[SCSI] hpsa: factor out driver name
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172         int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177         u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179         unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182         void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188         unsigned long *priv = shost_priv(sdev->host);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194         unsigned long *priv = shost_priv(sh);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static int check_for_unit_attention(struct ctlr_info *h,
199         struct CommandList *c)
200 {
201         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202                 return 0;
203
204         switch (c->err_info->SenseInfo[12]) {
205         case STATE_CHANGED:
206                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207                         "detected, command retried\n", h->ctlr);
208                 break;
209         case LUN_FAILED:
210                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211                         "detected, action required\n", h->ctlr);
212                 break;
213         case REPORT_LUNS_CHANGED:
214                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215                         "changed, action required\n", h->ctlr);
216         /*
217          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
218          */
219                 break;
220         case POWER_OR_RESET:
221                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
222                         "or device reset detected\n", h->ctlr);
223                 break;
224         case UNIT_ATTENTION_CLEARED:
225                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
226                     "cleared by another initiator\n", h->ctlr);
227                 break;
228         default:
229                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
230                         "unit attention detected\n", h->ctlr);
231                 break;
232         }
233         return 1;
234 }
235
236 static ssize_t host_store_rescan(struct device *dev,
237                                  struct device_attribute *attr,
238                                  const char *buf, size_t count)
239 {
240         struct ctlr_info *h;
241         struct Scsi_Host *shost = class_to_shost(dev);
242         h = shost_to_hba(shost);
243         hpsa_scan_start(h->scsi_host);
244         return count;
245 }
246
247 static ssize_t host_show_firmware_revision(struct device *dev,
248              struct device_attribute *attr, char *buf)
249 {
250         struct ctlr_info *h;
251         struct Scsi_Host *shost = class_to_shost(dev);
252         unsigned char *fwrev;
253
254         h = shost_to_hba(shost);
255         if (!h->hba_inquiry_data)
256                 return 0;
257         fwrev = &h->hba_inquiry_data[32];
258         return snprintf(buf, 20, "%c%c%c%c\n",
259                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
260 }
261
262 static ssize_t host_show_commands_outstanding(struct device *dev,
263              struct device_attribute *attr, char *buf)
264 {
265         struct Scsi_Host *shost = class_to_shost(dev);
266         struct ctlr_info *h = shost_to_hba(shost);
267
268         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
269 }
270
271 static ssize_t host_show_transport_mode(struct device *dev,
272         struct device_attribute *attr, char *buf)
273 {
274         struct ctlr_info *h;
275         struct Scsi_Host *shost = class_to_shost(dev);
276
277         h = shost_to_hba(shost);
278         return snprintf(buf, 20, "%s\n",
279                 h->transMethod & CFGTBL_Trans_Performant ?
280                         "performant" : "simple");
281 }
282
283 /* List of controllers which cannot be hard reset on kexec with reset_devices */
284 static u32 unresettable_controller[] = {
285         0x324a103C, /* Smart Array P712m */
286         0x324b103C, /* SmartArray P711m */
287         0x3223103C, /* Smart Array P800 */
288         0x3234103C, /* Smart Array P400 */
289         0x3235103C, /* Smart Array P400i */
290         0x3211103C, /* Smart Array E200i */
291         0x3212103C, /* Smart Array E200 */
292         0x3213103C, /* Smart Array E200i */
293         0x3214103C, /* Smart Array E200i */
294         0x3215103C, /* Smart Array E200i */
295         0x3237103C, /* Smart Array E500 */
296         0x323D103C, /* Smart Array P700m */
297         0x40800E11, /* Smart Array 5i */
298         0x409C0E11, /* Smart Array 6400 */
299         0x409D0E11, /* Smart Array 6400 EM */
300 };
301
302 /* List of controllers which cannot even be soft reset */
303 static u32 soft_unresettable_controller[] = {
304         0x40800E11, /* Smart Array 5i */
305         /* Exclude 640x boards.  These are two pci devices in one slot
306          * which share a battery backed cache module.  One controls the
307          * cache, the other accesses the cache through the one that controls
308          * it.  If we reset the one controlling the cache, the other will
309          * likely not be happy.  Just forbid resetting this conjoined mess.
310          * The 640x isn't really supported by hpsa anyway.
311          */
312         0x409C0E11, /* Smart Array 6400 */
313         0x409D0E11, /* Smart Array 6400 EM */
314 };
315
316 static int ctlr_is_hard_resettable(u32 board_id)
317 {
318         int i;
319
320         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
321                 if (unresettable_controller[i] == board_id)
322                         return 0;
323         return 1;
324 }
325
326 static int ctlr_is_soft_resettable(u32 board_id)
327 {
328         int i;
329
330         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
331                 if (soft_unresettable_controller[i] == board_id)
332                         return 0;
333         return 1;
334 }
335
336 static int ctlr_is_resettable(u32 board_id)
337 {
338         return ctlr_is_hard_resettable(board_id) ||
339                 ctlr_is_soft_resettable(board_id);
340 }
341
342 static ssize_t host_show_resettable(struct device *dev,
343         struct device_attribute *attr, char *buf)
344 {
345         struct ctlr_info *h;
346         struct Scsi_Host *shost = class_to_shost(dev);
347
348         h = shost_to_hba(shost);
349         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
350 }
351
352 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
353 {
354         return (scsi3addr[3] & 0xC0) == 0x40;
355 }
356
357 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
358         "UNKNOWN"
359 };
360 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
361
362 static ssize_t raid_level_show(struct device *dev,
363              struct device_attribute *attr, char *buf)
364 {
365         ssize_t l = 0;
366         unsigned char rlevel;
367         struct ctlr_info *h;
368         struct scsi_device *sdev;
369         struct hpsa_scsi_dev_t *hdev;
370         unsigned long flags;
371
372         sdev = to_scsi_device(dev);
373         h = sdev_to_hba(sdev);
374         spin_lock_irqsave(&h->lock, flags);
375         hdev = sdev->hostdata;
376         if (!hdev) {
377                 spin_unlock_irqrestore(&h->lock, flags);
378                 return -ENODEV;
379         }
380
381         /* Is this even a logical drive? */
382         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
383                 spin_unlock_irqrestore(&h->lock, flags);
384                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
385                 return l;
386         }
387
388         rlevel = hdev->raid_level;
389         spin_unlock_irqrestore(&h->lock, flags);
390         if (rlevel > RAID_UNKNOWN)
391                 rlevel = RAID_UNKNOWN;
392         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
393         return l;
394 }
395
396 static ssize_t lunid_show(struct device *dev,
397              struct device_attribute *attr, char *buf)
398 {
399         struct ctlr_info *h;
400         struct scsi_device *sdev;
401         struct hpsa_scsi_dev_t *hdev;
402         unsigned long flags;
403         unsigned char lunid[8];
404
405         sdev = to_scsi_device(dev);
406         h = sdev_to_hba(sdev);
407         spin_lock_irqsave(&h->lock, flags);
408         hdev = sdev->hostdata;
409         if (!hdev) {
410                 spin_unlock_irqrestore(&h->lock, flags);
411                 return -ENODEV;
412         }
413         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
414         spin_unlock_irqrestore(&h->lock, flags);
415         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
416                 lunid[0], lunid[1], lunid[2], lunid[3],
417                 lunid[4], lunid[5], lunid[6], lunid[7]);
418 }
419
420 static ssize_t unique_id_show(struct device *dev,
421              struct device_attribute *attr, char *buf)
422 {
423         struct ctlr_info *h;
424         struct scsi_device *sdev;
425         struct hpsa_scsi_dev_t *hdev;
426         unsigned long flags;
427         unsigned char sn[16];
428
429         sdev = to_scsi_device(dev);
430         h = sdev_to_hba(sdev);
431         spin_lock_irqsave(&h->lock, flags);
432         hdev = sdev->hostdata;
433         if (!hdev) {
434                 spin_unlock_irqrestore(&h->lock, flags);
435                 return -ENODEV;
436         }
437         memcpy(sn, hdev->device_id, sizeof(sn));
438         spin_unlock_irqrestore(&h->lock, flags);
439         return snprintf(buf, 16 * 2 + 2,
440                         "%02X%02X%02X%02X%02X%02X%02X%02X"
441                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
442                         sn[0], sn[1], sn[2], sn[3],
443                         sn[4], sn[5], sn[6], sn[7],
444                         sn[8], sn[9], sn[10], sn[11],
445                         sn[12], sn[13], sn[14], sn[15]);
446 }
447
448 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
449 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
450 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
451 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
452 static DEVICE_ATTR(firmware_revision, S_IRUGO,
453         host_show_firmware_revision, NULL);
454 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
455         host_show_commands_outstanding, NULL);
456 static DEVICE_ATTR(transport_mode, S_IRUGO,
457         host_show_transport_mode, NULL);
458 static DEVICE_ATTR(resettable, S_IRUGO,
459         host_show_resettable, NULL);
460
461 static struct device_attribute *hpsa_sdev_attrs[] = {
462         &dev_attr_raid_level,
463         &dev_attr_lunid,
464         &dev_attr_unique_id,
465         NULL,
466 };
467
468 static struct device_attribute *hpsa_shost_attrs[] = {
469         &dev_attr_rescan,
470         &dev_attr_firmware_revision,
471         &dev_attr_commands_outstanding,
472         &dev_attr_transport_mode,
473         &dev_attr_resettable,
474         NULL,
475 };
476
477 static struct scsi_host_template hpsa_driver_template = {
478         .module                 = THIS_MODULE,
479         .name                   = HPSA,
480         .proc_name              = HPSA,
481         .queuecommand           = hpsa_scsi_queue_command,
482         .scan_start             = hpsa_scan_start,
483         .scan_finished          = hpsa_scan_finished,
484         .change_queue_depth     = hpsa_change_queue_depth,
485         .this_id                = -1,
486         .use_clustering         = ENABLE_CLUSTERING,
487         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
488         .ioctl                  = hpsa_ioctl,
489         .slave_alloc            = hpsa_slave_alloc,
490         .slave_destroy          = hpsa_slave_destroy,
491 #ifdef CONFIG_COMPAT
492         .compat_ioctl           = hpsa_compat_ioctl,
493 #endif
494         .sdev_attrs = hpsa_sdev_attrs,
495         .shost_attrs = hpsa_shost_attrs,
496         .max_sectors = 8192,
497 };
498
499
500 /* Enqueuing and dequeuing functions for cmdlists. */
501 static inline void addQ(struct list_head *list, struct CommandList *c)
502 {
503         list_add_tail(&c->list, list);
504 }
505
506 static inline u32 next_command(struct ctlr_info *h)
507 {
508         u32 a;
509
510         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
511                 return h->access.command_completed(h);
512
513         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
514                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
515                 (h->reply_pool_head)++;
516                 h->commands_outstanding--;
517         } else {
518                 a = FIFO_EMPTY;
519         }
520         /* Check for wraparound */
521         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
522                 h->reply_pool_head = h->reply_pool;
523                 h->reply_pool_wraparound ^= 1;
524         }
525         return a;
526 }
527
528 /* set_performant_mode: Modify the tag for cciss performant
529  * set bit 0 for pull model, bits 3-1 for block fetch
530  * register number
531  */
532 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
533 {
534         if (likely(h->transMethod & CFGTBL_Trans_Performant))
535                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
536 }
537
538 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
539         struct CommandList *c)
540 {
541         unsigned long flags;
542
543         set_performant_mode(h, c);
544         spin_lock_irqsave(&h->lock, flags);
545         addQ(&h->reqQ, c);
546         h->Qdepth++;
547         start_io(h);
548         spin_unlock_irqrestore(&h->lock, flags);
549 }
550
551 static inline void removeQ(struct CommandList *c)
552 {
553         if (WARN_ON(list_empty(&c->list)))
554                 return;
555         list_del_init(&c->list);
556 }
557
558 static inline int is_hba_lunid(unsigned char scsi3addr[])
559 {
560         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
561 }
562
563 static inline int is_scsi_rev_5(struct ctlr_info *h)
564 {
565         if (!h->hba_inquiry_data)
566                 return 0;
567         if ((h->hba_inquiry_data[2] & 0x07) == 5)
568                 return 1;
569         return 0;
570 }
571
572 static int hpsa_find_target_lun(struct ctlr_info *h,
573         unsigned char scsi3addr[], int bus, int *target, int *lun)
574 {
575         /* finds an unused bus, target, lun for a new physical device
576          * assumes h->devlock is held
577          */
578         int i, found = 0;
579         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
580
581         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
582
583         for (i = 0; i < h->ndevices; i++) {
584                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
585                         set_bit(h->dev[i]->target, lun_taken);
586         }
587
588         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
589                 if (!test_bit(i, lun_taken)) {
590                         /* *bus = 1; */
591                         *target = i;
592                         *lun = 0;
593                         found = 1;
594                         break;
595                 }
596         }
597         return !found;
598 }
599
600 /* Add an entry into h->dev[] array. */
601 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
602                 struct hpsa_scsi_dev_t *device,
603                 struct hpsa_scsi_dev_t *added[], int *nadded)
604 {
605         /* assumes h->devlock is held */
606         int n = h->ndevices;
607         int i;
608         unsigned char addr1[8], addr2[8];
609         struct hpsa_scsi_dev_t *sd;
610
611         if (n >= HPSA_MAX_DEVICES) {
612                 dev_err(&h->pdev->dev, "too many devices, some will be "
613                         "inaccessible.\n");
614                 return -1;
615         }
616
617         /* physical devices do not have lun or target assigned until now. */
618         if (device->lun != -1)
619                 /* Logical device, lun is already assigned. */
620                 goto lun_assigned;
621
622         /* If this device a non-zero lun of a multi-lun device
623          * byte 4 of the 8-byte LUN addr will contain the logical
624          * unit no, zero otherise.
