rc;
3416         vaddr = remap_pci_mem(paddr, 0x250);
3417         if (!vaddr)
3418                 return -ENOMEM;
3419
3420         /* find cfgtable in order to check if reset via doorbell is supported */
3421         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3422                                         &cfg_base_addr_index, &cfg_offset);
3423         if (rc)
3424                 goto unmap_vaddr;
3425         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3426                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3427         if (!cfgtable) {
3428                 rc = -ENOMEM;
3429                 goto unmap_vaddr;
3430         }
3431         rc = write_driver_ver_to_cfgtable(cfgtable);
3432         if (rc)
3433                 goto unmap_vaddr;
3434
3435         /* If reset via doorbell register is supported, use that.
3436          * There are two such methods.  Favor the newest method.
3437          */
3438         misc_fw_support = readl(&cfgtable->misc_fw_support);
3439         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3440         if (use_doorbell) {
3441                 use_doorbell = DOORBELL_CTLR_RESET2;
3442         } else {
3443                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3444                 if (use_doorbell) {
3445                         dev_warn(&pdev->dev, "Controller claims that "
3446                                 "'Bit 2 doorbell reset' is "
3447                                 "supported, but not 'bit 5 doorbell reset'.  "
3448                                 "Firmware update is recommended.\n");
3449                         rc = -ENOTSUPP; /* try soft reset */
3450                         goto unmap_cfgtable;
3451                 }
3452         }
3453
3454         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3455         if (rc)
3456                 goto unmap_cfgtable;
3457
3458         pci_restore_state(pdev);
3459         rc = pci_enable_device(pdev);
3460         if (rc) {
3461                 dev_warn(&pdev->dev, "failed to enable device.\n");
3462                 goto unmap_cfgtable;
3463         }
3464         pci_write_config_word(pdev, 4, command_register);
3465
3466         /* Some devices (notably the HP Smart Array 5i Controller)
3467            need a little pause here */
3468         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3469
3470         /* Wait for board to become not ready, then ready. */
3471         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3472         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3473         if (rc) {
3474                 dev_warn(&pdev->dev,
3475                         "failed waiting for board to reset."
3476                         " Will try soft reset.\n");
3477                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3478                 goto unmap_cfgtable;
3479         }
3480         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3481         if (rc) {
3482                 dev_warn(&pdev->dev,
3483                         "failed waiting for board to become ready "
3484                         "after hard reset\n");
3485                 goto unmap_cfgtable;
3486         }
3487
3488         rc = controller_reset_failed(vaddr);
3489         if (rc < 0)
3490                 goto unmap_cfgtable;
3491         if (rc) {
3492                 dev_warn(&pdev->dev, "Unable to successfully reset "
3493                         "controller. Will try soft reset.\n");
3494                 rc = -ENOTSUPP;
3495         } else {
3496                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3497         }
3498
3499 unmap_cfgtable:
3500         iounmap(cfgtable);
3501
3502 unmap_vaddr:
3503         iounmap(vaddr);
3504         return rc;
3505 }
3506
3507 /*
3508  *  We cannot read the structure directly, for portability we must use
3509  *   the io functions.
3510  *   This is for debug only.
3511  */
3512 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3513 {
3514 #ifdef HPSA_DEBUG
3515         int i;
3516         char temp_name[17];
3517
3518         dev_info(dev, "Controller Configuration information\n");
3519         dev_info(dev, "------------------------------------\n");
3520         for (i = 0; i < 4; i++)
3521                 temp_name[i] = readb(&(tb->Signature[i]));
3522         temp_name[4] = '\0';
3523         dev_info(dev, "   Signature = %s\n", temp_name);
3524         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3525         dev_info(dev, "   Transport methods supported = 0x%x\n",
3526                readl(&(tb->TransportSupport)));
3527         dev_info(dev, "   Transport methods active = 0x%x\n",
3528                readl(&(tb->TransportActive)));
3529         dev_info(dev, "   Requested transport Method = 0x%x\n",
3530                readl(&(tb->HostWrite.TransportRequest)));
3531         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3532                readl(&(tb->HostWrite.CoalIntDelay)));
3533         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3534                readl(&(tb->HostWrite.CoalIntCount)));
3535         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3536                readl(&(tb->CmdsOutMax)));
3537         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3538         for (i = 0; i < 16; i++)
3539                 temp_name[i] = readb(&(tb->ServerName[i]));
3540         temp_name[16] = '\0';
3541         dev_info(dev, "   Server Name = %s\n", temp_name);
3542         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3543                 readl(&(tb->HeartBeat)));
3544 #endif                          /* HPSA_DEBUG */
3545 }
3546
3547 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3548 {
3549         int i, offset, mem_type, bar_type;
3550
3551         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3552                 return 0;
3553         offset = 0;
3554         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3555                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3556                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3557                         offset += 4;
3558                 else {
3559                         mem_type = pci_resource_flags(pdev, i) &
3560                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3561                         switch (mem_type) {
3562                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3563                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3564                                 offset += 4;    /* 32 bit */
3565                                 break;
3566                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3567                                 offset += 8;
3568                                 break;
3569                         default:        /* reserved in PCI 2.2 */
3570                                 dev_warn(&pdev->dev,
3571                                        "base address is invalid\n");
3572                                 return -1;
3573                                 break;
3574                         }
3575                 }
3576                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3577                         return i + 1;
3578         }
3579         return -1;
3580 }
3581
3582 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3583  * controllers that are capable. If not, we use IO-APIC mode.
