[SCSI] hpsa: refactor hpsa_figure_bus_target_lun
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172         int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177         u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179         unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182         void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188         unsigned long *priv = shost_priv(sdev->host);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194         unsigned long *priv = shost_priv(sh);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static int check_for_unit_attention(struct ctlr_info *h,
199         struct CommandList *c)
200 {
201         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202                 return 0;
203
204         switch (c->err_info->SenseInfo[12]) {
205         case STATE_CHANGED:
206                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207                         "detected, command retried\n", h->ctlr);
208                 break;
209         case LUN_FAILED:
210                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211                         "detected, action required\n", h->ctlr);
212                 break;
213         case REPORT_LUNS_CHANGED:
214                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215                         "changed, action required\n", h->ctlr);
216         /*
217          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
218          */
219                 break;
220         case POWER_OR_RESET:
221                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
222                         "or device reset detected\n", h->ctlr);
223                 break;
224         case UNIT_ATTENTION_CLEARED:
225                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
226                     "cleared by another initiator\n", h->ctlr);
227                 break;
228         default:
229                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
230                         "unit attention detected\n", h->ctlr);
231                 break;
232         }
233         return 1;
234 }
235
236 static ssize_t host_store_rescan(struct device *dev,
237                                  struct device_attribute *attr,
238                                  const char *buf, size_t count)
239 {
240         struct ctlr_info *h;
241         struct Scsi_Host *shost = class_to_shost(dev);
242         h = shost_to_hba(shost);
243         hpsa_scan_start(h->scsi_host);
244         return count;
245 }
246
247 static ssize_t host_show_firmware_revision(struct device *dev,
248              struct device_attribute *attr, char *buf)
249 {
250         struct ctlr_info *h;
251         struct Scsi_Host *shost = class_to_shost(dev);
252         unsigned char *fwrev;
253
254         h = shost_to_hba(shost);
255         if (!h->hba_inquiry_data)
256                 return 0;
257         fwrev = &h->hba_inquiry_data[32];
258         return snprintf(buf, 20, "%c%c%c%c\n",
259                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
260 }
261
262 static ssize_t host_show_commands_outstanding(struct device *dev,
263              struct device_attribute *attr, char *buf)
264 {
265         struct Scsi_Host *shost = class_to_shost(dev);
266         struct ctlr_info *h = shost_to_hba(shost);
267
268         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
269 }
270
271 static ssize_t host_show_transport_mode(struct device *dev,
272         struct device_attribute *attr, char *buf)
273 {
274         struct ctlr_info *h;
275         struct Scsi_Host *shost = class_to_shost(dev);
276
277         h = shost_to_hba(shost);
278         return snprintf(buf, 20, "%s\n",
279                 h->transMethod & CFGTBL_Trans_Performant ?
280                         "performant" : "simple");
281 }
282
283 /* List of controllers which cannot be hard reset on kexec with reset_devices */
284 static u32 unresettable_controller[] = {
285         0x324a103C, /* Smart Array P712m */
286         0x324b103C, /* SmartArray P711m */
287         0x3223103C, /* Smart Array P800 */
288         0x3234103C, /* Smart Array P400 */
289         0x3235103C, /* Smart Array P400i */
290         0x3211103C, /* Smart Array E200i */
291         0x3212103C, /* Smart Array E200 */
292         0x3213103C, /* Smart Array E200i */
293         0x3214103C, /* Smart Array E200i */
294         0x3215103C, /* Smart Array E200i */
295         0x3237103C, /* Smart Array E500 */
296         0x323D103C, /* Smart Array P700m */
297         0x40800E11, /* Smart Array 5i */
298         0x409C0E11, /* Smart Array 6400 */
299         0x409D0E11, /* Smart Array 6400 EM */
300 };
301
302 /* List of controllers which cannot even be soft reset */
303 static u32 soft_unresettable_controller[] = {
304         0x40800E11, /* Smart Array 5i */
305         /* Exclude 640x boards.  These are two pci devices in one slot
306          * which share a battery backed cache module.  One controls the
307          * cache, the other accesses the cache through the one that controls
308          * it.  If we reset the one controlling the cache, the other will
309          * likely not be happy.  Just forbid resetting this conjoined mess.
310          * The 640x isn't really supported by hpsa anyway.
311          */
312         0x409C0E11, /* Smart Array 6400 */
313         0x409D0E11, /* Smart Array 6400 EM */
314 };
315
316 static int ctlr_is_hard_resettable(u32 board_id)
317 {
318         int i;
319
320         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
321                 if (unresettable_controller[i] == board_id)
322                         return 0;
323         return 1;
324 }
325
326 static int ctlr_is_soft_resettable(u32 board_id)
327 {
328         int i;
329
330         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
331                 if (soft_unresettable_controller[i] == board_id)
332                         return 0;
333         return 1;
334 }
335
336 static int ctlr_is_resettable(u32 board_id)
337 {
338         return ctlr_is_hard_resettable(board_id) ||
339                 ctlr_is_soft_resettable(board_id);
340 }
341
342 static ssize_t host_show_resettable(struct device *dev,
343         struct device_attribute *attr, char *buf)
344 {
345         struct ctlr_info *h;
346         struct Scsi_Host *shost = class_to_shost(dev);
347
348         h = shost_to_hba(shost);
349         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
350 }
351
352 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
353 {
354         return (scsi3addr[3] & 0xC0) == 0x40;
355 }
356
357 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
358         "UNKNOWN"
359 };
360 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
361
362 static ssize_t raid_level_show(struct device *dev,
363              struct device_attribute *attr, char *buf)
364 {
365         ssize_t l = 0;
366         unsigned char rlevel;
367         struct ctlr_info *h;
368         struct scsi_device *sdev;
369         struct hpsa_scsi_dev_t *hdev;
370         unsigned long flags;
371
372         sdev = to_scsi_device(dev);
373         h = sdev_to_hba(sdev);
374         spin_lock_irqsave(&h->lock, flags);
375         hdev = sdev->hostdata;
376         if (!hdev) {
377                 spin_unlock_irqrestore(&h->lock, flags);
378                 return -ENODEV;
379         }
380
381         /* Is this even a logical drive? */
382         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
383                 spin_unlock_irqrestore(&h->lock, flags);
384                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
385                 return l;
386         }
387
388         rlevel = hdev->raid_level;
389         spin_unlock_irqrestore(&h->lock, flags);
390         if (rlevel > RAID_UNKNOWN)
391                 rlevel = RAID_UNKNOWN;
392         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
393         return l;
394 }
395
396 static ssize_t lunid_show(struct device *dev,
397              struct device_attribute *attr, char *buf)
398 {
399         struct ctlr_info *h;
400         struct scsi_device *sdev;
401         struct hpsa_scsi_dev_t *hdev;
402         unsigned long flags;
403         unsigned char lunid[8];
404
405         sdev = to_scsi_device(dev);
406         h = sdev_to_hba(sdev);
407         spin_lock_irqsave(&h->lock, flags);
408         hdev = sdev->hostdata;
409         if (!hdev) {
410                 spin_unlock_irqrestore(&h->lock, flags);
411                 return -ENODEV;
412         }
413         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
414         spin_unlock_irqrestore(&h->lock, flags);
415         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
416                 lunid[0], lunid[1], lunid[2], lunid[3],
417                 lunid[4], lunid[5], lunid[6], lunid[7]);
418 }
419
420 static ssize_t unique_id_show(struct device *dev,
421              struct device_attribute *attr, char *buf)
422 {
423         struct ctlr_info *h;
424         struct scsi_device *sdev;
425         struct hpsa_scsi_dev_t *hdev;
426         unsigned long flags;
427         unsigned char sn[16];
428
429         sdev = to_scsi_device(dev);
430         h = sdev_to_hba(sdev);
431         spin_lock_irqsave(&h->lock, flags);
432         hdev = sdev->hostdata;
433         if (!hdev) {
434                 spin_unlock_irqrestore(&h->lock, flags);
435                 return -ENODEV;
436         }
437         memcpy(sn, hdev->device_id, sizeof(sn));
438         spin_unlock_irqrestore(&h->lock, flags);
439         return snprintf(buf, 16 * 2 + 2,
440                         "%02X%02X%02X%02X%02X%02X%02X%02X"
441                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
442                         sn[0], sn[1], sn[2], sn[3],
443                         sn[4], sn[5], sn[6], sn[7],
444                         sn[8], sn[9], sn[10], sn[11],
445                         sn[12], sn[13], sn[14], sn[15]);
446 }
447
448 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
449 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
450 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
451 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
452 static DEVICE_ATTR(firmware_revision, S_IRUGO,
453         host_show_firmware_revision, NULL);
454 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
455         host_show_commands_outstanding, NULL);
456 static DEVICE_ATTR(transport_mode, S_IRUGO,
457         host_show_transport_mode, NULL);
458 static DEVICE_ATTR(resettable, S_IRUGO,
459         host_show_resettable, NULL);
460
461 static struct device_attribute *hpsa_sdev_attrs[] = {
462         &dev_attr_raid_level,
463         &dev_attr_lunid,
464         &dev_attr_unique_id,
465         NULL,
466 };
467
468 static struct device_attribute *hpsa_shost_attrs[] = {
469         &dev_attr_rescan,
470         &dev_attr_firmware_revision,
471         &dev_attr_commands_outstanding,
472         &dev_attr_transport_mode,
473         &dev_attr_resettable,
474         NULL,
475 };
476
477 static struct scsi_host_template hpsa_driver_template = {
478         .module                 = THIS_MODULE,
479         .name                   = HPSA,
480         .proc_name              = HPSA,
481         .queuecommand           = hpsa_scsi_queue_command,
482         .scan_start             = hpsa_scan_start,
483         .scan_finished          = hpsa_scan_finished,
484         .change_queue_depth     = hpsa_change_queue_depth,
485         .this_id                = -1,
486         .use_clustering         = ENABLE_CLUSTERING,
487         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
488         .ioctl                  = hpsa_ioctl,
489         .slave_alloc            = hpsa_slave_alloc,
490         .slave_destroy          = hpsa_slave_destroy,
491 #ifdef CONFIG_COMPAT
492         .compat_ioctl           = hpsa_compat_ioctl,
493 #endif
494         .sdev_attrs = hpsa_sdev_attrs,
495         .shost_attrs = hpsa_shost_attrs,
496         .max_sectors = 8192,
497 };
498
499
500 /* Enqueuing and dequeuing functions for cmdlists. */
501 static inline void addQ(struct list_head *list, struct CommandList *c)
502 {
503         list_add_tail(&c->list, list);
504 }
505
506 static inline u32 next_command(struct ctlr_info *h)
507 {
508         u32 a;
509
510         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
511                 return h->access.command_completed(h);
512
513         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
514                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
515                 (h->reply_pool_head)++;
516                 h->commands_outstanding--;
517         } else {
518                 a = FIFO_EMPTY;
519         }
520         /* Check for wraparound */
521         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
522                 h->reply_pool_head = h->reply_pool;
523                 h->reply_pool_wraparound ^= 1;
524         }
525         return a;
526 }
527
528 /* set_performant_mode: Modify the tag for cciss performant
529  * set bit 0 for pull model, bits 3-1 for block fetch
530  * register number
531  */
532 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
533 {
534         if (likely(h->transMethod & CFGTBL_Trans_Performant))
535                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
536 }
537
538 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
539         struct CommandList *c)
540 {
541         unsigned long flags;
542
543         set_performant_mode(h, c);
544         spin_lock_irqsave(&h->lock, flags);
545         addQ(&h->reqQ, c);
546         h->Qdepth++;
547         start_io(h);
548         spin_unlock_irqrestore(&h->lock, flags);
549 }
550
551 static inline void removeQ(struct CommandList *c)
552 {
553         if (WARN_ON(list_empty(&c->list)))
554                 return;
555         list_del_init(&c->list);
556 }
557
558 static inline int is_hba_lunid(unsigned char scsi3addr[])
559 {
560         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
561 }
562
563 static inline int is_scsi_rev_5(struct ctlr_info *h)
564 {
565         if (!h->hba_inquiry_data)
566                 return 0;
567         if ((h->hba_inquiry_data[2] & 0x07) == 5)
568                 return 1;
569         return 0;
570 }
571
572 static int hpsa_find_target_lun(struct ctlr_info *h,
573         unsigned char scsi3addr[], int bus, int *target, int *lun)
574 {
575         /* finds an unused bus, target, lun for a new physical device
576          * assumes h->devlock is held
577          */
578         int i, found = 0;
579         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
580
581         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
582
583         for (i = 0; i < h->ndevices; i++) {
584                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
585                         set_bit(h->dev[i]->target, lun_taken);
586         }
587
588         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
589                 if (!test_bit(i, lun_taken)) {
590                         /* *bus = 1; */
591                         *target = i;
592                         *lun = 0;
593                         found = 1;
594                         break;
595                 }
596         }
597         return !found;
598 }
599
600 /* Add an entry into h->dev[] array. */
601 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
602                 struct hpsa_scsi_dev_t *device,
603                 struct hpsa_scsi_dev_t *added[], int *nadded)
604 {
605         /* assumes h->devlock is held */
606         int n = h->ndevices;
607         int i;
608         unsigned char addr1[8], addr2[8];
609         struct hpsa_scsi_dev_t *sd;
610
611         if (n >= HPSA_MAX_DEVICES) {
612                 dev_err(&h->pdev->dev, "too many devices, some will be "
613                         "inaccessible.\n");
614                 return -1;
615         }
616
617         /* physical devices do not have lun or target assigned until now. */
618         if (device->lun != -1)
619                 /* Logical device, lun is already assigned. */
620                 goto lun_assigned;
621
622         /* If this device a non-zero lun of a multi-lun device
623          * byte 4 of the 8-byte LUN addr will contain the logical
624          * unit no, zero otherise.
625          */
626         if (device->scsi3addr[4] == 0) {
627                 /* This is not a non-zero lun of a multi-lun device */
628                 if (hpsa_find_target_lun(h, device->scsi3addr,
629                         device->bus, &device->target, &device->lun) != 0)
630                         return -1;
631                 goto lun_assigned;
632         }
633
634         /* This is a non-zero lun of a multi-lun device.
635          * Search through our list and find the device which
636          * has the same 8 byte LUN address, excepting byte 4.
637          * Assign the same bus and target for this new LUN.
638          * Use the logical unit number from the firmware.
639          */
640         memcpy(addr1, device->scsi3addr, 8);
641         addr1[4] = 0;
642         for (i = 0; i < n; i++) {
643                 sd = h->dev[i];
644                 memcpy(addr2, sd->scsi3addr, 8);
645                 addr2[4] = 0;
646                 /* differ only in byte 4? */
647                 if (memcmp(addr1, addr2, 8) == 0) {
648                         device->bus = sd->bus;
649                         device->target = sd->target;
650                         device->lun = device->scsi3addr[4];
651                         break;
652                 }
653         }
654         if (device->lun == -1) {
655                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
656                         " suspect firmware bug or unsupported hardware "
657                         "configuration.\n");
658                         return -1;
659         }
660
661 lun_assigned:
662
663         h->dev[n] = device;
664         h->ndevices++;
665         added[*nadded] = device;
666         (*nadded)++;
667
668         /* initially, (before registering with scsi layer) we don't
669          * know our hostno and we don't want to print anything first
670          * time anyway (the scsi layer's inquiries will show that info)
671          */
672         /* if (hostno != -1) */
673                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
674                         scsi_device_type(device->devtype), hostno,
675                         device->bus, device->target, device->lun);
676         return 0;
677 }
678
679 /* Replace an entry from h->dev[] array. */
680 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
681         int entry, struct hpsa_scsi_dev_t *new_entry,
682         struct hpsa_scsi_dev_t *added[], int *nadded,
683         struct hpsa_scsi_dev_t *removed[], int *nremoved)
684 {
685         /* assumes h->devlock is held */
686         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
687         removed[*nremoved] = h->dev[entry];
688         (*nremoved)++;
689
690         /*
691          * New physical devices won't have target/lun assigned yet
692          * so we need to preserve the values in the slot we are replacing.
693          */
694         if (new_entry->target == -1) {
695                 new_entry->target = h->dev[entry]->target;
696                 new_entry->lun = h->dev[entry]->lun;
697         }
698
699         h->dev[entry] = new_entry;
700         added[*nadded] = new_entry;
701         (*nadded)++;
702         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
703                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
704                         new_entry->target, new_entry->lun);
705 }
706
707 /* Remove an entry from h->dev[] array. */
708 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
709         struct hpsa_scsi_dev_t *removed[], int *nremoved)
710 {
711         /* assumes h->devlock is held */
712         int i;
713         struct hpsa_scsi_dev_t *sd;
714
715         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
716
717         sd = h->dev[entry];
718         removed[*nremoved] = h->dev[entry];
719         (*nremoved)++;
720
721         for (i = entry; i < h->ndevices-1; i++)
722                 h->dev[i] = h->dev[i+1];
723         h->ndevices--;
724         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
725                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
726                 sd->lun);
727 }
728
729 #define SCSI3ADDR_EQ(a, b) ( \
730         (a)[7] == (b)[7] && \
731         (a)[6] == (b)[6] && \
732         (a)[5] == (b)[5] && \
733         (a)[4] == (b)[4] && \
734         (a)[3] == (b)[3] && \
735         (a)[2] == (b)[2] && \
736         (a)[1] == (b)[1] && \
737         (a)[0] == (b)[0])
738
739 static void fixup_botched_add(struct ctlr_info *h,
740         struct hpsa_scsi_dev_t *added)
741 {
742         /* called when scsi_add_device fails in order to re-adjust
743          * h->dev[] to match the mid layer's view.