625          */
626         if (device->scsi3addr[4] == 0) {
627                 /* This is not a non-zero lun of a multi-lun device */
628                 if (hpsa_find_target_lun(h, device->scsi3addr,
629                         device->bus, &device->target, &device->lun) != 0)
630                         return -1;
631                 goto lun_assigned;
632         }
633
634         /* This is a non-zero lun of a multi-lun device.
635          * Search through our list and find the device which
636          * has the same 8 byte LUN address, excepting byte 4.
637          * Assign the same bus and target for this new LUN.
638          * Use the logical unit number from the firmware.
639          */
640         memcpy(addr1, device->scsi3addr, 8);
641         addr1[4] = 0;
642         for (i = 0; i < n; i++) {
643                 sd = h->dev[i];
644                 memcpy(addr2, sd->scsi3addr, 8);
645                 addr2[4] = 0;
646                 /* differ only in byte 4? */
647                 if (memcmp(addr1, addr2, 8) == 0) {
648                         device->bus = sd->bus;
649                         device->target = sd->target;
650                         device->lun = device->scsi3addr[4];
651                         break;
652                 }
653         }
654         if (device->lun == -1) {
655                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
656                         " suspect firmware bug or unsupported hardware "
657                         "configuration.\n");
658                         return -1;
659         }
660
661 lun_assigned:
662
663         h->dev[n] = device;
664         h->ndevices++;
665         added[*nadded] = device;
666         (*nadded)++;
667
668         /* initially, (before registering with scsi layer) we don't
669          * know our hostno and we don't want to print anything first
670          * time anyway (the scsi layer's inquiries will show that info)
671          */
672         /* if (hostno != -1) */
673                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
674                         scsi_device_type(device->devtype), hostno,
675                         device->bus, device->target, device->lun);
676         return 0;
677 }
678
679 /* Replace an entry from h->dev[] array. */
680 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
681         int entry, struct hpsa_scsi_dev_t *new_entry,
682         struct hpsa_scsi_dev_t *added[], int *nadded,
683         struct hpsa_scsi_dev_t *removed[], int *nremoved)
684 {
685         /* assumes h->devlock is held */
686         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
687         removed[*nremoved] = h->dev[entry];
688         (*nremoved)++;
689
690         /*
691          * New physical devices won't have target/lun assigned yet
692          * so we need to preserve the values in the slot we are replacing.
693          */
694         if (new_entry->target == -1) {
695                 new_entry->target = h->dev[entry]->target;
696                 new_entry->lun = h->dev[entry]->lun;
697         }
698
699         h->dev[entry] = new_entry;
700         added[*nadded] = new_entry;
701         (*nadded)++;
702         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
703                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
704                         new_entry->target, new_entry->lun);
705 }
706
707 /* Remove an entry from h->dev[] array. */
708 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
709         struct hpsa_scsi_dev_t *removed[], int *nremoved)
710 {
711         /* assumes h->devlock is held */
712         int i;
713         struct hpsa_scsi_dev_t *sd;
714
715         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
716
717         sd = h->dev[entry];
718         removed[*nremoved] = h->dev[entry];
719         (*nremoved)++;
720
721         for (i = entry; i < h->ndevices-1; i++)
722                 h->dev[i] = h->dev[i+1];
723         h->ndevices--;
724         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
725                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
726                 sd->lun);
727 }
728
729 #define SCSI3ADDR_EQ(a, b) ( \
730         (a)[7] == (b)[7] && \
731         (a)[6] == (b)[6] && \
732         (a)[5] == (b)[5] && \
733         (a)[4] == (b)[4] && \
734         (a)[3] == (b)[3] && \
735         (a)[2] == (b)[2] && \
736         (a)[1] == (b)[1] && \
737         (a)[0] == (b)[0])
738
739 static void fixup_botched_add(struct ctlr_info *h,
740         struct hpsa_scsi_dev_t *added)
741 {
742         /* called when scsi_add_device fails in order to re-adjust
743          * h->dev[] to match the mid layer's view.
744          */
745         unsigned long flags;
746         int i, j;
747
748         spin_lock_irqsave(&h->lock, flags);
749         for (i = 0; i < h->ndevices; i++) {
750                 if (h->dev[i] == added) {
751                         for (j = i; j < h->ndevices-1; j++)
752                                 h->dev[j] = h->dev[j+1];
753                         h->ndevices--;
754                         break;
755                 }
756         }
757         spin_unlock_irqrestore(&h->lock, flags);
758         kfree(added);
759 }
760
761 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
762         struct hpsa_scsi_dev_t *dev2)
763 {
764         /* we compare everything except lun and target as these
765          * are not yet assigned.  Compare parts likely
766          * to differ first
767          */
768         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
769                 sizeof(dev1->scsi3addr)) != 0)
770                 return 0;
771         if (memcmp(dev1->device_id, dev2->device_id,
772                 sizeof(dev1->device_id)) != 0)
773                 return 0;
774         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
775                 return 0;
776         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
777                 return 0;
778         if (dev1->devtype != dev2->devtype)
779                 return 0;
780         if (dev1->bus != dev2->bus)
781                 return 0;
782         return 1;
783 }
784
785 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
786  * and return needle location in *index.  If scsi3addr matches, but not
787  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
788  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
789  */
790 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
791         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
792         int *index)
793 {
794         int i;
795 #define DEVICE_NOT_FOUND 0
796 #define DEVICE_CHANGED 1
797 #define DEVICE_SAME 2
798         for (i = 0; i < haystack_size; i++) {
799                 if (haystack[i] == NULL) /* previously removed. */
800                         continue;
801                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
802                         *index = i;
803                         if (device_is_the_same(needle, haystack[i]))
804                                 return DEVICE_SAME;
805                         else
806                                 return DEVICE_CHANGED;
807                 }
808         }
809         *index = -1;
810         return DEVICE_NOT_FOUND;
811 }
812
813 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
814         struct hpsa_scsi_dev_t *sd[], int nsds)
815 {
816         /* sd contains scsi3 addresses and devtypes, and inquiry
817          * data.  This function takes what's in sd to be the current
818          * reality and updates h->dev[] to reflect that reality.
819          */
820         int i, entry, device_change, changes = 0;
821         struct hpsa_scsi_dev_t *csd;
822         unsigned long flags;
823         struct hpsa_scsi_dev_t **added, **removed;
824         int nadded, nremoved;
825         struct Scsi_Host *sh = NULL;
826
827         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
828         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
829
830         if (!added || !removed) {
831                 dev_warn(&h->pdev->dev, "out of memory in "
832                         "adjust_hpsa_scsi_table\n");
833                 goto free_and_out;
834         }
835
836         spin_lock_irqsave(&h->devlock, flags);
837
838         /* find any devices in h->dev[] that are not in
839          * sd[] and remove them from h->dev[], and for any
840          * devices which have changed, remove the old device
841          * info and add the new device info.
842          */
843         i = 0;
844         nremoved = 0;
845         nadded = 0;
846         while (i < h->ndevices) {
847                 csd = h->dev[i];
848                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
849                 if (device_change == DEVICE_NOT_FOUND) {
850                         changes++;
851                         hpsa_scsi_remove_entry(h, hostno, i,
852                                 removed, &nremoved);
853                         continue; /* remove ^^^, hence i not incremented */
854                 } else if (device_change == DEVICE_CHANGED) {
855                         changes++;
856                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
857                                 added, &nadded, removed, &nremoved);
858                         /* Set it to NULL to prevent it from being freed
859                          * at the bottom of hpsa_update_scsi_devices()
860                          */
861                         sd[entry] = NULL;
862                 }
863                 i++;
864         }
865
866         /* Now, make sure every device listed in sd[] is also
867          * listed in h->dev[], adding them if they aren't found
868          */
869
870         for (i = 0; i < nsds; i++) {
871                 if (!sd[i]) /* if already added above. */
872                         continue;
873                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
874                                         h->ndevices, &entry);
875                 if (device_change == DEVICE_NOT_FOUND) {
876                         changes++;
877                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
878                                 added, &nadded) != 0)
879                                 break;
880                         sd[i] = NULL; /* prevent from being freed later. */
881                 } else if (device_change == DEVICE_CHANGED) {
882                         /* should never happen... */
883                         changes++;
884                         dev_warn(&h->pdev->dev,
885                                 "device unexpectedly changed.\n");
886                         /* but if it does happen, we just ignore that device */
887                 }
888         }
889         spin_unlock_irqrestore(&h->devlock, flags);
890
891         /* Don't notify scsi mid layer of any changes the first time through
892          * (or if there are no changes) scsi_scan_host will do it later the
893          * first time through.
894          */
895         if (hostno == -1 || !changes)
896                 goto free_and_out;
897
898         sh = h->scsi_host;
899         /* Notify scsi mid layer of any removed devices */
900         for (i = 0; i < nremoved; i++) {
901                 struct scsi_device *sdev =
902                         scsi_device_lookup(sh, removed[i]->bus,
903                                 removed[i]->target, removed[i]->lun);
904                 if (sdev != NULL) {
905                         scsi_remove_device(sdev);
906                         scsi_device_put(sdev);
907                 } else {
908                         /* We don't expect to get here.
909                          * future cmds to this device will get selection
910                          * timeout as if the device was gone.
911                          */
912                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
913                                 " for removal.", hostno, removed[i]->bus,
914                                 removed[i]->target, removed[i]->lun);
915                 }
916                 kfree(removed[i]);
917                 removed[i] = NULL;
918         }
919
920         /* Notify scsi mid layer of any added devices */
921         for (i = 0; i < nadded; i++) {
922                 if (scsi_add_device(sh, added[i]->bus,
923                         added[i]->target, added[i]->lun) == 0)
924                         continue;
925                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
926                         "device not added.\n", hostno, added[i]->bus,
927                         added[i]->target, added[i]->lun);
928                 /* now we have to remove it from h->dev,
929                  * since it didn't get added to scsi mid layer
930                  */
931                 fixup_botched_add(h, added[i]);
932         }
933
934 free_and_out:
935         kfree(added);
936         kfree(removed);
937 }
938
939 /*
940  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
941  * Assume's h->devlock is held.
942  */
943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
944         int bus, int target, int lun)
945 {
946         int i;
947         struct hpsa_scsi_dev_t *sd;
948
949         for (i = 0; i < h->ndevices; i++) {
950                 sd = h->dev[i];
951                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
952                         return sd;
953         }
954         return NULL;
955 }
956
957 /* link sdev->hostdata to our per-device structure. */
958 static int hpsa_slave_alloc(struct scsi_device *sdev)
959 {
960         struct hpsa_scsi_dev_t *sd;
961         unsigned long flags;
962         struct ctlr_info *h;
963
964         h = sdev_to_hba(sdev);
965         spin_lock_irqsave(&h->devlock, flags);
966         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
967                 sdev_id(sdev), sdev->lun);
968         if (sd != NULL)
969                 sdev->hostdata = sd;
970         spin_unlock_irqrestore(&h->devlock, flags);
971         return 0;
972 }
973
974 static void hpsa_slave_destroy(struct scsi_device *sdev)
975 {
976         /* nothing to do. */
977 }
978
979 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
980 {
981         int i;
982
983         if (!h->cmd_sg_list)
984                 return;
985         for (i = 0; i < h->nr_cmds; i++) {
986                 kfree(h->cmd_sg_list[i]);
987                 h->cmd_sg_list[i] = NULL;
988         }
989         kfree(h->cmd_sg_list);
990         h->cmd_sg_list = NULL;
991 }
992
993 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
994 {
995         int i;
996
997         if (h->chainsize <= 0)
998                 return 0;
999
1000         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1001                                 GFP_KERNEL);
1002         if (!h->cmd_sg_list)
1003                 return -ENOMEM;
1004         for (i = 0; i < h->nr_cmds; i++) {
1005                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1006                                                 h->chainsize, GFP_KERNEL);
1007                 if (!h->cmd_sg_list[i])
1008                         goto clean;
1009         }
1010         return 0;
1011
1012 clean:
1013         hpsa_free_sg_chain_blocks(h);
1014         return -ENOMEM;
1015 }
1016
1017 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1018         struct CommandList *c)
1019 {
1020         struct SGDescriptor *chain_sg, *chain_block;
1021         u64 temp64;
1022
1023         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1024         chain_block = h->cmd_sg_list[c->cmdindex];
1025         chain_sg->Ext = HPSA_SG_CHAIN;
1026         chain_sg->Len = sizeof(*chain_sg) *
1027                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1028         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1029                                 PCI_DMA_TODEVICE);
1030         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1031         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1032 }
1033
1034 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1035         struct CommandList *c)
1036 {
1037         struct SGDescriptor *chain_sg;
1038         union u64bit temp64;
1039
1040         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1041                 return;
1042
1043         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1044         temp64.val32.lower = chain_sg->Addr.lower;
1045         temp64.val32.upper = chain_sg->Addr.upper;
1046         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1047 }
1048
1049 static void complete_scsi_command(struct CommandList *cp)
1050 {
1051         struct scsi_cmnd *cmd;
1052         struct ctlr_info *h;
1053         struct ErrorInfo *ei;
1054
1055         unsigned char sense_key;
1056         unsigned char asc;      /* additional sense code */
1057         unsigned char ascq;     /* additional sense code qualifier */
1058         unsigned long sense_data_size;
1059
1060         ei = cp->err_info;
1061         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1062         h = cp->h;
1063
1064         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1065         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1066                 hpsa_unmap_sg_chain_block(h, cp);
1067
1068         cmd->result = (DID_OK << 16);           /* host byte */
1069         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1070         cmd->result |= ei->ScsiStatus;
1071
1072         /* copy the sense data whether we need to or not. */
1073         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1074                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1075         else
1076                 sense_data_size = sizeof(ei->SenseInfo);
1077         if (ei->SenseLen < sense_data_size)
1078                 sense_data_size = ei->SenseLen;
1079
1080         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1081         scsi_set_resid(cmd, ei->ResidualCnt);
1082
1083         if (ei->CommandStatus == 0) {
1084                 cmd->scsi_done(cmd);
1085                 cmd_free(h, cp);
1086                 return;
1087         }
1088
1089         /* an error has occurred */
1090         switch (ei->CommandStatus) {
1091
1092         case CMD_TARGET_STATUS:
1093                 if (ei->ScsiStatus) {
1094                         /* Get sense key */
1095                         sense_key = 0xf & ei->SenseInfo[2];
1096                         /* Get additional sense code */
1097                         asc = ei->SenseInfo[12];
1098                         /* Get addition sense code qualifier */
1099                         ascq = ei->SenseInfo[13];
1100                 }
1101
1102                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1103                         if (check_for_unit_attention(h, cp)) {
1104                                 cmd->result = DID_SOFT_ERROR << 16;
1105                                 break;
1106                         }
1107                         if (sense_key == ILLEGAL_REQUEST) {
1108                                 /*
1109                                  * SCSI REPORT_LUNS is commonly unsupported on
1110                                  * Smart Array.  Suppress noisy complaint.