3584  */
3585
3586 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3587 {
3588 #ifdef CONFIG_PCI_MSI
3589         int err;
3590         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3591         {0, 2}, {0, 3}
3592         };
3593
3594         /* Some boards advertise MSI but don't really support it */
3595         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3596             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3597                 goto default_int_mode;
3598         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3599                 dev_info(&h->pdev->dev, "MSIX\n");
3600                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3601                 if (!err) {
3602                         h->intr[0] = hpsa_msix_entries[0].vector;
3603                         h->intr[1] = hpsa_msix_entries[1].vector;
3604                         h->intr[2] = hpsa_msix_entries[2].vector;
3605                         h->intr[3] = hpsa_msix_entries[3].vector;
3606                         h->msix_vector = 1;
3607                         return;
3608                 }
3609                 if (err > 0) {
3610                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3611                                "available\n", err);
3612                         goto default_int_mode;
3613                 } else {
3614                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3615                                err);
3616                         goto default_int_mode;
3617                 }
3618         }
3619         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3620                 dev_info(&h->pdev->dev, "MSI\n");
3621                 if (!pci_enable_msi(h->pdev))
3622                         h->msi_vector = 1;
3623                 else
3624                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3625         }
3626 default_int_mode:
3627 #endif                          /* CONFIG_PCI_MSI */
3628         /* if we get here we're going to use the default interrupt mode */
3629         h->intr[h->intr_mode] = h->pdev->irq;
3630 }
3631
3632 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3633 {
3634         int i;
3635         u32 subsystem_vendor_id, subsystem_device_id;
3636
3637         subsystem_vendor_id = pdev->subsystem_vendor;
3638         subsystem_device_id = pdev->subsystem_device;
3639         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3640                     subsystem_vendor_id;
3641
3642         for (i = 0; i < ARRAY_SIZE(products); i++)
3643                 if (*board_id == products[i].board_id)
3644                         return i;
3645
3646         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3647                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3648                 !hpsa_allow_any) {
3649                 dev_warn(&pdev->dev, "unrecognized board ID: "
3650                         "0x%08x, ignoring.\n", *board_id);
3651                         return -ENODEV;
3652         }
3653         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3654 }
3655
3656 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3657 {
3658         u16 command;
3659
3660         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3661         return ((command & PCI_COMMAND_MEMORY) == 0);
3662 }
3663
3664 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3665         unsigned long *memory_bar)
3666 {
3667         int i;
3668
3669         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3670                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3671                         /* addressing mode bits already removed */
3672                         *memory_bar = pci_resource_start(pdev, i);
3673                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3674                                 *memory_bar);
3675                         return 0;
3676                 }
3677         dev_warn(&pdev->dev, "no memory BAR found\n");
3678         return -ENODEV;
3679 }
3680
3681 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3682         void __iomem *vaddr, int wait_for_ready)
3683 {
3684         int i, iterations;
3685         u32 scratchpad;
3686         if (wait_for_ready)
3687                 iterations = HPSA_BOARD_READY_ITERATIONS;
3688         else
3689                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3690
3691         for (i = 0; i < iterations; i++) {
3692                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3693                 if (wait_for_ready) {
3694                         if (scratchpad == HPSA_FIRMWARE_READY)
3695                                 return 0;
3696                 } else {
3697                         if (scratchpad != HPSA_FIRMWARE_READY)
3698                                 return 0;
3699                 }
3700                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3701         }
3702         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3703         return -ENODEV;
3704 }
3705
