[SCSI] hpsa: gen8plus Smart Array IDs
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
195         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196         u64 *cfg_offset);
197 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198         unsigned long *memory_bar);
199 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
201         void __iomem *vaddr, int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541 };
542
543
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547         list_add_tail(&c->list, list);
548 }
549
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552         u32 a;
553         struct reply_pool *rq = &h->reply_queue[q];
554         unsigned long flags;
555
556         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557                 return h->access.command_completed(h, q);
558
559         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560                 a = rq->head[rq->current_entry];
561                 rq->current_entry++;
562                 spin_lock_irqsave(&h->lock, flags);
563                 h->commands_outstanding--;
564                 spin_unlock_irqrestore(&h->lock, flags);
565         } else {
566                 a = FIFO_EMPTY;
567         }
568         /* Check for wraparound */
569         if (rq->current_entry == h->max_commands) {
570                 rq->current_entry = 0;
571                 rq->wraparound ^= 1;
572         }
573         return a;
574 }
575
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584                 if (likely(h->msix_vector))
585                         c->Header.ReplyQueue =
586                                 smp_processor_id() % h->nreply_queues;
587         }
588 }
589
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603                 struct CommandList *c)
604 {
605         if (!is_firmware_flash_cmd(c->Request.CDB))
606                 return;
607         atomic_inc(&h->firmware_flash_in_progress);
608         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612                 struct CommandList *c)
613 {
614         if (is_firmware_flash_cmd(c->Request.CDB) &&
615                 atomic_dec_and_test(&h->firmware_flash_in_progress))
616                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620         struct CommandList *c)
621 {
622         unsigned long flags;
623
624         set_performant_mode(h, c);
625         dial_down_lockup_detection_during_fw_flash(h, c);
626         spin_lock_irqsave(&h->lock, flags);
627         addQ(&h->reqQ, c);
628         h->Qdepth++;
629         spin_unlock_irqrestore(&h->lock, flags);
630         start_io(h);
631 }
632
633 static inline void removeQ(struct CommandList *c)
634 {
635         if (WARN_ON(list_empty(&c->list)))
636                 return;
637         list_del_init(&c->list);
638 }
639
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647         if (!h->hba_inquiry_data)
648                 return 0;
649         if ((h->hba_inquiry_data[2] & 0x07) == 5)
650                 return 1;
651         return 0;
652 }
653
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655         unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657         /* finds an unused bus, target, lun for a new physical device
658          * assumes h->devlock is held
659          */
660         int i, found = 0;
661         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662
663         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667                         __set_bit(h->dev[i]->target, lun_taken);
668         }
669
670         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671         if (i < HPSA_MAX_DEVICES) {
672                 /* *bus = 1; */
673                 *target = i;
674                 *lun = 0;
675                 found = 1;
676         }
677         return !found;
678 }
679
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682                 struct hpsa_scsi_dev_t *device,
683                 struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685         /* assumes h->devlock is held */
686         int n = h->ndevices;
687         int i;
688         unsigned char addr1[8], addr2[8];
689         struct hpsa_scsi_dev_t *sd;
690
691         if (n >= HPSA_MAX_DEVICES) {
692                 dev_err(&h->pdev->dev, "too many devices, some will be "
693                         "inaccessible.\n");
694                 return -1;
695         }
696
697         /* physical devices do not have lun or target assigned until now. */
698         if (device->lun != -1)
699                 /* Logical device, lun is already assigned. */
700                 goto lun_assigned;
701
702         /* If this device a non-zero lun of a multi-lun device
703          * byte 4 of the 8-byte LUN addr will contain the logical
704          * unit no, zero otherise.
705          */
706         if (device->scsi3addr[4] == 0) {
707                 /* This is not a non-zero lun of a multi-lun device */
708                 if (hpsa_find_target_lun(h, device->scsi3addr,
709                         device->bus, &device->target, &device->lun) != 0)
710                         return -1;
711                 goto lun_assigned;
712         }
713
714         /* This is a non-zero lun of a multi-lun device.
715          * Search through our list and find the device which
716          * has the same 8 byte LUN address, excepting byte 4.
717          * Assign the same bus and target for this new LUN.
718          * Use the logical unit number from the firmware.
719          */
720         memcpy(addr1, device->scsi3addr, 8);
721         addr1[4] = 0;
722         for (i = 0; i < n; i++) {
723                 sd = h->dev[i];
724                 memcpy(addr2, sd->scsi3addr, 8);
725                 addr2[4] = 0;
726                 /* differ only in byte 4? */
727                 if (memcmp(addr1, addr2, 8) == 0) {
728                         device->bus = sd->bus;
729                         device->target = sd->target;
730                         device->lun = device->scsi3addr[4];
731                         break;
732                 }
733         }
734         if (device->lun == -1) {
735                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736                         " suspect firmware bug or unsupported hardware "
737                         "configuration.\n");
738                         return -1;
739         }
740
741 lun_assigned:
742
743         h->dev[n] = device;
744         h->ndevices++;
745         added[*nadded] = device;
746         (*nadded)++;
747
748         /* initially, (before registering with scsi layer) we don't
749          * know our hostno and we don't want to print anything first
750          * time anyway (the scsi layer's inquiries will show that info)
751          */
752         /* if (hostno != -1) */
753                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754                         scsi_device_type(device->devtype), hostno,
755                         device->bus, device->target, device->lun);
756         return 0;
757 }
758
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761         int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763         /* assumes h->devlock is held */
764         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765
766         /* Raid level changed. */
767         h->dev[entry]->raid_level = new_entry->raid_level;
768         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770                 new_entry->target, new_entry->lun);
771 }
772
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775         int entry, struct hpsa_scsi_dev_t *new_entry,
776         struct hpsa_scsi_dev_t *added[], int *nadded,
777         struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779         /* assumes h->devlock is held */
780         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781         removed[*nremoved] = h->dev[entry];
782         (*nremoved)++;
783
784         /*
785          * New physical devices won't have target/lun assigned yet
786          * so we need to preserve the values in the slot we are replacing.
787          */
788         if (new_entry->target == -1) {
789                 new_entry->target = h->dev[entry]->target;
790                 new_entry->lun = h->dev[entry]->lun;
791         }
792
793         h->dev[entry] = new_entry;
794         added[*nadded] = new_entry;
795         (*nadded)++;
796         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798                         new_entry->target, new_entry->lun);
799 }
800
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803         struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805         /* assumes h->devlock is held */
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810
811         sd = h->dev[entry];
812         removed[*nremoved] = h->dev[entry];
813         (*nremoved)++;
814
815         for (i = entry; i < h->ndevices-1; i++)
816                 h->dev[i] = h->dev[i+1];
817         h->ndevices--;
818         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820                 sd->lun);
821 }
822
823 #define SCSI3ADDR_EQ(a, b) ( \
824         (a)[7] == (b)[7] && \
825         (a)[6] == (b)[6] && \
826         (a)[5] == (b)[5] && \
827         (a)[4] == (b)[4] && \
828         (a)[3] == (b)[3] && \
829         (a)[2] == (b)[2] && \
830         (a)[1] == (b)[1] && \
831         (a)[0] == (b)[0])
832
833 static void fixup_botched_add(struct ctlr_info *h,
834         struct hpsa_scsi_dev_t *added)
835 {
836         /* called when scsi_add_device fails in order to re-adjust
837          * h->dev[] to match the mid layer's view.
838          */
839         unsigned long flags;
840         int i, j;
841
842         spin_lock_irqsave(&h->lock, flags);
843         for (i = 0; i < h->ndevices; i++) {
844                 if (h->dev[i] == added) {
845                         for (j = i; j < h->ndevices-1; j++)
846                                 h->dev[j] = h->dev[j+1];
847                         h->ndevices--;
848                         break;
849                 }
850         }
851         spin_unlock_irqrestore(&h->lock, flags);
852         kfree(added);
853 }
854
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856         struct hpsa_scsi_dev_t *dev2)
857 {
858         /* we compare everything except lun and target as these
859          * are not yet assigned.  Compare parts likely
860          * to differ first
861          */
862         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863                 sizeof(dev1->scsi3addr)) != 0)
864                 return 0;
865         if (memcmp(dev1->device_id, dev2->device_id,
866                 sizeof(dev1->device_id)) != 0)
867                 return 0;
868         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869                 return 0;
870         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871                 return 0;
872         if (dev1->devtype != dev2->devtype)
873                 return 0;
874         if (dev1->bus != dev2->bus)
875                 return 0;
876         return 1;
877 }
878
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* Device attributes that can change, but don't mean
883          * that the device is a different device, nor that the OS
884          * needs to be told anything about the change.
885          */
886         if (dev1->raid_level != dev2->raid_level)
887                 return 1;
888         return 0;
889 }
890
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901         int *index)
902 {
903         int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908         for (i = 0; i < haystack_size; i++) {
909                 if (haystack[i] == NULL) /* previously removed. */
910                         continue;
911                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912                         *index = i;
913                         if (device_is_the_same(needle, haystack[i])) {
914                                 if (device_updated(needle, haystack[i]))
915                                         return DEVICE_UPDATED;
916                                 return DEVICE_SAME;
917                         } else {
918                                 return DEVICE_CHANGED;
919                         }
920                 }
921         }
922         *index = -1;
923         return DEVICE_NOT_FOUND;
924 }
925
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927         struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929         /* sd contains scsi3 addresses and devtypes, and inquiry
930          * data.  This function takes what's in sd to be the current
931          * reality and updates h->dev[] to reflect that reality.
932          */
933         int i, entry, device_change, changes = 0;
934         struct hpsa_scsi_dev_t *csd;
935         unsigned long flags;
936         struct hpsa_scsi_dev_t **added, **removed;
937         int nadded, nremoved;
938         struct Scsi_Host *sh = NULL;
939
940         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942
943         if (!added || !removed) {
944                 dev_warn(&h->pdev->dev, "out of memory in "
945                         "adjust_hpsa_scsi_table\n");
946                 goto free_and_out;
947         }
948
949         spin_lock_irqsave(&h->devlock, flags);
950
951         /* find any devices in h->dev[] that are not in
952          * sd[] and remove them from h->dev[], and for any
953          * devices which have changed, remove the old device
954          * info and add the new device info.
955          * If minor device attributes change, just update
956          * the existing device structure.
957          */
958         i = 0;
959         nremoved = 0;
960         nadded = 0;
961         while (i < h->ndevices) {
962                 csd = h->dev[i];
963                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964                 if (device_change == DEVICE_NOT_FOUND) {
965                         changes++;
966                         hpsa_scsi_remove_entry(h, hostno, i,
967                                 removed, &nremoved);
968                         continue; /* remove ^^^, hence i not incremented */
969                 } else if (device_change == DEVICE_CHANGED) {
970                         changes++;
971                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972                                 added, &nadded, removed, &nremoved);
973                         /* Set it to NULL to prevent it from being freed
974                          * at the bottom of hpsa_update_scsi_devices()
975                          */
976                         sd[entry] = NULL;
977                 } else if (device_change == DEVICE_UPDATED) {
978                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979                 }
980                 i++;
981         }
982
983         /* Now, make sure every device listed in sd[] is also
984          * listed in h->dev[], adding them if they aren't found
985          */
986
987         for (i = 0; i < nsds; i++) {
988                 if (!sd[i]) /* if already added above. */
989                         continue;
990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991                                         h->ndevices, &entry);
992                 if (device_change == DEVICE_NOT_FOUND) {
993                         changes++;
994                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
995                                 added, &nadded) != 0)
996                                 break;
997                         sd[i] = NULL; /* prevent from being freed later. */
998                 } else if (device_change == DEVICE_CHANGED) {
999                         /* should never happen... */
1000                         changes++;
1001                         dev_warn(&h->pdev->dev,
1002                                 "device unexpectedly changed.\n");
1003                         /* but if it does happen, we just ignore that device */
1004                 }
1005         }
1006         spin_unlock_irqrestore(&h->devlock, flags);
1007
1008         /* Don't notify scsi mid layer of any changes the first time through
1009          * (or if there are no changes) scsi_scan_host will do it later the
1010          * first time through.
1011          */
1012         if (hostno == -1 || !changes)
1013                 goto free_and_out;
1014
1015         sh = h->scsi_host;
1016         /* Notify scsi mid layer of any removed devices */
1017         for (i = 0; i < nremoved; i++) {
1018                 struct scsi_device *sdev =
1019                         scsi_device_lookup(sh, removed[i]->bus,
1020                                 removed[i]->target, removed[i]->lun);
1021                 if (sdev != NULL) {
1022                         scsi_remove_device(sdev);
1023                         scsi_device_put(sdev);
1024                 } else {
1025                         /* We don't expect to get here.
1026                          * future cmds to this device will get selection
1027                          * timeout as if the device was gone.
1028                          */
1029                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030                                 " for removal.", hostno, removed[i]->bus,
1031                                 removed[i]->target, removed[i]->lun);
1032                 }
1033                 kfree(removed[i]);
1034                 removed[i] = NULL;
1035         }
1036
1037         /* Notify scsi mid layer of any added devices */
1038         for (i = 0; i < nadded; i++) {
1039                 if (scsi_add_device(sh, added[i]->bus,
1040                         added[i]->target, added[i]->lun) == 0)
1041                         continue;
1042                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043                         "device not added.\n", hostno, added[i]->bus,
1044                         added[i]->target, added[i]->lun);
1045                 /* now we have to remove it from h->dev,
1046                  * since it didn't get added to scsi mid layer
1047                  */
1048                 fixup_botched_add(h, added[i]);
1049         }
1050
1051 free_and_out:
1052         kfree(added);
1053         kfree(removed);
1054 }
1055
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061         int bus, int target, int lun)
1062 {
1063         int i;
1064         struct hpsa_scsi_dev_t *sd;
1065
1066         for (i = 0; i < h->ndevices; i++) {
1067                 sd = h->dev[i];
1068                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069                         return sd;
1070         }
1071         return NULL;
1072 }
1073
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077         struct hpsa_scsi_dev_t *sd;
1078         unsigned long flags;
1079         struct ctlr_info *h;
1080
1081         h = sdev_to_hba(sdev);
1082         spin_lock_irqsave(&h->devlock, flags);
1083         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084                 sdev_id(sdev), sdev->lun);
1085         if (sd != NULL)
1086                 sdev->hostdata = sd;
1087         spin_unlock_irqrestore(&h->devlock, flags);
1088         return 0;
1089 }
1090
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093         /* nothing to do. */
1094 }
1095
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098         int i;
1099
1100         if (!h->cmd_sg_list)
1101                 return;
1102         for (i = 0; i < h->nr_cmds; i++) {
1103                 kfree(h->cmd_sg_list[i]);
1104                 h->cmd_sg_list[i] = NULL;
1105         }
1106         kfree(h->cmd_sg_list);
1107         h->cmd_sg_list = NULL;
1108 }
1109
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112         int i;
1113
1114         if (h->chainsize <= 0)
1115                 return 0;
1116
1117         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118                                 GFP_KERNEL);
1119         if (!h->cmd_sg_list)
1120                 return -ENOMEM;
1121         for (i = 0; i < h->nr_cmds; i++) {
1122                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123                                                 h->chainsize, GFP_KERNEL);
1124                 if (!h->cmd_sg_list[i])
1125                         goto clean;
1126         }
1127         return 0;
1128
1129 clean:
1130         hpsa_free_sg_chain_blocks(h);
1131         return -ENOMEM;
1132 }
1133
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135         struct CommandList *c)
1136 {
1137         struct SGDescriptor *chain_sg, *chain_block;
1138         u64 temp64;
1139
1140         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141         chain_block = h->cmd_sg_list[c->cmdindex];
1142         chain_sg->Ext = HPSA_SG_CHAIN;
1143         chain_sg->Len = sizeof(*chain_sg) *
1144                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146                                 PCI_DMA_TODEVICE);
1147         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1149 }
1150
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152         struct CommandList *c)
1153 {
1154         struct SGDescriptor *chain_sg;
1155         union u64bit temp64;
1156
1157         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158                 return;
1159
1160         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161         temp64.val32.lower = chain_sg->Addr.lower;
1162         temp64.val32.upper = chain_sg->Addr.upper;
1163         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1164 }
1165
1166 static void complete_scsi_command(struct CommandList *cp)
1167 {
1168         struct scsi_cmnd *cmd;
1169         struct ctlr_info *h;
1170         struct ErrorInfo *ei;
1171
1172         unsigned char sense_key;
1173         unsigned char asc;      /* additional sense code */
1174         unsigned char ascq;     /* additional sense code qualifier */
1175         unsigned long sense_data_size;
1176
1177         ei = cp->err_info;
1178         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179         h = cp->h;
1180
1181         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183                 hpsa_unmap_sg_chain_block(h, cp);
1184
1185         cmd->result = (DID_OK << 16);           /* host byte */
1186         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187         cmd->result |= ei->ScsiStatus;
1188
1189         /* copy the sense data whether we need to or not. */
1190         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192         else
1193                 sense_data_size = sizeof(ei->SenseInfo);
1194         if (ei->SenseLen < sense_data_size)
1195                 sense_data_size = ei->SenseLen;
1196
1197         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198         scsi_set_resid(cmd, ei->ResidualCnt);
1199
1200         if (ei->CommandStatus == 0) {
1201                 cmd->scsi_done(cmd);
1202                 cmd_free(h, cp);
1203                 return;
1204         }
1205
1206         /* an error has occurred */
1207         switch (ei->CommandStatus) {
1208
1209         case CMD_TARGET_STATUS:
1210                 if (ei->ScsiStatus) {
1211                         /* Get sense key */
1212                         sense_key = 0xf & ei->SenseInfo[2];
1213                         /* Get additional sense code */
1214                         asc = ei->SenseInfo[12];
1215                         /* Get addition sense code qualifier */
1216                         ascq = ei->SenseInfo[13];
1217                 }
1218
1219                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220                         if (check_for_unit_attention(h, cp)) {
1221                                 cmd->result = DID_SOFT_ERROR << 16;
1222                                 break;
1223                         }
1224                         if (sense_key == ILLEGAL_REQUEST) {
1225                                 /*
1226                                  * SCSI REPORT_LUNS is commonly unsupported on
1227                                  * Smart Array.  Suppress noisy complaint.