744          */
745         unsigned long flags;
746         int i, j;
747
748         spin_lock_irqsave(&h->lock, flags);
749         for (i = 0; i < h->ndevices; i++) {
750                 if (h->dev[i] == added) {
751                         for (j = i; j < h->ndevices-1; j++)
752                                 h->dev[j] = h->dev[j+1];
753                         h->ndevices--;
754                         break;
755                 }
756         }
757         spin_unlock_irqrestore(&h->lock, flags);
758         kfree(added);
759 }
760
761 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
762         struct hpsa_scsi_dev_t *dev2)
763 {
764         /* we compare everything except lun and target as these
765          * are not yet assigned.  Compare parts likely
766          * to differ first
767          */
768         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
769                 sizeof(dev1->scsi3addr)) != 0)
770                 return 0;
771         if (memcmp(dev1->device_id, dev2->device_id,
772                 sizeof(dev1->device_id)) != 0)
773                 return 0;
774         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
775                 return 0;
776         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
777                 return 0;
778         if (dev1->devtype != dev2->devtype)
779                 return 0;
780         if (dev1->bus != dev2->bus)
781                 return 0;
782         return 1;
783 }
784
785 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
786  * and return needle location in *index.  If scsi3addr matches, but not
787  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
788  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
789  */
790 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
791         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
792         int *index)
793 {
794         int i;
795 #define DEVICE_NOT_FOUND 0
796 #define DEVICE_CHANGED 1
797 #define DEVICE_SAME 2
798         for (i = 0; i < haystack_size; i++) {
799                 if (haystack[i] == NULL) /* previously removed. */
800                         continue;
801                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
802                         *index = i;
803                         if (device_is_the_same(needle, haystack[i]))
804                                 return DEVICE_SAME;
805                         else
806                                 return DEVICE_CHANGED;
807                 }
808         }
809         *index = -1;
810         return DEVICE_NOT_FOUND;
811 }
812
813 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
814         struct hpsa_scsi_dev_t *sd[], int nsds)
815 {
816         /* sd contains scsi3 addresses and devtypes, and inquiry
817          * data.  This function takes what's in sd to be the current
818          * reality and updates h->dev[] to reflect that reality.
819          */
820         int i, entry, device_change, changes = 0;
821         struct hpsa_scsi_dev_t *csd;
822         unsigned long flags;
823         struct hpsa_scsi_dev_t **added, **removed;
824         int nadded, nremoved;
825         struct Scsi_Host *sh = NULL;
826
827         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
828         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
829
830         if (!added || !removed) {
831                 dev_warn(&h->pdev->dev, "out of memory in "
832                         "adjust_hpsa_scsi_table\n");
833                 goto free_and_out;
834         }
835
836         spin_lock_irqsave(&h->devlock, flags);
837
838         /* find any devices in h->dev[] that are not in
839          * sd[] and remove them from h->dev[], and for any
840          * devices which have changed, remove the old device
841          * info and add the new device info.
842          */
843         i = 0;
844         nremoved = 0;
845         nadded = 0;
846         while (i < h->ndevices) {
847                 csd = h->dev[i];
848                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
849                 if (device_change == DEVICE_NOT_FOUND) {
850                         changes++;
851                         hpsa_scsi_remove_entry(h, hostno, i,
852                                 removed, &nremoved);
853                         continue; /* remove ^^^, hence i not incremented */
854                 } else if (device_change == DEVICE_CHANGED) {
855                         changes++;
856                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
857                                 added, &nadded, removed, &nremoved);
858                         /* Set it to NULL to prevent it from being freed
859                          * at the bottom of hpsa_update_scsi_devices()
860                          */
861                         sd[entry] = NULL;
862                 }
863                 i++;
864         }
865
866         /* Now, make sure every device listed in sd[] is also
867          * listed in h->dev[], adding them if they aren't found
868          */
869
870         for (i = 0; i < nsds; i++) {
871                 if (!sd[i]) /* if already added above. */
872                         continue;
873                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
874                                         h->ndevices, &entry);
875                 if (device_change == DEVICE_NOT_FOUND) {
876                         changes++;
877                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
878                                 added, &nadded) != 0)
879                                 break;
880                         sd[i] = NULL; /* prevent from being freed later. */
881                 } else if (device_change == DEVICE_CHANGED) {
882                         /* should never happen... */
883                         changes++;
884                         dev_warn(&h->pdev->dev,
885                                 "device unexpectedly changed.\n");
886                         /* but if it does happen, we just ignore that device */
887                 }
888         }
889         spin_unlock_irqrestore(&h->devlock, flags);
890
891         /* Don't notify scsi mid layer of any changes the first time through
892          * (or if there are no changes) scsi_scan_host will do it later the
893          * first time through.
894          */
895         if (hostno == -1 || !changes)
896                 goto free_and_out;
897
898         sh = h->scsi_host;
899         /* Notify scsi mid layer of any removed devices */
900         for (i = 0; i < nremoved; i++) {
901                 struct scsi_device *sdev =
902                         scsi_device_lookup(sh, removed[i]->bus,
903                                 removed[i]->target, removed[i]->lun);
904                 if (sdev != NULL) {
905                         scsi_remove_device(sdev);
906                         scsi_device_put(sdev);
907                 } else {
908                         /* We don't expect to get here.
909                          * future cmds to this device will get selection
910                          * timeout as if the device was gone.
911                          */
912                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
913                                 " for removal.", hostno, removed[i]->bus,
914                                 removed[i]->target, removed[i]->lun);
915                 }
916                 kfree(removed[i]);
917                 removed[i] = NULL;
918         }
919
920         /* Notify scsi mid layer of any added devices */
921         for (i = 0; i < nadded; i++) {
922                 if (scsi_add_device(sh, added[i]->bus,
923                         added[i]->target, added[i]->lun) == 0)
924                         continue;
925                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
926                         "device not added.\n", hostno, added[i]->bus,
927                         added[i]->target, added[i]->lun);
928                 /* now we have to remove it from h->dev,
929                  * since it didn't get added to scsi mid layer
930                  */
931                 fixup_botched_add(h, added[i]);
932         }
933
934 free_and_out:
935         kfree(added);
936         kfree(removed);
937 }
938
939 /*
940  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
941  * Assume's h->devlock is held.
942  */
943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
944         int bus, int target, int lun)
945 {
946         int i;
947         struct hpsa_scsi_dev_t *sd;
948
949         for (i = 0; i < h->ndevices; i++) {
950                 sd = h->dev[i];
951                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
952                         return sd;
953         }
954         return NULL;
955 }
956
957 /* link sdev->hostdata to our per-device structure. */
958 static int hpsa_slave_alloc(struct scsi_device *sdev)
959 {
960         struct hpsa_scsi_dev_t *sd;
961         unsigned long flags;
962         struct ctlr_info *h;
963
964         h = sdev_to_hba(sdev);
965         spin_lock_irqsave(&h->devlock, flags);
966         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
967                 sdev_id(sdev), sdev->lun);
968         if (sd != NULL)
969                 sdev->hostdata = sd;
970         spin_unlock_irqrestore(&h->devlock, flags);
971         return 0;
972 }
973
974 static void hpsa_slave_destroy(struct scsi_device *sdev)
975 {
976         /* nothing to do. */
977 }
978
979 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
980 {
981         int i;
982
983         if (!h->cmd_sg_list)
984                 return;
985         for (i = 0; i < h->nr_cmds; i++) {
986                 kfree(h->cmd_sg_list[i]);
987                 h->cmd_sg_list[i] = NULL;
988         }
989         kfree(h->cmd_sg_list);
990         h->cmd_sg_list = NULL;
991 }
992
993 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
994 {
995         int i;
996
997         if (h->chainsize <= 0)
998                 return 0;
999
1000         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1001                                 GFP_KERNEL);
1002         if (!h->cmd_sg_list)
1003                 return -ENOMEM;
1004         for (i = 0; i < h->nr_cmds; i++) {
1005                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1006                                                 h->chainsize, GFP_KERNEL);
1007                 if (!h->cmd_sg_list[i])
1008                         goto clean;
1009         }
1010         return 0;
1011
1012 clean:
1013         hpsa_free_sg_chain_blocks(h);
1014         return -ENOMEM;
1015 }
1016
1017 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1018         struct CommandList *c)
1019 {
1020         struct SGDescriptor *chain_sg, *chain_block;
1021         u64 temp64;
1022
1023         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1024         chain_block = h->cmd_sg_list[c->cmdindex];
1025         chain_sg->Ext = HPSA_SG_CHAIN;
1026         chain_sg->Len = sizeof(*chain_sg) *
1027                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1028         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1029                                 PCI_DMA_TODEVICE);
1030         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1031         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1032 }
1033
1034 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1035         struct CommandList *c)
1036 {
1037         struct SGDescriptor *chain_sg;
1038         union u64bit temp64;
1039
1040         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1041                 return;
1042
1043         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1044         temp64.val32.lower = chain_sg->Addr.lower;
1045         temp64.val32.upper = chain_sg->Addr.upper;
1046         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1047 }
1048
1049 static void complete_scsi_command(struct CommandList *cp)
1050 {
1051         struct scsi_cmnd *cmd;
1052         struct ctlr_info *h;
1053         struct ErrorInfo *ei;
1054
1055         unsigned char sense_key;
1056         unsigned char asc;      /* additional sense code */
1057         unsigned char ascq;     /* additional sense code qualifier */
1058         unsigned long sense_data_size;
1059
1060         ei = cp->err_info;
1061         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1062         h = cp->h;
1063
1064         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1065         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1066                 hpsa_unmap_sg_chain_block(h, cp);
1067
1068         cmd->result = (DID_OK << 16);           /* host byte */
1069         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1070         cmd->result |= ei->ScsiStatus;
1071
1072         /* copy the sense data whether we need to or not. */
1073         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1074                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1075         else
1076                 sense_data_size = sizeof(ei->SenseInfo);
1077         if (ei->SenseLen < sense_data_size)
1078                 sense_data_size = ei->SenseLen;
1079
1080         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1081         scsi_set_resid(cmd, ei->ResidualCnt);
1082
1083         if (ei->CommandStatus == 0) {
1084                 cmd->scsi_done(cmd);
1085                 cmd_free(h, cp);
1086                 return;
1087         }
1088
1089         /* an error has occurred */
1090         switch (ei->CommandStatus) {
1091
1092         case CMD_TARGET_STATUS:
1093                 if (ei->ScsiStatus) {
1094                         /* Get sense key */
1095                         sense_key = 0xf & ei->SenseInfo[2];
1096                         /* Get additional sense code */
1097                         asc = ei->SenseInfo[12];
1098                         /* Get addition sense code qualifier */
1099                         ascq = ei->SenseInfo[13];
1100                 }
1101
1102                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1103                         if (check_for_unit_attention(h, cp)) {
1104                                 cmd->result = DID_SOFT_ERROR << 16;
1105                                 break;
1106                         }
1107                         if (sense_key == ILLEGAL_REQUEST) {
1108                                 /*
1109                                  * SCSI REPORT_LUNS is commonly unsupported on
1110                                  * Smart Array.  Suppress noisy complaint.
1111                                  */
1112                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1113                                         break;
1114
1115                                 /* If ASC/ASCQ indicate Logical Unit
1116                                  * Not Supported condition,
1117                                  */
1118                                 if ((asc == 0x25) && (ascq == 0x0)) {
1119                                         dev_warn(&h->pdev->dev, "cp %p "
1120                                                 "has check condition\n", cp);
1121                                         break;
1122                                 }
1123                         }
1124
1125                         if (sense_key == NOT_READY) {
1126                                 /* If Sense is Not Ready, Logical Unit
1127                                  * Not ready, Manual Intervention
1128                                  * required
1129                                  */
1130                                 if ((asc == 0x04) && (ascq == 0x03)) {
1131                                         dev_warn(&h->pdev->dev, "cp %p "
1132                                                 "has check condition: unit "
1133                                                 "not ready, manual "
1134                                                 "intervention required\n", cp);
1135                                         break;
1136                                 }
1137                         }
1138                         if (sense_key == ABORTED_COMMAND) {
1139                                 /* Aborted command is retryable */
1140                                 dev_warn(&h->pdev->dev, "cp %p "
1141                                         "has check condition: aborted command: "
1142                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1143                                         cp, asc, ascq);
1144                                 cmd->result = DID_SOFT_ERROR << 16;
1145                                 break;
1146                         }
1147                         /* Must be some other type of check condition */
1148                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1149                                         "unknown type: "
1150                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1151                                         "Returning result: 0x%x, "
1152                                         "cmd=[%02x %02x %02x %02x %02x "
1153                                         "%02x %02x %02x %02x %02x %02x "
1154                                         "%02x %02x %02x %02x %02x]\n",
1155                                         cp, sense_key, asc, ascq,
1156                                         cmd->result,
1157                                         cmd->cmnd[0], cmd->cmnd[1],
1158                                         cmd->cmnd[2], cmd->cmnd[3],
1159                                         cmd->cmnd[4], cmd->cmnd[5],
1160                                         cmd->cmnd[6], cmd->cmnd[7],
1161                                         cmd->cmnd[8], cmd->cmnd[9],
1162                                         cmd->cmnd[10], cmd->cmnd[11],
1163                                         cmd->cmnd[12], cmd->cmnd[13],
1164                                         cmd->cmnd[14], cmd->cmnd[15]);
1165                         break;
1166                 }
1167
1168
1169                 /* Problem was not a check condition
1170                  * Pass it up to the upper layers...
1171                  */
1172                 if (ei->ScsiStatus) {
1173                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1174                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1175                                 "Returning result: 0x%x\n",
1176                                 cp, ei->ScsiStatus,
1177                                 sense_key, asc, ascq,
1178                                 cmd->result);
1179                 } else {  /* scsi status is zero??? How??? */
1180                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1181                                 "Returning no connection.\n", cp),
1182
1183                         /* Ordinarily, this case should never happen,
1184                          * but there is a bug in some released firmware
1185                          * revisions that allows it to happen if, for
1186                          * example, a 4100 backplane loses power and
1187                          * the tape drive is in it.  We assume that
1188                          * it's a fatal error of some kind because we
1189                          * can't show that it wasn't. We will make it
1190                          * look like selection timeout since that is
1191                          * the most common reason for this to occur,
1192                          * and it's severe enough.
1193                          */
1194
1195                         cmd->result = DID_NO_CONNECT << 16;
1196                 }
1197                 break;
1198
1199         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1200                 break;
1201         case CMD_DATA_OVERRUN:
1202                 dev_warn(&h->pdev->dev, "cp %p has"
1203                         " completed with data overrun "
1204                         "reported\n", cp);
1205                 break;
1206         case CMD_INVALID: {
1207                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1208                 print_cmd(cp); */
1209                 /* We get CMD_INVALID if you address a non-existent device
1210                  * instead of a selection timeout (no response).  You will
1211                  * see this if you yank out a drive, then try to access it.
1212                  * This is kind of a shame because it means that any other
1213                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1214                  * missing target. */
1215                 cmd->result = DID_NO_CONNECT << 16;
1216         }
1217                 break;
1218         case CMD_PROTOCOL_ERR:
1219                 dev_warn(&h->pdev->dev, "cp %p has "
1220                         "protocol error \n", cp);
1221                 break;
1222         case CMD_HARDWARE_ERR:
1223                 cmd->result = DID_ERROR << 16;
1224                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1225                 break;
1226         case CMD_CONNECTION_LOST:
1227                 cmd->result = DID_ERROR << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1229                 break;
1230         case CMD_ABORTED:
1231                 cmd->result = DID_ABORT << 16;
1232                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1233                                 cp, ei->ScsiStatus);
1234                 break;
1235         case CMD_ABORT_FAILED:
1236                 cmd->result = DID_ERROR << 16;
1237                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1238                 break;
1239         case CMD_UNSOLICITED_ABORT:
1240                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1241                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1242                         "abort\n", cp);
1243                 break;
1244         case CMD_TIMEOUT:
1245                 cmd->result = DID_TIME_OUT << 16;
1246                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1247                 break;
1248         case CMD_UNABORTABLE:
1249                 cmd->result = DID_ERROR << 16;
1250                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1251                 break;
1252         default:
1253                 cmd->result = DID_ERROR << 16;
1254                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1255                                 cp, ei->CommandStatus);
1256         }
1257         cmd->scsi_done(cmd);
1258         cmd_free(h, cp);
1259 }
1260
1261 static void hpsa_pci_unmap(struct pci_dev *pdev,
1262         struct CommandList *c, int sg_used, int data_direction)
1263 {
1264         int i;
1265         union u64bit addr64;
1266
1267         for (i = 0; i < sg_used; i++) {
1268                 addr64.val32.lower = c->SG[i].Addr.lower;
1269                 addr64.val32.upper = c->SG[i].Addr.upper;
1270                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1271                         data_direction);
1272         }
1273 }
1274
1275 static void hpsa_map_one(struct pci_dev *pdev,
1276                 struct CommandList *cp,
1277                 unsigned char *buf,
1278                 size_t buflen,
1279                 int data_direction)
1280 {
1281         u64 addr64;
1282
1283         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1284                 cp->Header.SGList = 0;
1285                 cp->Header.SGTotal = 0;
1286                 return;
1287         }
1288
1289         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1290         cp->SG[0].Addr.lower =
1291           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1292         cp->SG[0].Addr.upper =
1293           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1294         cp->SG[0].Len = buflen;
1295         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1296         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1297 }
1298
1299 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1300         struct CommandList *c)
1301 {
1302         DECLARE_COMPLETION_ONSTACK(wait);
1303
1304         c->waiting = &wait;
1305         enqueue_cmd_and_start_io(h, c);
1306         wait_for_completion(&wait);
1307 }
1308
1309 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1310         struct CommandList *c)
1311 {
1312         unsigned long flags;
1313
1314         /* If controller lockup detected, fake a hardware error. */
1315         spin_lock_irqsave(&h->lock, flags);
1316         if (unlikely(h->lockup_detected)) {
1317                 spin_unlock_irqrestore(&h->lock, flags);
1318                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1319         } else {
1320                 spin_unlock_irqrestore(&h->lock, flags);
1321                 hpsa_scsi_do_simple_cmd_core(h, c);
1322         }
1323 }
1324
1325 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1326         struct CommandList *c, int data_direction)
1327 {
1328         int retry_count = 0;
1329
1330         do {
1331                 memset(c->err_info, 0, sizeof(*c->err_info));
1332                 hpsa_scsi_do_simple_cmd_core(h, c);
1333                 retry_count++;
1334         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1335         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1336 }
1337
1338 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1339 {
1340         struct ErrorInfo *ei;
1341         struct device *d = &cp->h->pdev->dev;
1342
1343         ei = cp->err_info;
1344         switch (ei->CommandStatus) {
1345         case CMD_TARGET_STATUS:
1346                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1347                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1348                                 ei->ScsiStatus);
1349                 if (ei->ScsiStatus == 0)
1350                         dev_warn(d, "SCSI status is abnormally zero.  "
1351                         "(probably indicates selection timeout "
1352                         "reported incorrectly due to a known "
1353                         "firmware bug, circa July, 2001.)\n");
1354                 break;
1355         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1356                         dev_info(d, "UNDERRUN\n");
1357                 break;
1358         case CMD_DATA_OVERRUN:
1359                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1360                 break;
1361         case CMD_INVALID: {
1362                 /* controller unfortunately reports SCSI passthru's
1363                  * to non-existent targets as invalid commands.