3706 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3707         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3708         u64 *cfg_offset)
3709 {
3710         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3711         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3712         *cfg_base_addr &= (u32) 0x0000ffff;
3713         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3714         if (*cfg_base_addr_index == -1) {
3715                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3716                 return -ENODEV;
3717         }
3718         return 0;
3719 }
3720
3721 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3722 {
3723         u64 cfg_offset;
3724         u32 cfg_base_addr;
3725         u64 cfg_base_addr_index;
3726         u32 trans_offset;
3727         int rc;
3728
3729         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3730                 &cfg_base_addr_index, &cfg_offset);
3731         if (rc)
3732                 return rc;
3733         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3734                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3735         if (!h->cfgtable)
3736                 return -ENOMEM;
3737         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3738         if (rc)
3739                 return rc;
3740         /* Find performant mode table. */
3741         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3742         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3743                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3744                                 sizeof(*h->transtable));
3745         if (!h->transtable)
3746                 return -ENOMEM;
3747         return 0;
3748 }
3749
3750 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3751 {
3752         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3753
3754         /* Limit commands in memory limited kdump scenario. */
3755         if (reset_devices && h->max_commands > 32)
3756                 h->max_commands = 32;
3757
3758         if (h->max_commands < 16) {
3759                 dev_warn(&h->pdev->dev, "Controller reports "
3760                         "max supported commands of %d, an obvious lie. "
3761                         "Using 16.  Ensure that firmware is up to date.\n",
3762                         h->max_commands);
3763                 h->max_commands = 16;
3764         }
3765 }
3766
3767 /* Interrogate the hardware for some limits:
3768  * max commands, max SG elements without chaining, and with chaining,
3769  * SG chain block size, etc.
3770  */
3771 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3772 {
3773         hpsa_get_max_perf_mode_cmds(h);
3774         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3775         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3776         /*
3777          * Limit in-command s/g elements to 32 save dma'able memory.
3778          * Howvever spec says if 0, use 31
3779          */
3780         h->max_cmd_sg_entries = 31;
3781         if (h->maxsgentries > 512) {
3782                 h->max_cmd_sg_entries = 32;
3783                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3784                 h->maxsgentries--; /* save one for chain pointer */
3785         } else {
3786                 h->maxsgentries = 31; /* default to traditional values */
3787                 h->chainsize = 0;
3788         }
3789 }
3790
3791 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3792 {
3793         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3794             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3795             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3796             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3797                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3798                 return false;
3799         }
3800         return true;
3801 }
3802
3803 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3804 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3805 {
3806 #ifdef CONFIG_X86
3807         u32 prefetch;
3808
3809         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3810         prefetch |= 0x100;
3811         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3812 #endif
3813 }
3814
3815 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3816  * in a prefetch beyond physical memory.
3817  */
3818 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3819 {
3820         u32 dma_prefetch;
3821
3822         if (h->board_id != 0x3225103C)
3823                 return;
3824         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3825         dma_prefetch |= 0x8000;
3826         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3827 }
3828
3829 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3830 {
3831         int i;
3832         u32 doorbell_value;
3833         unsigned long flags;
3834
3835         /* under certain very rare conditions, this can take awhile.
3836          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3837          * as we enter this code.)