1228                                  */
1229                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1230                                         break;
1231
1232                                 /* If ASC/ASCQ indicate Logical Unit
1233                                  * Not Supported condition,
1234                                  */
1235                                 if ((asc == 0x25) && (ascq == 0x0)) {
1236                                         dev_warn(&h->pdev->dev, "cp %p "
1237                                                 "has check condition\n", cp);
1238                                         break;
1239                                 }
1240                         }
1241
1242                         if (sense_key == NOT_READY) {
1243                                 /* If Sense is Not Ready, Logical Unit
1244                                  * Not ready, Manual Intervention
1245                                  * required
1246                                  */
1247                                 if ((asc == 0x04) && (ascq == 0x03)) {
1248                                         dev_warn(&h->pdev->dev, "cp %p "
1249                                                 "has check condition: unit "
1250                                                 "not ready, manual "
1251                                                 "intervention required\n", cp);
1252                                         break;
1253                                 }
1254                         }
1255                         if (sense_key == ABORTED_COMMAND) {
1256                                 /* Aborted command is retryable */
1257                                 dev_warn(&h->pdev->dev, "cp %p "
1258                                         "has check condition: aborted command: "
1259                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1260                                         cp, asc, ascq);
1261                                 cmd->result = DID_SOFT_ERROR << 16;
1262                                 break;
1263                         }
1264                         /* Must be some other type of check condition */
1265                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266                                         "unknown type: "
1267                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268                                         "Returning result: 0x%x, "
1269                                         "cmd=[%02x %02x %02x %02x %02x "
1270                                         "%02x %02x %02x %02x %02x %02x "
1271                                         "%02x %02x %02x %02x %02x]\n",
1272                                         cp, sense_key, asc, ascq,
1273                                         cmd->result,
1274                                         cmd->cmnd[0], cmd->cmnd[1],
1275                                         cmd->cmnd[2], cmd->cmnd[3],
1276                                         cmd->cmnd[4], cmd->cmnd[5],
1277                                         cmd->cmnd[6], cmd->cmnd[7],
1278                                         cmd->cmnd[8], cmd->cmnd[9],
1279                                         cmd->cmnd[10], cmd->cmnd[11],
1280                                         cmd->cmnd[12], cmd->cmnd[13],
1281                                         cmd->cmnd[14], cmd->cmnd[15]);
1282                         break;
1283                 }
1284
1285
1286                 /* Problem was not a check condition
1287                  * Pass it up to the upper layers...
1288                  */
1289                 if (ei->ScsiStatus) {
1290                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292                                 "Returning result: 0x%x\n",
1293                                 cp, ei->ScsiStatus,
1294                                 sense_key, asc, ascq,
1295                                 cmd->result);
1296                 } else {  /* scsi status is zero??? How??? */
1297                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298                                 "Returning no connection.\n", cp),
1299
1300                         /* Ordinarily, this case should never happen,
1301                          * but there is a bug in some released firmware
1302                          * revisions that allows it to happen if, for
1303                          * example, a 4100 backplane loses power and
1304                          * the tape drive is in it.  We assume that
1305                          * it's a fatal error of some kind because we
1306                          * can't show that it wasn't. We will make it
1307                          * look like selection timeout since that is
1308                          * the most common reason for this to occur,
1309                          * and it's severe enough.
1310                          */
1311
1312                         cmd->result = DID_NO_CONNECT << 16;
1313                 }
1314                 break;
1315
1316         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317                 break;
1318         case CMD_DATA_OVERRUN:
1319                 dev_warn(&h->pdev->dev, "cp %p has"
1320                         " completed with data overrun "
1321                         "reported\n", cp);
1322                 break;
1323         case CMD_INVALID: {
1324                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1325                 print_cmd(cp); */
1326                 /* We get CMD_INVALID if you address a non-existent device
1327                  * instead of a selection timeout (no response).  You will
1328                  * see this if you yank out a drive, then try to access it.
1329                  * This is kind of a shame because it means that any other
1330                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331                  * missing target. */
1332                 cmd->result = DID_NO_CONNECT << 16;
1333         }
1334                 break;
1335         case CMD_PROTOCOL_ERR:
1336                 dev_warn(&h->pdev->dev, "cp %p has "
1337                         "protocol error \n", cp);
1338                 break;
1339         case CMD_HARDWARE_ERR:
1340                 cmd->result = DID_ERROR << 16;
1341                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1342                 break;
1343         case CMD_CONNECTION_LOST:
1344                 cmd->result = DID_ERROR << 16;
1345                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1346                 break;
1347         case CMD_ABORTED:
1348                 cmd->result = DID_ABORT << 16;
1349                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1350                                 cp, ei->ScsiStatus);
1351                 break;
1352         case CMD_ABORT_FAILED:
1353                 cmd->result = DID_ERROR << 16;
1354                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1355                 break;
1356         case CMD_UNSOLICITED_ABORT:
1357                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1358                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1359                         "abort\n", cp);
1360                 break;
1361         case CMD_TIMEOUT:
1362                 cmd->result = DID_TIME_OUT << 16;
1363                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1364                 break;
1365         case CMD_UNABORTABLE:
1366                 cmd->result = DID_ERROR << 16;
1367                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1368                 break;
1369         default:
1370                 cmd->result = DID_ERROR << 16;
1371                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1372                                 cp, ei->CommandStatus);
1373         }
1374         cmd->scsi_done(cmd);
1375         cmd_free(h, cp);
1376 }
1377
1378 static void hpsa_pci_unmap(struct pci_dev *pdev,
1379         struct CommandList *c, int sg_used, int data_direction)
1380 {
1381         int i;
1382         union u64bit addr64;
1383
1384         for (i = 0; i < sg_used; i++) {
1385                 addr64.val32.lower = c->SG[i].Addr.lower;
1386                 addr64.val32.upper = c->SG[i].Addr.upper;
1387                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1388                         data_direction);
1389         }
1390 }
1391
1392 static void hpsa_map_one(struct pci_dev *pdev,
1393                 struct CommandList *cp,
1394                 unsigned char *buf,
1395                 size_t buflen,
1396                 int data_direction)
1397 {
1398         u64 addr64;
1399
1400         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1401                 cp->Header.SGList = 0;
1402                 cp->Header.SGTotal = 0;
1403                 return;
1404         }
1405
1406         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1407         cp->SG[0].Addr.lower =
1408           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1409         cp->SG[0].Addr.upper =
1410           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1411         cp->SG[0].Len = buflen;
1412         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1413         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1414 }
1415
1416 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1417         struct CommandList *c)
1418 {
1419         DECLARE_COMPLETION_ONSTACK(wait);
1420
1421         c->waiting = &wait;
1422         enqueue_cmd_and_start_io(h, c);
1423         wait_for_completion(&wait);
1424 }
1425
1426 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1427         struct CommandList *c)
1428 {
1429         unsigned long flags;
1430
1431         /* If controller lockup detected, fake a hardware error. */
1432         spin_lock_irqsave(&h->lock, flags);
1433         if (unlikely(h->lockup_detected)) {
1434                 spin_unlock_irqrestore(&h->lock, flags);
1435                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1436         } else {
1437                 spin_unlock_irqrestore(&h->lock, flags);
1438                 hpsa_scsi_do_simple_cmd_core(h, c);
1439         }
1440 }
1441
1442 #define MAX_DRIVER_CMD_RETRIES 25
1443 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1444         struct CommandList *c, int data_direction)
1445 {
1446         int backoff_time = 10, retry_count = 0;
1447
1448         do {
1449                 memset(c->err_info, 0, sizeof(*c->err_info));
1450                 hpsa_scsi_do_simple_cmd_core(h, c);
1451                 retry_count++;
1452                 if (retry_count > 3) {
1453                         msleep(backoff_time);
1454                         if (backoff_time < 1000)
1455                                 backoff_time *= 2;
1456                 }
1457         } while ((check_for_unit_attention(h, c) ||
1458                         check_for_busy(h, c)) &&
1459                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1460         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1461 }
1462
1463 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1464 {
1465         struct ErrorInfo *ei;
1466         struct device *d = &cp->h->pdev->dev;
1467
1468         ei = cp->err_info;
1469         switch (ei->CommandStatus) {
1470         case CMD_TARGET_STATUS:
1471                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1472                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1473                                 ei->ScsiStatus);
1474                 if (ei->ScsiStatus == 0)
1475                         dev_warn(d, "SCSI status is abnormally zero.  "
1476                         "(probably indicates selection timeout "
1477                         "reported incorrectly due to a known "
1478                         "firmware bug, circa July, 2001.)\n");
1479                 break;
1480         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1481                         dev_info(d, "UNDERRUN\n");
1482                 break;
1483         case CMD_DATA_OVERRUN:
1484                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1485                 break;
1486         case CMD_INVALID: {
1487                 /* controller unfortunately reports SCSI passthru's
1488                  * to non-existent targets as invalid commands.
1489                  */
1490                 dev_warn(d, "cp %p is reported invalid (probably means "
1491                         "target device no longer present)\n", cp);
1492                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1493                 print_cmd(cp);  */
1494                 }
1495                 break;
1496         case CMD_PROTOCOL_ERR:
1497                 dev_warn(d, "cp %p has protocol error \n", cp);
1498                 break;
1499         case CMD_HARDWARE_ERR:
1500                 /* cmd->result = DID_ERROR << 16; */
1501                 dev_warn(d, "cp %p had hardware error\n", cp);
1502                 break;
1503         case CMD_CONNECTION_LOST:
1504                 dev_warn(d, "cp %p had connection lost\n", cp);
1505                 break;
1506         case CMD_ABORTED:
1507                 dev_warn(d, "cp %p was aborted\n", cp);
1508                 break;
1509         case CMD_ABORT_FAILED:
1510                 dev_warn(d, "cp %p reports abort failed\n", cp);
1511                 break;
1512         case CMD_UNSOLICITED_ABORT:
1513                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1514                 break;
1515         case CMD_TIMEOUT:
1516                 dev_warn(d, "cp %p timed out\n", cp);
1517                 break;
1518         case CMD_UNABORTABLE:
1519                 dev_warn(d, "Command unabortable\n");
1520                 break;
1521         default:
1522                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1523                                 ei->CommandStatus);
1524         }
1525 }
1526
1527 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1528                         unsigned char page, unsigned char *buf,
1529                         unsigned char bufsize)
1530 {
1531         int rc = IO_OK;
1532         struct CommandList *c;
1533         struct ErrorInfo *ei;
1534
1535         c = cmd_special_alloc(h);
1536
1537         if (c == NULL) {                        /* trouble... */
1538                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1539                 return -ENOMEM;
1540         }
1541
1542         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1543         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1544         ei = c->err_info;
1545         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1546                 hpsa_scsi_interpret_error(c);
1547                 rc = -1;
1548         }
1549         cmd_special_free(h, c);
1550         return rc;
1551 }
1552
1553 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1554 {
1555         int rc = IO_OK;
1556         struct CommandList *c;
1557         struct ErrorInfo *ei;
1558
1559         c = cmd_special_alloc(h);
1560
1561         if (c == NULL) {                        /* trouble... */
1562                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1563                 return -ENOMEM;
1564         }
1565
1566         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1567         hpsa_scsi_do_simple_cmd_core(h, c);
1568         /* no unmap needed here because no data xfer. */
1569
1570         ei = c->err_info;
1571         if (ei->CommandStatus != 0) {
1572                 hpsa_scsi_interpret_error(c);
1573                 rc = -1;
1574         }
1575         cmd_special_free(h, c);
1576         return rc;
1577 }
1578
1579 static void hpsa_get_raid_level(struct ctlr_info *h,
1580         unsigned char *scsi3addr, unsigned char *raid_level)
1581 {
1582         int rc;
1583         unsigned char *buf;
1584
1585         *raid_level = RAID_UNKNOWN;
1586         buf = kzalloc(64, GFP_KERNEL);
1587         if (!buf)
1588                 return;
1589         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1590         if (rc == 0)
1591                 *raid_level = buf[8];
1592         if (*raid_level > RAID_UNKNOWN)
1593                 *raid_level = RAID_UNKNOWN;
1594         kfree(buf);
1595         return;
1596 }
1597
1598 /* Get the device id from inquiry page 0x83 */
1599 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1600         unsigned char *device_id, int buflen)
1601 {
1602         int rc;
1603         unsigned char *buf;
1604
1605         if (buflen > 16)
1606                 buflen = 16;
1607         buf = kzalloc(64, GFP_KERNEL);
1608         if (!buf)
1609                 return -1;
1610         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1611         if (rc == 0)
1612                 memcpy(device_id, &buf[8], buflen);
1613         kfree(buf);
1614         return rc != 0;
1615 }
1616
1617 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1618                 struct ReportLUNdata *buf, int bufsize,
1619                 int extended_response)
1620 {
1621         int rc = IO_OK;
1622         struct CommandList *c;
1623         unsigned char scsi3addr[8];
1624         struct ErrorInfo *ei;
1625
1626         c = cmd_special_alloc(h);
1627         if (c == NULL) {                        /* trouble... */
1628                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1629                 return -1;
1630         }
1631         /* address the controller */
1632         memset(scsi3addr, 0, sizeof(scsi3addr));
1633         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1634                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1635         if (extended_response)
1636                 c->Request.CDB[1] = extended_response;
1637         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1638         ei = c->err_info;
1639         if (ei->CommandStatus != 0 &&
1640             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1641                 hpsa_scsi_interpret_error(c);
1642                 rc = -1;
1643         }
1644         cmd_special_free(h, c);
1645         return rc;
1646 }
1647
1648 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1649                 struct ReportLUNdata *buf,
1650                 int bufsize, int extended_response)
1651 {
1652         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1653 }
1654
1655 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1656                 struct ReportLUNdata *buf, int bufsize)
1657 {
1658         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1659 }
1660
1661 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1662         int bus, int target, int lun)
1663 {
1664         device->bus = bus;
1665         device->target = target;
1666         device->lun = lun;
1667 }
1668
1669 static int hpsa_update_device_info(struct ctlr_info *h,
1670         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1671         unsigned char *is_OBDR_device)
1672 {
1673
1674 #define OBDR_SIG_OFFSET 43
1675 #define OBDR_TAPE_SIG "$DR-10"
1676 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1677 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1678
1679         unsigned char *inq_buff;
1680         unsigned char *obdr_sig;
1681
1682         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1683         if (!inq_buff)
1684                 goto bail_out;
1685
1686         /* Do an inquiry to the device to see what it is. */
1687         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1688                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1689                 /* Inquiry failed (msg printed already) */
1690                 dev_err(&h->pdev->dev,
1691                         "hpsa_update_device_info: inquiry failed\n");
1692                 goto bail_out;
1693         }
1694
1695         this_device->devtype = (inq_buff[0] & 0x1f);
1696         memcpy(this_device->scsi3addr, scsi3addr, 8);
1697         memcpy(this_device->vendor, &inq_buff[8],
1698                 sizeof(this_device->vendor));
1699         memcpy(this_device->model, &inq_buff[16],
1700                 sizeof(this_device->model));
1701         memset(this_device->device_id, 0,
1702                 sizeof(this_device->device_id));
1703         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1704                 sizeof(this_device->device_id));
1705
1706         if (this_device->devtype == TYPE_DISK &&
1707                 is_logical_dev_addr_mode(scsi3addr))
1708                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1709         else
1710                 this_device->raid_level = RAID_UNKNOWN;
1711
1712         if (is_OBDR_device) {
1713                 /* See if this is a One-Button-Disaster-Recovery device
1714                  * by looking for "$DR-10" at offset 43 in inquiry data.
1715                  */
1716                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1717                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1718                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1719                                                 OBDR_SIG_LEN) == 0);
1720         }
1721
1722         kfree(inq_buff);
1723         return 0;
1724
1725 bail_out:
1726         kfree(inq_buff);
1727         return 1;
1728 }
1729
1730 static unsigned char *ext_target_model[] = {
1731         "MSA2012",
1732         "MSA2024",
1733         "MSA2312",
1734         "MSA2324",
1735         "P2000 G3 SAS",
1736         NULL,
1737 };
1738
1739 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1740 {
1741         int i;
1742
1743         for (i = 0; ext_target_model[i]; i++)
1744                 if (strncmp(device->model, ext_target_model[i],
1745                         strlen(ext_target_model[i])) == 0)
1746                         return 1;
1747         return 0;
1748 }
1749
1750 /* Helper function to assign bus, target, lun mapping of devices.
1751  * Puts non-external target logical volumes on bus 0, external target logical
1752  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1753  * Logical drive target and lun are assigned at this time, but
1754  * physical device lun and target assignment are deferred (assigned
1755  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1756  */
1757 static void figure_bus_target_lun(struct ctlr_info *h,
1758         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1759 {
1760         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1761
1762         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1763                 /* physical device, target and lun filled in later */
1764                 if (is_hba_lunid(lunaddrbytes))
1765                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1766                 else
1767                         /* defer target, lun assignment for physical devices */
1768                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1769                 return;
1770         }
1771         /* It's a logical device */
1772         if (is_ext_target(h, device)) {
1773                 /* external target way, put logicals on bus 1
1774                  * and match target/lun numbers box
1775                  * reports, other smart array, bus 0, target 0, match lunid
1776                  */
1777                 hpsa_set_bus_target_lun(device,
1778                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1779                 return;
1780         }
1781         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1782 }
1783
1784 /*
1785  * If there is no lun 0 on a target, linux won't find any devices.