1364                  */
1365                 dev_warn(d, "cp %p is reported invalid (probably means "
1366                         "target device no longer present)\n", cp);
1367                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1368                 print_cmd(cp);  */
1369                 }
1370                 break;
1371         case CMD_PROTOCOL_ERR:
1372                 dev_warn(d, "cp %p has protocol error \n", cp);
1373                 break;
1374         case CMD_HARDWARE_ERR:
1375                 /* cmd->result = DID_ERROR << 16; */
1376                 dev_warn(d, "cp %p had hardware error\n", cp);
1377                 break;
1378         case CMD_CONNECTION_LOST:
1379                 dev_warn(d, "cp %p had connection lost\n", cp);
1380                 break;
1381         case CMD_ABORTED:
1382                 dev_warn(d, "cp %p was aborted\n", cp);
1383                 break;
1384         case CMD_ABORT_FAILED:
1385                 dev_warn(d, "cp %p reports abort failed\n", cp);
1386                 break;
1387         case CMD_UNSOLICITED_ABORT:
1388                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1389                 break;
1390         case CMD_TIMEOUT:
1391                 dev_warn(d, "cp %p timed out\n", cp);
1392                 break;
1393         case CMD_UNABORTABLE:
1394                 dev_warn(d, "Command unabortable\n");
1395                 break;
1396         default:
1397                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1398                                 ei->CommandStatus);
1399         }
1400 }
1401
1402 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1403                         unsigned char page, unsigned char *buf,
1404                         unsigned char bufsize)
1405 {
1406         int rc = IO_OK;
1407         struct CommandList *c;
1408         struct ErrorInfo *ei;
1409
1410         c = cmd_special_alloc(h);
1411
1412         if (c == NULL) {                        /* trouble... */
1413                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1414                 return -ENOMEM;
1415         }
1416
1417         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1418         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1419         ei = c->err_info;
1420         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1421                 hpsa_scsi_interpret_error(c);
1422                 rc = -1;
1423         }
1424         cmd_special_free(h, c);
1425         return rc;
1426 }
1427
1428 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1429 {
1430         int rc = IO_OK;
1431         struct CommandList *c;
1432         struct ErrorInfo *ei;
1433
1434         c = cmd_special_alloc(h);
1435
1436         if (c == NULL) {                        /* trouble... */
1437                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1438                 return -ENOMEM;
1439         }
1440
1441         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1442         hpsa_scsi_do_simple_cmd_core(h, c);
1443         /* no unmap needed here because no data xfer. */
1444
1445         ei = c->err_info;
1446         if (ei->CommandStatus != 0) {
1447                 hpsa_scsi_interpret_error(c);
1448                 rc = -1;
1449         }
1450         cmd_special_free(h, c);
1451         return rc;
1452 }
1453
1454 static void hpsa_get_raid_level(struct ctlr_info *h,
1455         unsigned char *scsi3addr, unsigned char *raid_level)
1456 {
1457         int rc;
1458         unsigned char *buf;
1459
1460         *raid_level = RAID_UNKNOWN;
1461         buf = kzalloc(64, GFP_KERNEL);
1462         if (!buf)
1463                 return;
1464         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1465         if (rc == 0)
1466                 *raid_level = buf[8];
1467         if (*raid_level > RAID_UNKNOWN)
1468                 *raid_level = RAID_UNKNOWN;
1469         kfree(buf);
1470         return;
1471 }
1472
1473 /* Get the device id from inquiry page 0x83 */
1474 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1475         unsigned char *device_id, int buflen)
1476 {
1477         int rc;
1478         unsigned char *buf;
1479
1480         if (buflen > 16)
1481                 buflen = 16;
1482         buf = kzalloc(64, GFP_KERNEL);
1483         if (!buf)
1484                 return -1;
1485         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1486         if (rc == 0)
1487                 memcpy(device_id, &buf[8], buflen);
1488         kfree(buf);
1489         return rc != 0;
1490 }
1491
1492 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1493                 struct ReportLUNdata *buf, int bufsize,
1494                 int extended_response)
1495 {
1496         int rc = IO_OK;
1497         struct CommandList *c;
1498         unsigned char scsi3addr[8];
1499         struct ErrorInfo *ei;
1500
1501         c = cmd_special_alloc(h);
1502         if (c == NULL) {                        /* trouble... */
1503                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1504                 return -1;
1505         }
1506         /* address the controller */
1507         memset(scsi3addr, 0, sizeof(scsi3addr));
1508         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1509                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1510         if (extended_response)
1511                 c->Request.CDB[1] = extended_response;
1512         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1513         ei = c->err_info;
1514         if (ei->CommandStatus != 0 &&
1515             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1516                 hpsa_scsi_interpret_error(c);
1517                 rc = -1;
1518         }
1519         cmd_special_free(h, c);
1520         return rc;
1521 }
1522
1523 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1524                 struct ReportLUNdata *buf,
1525                 int bufsize, int extended_response)
1526 {
1527         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1528 }
1529
1530 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1531                 struct ReportLUNdata *buf, int bufsize)
1532 {
1533         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1534 }
1535
1536 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1537         int bus, int target, int lun)
1538 {
1539         device->bus = bus;
1540         device->target = target;
1541         device->lun = lun;
1542 }
1543
1544 static int hpsa_update_device_info(struct ctlr_info *h,
1545         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1546         unsigned char *is_OBDR_device)
1547 {
1548
1549 #define OBDR_SIG_OFFSET 43
1550 #define OBDR_TAPE_SIG "$DR-10"
1551 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1552 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1553
1554         unsigned char *inq_buff;
1555         unsigned char *obdr_sig;
1556
1557         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1558         if (!inq_buff)
1559                 goto bail_out;
1560
1561         /* Do an inquiry to the device to see what it is. */
1562         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1563                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1564                 /* Inquiry failed (msg printed already) */
1565                 dev_err(&h->pdev->dev,
1566                         "hpsa_update_device_info: inquiry failed\n");
1567                 goto bail_out;
1568         }
1569
1570         this_device->devtype = (inq_buff[0] & 0x1f);
1571         memcpy(this_device->scsi3addr, scsi3addr, 8);
1572         memcpy(this_device->vendor, &inq_buff[8],
1573                 sizeof(this_device->vendor));
1574         memcpy(this_device->model, &inq_buff[16],
1575                 sizeof(this_device->model));
1576         memset(this_device->device_id, 0,
1577                 sizeof(this_device->device_id));
1578         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1579                 sizeof(this_device->device_id));
1580
1581         if (this_device->devtype == TYPE_DISK &&
1582                 is_logical_dev_addr_mode(scsi3addr))
1583                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1584         else
1585                 this_device->raid_level = RAID_UNKNOWN;
1586
1587         if (is_OBDR_device) {
1588                 /* See if this is a One-Button-Disaster-Recovery device
1589                  * by looking for "$DR-10" at offset 43 in inquiry data.
1590                  */
1591                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1592                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1593                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1594                                                 OBDR_SIG_LEN) == 0);
1595         }
1596
1597         kfree(inq_buff);
1598         return 0;
1599
1600 bail_out:
1601         kfree(inq_buff);
1602         return 1;
1603 }
1604
1605 static unsigned char *msa2xxx_model[] = {
1606         "MSA2012",
1607         "MSA2024",
1608         "MSA2312",
1609         "MSA2324",
1610         "P2000 G3 SAS",
1611         NULL,
1612 };
1613
1614 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1615 {
1616         int i;
1617
1618         for (i = 0; msa2xxx_model[i]; i++)
1619                 if (strncmp(device->model, msa2xxx_model[i],
1620                         strlen(msa2xxx_model[i])) == 0)
1621                         return 1;
1622         return 0;
1623 }
1624
1625 /* Helper function to assign bus, target, lun mapping of devices.
1626  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1627  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1628  * Logical drive target and lun are assigned at this time, but
1629  * physical device lun and target assignment are deferred (assigned
1630  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1631  */
1632 static void figure_bus_target_lun(struct ctlr_info *h,
1633         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1634 {
1635         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1636
1637         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1638                 /* physical device, target and lun filled in later */
1639                 if (is_hba_lunid(lunaddrbytes))
1640                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1641                 else
1642                         /* defer target, lun assignment for physical devices */
1643                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1644                 return;
1645         }
1646         /* It's a logical device */
1647         if (is_msa2xxx(h, device)) {
1648                 /* msa2xxx way, put logicals on bus 1
1649                  * and match target/lun numbers box
1650                  * reports, other smart array, bus 0, target 0, match lunid
1651                  */
1652                 hpsa_set_bus_target_lun(device,
1653                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1654                 return;
1655         }
1656         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1657 }
1658
1659 /*
1660  * If there is no lun 0 on a target, linux won't find any devices.
1661  * For the MSA2xxx boxes, we have to manually detect the enclosure
1662  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1663  * it for some reason.  *tmpdevice is the target we're adding,
1664  * this_device is a pointer into the current element of currentsd[]
1665  * that we're building up in update_scsi_devices(), below.
1666  * lunzerobits is a bitmap that tracks which targets already have a
1667  * lun 0 assigned.
1668  * Returns 1 if an enclosure was added, 0 if not.
1669  */
1670 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1671         struct hpsa_scsi_dev_t *tmpdevice,
1672         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1673         unsigned long lunzerobits[], int *nmsa2xxx_enclosures)
1674 {
1675         unsigned char scsi3addr[8];
1676
1677         if (test_bit(tmpdevice->target, lunzerobits))
1678                 return 0; /* There is already a lun 0 on this target. */
1679
1680         if (!is_logical_dev_addr_mode(lunaddrbytes))
1681                 return 0; /* It's the logical targets that may lack lun 0. */
1682
1683         if (!is_msa2xxx(h, tmpdevice))
1684                 return 0; /* It's only the MSA2xxx that have this problem. */
1685
1686         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1687                 return 0;
1688
1689         memset(scsi3addr, 0, 8);
1690         scsi3addr[3] = tmpdevice->target;
1691         if (is_hba_lunid(scsi3addr))
1692                 return 0; /* Don't add the RAID controller here. */
1693
1694         if (is_scsi_rev_5(h))
1695                 return 0; /* p1210m doesn't need to do this. */
1696
1697         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1698                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1699                         "enclosures exceeded.  Check your hardware "
1700                         "configuration.");
1701                 return 0;
1702         }
1703
1704         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1705                 return 0;
1706         (*nmsa2xxx_enclosures)++;
1707         hpsa_set_bus_target_lun(this_device,
1708                                 tmpdevice->bus, tmpdevice->target, 0);
1709         set_bit(tmpdevice->target, lunzerobits);
1710         return 1;
1711 }
1712
1713 /*
1714  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1715  * logdev.  The number of luns in physdev and logdev are returned in
1716  * *nphysicals and *nlogicals, respectively.
1717  * Returns 0 on success, -1 otherwise.
1718  */
1719 static int hpsa_gather_lun_info(struct ctlr_info *h,
1720         int reportlunsize,
1721         struct ReportLUNdata *physdev, u32 *nphysicals,
1722         struct ReportLUNdata *logdev, u32 *nlogicals)
1723 {
1724         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1725                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1726                 return -1;
1727         }
1728         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1729         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1730                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1731                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1732                         *nphysicals - HPSA_MAX_PHYS_LUN);
1733                 *nphysicals = HPSA_MAX_PHYS_LUN;
1734         }
1735         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1736                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1737                 return -1;
1738         }
1739         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1740         /* Reject Logicals in excess of our max capability. */
1741         if (*nlogicals > HPSA_MAX_LUN) {
1742                 dev_warn(&h->pdev->dev,
1743                         "maximum logical LUNs (%d) exceeded.  "
1744                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1745                         *nlogicals - HPSA_MAX_LUN);
1746                         *nlogicals = HPSA_MAX_LUN;
1747         }
1748         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1749                 dev_warn(&h->pdev->dev,
1750                         "maximum logical + physical LUNs (%d) exceeded. "
1751                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1752                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1753                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1754         }
1755         return 0;
1756 }
1757
1758 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1759         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1760         struct ReportLUNdata *logdev_list)
1761 {
1762         /* Helper function, figure out where the LUN ID info is coming from
1763          * given index i, lists of physical and logical devices, where in
1764          * the list the raid controller is supposed to appear (first or last)
1765          */
1766
1767         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1768         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1769
1770         if (i == raid_ctlr_position)
1771                 return RAID_CTLR_LUNID;
1772
1773         if (i < logicals_start)
1774                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1775
1776         if (i < last_device)
1777                 return &logdev_list->LUN[i - nphysicals -
1778                         (raid_ctlr_position == 0)][0];
1779         BUG();
1780         return NULL;
1781 }
1782
1783 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1784 {
1785         /* the idea here is we could get notified
1786          * that some devices have changed, so we do a report
1787          * physical luns and report logical luns cmd, and adjust
1788          * our list of devices accordingly.
1789          *
1790          * The scsi3addr's of devices won't change so long as the
1791          * adapter is not reset.  That means we can rescan and
1792          * tell which devices we already know about, vs. new
1793          * devices, vs.  disappearing devices.
1794          */
1795         struct ReportLUNdata *physdev_list = NULL;
1796         struct ReportLUNdata *logdev_list = NULL;
1797         u32 nphysicals = 0;
1798         u32 nlogicals = 0;
1799         u32 ndev_allocated = 0;
1800         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1801         int ncurrent = 0;
1802         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1803         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1804         int raid_ctlr_position;
1805         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1806
1807         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1808         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1809         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1810         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1811
1812         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1813                 dev_err(&h->pdev->dev, "out of memory\n");
1814                 goto out;
1815         }
1816         memset(lunzerobits, 0, sizeof(lunzerobits));
1817
1818         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1819                         logdev_list, &nlogicals))
1820                 goto out;
1821
1822         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1823          * but each of them 4 times through different paths.  The plus 1
1824          * is for the RAID controller.
1825          */
1826         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1827
1828         /* Allocate the per device structures */
1829         for (i = 0; i < ndevs_to_allocate; i++) {
1830                 if (i >= HPSA_MAX_DEVICES) {
1831                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1832                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1833                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1834                         break;
1835                 }
1836
1837                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1838                 if (!currentsd[i]) {
1839                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1840                                 __FILE__, __LINE__);
1841                         goto out;
1842                 }
1843                 ndev_allocated++;
1844         }
1845
1846         if (unlikely(is_scsi_rev_5(h)))
1847                 raid_ctlr_position = 0;
1848         else
1849                 raid_ctlr_position = nphysicals + nlogicals;
1850
1851         /* adjust our table of devices */
1852         nmsa2xxx_enclosures = 0;
1853         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1854                 u8 *lunaddrbytes, is_OBDR = 0;
1855
1856                 /* Figure out where the LUN ID info is coming from */
1857                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1858                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1859                 /* skip masked physical devices. */
1860                 if (lunaddrbytes[3] & 0xC0 &&
1861                         i < nphysicals + (raid_ctlr_position == 0))
1862                         continue;
1863
1864                 /* Get device type, vendor, model, device id */
1865                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1866                                                         &is_OBDR))
1867                         continue; /* skip it if we can't talk to it. */
1868                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1869                 this_device = currentsd[ncurrent];
1870
1871                 /*
1872                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1873                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1874                  * is nonetheless an enclosure device there.  We have to
1875                  * present that otherwise linux won't find anything if
1876                  * there is no lun 0.
1877                  */
1878                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1879                                 lunaddrbytes, lunzerobits,
1880                                 &nmsa2xxx_enclosures)) {
1881                         ncurrent++;
1882                         this_device = currentsd[ncurrent];
1883                 }
1884
1885                 *this_device = *tmpdevice;
1886
1887                 switch (this_device->devtype) {
1888                 case TYPE_ROM:
1889                         /* We don't *really* support actual CD-ROM devices,
1890                          * just "One Button Disaster Recovery" tape drive
1891                          * which temporarily pretends to be a CD-ROM drive.