3838          */
3839         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3840                 spin_lock_irqsave(&h->lock, flags);
3841                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3842                 spin_unlock_irqrestore(&h->lock, flags);
3843                 if (!(doorbell_value & CFGTBL_ChangeReq))
3844                         break;
3845                 /* delay and try again */
3846                 usleep_range(10000, 20000);
3847         }
3848 }
3849
3850 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3851 {
3852         u32 trans_support;
3853
3854         trans_support = readl(&(h->cfgtable->TransportSupport));
3855         if (!(trans_support & SIMPLE_MODE))
3856                 return -ENOTSUPP;
3857
3858         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3859         /* Update the field, and then ring the doorbell */
3860         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3861         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3862         hpsa_wait_for_mode_change_ack(h);
3863         print_cfg_table(&h->pdev->dev, h->cfgtable);
3864         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3865                 dev_warn(&h->pdev->dev,
3866                         "unable to get board into simple mode\n");
3867                 return -ENODEV;
3868         }
3869         h->transMethod = CFGTBL_Trans_Simple;
3870         return 0;
3871 }
3872
3873 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3874 {
3875         int prod_index, err;
3876
3877         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3878         if (prod_index < 0)
3879                 return -ENODEV;
3880         h->product_name = products[prod_index].product_name;
3881         h->access = *(products[prod_index].access);
3882
3883         if (hpsa_board_disabled(h->pdev)) {
3884                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3885                 return -ENODEV;
3886         }
3887
3888         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3889                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3890
3891         err = pci_enable_device(h->pdev);
3892         if (err) {
3893                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3894                 return err;
3895         }
3896
3897         err = pci_request_regions(h->pdev, "hpsa");
3898         if (err) {
3899                 dev_err(&h->pdev->dev,
3900                         "cannot obtain PCI resources, aborting\n");
3901                 return err;
3902         }
3903         hpsa_interrupt_mode(h);
3904         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3905         if (err)
3906                 goto err_out_free_res;
3907         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3908         if (!h->vaddr) {
3909                 err = -ENOMEM;
3910                 goto err_out_free_res;
3911         }
3912         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3913         if (err)
3914                 goto err_out_free_res;
3915         err = hpsa_find_cfgtables(h);
3916         if (err)
3917                 goto err_out_free_res;
3918         hpsa_find_board_params(h);
3919
3920         if (!hpsa_CISS_signature_present(h)) {
3921                 err = -ENODEV;
3922                 goto err_out_free_res;
3923         }
3924         hpsa_enable_scsi_prefetch(h);
3925         hpsa_p600_dma_prefetch_quirk(h);
3926         err = hpsa_enter_simple_mode(h);
3927         if (err)
3928                 goto err_out_free_res;
3929         return 0;
3930
3931 err_out_free_res:
3932         if (h->transtable)
3933                 iounmap(h->transtable);
3934         if (h->cfgtable)
3935                 iounmap(h->cfgtable);
3936         if (h->vaddr)
3937                 iounmap(h->vaddr);
3938         /*
3939          * Deliberately omit pci_disable_device(): it does something nasty to
3940          * Smart Array controllers that pci_enable_device does not undo
3941          */
3942         pci_release_regions(h->pdev);
3943         return err;
3944 }
3945
3946 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3947 {
3948         int rc;
3949
3950 #define HBA_INQUIRY_BYTE_COUNT 64
3951         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3952         if (!h->hba_inquiry_data)
3953                 return;
3954         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3955                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3956         if (rc != 0) {
3957                 kfree(h->hba_inquiry_data);
3958                 h->hba_inquiry_data = NULL;
3959         }
3960 }
3961
3962 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3963 {
3964         int rc, i;
3965
3966         if (!reset_devices)
3967                 return 0;
3968
3969         /* Reset the controller with a PCI power-cycle or via doorbell */
3970         rc = hpsa_kdump_hard_reset_controller(pdev);
3971
3972         /* -ENOTSUPP here means we cannot reset the controller
3973          * but it's already (and still) up and running in
3974          * "performant mode".  Or, it might be 640x, which can't reset
3975          * due to concerns about shared bbwc between 6402/6404 pair.
3976          */
3977         if (rc == -ENOTSUPP)
3978                 return rc; /* just try to do the kdump anyhow. */
3979         if (rc)
3980                 return -ENODEV;
3981
3982         /* Now try to get the controller to respond to a no-op */
3983         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3984         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3985                 if (hpsa_noop(pdev) == 0)
3986                         break;
3987                 else
3988                         dev_warn(&pdev->dev, "no-op failed%s\n",
3989                                         (i < 11 ? "; re-trying" : ""));
3990         }
3991         return 0;
3992 }
3993
3994 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3995 {
3996         h->cmd_pool_bits = kzalloc(
3997                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3998                 sizeof(unsigned long), GFP_KERNEL);
3999         h->cmd_pool = pci_alloc_consistent(h->pdev,
4000                     h->nr_cmds * sizeof(*h->cmd_pool),
4001                     &(h->cmd_pool_dhandle));
4002         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4003                     h->nr_cmds * sizeof(*h->errinfo_pool),
4004                     &(h->errinfo_pool_dhandle));
4005         if ((h->cmd_pool_bits == NULL)
4006             || (h->cmd_pool == NULL)
4007             || (h->errinfo_pool == NULL)) {
4008                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4009                 return -ENOMEM;