1111                                  */
1112                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1113                                         break;
1114
1115                                 /* If ASC/ASCQ indicate Logical Unit
1116                                  * Not Supported condition,
1117                                  */
1118                                 if ((asc == 0x25) && (ascq == 0x0)) {
1119                                         dev_warn(&h->pdev->dev, "cp %p "
1120                                                 "has check condition\n", cp);
1121                                         break;
1122                                 }
1123                         }
1124
1125                         if (sense_key == NOT_READY) {
1126                                 /* If Sense is Not Ready, Logical Unit
1127                                  * Not ready, Manual Intervention
1128                                  * required
1129                                  */
1130                                 if ((asc == 0x04) && (ascq == 0x03)) {
1131                                         dev_warn(&h->pdev->dev, "cp %p "
1132                                                 "has check condition: unit "
1133                                                 "not ready, manual "
1134                                                 "intervention required\n", cp);
1135                                         break;
1136                                 }
1137                         }
1138                         if (sense_key == ABORTED_COMMAND) {
1139                                 /* Aborted command is retryable */
1140                                 dev_warn(&h->pdev->dev, "cp %p "
1141                                         "has check condition: aborted command: "
1142                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1143                                         cp, asc, ascq);
1144                                 cmd->result = DID_SOFT_ERROR << 16;
1145                                 break;
1146                         }
1147                         /* Must be some other type of check condition */
1148                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1149                                         "unknown type: "
1150                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1151                                         "Returning result: 0x%x, "
1152                                         "cmd=[%02x %02x %02x %02x %02x "
1153                                         "%02x %02x %02x %02x %02x %02x "
1154                                         "%02x %02x %02x %02x %02x]\n",
1155                                         cp, sense_key, asc, ascq,
1156                                         cmd->result,
1157                                         cmd->cmnd[0], cmd->cmnd[1],
1158                                         cmd->cmnd[2], cmd->cmnd[3],
1159                                         cmd->cmnd[4], cmd->cmnd[5],
1160                                         cmd->cmnd[6], cmd->cmnd[7],
1161                                         cmd->cmnd[8], cmd->cmnd[9],
1162                                         cmd->cmnd[10], cmd->cmnd[11],
1163                                         cmd->cmnd[12], cmd->cmnd[13],
1164                                         cmd->cmnd[14], cmd->cmnd[15]);
1165                         break;
1166                 }
1167
1168
1169                 /* Problem was not a check condition
1170                  * Pass it up to the upper layers...
1171                  */
1172                 if (ei->ScsiStatus) {
1173                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1174                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1175                                 "Returning result: 0x%x\n",
1176                                 cp, ei->ScsiStatus,
1177                                 sense_key, asc, ascq,
1178                                 cmd->result);
1179                 } else {  /* scsi status is zero??? How??? */
1180                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1181                                 "Returning no connection.\n", cp),
1182
1183                         /* Ordinarily, this case should never happen,
1184                          * but there is a bug in some released firmware
1185                          * revisions that allows it to happen if, for
1186                          * example, a 4100 backplane loses power and
1187                          * the tape drive is in it.  We assume that
1188                          * it's a fatal error of some kind because we
1189                          * can't show that it wasn't. We will make it
1190                          * look like selection timeout since that is
1191                          * the most common reason for this to occur,
1192                          * and it's severe enough.
1193                          */
1194
1195                         cmd->result = DID_NO_CONNECT << 16;
1196                 }
1197                 break;
1198
1199         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1200                 break;
1201         case CMD_DATA_OVERRUN:
1202                 dev_warn(&h->pdev->dev, "cp %p has"
1203                         " completed with data overrun "
1204                         "reported\n", cp);
1205                 break;
1206         case CMD_INVALID: {
1207                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1208                 print_cmd(cp); */
1209                 /* We get CMD_INVALID if you address a non-existent device
1210                  * instead of a selection timeout (no response).  You will
1211                  * see this if you yank out a drive, then try to access it.
1212                  * This is kind of a shame because it means that any other
1213                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1214                  * missing target. */
1215                 cmd->result = DID_NO_CONNECT << 16;
1216         }
1217                 break;
1218         case CMD_PROTOCOL_ERR:
1219                 dev_warn(&h->pdev->dev, "cp %p has "
1220                         "protocol error \n", cp);
1221                 break;
1222         case CMD_HARDWARE_ERR:
1223                 cmd->result = DID_ERROR << 16;
1224                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1225                 break;
1226         case CMD_CONNECTION_LOST:
1227                 cmd->result = DID_ERROR << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1229                 break;
1230         case CMD_ABORTED:
1231                 cmd->result = DID_ABORT << 16;
1232                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1233                                 cp, ei->ScsiStatus);
1234                 break;
1235         case CMD_ABORT_FAILED:
1236                 cmd->result = DID_ERROR << 16;
1237                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1238                 break;
1239         case CMD_UNSOLICITED_ABORT:
1240                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1241                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1242                         "abort\n", cp);
1243                 break;
1244         case CMD_TIMEOUT:
1245                 cmd->result = DID_TIME_OUT << 16;
1246                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1247                 break;
1248         case CMD_UNABORTABLE:
1249                 cmd->result = DID_ERROR << 16;
1250                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1251                 break;
1252         default:
1253                 cmd->result = DID_ERROR << 16;
1254                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1255                                 cp, ei->CommandStatus);
1256         }
1257         cmd->scsi_done(cmd);
1258         cmd_free(h, cp);
1259 }
1260
1261 static void hpsa_pci_unmap(struct pci_dev *pdev,
1262         struct CommandList *c, int sg_used, int data_direction)
1263 {
1264         int i;
1265         union u64bit addr64;
1266
1267         for (i = 0; i < sg_used; i++) {
1268                 addr64.val32.lower = c->SG[i].Addr.lower;
1269                 addr64.val32.upper = c->SG[i].Addr.upper;
1270                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1271                         data_direction);
1272         }
1273 }
1274
1275 static void hpsa_map_one(struct pci_dev *pdev,
1276                 struct CommandList *cp,
1277                 unsigned char *buf,
1278                 size_t buflen,
1279                 int data_direction)
1280 {
1281         u64 addr64;
1282
1283         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1284                 cp->Header.SGList = 0;
1285                 cp->Header.SGTotal = 0;
1286                 return;
1287         }
1288
1289         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1290         cp->SG[0].Addr.lower =
1291           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1292         cp->SG[0].Addr.upper =
1293           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1294         cp->SG[0].Len = buflen;
1295         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1296         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1297 }
1298
1299 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1300         struct CommandList *c)
1301 {
1302         DECLARE_COMPLETION_ONSTACK(wait);
1303
1304         c->waiting = &wait;
1305         enqueue_cmd_and_start_io(h, c);
1306         wait_for_completion(&wait);
1307 }
1308
1309 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1310         struct CommandList *c)
1311 {
1312         unsigned long flags;
1313
1314         /* If controller lockup detected, fake a hardware error. */
1315         spin_lock_irqsave(&h->lock, flags);
1316         if (unlikely(h->lockup_detected)) {
1317                 spin_unlock_irqrestore(&h->lock, flags);
1318                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1319         } else {
1320                 spin_unlock_irqrestore(&h->lock, flags);
1321                 hpsa_scsi_do_simple_cmd_core(h, c);
1322         }
1323 }
1324
1325 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1326         struct CommandList *c, int data_direction)
1327 {
1328         int retry_count = 0;
1329
1330         do {
1331                 memset(c->err_info, 0, sizeof(*c->err_info));
1332                 hpsa_scsi_do_simple_cmd_core(h, c);
1333                 retry_count++;
1334         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1335         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1336 }
1337
1338 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1339 {
1340         struct ErrorInfo *ei;
1341         struct device *d = &cp->h->pdev->dev;
1342
1343         ei = cp->err_info;
1344         switch (ei->CommandStatus) {
1345         case CMD_TARGET_STATUS:
1346                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1347                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1348                                 ei->ScsiStatus);
1349                 if (ei->ScsiStatus == 0)
1350                         dev_warn(d, "SCSI status is abnormally zero.  "
1351                         "(probably indicates selection timeout "
1352                         "reported incorrectly due to a known "
1353                         "firmware bug, circa July, 2001.)\n");
1354                 break;
1355         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1356                         dev_info(d, "UNDERRUN\n");
1357                 break;
1358         case CMD_DATA_OVERRUN:
1359                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1360                 break;
1361         case CMD_INVALID: {
1362                 /* controller unfortunately reports SCSI passthru's
1363                  * to non-existent targets as invalid commands.