1892                          * So we check that the device is really an OBDR tape
1893                          * device by checking for "$DR-10" in bytes 43-48 of
1894                          * the inquiry data.
1895                          */
1896                         if (is_OBDR)
1897                                 ncurrent++;
1898                         break;
1899                 case TYPE_DISK:
1900                         if (i < nphysicals)
1901                                 break;
1902                         ncurrent++;
1903                         break;
1904                 case TYPE_TAPE:
1905                 case TYPE_MEDIUM_CHANGER:
1906                         ncurrent++;
1907                         break;
1908                 case TYPE_RAID:
1909                         /* Only present the Smartarray HBA as a RAID controller.
1910                          * If it's a RAID controller other than the HBA itself
1911                          * (an external RAID controller, MSA500 or similar)
1912                          * don't present it.
1913                          */
1914                         if (!is_hba_lunid(lunaddrbytes))
1915                                 break;
1916                         ncurrent++;
1917                         break;
1918                 default:
1919                         break;
1920                 }
1921                 if (ncurrent >= HPSA_MAX_DEVICES)
1922                         break;
1923         }
1924         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1925 out:
1926         kfree(tmpdevice);
1927         for (i = 0; i < ndev_allocated; i++)
1928                 kfree(currentsd[i]);
1929         kfree(currentsd);
1930         kfree(physdev_list);
1931         kfree(logdev_list);
1932 }
1933
1934 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1935  * dma mapping  and fills in the scatter gather entries of the
1936  * hpsa command, cp.
1937  */
1938 static int hpsa_scatter_gather(struct ctlr_info *h,
1939                 struct CommandList *cp,
1940                 struct scsi_cmnd *cmd)
1941 {
1942         unsigned int len;
1943         struct scatterlist *sg;
1944         u64 addr64;
1945         int use_sg, i, sg_index, chained;
1946         struct SGDescriptor *curr_sg;
1947
1948         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1949
1950         use_sg = scsi_dma_map(cmd);
1951         if (use_sg < 0)
1952                 return use_sg;
1953
1954         if (!use_sg)
1955                 goto sglist_finished;
1956
1957         curr_sg = cp->SG;
1958         chained = 0;
1959         sg_index = 0;
1960         scsi_for_each_sg(cmd, sg, use_sg, i) {
1961                 if (i == h->max_cmd_sg_entries - 1 &&
1962                         use_sg > h->max_cmd_sg_entries) {
1963                         chained = 1;
1964                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1965                         sg_index = 0;
1966                 }
1967                 addr64 = (u64) sg_dma_address(sg);
1968                 len  = sg_dma_len(sg);
1969                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1970                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1971                 curr_sg->Len = len;
1972                 curr_sg->Ext = 0;  /* we are not chaining */
1973                 curr_sg++;
1974         }
1975
1976         if (use_sg + chained > h->maxSG)
1977                 h->maxSG = use_sg + chained;
1978
1979         if (chained) {
1980                 cp->Header.SGList = h->max_cmd_sg_entries;
1981                 cp->Header.SGTotal = (u16) (use_sg + 1);
1982                 hpsa_map_sg_chain_block(h, cp);
1983                 return 0;
1984         }
1985
1986 sglist_finished:
1987
1988         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1989         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1990         return 0;
1991 }
1992
1993
1994 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1995         void (*done)(struct scsi_cmnd *))
1996 {
1997         struct ctlr_info *h;
1998         struct hpsa_scsi_dev_t *dev;
1999         unsigned char scsi3addr[8];
2000         struct CommandList *c;
2001         unsigned long flags;
2002
2003         /* Get the ptr to our adapter structure out of cmd->host. */
2004         h = sdev_to_hba(cmd->device);
2005         dev = cmd->device->hostdata;
2006         if (!dev) {
2007                 cmd->result = DID_NO_CONNECT << 16;
2008                 done(cmd);
2009                 return 0;
2010         }
2011         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2012
2013         spin_lock_irqsave(&h->lock, flags);
2014         if (unlikely(h->lockup_detected)) {
2015                 spin_unlock_irqrestore(&h->lock, flags);
2016                 cmd->result = DID_ERROR << 16;
2017                 done(cmd);
2018                 return 0;
2019         }
2020         /* Need a lock as this is being allocated from the pool */
2021         c = cmd_alloc(h);
2022         spin_unlock_irqrestore(&h->lock, flags);
2023         if (c == NULL) {                        /* trouble... */
2024                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2025                 return SCSI_MLQUEUE_HOST_BUSY;
2026         }
2027
2028         /* Fill in the command list header */
2029
2030         cmd->scsi_done = done;    /* save this for use by completion code */
2031
2032         /* save c in case we have to abort it  */
2033         cmd->host_scribble = (unsigned char *) c;
2034
2035         c->cmd_type = CMD_SCSI;
2036         c->scsi_cmd = cmd;
2037         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2038         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2039         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2040         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2041
2042         /* Fill in the request block... */
2043
2044         c->Request.Timeout = 0;
2045         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2046         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2047         c->Request.CDBLen = cmd->cmd_len;
2048         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2049         c->Request.Type.Type = TYPE_CMD;
2050         c->Request.Type.Attribute = ATTR_SIMPLE;
2051         switch (cmd->sc_data_direction) {
2052         case DMA_TO_DEVICE:
2053                 c->Request.Type.Direction = XFER_WRITE;
2054                 break;
2055         case DMA_FROM_DEVICE:
2056                 c->Request.Type.Direction = XFER_READ;
2057                 break;
2058         case DMA_NONE:
2059                 c->Request.Type.Direction = XFER_NONE;
2060                 break;
2061         case DMA_BIDIRECTIONAL:
2062                 /* This can happen if a buggy application does a scsi passthru
2063                  * and sets both inlen and outlen to non-zero. ( see
2064                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2065                  */
2066
2067                 c->Request.Type.Direction = XFER_RSVD;
2068                 /* This is technically wrong, and hpsa controllers should
2069                  * reject it with CMD_INVALID, which is the most correct
2070                  * response, but non-fibre backends appear to let it
2071                  * slide by, and give the same results as if this field
2072                  * were set correctly.  Either way is acceptable for
2073                  * our purposes here.
2074                  */
2075
2076                 break;
2077
2078         default:
2079                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2080                         cmd->sc_data_direction);
2081                 BUG();
2082                 break;
2083         }
2084
2085         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2086                 cmd_free(h, c);
2087                 return SCSI_MLQUEUE_HOST_BUSY;
2088         }
2089         enqueue_cmd_and_start_io(h, c);
2090         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2091         return 0;
2092 }
2093
2094 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2095
2096 static void hpsa_scan_start(struct Scsi_Host *sh)
2097 {
2098         struct ctlr_info *h = shost_to_hba(sh);
2099         unsigned long flags;
2100
2101         /* wait until any scan already in progress is finished. */
2102         while (1) {
2103                 spin_lock_irqsave(&h->scan_lock, flags);
2104                 if (h->scan_finished)
2105                         break;
2106                 spin_unlock_irqrestore(&h->scan_lock, flags);
2107                 wait_event(h->scan_wait_queue, h->scan_finished);
2108                 /* Note: We don't need to worry about a race between this
2109                  * thread and driver unload because the midlayer will
2110                  * have incremented the reference count, so unload won't
2111                  * happen if we're in here.
2112                  */
2113         }
2114         h->scan_finished = 0; /* mark scan as in progress */
2115         spin_unlock_irqrestore(&h->scan_lock, flags);
2116
2117         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2118
2119         spin_lock_irqsave(&h->scan_lock, flags);
2120         h->scan_finished = 1; /* mark scan as finished. */
2121         wake_up_all(&h->scan_wait_queue);
2122         spin_unlock_irqrestore(&h->scan_lock, flags);
2123 }
2124
2125 static int hpsa_scan_finished(struct Scsi_Host *sh,
2126         unsigned long elapsed_time)
2127 {
2128         struct ctlr_info *h = shost_to_hba(sh);
2129         unsigned long flags;
2130         int finished;
2131
2132         spin_lock_irqsave(&h->scan_lock, flags);
2133         finished = h->scan_finished;
2134         spin_unlock_irqrestore(&h->scan_lock, flags);
2135         return finished;
2136 }
2137
2138 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2139         int qdepth, int reason)
2140 {
2141         struct ctlr_info *h = sdev_to_hba(sdev);
2142
2143         if (reason != SCSI_QDEPTH_DEFAULT)
2144                 return -ENOTSUPP;
2145
2146         if (qdepth < 1)
2147                 qdepth = 1;
2148         else
2149                 if (qdepth > h->nr_cmds)
2150                         qdepth = h->nr_cmds;
2151         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2152         return sdev->queue_depth;
2153 }
2154
2155 static void hpsa_unregister_scsi(struct ctlr_info *h)
2156 {
2157         /* we are being forcibly unloaded, and may not refuse. */
2158         scsi_remove_host(h->scsi_host);
2159         scsi_host_put(h->scsi_host);
2160         h->scsi_host = NULL;
2161 }
2162
2163 static int hpsa_register_scsi(struct ctlr_info *h)
2164 {
2165         struct Scsi_Host *sh;
2166         int error;
2167
2168         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2169         if (sh == NULL)
2170                 goto fail;
2171
2172         sh->io_port = 0;
2173         sh->n_io_port = 0;
2174         sh->this_id = -1;
2175         sh->max_channel = 3;
2176         sh->max_cmd_len = MAX_COMMAND_SIZE;
2177         sh->max_lun = HPSA_MAX_LUN;
2178         sh->max_id = HPSA_MAX_LUN;
2179         sh->can_queue = h->nr_cmds;
2180         sh->cmd_per_lun = h->nr_cmds;
2181         sh->sg_tablesize = h->maxsgentries;
2182         h->scsi_host = sh;
2183         sh->hostdata[0] = (unsigned long) h;
2184         sh->irq = h->intr[h->intr_mode];
2185         sh->unique_id = sh->irq;
2186         error = scsi_add_host(sh, &h->pdev->dev);
2187         if (error)
2188                 goto fail_host_put;
2189         scsi_scan_host(sh);
2190         return 0;
2191
2192  fail_host_put:
2193         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2194                 " failed for controller %d\n", __func__, h->ctlr);
2195         scsi_host_put(sh);
2196         return error;
2197  fail:
2198         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2199                 " failed for controller %d\n", __func__, h->ctlr);
2200         return -ENOMEM;
2201 }
2202
2203 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2204         unsigned char lunaddr[])
2205 {
2206         int rc = 0;
2207         int count = 0;
2208         int waittime = 1; /* seconds */
2209         struct CommandList *c;
2210
2211         c = cmd_special_alloc(h);
2212         if (!c) {
2213                 dev_warn(&h->pdev->dev, "out of memory in "
2214                         "wait_for_device_to_become_ready.\n");
2215                 return IO_ERROR;
2216         }
2217
2218         /* Send test unit ready until device ready, or give up. */
2219         while (count < HPSA_TUR_RETRY_LIMIT) {
2220
2221                 /* Wait for a bit.  do this first, because if we send
2222                  * the TUR right away, the reset will just abort it.
2223                  */
2224                 msleep(1000 * waittime);
2225                 count++;
2226
2227                 /* Increase wait time with each try, up to a point. */
2228                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2229                         waittime = waittime * 2;
2230
2231                 /* Send the Test Unit Ready */
2232                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2233                 hpsa_scsi_do_simple_cmd_core(h, c);
2234                 /* no unmap needed here because no data xfer. */
2235
2236                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2237                         break;
2238
2239                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2240                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2241                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2242                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2243                         break;
2244
2245                 dev_warn(&h->pdev->dev, "waiting %d secs "
2246                         "for device to become ready.\n", waittime);
2247                 rc = 1; /* device not ready. */
2248         }
2249
2250         if (rc)
2251                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2252         else
2253                 dev_warn(&h->pdev->dev, "device is ready.\n");
2254
2255         cmd_special_free(h, c);
2256         return rc;
2257 }
2258
2259 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2260  * complaining.  Doing a host- or bus-reset can't do anything good here.
2261  */
2262 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2263 {
2264         int rc;
2265         struct ctlr_info *h;
2266         struct hpsa_scsi_dev_t *dev;
2267
2268         /* find the controller to which the command to be aborted was sent */
2269         h = sdev_to_hba(scsicmd->device);
2270         if (h == NULL) /* paranoia */
2271                 return FAILED;
2272         dev = scsicmd->device->hostdata;
2273         if (!dev) {
2274                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2275                         "device lookup failed.\n");
2276                 return FAILED;
2277         }
2278         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2279                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2280         /* send a reset to the SCSI LUN which the command was sent to */
2281         rc = hpsa_send_reset(h, dev->scsi3addr);
2282         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2283                 return SUCCESS;
2284
2285         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2286         return FAILED;
2287 }
2288
2289 /*
2290  * For operations that cannot sleep, a command block is allocated at init,
2291  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2292  * which ones are free or in use.  Lock must be held when calling this.
2293  * cmd_free() is the complement.
2294  */
2295 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2296 {
2297         struct CommandList *c;
2298         int i;
2299         union u64bit temp64;
2300         dma_addr_t cmd_dma_handle, err_dma_handle;
2301
2302         do {
2303                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2304                 if (i == h->nr_cmds)
2305                         return NULL;
2306         } while (test_and_set_bit
2307                  (i & (BITS_PER_LONG - 1),
2308                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2309         c = h->cmd_pool + i;
2310         memset(c, 0, sizeof(*c));
2311         cmd_dma_handle = h->cmd_pool_dhandle
2312             + i * sizeof(*c);
2313         c->err_info = h->errinfo_pool + i;
2314         memset(c->err_info, 0, sizeof(*c->err_info));
2315         err_dma_handle = h->errinfo_pool_dhandle
2316             + i * sizeof(*c->err_info);
2317         h->nr_allocs++;
2318
2319         c->cmdindex = i;
2320
2321         INIT_LIST_HEAD(&c->list);
2322         c->busaddr = (u32) cmd_dma_handle;
2323         temp64.val = (u64) err_dma_handle;
2324         c->ErrDesc.Addr.lower = temp64.val32.lower;
2325         c->ErrDesc.Addr.upper = temp64.val32.upper;
2326         c->ErrDesc.Len = sizeof(*c->err_info);
2327
2328         c->h = h;
2329         return c;
2330 }
2331
2332 /* For operations that can wait for kmalloc to possibly sleep,
2333  * this routine can be called. Lock need not be held to call
2334  * cmd_special_alloc. cmd_special_free() is the complement.