4010         }
4011         return 0;
4012 }
4013
4014 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4015 {
4016         kfree(h->cmd_pool_bits);
4017         if (h->cmd_pool)
4018                 pci_free_consistent(h->pdev,
4019                             h->nr_cmds * sizeof(struct CommandList),
4020                             h->cmd_pool, h->cmd_pool_dhandle);
4021         if (h->errinfo_pool)
4022                 pci_free_consistent(h->pdev,
4023                             h->nr_cmds * sizeof(struct ErrorInfo),
4024                             h->errinfo_pool,
4025                             h->errinfo_pool_dhandle);
4026 }
4027
4028 static int hpsa_request_irq(struct ctlr_info *h,
4029         irqreturn_t (*msixhandler)(int, void *),
4030         irqreturn_t (*intxhandler)(int, void *))
4031 {
4032         int rc;
4033
4034         if (h->msix_vector || h->msi_vector)
4035                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4036                                 0, h->devname, h);
4037         else
4038                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4039                                 IRQF_SHARED, h->devname, h);
4040         if (rc) {
4041                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4042                        h->intr[h->intr_mode], h->devname);
4043                 return -ENODEV;
4044         }
4045         return 0;
4046 }
4047
4048 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4049 {
4050         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4051                 HPSA_RESET_TYPE_CONTROLLER)) {
4052                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4053                 return -EIO;
4054         }
4055
4056         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4057         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4058                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4059                 return -1;
4060         }
4061
4062         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4063         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4064                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4065                         "after soft reset.\n");
4066                 return -1;
4067         }
4068
4069         return 0;
4070 }
4071
4072 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4073 {
4074         free_irq(h->intr[h->intr_mode], h);
4075 #ifdef CONFIG_PCI_MSI
4076         if (h->msix_vector)
4077                 pci_disable_msix(h->pdev);
4078         else if (h->msi_vector)
4079                 pci_disable_msi(h->pdev);
4080 #endif /* CONFIG_PCI_MSI */
4081         hpsa_free_sg_chain_blocks(h);
4082         hpsa_free_cmd_pool(h);
4083         kfree(h->blockFetchTable);
4084         pci_free_consistent(h->pdev, h->reply_pool_size,
4085                 h->reply_pool, h->reply_pool_dhandle);
4086         if (h->vaddr)
4087                 iounmap(h->vaddr);
4088         if (h->transtable)
4089                 iounmap(h->transtable);
4090         if (h->cfgtable)
4091                 iounmap(h->cfgtable);
4092         pci_release_regions(h->pdev);
4093         kfree(h);
4094 }
4095
4096 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4097                                     const struct pci_device_id *ent)
4098 {
4099         int dac, rc;
4100         struct ctlr_info *h;
4101         int try_soft_reset = 0;
4102         unsigned long flags;
4103
4104         if (number_of_controllers == 0)
4105                 printk(KERN_INFO DRIVER_NAME "\n");
4106
4107         rc = hpsa_init_reset_devices(pdev);
4108         if (rc) {
4109                 if (rc != -ENOTSUPP)
4110                         return rc;
4111                 /* If the reset fails in a particular way (it has no way to do
4112                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4113                  * a soft reset once we get the controller configured up to the
4114                  * point that it can accept a command.
4115                  */
4116                 try_soft_reset = 1;
4117                 rc = 0;
4118         }
4119
4120 reinit_after_soft_reset:
4121
4122         /* Command structures must be aligned on a 32-byte boundary because
4123          * the 5 lower bits of the address are used by the hardware. and by
4124          * the driver.  See comments in hpsa.h for more info.
4125          */
4126 #define COMMANDLIST_ALIGNMENT 32
4127         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4128         h = kzalloc(sizeof(*h), GFP_KERNEL);
4129         if (!h)
4130                 return -ENOMEM;
4131
4132         h->pdev = pdev;
4133         h->busy_initializing = 1;
4134         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4135         INIT_LIST_HEAD(&h->cmpQ);
4136         INIT_LIST_HEAD(&h->reqQ);
4137         spin_lock_init(&h->lock);
4138         spin_lock_init(&h->scan_lock);
4139         rc = hpsa_pci_init(h);
4140         if (rc != 0)
4141                 goto clean1;
4142
4143         sprintf(h->devname, "hpsa%d", number_of_controllers);
4144         h->ctlr = number_of_controllers;
4145         number_of_controllers++;
4146
4147         /* configure PCI DMA stuff */
4148         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4149         if (rc == 0) {
4150                 dac = 1;
4151         } else {
4152                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4153                 if (rc == 0) {
4154                         dac = 0;
4155                 } else {
4156                         dev_err(&pdev->dev, "no suitable DMA available\n");
4157                         goto clean1;
4158                 }
4159         }
4160
4161         /* make sure the board interrupts are off */
4162         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4163
4164         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4165                 goto clean2;
4166         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4167                h->devname, pdev->device,
4168                h->intr[h->intr_mode], dac ? "" : " not");
4169         if (hpsa_allocate_cmd_pool(h))
4170                 goto clean4;
4171         if (hpsa_allocate_sg_chain_blocks(h))
4172                 goto clean4;
4173         init_waitqueue_head(&h->scan_wait_queue);
4174         h->scan_finished = 1; /* no scan currently in progress */
4175
4176         pci_set_drvdata(pdev, h);
4177         h->ndevices = 0;
4178         h->scsi_host = NULL;
4179         spin_lock_init(&h->devlock);
4180         hpsa_put_ctlr_into_performant_mode(h);
4181
4182         /* At this point, the controller is ready to take commands.