1786  * For the external targets (arrays), we have to manually detect the enclosure
1787  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1788  * it for some reason.  *tmpdevice is the target we're adding,
1789  * this_device is a pointer into the current element of currentsd[]
1790  * that we're building up in update_scsi_devices(), below.
1791  * lunzerobits is a bitmap that tracks which targets already have a
1792  * lun 0 assigned.
1793  * Returns 1 if an enclosure was added, 0 if not.
1794  */
1795 static int add_ext_target_dev(struct ctlr_info *h,
1796         struct hpsa_scsi_dev_t *tmpdevice,
1797         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1798         unsigned long lunzerobits[], int *n_ext_target_devs)
1799 {
1800         unsigned char scsi3addr[8];
1801
1802         if (test_bit(tmpdevice->target, lunzerobits))
1803                 return 0; /* There is already a lun 0 on this target. */
1804
1805         if (!is_logical_dev_addr_mode(lunaddrbytes))
1806                 return 0; /* It's the logical targets that may lack lun 0. */
1807
1808         if (!is_ext_target(h, tmpdevice))
1809                 return 0; /* Only external target devices have this problem. */
1810
1811         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1812                 return 0;
1813
1814         memset(scsi3addr, 0, 8);
1815         scsi3addr[3] = tmpdevice->target;
1816         if (is_hba_lunid(scsi3addr))
1817                 return 0; /* Don't add the RAID controller here. */
1818
1819         if (is_scsi_rev_5(h))
1820                 return 0; /* p1210m doesn't need to do this. */
1821
1822         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1823                 dev_warn(&h->pdev->dev, "Maximum number of external "
1824                         "target devices exceeded.  Check your hardware "
1825                         "configuration.");
1826                 return 0;
1827         }
1828
1829         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1830                 return 0;
1831         (*n_ext_target_devs)++;
1832         hpsa_set_bus_target_lun(this_device,
1833                                 tmpdevice->bus, tmpdevice->target, 0);
1834         set_bit(tmpdevice->target, lunzerobits);
1835         return 1;
1836 }
1837
1838 /*
1839  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1840  * logdev.  The number of luns in physdev and logdev are returned in
1841  * *nphysicals and *nlogicals, respectively.
1842  * Returns 0 on success, -1 otherwise.
1843  */
1844 static int hpsa_gather_lun_info(struct ctlr_info *h,
1845         int reportlunsize,
1846         struct ReportLUNdata *physdev, u32 *nphysicals,
1847         struct ReportLUNdata *logdev, u32 *nlogicals)
1848 {
1849         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1850                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1851                 return -1;
1852         }
1853         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1854         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1855                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1856                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1857                         *nphysicals - HPSA_MAX_PHYS_LUN);
1858                 *nphysicals = HPSA_MAX_PHYS_LUN;
1859         }
1860         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1861                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1862                 return -1;
1863         }
1864         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1865         /* Reject Logicals in excess of our max capability. */
1866         if (*nlogicals > HPSA_MAX_LUN) {
1867                 dev_warn(&h->pdev->dev,
1868                         "maximum logical LUNs (%d) exceeded.  "
1869                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1870                         *nlogicals - HPSA_MAX_LUN);
1871                         *nlogicals = HPSA_MAX_LUN;
1872         }
1873         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1874                 dev_warn(&h->pdev->dev,
1875                         "maximum logical + physical LUNs (%d) exceeded. "
1876                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1877                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1878                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1879         }
1880         return 0;
1881 }
1882
1883 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1884         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1885         struct ReportLUNdata *logdev_list)
1886 {
1887         /* Helper function, figure out where the LUN ID info is coming from
1888          * given index i, lists of physical and logical devices, where in
1889          * the list the raid controller is supposed to appear (first or last)
1890          */
1891
1892         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1893         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1894
1895         if (i == raid_ctlr_position)
1896                 return RAID_CTLR_LUNID;
1897
1898         if (i < logicals_start)
1899                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1900
1901         if (i < last_device)
1902                 return &logdev_list->LUN[i - nphysicals -
1903                         (raid_ctlr_position == 0)][0];
1904         BUG();
1905         return NULL;
1906 }
1907
1908 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1909 {
1910         /* the idea here is we could get notified
1911          * that some devices have changed, so we do a report
1912          * physical luns and report logical luns cmd, and adjust
1913          * our list of devices accordingly.
1914          *
1915          * The scsi3addr's of devices won't change so long as the
1916          * adapter is not reset.  That means we can rescan and
1917          * tell which devices we already know about, vs. new
1918          * devices, vs.  disappearing devices.
1919          */
1920         struct ReportLUNdata *physdev_list = NULL;
1921         struct ReportLUNdata *logdev_list = NULL;
1922         u32 nphysicals = 0;
1923         u32 nlogicals = 0;
1924         u32 ndev_allocated = 0;
1925         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1926         int ncurrent = 0;
1927         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1928         int i, n_ext_target_devs, ndevs_to_allocate;
1929         int raid_ctlr_position;
1930         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1931
1932         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1933         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1934         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1935         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1936
1937         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1938                 dev_err(&h->pdev->dev, "out of memory\n");
1939                 goto out;
1940         }
1941         memset(lunzerobits, 0, sizeof(lunzerobits));
1942
1943         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1944                         logdev_list, &nlogicals))
1945                 goto out;
1946
1947         /* We might see up to the maximum number of logical and physical disks
1948          * plus external target devices, and a device for the local RAID
1949          * controller.
1950          */
1951         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1952
1953         /* Allocate the per device structures */
1954         for (i = 0; i < ndevs_to_allocate; i++) {
1955                 if (i >= HPSA_MAX_DEVICES) {
1956                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1957                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1958                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1959                         break;
1960                 }
1961
1962                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1963                 if (!currentsd[i]) {
1964                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1965                                 __FILE__, __LINE__);
1966                         goto out;
1967                 }
1968                 ndev_allocated++;
1969         }
1970
1971         if (unlikely(is_scsi_rev_5(h)))
1972                 raid_ctlr_position = 0;
1973         else
1974                 raid_ctlr_position = nphysicals + nlogicals;
1975
1976         /* adjust our table of devices */
1977         n_ext_target_devs = 0;
1978         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1979                 u8 *lunaddrbytes, is_OBDR = 0;
1980
1981                 /* Figure out where the LUN ID info is coming from */
1982                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1983                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1984                 /* skip masked physical devices. */
1985                 if (lunaddrbytes[3] & 0xC0 &&
1986                         i < nphysicals + (raid_ctlr_position == 0))
1987                         continue;
1988
1989                 /* Get device type, vendor, model, device id */
1990                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1991                                                         &is_OBDR))
1992                         continue; /* skip it if we can't talk to it. */
1993                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1994                 this_device = currentsd[ncurrent];
1995
1996                 /*
1997                  * For external target devices, we have to insert a LUN 0 which
1998                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1999                  * is nonetheless an enclosure device there.  We have to
2000                  * present that otherwise linux won't find anything if
2001                  * there is no lun 0.
2002                  */
2003                 if (add_ext_target_dev(h, tmpdevice, this_device,
2004                                 lunaddrbytes, lunzerobits,
2005                                 &n_ext_target_devs)) {
2006                         ncurrent++;
2007                         this_device = currentsd[ncurrent];
2008                 }
2009
2010                 *this_device = *tmpdevice;
2011
2012                 switch (this_device->devtype) {
2013                 case TYPE_ROM:
2014                         /* We don't *really* support actual CD-ROM devices,
2015                          * just "One Button Disaster Recovery" tape drive
2016                          * which temporarily pretends to be a CD-ROM drive.
2017                          * So we check that the device is really an OBDR tape
2018                          * device by checking for "$DR-10" in bytes 43-48 of
2019                          * the inquiry data.
2020                          */
2021                         if (is_OBDR)
2022                                 ncurrent++;
2023                         break;
2024                 case TYPE_DISK:
2025                         if (i < nphysicals)
2026                                 break;
2027                         ncurrent++;
2028                         break;
2029                 case TYPE_TAPE:
2030                 case TYPE_MEDIUM_CHANGER:
2031                         ncurrent++;
2032                         break;
2033                 case TYPE_RAID:
2034                         /* Only present the Smartarray HBA as a RAID controller.
2035                          * If it's a RAID controller other than the HBA itself
2036                          * (an external RAID controller, MSA500 or similar)
2037                          * don't present it.
2038                          */
2039                         if (!is_hba_lunid(lunaddrbytes))
2040                                 break;
2041                         ncurrent++;
2042                         break;
2043                 default:
2044                         break;
2045                 }
2046                 if (ncurrent >= HPSA_MAX_DEVICES)
2047                         break;
2048         }
2049         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2050 out:
2051         kfree(tmpdevice);
2052         for (i = 0; i < ndev_allocated; i++)
2053                 kfree(currentsd[i]);
2054         kfree(currentsd);
2055         kfree(physdev_list);
2056         kfree(logdev_list);
2057 }
2058
2059 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2060  * dma mapping  and fills in the scatter gather entries of the
2061  * hpsa command, cp.
2062  */
2063 static int hpsa_scatter_gather(struct ctlr_info *h,
2064                 struct CommandList *cp,
2065                 struct scsi_cmnd *cmd)
2066 {
2067         unsigned int len;
2068         struct scatterlist *sg;
2069         u64 addr64;
2070         int use_sg, i, sg_index, chained;
2071         struct SGDescriptor *curr_sg;
2072
2073         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2074
2075         use_sg = scsi_dma_map(cmd);
2076         if (use_sg < 0)
2077                 return use_sg;
2078
2079         if (!use_sg)
2080                 goto sglist_finished;
2081
2082         curr_sg = cp->SG;
2083         chained = 0;
2084         sg_index = 0;
2085         scsi_for_each_sg(cmd, sg, use_sg, i) {
2086                 if (i == h->max_cmd_sg_entries - 1 &&
2087                         use_sg > h->max_cmd_sg_entries) {
2088                         chained = 1;
2089                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2090                         sg_index = 0;
2091                 }
2092                 addr64 = (u64) sg_dma_address(sg);
2093                 len  = sg_dma_len(sg);
2094                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2095                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2096                 curr_sg->Len = len;
2097                 curr_sg->Ext = 0;  /* we are not chaining */
2098                 curr_sg++;
2099         }
2100
2101         if (use_sg + chained > h->maxSG)
2102                 h->maxSG = use_sg + chained;
2103
2104         if (chained) {
2105                 cp->Header.SGList = h->max_cmd_sg_entries;
2106                 cp->Header.SGTotal = (u16) (use_sg + 1);
2107                 hpsa_map_sg_chain_block(h, cp);
2108                 return 0;
2109         }
2110
2111 sglist_finished:
2112
2113         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2114         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2115         return 0;
2116 }
2117
2118
2119 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2120         void (*done)(struct scsi_cmnd *))
2121 {
2122         struct ctlr_info *h;
2123         struct hpsa_scsi_dev_t *dev;
2124         unsigned char scsi3addr[8];
2125         struct CommandList *c;
2126         unsigned long flags;
2127
2128         /* Get the ptr to our adapter structure out of cmd->host. */
2129         h = sdev_to_hba(cmd->device);
2130         dev = cmd->device->hostdata;
2131         if (!dev) {
2132                 cmd->result = DID_NO_CONNECT << 16;
2133                 done(cmd);
2134                 return 0;
2135         }
2136         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2137
2138         spin_lock_irqsave(&h->lock, flags);
2139         if (unlikely(h->lockup_detected)) {
2140                 spin_unlock_irqrestore(&h->lock, flags);
2141                 cmd->result = DID_ERROR << 16;
2142                 done(cmd);
2143                 return 0;
2144         }
2145         spin_unlock_irqrestore(&h->lock, flags);
2146         c = cmd_alloc(h);
2147         if (c == NULL) {                        /* trouble... */
2148                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2149                 return SCSI_MLQUEUE_HOST_BUSY;
2150         }
2151
2152         /* Fill in the command list header */
2153
2154         cmd->scsi_done = done;    /* save this for use by completion code */
2155
2156         /* save c in case we have to abort it  */
2157         cmd->host_scribble = (unsigned char *) c;
2158
2159         c->cmd_type = CMD_SCSI;
2160         c->scsi_cmd = cmd;
2161         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2162         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2163         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2164         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2165
2166         /* Fill in the request block... */
2167
2168         c->Request.Timeout = 0;
2169         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2170         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2171         c->Request.CDBLen = cmd->cmd_len;
2172         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2173         c->Request.Type.Type = TYPE_CMD;
2174         c->Request.Type.Attribute = ATTR_SIMPLE;
2175         switch (cmd->sc_data_direction) {
2176         case DMA_TO_DEVICE:
2177                 c->Request.Type.Direction = XFER_WRITE;
2178                 break;
2179         case DMA_FROM_DEVICE:
2180                 c->Request.Type.Direction = XFER_READ;
2181                 break;
2182         case DMA_NONE:
2183                 c->Request.Type.Direction = XFER_NONE;
2184                 break;
2185         case DMA_BIDIRECTIONAL:
2186                 /* This can happen if a buggy application does a scsi passthru
2187                  * and sets both inlen and outlen to non-zero. ( see
2188                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2189                  */
2190
2191                 c->Request.Type.Direction = XFER_RSVD;
2192                 /* This is technically wrong, and hpsa controllers should
2193                  * reject it with CMD_INVALID, which is the most correct
2194                  * response, but non-fibre backends appear to let it
2195                  * slide by, and give the same results as if this field
2196                  * were set correctly.  Either way is acceptable for
2197                  * our purposes here.
2198                  */
2199
2200                 break;
2201
2202         default:
2203                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2204                         cmd->sc_data_direction);
2205                 BUG();
2206                 break;
2207         }
2208
2209         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2210                 cmd_free(h, c);
2211                 return SCSI_MLQUEUE_HOST_BUSY;
2212         }
2213         enqueue_cmd_and_start_io(h, c);
2214         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2215         return 0;
2216 }
2217
2218 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2219
2220 static void hpsa_scan_start(struct Scsi_Host *sh)
2221 {
2222         struct ctlr_info *h = shost_to_hba(sh);
2223         unsigned long flags;
2224
2225         /* wait until any scan already in progress is finished. */
2226         while (1) {
2227                 spin_lock_irqsave(&h->scan_lock, flags);
2228                 if (h->scan_finished)
2229                         break;
2230                 spin_unlock_irqrestore(&h->scan_lock, flags);
2231                 wait_event(h->scan_wait_queue, h->scan_finished);
2232                 /* Note: We don't need to worry about a race between this
2233                  * thread and driver unload because the midlayer will
2234                  * have incremented the reference count, so unload won't
2235                  * happen if we're in here.
2236                  */
2237         }
2238         h->scan_finished = 0; /* mark scan as in progress */
2239         spin_unlock_irqrestore(&h->scan_lock, flags);
2240
2241         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2242
2243         spin_lock_irqsave(&h->scan_lock, flags);
2244         h->scan_finished = 1; /* mark scan as finished. */
2245         wake_up_all(&h->scan_wait_queue);
2246         spin_unlock_irqrestore(&h->scan_lock, flags);
2247 }
2248
2249 static int hpsa_scan_finished(struct Scsi_Host *sh,
2250         unsigned long elapsed_time)
2251 {
2252         struct ctlr_info *h = shost_to_hba(sh);
2253         unsigned long flags;
2254         int finished;
2255
2256         spin_lock_irqsave(&h->scan_lock, flags);
2257         finished = h->scan_finished;
2258         spin_unlock_irqrestore(&h->scan_lock, flags);
2259         return finished;
2260 }
2261
2262 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2263         int qdepth, int reason)
2264 {
2265         struct ctlr_info *h = sdev_to_hba(sdev);
2266
2267         if (reason != SCSI_QDEPTH_DEFAULT)
2268                 return -ENOTSUPP;
2269
2270         if (qdepth < 1)
2271                 qdepth = 1;
2272         else
2273                 if (qdepth > h->nr_cmds)
2274                         qdepth = h->nr_cmds;
2275         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2276         return sdev->queue_depth;
2277 }
2278
2279 static void hpsa_unregister_scsi(struct ctlr_info *h)
2280 {
2281         /* we are being forcibly unloaded, and may not refuse. */
2282         scsi_remove_host(h->scsi_host);
2283         scsi_host_put(h->scsi_host);
2284         h->scsi_host = NULL;
2285 }
2286
2287 static int hpsa_register_scsi(struct ctlr_info *h)
2288 {
2289         struct Scsi_Host *sh;
2290         int error;
2291
2292         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2293         if (sh == NULL)
2294                 goto fail;
2295
2296         sh->io_port = 0;
2297         sh->n_io_port = 0;
2298         sh->this_id = -1;
2299         sh->max_channel = 3;
2300         sh->max_cmd_len = MAX_COMMAND_SIZE;
2301         sh->max_lun = HPSA_MAX_LUN;
2302         sh->max_id = HPSA_MAX_LUN;
2303         sh->can_queue = h->nr_cmds;
2304         sh->cmd_per_lun = h->nr_cmds;
2305         sh->sg_tablesize = h->maxsgentries;
2306         h->scsi_host = sh;
2307         sh->hostdata[0] = (unsigned long) h;
2308         sh->irq = h->intr[h->intr_mode];
2309         sh->unique_id = sh->irq;
2310         error = scsi_add_host(sh, &h->pdev->dev);
2311         if (error)
2312                 goto fail_host_put;
2313         scsi_scan_host(sh);
2314         return 0;
2315
2316  fail_host_put:
2317         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2318                 " failed for controller %d\n", __func__, h->ctlr);
2319         scsi_host_put(sh);
2320         return error;
2321  fail:
2322         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2323                 " failed for controller %d\n", __func__, h->ctlr);
2324         return -ENOMEM;
2325 }
2326
2327 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2328         unsigned char lunaddr[])
2329 {
2330         int rc = 0;
2331         int count = 0;
2332         int waittime = 1; /* seconds */
2333         struct CommandList *c;
2334
2335         c = cmd_special_alloc(h);
2336         if (!c) {
2337                 dev_warn(&h->pdev->dev, "out of memory in "
2338                         "wait_for_device_to_become_ready.\n");
2339                 return IO_ERROR;
2340         }
2341
2342         /* Send test unit ready until device ready, or give up. */
2343         while (count < HPSA_TUR_RETRY_LIMIT) {
2344
2345                 /* Wait for a bit.  do this first, because if we send
2346                  * the TUR right away, the reset will just abort it.