1364                  */
1365                 dev_warn(d, "cp %p is reported invalid (probably means "
1366                         "target device no longer present)\n", cp);
1367                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1368                 print_cmd(cp);  */
1369                 }
1370                 break;
1371         case CMD_PROTOCOL_ERR:
1372                 dev_warn(d, "cp %p has protocol error \n", cp);
1373                 break;
1374         case CMD_HARDWARE_ERR:
1375                 /* cmd->result = DID_ERROR << 16; */
1376                 dev_warn(d, "cp %p had hardware error\n", cp);
1377                 break;
1378         case CMD_CONNECTION_LOST:
1379                 dev_warn(d, "cp %p had connection lost\n", cp);
1380                 break;
1381         case CMD_ABORTED:
1382                 dev_warn(d, "cp %p was aborted\n", cp);
1383                 break;
1384         case CMD_ABORT_FAILED:
1385                 dev_warn(d, "cp %p reports abort failed\n", cp);
1386                 break;
1387         case CMD_UNSOLICITED_ABORT:
1388                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1389                 break;
1390         case CMD_TIMEOUT:
1391                 dev_warn(d, "cp %p timed out\n", cp);
1392                 break;
1393         case CMD_UNABORTABLE:
1394                 dev_warn(d, "Command unabortable\n");
1395                 break;
1396         default:
1397                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1398                                 ei->CommandStatus);
1399         }
1400 }
1401
1402 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1403                         unsigned char page, unsigned char *buf,
1404                         unsigned char bufsize)
1405 {
1406         int rc = IO_OK;
1407         struct CommandList *c;
1408         struct ErrorInfo *ei;
1409
1410         c = cmd_special_alloc(h);
1411
1412         if (c == NULL) {                        /* trouble... */
1413                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1414                 return -ENOMEM;
1415         }
1416
1417         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1418         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1419         ei = c->err_info;
1420         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1421                 hpsa_scsi_interpret_error(c);
1422                 rc = -1;
1423         }
1424         cmd_special_free(h, c);
1425         return rc;
1426 }
1427
1428 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1429 {
1430         int rc = IO_OK;
1431         struct CommandList *c;
1432         struct ErrorInfo *ei;
1433
1434         c = cmd_special_alloc(h);
1435
1436         if (c == NULL) {                        /* trouble... */
1437                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1438                 return -ENOMEM;
1439         }
1440
1441         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1442         hpsa_scsi_do_simple_cmd_core(h, c);
1443         /* no unmap needed here because no data xfer. */
1444
1445         ei = c->err_info;
1446         if (ei->CommandStatus != 0) {
1447                 hpsa_scsi_interpret_error(c);
1448                 rc = -1;
1449         }
1450         cmd_special_free(h, c);
1451         return rc;
1452 }
1453
1454 static void hpsa_get_raid_level(struct ctlr_info *h,
1455         unsigned char *scsi3addr, unsigned char *raid_level)
1456 {
1457         int rc;
1458         unsigned char *buf;
1459
1460         *raid_level = RAID_UNKNOWN;
1461         buf = kzalloc(64, GFP_KERNEL);
1462         if (!buf)
1463                 return;
1464         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1465         if (rc == 0)
1466                 *raid_level = buf[8];
1467         if (*raid_level > RAID_UNKNOWN)
1468                 *raid_level = RAID_UNKNOWN;
1469         kfree(buf);
1470         return;
1471 }
1472
1473 /* Get the device id from inquiry page 0x83 */
1474 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1475         unsigned char *device_id, int buflen)
1476 {
1477         int rc;
1478         unsigned char *buf;
1479
1480         if (buflen > 16)
1481                 buflen = 16;
1482         buf = kzalloc(64, GFP_KERNEL);
1483         if (!buf)
1484                 return -1;
1485         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1486         if (rc == 0)
1487                 memcpy(device_id, &buf[8], buflen);
1488         kfree(buf);
1489         return rc != 0;
1490 }
1491
1492 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1493                 struct ReportLUNdata *buf, int bufsize,
1494                 int extended_response)
1495 {
1496         int rc = IO_OK;
1497         struct CommandList *c;
1498         unsigned char scsi3addr[8];
1499         struct ErrorInfo *ei;
1500
1501         c = cmd_special_alloc(h);
1502         if (c == NULL) {                        /* trouble... */
1503                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1504                 return -1;
1505         }
1506         /* address the controller */
1507         memset(scsi3addr, 0, sizeof(scsi3addr));
1508         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1509                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1510         if (extended_response)
1511                 c->Request.CDB[1] = extended_response;
1512         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1513         ei = c->err_info;
1514         if (ei->CommandStatus != 0 &&
1515             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1516                 hpsa_scsi_interpret_error(c);
1517                 rc = -1;
1518         }
1519         cmd_special_free(h, c);
1520         return rc;
1521 }
1522
1523 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1524                 struct ReportLUNdata *buf,
1525                 int bufsize, int extended_response)
1526 {
1527         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1528 }
1529
1530 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1531                 struct ReportLUNdata *buf, int bufsize)
1532 {
1533         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1534 }
1535
1536 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1537         int bus, int target, int lun)
1538 {
1539         device->bus = bus;
1540         device->target = target;
1541         device->lun = lun;
1542 }
1543
1544 static int hpsa_update_device_info(struct ctlr_info *h,
1545         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1546         unsigned char *is_OBDR_device)
1547 {
1548
1549 #define OBDR_SIG_OFFSET 43
1550 #define OBDR_TAPE_SIG "$DR-10"
1551 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1552 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1553
1554         unsigned char *inq_buff;
1555         unsigned char *obdr_sig;
1556
1557         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1558         if (!inq_buff)
1559                 goto bail_out;
1560
1561         /* Do an inquiry to the device to see what it is. */
1562         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1563                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1564                 /* Inquiry failed (msg printed already) */
1565                 dev_err(&h->pdev->dev,
1566                         "hpsa_update_device_info: inquiry failed\n");
1567                 goto bail_out;
1568         }
1569
1570         this_device->devtype = (inq_buff[0] & 0x1f);
1571         memcpy(this_device->scsi3addr, scsi3addr, 8);
1572         memcpy(this_device->vendor, &inq_buff[8],
1573                 sizeof(this_device->vendor));
1574         memcpy(this_device->model, &inq_buff[16],
1575                 sizeof(this_device->model));
1576         memset(this_device->device_id, 0,
1577                 sizeof(this_device->device_id));
1578         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1579                 sizeof(this_device->device_id));
1580
1581         if (this_device->devtype == TYPE_DISK &&
1582                 is_logical_dev_addr_mode(scsi3addr))
1583                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1584         else
1585                 this_device->raid_level = RAID_UNKNOWN;
1586
1587         if (is_OBDR_device) {
1588                 /* See if this is a One-Button-Disaster-Recovery device
1589                  * by looking for "$DR-10" at offset 43 in inquiry data.
1590                  */
1591                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1592                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1593                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1594                                                 OBDR_SIG_LEN) == 0);
1595         }
1596
1597         kfree(inq_buff);
1598         return 0;
1599
1600 bail_out:
1601         kfree(inq_buff);
1602         return 1;
1603 }
1604
1605 static unsigned char *msa2xxx_model[] = {
1606         "MSA2012",
1607         "MSA2024",
1608         "MSA2312",
1609         "MSA2324",
1610         "P2000 G3 SAS",
1611         NULL,
1612 };
1613
1614 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1615 {
1616         int i;
1617
1618         for (i = 0; msa2xxx_model[i]; i++)
1619                 if (strncmp(device->model, msa2xxx_model[i],
1620                         strlen(msa2xxx_model[i])) == 0)
1621                         return 1;
1622         return 0;
1623 }
1624
1625 /* Helper function to assign bus, target, lun mapping of devices.
1626  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1627  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1628  * Logical drive target and lun are assigned at this time, but
1629  * physical device lun and target assignment are deferred (assigned
1630  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1631  */
1632 static void figure_bus_target_lun(struct ctlr_info *h,
1633         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1634         struct hpsa_scsi_dev_t *device)
1635 {
1636         u32 lunid;
1637
1638         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1639                 /* logical device */
1640                 if (unlikely(is_scsi_rev_5(h))) {
1641                         /* p1210m, logical drives lun assignments
1642                          * match SCSI REPORT LUNS data.
1643                          */
1644                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1645                         *bus = 0;
1646                         *target = 0;
1647                         *lun = (lunid & 0x3fff) + 1;
1648                 } else {
1649                         /* not p1210m... */
1650                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1651                         if (is_msa2xxx(h, device)) {
1652                                 /* msa2xxx way, put logicals on bus 1
1653                                  * and match target/lun numbers box
1654                                  * reports.
1655                                  */
1656                                 *bus = 1;
1657                                 *target = (lunid >> 16) & 0x3fff;
1658                                 *lun = lunid & 0x00ff;
1659                         } else {
1660                                 /* Traditional smart array way. */
1661                                 *bus = 0;
1662                                 *lun = 0;
1663                                 *target = lunid & 0x3fff;
1664                         }
1665                 }
1666         } else {
1667                 /* physical device */
1668                 if (is_hba_lunid(lunaddrbytes))
1669                         if (unlikely(is_scsi_rev_5(h))) {
1670                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1671                                 *target = 0;
1672                                 *lun = 0;
1673                                 return;
1674                         } else
1675                                 *bus = 3; /* traditional smartarray */
1676                 else
1677                         *bus = 2; /* physical disk */
1678                 *target = -1;
1679                 *lun = -1; /* we will fill these in later. */
1680         }
1681 }
1682
1683 /*
1684  * If there is no lun 0 on a target, linux won't find any devices.
1685  * For the MSA2xxx boxes, we have to manually detect the enclosure
1686  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1687  * it for some reason.  *tmpdevice is the target we're adding,
1688  * this_device is a pointer into the current element of currentsd[]
1689  * that we're building up in update_scsi_devices(), below.
1690  * lunzerobits is a bitmap that tracks which targets already have a
1691  * lun 0 assigned.
1692  * Returns 1 if an enclosure was added, 0 if not.
1693  */
1694 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1695         struct hpsa_scsi_dev_t *tmpdevice,
1696         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1697         int bus, int target, int lun, unsigned long lunzerobits[],
1698         int *nmsa2xxx_enclosures)
1699 {
1700         unsigned char scsi3addr[8];
1701
1702         if (test_bit(target, lunzerobits))
1703                 return 0; /* There is already a lun 0 on this target. */
1704
1705         if (!is_logical_dev_addr_mode(lunaddrbytes))
1706                 return 0; /* It's the logical targets that may lack lun 0. */
1707
1708         if (!is_msa2xxx(h, tmpdevice))
1709                 return 0; /* It's only the MSA2xxx that have this problem. */
1710
1711         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1712                 return 0;
1713
1714         memset(scsi3addr, 0, 8);
1715         scsi3addr[3] = target;
1716         if (is_hba_lunid(scsi3addr))
1717                 return 0; /* Don't add the RAID controller here. */
1718
1719         if (is_scsi_rev_5(h))
1720                 return 0; /* p1210m doesn't need to do this. */
1721
1722         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1723                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1724                         "enclosures exceeded.  Check your hardware "
1725                         "configuration.");
1726                 return 0;
1727         }
1728
1729         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1730                 return 0;
1731         (*nmsa2xxx_enclosures)++;
1732         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1733         set_bit(target, lunzerobits);
1734         return 1;
1735 }
1736
1737 /*
1738  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1739  * logdev.  The number of luns in physdev and logdev are returned in
1740  * *nphysicals and *nlogicals, respectively.
1741  * Returns 0 on success, -1 otherwise.
1742  */
1743 static int hpsa_gather_lun_info(struct ctlr_info *h,
1744         int reportlunsize,
1745         struct ReportLUNdata *physdev, u32 *nphysicals,
1746         struct ReportLUNdata *logdev, u32 *nlogicals)
1747 {
1748         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1749                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1750                 return -1;
1751         }
1752         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1753         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1754                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1755                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1756                         *nphysicals - HPSA_MAX_PHYS_LUN);
1757                 *nphysicals = HPSA_MAX_PHYS_LUN;
1758         }
1759         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1760                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1761                 return -1;
1762         }
1763         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1764         /* Reject Logicals in excess of our max capability. */
1765         if (*nlogicals > HPSA_MAX_LUN) {
1766                 dev_warn(&h->pdev->dev,
1767                         "maximum logical LUNs (%d) exceeded.  "
1768                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1769                         *nlogicals - HPSA_MAX_LUN);
1770                         *nlogicals = HPSA_MAX_LUN;
1771         }
1772         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1773                 dev_warn(&h->pdev->dev,
1774                         "maximum logical + physical LUNs (%d) exceeded. "
1775                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1776                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1777                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1778         }
1779         return 0;
1780 }
1781
1782 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1783         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1784         struct ReportLUNdata *logdev_list)
1785 {
1786         /* Helper function, figure out where the LUN ID info is coming from
1787          * given index i, lists of physical and logical devices, where in
1788          * the list the raid controller is supposed to appear (first or last)
1789          */
1790
1791         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1792         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1793
1794         if (i == raid_ctlr_position)
1795                 return RAID_CTLR_LUNID;
1796
1797         if (i < logicals_start)
1798                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1799
1800         if (i < last_device)
1801                 return &logdev_list->LUN[i - nphysicals -
1802                         (raid_ctlr_position == 0)][0];
1803         BUG();
1804         return NULL;
1805 }
1806
1807 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1808 {
1809         /* the idea here is we could get notified
1810          * that some devices have changed, so we do a report
1811          * physical luns and report logical luns cmd, and adjust
1812          * our list of devices accordingly.
1813          *
1814          * The scsi3addr's of devices won't change so long as the
1815          * adapter is not reset.  That means we can rescan and
1816          * tell which devices we already know about, vs. new
1817          * devices, vs.  disappearing devices.
1818          */
1819         struct ReportLUNdata *physdev_list = NULL;
1820         struct ReportLUNdata *logdev_list = NULL;
1821         u32 nphysicals = 0;
1822         u32 nlogicals = 0;
1823         u32 ndev_allocated = 0;
1824         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1825         int ncurrent = 0;
1826         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1827         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1828         int bus, target, lun;
1829         int raid_ctlr_position;
1830         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1831
1832         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1833         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1834         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1835         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1836
1837         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1838                 dev_err(&h->pdev->dev, "out of memory\n");
1839                 goto out;
1840         }
1841         memset(lunzerobits, 0, sizeof(lunzerobits));
1842
1843         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1844                         logdev_list, &nlogicals))
1845                 goto out;
1846
1847         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1848          * but each of them 4 times through different paths.  The plus 1
1849          * is for the RAID controller.
1850          */
1851         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1852
1853         /* Allocate the per device structures */
1854         for (i = 0; i < ndevs_to_allocate; i++) {
1855                 if (i >= HPSA_MAX_DEVICES) {
1856                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1857                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1858                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1859                         break;
1860                 }
1861
1862                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1863                 if (!currentsd[i]) {
1864                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1865                                 __FILE__, __LINE__);
1866                         goto out;
1867                 }
1868                 ndev_allocated++;
1869         }
1870
1871         if (unlikely(is_scsi_rev_5(h)))
1872                 raid_ctlr_position = 0;
1873         else
1874                 raid_ctlr_position = nphysicals + nlogicals;
1875
1876         /* adjust our table of devices */
1877         nmsa2xxx_enclosures = 0;
1878         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1879                 u8 *lunaddrbytes, is_OBDR = 0;
1880
1881                 /* Figure out where the LUN ID info is coming from */
1882                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1883                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1884                 /* skip masked physical devices. */
1885                 if (lunaddrbytes[3] & 0xC0 &&
1886                         i < nphysicals + (raid_ctlr_position == 0))
1887                         continue;
1888
1889                 /* Get device type, vendor, model, device id */
1890                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1891                                                         &is_OBDR))
1892                         continue; /* skip it if we can't talk to it. */
1893                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1894                         tmpdevice);
1895                 this_device = currentsd[ncurrent];
1896
1897                 /*
1898                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1899                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1900                  * is nonetheless an enclosure device there.  We have to
1901                  * present that otherwise linux won't find anything if
1902                  * there is no lun 0.