4183          * Now, if reset_devices and the hard reset didn't work, try
4184          * the soft reset and see if that works.
4185          */
4186         if (try_soft_reset) {
4187
4188                 /* This is kind of gross.  We may or may not get a completion
4189                  * from the soft reset command, and if we do, then the value
4190                  * from the fifo may or may not be valid.  So, we wait 10 secs
4191                  * after the reset throwing away any completions we get during
4192                  * that time.  Unregister the interrupt handler and register
4193                  * fake ones to scoop up any residual completions.
4194                  */
4195                 spin_lock_irqsave(&h->lock, flags);
4196                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4197                 spin_unlock_irqrestore(&h->lock, flags);
4198                 free_irq(h->intr[h->intr_mode], h);
4199                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4200                                         hpsa_intx_discard_completions);
4201                 if (rc) {
4202                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4203                                 "soft reset.\n");
4204                         goto clean4;
4205                 }
4206
4207                 rc = hpsa_kdump_soft_reset(h);
4208                 if (rc)
4209                         /* Neither hard nor soft reset worked, we're hosed. */
4210                         goto clean4;
4211
4212                 dev_info(&h->pdev->dev, "Board READY.\n");
4213                 dev_info(&h->pdev->dev,
4214                         "Waiting for stale completions to drain.\n");
4215                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4216                 msleep(10000);
4217                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4218
4219                 rc = controller_reset_failed(h->cfgtable);
4220                 if (rc)
4221                         dev_info(&h->pdev->dev,
4222                                 "Soft reset appears to have failed.\n");
4223
4224                 /* since the controller's reset, we have to go back and re-init
4225                  * everything.  Easiest to just forget what we've done and do it
4226                  * all over again.
4227                  */
4228                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4229                 try_soft_reset = 0;
4230                 if (rc)
4231                         /* don't go to clean4, we already unallocated */
4232                         return -ENODEV;
4233
4234                 goto reinit_after_soft_reset;
4235         }
4236
4237         /* Turn the interrupts on so we can service requests */
4238         h->access.set_intr_mask(h, HPSA_INTR_ON);
4239
4240         hpsa_hba_inquiry(h);
4241         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4242         h->busy_initializing = 0;
4243         return 1;
4244
4245 clean4:
4246         hpsa_free_sg_chain_blocks(h);
4247         hpsa_free_cmd_pool(h);
4248         free_irq(h->intr[h->intr_mode], h);
4249 clean2:
4250 clean1:
4251         h->busy_initializing = 0;
4252         kfree(h);
4253         return rc;
4254 }
4255
4256 static void hpsa_flush_cache(struct ctlr_info *h)
4257 {
4258         char *flush_buf;
4259         struct CommandList *c;
4260
4261         flush_buf = kzalloc(4, GFP_KERNEL);
4262         if (!flush_buf)
4263                 return;
4264
4265         c = cmd_special_alloc(h);
4266         if (!c) {
4267                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4268                 goto out_of_memory;
4269         }
4270         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4271                 RAID_CTLR_LUNID, TYPE_CMD);
4272         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4273         if (c->err_info->CommandStatus != 0)
4274                 dev_warn(&h->pdev->dev,
4275                         "error flushing cache on controller\n");
4276         cmd_special_free(h, c);
4277 out_of_memory:
4278         kfree(flush_buf);
4279 }
4280
4281 static void hpsa_shutdown(struct pci_dev *pdev)
4282 {
4283         struct ctlr_info *h;
4284
4285         h = pci_get_drvdata(pdev);
4286         /* Turn board interrupts off  and send the flush cache command
4287          * sendcmd will turn off interrupt, and send the flush...