2347                  */
2348                 msleep(1000 * waittime);
2349                 count++;
2350
2351                 /* Increase wait time with each try, up to a point. */
2352                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2353                         waittime = waittime * 2;
2354
2355                 /* Send the Test Unit Ready */
2356                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2357                 hpsa_scsi_do_simple_cmd_core(h, c);
2358                 /* no unmap needed here because no data xfer. */
2359
2360                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2361                         break;
2362
2363                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2364                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2365                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2366                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2367                         break;
2368
2369                 dev_warn(&h->pdev->dev, "waiting %d secs "
2370                         "for device to become ready.\n", waittime);
2371                 rc = 1; /* device not ready. */
2372         }
2373
2374         if (rc)
2375                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2376         else
2377                 dev_warn(&h->pdev->dev, "device is ready.\n");
2378
2379         cmd_special_free(h, c);
2380         return rc;
2381 }
2382
2383 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2384  * complaining.  Doing a host- or bus-reset can't do anything good here.
2385  */
2386 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2387 {
2388         int rc;
2389         struct ctlr_info *h;
2390         struct hpsa_scsi_dev_t *dev;
2391
2392         /* find the controller to which the command to be aborted was sent */
2393         h = sdev_to_hba(scsicmd->device);
2394         if (h == NULL) /* paranoia */
2395                 return FAILED;
2396         dev = scsicmd->device->hostdata;
2397         if (!dev) {
2398                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2399                         "device lookup failed.\n");
2400                 return FAILED;
2401         }
2402         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2403                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2404         /* send a reset to the SCSI LUN which the command was sent to */
2405         rc = hpsa_send_reset(h, dev->scsi3addr);
2406         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2407                 return SUCCESS;
2408
2409         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2410         return FAILED;
2411 }
2412
2413 static void swizzle_abort_tag(u8 *tag)
2414 {
2415         u8 original_tag[8];
2416
2417         memcpy(original_tag, tag, 8);
2418         tag[0] = original_tag[3];
2419         tag[1] = original_tag[2];
2420         tag[2] = original_tag[1];
2421         tag[3] = original_tag[0];
2422         tag[4] = original_tag[7];
2423         tag[5] = original_tag[6];
2424         tag[6] = original_tag[5];
2425         tag[7] = original_tag[4];
2426 }
2427
2428 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2429         struct CommandList *abort, int swizzle)
2430 {
2431         int rc = IO_OK;
2432         struct CommandList *c;
2433         struct ErrorInfo *ei;
2434
2435         c = cmd_special_alloc(h);
2436         if (c == NULL) {        /* trouble... */
2437                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2438                 return -ENOMEM;
2439         }
2440
2441         fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2442         if (swizzle)
2443                 swizzle_abort_tag(&c->Request.CDB[4]);
2444         hpsa_scsi_do_simple_cmd_core(h, c);
2445         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2446                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2447         /* no unmap needed here because no data xfer. */
2448
2449         ei = c->err_info;
2450         switch (ei->CommandStatus) {
2451         case CMD_SUCCESS:
2452                 break;
2453         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2454                 rc = -1;
2455                 break;
2456         default:
2457                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2458                         __func__, abort->Header.Tag.upper,
2459                         abort->Header.Tag.lower);
2460                 hpsa_scsi_interpret_error(c);
2461                 rc = -1;
2462                 break;
2463         }
2464         cmd_special_free(h, c);
2465         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2466                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2467         return rc;
2468 }
2469
2470 /*
2471  * hpsa_find_cmd_in_queue
2472  *
2473  * Used to determine whether a command (find) is still present
2474  * in queue_head.   Optionally excludes the last element of queue_head.
2475  *
2476  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2477  * not yet been submitted, and so can be aborted by the driver without
2478  * sending an abort to the hardware.
2479  *
2480  * Returns pointer to command if found in queue, NULL otherwise.
2481  */
2482 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2483                         struct scsi_cmnd *find, struct list_head *queue_head)
2484 {
2485         unsigned long flags;
2486         struct CommandList *c = NULL;   /* ptr into cmpQ */
2487
2488         if (!find)
2489                 return 0;
2490         spin_lock_irqsave(&h->lock, flags);
2491         list_for_each_entry(c, queue_head, list) {
2492                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2493                         continue;
2494                 if (c->scsi_cmd == find) {
2495                         spin_unlock_irqrestore(&h->lock, flags);
2496                         return c;
2497                 }
2498         }
2499         spin_unlock_irqrestore(&h->lock, flags);
2500         return NULL;
2501 }
2502
2503 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2504                                         u8 *tag, struct list_head *queue_head)
2505 {
2506         unsigned long flags;
2507         struct CommandList *c;
2508
2509         spin_lock_irqsave(&h->lock, flags);
2510         list_for_each_entry(c, queue_head, list) {
2511                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2512                         continue;
2513                 spin_unlock_irqrestore(&h->lock, flags);
2514                 return c;
2515         }
2516         spin_unlock_irqrestore(&h->lock, flags);
2517         return NULL;
2518 }
2519
2520 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2521  * tell which kind we're dealing with, so we send the abort both ways.  There
2522  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2523  * way we construct our tags but we check anyway in case the assumptions which
2524  * make this true someday become false.
2525  */
2526 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2527         unsigned char *scsi3addr, struct CommandList *abort)
2528 {
2529         u8 swizzled_tag[8];
2530         struct CommandList *c;
2531         int rc = 0, rc2 = 0;
2532
2533         /* we do not expect to find the swizzled tag in our queue, but
2534          * check anyway just to be sure the assumptions which make this
2535          * the case haven't become wrong.
2536          */
2537         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2538         swizzle_abort_tag(swizzled_tag);
2539         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2540         if (c != NULL) {
2541                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2542                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2543         }
2544         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2545
2546         /* if the command is still in our queue, we can't conclude that it was
2547          * aborted (it might have just completed normally) but in any case
2548          * we don't need to try to abort it another way.
2549          */
2550         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2551         if (c)
2552                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2553         return rc && rc2;
2554 }
2555
2556 /* Send an abort for the specified command.
2557  *      If the device and controller support it,
2558  *              send a task abort request.
2559  */
2560 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2561 {
2562
2563         int i, rc;
2564         struct ctlr_info *h;
2565         struct hpsa_scsi_dev_t *dev;
2566         struct CommandList *abort; /* pointer to command to be aborted */
2567         struct CommandList *found;
2568         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2569         char msg[256];          /* For debug messaging. */
2570         int ml = 0;
2571
2572         /* Find the controller of the command to be aborted */
2573         h = sdev_to_hba(sc->device);
2574         if (WARN(h == NULL,
2575                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2576                 return FAILED;
2577
2578         /* Check that controller supports some kind of task abort */
2579         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2580                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2581                 return FAILED;
2582
2583         memset(msg, 0, sizeof(msg));
2584         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2585                 h->scsi_host->host_no, sc->device->channel,
2586                 sc->device->id, sc->device->lun);
2587
2588         /* Find the device of the command to be aborted */
2589         dev = sc->device->hostdata;
2590         if (!dev) {
2591                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2592                                 msg);
2593                 return FAILED;
2594         }
2595
2596         /* Get SCSI command to be aborted */
2597         abort = (struct CommandList *) sc->host_scribble;
2598         if (abort == NULL) {
2599                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2600                                 msg);
2601                 return FAILED;
2602         }
2603
2604         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2605                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2606         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2607         if (as != NULL)
2608                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2609                         as->cmnd[0], as->serial_number);
2610         dev_dbg(&h->pdev->dev, "%s\n", msg);
2611         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2612                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2613
2614         /* Search reqQ to See if command is queued but not submitted,
2615          * if so, complete the command with aborted status and remove
2616          * it from the reqQ.
2617          */
2618         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2619         if (found) {
2620                 found->err_info->CommandStatus = CMD_ABORTED;
2621                 finish_cmd(found);
2622                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2623                                 msg);
2624                 return SUCCESS;
2625         }
2626
2627         /* not in reqQ, if also not in cmpQ, must have already completed */
2628         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2629         if (!found)  {
2630                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2631                                 msg);
2632                 return SUCCESS;
2633         }
2634
2635         /*
2636          * Command is in flight, or possibly already completed
2637          * by the firmware (but not to the scsi mid layer) but we can't
2638          * distinguish which.  Send the abort down.
2639          */
2640         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2641         if (rc != 0) {
2642                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2643                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2644                         h->scsi_host->host_no,
2645                         dev->bus, dev->target, dev->lun);
2646                 return FAILED;
2647         }
2648         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2649
2650         /* If the abort(s) above completed and actually aborted the
2651          * command, then the command to be aborted should already be
2652          * completed.  If not, wait around a bit more to see if they
2653          * manage to complete normally.
2654          */
2655 #define ABORT_COMPLETE_WAIT_SECS 30
2656         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2657                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2658                 if (!found)
2659                         return SUCCESS;
2660                 msleep(100);
2661         }
2662         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2663                 msg, ABORT_COMPLETE_WAIT_SECS);
2664         return FAILED;
2665 }
2666
2667
2668 /*
2669  * For operations that cannot sleep, a command block is allocated at init,
2670  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2671  * which ones are free or in use.  Lock must be held when calling this.
2672  * cmd_free() is the complement.
2673  */
2674 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2675 {
2676         struct CommandList *c;
2677         int i;
2678         union u64bit temp64;
2679         dma_addr_t cmd_dma_handle, err_dma_handle;
2680         unsigned long flags;
2681
2682         spin_lock_irqsave(&h->lock, flags);
2683         do {
2684                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2685                 if (i == h->nr_cmds) {
2686                         spin_unlock_irqrestore(&h->lock, flags);
2687                         return NULL;
2688                 }
2689         } while (test_and_set_bit
2690                  (i & (BITS_PER_LONG - 1),
2691                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2692         h->nr_allocs++;
2693         spin_unlock_irqrestore(&h->lock, flags);
2694
2695         c = h->cmd_pool + i;
2696         memset(c, 0, sizeof(*c));
2697         cmd_dma_handle = h->cmd_pool_dhandle
2698             + i * sizeof(*c);
2699         c->err_info = h->errinfo_pool + i;
2700         memset(c->err_info, 0, sizeof(*c->err_info));
2701         err_dma_handle = h->errinfo_pool_dhandle
2702             + i * sizeof(*c->err_info);
2703
2704         c->cmdindex = i;
2705
2706         INIT_LIST_HEAD(&c->list);
2707         c->busaddr = (u32) cmd_dma_handle;
2708         temp64.val = (u64) err_dma_handle;
2709         c->ErrDesc.Addr.lower = temp64.val32.lower;
2710         c->ErrDesc.Addr.upper = temp64.val32.upper;
2711         c->ErrDesc.Len = sizeof(*c->err_info);
2712
2713         c->h = h;
2714         return c;
2715 }
2716
2717 /* For operations that can wait for kmalloc to possibly sleep,
2718  * this routine can be called. Lock need not be held to call
2719  * cmd_special_alloc. cmd_special_free() is the complement.
2720  */
2721 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2722 {
2723         struct CommandList *c;
2724         union u64bit temp64;
2725         dma_addr_t cmd_dma_handle, err_dma_handle;
2726
2727         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2728         if (c == NULL)
2729                 return NULL;
2730         memset(c, 0, sizeof(*c));
2731
2732         c->cmdindex = -1;
2733
2734         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2735                     &err_dma_handle);
2736
2737         if (c->err_info == NULL) {
2738                 pci_free_consistent(h->pdev,
2739                         sizeof(*c), c, cmd_dma_handle);
2740                 return NULL;
2741         }
2742         memset(c->err_info, 0, sizeof(*c->err_info));
2743
2744         INIT_LIST_HEAD(&c->list);
2745         c->busaddr = (u32) cmd_dma_handle;
2746         temp64.val = (u64) err_dma_handle;
2747         c->ErrDesc.Addr.lower = temp64.val32.lower;
2748         c->ErrDesc.Addr.upper = temp64.val32.upper;
2749         c->ErrDesc.Len = sizeof(*c->err_info);
2750
2751         c->h = h;
2752         return c;
2753 }
2754
2755 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2756 {
2757         int i;
2758         unsigned long flags;
2759
2760         i = c - h->cmd_pool;
2761         spin_lock_irqsave(&h->lock, flags);
2762         clear_bit(i & (BITS_PER_LONG - 1),
2763                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2764         h->nr_frees++;
2765         spin_unlock_irqrestore(&h->lock, flags);
2766 }
2767
2768 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2769 {
2770         union u64bit temp64;
2771
2772         temp64.val32.lower = c->ErrDesc.Addr.lower;
2773         temp64.val32.upper = c->ErrDesc.Addr.upper;
2774         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2775                             c->err_info, (dma_addr_t) temp64.val);
2776         pci_free_consistent(h->pdev, sizeof(*c),
2777                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2778 }
2779
2780 #ifdef CONFIG_COMPAT
2781
2782 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2783 {
2784         IOCTL32_Command_struct __user *arg32 =
2785             (IOCTL32_Command_struct __user *) arg;
2786         IOCTL_Command_struct arg64;
2787         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2788         int err;
2789         u32 cp;
2790
2791         memset(&arg64, 0, sizeof(arg64));
2792         err = 0;
2793         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2794                            sizeof(arg64.LUN_info));
2795         err |= copy_from_user(&arg64.Request, &arg32->Request,
2796                            sizeof(arg64.Request));
2797         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2798                            sizeof(arg64.error_info));
2799         err |= get_user(arg64.buf_size, &arg32->buf_size);
2800         err |= get_user(cp, &arg32->buf);
2801         arg64.buf = compat_ptr(cp);
2802         err |= copy_to_user(p, &arg64, sizeof(arg64));
2803
2804         if (err)
2805                 return -EFAULT;
2806
2807         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2808         if (err)
2809                 return err;
2810         err |= copy_in_user(&arg32->error_info, &p->error_info,
2811                          sizeof(arg32->error_info));
2812         if (err)
2813                 return -EFAULT;
2814         return err;
2815 }
2816
2817 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2818         int cmd, void *arg)
2819 {
2820         BIG_IOCTL32_Command_struct __user *arg32 =
2821             (BIG_IOCTL32_Command_struct __user *) arg;
2822         BIG_IOCTL_Command_struct arg64;
2823         BIG_IOCTL_Command_struct __user *p =
2824             compat_alloc_user_space(sizeof(arg64));
2825         int err;
2826         u32 cp;
2827
2828         memset(&arg64, 0, sizeof(arg64));
2829         err = 0;
2830         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2831                            sizeof(arg64.LUN_info));
2832         err |= copy_from_user(&arg64.Request, &arg32->Request,
2833                            sizeof(arg64.Request));
2834         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2835                            sizeof(arg64.error_info));
2836         err |= get_user(arg64.buf_size, &arg32->buf_size);
2837         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2838         err |= get_user(cp, &arg32->buf);
2839         arg64.buf = compat_ptr(cp);
2840         err |= copy_to_user(p, &arg64, sizeof(arg64));
2841
2842         if (err)
2843                 return -EFAULT;
2844
2845         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2846         if (err)
2847                 return err;
2848         err |= copy_in_user(&arg32->error_info, &p->error_info,
2849                          sizeof(arg32->error_info));
2850         if (err)
2851                 return -EFAULT;
2852         return err;
2853 }
2854
2855 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2856 {
2857         switch (cmd) {
2858         case CCISS_GETPCIINFO:
2859         case CCISS_GETINTINFO:
2860         case CCISS_SETINTINFO:
2861         case CCISS_GETNODENAME:
2862         case CCISS_SETNODENAME:
2863         case CCISS_GETHEARTBEAT:
2864         case CCISS_GETBUSTYPES:
2865         case CCISS_GETFIRMVER:
2866         case CCISS_GETDRIVVER:
2867         case CCISS_REVALIDVOLS:
2868         case CCISS_DEREGDISK:
2869         case CCISS_REGNEWDISK:
2870         case CCISS_REGNEWD:
2871         case CCISS_RESCANDISK:
2872         case CCISS_GETLUNINFO:
2873                 return hpsa_ioctl(dev, cmd, arg);
2874
2875         case CCISS_PASSTHRU32:
2876                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2877         case CCISS_BIG_PASSTHRU32:
2878                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2879
2880         default:
2881                 return -ENOIOCTLCMD;
2882         }
2883 }
2884 #endif
2885
2886 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2887 {
2888         struct hpsa_pci_info pciinfo;
2889
2890         if (!argp)
2891                 return -EINVAL;