2335  */
2336 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2337 {
2338         struct CommandList *c;
2339         union u64bit temp64;
2340         dma_addr_t cmd_dma_handle, err_dma_handle;
2341
2342         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2343         if (c == NULL)
2344                 return NULL;
2345         memset(c, 0, sizeof(*c));
2346
2347         c->cmdindex = -1;
2348
2349         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2350                     &err_dma_handle);
2351
2352         if (c->err_info == NULL) {
2353                 pci_free_consistent(h->pdev,
2354                         sizeof(*c), c, cmd_dma_handle);
2355                 return NULL;
2356         }
2357         memset(c->err_info, 0, sizeof(*c->err_info));
2358
2359         INIT_LIST_HEAD(&c->list);
2360         c->busaddr = (u32) cmd_dma_handle;
2361         temp64.val = (u64) err_dma_handle;
2362         c->ErrDesc.Addr.lower = temp64.val32.lower;
2363         c->ErrDesc.Addr.upper = temp64.val32.upper;
2364         c->ErrDesc.Len = sizeof(*c->err_info);
2365
2366         c->h = h;
2367         return c;
2368 }
2369
2370 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2371 {
2372         int i;
2373
2374         i = c - h->cmd_pool;
2375         clear_bit(i & (BITS_PER_LONG - 1),
2376                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2377         h->nr_frees++;
2378 }
2379
2380 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2381 {
2382         union u64bit temp64;
2383
2384         temp64.val32.lower = c->ErrDesc.Addr.lower;
2385         temp64.val32.upper = c->ErrDesc.Addr.upper;
2386         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2387                             c->err_info, (dma_addr_t) temp64.val);
2388         pci_free_consistent(h->pdev, sizeof(*c),
2389                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2390 }
2391
2392 #ifdef CONFIG_COMPAT
2393
2394 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2395 {
2396         IOCTL32_Command_struct __user *arg32 =
2397             (IOCTL32_Command_struct __user *) arg;
2398         IOCTL_Command_struct arg64;
2399         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2400         int err;
2401         u32 cp;
2402
2403         memset(&arg64, 0, sizeof(arg64));
2404         err = 0;
2405         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2406                            sizeof(arg64.LUN_info));
2407         err |= copy_from_user(&arg64.Request, &arg32->Request,
2408                            sizeof(arg64.Request));
2409         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2410                            sizeof(arg64.error_info));
2411         err |= get_user(arg64.buf_size, &arg32->buf_size);
2412         err |= get_user(cp, &arg32->buf);
2413         arg64.buf = compat_ptr(cp);
2414         err |= copy_to_user(p, &arg64, sizeof(arg64));
2415
2416         if (err)
2417                 return -EFAULT;
2418
2419         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2420         if (err)
2421                 return err;
2422         err |= copy_in_user(&arg32->error_info, &p->error_info,
2423                          sizeof(arg32->error_info));
2424         if (err)
2425                 return -EFAULT;
2426         return err;
2427 }
2428
2429 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2430         int cmd, void *arg)
2431 {
2432         BIG_IOCTL32_Command_struct __user *arg32 =
2433             (BIG_IOCTL32_Command_struct __user *) arg;
2434         BIG_IOCTL_Command_struct arg64;
2435         BIG_IOCTL_Command_struct __user *p =
2436             compat_alloc_user_space(sizeof(arg64));
2437         int err;
2438         u32 cp;
2439
2440         memset(&arg64, 0, sizeof(arg64));
2441         err = 0;
2442         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2443                            sizeof(arg64.LUN_info));
2444         err |= copy_from_user(&arg64.Request, &arg32->Request,
2445                            sizeof(arg64.Request));
2446         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2447                            sizeof(arg64.error_info));
2448         err |= get_user(arg64.buf_size, &arg32->buf_size);
2449         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2450         err |= get_user(cp, &arg32->buf);
2451         arg64.buf = compat_ptr(cp);
2452         err |= copy_to_user(p, &arg64, sizeof(arg64));
2453
2454         if (err)
2455                 return -EFAULT;
2456
2457         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2458         if (err)
2459                 return err;
2460         err |= copy_in_user(&arg32->error_info, &p->error_info,
2461                          sizeof(arg32->error_info));
2462         if (err)
2463                 return -EFAULT;
2464         return err;
2465 }
2466
2467 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2468 {
2469         switch (cmd) {
2470         case CCISS_GETPCIINFO:
2471         case CCISS_GETINTINFO:
2472         case CCISS_SETINTINFO:
2473         case CCISS_GETNODENAME:
2474         case CCISS_SETNODENAME:
2475         case CCISS_GETHEARTBEAT:
2476         case CCISS_GETBUSTYPES:
2477         case CCISS_GETFIRMVER:
2478         case CCISS_GETDRIVVER:
2479         case CCISS_REVALIDVOLS:
2480         case CCISS_DEREGDISK:
2481         case CCISS_REGNEWDISK:
2482         case CCISS_REGNEWD:
2483         case CCISS_RESCANDISK:
2484         case CCISS_GETLUNINFO:
2485                 return hpsa_ioctl(dev, cmd, arg);
2486
2487         case CCISS_PASSTHRU32:
2488                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2489         case CCISS_BIG_PASSTHRU32:
2490                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2491
2492         default:
2493                 return -ENOIOCTLCMD;
2494         }
2495 }
2496 #endif
2497
2498 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2499 {
2500         struct hpsa_pci_info pciinfo;
2501
2502         if (!argp)
2503                 return -EINVAL;
2504         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2505         pciinfo.bus = h->pdev->bus->number;
2506         pciinfo.dev_fn = h->pdev->devfn;
2507         pciinfo.board_id = h->board_id;
2508         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2509                 return -EFAULT;
2510         return 0;
2511 }
2512
2513 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2514 {
2515         DriverVer_type DriverVer;
2516         unsigned char vmaj, vmin, vsubmin;
2517         int rc;
2518
2519         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2520                 &vmaj, &vmin, &vsubmin);
2521         if (rc != 3) {
2522                 dev_info(&h->pdev->dev, "driver version string '%s' "
2523                         "unrecognized.", HPSA_DRIVER_VERSION);
2524                 vmaj = 0;
2525                 vmin = 0;
2526                 vsubmin = 0;
2527         }
2528         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2529         if (!argp)
2530                 return -EINVAL;
2531         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2532                 return -EFAULT;
2533         return 0;
2534 }
2535
2536 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2537 {
2538         IOCTL_Command_struct iocommand;
2539         struct CommandList *c;
2540         char *buff = NULL;
2541         union u64bit temp64;
2542
2543         if (!argp)
2544                 return -EINVAL;
2545         if (!capable(CAP_SYS_RAWIO))
2546                 return -EPERM;
2547         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2548                 return -EFAULT;
2549         if ((iocommand.buf_size < 1) &&
2550             (iocommand.Request.Type.Direction != XFER_NONE)) {
2551                 return -EINVAL;
2552         }
2553         if (iocommand.buf_size > 0) {
2554                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2555                 if (buff == NULL)
2556                         return -EFAULT;
2557                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2558                         /* Copy the data into the buffer we created */
2559                         if (copy_from_user(buff, iocommand.buf,
2560                                 iocommand.buf_size)) {
2561                                 kfree(buff);
2562                                 return -EFAULT;
2563                         }
2564                 } else {
2565                         memset(buff, 0, iocommand.buf_size);
2566                 }
2567         }
2568         c = cmd_special_alloc(h);
2569         if (c == NULL) {
2570                 kfree(buff);
2571                 return -ENOMEM;
2572         }
2573         /* Fill in the command type */
2574         c->cmd_type = CMD_IOCTL_PEND;
2575         /* Fill in Command Header */
2576         c->Header.ReplyQueue = 0; /* unused in simple mode */
2577         if (iocommand.buf_size > 0) {   /* buffer to fill */
2578                 c->Header.SGList = 1;
2579                 c->Header.SGTotal = 1;
2580         } else  { /* no buffers to fill */
2581                 c->Header.SGList = 0;
2582                 c->Header.SGTotal = 0;
2583         }
2584         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2585         /* use the kernel address the cmd block for tag */
2586         c->Header.Tag.lower = c->busaddr;
2587
2588         /* Fill in Request block */
2589         memcpy(&c->Request, &iocommand.Request,
2590                 sizeof(c->Request));
2591
2592         /* Fill in the scatter gather information */
2593         if (iocommand.buf_size > 0) {
2594                 temp64.val = pci_map_single(h->pdev, buff,
2595                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2596                 c->SG[0].Addr.lower = temp64.val32.lower;
2597                 c->SG[0].Addr.upper = temp64.val32.upper;
2598                 c->SG[0].Len = iocommand.buf_size;
2599                 c->SG[0].Ext = 0; /* we are not chaining*/
2600         }
2601         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2602         if (iocommand.buf_size > 0)
2603                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2604         check_ioctl_unit_attention(h, c);
2605
2606         /* Copy the error information out */
2607         memcpy(&iocommand.error_info, c->err_info,
2608                 sizeof(iocommand.error_info));
2609         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2610                 kfree(buff);
2611                 cmd_special_free(h, c);
2612                 return -EFAULT;
2613         }
2614         if (iocommand.Request.Type.Direction == XFER_READ &&
2615                 iocommand.buf_size > 0) {
2616                 /* Copy the data out of the buffer we created */
2617                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2618                         kfree(buff);
2619                         cmd_special_free(h, c);
2620                         return -EFAULT;
2621                 }
2622         }
2623         kfree(buff);
2624         cmd_special_free(h, c);
2625         return 0;
2626 }
2627
2628 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2629 {
2630         BIG_IOCTL_Command_struct *ioc;
2631         struct CommandList *c;
2632         unsigned char **buff = NULL;
2633         int *buff_size = NULL;
2634         union u64bit temp64;
2635         BYTE sg_used = 0;
2636         int status = 0;
2637         int i;
2638         u32 left;
2639         u32 sz;
2640         BYTE __user *data_ptr;
2641
2642         if (!argp)
2643                 return -EINVAL;
2644         if (!capable(CAP_SYS_RAWIO))
2645                 return -EPERM;
2646         ioc = (BIG_IOCTL_Command_struct *)
2647             kmalloc(sizeof(*ioc), GFP_KERNEL);
2648         if (!ioc) {
2649                 status = -ENOMEM;
2650                 goto cleanup1;
2651         }
2652         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2653                 status = -EFAULT;
2654                 goto cleanup1;
2655         }
2656         if ((ioc->buf_size < 1) &&
2657             (ioc->Request.Type.Direction != XFER_NONE)) {
2658                 status = -EINVAL;
2659                 goto cleanup1;
2660         }
2661         /* Check kmalloc limits  using all SGs */
2662         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2663                 status = -EINVAL;
2664                 goto cleanup1;
2665         }
2666         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2667                 status = -EINVAL;
2668                 goto cleanup1;
2669         }
2670         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2671         if (!buff) {
2672                 status = -ENOMEM;
2673                 goto cleanup1;
2674         }
2675         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2676         if (!buff_size) {
2677                 status = -ENOMEM;
2678                 goto cleanup1;
2679         }
2680         left = ioc->buf_size;
2681         data_ptr = ioc->buf;
2682         while (left) {
2683                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2684                 buff_size[sg_used] = sz;
2685                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2686                 if (buff[sg_used] == NULL) {
2687                         status = -ENOMEM;
2688                         goto cleanup1;
2689                 }
2690                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2691                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2692                                 status = -ENOMEM;
2693                                 goto cleanup1;
2694                         }
2695                 } else
2696                         memset(buff[sg_used], 0, sz);
2697                 left -= sz;
2698                 data_ptr += sz;
2699                 sg_used++;
2700         }
2701         c = cmd_special_alloc(h);
2702         if (c == NULL) {
2703                 status = -ENOMEM;
2704                 goto cleanup1;
2705         }
2706         c->cmd_type = CMD_IOCTL_PEND;
2707         c->Header.ReplyQueue = 0;
2708         c->Header.SGList = c->Header.SGTotal = sg_used;
2709         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2710         c->Header.Tag.lower = c->busaddr;
2711         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2712         if (ioc->buf_size > 0) {
2713                 int i;
2714                 for (i = 0; i < sg_used; i++) {
2715                         temp64.val = pci_map_single(h->pdev, buff[i],
2716                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2717                         c->SG[i].Addr.lower = temp64.val32.lower;
2718                         c->SG[i].Addr.upper = temp64.val32.upper;
2719                         c->SG[i].Len = buff_size[i];
2720                         /* we are not chaining */
2721                         c->SG[i].Ext = 0;
2722                 }
2723         }
2724         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2725         if (sg_used)
2726                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2727         check_ioctl_unit_attention(h, c);
2728         /* Copy the error information out */
2729         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2730         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2731                 cmd_special_free(h, c);
2732                 status = -EFAULT;
2733                 goto cleanup1;
2734         }
2735         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2736                 /* Copy the data out of the buffer we created */
2737                 BYTE __user *ptr = ioc->buf;
2738                 for (i = 0; i < sg_used; i++) {
2739                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2740                                 cmd_special_free(h, c);
2741                                 status = -EFAULT;
2742                                 goto cleanup1;
2743                         }
2744                         ptr += buff_size[i];
2745                 }
2746         }
2747         cmd_special_free(h, c);
2748         status = 0;
2749 cleanup1:
2750         if (buff) {
2751                 for (i = 0; i < sg_used; i++)
2752                         kfree(buff[i]);
2753                 kfree(buff);
2754         }
2755         kfree(buff_size);
2756         kfree(ioc);
2757         return status;
2758 }
2759
2760 static void check_ioctl_unit_attention(struct ctlr_info *h,
2761         struct CommandList *c)
2762 {
2763         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2764                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2765                 (void) check_for_unit_attention(h, c);
2766 }
2767 /*
2768  * ioctl
2769  */
2770 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2771 {
2772         struct ctlr_info *h;
2773         void __user *argp = (void __user *)arg;
2774
2775         h = sdev_to_hba(dev);
2776
2777         switch (cmd) {
2778         case CCISS_DEREGDISK:
2779         case CCISS_REGNEWDISK:
2780         case CCISS_REGNEWD:
2781                 hpsa_scan_start(h->scsi_host);
2782                 return 0;
2783         case CCISS_GETPCIINFO:
2784                 return hpsa_getpciinfo_ioctl(h, argp);
2785         case CCISS_GETDRIVVER:
2786                 return hpsa_getdrivver_ioctl(h, argp);
2787         case CCISS_PASSTHRU:
2788                 return hpsa_passthru_ioctl(h, argp);
2789         case CCISS_BIG_PASSTHRU:
2790                 return hpsa_big_passthru_ioctl(h, argp);
2791         default:
2792                 return -ENOTTY;
2793         }
2794 }
2795
2796 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2797         unsigned char *scsi3addr, u8 reset_type)
2798 {
2799         struct CommandList *c;
2800
2801         c = cmd_alloc(h);
2802         if (!c)
2803                 return -ENOMEM;
2804         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2805                 RAID_CTLR_LUNID, TYPE_MSG);
2806         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2807         c->waiting = NULL;
2808         enqueue_cmd_and_start_io(h, c);
2809         /* Don't wait for completion, the reset won't complete.  Don't free
2810          * the command either.  This is the last command we will send before
2811          * re-initializing everything, so it doesn't matter and won't leak.
2812          */
2813         return 0;
2814 }
2815
2816 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2817         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2818         int cmd_type)
2819 {
2820         int pci_dir = XFER_NONE;
2821
2822         c->cmd_type = CMD_IOCTL_PEND;
2823         c->Header.ReplyQueue = 0;
2824         if (buff != NULL && size > 0) {
2825                 c->Header.SGList = 1;
2826                 c->Header.SGTotal = 1;
2827         } else {
2828                 c->Header.SGList = 0;
2829                 c->Header.SGTotal = 0;
2830         }
2831         c->Header.Tag.lower = c->busaddr;
2832         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2833
2834         c->Request.Type.Type = cmd_type;
2835         if (cmd_type == TYPE_CMD) {
2836                 switch (cmd) {
2837                 case HPSA_INQUIRY:
2838                         /* are we trying to read a vital product page */
2839                         if (page_code != 0) {
2840                                 c->Request.CDB[1] = 0x01;
2841                                 c->Request.CDB[2] = page_code;
2842                         }
2843                         c->Request.CDBLen = 6;
2844                         c->Request.Type.Attribute = ATTR_SIMPLE;
2845                         c->Request.Type.Direction = XFER_READ;
2846                         c->Request.Timeout = 0;
2847                         c->Request.CDB[0] = HPSA_INQUIRY;
2848                         c->Request.CDB[4] = size & 0xFF;
2849                         break;
2850                 case HPSA_REPORT_LOG:
2851                 case HPSA_REPORT_PHYS:
2852                         /* Talking to controller so It's a physical command
2853                            mode = 00 target = 0.  Nothing to write.
2854                          */
2855                         c->Request.CDBLen = 12;
2856                         c->Request.Type.Attribute = ATTR_SIMPLE;
2857                         c->Request.Type.Direction = XFER_READ;
2858                         c->Request.Timeout = 0;
2859                         c->Request.CDB[0] = cmd;
2860                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2861                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2862                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2863                         c->Request.CDB[9] = size & 0xFF;
2864                         break;
2865                 case HPSA_CACHE_FLUSH:
2866                         c->Request.CDBLen = 12;
2867                         c->Request.Type.Attribute = ATTR_SIMPLE;
2868                         c->Request.Type.Direction = XFER_WRITE;
2869                         c->Request.Timeout = 0;
2870                         c->Request.CDB[0] = BMIC_WRITE;
2871                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2872                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2873                         c->Request.CDB[8] = size & 0xFF;
2874                         break;
2875                 case TEST_UNIT_READY:
2876                         c->Request.CDBLen = 6;
2877                         c->Request.Type.Attribute = ATTR_SIMPLE;
2878                         c->Request.Type.Direction = XFER_NONE;
2879                         c->Request.Timeout = 0;
2880                         break;
2881                 default:
2882                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2883                         BUG();
2884                         return;
2885                 }
2886         } else if (cmd_type == TYPE_MSG) {
2887                 switch (cmd) {
2888
2889                 case  HPSA_DEVICE_RESET_MSG:
2890                         c->Request.CDBLen = 16;
2891                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2892                         c->Request.Type.Attribute = ATTR_SIMPLE;
2893                         c->Request.Type.Direction = XFER_NONE;
2894                         c->Request.Timeout = 0; /* Don't time out */
2895                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2896                         c->Request.CDB[0] =  cmd;
2897                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2898                         /* If bytes 4-7 are zero, it means reset the */
2899                         /* LunID device */
2900                         c->Request.CDB[4] = 0x00;
2901                         c->Request.CDB[5] = 0x00;
2902                         c->Request.CDB[6] = 0x00;
2903                         c->Request.CDB[7] = 0x00;
2904                 break;
2905
2906                 default:
2907                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2908                                 cmd);
2909                         BUG();
2910                 }
2911         } else {
2912                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2913                 BUG();
2914         }
2915
2916         switch (c->Request.Type.Direction) {
2917         case XFER_READ:
2918                 pci_dir = PCI_DMA_FROMDEVICE;
2919                 break;
2920         case XFER_WRITE:
2921                 pci_dir = PCI_DMA_TODEVICE;
2922                 break;
2923         case XFER_NONE:
2924                 pci_dir = PCI_DMA_NONE;
2925                 break;
2926         default:
2927                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2928         }
2929
2930         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2931
2932         return;
2933 }
2934
2935 /*
2936  * Map (physical) PCI mem into (virtual) kernel space
2937  */
2938 static void __iomem *remap_pci_mem(ulong base, ulong size)
2939 {
2940         ulong page_base = ((ulong) base) & PAGE_MASK;
2941         ulong page_offs = ((ulong) base) - page_base;
2942         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2943
2944         return page_remapped ? (page_remapped + page_offs) : NULL;
2945 }
2946
2947 /* Takes cmds off the submission queue and sends them to the hardware,
2948  * then puts them on the queue of cmds waiting for completion.