1903                  */
1904                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1905                                 lunaddrbytes, bus, target, lun, lunzerobits,
1906                                 &nmsa2xxx_enclosures)) {
1907                         ncurrent++;
1908                         this_device = currentsd[ncurrent];
1909                 }
1910
1911                 *this_device = *tmpdevice;
1912                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1913
1914                 switch (this_device->devtype) {
1915                 case TYPE_ROM:
1916                         /* We don't *really* support actual CD-ROM devices,
1917                          * just "One Button Disaster Recovery" tape drive
1918                          * which temporarily pretends to be a CD-ROM drive.
1919                          * So we check that the device is really an OBDR tape
1920                          * device by checking for "$DR-10" in bytes 43-48 of
1921                          * the inquiry data.
1922                          */
1923                         if (is_OBDR)
1924                                 ncurrent++;
1925                         break;
1926                 case TYPE_DISK:
1927                         if (i < nphysicals)
1928                                 break;
1929                         ncurrent++;
1930                         break;
1931                 case TYPE_TAPE:
1932                 case TYPE_MEDIUM_CHANGER:
1933                         ncurrent++;
1934                         break;
1935                 case TYPE_RAID:
1936                         /* Only present the Smartarray HBA as a RAID controller.
1937                          * If it's a RAID controller other than the HBA itself
1938                          * (an external RAID controller, MSA500 or similar)
1939                          * don't present it.
1940                          */
1941                         if (!is_hba_lunid(lunaddrbytes))
1942                                 break;
1943                         ncurrent++;
1944                         break;
1945                 default:
1946                         break;
1947                 }
1948                 if (ncurrent >= HPSA_MAX_DEVICES)
1949                         break;
1950         }
1951         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1952 out:
1953         kfree(tmpdevice);
1954         for (i = 0; i < ndev_allocated; i++)
1955                 kfree(currentsd[i]);
1956         kfree(currentsd);
1957         kfree(physdev_list);
1958         kfree(logdev_list);
1959 }
1960
1961 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1962  * dma mapping  and fills in the scatter gather entries of the
1963  * hpsa command, cp.
1964  */
1965 static int hpsa_scatter_gather(struct ctlr_info *h,
1966                 struct CommandList *cp,
1967                 struct scsi_cmnd *cmd)
1968 {
1969         unsigned int len;
1970         struct scatterlist *sg;
1971         u64 addr64;
1972         int use_sg, i, sg_index, chained;
1973         struct SGDescriptor *curr_sg;
1974
1975         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1976
1977         use_sg = scsi_dma_map(cmd);
1978         if (use_sg < 0)
1979                 return use_sg;
1980
1981         if (!use_sg)
1982                 goto sglist_finished;
1983
1984         curr_sg = cp->SG;
1985         chained = 0;
1986         sg_index = 0;
1987         scsi_for_each_sg(cmd, sg, use_sg, i) {
1988                 if (i == h->max_cmd_sg_entries - 1 &&
1989                         use_sg > h->max_cmd_sg_entries) {
1990                         chained = 1;
1991                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1992                         sg_index = 0;
1993                 }
1994                 addr64 = (u64) sg_dma_address(sg);
1995                 len  = sg_dma_len(sg);
1996                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1997                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1998                 curr_sg->Len = len;
1999                 curr_sg->Ext = 0;  /* we are not chaining */
2000                 curr_sg++;
2001         }
2002
2003         if (use_sg + chained > h->maxSG)
2004                 h->maxSG = use_sg + chained;
2005
2006         if (chained) {
2007                 cp->Header.SGList = h->max_cmd_sg_entries;
2008                 cp->Header.SGTotal = (u16) (use_sg + 1);
2009                 hpsa_map_sg_chain_block(h, cp);
2010                 return 0;
2011         }
2012
2013 sglist_finished:
2014
2015         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2016         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2017         return 0;
2018 }
2019
2020
2021 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2022         void (*done)(struct scsi_cmnd *))
2023 {
2024         struct ctlr_info *h;
2025         struct hpsa_scsi_dev_t *dev;
2026         unsigned char scsi3addr[8];
2027         struct CommandList *c;
2028         unsigned long flags;
2029
2030         /* Get the ptr to our adapter structure out of cmd->host. */
2031         h = sdev_to_hba(cmd->device);
2032         dev = cmd->device->hostdata;
2033         if (!dev) {
2034                 cmd->result = DID_NO_CONNECT << 16;
2035                 done(cmd);
2036                 return 0;
2037         }
2038         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2039
2040         spin_lock_irqsave(&h->lock, flags);
2041         if (unlikely(h->lockup_detected)) {
2042                 spin_unlock_irqrestore(&h->lock, flags);
2043                 cmd->result = DID_ERROR << 16;
2044                 done(cmd);
2045                 return 0;
2046         }
2047         /* Need a lock as this is being allocated from the pool */
2048         c = cmd_alloc(h);
2049         spin_unlock_irqrestore(&h->lock, flags);
2050         if (c == NULL) {                        /* trouble... */
2051                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2052                 return SCSI_MLQUEUE_HOST_BUSY;
2053         }
2054
2055         /* Fill in the command list header */
2056
2057         cmd->scsi_done = done;    /* save this for use by completion code */
2058
2059         /* save c in case we have to abort it  */
2060         cmd->host_scribble = (unsigned char *) c;
2061
2062         c->cmd_type = CMD_SCSI;
2063         c->scsi_cmd = cmd;
2064         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2065         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2066         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2067         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2068
2069         /* Fill in the request block... */
2070
2071         c->Request.Timeout = 0;
2072         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2073         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2074         c->Request.CDBLen = cmd->cmd_len;
2075         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2076         c->Request.Type.Type = TYPE_CMD;
2077         c->Request.Type.Attribute = ATTR_SIMPLE;
2078         switch (cmd->sc_data_direction) {
2079         case DMA_TO_DEVICE:
2080                 c->Request.Type.Direction = XFER_WRITE;
2081                 break;
2082         case DMA_FROM_DEVICE:
2083                 c->Request.Type.Direction = XFER_READ;
2084                 break;
2085         case DMA_NONE:
2086                 c->Request.Type.Direction = XFER_NONE;
2087                 break;
2088         case DMA_BIDIRECTIONAL:
2089                 /* This can happen if a buggy application does a scsi passthru
2090                  * and sets both inlen and outlen to non-zero. ( see
2091                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2092                  */
2093
2094                 c->Request.Type.Direction = XFER_RSVD;
2095                 /* This is technically wrong, and hpsa controllers should
2096                  * reject it with CMD_INVALID, which is the most correct
2097                  * response, but non-fibre backends appear to let it
2098                  * slide by, and give the same results as if this field
2099                  * were set correctly.  Either way is acceptable for
2100                  * our purposes here.
2101                  */
2102
2103                 break;
2104
2105         default:
2106                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2107                         cmd->sc_data_direction);
2108                 BUG();
2109                 break;
2110         }
2111
2112         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2113                 cmd_free(h, c);
2114                 return SCSI_MLQUEUE_HOST_BUSY;
2115         }
2116         enqueue_cmd_and_start_io(h, c);
2117         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2118         return 0;
2119 }
2120
2121 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2122
2123 static void hpsa_scan_start(struct Scsi_Host *sh)
2124 {
2125         struct ctlr_info *h = shost_to_hba(sh);
2126         unsigned long flags;
2127
2128         /* wait until any scan already in progress is finished. */
2129         while (1) {
2130                 spin_lock_irqsave(&h->scan_lock, flags);
2131                 if (h->scan_finished)
2132                         break;
2133                 spin_unlock_irqrestore(&h->scan_lock, flags);
2134                 wait_event(h->scan_wait_queue, h->scan_finished);
2135                 /* Note: We don't need to worry about a race between this
2136                  * thread and driver unload because the midlayer will
2137                  * have incremented the reference count, so unload won't
2138                  * happen if we're in here.
2139                  */
2140         }
2141         h->scan_finished = 0; /* mark scan as in progress */
2142         spin_unlock_irqrestore(&h->scan_lock, flags);
2143
2144         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2145
2146         spin_lock_irqsave(&h->scan_lock, flags);
2147         h->scan_finished = 1; /* mark scan as finished. */
2148         wake_up_all(&h->scan_wait_queue);
2149         spin_unlock_irqrestore(&h->scan_lock, flags);
2150 }
2151
2152 static int hpsa_scan_finished(struct Scsi_Host *sh,
2153         unsigned long elapsed_time)
2154 {
2155         struct ctlr_info *h = shost_to_hba(sh);
2156         unsigned long flags;
2157         int finished;
2158
2159         spin_lock_irqsave(&h->scan_lock, flags);
2160         finished = h->scan_finished;
2161         spin_unlock_irqrestore(&h->scan_lock, flags);
2162         return finished;
2163 }
2164
2165 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2166         int qdepth, int reason)
2167 {
2168         struct ctlr_info *h = sdev_to_hba(sdev);
2169
2170         if (reason != SCSI_QDEPTH_DEFAULT)
2171                 return -ENOTSUPP;
2172
2173         if (qdepth < 1)
2174                 qdepth = 1;
2175         else
2176                 if (qdepth > h->nr_cmds)
2177                         qdepth = h->nr_cmds;
2178         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2179         return sdev->queue_depth;
2180 }
2181
2182 static void hpsa_unregister_scsi(struct ctlr_info *h)
2183 {
2184         /* we are being forcibly unloaded, and may not refuse. */
2185         scsi_remove_host(h->scsi_host);
2186         scsi_host_put(h->scsi_host);
2187         h->scsi_host = NULL;
2188 }
2189
2190 static int hpsa_register_scsi(struct ctlr_info *h)
2191 {
2192         struct Scsi_Host *sh;
2193         int error;
2194
2195         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2196         if (sh == NULL)
2197                 goto fail;
2198
2199         sh->io_port = 0;
2200         sh->n_io_port = 0;
2201         sh->this_id = -1;
2202         sh->max_channel = 3;
2203         sh->max_cmd_len = MAX_COMMAND_SIZE;
2204         sh->max_lun = HPSA_MAX_LUN;
2205         sh->max_id = HPSA_MAX_LUN;
2206         sh->can_queue = h->nr_cmds;
2207         sh->cmd_per_lun = h->nr_cmds;
2208         sh->sg_tablesize = h->maxsgentries;
2209         h->scsi_host = sh;
2210         sh->hostdata[0] = (unsigned long) h;
2211         sh->irq = h->intr[h->intr_mode];
2212         sh->unique_id = sh->irq;
2213         error = scsi_add_host(sh, &h->pdev->dev);
2214         if (error)
2215                 goto fail_host_put;
2216         scsi_scan_host(sh);
2217         return 0;
2218
2219  fail_host_put:
2220         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2221                 " failed for controller %d\n", __func__, h->ctlr);
2222         scsi_host_put(sh);
2223         return error;
2224  fail:
2225         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2226                 " failed for controller %d\n", __func__, h->ctlr);
2227         return -ENOMEM;
2228 }
2229
2230 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2231         unsigned char lunaddr[])
2232 {
2233         int rc = 0;
2234         int count = 0;
2235         int waittime = 1; /* seconds */
2236         struct CommandList *c;
2237
2238         c = cmd_special_alloc(h);
2239         if (!c) {
2240                 dev_warn(&h->pdev->dev, "out of memory in "
2241                         "wait_for_device_to_become_ready.\n");
2242                 return IO_ERROR;
2243         }
2244
2245         /* Send test unit ready until device ready, or give up. */
2246         while (count < HPSA_TUR_RETRY_LIMIT) {
2247
2248                 /* Wait for a bit.  do this first, because if we send
2249                  * the TUR right away, the reset will just abort it.
2250                  */
2251                 msleep(1000 * waittime);
2252                 count++;
2253
2254                 /* Increase wait time with each try, up to a point. */
2255                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2256                         waittime = waittime * 2;
2257
2258                 /* Send the Test Unit Ready */
2259                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2260                 hpsa_scsi_do_simple_cmd_core(h, c);
2261                 /* no unmap needed here because no data xfer. */
2262
2263                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2264                         break;
2265
2266                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2267                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2268                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2269                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2270                         break;
2271
2272                 dev_warn(&h->pdev->dev, "waiting %d secs "
2273                         "for device to become ready.\n", waittime);
2274                 rc = 1; /* device not ready. */
2275         }
2276
2277         if (rc)
2278                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2279         else
2280                 dev_warn(&h->pdev->dev, "device is ready.\n");
2281
2282         cmd_special_free(h, c);
2283         return rc;
2284 }
2285
2286 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2287  * complaining.  Doing a host- or bus-reset can't do anything good here.