2892         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2893         pciinfo.bus = h->pdev->bus->number;
2894         pciinfo.dev_fn = h->pdev->devfn;
2895         pciinfo.board_id = h->board_id;
2896         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2897                 return -EFAULT;
2898         return 0;
2899 }
2900
2901 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2902 {
2903         DriverVer_type DriverVer;
2904         unsigned char vmaj, vmin, vsubmin;
2905         int rc;
2906
2907         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2908                 &vmaj, &vmin, &vsubmin);
2909         if (rc != 3) {
2910                 dev_info(&h->pdev->dev, "driver version string '%s' "
2911                         "unrecognized.", HPSA_DRIVER_VERSION);
2912                 vmaj = 0;
2913                 vmin = 0;
2914                 vsubmin = 0;
2915         }
2916         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2917         if (!argp)
2918                 return -EINVAL;
2919         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2920                 return -EFAULT;
2921         return 0;
2922 }
2923
2924 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2925 {
2926         IOCTL_Command_struct iocommand;
2927         struct CommandList *c;
2928         char *buff = NULL;
2929         union u64bit temp64;
2930
2931         if (!argp)
2932                 return -EINVAL;
2933         if (!capable(CAP_SYS_RAWIO))
2934                 return -EPERM;
2935         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2936                 return -EFAULT;
2937         if ((iocommand.buf_size < 1) &&
2938             (iocommand.Request.Type.Direction != XFER_NONE)) {
2939                 return -EINVAL;
2940         }
2941         if (iocommand.buf_size > 0) {
2942                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2943                 if (buff == NULL)
2944                         return -EFAULT;
2945                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2946                         /* Copy the data into the buffer we created */
2947                         if (copy_from_user(buff, iocommand.buf,
2948                                 iocommand.buf_size)) {
2949                                 kfree(buff);
2950                                 return -EFAULT;
2951                         }
2952                 } else {
2953                         memset(buff, 0, iocommand.buf_size);
2954                 }
2955         }
2956         c = cmd_special_alloc(h);
2957         if (c == NULL) {
2958                 kfree(buff);
2959                 return -ENOMEM;
2960         }
2961         /* Fill in the command type */
2962         c->cmd_type = CMD_IOCTL_PEND;
2963         /* Fill in Command Header */
2964         c->Header.ReplyQueue = 0; /* unused in simple mode */
2965         if (iocommand.buf_size > 0) {   /* buffer to fill */
2966                 c->Header.SGList = 1;
2967                 c->Header.SGTotal = 1;
2968         } else  { /* no buffers to fill */
2969                 c->Header.SGList = 0;
2970                 c->Header.SGTotal = 0;
2971         }
2972         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2973         /* use the kernel address the cmd block for tag */
2974         c->Header.Tag.lower = c->busaddr;
2975
2976         /* Fill in Request block */
2977         memcpy(&c->Request, &iocommand.Request,
2978                 sizeof(c->Request));
2979
2980         /* Fill in the scatter gather information */
2981         if (iocommand.buf_size > 0) {
2982                 temp64.val = pci_map_single(h->pdev, buff,
2983                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2984                 c->SG[0].Addr.lower = temp64.val32.lower;
2985                 c->SG[0].Addr.upper = temp64.val32.upper;
2986                 c->SG[0].Len = iocommand.buf_size;
2987                 c->SG[0].Ext = 0; /* we are not chaining*/
2988         }
2989         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2990         if (iocommand.buf_size > 0)
2991                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2992         check_ioctl_unit_attention(h, c);
2993
2994         /* Copy the error information out */
2995         memcpy(&iocommand.error_info, c->err_info,
2996                 sizeof(iocommand.error_info));
2997         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2998                 kfree(buff);
2999                 cmd_special_free(h, c);
3000                 return -EFAULT;
3001         }
3002         if (iocommand.Request.Type.Direction == XFER_READ &&
3003                 iocommand.buf_size > 0) {
3004                 /* Copy the data out of the buffer we created */
3005                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3006                         kfree(buff);
3007                         cmd_special_free(h, c);
3008                         return -EFAULT;
3009                 }
3010         }
3011         kfree(buff);
3012         cmd_special_free(h, c);
3013         return 0;
3014 }
3015
3016 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3017 {
3018         BIG_IOCTL_Command_struct *ioc;
3019         struct CommandList *c;
3020         unsigned char **buff = NULL;
3021         int *buff_size = NULL;
3022         union u64bit temp64;
3023         BYTE sg_used = 0;
3024         int status = 0;
3025         int i;
3026         u32 left;
3027         u32 sz;
3028         BYTE __user *data_ptr;
3029
3030         if (!argp)
3031                 return -EINVAL;
3032         if (!capable(CAP_SYS_RAWIO))
3033                 return -EPERM;
3034         ioc = (BIG_IOCTL_Command_struct *)
3035             kmalloc(sizeof(*ioc), GFP_KERNEL);
3036         if (!ioc) {
3037                 status = -ENOMEM;
3038                 goto cleanup1;
3039         }
3040         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3041                 status = -EFAULT;
3042                 goto cleanup1;
3043         }
3044         if ((ioc->buf_size < 1) &&
3045             (ioc->Request.Type.Direction != XFER_NONE)) {
3046                 status = -EINVAL;
3047                 goto cleanup1;
3048         }
3049         /* Check kmalloc limits  using all SGs */
3050         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3051                 status = -EINVAL;
3052                 goto cleanup1;
3053         }
3054         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3055                 status = -EINVAL;
3056                 goto cleanup1;
3057         }
3058         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3059         if (!buff) {
3060                 status = -ENOMEM;
3061                 goto cleanup1;
3062         }
3063         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3064         if (!buff_size) {
3065                 status = -ENOMEM;
3066                 goto cleanup1;
3067         }
3068         left = ioc->buf_size;
3069         data_ptr = ioc->buf;
3070         while (left) {
3071                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3072                 buff_size[sg_used] = sz;
3073                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3074                 if (buff[sg_used] == NULL) {
3075                         status = -ENOMEM;
3076                         goto cleanup1;
3077                 }
3078                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3079                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3080                                 status = -ENOMEM;
3081                                 goto cleanup1;
3082                         }
3083                 } else
3084                         memset(buff[sg_used], 0, sz);
3085                 left -= sz;
3086                 data_ptr += sz;
3087                 sg_used++;
3088         }
3089         c = cmd_special_alloc(h);
3090         if (c == NULL) {
3091                 status = -ENOMEM;
3092                 goto cleanup1;
3093         }
3094         c->cmd_type = CMD_IOCTL_PEND;
3095         c->Header.ReplyQueue = 0;
3096         c->Header.SGList = c->Header.SGTotal = sg_used;
3097         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3098         c->Header.Tag.lower = c->busaddr;
3099         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3100         if (ioc->buf_size > 0) {
3101                 int i;
3102                 for (i = 0; i < sg_used; i++) {
3103                         temp64.val = pci_map_single(h->pdev, buff[i],
3104                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3105                         c->SG[i].Addr.lower = temp64.val32.lower;
3106                         c->SG[i].Addr.upper = temp64.val32.upper;
3107                         c->SG[i].Len = buff_size[i];
3108                         /* we are not chaining */
3109                         c->SG[i].Ext = 0;
3110                 }
3111         }
3112         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3113         if (sg_used)
3114                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3115         check_ioctl_unit_attention(h, c);
3116         /* Copy the error information out */
3117         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3118         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3119                 cmd_special_free(h, c);
3120                 status = -EFAULT;
3121                 goto cleanup1;
3122         }
3123         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3124                 /* Copy the data out of the buffer we created */
3125                 BYTE __user *ptr = ioc->buf;
3126                 for (i = 0; i < sg_used; i++) {
3127                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3128                                 cmd_special_free(h, c);
3129                                 status = -EFAULT;
3130                                 goto cleanup1;
3131                         }
3132                         ptr += buff_size[i];
3133                 }
3134         }
3135         cmd_special_free(h, c);
3136         status = 0;
3137 cleanup1:
3138         if (buff) {
3139                 for (i = 0; i < sg_used; i++)
3140                         kfree(buff[i]);
3141                 kfree(buff);
3142         }
3143         kfree(buff_size);
3144         kfree(ioc);
3145         return status;
3146 }
3147
3148 static void check_ioctl_unit_attention(struct ctlr_info *h,
3149         struct CommandList *c)
3150 {
3151         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3152                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3153                 (void) check_for_unit_attention(h, c);
3154 }
3155 /*
3156  * ioctl
3157  */
3158 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3159 {
3160         struct ctlr_info *h;
3161         void __user *argp = (void __user *)arg;
3162
3163         h = sdev_to_hba(dev);
3164
3165         switch (cmd) {
3166         case CCISS_DEREGDISK:
3167         case CCISS_REGNEWDISK:
3168         case CCISS_REGNEWD:
3169                 hpsa_scan_start(h->scsi_host);
3170                 return 0;
3171         case CCISS_GETPCIINFO:
3172                 return hpsa_getpciinfo_ioctl(h, argp);
3173         case CCISS_GETDRIVVER:
3174                 return hpsa_getdrivver_ioctl(h, argp);
3175         case CCISS_PASSTHRU:
3176                 return hpsa_passthru_ioctl(h, argp);
3177         case CCISS_BIG_PASSTHRU:
3178                 return hpsa_big_passthru_ioctl(h, argp);
3179         default:
3180                 return -ENOTTY;
3181         }
3182 }
3183
3184 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3185         unsigned char *scsi3addr, u8 reset_type)
3186 {
3187         struct CommandList *c;
3188
3189         c = cmd_alloc(h);
3190         if (!c)
3191                 return -ENOMEM;
3192         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3193                 RAID_CTLR_LUNID, TYPE_MSG);
3194         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3195         c->waiting = NULL;
3196         enqueue_cmd_and_start_io(h, c);
3197         /* Don't wait for completion, the reset won't complete.  Don't free
3198          * the command either.  This is the last command we will send before
3199          * re-initializing everything, so it doesn't matter and won't leak.
3200          */
3201         return 0;
3202 }
3203
3204 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3205         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3206         int cmd_type)
3207 {
3208         int pci_dir = XFER_NONE;
3209         struct CommandList *a; /* for commands to be aborted */
3210
3211         c->cmd_type = CMD_IOCTL_PEND;
3212         c->Header.ReplyQueue = 0;
3213         if (buff != NULL && size > 0) {
3214                 c->Header.SGList = 1;
3215                 c->Header.SGTotal = 1;
3216         } else {
3217                 c->Header.SGList = 0;
3218                 c->Header.SGTotal = 0;
3219         }
3220         c->Header.Tag.lower = c->busaddr;
3221         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3222
3223         c->Request.Type.Type = cmd_type;
3224         if (cmd_type == TYPE_CMD) {
3225                 switch (cmd) {
3226                 case HPSA_INQUIRY:
3227                         /* are we trying to read a vital product page */
3228                         if (page_code != 0) {
3229                                 c->Request.CDB[1] = 0x01;
3230                                 c->Request.CDB[2] = page_code;
3231                         }
3232                         c->Request.CDBLen = 6;
3233                         c->Request.Type.Attribute = ATTR_SIMPLE;
3234                         c->Request.Type.Direction = XFER_READ;
3235                         c->Request.Timeout = 0;
3236                         c->Request.CDB[0] = HPSA_INQUIRY;
3237                         c->Request.CDB[4] = size & 0xFF;
3238                         break;
3239                 case HPSA_REPORT_LOG:
3240                 case HPSA_REPORT_PHYS:
3241                         /* Talking to controller so It's a physical command
3242                            mode = 00 target = 0.  Nothing to write.
3243                          */
3244                         c->Request.CDBLen = 12;
3245                         c->Request.Type.Attribute = ATTR_SIMPLE;
3246                         c->Request.Type.Direction = XFER_READ;
3247                         c->Request.Timeout = 0;
3248                         c->Request.CDB[0] = cmd;
3249                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3250                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3251                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3252                         c->Request.CDB[9] = size & 0xFF;
3253                         break;
3254                 case HPSA_CACHE_FLUSH:
3255                         c->Request.CDBLen = 12;
3256                         c->Request.Type.Attribute = ATTR_SIMPLE;
3257                         c->Request.Type.Direction = XFER_WRITE;
3258                         c->Request.Timeout = 0;
3259                         c->Request.CDB[0] = BMIC_WRITE;
3260                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3261                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3262                         c->Request.CDB[8] = size & 0xFF;
3263                         break;
3264                 case TEST_UNIT_READY:
3265                         c->Request.CDBLen = 6;
3266                         c->Request.Type.Attribute = ATTR_SIMPLE;
3267                         c->Request.Type.Direction = XFER_NONE;
3268                         c->Request.Timeout = 0;
3269                         break;
3270                 default:
3271                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3272                         BUG();
3273                         return;
3274                 }
3275         } else if (cmd_type == TYPE_MSG) {
3276                 switch (cmd) {
3277
3278                 case  HPSA_DEVICE_RESET_MSG:
3279                         c->Request.CDBLen = 16;
3280                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3281                         c->Request.Type.Attribute = ATTR_SIMPLE;
3282                         c->Request.Type.Direction = XFER_NONE;
3283                         c->Request.Timeout = 0; /* Don't time out */
3284                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3285                         c->Request.CDB[0] =  cmd;
3286                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3287                         /* If bytes 4-7 are zero, it means reset the */
3288                         /* LunID device */
3289                         c->Request.CDB[4] = 0x00;
3290                         c->Request.CDB[5] = 0x00;
3291                         c->Request.CDB[6] = 0x00;
3292                         c->Request.CDB[7] = 0x00;
3293                         break;
3294                 case  HPSA_ABORT_MSG:
3295                         a = buff;       /* point to command to be aborted */
3296                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3297                                 a->Header.Tag.upper, a->Header.Tag.lower,
3298                                 c->Header.Tag.upper, c->Header.Tag.lower);
3299                         c->Request.CDBLen = 16;
3300                         c->Request.Type.Type = TYPE_MSG;
3301                         c->Request.Type.Attribute = ATTR_SIMPLE;
3302                         c->Request.Type.Direction = XFER_WRITE;
3303                         c->Request.Timeout = 0; /* Don't time out */
3304                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3305                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3306                         c->Request.CDB[2] = 0x00; /* reserved */
3307                         c->Request.CDB[3] = 0x00; /* reserved */
3308                         /* Tag to abort goes in CDB[4]-CDB[11] */
3309                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3310                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3311                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3312                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3313                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3314                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3315                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3316                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3317                         c->Request.CDB[12] = 0x00; /* reserved */
3318                         c->Request.CDB[13] = 0x00; /* reserved */
3319                         c->Request.CDB[14] = 0x00; /* reserved */
3320                         c->Request.CDB[15] = 0x00; /* reserved */
3321                 break;
3322                 default:
3323                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3324                                 cmd);
3325                         BUG();
3326                 }
3327         } else {
3328                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3329                 BUG();
3330         }
3331
3332         switch (c->Request.Type.Direction) {
3333         case XFER_READ:
3334                 pci_dir = PCI_DMA_FROMDEVICE;
3335                 break;
3336         case XFER_WRITE:
3337                 pci_dir = PCI_DMA_TODEVICE;
3338                 break;
3339         case XFER_NONE:
3340                 pci_dir = PCI_DMA_NONE;
3341                 break;
3342         default:
3343                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3344         }
3345
3346         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3347
3348         return;
3349 }
3350
3351 /*
3352  * Map (physical) PCI mem into (virtual) kernel space
3353  */
3354 static void __iomem *remap_pci_mem(ulong base, ulong size)
3355 {
3356         ulong page_base = ((ulong) base) & PAGE_MASK;
3357         ulong page_offs = ((ulong) base) - page_base;
3358         void __iomem *page_remapped = ioremap_nocache(page_base,
3359                 page_offs + size);
3360
3361         return page_remapped ? (page_remapped + page_offs) : NULL;
3362 }
3363
3364 /* Takes cmds off the submission queue and sends them to the hardware,
3365  * then puts them on the queue of cmds waiting for completion.
3366  */
3367 static void start_io(struct ctlr_info *h)
3368 {
3369         struct CommandList *c;
3370         unsigned long flags;
3371
3372         spin_lock_irqsave(&h->lock, flags);
3373         while (!list_empty(&h->reqQ)) {
3374                 c = list_entry(h->reqQ.next, struct CommandList, list);
3375                 /* can't do anything if fifo is full */
3376                 if ((h->access.fifo_full(h))) {
3377                         dev_warn(&h->pdev->dev, "fifo full\n");
3378                         break;
3379                 }
3380
3381                 /* Get the first entry from the Request Q */
3382                 removeQ(c);
3383                 h->Qdepth--;
3384
3385                 /* Put job onto the completed Q */
3386                 addQ(&h->cmpQ, c);
3387
3388                 /* Must increment commands_outstanding before unlocking
3389                  * and submitting to avoid race checking for fifo full
3390                  * condition.