2949  */
2950 static void start_io(struct ctlr_info *h)
2951 {
2952         struct CommandList *c;
2953
2954         while (!list_empty(&h->reqQ)) {
2955                 c = list_entry(h->reqQ.next, struct CommandList, list);
2956                 /* can't do anything if fifo is full */
2957                 if ((h->access.fifo_full(h))) {
2958                         dev_warn(&h->pdev->dev, "fifo full\n");
2959                         break;
2960                 }
2961
2962                 /* Get the first entry from the Request Q */
2963                 removeQ(c);
2964                 h->Qdepth--;
2965
2966                 /* Tell the controller execute command */
2967                 h->access.submit_command(h, c);
2968
2969                 /* Put job onto the completed Q */
2970                 addQ(&h->cmpQ, c);
2971         }
2972 }
2973
2974 static inline unsigned long get_next_completion(struct ctlr_info *h)
2975 {
2976         return h->access.command_completed(h);
2977 }
2978
2979 static inline bool interrupt_pending(struct ctlr_info *h)
2980 {
2981         return h->access.intr_pending(h);
2982 }
2983
2984 static inline long interrupt_not_for_us(struct ctlr_info *h)
2985 {
2986         return (h->access.intr_pending(h) == 0) ||
2987                 (h->interrupts_enabled == 0);
2988 }
2989
2990 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2991         u32 raw_tag)
2992 {
2993         if (unlikely(tag_index >= h->nr_cmds)) {
2994                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2995                 return 1;
2996         }
2997         return 0;
2998 }
2999
3000 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3001 {
3002         removeQ(c);
3003         if (likely(c->cmd_type == CMD_SCSI))
3004                 complete_scsi_command(c);
3005         else if (c->cmd_type == CMD_IOCTL_PEND)
3006                 complete(c->waiting);
3007 }
3008
3009 static inline u32 hpsa_tag_contains_index(u32 tag)
3010 {
3011         return tag & DIRECT_LOOKUP_BIT;
3012 }
3013
3014 static inline u32 hpsa_tag_to_index(u32 tag)
3015 {
3016         return tag >> DIRECT_LOOKUP_SHIFT;
3017 }
3018
3019
3020 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3021 {
3022 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3023 #define HPSA_SIMPLE_ERROR_BITS 0x03
3024         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3025                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3026         return tag & ~HPSA_PERF_ERROR_BITS;
3027 }
3028
3029 /* process completion of an indexed ("direct lookup") command */
3030 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3031         u32 raw_tag)
3032 {
3033         u32 tag_index;
3034         struct CommandList *c;
3035
3036         tag_index = hpsa_tag_to_index(raw_tag);
3037         if (bad_tag(h, tag_index, raw_tag))
3038                 return next_command(h);
3039         c = h->cmd_pool + tag_index;
3040         finish_cmd(c, raw_tag);
3041         return next_command(h);
3042 }
3043
3044 /* process completion of a non-indexed command */
3045 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3046         u32 raw_tag)
3047 {
3048         u32 tag;
3049         struct CommandList *c = NULL;
3050
3051         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3052         list_for_each_entry(c, &h->cmpQ, list) {
3053                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3054                         finish_cmd(c, raw_tag);
3055                         return next_command(h);
3056                 }
3057         }
3058         bad_tag(h, h->nr_cmds + 1, raw_tag);
3059         return next_command(h);
3060 }
3061
3062 /* Some controllers, like p400, will give us one interrupt
3063  * after a soft reset, even if we turned interrupts off.
3064  * Only need to check for this in the hpsa_xxx_discard_completions
3065  * functions.
3066  */
3067 static int ignore_bogus_interrupt(struct ctlr_info *h)
3068 {
3069         if (likely(!reset_devices))
3070                 return 0;
3071
3072         if (likely(h->interrupts_enabled))
3073                 return 0;
3074
3075         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3076                 "(known firmware bug.)  Ignoring.\n");
3077
3078         return 1;
3079 }
3080
3081 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3082 {
3083         struct ctlr_info *h = dev_id;
3084         unsigned long flags;
3085         u32 raw_tag;
3086
3087         if (ignore_bogus_interrupt(h))
3088                 return IRQ_NONE;
3089
3090         if (interrupt_not_for_us(h))
3091                 return IRQ_NONE;
3092         spin_lock_irqsave(&h->lock, flags);
3093         h->last_intr_timestamp = get_jiffies_64();
3094         while (interrupt_pending(h)) {
3095                 raw_tag = get_next_completion(h);
3096                 while (raw_tag != FIFO_EMPTY)
3097                         raw_tag = next_command(h);
3098         }
3099         spin_unlock_irqrestore(&h->lock, flags);
3100         return IRQ_HANDLED;
3101 }
3102
3103 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3104 {
3105         struct ctlr_info *h = dev_id;
3106         unsigned long flags;
3107         u32 raw_tag;
3108
3109         if (ignore_bogus_interrupt(h))
3110                 return IRQ_NONE;
3111
3112         spin_lock_irqsave(&h->lock, flags);
3113         h->last_intr_timestamp = get_jiffies_64();
3114         raw_tag = get_next_completion(h);
3115         while (raw_tag != FIFO_EMPTY)
3116                 raw_tag = next_command(h);
3117         spin_unlock_irqrestore(&h->lock, flags);
3118         return IRQ_HANDLED;
3119 }
3120
3121 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3122 {
3123         struct ctlr_info *h = dev_id;
3124         unsigned long flags;
3125         u32 raw_tag;
3126
3127         if (interrupt_not_for_us(h))
3128                 return IRQ_NONE;
3129         spin_lock_irqsave(&h->lock, flags);
3130         h->last_intr_timestamp = get_jiffies_64();
3131         while (interrupt_pending(h)) {
3132                 raw_tag = get_next_completion(h);
3133                 while (raw_tag != FIFO_EMPTY) {
3134                         if (hpsa_tag_contains_index(raw_tag))
3135                                 raw_tag = process_indexed_cmd(h, raw_tag);
3136                         else
3137                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3138                 }
3139         }
3140         spin_unlock_irqrestore(&h->lock, flags);
3141         return IRQ_HANDLED;
3142 }
3143
3144 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3145 {
3146         struct ctlr_info *h = dev_id;
3147         unsigned long flags;
3148         u32 raw_tag;
3149
3150         spin_lock_irqsave(&h->lock, flags);
3151         h->last_intr_timestamp = get_jiffies_64();
3152         raw_tag = get_next_completion(h);
3153         while (raw_tag != FIFO_EMPTY) {
3154                 if (hpsa_tag_contains_index(raw_tag))
3155                         raw_tag = process_indexed_cmd(h, raw_tag);
3156                 else
3157                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3158         }
3159         spin_unlock_irqrestore(&h->lock, flags);
3160         return IRQ_HANDLED;
3161 }
3162
3163 /* Send a message CDB to the firmware. Careful, this only works
3164  * in simple mode, not performant mode due to the tag lookup.
3165  * We only ever use this immediately after a controller reset.
3166  */
3167 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3168                                                 unsigned char type)
3169 {
3170         struct Command {
3171                 struct CommandListHeader CommandHeader;
3172                 struct RequestBlock Request;
3173                 struct ErrDescriptor ErrorDescriptor;
3174         };
3175         struct Command *cmd;
3176         static const size_t cmd_sz = sizeof(*cmd) +
3177                                         sizeof(cmd->ErrorDescriptor);
3178         dma_addr_t paddr64;
3179         uint32_t paddr32, tag;
3180         void __iomem *vaddr;
3181         int i, err;
3182
3183         vaddr = pci_ioremap_bar(pdev, 0);
3184         if (vaddr == NULL)
3185                 return -ENOMEM;
3186
3187         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3188          * CCISS commands, so they must be allocated from the lower 4GiB of
3189          * memory.
3190          */
3191         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3192         if (err) {
3193                 iounmap(vaddr);
3194                 return -ENOMEM;
3195         }
3196
3197         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3198         if (cmd == NULL) {
3199                 iounmap(vaddr);
3200                 return -ENOMEM;
3201         }
3202
3203         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3204          * although there's no guarantee, we assume that the address is at
3205          * least 4-byte aligned (most likely, it's page-aligned).
3206          */
3207         paddr32 = paddr64;
3208
3209         cmd->CommandHeader.ReplyQueue = 0;
3210         cmd->CommandHeader.SGList = 0;
3211         cmd->CommandHeader.SGTotal = 0;
3212         cmd->CommandHeader.Tag.lower = paddr32;
3213         cmd->CommandHeader.Tag.upper = 0;
3214         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3215
3216         cmd->Request.CDBLen = 16;
3217         cmd->Request.Type.Type = TYPE_MSG;
3218         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3219         cmd->Request.Type.Direction = XFER_NONE;
3220         cmd->Request.Timeout = 0; /* Don't time out */
3221         cmd->Request.CDB[0] = opcode;
3222         cmd->Request.CDB[1] = type;
3223         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3224         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3225         cmd->ErrorDescriptor.Addr.upper = 0;
3226         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3227
3228         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3229
3230         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3231                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3232                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3233                         break;
3234                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3235         }
3236
3237         iounmap(vaddr);
3238
3239         /* we leak the DMA buffer here ... no choice since the controller could
3240          *  still complete the command.
3241          */
3242         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3243                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3244                         opcode, type);
3245                 return -ETIMEDOUT;
3246         }
3247
3248         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3249
3250         if (tag & HPSA_ERROR_BIT) {
3251                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3252                         opcode, type);
3253                 return -EIO;
3254         }
3255
3256         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3257                 opcode, type);
3258         return 0;
3259 }
3260
3261 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3262
3263 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3264         void * __iomem vaddr, u32 use_doorbell)
3265 {
3266         u16 pmcsr;
3267         int pos;
3268
3269         if (use_doorbell) {
3270                 /* For everything after the P600, the PCI power state method
3271                  * of resetting the controller doesn't work, so we have this
3272                  * other way using the doorbell register.
3273                  */
3274                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3275                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3276         } else { /* Try to do it the PCI power state way */
3277
3278                 /* Quoting from the Open CISS Specification: "The Power
3279                  * Management Control/Status Register (CSR) controls the power
3280                  * state of the device.  The normal operating state is D0,
3281                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3282                  * the controller, place the interface device in D3 then to D0,
3283                  * this causes a secondary PCI reset which will reset the
3284                  * controller." */
3285
3286                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3287                 if (pos == 0) {
3288                         dev_err(&pdev->dev,
3289                                 "hpsa_reset_controller: "
3290                                 "PCI PM not supported\n");
3291                         return -ENODEV;
3292                 }
3293                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3294                 /* enter the D3hot power management state */
3295                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3296                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3297                 pmcsr |= PCI_D3hot;
3298                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3299
3300                 msleep(500);
3301
3302                 /* enter the D0 power management state */
3303                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3304                 pmcsr |= PCI_D0;
3305                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3306
3307                 /*
3308                  * The P600 requires a small delay when changing states.
3309                  * Otherwise we may think the board did not reset and we bail.
3310                  * This for kdump only and is particular to the P600.
3311                  */
3312                 msleep(500);
3313         }
3314         return 0;
3315 }
3316
3317 static __devinit void init_driver_version(char *driver_version, int len)
3318 {
3319         memset(driver_version, 0, len);
3320         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3321 }
3322
3323 static __devinit int write_driver_ver_to_cfgtable(
3324         struct CfgTable __iomem *cfgtable)
3325 {
3326         char *driver_version;
3327         int i, size = sizeof(cfgtable->driver_version);
3328
3329         driver_version = kmalloc(size, GFP_KERNEL);
3330         if (!driver_version)
3331                 return -ENOMEM;
3332
3333         init_driver_version(driver_version, size);
3334         for (i = 0; i < size; i++)
3335                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3336         kfree(driver_version);
3337         return 0;
3338 }
3339
3340 static __devinit void read_driver_ver_from_cfgtable(
3341         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3342 {
3343         int i;
3344
3345         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3346                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3347 }
3348
3349 static __devinit int controller_reset_failed(
3350         struct CfgTable __iomem *cfgtable)
3351 {
3352
3353         char *driver_ver, *old_driver_ver;
3354         int rc, size = sizeof(cfgtable->driver_version);
3355
3356         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3357         if (!old_driver_ver)
3358                 return -ENOMEM;
3359         driver_ver = old_driver_ver + size;
3360
3361         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3362          * should have been changed, otherwise we know the reset failed.
3363          */
3364         init_driver_version(old_driver_ver, size);
3365         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3366         rc = !memcmp(driver_ver, old_driver_ver, size);
3367         kfree(old_driver_ver);
3368         return rc;
3369 }
3370 /* This does a hard reset of the controller using PCI power management
3371  * states or the using the doorbell register.
3372  */
3373 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3374 {
3375         u64 cfg_offset;
3376         u32 cfg_base_addr;
3377         u64 cfg_base_addr_index;
3378         void __iomem *vaddr;
3379         unsigned long paddr;
3380         u32 misc_fw_support;
3381         int rc;
3382         struct CfgTable __iomem *cfgtable;
3383         u32 use_doorbell;
3384         u32 board_id;
3385         u16 command_register;
3386
3387         /* For controllers as old as the P600, this is very nearly
3388          * the same thing as
3389          *
3390          * pci_save_state(pci_dev);
3391          * pci_set_power_state(pci_dev, PCI_D3hot);
3392          * pci_set_power_state(pci_dev, PCI_D0);
3393          * pci_restore_state(pci_dev);
3394          *
3395          * For controllers newer than the P600, the pci power state
3396          * method of resetting doesn't work so we have another way
3397          * using the doorbell register.
3398          */
3399
3400         rc = hpsa_lookup_board_id(pdev, &board_id);
3401         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3402                 dev_warn(&pdev->dev, "Not resetting device.\n");
3403                 return -ENODEV;
3404         }
3405
3406         /* if controller is soft- but not hard resettable... */
3407         if (!ctlr_is_hard_resettable(board_id))
3408                 return -ENOTSUPP; /* try soft reset later. */
3409
3410         /* Save the PCI command register */
3411         pci_read_config_word(pdev, 4, &command_register);
3412         /* Turn the board off.  This is so that later pci_restore_state()
3413          * won't turn the board on before the rest of config space is ready.
3414          */
3415         pci_disable_device(pdev);
3416         pci_save_state(pdev);
3417
3418         /* find the first memory BAR, so we can find the cfg table */
3419         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3420         if (rc)
3421                 return rc;
3422         vaddr = remap_pci_mem(paddr, 0x250);
3423         if (!vaddr)
3424                 return -ENOMEM;
3425
3426         /* find cfgtable in order to check if reset via doorbell is supported */
3427         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3428                                         &cfg_base_addr_index, &cfg_offset);
3429         if (rc)
3430                 goto unmap_vaddr;
3431         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3432                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3433         if (!cfgtable) {
3434                 rc = -ENOMEM;
3435                 goto unmap_vaddr;
3436         }
3437         rc = write_driver_ver_to_cfgtable(cfgtable);
3438         if (rc)
3439                 goto unmap_vaddr;
3440
3441         /* If reset via doorbell register is supported, use that.
3442          * There are two such methods.  Favor the newest method.
3443          */
3444         misc_fw_support = readl(&cfgtable->misc_fw_support);
3445         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3446         if (use_doorbell) {
3447                 use_doorbell = DOORBELL_CTLR_RESET2;
3448         } else {
3449                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3450                 if (use_doorbell) {
3451                         dev_warn(&pdev->dev, "Soft reset not supported. "
3452                                 "Firmware update is required.\n");
3453                         rc = -ENOTSUPP; /* try soft reset */
3454                         goto unmap_cfgtable;
3455                 }
3456         }
3457
3458         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3459         if (rc)
3460                 goto unmap_cfgtable;
3461
3462         pci_restore_state(pdev);
3463         rc = pci_enable_device(pdev);
3464         if (rc) {
3465                 dev_warn(&pdev->dev, "failed to enable device.\n");
3466                 goto unmap_cfgtable;
3467         }
3468         pci_write_config_word(pdev, 4, command_register);
3469
3470         /* Some devices (notably the HP Smart Array 5i Controller)
3471            need a little pause here */
3472         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3473
3474         /* Wait for board to become not ready, then ready. */
3475         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3476         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3477         if (rc) {
3478                 dev_warn(&pdev->dev,
3479                         "failed waiting for board to reset."
3480                         " Will try soft reset.\n");
3481                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3482                 goto unmap_cfgtable;
3483         }
3484         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3485         if (rc) {
3486                 dev_warn(&pdev->dev,
3487                         "failed waiting for board to become ready "
3488                         "after hard reset\n");
3489                 goto unmap_cfgtable;
3490         }
3491
3492         rc = controller_reset_failed(vaddr);
3493         if (rc < 0)
3494                 goto unmap_cfgtable;
3495         if (rc) {
3496                 dev_warn(&pdev->dev, "Unable to successfully reset "
3497                         "controller. Will try soft reset.\n");
3498                 rc = -ENOTSUPP;
3499         } else {
3500                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3501         }
3502
3503 unmap_cfgtable:
3504         iounmap(cfgtable);
3505
3506 unmap_vaddr:
3507         iounmap(vaddr);
3508         return rc;
3509 }
3510
3511 /*
3512  *  We cannot read the structure directly, for portability we must use
3513  *   the io functions.
3514  *   This is for debug only.
3515  */
3516 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3517 {
3518 #ifdef HPSA_DEBUG
3519         int i;
3520         char temp_name[17];
3521
3522         dev_info(dev, "Controller Configuration information\n");
3523         dev_info(dev, "------------------------------------\n");
3524         for (i = 0; i < 4; i++)
3525                 temp_name[i] = readb(&(tb->Signature[i]));
3526         temp_name[4] = '\0';
3527         dev_info(dev, "   Signature = %s\n", temp_name);
3528         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3529         dev_info(dev, "   Transport methods supported = 0x%x\n",
3530                readl(&(tb->TransportSupport)));
3531         dev_info(dev, "   Transport methods active = 0x%x\n",
3532                readl(&(tb->TransportActive)));
3533         dev_info(dev, "   Requested transport Method = 0x%x\n",
3534                readl(&(tb->HostWrite.TransportRequest)));
3535         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3536                readl(&(tb->HostWrite.CoalIntDelay)));
3537         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3538                readl(&(tb->HostWrite.CoalIntCount)));
3539         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3540                readl(&(tb->CmdsOutMax)));
3541         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3542         for (i = 0; i < 16; i++)
3543                 temp_name[i] = readb(&(tb->ServerName[i]));
3544         temp_name[16] = '\0';
3545         dev_info(dev, "   Server Name = %s\n", temp_name);
3546         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3547                 readl(&(tb->HeartBeat)));
3548 #endif                          /* HPSA_DEBUG */
3549 }
3550
3551 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3552 {
3553         int i, offset, mem_type, bar_type;
3554
3555         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3556                 return 0;
3557         offset = 0;
3558         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3559                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3560                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3561                         offset += 4;
3562                 else {
3563                         mem_type = pci_resource_flags(pdev, i) &
3564                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3565                         switch (mem_type) {
3566                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3567                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3568                                 offset += 4;    /* 32 bit */
3569                                 break;
3570                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3571                                 offset += 8;
3572                                 break;
3573                         default:        /* reserved in PCI 2.2 */
3574                                 dev_warn(&pdev->dev,
3575                                        "base address is invalid\n");
3576                                 return -1;
3577                                 break;
3578                         }
3579                 }
3580                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3581                         return i + 1;
3582         }
3583         return -1;
3584 }
3585
3586 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3587  * controllers that are capable. If not, we use IO-APIC mode.