2288  */
2289 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2290 {
2291         int rc;
2292         struct ctlr_info *h;
2293         struct hpsa_scsi_dev_t *dev;
2294
2295         /* find the controller to which the command to be aborted was sent */
2296         h = sdev_to_hba(scsicmd->device);
2297         if (h == NULL) /* paranoia */
2298                 return FAILED;
2299         dev = scsicmd->device->hostdata;
2300         if (!dev) {
2301                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2302                         "device lookup failed.\n");
2303                 return FAILED;
2304         }
2305         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2306                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2307         /* send a reset to the SCSI LUN which the command was sent to */
2308         rc = hpsa_send_reset(h, dev->scsi3addr);
2309         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2310                 return SUCCESS;
2311
2312         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2313         return FAILED;
2314 }
2315
2316 /*
2317  * For operations that cannot sleep, a command block is allocated at init,
2318  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2319  * which ones are free or in use.  Lock must be held when calling this.
2320  * cmd_free() is the complement.
2321  */
2322 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2323 {
2324         struct CommandList *c;
2325         int i;
2326         union u64bit temp64;
2327         dma_addr_t cmd_dma_handle, err_dma_handle;
2328
2329         do {
2330                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2331                 if (i == h->nr_cmds)
2332                         return NULL;
2333         } while (test_and_set_bit
2334                  (i & (BITS_PER_LONG - 1),
2335                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2336         c = h->cmd_pool + i;
2337         memset(c, 0, sizeof(*c));
2338         cmd_dma_handle = h->cmd_pool_dhandle
2339             + i * sizeof(*c);
2340         c->err_info = h->errinfo_pool + i;
2341         memset(c->err_info, 0, sizeof(*c->err_info));
2342         err_dma_handle = h->errinfo_pool_dhandle
2343             + i * sizeof(*c->err_info);
2344         h->nr_allocs++;
2345
2346         c->cmdindex = i;
2347
2348         INIT_LIST_HEAD(&c->list);
2349         c->busaddr = (u32) cmd_dma_handle;
2350         temp64.val = (u64) err_dma_handle;
2351         c->ErrDesc.Addr.lower = temp64.val32.lower;
2352         c->ErrDesc.Addr.upper = temp64.val32.upper;
2353         c->ErrDesc.Len = sizeof(*c->err_info);
2354
2355         c->h = h;
2356         return c;
2357 }
2358
2359 /* For operations that can wait for kmalloc to possibly sleep,
2360  * this routine can be called. Lock need not be held to call
2361  * cmd_special_alloc. cmd_special_free() is the complement.
2362  */
2363 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2364 {
2365         struct CommandList *c;
2366         union u64bit temp64;
2367         dma_addr_t cmd_dma_handle, err_dma_handle;
2368
2369         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2370         if (c == NULL)
2371                 return NULL;
2372         memset(c, 0, sizeof(*c));
2373
2374         c->cmdindex = -1;
2375
2376         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2377                     &err_dma_handle);
2378
2379         if (c->err_info == NULL) {
2380                 pci_free_consistent(h->pdev,
2381                         sizeof(*c), c, cmd_dma_handle);
2382                 return NULL;
2383         }
2384         memset(c->err_info, 0, sizeof(*c->err_info));
2385
2386         INIT_LIST_HEAD(&c->list);
2387         c->busaddr = (u32) cmd_dma_handle;
2388         temp64.val = (u64) err_dma_handle;
2389         c->ErrDesc.Addr.lower = temp64.val32.lower;
2390         c->ErrDesc.Addr.upper = temp64.val32.upper;
2391         c->ErrDesc.Len = sizeof(*c->err_info);
2392
2393         c->h = h;
2394         return c;
2395 }
2396
2397 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2398 {
2399         int i;
2400
2401         i = c - h->cmd_pool;
2402         clear_bit(i & (BITS_PER_LONG - 1),
2403                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2404         h->nr_frees++;
2405 }
2406
2407 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2408 {
2409         union u64bit temp64;
2410
2411         temp64.val32.lower = c->ErrDesc.Addr.lower;
2412         temp64.val32.upper = c->ErrDesc.Addr.upper;
2413         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2414                             c->err_info, (dma_addr_t) temp64.val);
2415         pci_free_consistent(h->pdev, sizeof(*c),
2416                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2417 }
2418
2419 #ifdef CONFIG_COMPAT
2420
2421 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2422 {
2423         IOCTL32_Command_struct __user *arg32 =
2424             (IOCTL32_Command_struct __user *) arg;
2425         IOCTL_Command_struct arg64;
2426         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2427         int err;
2428         u32 cp;
2429
2430         memset(&arg64, 0, sizeof(arg64));
2431         err = 0;
2432         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2433                            sizeof(arg64.LUN_info));
2434         err |= copy_from_user(&arg64.Request, &arg32->Request,
2435                            sizeof(arg64.Request));
2436         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2437                            sizeof(arg64.error_info));
2438         err |= get_user(arg64.buf_size, &arg32->buf_size);
2439         err |= get_user(cp, &arg32->buf);
2440         arg64.buf = compat_ptr(cp);
2441         err |= copy_to_user(p, &arg64, sizeof(arg64));
2442
2443         if (err)
2444                 return -EFAULT;
2445
2446         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2447         if (err)
2448                 return err;
2449         err |= copy_in_user(&arg32->error_info, &p->error_info,
2450                          sizeof(arg32->error_info));
2451         if (err)
2452                 return -EFAULT;
2453         return err;
2454 }
2455
2456 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2457         int cmd, void *arg)
2458 {
2459         BIG_IOCTL32_Command_struct __user *arg32 =
2460             (BIG_IOCTL32_Command_struct __user *) arg;
2461         BIG_IOCTL_Command_struct arg64;
2462         BIG_IOCTL_Command_struct __user *p =
2463             compat_alloc_user_space(sizeof(arg64));
2464         int err;
2465         u32 cp;
2466
2467         memset(&arg64, 0, sizeof(arg64));
2468         err = 0;
2469         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2470                            sizeof(arg64.LUN_info));
2471         err |= copy_from_user(&arg64.Request, &arg32->Request,
2472                            sizeof(arg64.Request));
2473         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2474                            sizeof(arg64.error_info));
2475         err |= get_user(arg64.buf_size, &arg32->buf_size);
2476         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2477         err |= get_user(cp, &arg32->buf);
2478         arg64.buf = compat_ptr(cp);
2479         err |= copy_to_user(p, &arg64, sizeof(arg64));
2480
2481         if (err)
2482                 return -EFAULT;
2483
2484         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2485         if (err)
2486                 return err;
2487         err |= copy_in_user(&arg32->error_info, &p->error_info,
2488                          sizeof(arg32->error_info));
2489         if (err)
2490                 return -EFAULT;
2491         return err;
2492 }
2493
2494 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2495 {
2496         switch (cmd) {
2497         case CCISS_GETPCIINFO:
2498         case CCISS_GETINTINFO:
2499         case CCISS_SETINTINFO:
2500         case CCISS_GETNODENAME:
2501         case CCISS_SETNODENAME:
2502         case CCISS_GETHEARTBEAT:
2503         case CCISS_GETBUSTYPES:
2504         case CCISS_GETFIRMVER:
2505         case CCISS_GETDRIVVER:
2506         case CCISS_REVALIDVOLS:
2507         case CCISS_DEREGDISK:
2508         case CCISS_REGNEWDISK:
2509         case CCISS_REGNEWD:
2510         case CCISS_RESCANDISK:
2511         case CCISS_GETLUNINFO:
2512                 return hpsa_ioctl(dev, cmd, arg);
2513
2514         case CCISS_PASSTHRU32:
2515                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2516         case CCISS_BIG_PASSTHRU32:
2517                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2518
2519         default:
2520                 return -ENOIOCTLCMD;
2521         }
2522 }
2523 #endif
2524
2525 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2526 {
2527         struct hpsa_pci_info pciinfo;
2528
2529         if (!argp)
2530                 return -EINVAL;
2531         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2532         pciinfo.bus = h->pdev->bus->number;
2533         pciinfo.dev_fn = h->pdev->devfn;
2534         pciinfo.board_id = h->board_id;
2535         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2536                 return -EFAULT;
2537         return 0;
2538 }
2539
2540 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2541 {
2542         DriverVer_type DriverVer;
2543         unsigned char vmaj, vmin, vsubmin;
2544         int rc;
2545
2546         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2547                 &vmaj, &vmin, &vsubmin);
2548         if (rc != 3) {
2549                 dev_info(&h->pdev->dev, "driver version string '%s' "
2550                         "unrecognized.", HPSA_DRIVER_VERSION);
2551                 vmaj = 0;
2552                 vmin = 0;
2553                 vsubmin = 0;
2554         }
2555         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2556         if (!argp)
2557                 return -EINVAL;
2558         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2559                 return -EFAULT;
2560         return 0;
2561 }
2562
2563 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2564 {
2565         IOCTL_Command_struct iocommand;
2566         struct CommandList *c;
2567         char *buff = NULL;
2568         union u64bit temp64;
2569
2570         if (!argp)
2571                 return -EINVAL;
2572         if (!capable(CAP_SYS_RAWIO))
2573                 return -EPERM;
2574         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2575                 return -EFAULT;
2576         if ((iocommand.buf_size < 1) &&
2577             (iocommand.Request.Type.Direction != XFER_NONE)) {
2578                 return -EINVAL;
2579         }
2580         if (iocommand.buf_size > 0) {
2581                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2582                 if (buff == NULL)
2583                         return -EFAULT;
2584                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2585                         /* Copy the data into the buffer we created */
2586                         if (copy_from_user(buff, iocommand.buf,
2587                                 iocommand.buf_size)) {
2588                                 kfree(buff);
2589                                 return -EFAULT;
2590                         }
2591                 } else {
2592                         memset(buff, 0, iocommand.buf_size);
2593                 }
2594         }
2595         c = cmd_special_alloc(h);
2596         if (c == NULL) {
2597                 kfree(buff);
2598                 return -ENOMEM;
2599         }
2600         /* Fill in the command type */
2601         c->cmd_type = CMD_IOCTL_PEND;
2602         /* Fill in Command Header */
2603         c->Header.ReplyQueue = 0; /* unused in simple mode */
2604         if (iocommand.buf_size > 0) {   /* buffer to fill */
2605                 c->Header.SGList = 1;
2606                 c->Header.SGTotal = 1;
2607         } else  { /* no buffers to fill */
2608                 c->Header.SGList = 0;
2609                 c->Header.SGTotal = 0;
2610         }
2611         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2612         /* use the kernel address the cmd block for tag */
2613         c->Header.Tag.lower = c->busaddr;
2614
2615         /* Fill in Request block */
2616         memcpy(&c->Request, &iocommand.Request,
2617                 sizeof(c->Request));
2618
2619         /* Fill in the scatter gather information */
2620         if (iocommand.buf_size > 0) {
2621                 temp64.val = pci_map_single(h->pdev, buff,
2622                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2623                 c->SG[0].Addr.lower = temp64.val32.lower;
2624                 c->SG[0].Addr.upper = temp64.val32.upper;
2625                 c->SG[0].Len = iocommand.buf_size;
2626                 c->SG[0].Ext = 0; /* we are not chaining*/
2627         }
2628         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2629         if (iocommand.buf_size > 0)
2630                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2631         check_ioctl_unit_attention(h, c);
2632
2633         /* Copy the error information out */
2634         memcpy(&iocommand.error_info, c->err_info,
2635                 sizeof(iocommand.error_info));
2636         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2637                 kfree(buff);
2638                 cmd_special_free(h, c);
2639                 return -EFAULT;
2640         }
2641         if (iocommand.Request.Type.Direction == XFER_READ &&
2642                 iocommand.buf_size > 0) {
2643                 /* Copy the data out of the buffer we created */
2644                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2645                         kfree(buff);
2646                         cmd_special_free(h, c);
2647                         return -EFAULT;
2648                 }
2649         }
2650         kfree(buff);
2651         cmd_special_free(h, c);
2652         return 0;
2653 }
2654
2655 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2656 {
2657         BIG_IOCTL_Command_struct *ioc;
2658         struct CommandList *c;
2659         unsigned char **buff = NULL;
2660         int *buff_size = NULL;
2661         union u64bit temp64;
2662         BYTE sg_used = 0;
2663         int status = 0;
2664         int i;
2665         u32 left;
2666         u32 sz;
2667         BYTE __user *data_ptr;
2668
2669         if (!argp)
2670                 return -EINVAL;
2671         if (!capable(CAP_SYS_RAWIO))
2672                 return -EPERM;
2673         ioc = (BIG_IOCTL_Command_struct *)
2674             kmalloc(sizeof(*ioc), GFP_KERNEL);
2675         if (!ioc) {
2676                 status = -ENOMEM;
2677                 goto cleanup1;
2678         }
2679         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2680                 status = -EFAULT;
2681                 goto cleanup1;
2682         }
2683         if ((ioc->buf_size < 1) &&
2684             (ioc->Request.Type.Direction != XFER_NONE)) {
2685                 status = -EINVAL;
2686                 goto cleanup1;
2687         }
2688         /* Check kmalloc limits  using all SGs */
2689         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2690                 status = -EINVAL;
2691                 goto cleanup1;
2692         }
2693         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2694                 status = -EINVAL;
2695                 goto cleanup1;
2696         }
2697         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2698         if (!buff) {