4288          * To write all data in the battery backed cache to disks
4289          */
4290         hpsa_flush_cache(h);
4291         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4292         free_irq(h->intr[h->intr_mode], h);
4293 #ifdef CONFIG_PCI_MSI
4294         if (h->msix_vector)
4295                 pci_disable_msix(h->pdev);
4296         else if (h->msi_vector)
4297                 pci_disable_msi(h->pdev);
4298 #endif                          /* CONFIG_PCI_MSI */
4299 }
4300
4301 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4302 {
4303         struct ctlr_info *h;
4304
4305         if (pci_get_drvdata(pdev) == NULL) {
4306                 dev_err(&pdev->dev, "unable to remove device \n");
4307                 return;
4308         }
4309         h = pci_get_drvdata(pdev);
4310         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4311         hpsa_shutdown(pdev);
4312         iounmap(h->vaddr);
4313         iounmap(h->transtable);
4314         iounmap(h->cfgtable);
4315         hpsa_free_sg_chain_blocks(h);
4316         pci_free_consistent(h->pdev,
4317                 h->nr_cmds * sizeof(struct CommandList),
4318                 h->cmd_pool, h->cmd_pool_dhandle);
4319         pci_free_consistent(h->pdev,
4320                 h->nr_cmds * sizeof(struct ErrorInfo),
4321                 h->errinfo_pool, h->errinfo_pool_dhandle);
4322         pci_free_consistent(h->pdev, h->reply_pool_size,
4323                 h->reply_pool, h->reply_pool_dhandle);
4324         kfree(h->cmd_pool_bits);
4325         kfree(h->blockFetchTable);
4326         kfree(h->hba_inquiry_data);
4327         /*
4328          * Deliberately omit pci_disable_device(): it does something nasty to
4329          * Smart Array controllers that pci_enable_device does not undo
4330          */
4331         pci_release_regions(pdev);
4332         pci_set_drvdata(pdev, NULL);
4333         kfree(h);
4334 }
4335
4336 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4337         __attribute__((unused)) pm_message_t state)
4338 {
4339         return -ENOSYS;
4340 }
4341
4342 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4343 {
4344         return -ENOSYS;
4345 }
4346
4347 static struct pci_driver hpsa_pci_driver = {
4348         .name = "hpsa",
4349         .probe = hpsa_init_one,
4350         .remove = __devexit_p(hpsa_remove_one),
4351         .id_table = hpsa_pci_device_id, /* id_table */
4352         .shutdown = hpsa_shutdown,
4353         .suspend = hpsa_suspend,
4354         .resume = hpsa_resume,
4355 };
4356
4357 /* Fill in bucket_map[], given nsgs (the max number of
4358  * scatter gather elements supported) and bucket[],
4359  * which is an array of 8 integers.  The bucket[] array
4360  * contains 8 different DMA transfer sizes (in 16
4361  * byte increments) which the controller uses to fetch
4362  * commands.  This function fills in bucket_map[], which
4363  * maps a given number of scatter gather elements to one of
4364  * the 8 DMA transfer sizes.  The point of it is to allow the
4365  * controller to only do as much DMA as needed to fetch the
4366  * command, with the DMA transfer size encoded in the lower
4367  * bits of the command address.
4368  */
4369 static void  calc_bucket_map(int bucket[], int num_buckets,
4370         int nsgs, int *bucket_map)
4371 {
4372         int i, j, b, size;
4373
4374         /* even a command with 0 SGs requires 4 blocks */
4375 #define MINIMUM_TRANSFER_BLOCKS 4
4376 #define NUM_BUCKETS 8
4377         /* Note, bucket_map must have nsgs+1 entries. */
4378         for (i = 0; i <= nsgs; i++) {
4379                 /* Compute size of a command with i SG entries */
4380                 size = i + MINIMUM_TRANSFER_BLOCKS;
4381                 b = num_buckets; /* Assume the biggest bucket */
4382                 /* Find the bucket that is just big enough */
4383                 for (j = 0; j < 8; j++) {
4384                         if (bucket[j] >= size) {
4385                                 b = j;
4386                                 break;
4387                         }
4388                 }
4389                 /* for a command with i SG entries, use bucket b. */
4390                 bucket_map[i] = b;
4391         }
4392 }
4393
4394 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4395         u32 use_short_tags)
4396 {
4397         int i;
4398         unsigned long register_value;
4399
4400         /* This is a bit complicated.  There are 8 registers on
4401          * the controller which we write to to tell it 8 different
4402          * sizes of commands which there may be.  It's a way of
4403          * reducing the DMA done to fetch each command.  Encoded into
4404          * each command's tag are 3 bits which communicate to the controller
4405          * which of the eight sizes that command fits within.  The size of
4406          * each command depends on how many scatter gather entries there are.