3391                  */
3392                 h->commands_outstanding++;
3393                 if (h->commands_outstanding > h->max_outstanding)
3394                         h->max_outstanding = h->commands_outstanding;
3395
3396                 /* Tell the controller execute command */
3397                 spin_unlock_irqrestore(&h->lock, flags);
3398                 h->access.submit_command(h, c);
3399                 spin_lock_irqsave(&h->lock, flags);
3400         }
3401         spin_unlock_irqrestore(&h->lock, flags);
3402 }
3403
3404 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3405 {
3406         return h->access.command_completed(h, q);
3407 }
3408
3409 static inline bool interrupt_pending(struct ctlr_info *h)
3410 {
3411         return h->access.intr_pending(h);
3412 }
3413
3414 static inline long interrupt_not_for_us(struct ctlr_info *h)
3415 {
3416         return (h->access.intr_pending(h) == 0) ||
3417                 (h->interrupts_enabled == 0);
3418 }
3419
3420 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3421         u32 raw_tag)
3422 {
3423         if (unlikely(tag_index >= h->nr_cmds)) {
3424                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3425                 return 1;
3426         }
3427         return 0;
3428 }
3429
3430 static inline void finish_cmd(struct CommandList *c)
3431 {
3432         unsigned long flags;
3433
3434         spin_lock_irqsave(&c->h->lock, flags);
3435         removeQ(c);
3436         spin_unlock_irqrestore(&c->h->lock, flags);
3437         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3438         if (likely(c->cmd_type == CMD_SCSI))
3439                 complete_scsi_command(c);
3440         else if (c->cmd_type == CMD_IOCTL_PEND)
3441                 complete(c->waiting);
3442 }
3443
3444 static inline u32 hpsa_tag_contains_index(u32 tag)
3445 {
3446         return tag & DIRECT_LOOKUP_BIT;
3447 }
3448
3449 static inline u32 hpsa_tag_to_index(u32 tag)
3450 {
3451         return tag >> DIRECT_LOOKUP_SHIFT;
3452 }
3453
3454
3455 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3456 {
3457 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3458 #define HPSA_SIMPLE_ERROR_BITS 0x03
3459         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3460                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3461         return tag & ~HPSA_PERF_ERROR_BITS;
3462 }
3463
3464 /* process completion of an indexed ("direct lookup") command */
3465 static inline void process_indexed_cmd(struct ctlr_info *h,
3466         u32 raw_tag)
3467 {
3468         u32 tag_index;
3469         struct CommandList *c;
3470
3471         tag_index = hpsa_tag_to_index(raw_tag);
3472         if (!bad_tag(h, tag_index, raw_tag)) {
3473                 c = h->cmd_pool + tag_index;
3474                 finish_cmd(c);
3475         }
3476 }
3477
3478 /* process completion of a non-indexed command */
3479 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3480         u32 raw_tag)
3481 {
3482         u32 tag;
3483         struct CommandList *c = NULL;
3484         unsigned long flags;
3485
3486         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3487         spin_lock_irqsave(&h->lock, flags);
3488         list_for_each_entry(c, &h->cmpQ, list) {
3489                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3490                         spin_unlock_irqrestore(&h->lock, flags);
3491                         finish_cmd(c);
3492                         return;
3493                 }
3494         }
3495         spin_unlock_irqrestore(&h->lock, flags);
3496         bad_tag(h, h->nr_cmds + 1, raw_tag);
3497 }
3498
3499 /* Some controllers, like p400, will give us one interrupt
3500  * after a soft reset, even if we turned interrupts off.
3501  * Only need to check for this in the hpsa_xxx_discard_completions
3502  * functions.
3503  */
3504 static int ignore_bogus_interrupt(struct ctlr_info *h)
3505 {
3506         if (likely(!reset_devices))
3507                 return 0;
3508
3509         if (likely(h->interrupts_enabled))
3510                 return 0;
3511
3512         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3513                 "(known firmware bug.)  Ignoring.\n");
3514
3515         return 1;
3516 }
3517
3518 /*
3519  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3520  * Relies on (h-q[x] == x) being true for x such that
3521  * 0 <= x < MAX_REPLY_QUEUES.
3522  */
3523 static struct ctlr_info *queue_to_hba(u8 *queue)
3524 {
3525         return container_of((queue - *queue), struct ctlr_info, q[0]);
3526 }
3527
3528 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3529 {
3530         struct ctlr_info *h = queue_to_hba(queue);
3531         u8 q = *(u8 *) queue;
3532         u32 raw_tag;
3533
3534         if (ignore_bogus_interrupt(h))
3535                 return IRQ_NONE;
3536
3537         if (interrupt_not_for_us(h))
3538                 return IRQ_NONE;
3539         h->last_intr_timestamp = get_jiffies_64();
3540         while (interrupt_pending(h)) {
3541                 raw_tag = get_next_completion(h, q);
3542                 while (raw_tag != FIFO_EMPTY)
3543                         raw_tag = next_command(h, q);
3544         }
3545         return IRQ_HANDLED;
3546 }
3547
3548 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3549 {
3550         struct ctlr_info *h = queue_to_hba(queue);
3551         u32 raw_tag;
3552         u8 q = *(u8 *) queue;
3553
3554         if (ignore_bogus_interrupt(h))
3555                 return IRQ_NONE;
3556
3557         h->last_intr_timestamp = get_jiffies_64();
3558         raw_tag = get_next_completion(h, q);
3559         while (raw_tag != FIFO_EMPTY)
3560                 raw_tag = next_command(h, q);
3561         return IRQ_HANDLED;
3562 }
3563
3564 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3565 {
3566         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3567         u32 raw_tag;
3568         u8 q = *(u8 *) queue;
3569
3570         if (interrupt_not_for_us(h))
3571                 return IRQ_NONE;
3572         h->last_intr_timestamp = get_jiffies_64();
3573         while (interrupt_pending(h)) {
3574                 raw_tag = get_next_completion(h, q);
3575                 while (raw_tag != FIFO_EMPTY) {
3576                         if (likely(hpsa_tag_contains_index(raw_tag)))
3577                                 process_indexed_cmd(h, raw_tag);
3578                         else
3579                                 process_nonindexed_cmd(h, raw_tag);
3580                         raw_tag = next_command(h, q);
3581                 }
3582         }
3583         return IRQ_HANDLED;
3584 }
3585
3586 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3587 {
3588         struct ctlr_info *h = queue_to_hba(queue);
3589         u32 raw_tag;
3590         u8 q = *(u8 *) queue;
3591
3592         h->last_intr_timestamp = get_jiffies_64();
3593         raw_tag = get_next_completion(h, q);
3594         while (raw_tag != FIFO_EMPTY) {
3595                 if (likely(hpsa_tag_contains_index(raw_tag)))
3596                         process_indexed_cmd(h, raw_tag);
3597                 else
3598                         process_nonindexed_cmd(h, raw_tag);
3599                 raw_tag = next_command(h, q);
3600         }
3601         return IRQ_HANDLED;
3602 }
3603
3604 /* Send a message CDB to the firmware. Careful, this only works
3605  * in simple mode, not performant mode due to the tag lookup.
3606  * We only ever use this immediately after a controller reset.
3607  */
3608 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3609                                                 unsigned char type)
3610 {
3611         struct Command {
3612                 struct CommandListHeader CommandHeader;
3613                 struct RequestBlock Request;
3614                 struct ErrDescriptor ErrorDescriptor;
3615         };
3616         struct Command *cmd;
3617         static const size_t cmd_sz = sizeof(*cmd) +
3618                                         sizeof(cmd->ErrorDescriptor);
3619         dma_addr_t paddr64;
3620         uint32_t paddr32, tag;
3621         void __iomem *vaddr;
3622         int i, err;
3623
3624         vaddr = pci_ioremap_bar(pdev, 0);
3625         if (vaddr == NULL)
3626                 return -ENOMEM;
3627
3628         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3629          * CCISS commands, so they must be allocated from the lower 4GiB of
3630          * memory.
3631          */
3632         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3633         if (err) {
3634                 iounmap(vaddr);
3635                 return -ENOMEM;
3636         }
3637
3638         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3639         if (cmd == NULL) {
3640                 iounmap(vaddr);
3641                 return -ENOMEM;
3642         }
3643
3644         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3645          * although there's no guarantee, we assume that the address is at
3646          * least 4-byte aligned (most likely, it's page-aligned).
3647          */
3648         paddr32 = paddr64;
3649
3650         cmd->CommandHeader.ReplyQueue = 0;
3651         cmd->CommandHeader.SGList = 0;
3652         cmd->CommandHeader.SGTotal = 0;
3653         cmd->CommandHeader.Tag.lower = paddr32;
3654         cmd->CommandHeader.Tag.upper = 0;
3655         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3656
3657         cmd->Request.CDBLen = 16;
3658         cmd->Request.Type.Type = TYPE_MSG;
3659         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3660         cmd->Request.Type.Direction = XFER_NONE;
3661         cmd->Request.Timeout = 0; /* Don't time out */
3662         cmd->Request.CDB[0] = opcode;
3663         cmd->Request.CDB[1] = type;
3664         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3665         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3666         cmd->ErrorDescriptor.Addr.upper = 0;
3667         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3668
3669         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3670
3671         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3672                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3673                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3674                         break;
3675                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3676         }
3677
3678         iounmap(vaddr);
3679
3680         /* we leak the DMA buffer here ... no choice since the controller could
3681          *  still complete the command.
3682          */
3683         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3684                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3685                         opcode, type);
3686                 return -ETIMEDOUT;
3687         }
3688
3689         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3690
3691         if (tag & HPSA_ERROR_BIT) {
3692                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3693                         opcode, type);
3694                 return -EIO;
3695         }
3696
3697         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3698                 opcode, type);
3699         return 0;
3700 }
3701
3702 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3703
3704 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3705         void * __iomem vaddr, u32 use_doorbell)
3706 {
3707         u16 pmcsr;
3708         int pos;
3709
3710         if (use_doorbell) {
3711                 /* For everything after the P600, the PCI power state method
3712                  * of resetting the controller doesn't work, so we have this
3713                  * other way using the doorbell register.
3714                  */
3715                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3716                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3717         } else { /* Try to do it the PCI power state way */
3718
3719                 /* Quoting from the Open CISS Specification: "The Power
3720                  * Management Control/Status Register (CSR) controls the power
3721                  * state of the device.  The normal operating state is D0,
3722                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3723                  * the controller, place the interface device in D3 then to D0,
3724                  * this causes a secondary PCI reset which will reset the
3725                  * controller." */
3726
3727                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3728                 if (pos == 0) {
3729                         dev_err(&pdev->dev,
3730                                 "hpsa_reset_controller: "
3731                                 "PCI PM not supported\n");
3732                         return -ENODEV;
3733                 }
3734                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3735                 /* enter the D3hot power management state */
3736                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3737                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3738                 pmcsr |= PCI_D3hot;
3739                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3740
3741                 msleep(500);
3742
3743                 /* enter the D0 power management state */
3744                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3745                 pmcsr |= PCI_D0;
3746                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3747
3748                 /*
3749                  * The P600 requires a small delay when changing states.
3750                  * Otherwise we may think the board did not reset and we bail.
3751                  * This for kdump only and is particular to the P600.
3752                  */
3753                 msleep(500);
3754         }
3755         return 0;
3756 }
3757
3758 static __devinit void init_driver_version(char *driver_version, int len)
3759 {
3760         memset(driver_version, 0, len);
3761         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3762 }
3763
3764 static __devinit int write_driver_ver_to_cfgtable(
3765         struct CfgTable __iomem *cfgtable)
3766 {
3767         char *driver_version;
3768         int i, size = sizeof(cfgtable->driver_version);
3769
3770         driver_version = kmalloc(size, GFP_KERNEL);
3771         if (!driver_version)
3772                 return -ENOMEM;
3773
3774         init_driver_version(driver_version, size);
3775         for (i = 0; i < size; i++)
3776                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3777         kfree(driver_version);
3778         return 0;
3779 }
3780
3781 static __devinit void read_driver_ver_from_cfgtable(
3782         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3783 {
3784         int i;
3785
3786         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3787                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3788 }
3789
3790 static __devinit int controller_reset_failed(
3791         struct CfgTable __iomem *cfgtable)
3792 {
3793
3794         char *driver_ver, *old_driver_ver;
3795         int rc, size = sizeof(cfgtable->driver_version);
3796
3797         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3798         if (!old_driver_ver)
3799                 return -ENOMEM;
3800         driver_ver = old_driver_ver + size;
3801
3802         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3803          * should have been changed, otherwise we know the reset failed.
3804          */
3805         init_driver_version(old_driver_ver, size);
3806         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3807         rc = !memcmp(driver_ver, old_driver_ver, size);
3808         kfree(old_driver_ver);
3809         return rc;
3810 }
3811 /* This does a hard reset of the controller using PCI power management
3812  * states or the using the doorbell register.
3813  */
3814 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3815 {
3816         u64 cfg_offset;
3817         u32 cfg_base_addr;
3818         u64 cfg_base_addr_index;
3819         void __iomem *vaddr;
3820         unsigned long paddr;
3821         u32 misc_fw_support;
3822         int rc;
3823         struct CfgTable __iomem *cfgtable;
3824         u32 use_doorbell;
3825         u32 board_id;
3826         u16 command_register;
3827
3828         /* For controllers as old as the P600, this is very nearly
3829          * the same thing as
3830          *
3831          * pci_save_state(pci_dev);
3832          * pci_set_power_state(pci_dev, PCI_D3hot);
3833          * pci_set_power_state(pci_dev, PCI_D0);
3834          * pci_restore_state(pci_dev);
3835          *
3836          * For controllers newer than the P600, the pci power state
3837          * method of resetting doesn't work so we have another way
3838          * using the doorbell register.
3839          */
3840
3841         rc = hpsa_lookup_board_id(pdev, &board_id);
3842         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3843                 dev_warn(&pdev->dev, "Not resetting device.\n");
3844                 return -ENODEV;
3845         }
3846
3847         /* if controller is soft- but not hard resettable... */
3848         if (!ctlr_is_hard_resettable(board_id))
3849                 return -ENOTSUPP; /* try soft reset later. */
3850
3851         /* Save the PCI command register */
3852         pci_read_config_word(pdev, 4, &command_register);
3853         /* Turn the board off.  This is so that later pci_restore_state()
3854          * won't turn the board on before the rest of config space is ready.
3855          */
3856         pci_disable_device(pdev);
3857         pci_save_state(pdev);
3858
3859         /* find the first memory BAR, so we can find the cfg table */
3860         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3861         if (rc)
3862                 return rc;
3863         vaddr = remap_pci_mem(paddr, 0x250);
3864         if (!vaddr)
3865                 return -ENOMEM;
3866
3867         /* find cfgtable in order to check if reset via doorbell is supported */
3868         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3869                                         &cfg_base_addr_index, &cfg_offset);
3870         if (rc)
3871                 goto unmap_vaddr;
3872         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3873                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3874         if (!cfgtable) {
3875                 rc = -ENOMEM;
3876                 goto unmap_vaddr;
3877         }
3878         rc = write_driver_ver_to_cfgtable(cfgtable);
3879         if (rc)
3880                 goto unmap_vaddr;
3881
3882         /* If reset via doorbell register is supported, use that.
3883          * There are two such methods.  Favor the newest method.
3884          */
3885         misc_fw_support = readl(&cfgtable->misc_fw_support);
3886         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3887         if (use_doorbell) {
3888                 use_doorbell = DOORBELL_CTLR_RESET2;
3889         } else {
3890                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3891                 if (use_doorbell) {
3892                         dev_warn(&pdev->dev, "Soft reset not supported. "
3893                                 "Firmware update is required.\n");
3894                         rc = -ENOTSUPP; /* try soft reset */
3895                         goto unmap_cfgtable;
3896                 }
3897         }
3898
3899         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3900         if (rc)
3901                 goto unmap_cfgtable;
3902
3903         pci_restore_state(pdev);
3904         rc = pci_enable_device(pdev);
3905         if (rc) {
3906                 dev_warn(&pdev->dev, "failed to enable device.\n");
3907                 goto unmap_cfgtable;
3908         }
3909         pci_write_config_word(pdev, 4, command_register);
3910
3911         /* Some devices (notably the HP Smart Array 5i Controller)
3912            need a little pause here */
3913         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3914
3915         /* Wait for board to become not ready, then ready. */
3916         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3917         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3918         if (rc) {
3919                 dev_warn(&pdev->dev,
3920                         "failed waiting for board to reset."
3921                         " Will try soft reset.\n");
3922                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3923                 goto unmap_cfgtable;
3924         }
3925         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3926         if (rc) {
3927                 dev_warn(&pdev->dev,
3928                         "failed waiting for board to become ready "
3929                         "after hard reset\n");
3930                 goto unmap_cfgtable;
3931         }
3932
3933         rc = controller_reset_failed(vaddr);
3934         if (rc < 0)
3935                 goto unmap_cfgtable;
3936         if (rc) {
3937                 dev_warn(&pdev->dev, "Unable to successfully reset "
3938                         "controller. Will try soft reset.\n");
3939                 rc = -ENOTSUPP;
3940         } else {
3941                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3942         }
3943
3944 unmap_cfgtable:
3945         iounmap(cfgtable);
3946
3947 unmap_vaddr:
3948         iounmap(vaddr);
3949         return rc;
3950 }
3951
3952 /*
3953  *  We cannot read the structure directly, for portability we must use
3954  *   the io functions.
3955  *   This is for debug only.
3956  */
3957 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3958 {
3959 #ifdef HPSA_DEBUG
3960         int i;
3961         char temp_name[17];
3962
3963         dev_info(dev, "Controller Configuration information\n");
3964         dev_info(dev, "------------------------------------\n");
3965         for (i = 0; i < 4; i++)
3966                 temp_name[i] = readb(&(tb->Signature[i]));
3967         temp_name[4] = '\0';
3968         dev_info(dev, "   Signature = %s\n", temp_name);
3969         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3970         dev_info(dev, "   Transport methods supported = 0x%x\n",
3971                readl(&(tb->TransportSupport)));
3972         dev_info(dev, "   Transport methods active = 0x%x\n",
3973                readl(&(tb->TransportActive)));
3974         dev_info(dev, "   Requested transport Method = 0x%x\n",
3975                readl(&(tb->HostWrite.TransportRequest)));
3976         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3977                readl(&(tb->HostWrite.CoalIntDelay)));
3978         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3979                readl(&(tb->HostWrite.CoalIntCount)));
3980         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3981                readl(&(tb->CmdsOutMax)));
3982         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3983         for (i = 0; i < 16; i++)
3984                 temp_name[i] = readb(&(tb->ServerName[i]));
3985         temp_name[16] = '\0';
3986         dev_info(dev, "   Server Name = %s\n", temp_name);
3987         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3988                 readl(&(tb->HeartBeat)));
3989 #endif                          /* HPSA_DEBUG */
3990 }
3991
3992 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3993 {
3994         int i, offset, mem_type, bar_type;
3995
3996         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3997                 return 0;
3998         offset = 0;
3999         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4000                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4001                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4002                         offset += 4;
4003                 else {
4004                         mem_type = pci_resource_flags(pdev, i) &
4005                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4006                         switch (mem_type) {
4007                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4008                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4009                                 offset += 4;    /* 32 bit */
4010                                 break;
4011                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4012                                 offset += 8;
4013                                 break;
4014                         default:        /* reserved in PCI 2.2 */
4015                                 dev_warn(&pdev->dev,
4016                                        "base address is invalid\n");
4017                                 return -1;
4018                                 break;
4019                         }
4020                 }
4021                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4022                         return i + 1;
4023         }
4024         return -1;
4025 }
4026
4027 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4028  * controllers that are capable. If not, we use IO-APIC mode.