2699                 status = -ENOMEM;
2700                 goto cleanup1;
2701         }
2702         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2703         if (!buff_size) {
2704                 status = -ENOMEM;
2705                 goto cleanup1;
2706         }
2707         left = ioc->buf_size;
2708         data_ptr = ioc->buf;
2709         while (left) {
2710                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2711                 buff_size[sg_used] = sz;
2712                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2713                 if (buff[sg_used] == NULL) {
2714                         status = -ENOMEM;
2715                         goto cleanup1;
2716                 }
2717                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2718                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2719                                 status = -ENOMEM;
2720                                 goto cleanup1;
2721                         }
2722                 } else
2723                         memset(buff[sg_used], 0, sz);
2724                 left -= sz;
2725                 data_ptr += sz;
2726                 sg_used++;
2727         }
2728         c = cmd_special_alloc(h);
2729         if (c == NULL) {
2730                 status = -ENOMEM;
2731                 goto cleanup1;
2732         }
2733         c->cmd_type = CMD_IOCTL_PEND;
2734         c->Header.ReplyQueue = 0;
2735         c->Header.SGList = c->Header.SGTotal = sg_used;
2736         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2737         c->Header.Tag.lower = c->busaddr;
2738         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2739         if (ioc->buf_size > 0) {
2740                 int i;
2741                 for (i = 0; i < sg_used; i++) {
2742                         temp64.val = pci_map_single(h->pdev, buff[i],
2743                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2744                         c->SG[i].Addr.lower = temp64.val32.lower;
2745                         c->SG[i].Addr.upper = temp64.val32.upper;
2746                         c->SG[i].Len = buff_size[i];
2747                         /* we are not chaining */
2748                         c->SG[i].Ext = 0;
2749                 }
2750         }
2751         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2752         if (sg_used)
2753                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2754         check_ioctl_unit_attention(h, c);
2755         /* Copy the error information out */
2756         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2757         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2758                 cmd_special_free(h, c);
2759                 status = -EFAULT;
2760                 goto cleanup1;
2761         }
2762         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2763                 /* Copy the data out of the buffer we created */
2764                 BYTE __user *ptr = ioc->buf;
2765                 for (i = 0; i < sg_used; i++) {
2766                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2767                                 cmd_special_free(h, c);
2768                                 status = -EFAULT;
2769                                 goto cleanup1;
2770                         }
2771                         ptr += buff_size[i];
2772                 }
2773         }
2774         cmd_special_free(h, c);
2775         status = 0;
2776 cleanup1:
2777         if (buff) {
2778                 for (i = 0; i < sg_used; i++)
2779                         kfree(buff[i]);
2780                 kfree(buff);
2781         }
2782         kfree(buff_size);
2783         kfree(ioc);
2784         return status;
2785 }
2786
2787 static void check_ioctl_unit_attention(struct ctlr_info *h,
2788         struct CommandList *c)
2789 {
2790         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2791                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2792                 (void) check_for_unit_attention(h, c);
2793 }
2794 /*
2795  * ioctl
2796  */
2797 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2798 {
2799         struct ctlr_info *h;
2800         void __user *argp = (void __user *)arg;
2801
2802         h = sdev_to_hba(dev);
2803
2804         switch (cmd) {
2805         case CCISS_DEREGDISK:
2806         case CCISS_REGNEWDISK:
2807         case CCISS_REGNEWD:
2808                 hpsa_scan_start(h->scsi_host);
2809                 return 0;
2810         case CCISS_GETPCIINFO:
2811                 return hpsa_getpciinfo_ioctl(h, argp);
2812         case CCISS_GETDRIVVER:
2813                 return hpsa_getdrivver_ioctl(h, argp);
2814         case CCISS_PASSTHRU:
2815                 return hpsa_passthru_ioctl(h, argp);
2816         case CCISS_BIG_PASSTHRU:
2817                 return hpsa_big_passthru_ioctl(h, argp);
2818         default:
2819                 return -ENOTTY;
2820         }
2821 }
2822
2823 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2824         unsigned char *scsi3addr, u8 reset_type)
2825 {
2826         struct CommandList *c;
2827
2828         c = cmd_alloc(h);
2829         if (!c)
2830                 return -ENOMEM;
2831         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2832                 RAID_CTLR_LUNID, TYPE_MSG);
2833         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2834         c->waiting = NULL;
2835         enqueue_cmd_and_start_io(h, c);
2836         /* Don't wait for completion, the reset won't complete.  Don't free
2837          * the command either.  This is the last command we will send before
2838          * re-initializing everything, so it doesn't matter and won't leak.
2839          */
2840         return 0;
2841 }
2842
2843 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2844         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2845         int cmd_type)
2846 {
2847         int pci_dir = XFER_NONE;
2848
2849         c->cmd_type = CMD_IOCTL_PEND;
2850         c->Header.ReplyQueue = 0;
2851         if (buff != NULL && size > 0) {
2852                 c->Header.SGList = 1;
2853                 c->Header.SGTotal = 1;
2854         } else {
2855                 c->Header.SGList = 0;
2856                 c->Header.SGTotal = 0;
2857         }
2858         c->Header.Tag.lower = c->busaddr;
2859         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2860
2861         c->Request.Type.Type = cmd_type;
2862         if (cmd_type == TYPE_CMD) {
2863                 switch (cmd) {
2864                 case HPSA_INQUIRY:
2865                         /* are we trying to read a vital product page */
2866                         if (page_code != 0) {
2867                                 c->Request.CDB[1] = 0x01;
2868                                 c->Request.CDB[2] = page_code;
2869                         }
2870                         c->Request.CDBLen = 6;
2871                         c->Request.Type.Attribute = ATTR_SIMPLE;
2872                         c->Request.Type.Direction = XFER_READ;
2873                         c->Request.Timeout = 0;
2874                         c->Request.CDB[0] = HPSA_INQUIRY;
2875                         c->Request.CDB[4] = size & 0xFF;
2876                         break;
2877                 case HPSA_REPORT_LOG:
2878                 case HPSA_REPORT_PHYS:
2879                         /* Talking to controller so It's a physical command
2880                            mode = 00 target = 0.  Nothing to write.
2881                          */
2882                         c->Request.CDBLen = 12;
2883                         c->Request.Type.Attribute = ATTR_SIMPLE;
2884                         c->Request.Type.Direction = XFER_READ;
2885                         c->Request.Timeout = 0;
2886                         c->Request.CDB[0] = cmd;
2887                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2888                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2889                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2890                         c->Request.CDB[9] = size & 0xFF;
2891                         break;
2892                 case HPSA_CACHE_FLUSH:
2893                         c->Request.CDBLen = 12;
2894                         c->Request.Type.Attribute = ATTR_SIMPLE;
2895                         c->Request.Type.Direction = XFER_WRITE;
2896                         c->Request.Timeout = 0;
2897                         c->Request.CDB[0] = BMIC_WRITE;
2898                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2899                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2900                         c->Request.CDB[8] = size & 0xFF;
2901                         break;
2902                 case TEST_UNIT_READY:
2903                         c->Request.CDBLen = 6;
2904                         c->Request.Type.Attribute = ATTR_SIMPLE;
2905                         c->Request.Type.Direction = XFER_NONE;
2906                         c->Request.Timeout = 0;
2907                         break;
2908                 default:
2909                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2910                         BUG();
2911                         return;
2912                 }
2913         } else if (cmd_type == TYPE_MSG) {
2914                 switch (cmd) {
2915
2916                 case  HPSA_DEVICE_RESET_MSG:
2917                         c->Request.CDBLen = 16;
2918                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2919                         c->Request.Type.Attribute = ATTR_SIMPLE;
2920                         c->Request.Type.Direction = XFER_NONE;
2921                         c->Request.Timeout = 0; /* Don't time out */
2922                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2923                         c->Request.CDB[0] =  cmd;
2924                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2925                         /* If bytes 4-7 are zero, it means reset the */
2926                         /* LunID device */
2927                         c->Request.CDB[4] = 0x00;
2928                         c->Request.CDB[5] = 0x00;
2929                         c->Request.CDB[6] = 0x00;
2930                         c->Request.CDB[7] = 0x00;
2931                 break;
2932
2933                 default:
2934                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2935                                 cmd);
2936                         BUG();
2937                 }
2938         } else {
2939                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2940                 BUG();
2941         }
2942
2943         switch (c->Request.Type.Direction) {
2944         case XFER_READ:
2945                 pci_dir = PCI_DMA_FROMDEVICE;
2946                 break;
2947         case XFER_WRITE:
2948                 pci_dir = PCI_DMA_TODEVICE;
2949                 break;
2950         case XFER_NONE:
2951                 pci_dir = PCI_DMA_NONE;
2952                 break;
2953         default:
2954                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2955         }
2956
2957         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2958
2959         return;
2960 }
2961
2962 /*
2963  * Map (physical) PCI mem into (virtual) kernel space
2964  */
2965 static void __iomem *remap_pci_mem(ulong base, ulong size)
2966 {
2967         ulong page_base = ((ulong) base) & PAGE_MASK;
2968         ulong page_offs = ((ulong) base) - page_base;
2969         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2970
2971         return page_remapped ? (page_remapped + page_offs) : NULL;
2972 }
2973
2974 /* Takes cmds off the submission queue and sends them to the hardware,
2975  * then puts them on the queue of cmds waiting for completion.
2976  */
2977 static void start_io(struct ctlr_info *h)
2978 {
2979         struct CommandList *c;
2980
2981         while (!list_empty(&h->reqQ)) {
2982                 c = list_entry(h->reqQ.next, struct CommandList, list);
2983                 /* can't do anything if fifo is full */
2984                 if ((h->access.fifo_full(h))) {
2985                         dev_warn(&h->pdev->dev, "fifo full\n");
2986                         break;
2987                 }
2988
2989                 /* Get the first entry from the Request Q */
2990                 removeQ(c);
2991                 h->Qdepth--;
2992
2993                 /* Tell the controller execute command */
2994                 h->access.submit_command(h, c);
2995
2996                 /* Put job onto the completed Q */
2997                 addQ(&h->cmpQ, c);
2998         }
2999 }
3000
3001 static inline unsigned long get_next_completion(struct ctlr_info *h)
3002 {
3003         return h->access.command_completed(h);
3004 }
3005
3006 static inline bool interrupt_pending(struct ctlr_info *h)
3007 {
3008         return h->access.intr_pending(h);
3009 }
3010
3011 static inline long interrupt_not_for_us(struct ctlr_info *h)
3012 {
3013         return (h->access.intr_pending(h) == 0) ||
3014                 (h->interrupts_enabled == 0);
3015 }
3016
3017 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3018         u32 raw_tag)
3019 {
3020         if (unlikely(tag_index >= h->nr_cmds)) {
3021                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3022                 return 1;
3023         }
3024         return 0;
3025 }
3026
3027 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3028 {
3029         removeQ(c);
3030         if (likely(c->cmd_type == CMD_SCSI))
3031                 complete_scsi_command(c);
3032         else if (c->cmd_type == CMD_IOCTL_PEND)
3033                 complete(c->waiting);
3034 }
3035
3036 static inline u32 hpsa_tag_contains_index(u32 tag)
3037 {
3038         return tag & DIRECT_LOOKUP_BIT;
3039 }
3040
3041 static inline u32 hpsa_tag_to_index(u32 tag)
3042 {
3043         return tag >> DIRECT_LOOKUP_SHIFT;
3044 }
3045
3046
3047 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3048 {
3049 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3050 #define HPSA_SIMPLE_ERROR_BITS 0x03
3051         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3052                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3053         return tag & ~HPSA_PERF_ERROR_BITS;
3054 }
3055
3056 /* process completion of an indexed ("direct lookup") command */
3057 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3058         u32 raw_tag)
3059 {
3060         u32 tag_index;
3061         struct CommandList *c;
3062
3063         tag_index = hpsa_tag_to_index(raw_tag);
3064         if (bad_tag(h, tag_index, raw_tag))
3065                 return next_command(h);
3066         c = h->cmd_pool + tag_index;
3067         finish_cmd(c, raw_tag);
3068         return next_command(h);
3069 }
3070
3071 /* process completion of a non-indexed command */
3072 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3073         u32 raw_tag)
3074 {
3075         u32 tag;
3076         struct CommandList *c = NULL;
3077
3078         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3079         list_for_each_entry(c, &h->cmpQ, list) {
3080                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3081                         finish_cmd(c, raw_tag);
3082                         return next_command(h);
3083                 }
3084         }
3085         bad_tag(h, h->nr_cmds + 1, raw_tag);
3086         return next_command(h);
3087 }
3088
3089 /* Some controllers, like p400, will give us one interrupt
3090  * after a soft reset, even if we turned interrupts off.
3091  * Only need to check for this in the hpsa_xxx_discard_completions
3092  * functions.