3588  */
3589
3590 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3591 {
3592 #ifdef CONFIG_PCI_MSI
3593         int err;
3594         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3595         {0, 2}, {0, 3}
3596         };
3597
3598         /* Some boards advertise MSI but don't really support it */
3599         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3600             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3601                 goto default_int_mode;
3602         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3603                 dev_info(&h->pdev->dev, "MSIX\n");
3604                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3605                 if (!err) {
3606                         h->intr[0] = hpsa_msix_entries[0].vector;
3607                         h->intr[1] = hpsa_msix_entries[1].vector;
3608                         h->intr[2] = hpsa_msix_entries[2].vector;
3609                         h->intr[3] = hpsa_msix_entries[3].vector;
3610                         h->msix_vector = 1;
3611                         return;
3612                 }
3613                 if (err > 0) {
3614                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3615                                "available\n", err);
3616                         goto default_int_mode;
3617                 } else {
3618                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3619                                err);
3620                         goto default_int_mode;
3621                 }
3622         }
3623         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3624                 dev_info(&h->pdev->dev, "MSI\n");
3625                 if (!pci_enable_msi(h->pdev))
3626                         h->msi_vector = 1;
3627                 else
3628                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3629         }
3630 default_int_mode:
3631 #endif                          /* CONFIG_PCI_MSI */
3632         /* if we get here we're going to use the default interrupt mode */
3633         h->intr[h->intr_mode] = h->pdev->irq;
3634 }
3635
3636 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3637 {
3638         int i;
3639         u32 subsystem_vendor_id, subsystem_device_id;
3640
3641         subsystem_vendor_id = pdev->subsystem_vendor;
3642         subsystem_device_id = pdev->subsystem_device;
3643         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3644                     subsystem_vendor_id;
3645
3646         for (i = 0; i < ARRAY_SIZE(products); i++)
3647                 if (*board_id == products[i].board_id)
3648                         return i;
3649
3650         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3651                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3652                 !hpsa_allow_any) {
3653                 dev_warn(&pdev->dev, "unrecognized board ID: "
3654                         "0x%08x, ignoring.\n", *board_id);
3655                         return -ENODEV;
3656         }
3657         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3658 }
3659
3660 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3661 {
3662         u16 command;
3663
3664         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3665         return ((command & PCI_COMMAND_MEMORY) == 0);
3666 }
3667
3668 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3669         unsigned long *memory_bar)
3670 {
3671         int i;
3672
3673         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3674                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3675                         /* addressing mode bits already removed */
3676                         *memory_bar = pci_resource_start(pdev, i);
3677                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3678                                 *memory_bar);
3679                         return 0;
3680                 }
3681         dev_warn(&pdev->dev, "no memory BAR found\n");
3682         return -ENODEV;
3683 }
3684
3685 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3686         void __iomem *vaddr, int wait_for_ready)
3687 {
3688         int i, iterations;
3689         u32 scratchpad;
3690         if (wait_for_ready)
3691                 iterations = HPSA_BOARD_READY_ITERATIONS;
3692         else
3693                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3694
3695         for (i = 0; i < iterations; i++) {
3696                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3697                 if (wait_for_ready) {
3698                         if (scratchpad == HPSA_FIRMWARE_READY)
3699                                 return 0;
3700                 } else {
3701                         if (scratchpad != HPSA_FIRMWARE_READY)
3702                                 return 0;
3703                 }
3704                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3705         }
3706         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3707         return -ENODEV;
3708 }
3709
3710 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3711         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3712         u64 *cfg_offset)
3713 {
3714         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3715         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3716         *cfg_base_addr &= (u32) 0x0000ffff;
3717         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3718         if (*cfg_base_addr_index == -1) {
3719                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3720                 return -ENODEV;
3721         }
3722         return 0;
3723 }
3724
3725 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3726 {
3727         u64 cfg_offset;
3728         u32 cfg_base_addr;
3729         u64 cfg_base_addr_index;
3730         u32 trans_offset;
3731         int rc;
3732
3733         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3734                 &cfg_base_addr_index, &cfg_offset);
3735         if (rc)
3736                 return rc;
3737         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3738                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3739         if (!h->cfgtable)
3740                 return -ENOMEM;
3741         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3742         if (rc)
3743                 return rc;
3744         /* Find performant mode table. */
3745         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3746         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3747                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3748                                 sizeof(*h->transtable));
3749         if (!h->transtable)
3750                 return -ENOMEM;
3751         return 0;
3752 }
3753
3754 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3755 {
3756         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3757
3758         /* Limit commands in memory limited kdump scenario. */
3759         if (reset_devices && h->max_commands > 32)
3760                 h->max_commands = 32;
3761
3762         if (h->max_commands < 16) {
3763                 dev_warn(&h->pdev->dev, "Controller reports "
3764                         "max supported commands of %d, an obvious lie. "
3765                         "Using 16.  Ensure that firmware is up to date.\n",
3766                         h->max_commands);
3767                 h->max_commands = 16;
3768         }
3769 }
3770
3771 /* Interrogate the hardware for some limits:
3772  * max commands, max SG elements without chaining, and with chaining,
3773  * SG chain block size, etc.
3774  */
3775 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3776 {
3777         hpsa_get_max_perf_mode_cmds(h);
3778         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3779         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3780         /*
3781          * Limit in-command s/g elements to 32 save dma'able memory.
3782          * Howvever spec says if 0, use 31
3783          */
3784         h->max_cmd_sg_entries = 31;
3785         if (h->maxsgentries > 512) {
3786                 h->max_cmd_sg_entries = 32;
3787                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3788                 h->maxsgentries--; /* save one for chain pointer */
3789         } else {
3790                 h->maxsgentries = 31; /* default to traditional values */
3791                 h->chainsize = 0;
3792         }
3793 }
3794
3795 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3796 {
3797         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3798             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3799             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3800             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3801                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3802                 return false;
3803         }
3804         return true;
3805 }
3806
3807 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3808 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3809 {
3810 #ifdef CONFIG_X86
3811         u32 prefetch;
3812
3813         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3814         prefetch |= 0x100;
3815         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3816 #endif
3817 }
3818
3819 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3820  * in a prefetch beyond physical memory.
3821  */
3822 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3823 {
3824         u32 dma_prefetch;
3825
3826         if (h->board_id != 0x3225103C)
3827                 return;
3828         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3829         dma_prefetch |= 0x8000;
3830         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3831 }
3832
3833 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3834 {
3835         int i;
3836         u32 doorbell_value;
3837         unsigned long flags;
3838
3839         /* under certain very rare conditions, this can take awhile.
3840          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3841          * as we enter this code.)
3842          */
3843         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3844                 spin_lock_irqsave(&h->lock, flags);
3845                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3846                 spin_unlock_irqrestore(&h->lock, flags);
3847                 if (!(doorbell_value & CFGTBL_ChangeReq))
3848                         break;
3849                 /* delay and try again */
3850                 usleep_range(10000, 20000);
3851         }
3852 }
3853
3854 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3855 {
3856         u32 trans_support;
3857
3858         trans_support = readl(&(h->cfgtable->TransportSupport));
3859         if (!(trans_support & SIMPLE_MODE))
3860                 return -ENOTSUPP;
3861
3862         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3863         /* Update the field, and then ring the doorbell */
3864         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3865         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3866         hpsa_wait_for_mode_change_ack(h);
3867         print_cfg_table(&h->pdev->dev, h->cfgtable);
3868         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3869                 dev_warn(&h->pdev->dev,
3870                         "unable to get board into simple mode\n");
3871                 return -ENODEV;
3872         }
3873         h->transMethod = CFGTBL_Trans_Simple;
3874         return 0;
3875 }
3876
3877 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3878 {
3879         int prod_index, err;
3880
3881         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3882         if (prod_index < 0)
3883                 return -ENODEV;
3884         h->product_name = products[prod_index].product_name;
3885         h->access = *(products[prod_index].access);
3886
3887         if (hpsa_board_disabled(h->pdev)) {
3888                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3889                 return -ENODEV;
3890         }
3891
3892         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3893                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3894
3895         err = pci_enable_device(h->pdev);
3896         if (err) {
3897                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3898                 return err;
3899         }
3900
3901         err = pci_request_regions(h->pdev, HPSA);
3902         if (err) {
3903                 dev_err(&h->pdev->dev,
3904                         "cannot obtain PCI resources, aborting\n");
3905                 return err;
3906         }
3907         hpsa_interrupt_mode(h);
3908         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3909         if (err)
3910                 goto err_out_free_res;
3911         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3912         if (!h->vaddr) {
3913                 err = -ENOMEM;
3914                 goto err_out_free_res;
3915         }
3916         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3917         if (err)
3918                 goto err_out_free_res;
3919         err = hpsa_find_cfgtables(h);
3920         if (err)
3921                 goto err_out_free_res;
3922         hpsa_find_board_params(h);
3923
3924         if (!hpsa_CISS_signature_present(h)) {
3925                 err = -ENODEV;
3926                 goto err_out_free_res;
3927         }
3928         hpsa_enable_scsi_prefetch(h);
3929         hpsa_p600_dma_prefetch_quirk(h);
3930         err = hpsa_enter_simple_mode(h);
3931         if (err)
3932                 goto err_out_free_res;
3933         return 0;
3934
3935 err_out_free_res:
3936         if (h->transtable)
3937                 iounmap(h->transtable);
3938         if (h->cfgtable)
3939                 iounmap(h->cfgtable);
3940         if (h->vaddr)
3941                 iounmap(h->vaddr);
3942         /*
3943          * Deliberately omit pci_disable_device(): it does something nasty to
3944          * Smart Array controllers that pci_enable_device does not undo
3945          */
3946         pci_release_regions(h->pdev);
3947         return err;
3948 }
3949
3950 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3951 {
3952         int rc;
3953
3954 #define HBA_INQUIRY_BYTE_COUNT 64
3955         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3956         if (!h->hba_inquiry_data)
3957                 return;
3958         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3959                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3960         if (rc != 0) {
3961                 kfree(h->hba_inquiry_data);
3962                 h->hba_inquiry_data = NULL;
3963         }
3964 }
3965
3966 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3967 {
3968         int rc, i;
3969
3970         if (!reset_devices)
3971                 return 0;
3972
3973         /* Reset the controller with a PCI power-cycle or via doorbell */
3974         rc = hpsa_kdump_hard_reset_controller(pdev);
3975
3976         /* -ENOTSUPP here means we cannot reset the controller
3977          * but it's already (and still) up and running in
3978          * "performant mode".  Or, it might be 640x, which can't reset
3979          * due to concerns about shared bbwc between 6402/6404 pair.
3980          */
3981         if (rc == -ENOTSUPP)
3982                 return rc; /* just try to do the kdump anyhow. */
3983         if (rc)
3984                 return -ENODEV;
3985
3986         /* Now try to get the controller to respond to a no-op */
3987         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3988         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3989                 if (hpsa_noop(pdev) == 0)
3990                         break;
3991                 else
3992                         dev_warn(&pdev->dev, "no-op failed%s\n",
3993                                         (i < 11 ? "; re-trying" : ""));
3994         }
3995         return 0;
3996 }
3997
3998 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3999 {
4000         h->cmd_pool_bits = kzalloc(
4001                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4002                 sizeof(unsigned long), GFP_KERNEL);
4003         h->cmd_pool = pci_alloc_consistent(h->pdev,
4004                     h->nr_cmds * sizeof(*h->cmd_pool),
4005                     &(h->cmd_pool_dhandle));
4006         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4007                     h->nr_cmds * sizeof(*h->errinfo_pool),
4008                     &(h->errinfo_pool_dhandle));
4009         if ((h->cmd_pool_bits == NULL)
4010             || (h->cmd_pool == NULL)
4011             || (h->errinfo_pool == NULL)) {
4012                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4013                 return -ENOMEM;
4014         }
4015         return 0;
4016 }
4017
4018 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4019 {
4020         kfree(h->cmd_pool_bits);
4021         if (h->cmd_pool)
4022                 pci_free_consistent(h->pdev,
4023                             h->nr_cmds * sizeof(struct CommandList),
4024                             h->cmd_pool, h->cmd_pool_dhandle);
4025         if (h->errinfo_pool)
4026                 pci_free_consistent(h->pdev,
4027                             h->nr_cmds * sizeof(struct ErrorInfo),
4028                             h->errinfo_pool,
4029                             h->errinfo_pool_dhandle);
4030 }
4031
4032 static int hpsa_request_irq(struct ctlr_info *h,
4033         irqreturn_t (*msixhandler)(int, void *),
4034         irqreturn_t (*intxhandler)(int, void *))
4035 {
4036         int rc;
4037
4038         if (h->msix_vector || h->msi_vector)
4039                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4040                                 0, h->devname, h);
4041         else
4042                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4043                                 IRQF_SHARED, h->devname, h);
4044         if (rc) {
4045                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4046                        h->intr[h->intr_mode], h->devname);
4047                 return -ENODEV;
4048         }
4049         return 0;
4050 }
4051
4052 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4053 {
4054         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4055                 HPSA_RESET_TYPE_CONTROLLER)) {
4056                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4057                 return -EIO;
4058         }
4059
4060         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4061         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4062                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4063                 return -1;
4064         }
4065
4066         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4067         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4068                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4069                         "after soft reset.\n");
4070                 return -1;
4071         }
4072
4073         return 0;
4074 }
4075
4076 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4077 {
4078         free_irq(h->intr[h->intr_mode], h);
4079 #ifdef CONFIG_PCI_MSI
4080         if (h->msix_vector)
4081                 pci_disable_msix(h->pdev);
4082         else if (h->msi_vector)
4083                 pci_disable_msi(h->pdev);
4084 #endif /* CONFIG_PCI_MSI */
4085         hpsa_free_sg_chain_blocks(h);
4086         hpsa_free_cmd_pool(h);
4087         kfree(h->blockFetchTable);
4088         pci_free_consistent(h->pdev, h->reply_pool_size,
4089                 h->reply_pool, h->reply_pool_dhandle);
4090         if (h->vaddr)
4091                 iounmap(h->vaddr);
4092         if (h->transtable)
4093                 iounmap(h->transtable);
4094         if (h->cfgtable)
4095                 iounmap(h->cfgtable);
4096         pci_release_regions(h->pdev);
4097         kfree(h);
4098 }
4099
4100 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4101 {
4102         assert_spin_locked(&lockup_detector_lock);
4103         if (!hpsa_lockup_detector)
4104                 return;
4105         if (h->lockup_detected)
4106                 return; /* already stopped the lockup detector */
4107         list_del(&h->lockup_list);
4108 }
4109
4110 /* Called when controller lockup detected. */
4111 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4112 {
4113         struct CommandList *c = NULL;
4114
4115         assert_spin_locked(&h->lock);
4116         /* Mark all outstanding commands as failed and complete them. */
4117         while (!list_empty(list)) {
4118                 c = list_entry(list->next, struct CommandList, list);
4119                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4120                 finish_cmd(c, c->Header.Tag.lower);
4121         }
4122 }
4123
4124 static void controller_lockup_detected(struct ctlr_info *h)
4125 {
4126         unsigned long flags;
4127
4128         assert_spin_locked(&lockup_detector_lock);
4129         remove_ctlr_from_lockup_detector_list(h);
4130         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4131         spin_lock_irqsave(&h->lock, flags);
4132         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4133         spin_unlock_irqrestore(&h->lock, flags);
4134         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4135                         h->lockup_detected);
4136         pci_disable_device(h->pdev);
4137         spin_lock_irqsave(&h->lock, flags);
4138         fail_all_cmds_on_list(h, &h->cmpQ);
4139         fail_all_cmds_on_list(h, &h->reqQ);
4140         spin_unlock_irqrestore(&h->lock, flags);
4141 }
4142
4143 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4144 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4145
4146 static void detect_controller_lockup(struct ctlr_info *h)
4147 {
4148         u64 now;
4149         u32 heartbeat;
4150         unsigned long flags;
4151
4152         assert_spin_locked(&lockup_detector_lock);
4153         now = get_jiffies_64();
4154         /* If we've received an interrupt recently, we're ok. */
4155         if (time_after64(h->last_intr_timestamp +
4156                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4157                 return;
4158
4159         /*
4160          * If we've already checked the heartbeat recently, we're ok.
4161          * This could happen if someone sends us a signal. We
4162          * otherwise don't care about signals in this thread.