4029  */
4030
4031 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4032 {
4033 #ifdef CONFIG_PCI_MSI
4034         int err, i;
4035         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4036
4037         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4038                 hpsa_msix_entries[i].vector = 0;
4039                 hpsa_msix_entries[i].entry = i;
4040         }
4041
4042         /* Some boards advertise MSI but don't really support it */
4043         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4044             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4045                 goto default_int_mode;
4046         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4047                 dev_info(&h->pdev->dev, "MSIX\n");
4048                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4049                                                 MAX_REPLY_QUEUES);
4050                 if (!err) {
4051                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4052                                 h->intr[i] = hpsa_msix_entries[i].vector;
4053                         h->msix_vector = 1;
4054                         return;
4055                 }
4056                 if (err > 0) {
4057                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4058                                "available\n", err);
4059                         goto default_int_mode;
4060                 } else {
4061                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4062                                err);
4063                         goto default_int_mode;
4064                 }
4065         }
4066         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4067                 dev_info(&h->pdev->dev, "MSI\n");
4068                 if (!pci_enable_msi(h->pdev))
4069                         h->msi_vector = 1;
4070                 else
4071                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4072         }
4073 default_int_mode:
4074 #endif                          /* CONFIG_PCI_MSI */
4075         /* if we get here we're going to use the default interrupt mode */
4076         h->intr[h->intr_mode] = h->pdev->irq;
4077 }
4078
4079 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4080 {
4081         int i;
4082         u32 subsystem_vendor_id, subsystem_device_id;
4083
4084         subsystem_vendor_id = pdev->subsystem_vendor;
4085         subsystem_device_id = pdev->subsystem_device;
4086         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4087                     subsystem_vendor_id;
4088
4089         for (i = 0; i < ARRAY_SIZE(products); i++)
4090                 if (*board_id == products[i].board_id)
4091                         return i;
4092
4093         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4094                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4095                 !hpsa_allow_any) {
4096                 dev_warn(&pdev->dev, "unrecognized board ID: "
4097                         "0x%08x, ignoring.\n", *board_id);
4098                         return -ENODEV;
4099         }
4100         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4101 }
4102
4103 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4104         unsigned long *memory_bar)
4105 {
4106         int i;
4107
4108         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4109                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4110                         /* addressing mode bits already removed */
4111                         *memory_bar = pci_resource_start(pdev, i);
4112                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4113                                 *memory_bar);
4114                         return 0;
4115                 }
4116         dev_warn(&pdev->dev, "no memory BAR found\n");
4117         return -ENODEV;
4118 }
4119
4120 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4121         void __iomem *vaddr, int wait_for_ready)
4122 {
4123         int i, iterations;
4124         u32 scratchpad;
4125         if (wait_for_ready)
4126                 iterations = HPSA_BOARD_READY_ITERATIONS;
4127         else
4128                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4129
4130         for (i = 0; i < iterations; i++) {
4131                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4132                 if (wait_for_ready) {
4133                         if (scratchpad == HPSA_FIRMWARE_READY)
4134                                 return 0;
4135                 } else {
4136                         if (scratchpad != HPSA_FIRMWARE_READY)
4137                                 return 0;
4138                 }
4139                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4140         }
4141         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4142         return -ENODEV;
4143 }
4144
4145 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4146         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4147         u64 *cfg_offset)
4148 {
4149         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4150         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4151         *cfg_base_addr &= (u32) 0x0000ffff;
4152         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4153         if (*cfg_base_addr_index == -1) {
4154                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4155                 return -ENODEV;
4156         }
4157         return 0;
4158 }
4159
4160 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4161 {
4162         u64 cfg_offset;
4163         u32 cfg_base_addr;
4164         u64 cfg_base_addr_index;
4165         u32 trans_offset;
4166         int rc;
4167
4168         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4169                 &cfg_base_addr_index, &cfg_offset);
4170         if (rc)
4171                 return rc;
4172         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4173                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4174         if (!h->cfgtable)
4175                 return -ENOMEM;
4176         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4177         if (rc)
4178                 return rc;
4179         /* Find performant mode table. */
4180         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4181         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4182                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4183                                 sizeof(*h->transtable));
4184         if (!h->transtable)
4185                 return -ENOMEM;
4186         return 0;
4187 }
4188
4189 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4190 {
4191         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4192
4193         /* Limit commands in memory limited kdump scenario. */
4194         if (reset_devices && h->max_commands > 32)
4195                 h->max_commands = 32;
4196
4197         if (h->max_commands < 16) {
4198                 dev_warn(&h->pdev->dev, "Controller reports "
4199                         "max supported commands of %d, an obvious lie. "
4200                         "Using 16.  Ensure that firmware is up to date.\n",
4201                         h->max_commands);
4202                 h->max_commands = 16;
4203         }
4204 }
4205
4206 /* Interrogate the hardware for some limits:
4207  * max commands, max SG elements without chaining, and with chaining,
4208  * SG chain block size, etc.
4209  */
4210 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4211 {
4212         hpsa_get_max_perf_mode_cmds(h);
4213         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4214         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4215         /*
4216          * Limit in-command s/g elements to 32 save dma'able memory.
4217          * Howvever spec says if 0, use 31
4218          */
4219         h->max_cmd_sg_entries = 31;
4220         if (h->maxsgentries > 512) {
4221                 h->max_cmd_sg_entries = 32;
4222                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4223                 h->maxsgentries--; /* save one for chain pointer */
4224         } else {
4225                 h->maxsgentries = 31; /* default to traditional values */
4226                 h->chainsize = 0;
4227         }
4228
4229         /* Find out what task management functions are supported and cache */
4230         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4231 }
4232
4233 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4234 {
4235         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4236                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4237                 return false;
4238         }
4239         return true;
4240 }
4241
4242 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4243 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4244 {
4245 #ifdef CONFIG_X86
4246         u32 prefetch;
4247
4248         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4249         prefetch |= 0x100;
4250         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4251 #endif
4252 }
4253
4254 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4255  * in a prefetch beyond physical memory.
4256  */
4257 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4258 {
4259         u32 dma_prefetch;
4260
4261         if (h->board_id != 0x3225103C)
4262                 return;
4263         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4264         dma_prefetch |= 0x8000;
4265         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4266 }
4267
4268 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4269 {
4270         int i;
4271         u32 doorbell_value;
4272         unsigned long flags;
4273
4274         /* under certain very rare conditions, this can take awhile.
4275          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4276          * as we enter this code.)
4277          */
4278         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4279                 spin_lock_irqsave(&h->lock, flags);
4280                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4281                 spin_unlock_irqrestore(&h->lock, flags);
4282                 if (!(doorbell_value & CFGTBL_ChangeReq))
4283                         break;
4284                 /* delay and try again */
4285                 usleep_range(10000, 20000);
4286         }
4287 }
4288
4289 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4290 {
4291         u32 trans_support;
4292
4293         trans_support = readl(&(h->cfgtable->TransportSupport));
4294         if (!(trans_support & SIMPLE_MODE))
4295                 return -ENOTSUPP;
4296
4297         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4298         /* Update the field, and then ring the doorbell */
4299         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4300         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4301         hpsa_wait_for_mode_change_ack(h);
4302         print_cfg_table(&h->pdev->dev, h->cfgtable);
4303         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4304                 dev_warn(&h->pdev->dev,
4305                         "unable to get board into simple mode\n");
4306                 return -ENODEV;
4307         }
4308         h->transMethod = CFGTBL_Trans_Simple;
4309         return 0;
4310 }
4311
4312 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4313 {
4314         int prod_index, err;
4315
4316         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4317         if (prod_index < 0)
4318                 return -ENODEV;
4319         h->product_name = products[prod_index].product_name;
4320         h->access = *(products[prod_index].access);
4321
4322         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4323                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4324
4325         err = pci_enable_device(h->pdev);
4326         if (err) {
4327                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4328                 return err;
4329         }
4330
4331         /* Enable bus mastering (pci_disable_device may disable this) */
4332         pci_set_master(h->pdev);
4333
4334         err = pci_request_regions(h->pdev, HPSA);
4335         if (err) {
4336                 dev_err(&h->pdev->dev,
4337                         "cannot obtain PCI resources, aborting\n");
4338                 return err;
4339         }
4340         hpsa_interrupt_mode(h);
4341         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4342         if (err)
4343                 goto err_out_free_res;
4344         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4345         if (!h->vaddr) {
4346                 err = -ENOMEM;
4347                 goto err_out_free_res;
4348         }
4349         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4350         if (err)
4351                 goto err_out_free_res;
4352         err = hpsa_find_cfgtables(h);
4353         if (err)
4354                 goto err_out_free_res;
4355         hpsa_find_board_params(h);
4356
4357         if (!hpsa_CISS_signature_present(h)) {
4358                 err = -ENODEV;
4359                 goto err_out_free_res;
4360         }
4361         hpsa_enable_scsi_prefetch(h);
4362         hpsa_p600_dma_prefetch_quirk(h);
4363         err = hpsa_enter_simple_mode(h);
4364         if (err)
4365                 goto err_out_free_res;
4366         return 0;
4367
4368 err_out_free_res:
4369         if (h->transtable)
4370                 iounmap(h->transtable);
4371         if (h->cfgtable)
4372                 iounmap(h->cfgtable);
4373         if (h->vaddr)
4374                 iounmap(h->vaddr);
4375         pci_disable_device(h->pdev);
4376         pci_release_regions(h->pdev);
4377         return err;
4378 }
4379
4380 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4381 {
4382         int rc;
4383
4384 #define HBA_INQUIRY_BYTE_COUNT 64
4385         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4386         if (!h->hba_inquiry_data)
4387                 return;
4388         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4389                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4390         if (rc != 0) {
4391                 kfree(h->hba_inquiry_data);
4392                 h->hba_inquiry_data = NULL;
4393         }
4394 }
4395
4396 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4397 {
4398         int rc, i;
4399
4400         if (!reset_devices)
4401                 return 0;
4402
4403         /* Reset the controller with a PCI power-cycle or via doorbell */
4404         rc = hpsa_kdump_hard_reset_controller(pdev);
4405
4406         /* -ENOTSUPP here means we cannot reset the controller
4407          * but it's already (and still) up and running in
4408          * "performant mode".  Or, it might be 640x, which can't reset
4409          * due to concerns about shared bbwc between 6402/6404 pair.
4410          */
4411         if (rc == -ENOTSUPP)
4412                 return rc; /* just try to do the kdump anyhow. */
4413         if (rc)
4414                 return -ENODEV;
4415
4416         /* Now try to get the controller to respond to a no-op */
4417         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4418         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4419                 if (hpsa_noop(pdev) == 0)
4420                         break;
4421                 else
4422                         dev_warn(&pdev->dev, "no-op failed%s\n",
4423                                         (i < 11 ? "; re-trying" : ""));
4424         }
4425         return 0;
4426 }
4427
4428 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4429 {
4430         h->cmd_pool_bits = kzalloc(
4431                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4432                 sizeof(unsigned long), GFP_KERNEL);
4433         h->cmd_pool = pci_alloc_consistent(h->pdev,
4434                     h->nr_cmds * sizeof(*h->cmd_pool),
4435                     &(h->cmd_pool_dhandle));
4436         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4437                     h->nr_cmds * sizeof(*h->errinfo_pool),
4438                     &(h->errinfo_pool_dhandle));
4439         if ((h->cmd_pool_bits == NULL)
4440             || (h->cmd_pool == NULL)
4441             || (h->errinfo_pool == NULL)) {
4442                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4443                 return -ENOMEM;
4444         }
4445         return 0;
4446 }
4447
4448 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4449 {
4450         kfree(h->cmd_pool_bits);
4451         if (h->cmd_pool)
4452                 pci_free_consistent(h->pdev,
4453                             h->nr_cmds * sizeof(struct CommandList),
4454                             h->cmd_pool, h->cmd_pool_dhandle);
4455         if (h->errinfo_pool)
4456                 pci_free_consistent(h->pdev,
4457                             h->nr_cmds * sizeof(struct ErrorInfo),
4458                             h->errinfo_pool,
4459                             h->errinfo_pool_dhandle);
4460 }
4461
4462 static int hpsa_request_irq(struct ctlr_info *h,
4463         irqreturn_t (*msixhandler)(int, void *),
4464         irqreturn_t (*intxhandler)(int, void *))
4465 {
4466         int rc, i;
4467
4468         /*
4469          * initialize h->q[x] = x so that interrupt handlers know which
4470          * queue to process.
4471          */
4472         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4473                 h->q[i] = (u8) i;
4474
4475         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4476                 /* If performant mode and MSI-X, use multiple reply queues */
4477                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4478                         rc = request_irq(h->intr[i], msixhandler,
4479                                         0, h->devname,
4480                                         &h->q[i]);
4481         } else {
4482                 /* Use single reply pool */
4483                 if (h->msix_vector || h->msi_vector) {
4484                         rc = request_irq(h->intr[h->intr_mode],
4485                                 msixhandler, 0, h->devname,
4486                                 &h->q[h->intr_mode]);
4487                 } else {
4488                         rc = request_irq(h->intr[h->intr_mode],
4489                                 intxhandler, IRQF_SHARED, h->devname,
4490                                 &h->q[h->intr_mode]);
4491                 }
4492         }
4493         if (rc) {
4494                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4495                        h->intr[h->intr_mode], h->devname);
4496                 return -ENODEV;
4497         }
4498         return 0;
4499 }
4500
4501 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4502 {
4503         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4504                 HPSA_RESET_TYPE_CONTROLLER)) {
4505                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4506                 return -EIO;
4507         }
4508
4509         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4510         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4511                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4512                 return -1;
4513         }
4514
4515         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4516         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4517                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4518                         "after soft reset.\n");
4519                 return -1;
4520         }
4521
4522         return 0;
4523 }
4524
4525 static void free_irqs(struct ctlr_info *h)
4526 {
4527         int i;
4528
4529         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4530                 /* Single reply queue, only one irq to free */
4531                 i = h->intr_mode;
4532                 free_irq(h->intr[i], &h->q[i]);
4533                 return;
4534         }
4535
4536         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4537                 free_irq(h->intr[i], &h->q[i]);
4538 }
4539
4540 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4541 {
4542         free_irqs(h);
4543 #ifdef CONFIG_PCI_MSI
4544         if (h->msix_vector) {
4545                 if (h->pdev->msix_enabled)
4546                         pci_disable_msix(h->pdev);
4547         } else if (h->msi_vector) {
4548                 if (h->pdev->msi_enabled)
4549                         pci_disable_msi(h->pdev);
4550         }
4551 #endif /* CONFIG_PCI_MSI */
4552 }
4553
4554 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4555 {
4556         hpsa_free_irqs_and_disable_msix(h);
4557         hpsa_free_sg_chain_blocks(h);
4558         hpsa_free_cmd_pool(h);
4559         kfree(h->blockFetchTable);
4560         pci_free_consistent(h->pdev, h->reply_pool_size,
4561                 h->reply_pool, h->reply_pool_dhandle);
4562         if (h->vaddr)
4563                 iounmap(h->vaddr);
4564         if (h->transtable)
4565                 iounmap(h->transtable);
4566         if (h->cfgtable)
4567                 iounmap(h->cfgtable);
4568         pci_release_regions(h->pdev);
4569         kfree(h);
4570 }
4571
4572 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4573 {
4574         assert_spin_locked(&lockup_detector_lock);
4575         if (!hpsa_lockup_detector)
4576                 return;
4577         if (h->lockup_detected)
4578                 return; /* already stopped the lockup detector */
4579         list_del(&h->lockup_list);
4580 }
4581
4582 /* Called when controller lockup detected. */
4583 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4584 {
4585         struct CommandList *c = NULL;
4586
4587         assert_spin_locked(&h->lock);
4588         /* Mark all outstanding commands as failed and complete them. */
4589         while (!list_empty(list)) {
4590                 c = list_entry(list->next, struct CommandList, list);
4591                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4592                 finish_cmd(c);
4593         }
4594 }
4595
4596 static void controller_lockup_detected(struct ctlr_info *h)
4597 {
4598         unsigned long flags;
4599
4600         assert_spin_locked(&lockup_detector_lock);
4601         remove_ctlr_from_lockup_detector_list(h);
4602         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4603         spin_lock_irqsave(&h->lock, flags);
4604         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4605         spin_unlock_irqrestore(&h->lock, flags);
4606         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4607                         h->lockup_detected);
4608         pci_disable_device(h->pdev);
4609         spin_lock_irqsave(&h->lock, flags);
4610         fail_all_cmds_on_list(h, &h->cmpQ);
4611         fail_all_cmds_on_list(h, &h->reqQ);
4612         spin_unlock_irqrestore(&h->lock, flags);
4613 }
4614
4615 static void detect_controller_lockup(struct ctlr_info *h)
4616 {
4617         u64 now;
4618         u32 heartbeat;
4619         unsigned long flags;
4620
4621         assert_spin_locked(&lockup_detector_lock);
4622         now = get_jiffies_64();
4623         /* If we've received an interrupt recently, we're ok. */
4624         if (time_after64(h->last_intr_timestamp +
4625                                 (h->heartbeat_sample_interval), now))
4626                 return;
4627
4628         /*
4629          * If we've already checked the heartbeat recently, we're ok.
4630          * This could happen if someone sends us a signal. We
4631          * otherwise don't care about signals in this thread.