4407          * Each SG entry requires 16 bytes.  The eight registers are programmed
4408          * with the number of 16-byte blocks a command of that size requires.
4409          * The smallest command possible requires 5 such 16 byte blocks.
4410          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4411          * blocks.  Note, this only extends to the SG entries contained
4412          * within the command block, and does not extend to chained blocks
4413          * of SG elements.   bft[] contains the eight values we write to
4414          * the registers.  They are not evenly distributed, but have more
4415          * sizes for small commands, and fewer sizes for larger commands.
4416          */
4417         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4418         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4419         /*  5 = 1 s/g entry or 4k
4420          *  6 = 2 s/g entry or 8k
4421          *  8 = 4 s/g entry or 16k
4422          * 10 = 6 s/g entry or 24k
4423          */
4424
4425         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4426
4427         /* Controller spec: zero out this buffer. */
4428         memset(h->reply_pool, 0, h->reply_pool_size);
4429         h->reply_pool_head = h->reply_pool;
4430
4431         bft[7] = h->max_sg_entries + 4;
4432         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4433         for (i = 0; i < 8; i++)
4434                 writel(bft[i], &h->transtable->BlockFetch[i]);
4435
4436         /* size of controller ring buffer */
4437         writel(h->max_commands, &h->transtable->RepQSize);
4438         writel(1, &h->transtable->RepQCount);
4439         writel(0, &h->transtable->RepQCtrAddrLow32);
4440         writel(0, &h->transtable->RepQCtrAddrHigh32);
4441         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4442         writel(0, &h->transtable->RepQAddr0High32);
4443         writel(CFGTBL_Trans_Performant | use_short_tags,
4444                 &(h->cfgtable->HostWrite.TransportRequest));
4445         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4446         hpsa_wait_for_mode_change_ack(h);
4447         register_value = readl(&(h->cfgtable->TransportActive));
4448         if (!(register_value & CFGTBL_Trans_Performant)) {
4449                 dev_warn(&h->pdev->dev, "unable to get board into"
4450                                         " performant mode\n");
4451                 return;
4452         }
4453         /* Change the access methods to the performant access methods */
4454         h->access = SA5_performant_access;
4455         h->transMethod = CFGTBL_Trans_Performant;
4456 }
4457
4458 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4459 {
4460         u32 trans_support;
4461
4462         if (hpsa_simple_mode)
4463                 return;
4464
4465         trans_support = readl(&(h->cfgtable->TransportSupport));
4466         if (!(trans_support & PERFORMANT_MODE))
4467                 return;
4468
4469         hpsa_get_max_perf_mode_cmds(h);
4470         h->max_sg_entries = 32;
4471         /* Performant mode ring buffer and supporting data structures */
4472         h->reply_pool_size = h->max_commands * sizeof(u64);
4473         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4474                                 &(h->reply_pool_dhandle));
4475
4476         /* Need a block fetch table for performant mode */
4477         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4478                                 sizeof(u32)), GFP_KERNEL);
4479
4480         if ((h->reply_pool == NULL)
4481                 || (h->blockFetchTable == NULL))
4482                 goto clean_up;
4483
4484         hpsa_enter_performant_mode(h,
4485                 trans_support & CFGTBL_Trans_use_short_tags);
4486
4487         return;
4488
4489 clean_up:
4490         if (h->reply_pool)
4491                 pci_free_consistent(h->pdev, h->reply_pool_size,
4492                         h->reply_pool, h->reply_pool_dhandle);
4493         kfree(h->blockFetchTable);
4494 }
4495
4496 /*
4497  *  This is it.  Register the PCI driver information for the cards we control
4498  *  the OS will call our registered routines when it finds one of our cards.
4499  */
4500 static int __init hpsa_init(void)
4501 {
4502         return pci_register_driver(&hpsa_pci_driver);
4503 }
4504
4505 static void __exit hpsa_cleanup(void)
4506 {
4507         pci_unregister_driver(&hpsa_pci_driver);
4508 }
4509
4510 module_init(hpsa_init);
4511 module_exit(hpsa_cleanup);