4163          */
4164         if (time_after64(h->last_heartbeat_timestamp +
4165                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4166                 return;
4167
4168         /* If heartbeat has not changed since we last looked, we're not ok. */
4169         spin_lock_irqsave(&h->lock, flags);
4170         heartbeat = readl(&h->cfgtable->HeartBeat);
4171         spin_unlock_irqrestore(&h->lock, flags);
4172         if (h->last_heartbeat == heartbeat) {
4173                 controller_lockup_detected(h);
4174                 return;
4175         }
4176
4177         /* We're ok. */
4178         h->last_heartbeat = heartbeat;
4179         h->last_heartbeat_timestamp = now;
4180 }
4181
4182 static int detect_controller_lockup_thread(void *notused)
4183 {
4184         struct ctlr_info *h;
4185         unsigned long flags;
4186
4187         while (1) {
4188                 struct list_head *this, *tmp;
4189
4190                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4191                 if (kthread_should_stop())
4192                         break;
4193                 spin_lock_irqsave(&lockup_detector_lock, flags);
4194                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4195                         h = list_entry(this, struct ctlr_info, lockup_list);
4196                         detect_controller_lockup(h);
4197                 }
4198                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4199         }
4200         return 0;
4201 }
4202
4203 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4204 {
4205         unsigned long flags;
4206
4207         spin_lock_irqsave(&lockup_detector_lock, flags);
4208         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4209         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4210 }
4211
4212 static void start_controller_lockup_detector(struct ctlr_info *h)
4213 {
4214         /* Start the lockup detector thread if not already started */
4215         if (!hpsa_lockup_detector) {
4216                 spin_lock_init(&lockup_detector_lock);
4217                 hpsa_lockup_detector =
4218                         kthread_run(detect_controller_lockup_thread,
4219                                                 NULL, HPSA);
4220         }
4221         if (!hpsa_lockup_detector) {
4222                 dev_warn(&h->pdev->dev,
4223                         "Could not start lockup detector thread\n");
4224                 return;
4225         }
4226         add_ctlr_to_lockup_detector_list(h);
4227 }
4228
4229 static void stop_controller_lockup_detector(struct ctlr_info *h)
4230 {
4231         unsigned long flags;
4232
4233         spin_lock_irqsave(&lockup_detector_lock, flags);
4234         remove_ctlr_from_lockup_detector_list(h);
4235         /* If the list of ctlr's to monitor is empty, stop the thread */
4236         if (list_empty(&hpsa_ctlr_list)) {
4237                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4238                 kthread_stop(hpsa_lockup_detector);
4239                 spin_lock_irqsave(&lockup_detector_lock, flags);
4240                 hpsa_lockup_detector = NULL;
4241         }
4242         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4243 }
4244
4245 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4246                                     const struct pci_device_id *ent)
4247 {
4248         int dac, rc;
4249         struct ctlr_info *h;
4250         int try_soft_reset = 0;
4251         unsigned long flags;
4252
4253         if (number_of_controllers == 0)
4254                 printk(KERN_INFO DRIVER_NAME "\n");
4255
4256         rc = hpsa_init_reset_devices(pdev);
4257         if (rc) {
4258                 if (rc != -ENOTSUPP)
4259                         return rc;
4260                 /* If the reset fails in a particular way (it has no way to do
4261                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4262                  * a soft reset once we get the controller configured up to the
4263                  * point that it can accept a command.
4264                  */
4265                 try_soft_reset = 1;
4266                 rc = 0;
4267         }
4268
4269 reinit_after_soft_reset:
4270
4271         /* Command structures must be aligned on a 32-byte boundary because
4272          * the 5 lower bits of the address are used by the hardware. and by
4273          * the driver.  See comments in hpsa.h for more info.
4274          */
4275 #define COMMANDLIST_ALIGNMENT 32
4276         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4277         h = kzalloc(sizeof(*h), GFP_KERNEL);
4278         if (!h)
4279                 return -ENOMEM;
4280
4281         h->pdev = pdev;
4282         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4283         INIT_LIST_HEAD(&h->cmpQ);
4284         INIT_LIST_HEAD(&h->reqQ);
4285         spin_lock_init(&h->lock);
4286         spin_lock_init(&h->scan_lock);
4287         rc = hpsa_pci_init(h);
4288         if (rc != 0)
4289                 goto clean1;
4290
4291         sprintf(h->devname, HPSA "%d", number_of_controllers);
4292         h->ctlr = number_of_controllers;
4293         number_of_controllers++;
4294
4295         /* configure PCI DMA stuff */
4296         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4297         if (rc == 0) {
4298                 dac = 1;
4299         } else {
4300                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4301                 if (rc == 0) {
4302                         dac = 0;
4303                 } else {
4304                         dev_err(&pdev->dev, "no suitable DMA available\n");
4305                         goto clean1;
4306                 }
4307         }
4308
4309         /* make sure the board interrupts are off */
4310         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4311
4312         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4313                 goto clean2;
4314         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4315                h->devname, pdev->device,
4316                h->intr[h->intr_mode], dac ? "" : " not");
4317         if (hpsa_allocate_cmd_pool(h))
4318                 goto clean4;
4319         if (hpsa_allocate_sg_chain_blocks(h))
4320                 goto clean4;
4321         init_waitqueue_head(&h->scan_wait_queue);
4322         h->scan_finished = 1; /* no scan currently in progress */
4323
4324         pci_set_drvdata(pdev, h);
4325         h->ndevices = 0;
4326         h->scsi_host = NULL;
4327         spin_lock_init(&h->devlock);
4328         hpsa_put_ctlr_into_performant_mode(h);
4329
4330         /* At this point, the controller is ready to take commands.
4331          * Now, if reset_devices and the hard reset didn't work, try
4332          * the soft reset and see if that works.
4333          */
4334         if (try_soft_reset) {
4335
4336                 /* This is kind of gross.  We may or may not get a completion
4337                  * from the soft reset command, and if we do, then the value
4338                  * from the fifo may or may not be valid.  So, we wait 10 secs
4339                  * after the reset throwing away any completions we get during
4340                  * that time.  Unregister the interrupt handler and register
4341                  * fake ones to scoop up any residual completions.
4342                  */
4343                 spin_lock_irqsave(&h->lock, flags);
4344                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4345                 spin_unlock_irqrestore(&h->lock, flags);
4346                 free_irq(h->intr[h->intr_mode], h);
4347                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4348                                         hpsa_intx_discard_completions);
4349                 if (rc) {
4350                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4351                                 "soft reset.\n");
4352                         goto clean4;
4353                 }
4354
4355                 rc = hpsa_kdump_soft_reset(h);
4356                 if (rc)
4357                         /* Neither hard nor soft reset worked, we're hosed. */
4358                         goto clean4;
4359
4360                 dev_info(&h->pdev->dev, "Board READY.\n");
4361                 dev_info(&h->pdev->dev,
4362                         "Waiting for stale completions to drain.\n");
4363                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4364                 msleep(10000);
4365                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4366
4367                 rc = controller_reset_failed(h->cfgtable);
4368                 if (rc)
4369                         dev_info(&h->pdev->dev,
4370                                 "Soft reset appears to have failed.\n");
4371
4372                 /* since the controller's reset, we have to go back and re-init
4373                  * everything.  Easiest to just forget what we've done and do it
4374                  * all over again.
4375                  */
4376                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4377                 try_soft_reset = 0;
4378                 if (rc)
4379                         /* don't go to clean4, we already unallocated */
4380                         return -ENODEV;
4381
4382                 goto reinit_after_soft_reset;
4383         }
4384
4385         /* Turn the interrupts on so we can service requests */
4386         h->access.set_intr_mask(h, HPSA_INTR_ON);
4387
4388         hpsa_hba_inquiry(h);
4389         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4390         start_controller_lockup_detector(h);
4391         return 1;
4392
4393 clean4:
4394         hpsa_free_sg_chain_blocks(h);
4395         hpsa_free_cmd_pool(h);
4396         free_irq(h->intr[h->intr_mode], h);
4397 clean2:
4398 clean1:
4399         kfree(h);
4400         return rc;
4401 }
4402
4403 static void hpsa_flush_cache(struct ctlr_info *h)
4404 {
4405         char *flush_buf;
4406         struct CommandList *c;
4407
4408         flush_buf = kzalloc(4, GFP_KERNEL);
4409         if (!flush_buf)
4410                 return;
4411
4412         c = cmd_special_alloc(h);
4413         if (!c) {
4414                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4415                 goto out_of_memory;
4416         }
4417         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4418                 RAID_CTLR_LUNID, TYPE_CMD);
4419         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4420         if (c->err_info->CommandStatus != 0)
4421                 dev_warn(&h->pdev->dev,
4422                         "error flushing cache on controller\n");
4423         cmd_special_free(h, c);
4424 out_of_memory:
4425         kfree(flush_buf);
4426 }
4427
4428 static void hpsa_shutdown(struct pci_dev *pdev)
4429 {
4430         struct ctlr_info *h;
4431
4432         h = pci_get_drvdata(pdev);
4433         /* Turn board interrupts off  and send the flush cache command
4434          * sendcmd will turn off interrupt, and send the flush...
4435          * To write all data in the battery backed cache to disks
4436          */
4437         hpsa_flush_cache(h);
4438         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4439         free_irq(h->intr[h->intr_mode], h);
4440 #ifdef CONFIG_PCI_MSI
4441         if (h->msix_vector)
4442                 pci_disable_msix(h->pdev);
4443         else if (h->msi_vector)
4444                 pci_disable_msi(h->pdev);
4445 #endif                          /* CONFIG_PCI_MSI */
4446 }
4447
4448 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4449 {
4450         int i;
4451
4452         for (i = 0; i < h->ndevices; i++)
4453                 kfree(h->dev[i]);
4454 }
4455
4456 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4457 {
4458         struct ctlr_info *h;
4459
4460         if (pci_get_drvdata(pdev) == NULL) {
4461                 dev_err(&pdev->dev, "unable to remove device\n");
4462                 return;
4463         }
4464         h = pci_get_drvdata(pdev);
4465         stop_controller_lockup_detector(h);
4466         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4467         hpsa_shutdown(pdev);
4468         iounmap(h->vaddr);
4469         iounmap(h->transtable);
4470         iounmap(h->cfgtable);
4471         hpsa_free_device_info(h);
4472         hpsa_free_sg_chain_blocks(h);
4473         pci_free_consistent(h->pdev,
4474                 h->nr_cmds * sizeof(struct CommandList),
4475                 h->cmd_pool, h->cmd_pool_dhandle);
4476         pci_free_consistent(h->pdev,
4477                 h->nr_cmds * sizeof(struct ErrorInfo),
4478                 h->errinfo_pool, h->errinfo_pool_dhandle);
4479         pci_free_consistent(h->pdev, h->reply_pool_size,
4480                 h->reply_pool, h->reply_pool_dhandle);
4481         kfree(h->cmd_pool_bits);
4482         kfree(h->blockFetchTable);
4483         kfree(h->hba_inquiry_data);
4484         /*
4485          * Deliberately omit pci_disable_device(): it does something nasty to
4486          * Smart Array controllers that pci_enable_device does not undo
4487          */
4488         pci_release_regions(pdev);
4489         pci_set_drvdata(pdev, NULL);
4490         kfree(h);
4491 }
4492
4493 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4494         __attribute__((unused)) pm_message_t state)
4495 {
4496         return -ENOSYS;
4497 }
4498
4499 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4500 {
4501         return -ENOSYS;
4502 }
4503
4504 static struct pci_driver hpsa_pci_driver = {
4505         .name = HPSA,
4506         .probe = hpsa_init_one,
4507         .remove = __devexit_p(hpsa_remove_one),
4508         .id_table = hpsa_pci_device_id, /* id_table */
4509         .shutdown = hpsa_shutdown,
4510         .suspend = hpsa_suspend,
4511         .resume = hpsa_resume,
4512 };
4513
4514 /* Fill in bucket_map[], given nsgs (the max number of
4515  * scatter gather elements supported) and bucket[],
4516  * which is an array of 8 integers.  The bucket[] array
4517  * contains 8 different DMA transfer sizes (in 16
4518  * byte increments) which the controller uses to fetch
4519  * commands.  This function fills in bucket_map[], which
4520  * maps a given number of scatter gather elements to one of
4521  * the 8 DMA transfer sizes.  The point of it is to allow the
4522  * controller to only do as much DMA as needed to fetch the
4523  * command, with the DMA transfer size encoded in the lower
4524  * bits of the command address.
4525  */
4526 static void  calc_bucket_map(int bucket[], int num_buckets,
4527         int nsgs, int *bucket_map)
4528 {
4529         int i, j, b, size;
4530
4531         /* even a command with 0 SGs requires 4 blocks */
4532 #define MINIMUM_TRANSFER_BLOCKS 4
4533 #define NUM_BUCKETS 8
4534         /* Note, bucket_map must have nsgs+1 entries. */
4535         for (i = 0; i <= nsgs; i++) {
4536                 /* Compute size of a command with i SG entries */
4537                 size = i + MINIMUM_TRANSFER_BLOCKS;
4538                 b = num_buckets; /* Assume the biggest bucket */
4539                 /* Find the bucket that is just big enough */
4540                 for (j = 0; j < 8; j++) {
4541                         if (bucket[j] >= size) {
4542                                 b = j;
4543                                 break;
4544                         }
4545                 }
4546                 /* for a command with i SG entries, use bucket b. */
4547                 bucket_map[i] = b;
4548         }
4549 }
4550
4551 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4552         u32 use_short_tags)
4553 {
4554         int i;
4555         unsigned long register_value;
4556
4557         /* This is a bit complicated.  There are 8 registers on
4558          * the controller which we write to to tell it 8 different
4559          * sizes of commands which there may be.  It's a way of
4560          * reducing the DMA done to fetch each command.  Encoded into
4561          * each command's tag are 3 bits which communicate to the controller
4562          * which of the eight sizes that command fits within.  The size of
4563          * each command depends on how many scatter gather entries there are.
4564          * Each SG entry requires 16 bytes.  The eight registers are programmed
4565          * with the number of 16-byte blocks a command of that size requires.
4566          * The smallest command possible requires 5 such 16 byte blocks.
4567          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4568          * blocks.  Note, this only extends to the SG entries contained
4569          * within the command block, and does not extend to chained blocks
4570          * of SG elements.   bft[] contains the eight values we write to
4571          * the registers.  They are not evenly distributed, but have more
4572          * sizes for small commands, and fewer sizes for larger commands.
4573          */
4574         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4575         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4576         /*  5 = 1 s/g entry or 4k
4577          *  6 = 2 s/g entry or 8k
4578          *  8 = 4 s/g entry or 16k
4579          * 10 = 6 s/g entry or 24k
4580          */
4581
4582         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4583
4584         /* Controller spec: zero out this buffer. */
4585         memset(h->reply_pool, 0, h->reply_pool_size);
4586         h->reply_pool_head = h->reply_pool;
4587
4588         bft[7] = SG_ENTRIES_IN_CMD + 4;
4589         calc_bucket_map(bft, ARRAY_SIZE(bft),
4590                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4591         for (i = 0; i < 8; i++)
4592                 writel(bft[i], &h->transtable->BlockFetch[i]);
4593
4594         /* size of controller ring buffer */
4595         writel(h->max_commands, &h->transtable->RepQSize);
4596         writel(1, &h->transtable->RepQCount);
4597         writel(0, &h->transtable->RepQCtrAddrLow32);
4598         writel(0, &h->transtable->RepQCtrAddrHigh32);
4599         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4600         writel(0, &h->transtable->RepQAddr0High32);
4601         writel(CFGTBL_Trans_Performant | use_short_tags,
4602                 &(h->cfgtable->HostWrite.TransportRequest));
4603         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4604         hpsa_wait_for_mode_change_ack(h);
4605         register_value = readl(&(h->cfgtable->TransportActive));
4606         if (!(register_value & CFGTBL_Trans_Performant)) {
4607                 dev_warn(&h->pdev->dev, "unable to get board into"
4608                                         " performant mode\n");
4609                 return;
4610         }
4611         /* Change the access methods to the performant access methods */
4612         h->access = SA5_performant_access;
4613         h->transMethod = CFGTBL_Trans_Performant;
4614 }
4615
4616 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4617 {
4618         u32 trans_support;
4619
4620         if (hpsa_simple_mode)
4621                 return;
4622
4623         trans_support = readl(&(h->cfgtable->TransportSupport));
4624         if (!(trans_support & PERFORMANT_MODE))
4625                 return;
4626
4627         hpsa_get_max_perf_mode_cmds(h);
4628         /* Performant mode ring buffer and supporting data structures */
4629         h->reply_pool_size = h->max_commands * sizeof(u64);
4630         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4631                                 &(h->reply_pool_dhandle));
4632
4633         /* Need a block fetch table for performant mode */
4634         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4635                                 sizeof(u32)), GFP_KERNEL);
4636
4637         if ((h->reply_pool == NULL)
4638                 || (h->blockFetchTable == NULL))
4639                 goto clean_up;
4640
4641         hpsa_enter_performant_mode(h,
4642                 trans_support & CFGTBL_Trans_use_short_tags);
4643
4644         return;
4645
4646 clean_up:
4647         if (h->reply_pool)
4648                 pci_free_consistent(h->pdev, h->reply_pool_size,
4649                         h->reply_pool, h->reply_pool_dhandle);
4650         kfree(h->blockFetchTable);
4651 }
4652
4653 /*
4654  *  This is it.  Register the PCI driver information for the cards we control
4655  *  the OS will call our registered routines when it finds one of our cards.
4656  */
4657 static int __init hpsa_init(void)
4658 {
4659         return pci_register_driver(&hpsa_pci_driver);
4660 }
4661
4662 static void __exit hpsa_cleanup(void)
4663 {
4664         pci_unregister_driver(&hpsa_pci_driver);
4665 }
4666
4667 module_init(hpsa_init);
4668 module_exit(hpsa_cleanup);