4632          */
4633         if (time_after64(h->last_heartbeat_timestamp +
4634                                 (h->heartbeat_sample_interval), now))
4635                 return;
4636
4637         /* If heartbeat has not changed since we last looked, we're not ok. */
4638         spin_lock_irqsave(&h->lock, flags);
4639         heartbeat = readl(&h->cfgtable->HeartBeat);
4640         spin_unlock_irqrestore(&h->lock, flags);
4641         if (h->last_heartbeat == heartbeat) {
4642                 controller_lockup_detected(h);
4643                 return;
4644         }
4645
4646         /* We're ok. */
4647         h->last_heartbeat = heartbeat;
4648         h->last_heartbeat_timestamp = now;
4649 }
4650
4651 static int detect_controller_lockup_thread(void *notused)
4652 {
4653         struct ctlr_info *h;
4654         unsigned long flags;
4655
4656         while (1) {
4657                 struct list_head *this, *tmp;
4658
4659                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4660                 if (kthread_should_stop())
4661                         break;
4662                 spin_lock_irqsave(&lockup_detector_lock, flags);
4663                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4664                         h = list_entry(this, struct ctlr_info, lockup_list);
4665                         detect_controller_lockup(h);
4666                 }
4667                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4668         }
4669         return 0;
4670 }
4671
4672 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4673 {
4674         unsigned long flags;
4675
4676         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4677         spin_lock_irqsave(&lockup_detector_lock, flags);
4678         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4679         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4680 }
4681
4682 static void start_controller_lockup_detector(struct ctlr_info *h)
4683 {
4684         /* Start the lockup detector thread if not already started */
4685         if (!hpsa_lockup_detector) {
4686                 spin_lock_init(&lockup_detector_lock);
4687                 hpsa_lockup_detector =
4688                         kthread_run(detect_controller_lockup_thread,
4689                                                 NULL, HPSA);
4690         }
4691         if (!hpsa_lockup_detector) {
4692                 dev_warn(&h->pdev->dev,
4693                         "Could not start lockup detector thread\n");
4694                 return;
4695         }
4696         add_ctlr_to_lockup_detector_list(h);
4697 }
4698
4699 static void stop_controller_lockup_detector(struct ctlr_info *h)
4700 {
4701         unsigned long flags;
4702
4703         spin_lock_irqsave(&lockup_detector_lock, flags);
4704         remove_ctlr_from_lockup_detector_list(h);
4705         /* If the list of ctlr's to monitor is empty, stop the thread */
4706         if (list_empty(&hpsa_ctlr_list)) {
4707                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4708                 kthread_stop(hpsa_lockup_detector);
4709                 spin_lock_irqsave(&lockup_detector_lock, flags);
4710                 hpsa_lockup_detector = NULL;
4711         }
4712         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4713 }
4714
4715 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4716                                     const struct pci_device_id *ent)
4717 {
4718         int dac, rc;
4719         struct ctlr_info *h;
4720         int try_soft_reset = 0;
4721         unsigned long flags;
4722
4723         if (number_of_controllers == 0)
4724                 printk(KERN_INFO DRIVER_NAME "\n");
4725
4726         rc = hpsa_init_reset_devices(pdev);
4727         if (rc) {
4728                 if (rc != -ENOTSUPP)
4729                         return rc;
4730                 /* If the reset fails in a particular way (it has no way to do
4731                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4732                  * a soft reset once we get the controller configured up to the
4733                  * point that it can accept a command.
4734                  */
4735                 try_soft_reset = 1;
4736                 rc = 0;
4737         }
4738
4739 reinit_after_soft_reset:
4740
4741         /* Command structures must be aligned on a 32-byte boundary because
4742          * the 5 lower bits of the address are used by the hardware. and by
4743          * the driver.  See comments in hpsa.h for more info.
4744          */
4745 #define COMMANDLIST_ALIGNMENT 32
4746         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4747         h = kzalloc(sizeof(*h), GFP_KERNEL);
4748         if (!h)
4749                 return -ENOMEM;
4750
4751         h->pdev = pdev;
4752         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4753         INIT_LIST_HEAD(&h->cmpQ);
4754         INIT_LIST_HEAD(&h->reqQ);
4755         spin_lock_init(&h->lock);
4756         spin_lock_init(&h->scan_lock);
4757         rc = hpsa_pci_init(h);
4758         if (rc != 0)
4759                 goto clean1;
4760
4761         sprintf(h->devname, HPSA "%d", number_of_controllers);
4762         h->ctlr = number_of_controllers;
4763         number_of_controllers++;
4764
4765         /* configure PCI DMA stuff */
4766         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4767         if (rc == 0) {
4768                 dac = 1;
4769         } else {
4770                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4771                 if (rc == 0) {
4772                         dac = 0;
4773                 } else {
4774                         dev_err(&pdev->dev, "no suitable DMA available\n");
4775                         goto clean1;
4776                 }
4777         }
4778
4779         /* make sure the board interrupts are off */
4780         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4781
4782         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4783                 goto clean2;
4784         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4785                h->devname, pdev->device,
4786                h->intr[h->intr_mode], dac ? "" : " not");
4787         if (hpsa_allocate_cmd_pool(h))
4788                 goto clean4;
4789         if (hpsa_allocate_sg_chain_blocks(h))
4790                 goto clean4;
4791         init_waitqueue_head(&h->scan_wait_queue);
4792         h->scan_finished = 1; /* no scan currently in progress */
4793
4794         pci_set_drvdata(pdev, h);
4795         h->ndevices = 0;
4796         h->scsi_host = NULL;
4797         spin_lock_init(&h->devlock);
4798         hpsa_put_ctlr_into_performant_mode(h);
4799
4800         /* At this point, the controller is ready to take commands.
4801          * Now, if reset_devices and the hard reset didn't work, try
4802          * the soft reset and see if that works.
4803          */
4804         if (try_soft_reset) {
4805
4806                 /* This is kind of gross.  We may or may not get a completion
4807                  * from the soft reset command, and if we do, then the value
4808                  * from the fifo may or may not be valid.  So, we wait 10 secs
4809                  * after the reset throwing away any completions we get during
4810                  * that time.  Unregister the interrupt handler and register
4811                  * fake ones to scoop up any residual completions.
4812                  */
4813                 spin_lock_irqsave(&h->lock, flags);
4814                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4815                 spin_unlock_irqrestore(&h->lock, flags);
4816                 free_irqs(h);
4817                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4818                                         hpsa_intx_discard_completions);
4819                 if (rc) {
4820                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4821                                 "soft reset.\n");
4822                         goto clean4;
4823                 }
4824
4825                 rc = hpsa_kdump_soft_reset(h);
4826                 if (rc)
4827                         /* Neither hard nor soft reset worked, we're hosed. */
4828                         goto clean4;
4829
4830                 dev_info(&h->pdev->dev, "Board READY.\n");
4831                 dev_info(&h->pdev->dev,
4832                         "Waiting for stale completions to drain.\n");
4833                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4834                 msleep(10000);
4835                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4836
4837                 rc = controller_reset_failed(h->cfgtable);
4838                 if (rc)
4839                         dev_info(&h->pdev->dev,
4840                                 "Soft reset appears to have failed.\n");
4841
4842                 /* since the controller's reset, we have to go back and re-init
4843                  * everything.  Easiest to just forget what we've done and do it
4844                  * all over again.
4845                  */
4846                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4847                 try_soft_reset = 0;
4848                 if (rc)
4849                         /* don't go to clean4, we already unallocated */
4850                         return -ENODEV;
4851
4852                 goto reinit_after_soft_reset;
4853         }
4854
4855         /* Turn the interrupts on so we can service requests */
4856         h->access.set_intr_mask(h, HPSA_INTR_ON);
4857
4858         hpsa_hba_inquiry(h);
4859         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4860         start_controller_lockup_detector(h);
4861         return 1;
4862
4863 clean4:
4864         hpsa_free_sg_chain_blocks(h);
4865         hpsa_free_cmd_pool(h);
4866         free_irqs(h);
4867 clean2:
4868 clean1:
4869         kfree(h);
4870         return rc;
4871 }
4872
4873 static void hpsa_flush_cache(struct ctlr_info *h)
4874 {
4875         char *flush_buf;
4876         struct CommandList *c;
4877
4878         flush_buf = kzalloc(4, GFP_KERNEL);
4879         if (!flush_buf)
4880                 return;
4881
4882         c = cmd_special_alloc(h);
4883         if (!c) {
4884                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4885                 goto out_of_memory;
4886         }
4887         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4888                 RAID_CTLR_LUNID, TYPE_CMD);
4889         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4890         if (c->err_info->CommandStatus != 0)
4891                 dev_warn(&h->pdev->dev,
4892                         "error flushing cache on controller\n");
4893         cmd_special_free(h, c);
4894 out_of_memory:
4895         kfree(flush_buf);
4896 }
4897
4898 static void hpsa_shutdown(struct pci_dev *pdev)
4899 {
4900         struct ctlr_info *h;
4901
4902         h = pci_get_drvdata(pdev);
4903         /* Turn board interrupts off  and send the flush cache command
4904          * sendcmd will turn off interrupt, and send the flush...
4905          * To write all data in the battery backed cache to disks
4906          */
4907         hpsa_flush_cache(h);
4908         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4909         hpsa_free_irqs_and_disable_msix(h);
4910 }
4911
4912 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4913 {
4914         int i;
4915
4916         for (i = 0; i < h->ndevices; i++)
4917                 kfree(h->dev[i]);
4918 }
4919
4920 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4921 {
4922         struct ctlr_info *h;
4923
4924         if (pci_get_drvdata(pdev) == NULL) {
4925                 dev_err(&pdev->dev, "unable to remove device\n");
4926                 return;
4927         }
4928         h = pci_get_drvdata(pdev);
4929         stop_controller_lockup_detector(h);
4930         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4931         hpsa_shutdown(pdev);
4932         iounmap(h->vaddr);
4933         iounmap(h->transtable);
4934         iounmap(h->cfgtable);
4935         hpsa_free_device_info(h);
4936         hpsa_free_sg_chain_blocks(h);
4937         pci_free_consistent(h->pdev,
4938                 h->nr_cmds * sizeof(struct CommandList),
4939                 h->cmd_pool, h->cmd_pool_dhandle);
4940         pci_free_consistent(h->pdev,
4941                 h->nr_cmds * sizeof(struct ErrorInfo),
4942                 h->errinfo_pool, h->errinfo_pool_dhandle);
4943         pci_free_consistent(h->pdev, h->reply_pool_size,
4944                 h->reply_pool, h->reply_pool_dhandle);
4945         kfree(h->cmd_pool_bits);
4946         kfree(h->blockFetchTable);
4947         kfree(h->hba_inquiry_data);
4948         pci_disable_device(pdev);
4949         pci_release_regions(pdev);
4950         pci_set_drvdata(pdev, NULL);
4951         kfree(h);
4952 }
4953
4954 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4955         __attribute__((unused)) pm_message_t state)
4956 {
4957         return -ENOSYS;
4958 }
4959
4960 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4961 {
4962         return -ENOSYS;
4963 }
4964
4965 static struct pci_driver hpsa_pci_driver = {
4966         .name = HPSA,
4967         .probe = hpsa_init_one,
4968         .remove = __devexit_p(hpsa_remove_one),
4969         .id_table = hpsa_pci_device_id, /* id_table */
4970         .shutdown = hpsa_shutdown,
4971         .suspend = hpsa_suspend,
4972         .resume = hpsa_resume,
4973 };
4974
4975 /* Fill in bucket_map[], given nsgs (the max number of
4976  * scatter gather elements supported) and bucket[],
4977  * which is an array of 8 integers.  The bucket[] array
4978  * contains 8 different DMA transfer sizes (in 16
4979  * byte increments) which the controller uses to fetch
4980  * commands.  This function fills in bucket_map[], which
4981  * maps a given number of scatter gather elements to one of
4982  * the 8 DMA transfer sizes.  The point of it is to allow the
4983  * controller to only do as much DMA as needed to fetch the
4984  * command, with the DMA transfer size encoded in the lower
4985  * bits of the command address.
4986  */
4987 static void  calc_bucket_map(int bucket[], int num_buckets,
4988         int nsgs, int *bucket_map)
4989 {
4990         int i, j, b, size;
4991
4992         /* even a command with 0 SGs requires 4 blocks */
4993 #define MINIMUM_TRANSFER_BLOCKS 4
4994 #define NUM_BUCKETS 8
4995         /* Note, bucket_map must have nsgs+1 entries. */
4996         for (i = 0; i <= nsgs; i++) {
4997                 /* Compute size of a command with i SG entries */
4998                 size = i + MINIMUM_TRANSFER_BLOCKS;
4999                 b = num_buckets; /* Assume the biggest bucket */
5000                 /* Find the bucket that is just big enough */
5001                 for (j = 0; j < 8; j++) {
5002                         if (bucket[j] >= size) {
5003                                 b = j;
5004                                 break;
5005                         }
5006                 }
5007                 /* for a command with i SG entries, use bucket b. */
5008                 bucket_map[i] = b;
5009         }
5010 }
5011
5012 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
5013         u32 use_short_tags)
5014 {
5015         int i;
5016         unsigned long register_value;
5017
5018         /* This is a bit complicated.  There are 8 registers on
5019          * the controller which we write to to tell it 8 different
5020          * sizes of commands which there may be.  It's a way of
5021          * reducing the DMA done to fetch each command.  Encoded into
5022          * each command's tag are 3 bits which communicate to the controller
5023          * which of the eight sizes that command fits within.  The size of
5024          * each command depends on how many scatter gather entries there are.
5025          * Each SG entry requires 16 bytes.  The eight registers are programmed
5026          * with the number of 16-byte blocks a command of that size requires.
5027          * The smallest command possible requires 5 such 16 byte blocks.
5028          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5029          * blocks.  Note, this only extends to the SG entries contained
5030          * within the command block, and does not extend to chained blocks
5031          * of SG elements.   bft[] contains the eight values we write to
5032          * the registers.  They are not evenly distributed, but have more
5033          * sizes for small commands, and fewer sizes for larger commands.
5034          */
5035         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5036         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5037         /*  5 = 1 s/g entry or 4k
5038          *  6 = 2 s/g entry or 8k
5039          *  8 = 4 s/g entry or 16k
5040          * 10 = 6 s/g entry or 24k
5041          */
5042
5043         /* Controller spec: zero out this buffer. */
5044         memset(h->reply_pool, 0, h->reply_pool_size);
5045
5046         bft[7] = SG_ENTRIES_IN_CMD + 4;
5047         calc_bucket_map(bft, ARRAY_SIZE(bft),
5048                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5049         for (i = 0; i < 8; i++)
5050                 writel(bft[i], &h->transtable->BlockFetch[i]);
5051
5052         /* size of controller ring buffer */
5053         writel(h->max_commands, &h->transtable->RepQSize);
5054         writel(h->nreply_queues, &h->transtable->RepQCount);
5055         writel(0, &h->transtable->RepQCtrAddrLow32);
5056         writel(0, &h->transtable->RepQCtrAddrHigh32);
5057
5058         for (i = 0; i < h->nreply_queues; i++) {
5059                 writel(0, &h->transtable->RepQAddr[i].upper);
5060                 writel(h->reply_pool_dhandle +
5061                         (h->max_commands * sizeof(u64) * i),
5062                         &h->transtable->RepQAddr[i].lower);
5063         }
5064
5065         writel(CFGTBL_Trans_Performant | use_short_tags |
5066                 CFGTBL_Trans_enable_directed_msix,
5067                 &(h->cfgtable->HostWrite.TransportRequest));
5068         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5069         hpsa_wait_for_mode_change_ack(h);
5070         register_value = readl(&(h->cfgtable->TransportActive));
5071         if (!(register_value & CFGTBL_Trans_Performant)) {
5072                 dev_warn(&h->pdev->dev, "unable to get board into"
5073                                         " performant mode\n");
5074                 return;
5075         }
5076         /* Change the access methods to the performant access methods */
5077         h->access = SA5_performant_access;
5078         h->transMethod = CFGTBL_Trans_Performant;
5079 }
5080
5081 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5082 {
5083         u32 trans_support;
5084         int i;
5085
5086         if (hpsa_simple_mode)
5087                 return;
5088
5089         trans_support = readl(&(h->cfgtable->TransportSupport));
5090         if (!(trans_support & PERFORMANT_MODE))
5091                 return;
5092
5093         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5094         hpsa_get_max_perf_mode_cmds(h);
5095         /* Performant mode ring buffer and supporting data structures */
5096         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5097         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5098                                 &(h->reply_pool_dhandle));
5099
5100         for (i = 0; i < h->nreply_queues; i++) {
5101                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5102                 h->reply_queue[i].size = h->max_commands;
5103                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5104                 h->reply_queue[i].current_entry = 0;
5105         }
5106
5107         /* Need a block fetch table for performant mode */
5108         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5109                                 sizeof(u32)), GFP_KERNEL);
5110
5111         if ((h->reply_pool == NULL)
5112                 || (h->blockFetchTable == NULL))
5113                 goto clean_up;
5114
5115         hpsa_enter_performant_mode(h,
5116                 trans_support & CFGTBL_Trans_use_short_tags);
5117
5118         return;
5119
5120 clean_up:
5121         if (h->reply_pool)
5122                 pci_free_consistent(h->pdev, h->reply_pool_size,
5123                         h->reply_pool, h->reply_pool_dhandle);
5124         kfree(h->blockFetchTable);
5125 }
5126
5127 /*
5128  *  This is it.  Register the PCI driver information for the cards we control
5129  *  the OS will call our registered routines when it finds one of our cards.
5130  */
5131 static int __init hpsa_init(void)
5132 {
5133         return pci_register_driver(&hpsa_pci_driver);
5134 }
5135
5136 static void __exit hpsa_cleanup(void)
5137 {
5138         pci_unregister_driver(&hpsa_pci_driver);
5139 }
5140
5141 module_init(hpsa_init);
5142 module_exit(hpsa_cleanup);