3093  */
3094 static int ignore_bogus_interrupt(struct ctlr_info *h)
3095 {
3096         if (likely(!reset_devices))
3097                 return 0;
3098
3099         if (likely(h->interrupts_enabled))
3100                 return 0;
3101
3102         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3103                 "(known firmware bug.)  Ignoring.\n");
3104
3105         return 1;
3106 }
3107
3108 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3109 {
3110         struct ctlr_info *h = dev_id;
3111         unsigned long flags;
3112         u32 raw_tag;
3113
3114         if (ignore_bogus_interrupt(h))
3115                 return IRQ_NONE;
3116
3117         if (interrupt_not_for_us(h))
3118                 return IRQ_NONE;
3119         spin_lock_irqsave(&h->lock, flags);
3120         h->last_intr_timestamp = get_jiffies_64();
3121         while (interrupt_pending(h)) {
3122                 raw_tag = get_next_completion(h);
3123                 while (raw_tag != FIFO_EMPTY)
3124                         raw_tag = next_command(h);
3125         }
3126         spin_unlock_irqrestore(&h->lock, flags);
3127         return IRQ_HANDLED;
3128 }
3129
3130 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3131 {
3132         struct ctlr_info *h = dev_id;
3133         unsigned long flags;
3134         u32 raw_tag;
3135
3136         if (ignore_bogus_interrupt(h))
3137                 return IRQ_NONE;
3138
3139         spin_lock_irqsave(&h->lock, flags);
3140         h->last_intr_timestamp = get_jiffies_64();
3141         raw_tag = get_next_completion(h);
3142         while (raw_tag != FIFO_EMPTY)
3143                 raw_tag = next_command(h);
3144         spin_unlock_irqrestore(&h->lock, flags);
3145         return IRQ_HANDLED;
3146 }
3147
3148 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3149 {
3150         struct ctlr_info *h = dev_id;
3151         unsigned long flags;
3152         u32 raw_tag;
3153
3154         if (interrupt_not_for_us(h))
3155                 return IRQ_NONE;
3156         spin_lock_irqsave(&h->lock, flags);
3157         h->last_intr_timestamp = get_jiffies_64();
3158         while (interrupt_pending(h)) {
3159                 raw_tag = get_next_completion(h);
3160                 while (raw_tag != FIFO_EMPTY) {
3161                         if (hpsa_tag_contains_index(raw_tag))
3162                                 raw_tag = process_indexed_cmd(h, raw_tag);
3163                         else
3164                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3165                 }
3166         }
3167         spin_unlock_irqrestore(&h->lock, flags);
3168         return IRQ_HANDLED;
3169 }
3170
3171 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3172 {
3173         struct ctlr_info *h = dev_id;
3174         unsigned long flags;
3175         u32 raw_tag;
3176
3177         spin_lock_irqsave(&h->lock, flags);
3178         h->last_intr_timestamp = get_jiffies_64();
3179         raw_tag = get_next_completion(h);
3180         while (raw_tag != FIFO_EMPTY) {
3181                 if (hpsa_tag_contains_index(raw_tag))
3182                         raw_tag = process_indexed_cmd(h, raw_tag);
3183                 else
3184                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3185         }
3186         spin_unlock_irqrestore(&h->lock, flags);
3187         return IRQ_HANDLED;
3188 }
3189
3190 /* Send a message CDB to the firmware. Careful, this only works
3191  * in simple mode, not performant mode due to the tag lookup.
3192  * We only ever use this immediately after a controller reset.
3193  */
3194 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3195                                                 unsigned char type)
3196 {
3197         struct Command {
3198                 struct CommandListHeader CommandHeader;
3199                 struct RequestBlock Request;
3200                 struct ErrDescriptor ErrorDescriptor;
3201         };
3202         struct Command *cmd;
3203         static const size_t cmd_sz = sizeof(*cmd) +
3204                                         sizeof(cmd->ErrorDescriptor);
3205         dma_addr_t paddr64;
3206         uint32_t paddr32, tag;
3207         void __iomem *vaddr;
3208         int i, err;
3209
3210         vaddr = pci_ioremap_bar(pdev, 0);
3211         if (vaddr == NULL)
3212                 return -ENOMEM;
3213
3214         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3215          * CCISS commands, so they must be allocated from the lower 4GiB of
3216          * memory.
3217          */
3218         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3219         if (err) {
3220                 iounmap(vaddr);
3221                 return -ENOMEM;
3222         }
3223
3224         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3225         if (cmd == NULL) {
3226                 iounmap(vaddr);
3227                 return -ENOMEM;
3228         }
3229
3230         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3231          * although there's no guarantee, we assume that the address is at
3232          * least 4-byte aligned (most likely, it's page-aligned).
3233          */
3234         paddr32 = paddr64;
3235
3236         cmd->CommandHeader.ReplyQueue = 0;
3237         cmd->CommandHeader.SGList = 0;
3238         cmd->CommandHeader.SGTotal = 0;
3239         cmd->CommandHeader.Tag.lower = paddr32;
3240         cmd->CommandHeader.Tag.upper = 0;
3241         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3242
3243         cmd->Request.CDBLen = 16;
3244         cmd->Request.Type.Type = TYPE_MSG;
3245         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3246         cmd->Request.Type.Direction = XFER_NONE;
3247         cmd->Request.Timeout = 0; /* Don't time out */
3248         cmd->Request.CDB[0] = opcode;
3249         cmd->Request.CDB[1] = type;
3250         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3251         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3252         cmd->ErrorDescriptor.Addr.upper = 0;
3253         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3254
3255         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3256
3257         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3258                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3259                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3260                         break;
3261                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3262         }
3263
3264         iounmap(vaddr);
3265
3266         /* we leak the DMA buffer here ... no choice since the controller could
3267          *  still complete the command.
3268          */
3269         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3270                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3271                         opcode, type);
3272                 return -ETIMEDOUT;
3273         }
3274
3275         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3276
3277         if (tag & HPSA_ERROR_BIT) {
3278                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3279                         opcode, type);
3280                 return -EIO;
3281         }
3282
3283         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3284                 opcode, type);
3285         return 0;
3286 }
3287
3288 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3289
3290 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3291         void * __iomem vaddr, u32 use_doorbell)
3292 {
3293         u16 pmcsr;
3294         int pos;
3295
3296         if (use_doorbell) {
3297                 /* For everything after the P600, the PCI power state method
3298                  * of resetting the controller doesn't work, so we have this
3299                  * other way using the doorbell register.
3300                  */
3301                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3302                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3303         } else { /* Try to do it the PCI power state way */
3304
3305                 /* Quoting from the Open CISS Specification: "The Power
3306                  * Management Control/Status Register (CSR) controls the power
3307                  * state of the device.  The normal operating state is D0,
3308                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3309                  * the controller, place the interface device in D3 then to D0,
3310                  * this causes a secondary PCI reset which will reset the
3311                  * controller." */
3312
3313                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3314                 if (pos == 0) {
3315                         dev_err(&pdev->dev,
3316                                 "hpsa_reset_controller: "
3317                                 "PCI PM not supported\n");
3318                         return -ENODEV;
3319                 }
3320                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3321                 /* enter the D3hot power management state */
3322                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3323                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3324                 pmcsr |= PCI_D3hot;
3325                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3326
3327                 msleep(500);
3328
3329                 /* enter the D0 power management state */
3330                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3331                 pmcsr |= PCI_D0;
3332                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3333
3334                 /*
3335                  * The P600 requires a small delay when changing states.
3336                  * Otherwise we may think the board did not reset and we bail.
3337                  * This for kdump only and is particular to the P600.
3338                  */
3339                 msleep(500);
3340         }
3341         return 0;
3342 }
3343
3344 static __devinit void init_driver_version(char *driver_version, int len)
3345 {
3346         memset(driver_version, 0, len);
3347         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3348 }
3349
3350 static __devinit int write_driver_ver_to_cfgtable(
3351         struct CfgTable __iomem *cfgtable)
3352 {
3353         char *driver_version;
3354         int i, size = sizeof(cfgtable->driver_version);
3355
3356         driver_version = kmalloc(size, GFP_KERNEL);
3357         if (!driver_version)
3358                 return -ENOMEM;
3359
3360         init_driver_version(driver_version, size);
3361         for (i = 0; i < size; i++)
3362                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3363         kfree(driver_version);
3364         return 0;
3365 }
3366
3367 static __devinit void read_driver_ver_from_cfgtable(
3368         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3369 {
3370         int i;
3371
3372         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3373                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3374 }
3375
3376 static __devinit int controller_reset_failed(
3377         struct CfgTable __iomem *cfgtable)
3378 {
3379
3380         char *driver_ver, *old_driver_ver;
3381         int rc, size = sizeof(cfgtable->driver_version);
3382
3383         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3384         if (!old_driver_ver)
3385                 return -ENOMEM;
3386         driver_ver = old_driver_ver + size;
3387
3388         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3389          * should have been changed, otherwise we know the reset failed.
3390          */
3391         init_driver_version(old_driver_ver, size);
3392         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3393         rc = !memcmp(driver_ver, old_driver_ver, size);
3394         kfree(old_driver_ver);
3395         return rc;
3396 }
3397 /* This does a hard reset of the controller using PCI power management
3398  * states or the using the doorbell register.
3399  */
3400 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3401 {
3402         u64 cfg_offset;
3403         u32 cfg_base_addr;
3404         u64 cfg_base_addr_index;
3405         void __iomem *vaddr;
3406         unsigned long paddr;
3407         u32 misc_fw_support;
3408         int rc;
3409         struct CfgTable __iomem *cfgtable;
3410         u32 use_doorbell;
3411         u32 board_id;
3412         u16 command_register;
3413
3414         /* For controllers as old as the P600, this is very nearly
3415          * the same thing as
3416          *
3417          * pci_save_state(pci_dev);
3418          * pci_set_power_state(pci_dev, PCI_D3hot);
3419          * pci_set_power_state(pci_dev, PCI_D0);
3420          * pci_restore_state(pci_dev);
3421          *
3422          * For controllers newer than the P600, the pci power state
3423          * method of resetting doesn't work so we have another way
3424          * using the doorbell register.
3425          */
3426
3427         rc = hpsa_lookup_board_id(pdev, &board_id);
3428         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3429                 dev_warn(&pdev->dev, "Not resetting device.\n");
3430                 return -ENODEV;
3431         }
3432
3433         /* if controller is soft- but not hard resettable... */
3434         if (!ctlr_is_hard_resettable(board_id))
3435                 return -ENOTSUPP; /* try soft reset later. */
3436
3437         /* Save the PCI command register */
3438         pci_read_config_word(pdev, 4, &command_register);
3439         /* Turn the board off.  This is so that later pci_restore_state()
3440          * won't turn the board on before the rest of config space is ready.
3441          */
3442         pci_disable_device(pdev);
3443         pci_save_state(pdev);
3444
3445         /* find the first memory BAR, so we can find the cfg table */
3446         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3447         if (rc)
3448                 return rc;
3449         vaddr = remap_pci_mem(paddr, 0x250);
3450         if (!vaddr)
3451                 return -ENOMEM;
3452
3453         /* find cfgtable in order to check if reset via doorbell is supported */
3454         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3455                                         &cfg_base_addr_index, &cfg_offset);
3456         if (rc)
3457                 goto unmap_vaddr;
3458         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3459                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3460         if (!cfgtable) {
3461                 rc = -ENOMEM;
3462                 goto unmap_vaddr;
3463         }
3464         rc = write_driver_ver_to_cfgtable(cfgtable);
3465         if (rc)
3466                 goto unmap_vaddr;
3467
3468         /* If reset via doorbell register is supported, use that.
3469          * There are two such methods.  Favor the newest method.
3470          */
3471         misc_fw_support = readl(&cfgtable->misc_fw_support);
3472         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3473         if (use_doorbell) {
3474                 use_doorbell = DOORBELL_CTLR_RESET2;
3475         } else {
3476                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3477                 if (use_doorbell) {
3478                         dev_warn(&pdev->dev, "Soft reset not supported. "
3479                                 "Firmware update is required.\n");
3480                         rc = -ENOTSUPP; /* try soft reset */
3481                         goto unmap_cfgtable;
3482                 }
3483         }
3484
3485         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3486         if (rc)
3487                 goto unmap_cfgtable;
3488
3489         pci_restore_state(pdev);
3490         rc = pci_enable_device(pdev);
3491         if (rc) {
3492                 dev_warn(&pdev->dev, "failed to enable device.\n");
3493                 goto unmap_cfgtable;
3494         }
3495         pci_write_config_word(pdev, 4, command_register);
3496
3497         /* Some devices (notably the HP Smart Array 5i Controller)
3498            need a little pause here */
3499         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3500
3501         /* Wait for board to become not ready, then ready. */
3502         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3503         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3504         if (rc) {
3505                 dev_warn(&pdev->dev,
3506                         "failed waiting for board to reset."
3507                         " Will try soft reset.\n");
3508                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3509                 goto unmap_cfgtable;
3510         }
3511         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3512         if (rc) {
3513                 dev_warn(&pdev->dev,
3514                         "failed waiting for board to become ready "
3515                         "after hard reset\n");
3516                 goto unmap_cfgtable;
3517         }
3518
3519         rc = controller_reset_failed(vaddr);
3520         if (rc < 0)
3521                 goto unmap_cfgtable;
3522         if (rc) {
3523                 dev_warn(&pdev->dev, "Unable to successfully reset "
3524                         "controller. Will try soft reset.\n");
3525                 rc = -ENOTSUPP;
3526         } else {
3527                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3528         }
3529
3530 unmap_cfgtable:
3531         iounmap(cfgtable);
3532
3533 unmap_vaddr:
3534         iounmap(vaddr);
3535         return rc;
3536 }
3537
3538 /*
3539  *  We cannot read the structure directly, for portability we must use
3540  *   the io functions.
3541  *   This is for debug only.
3542  */
3543 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3544 {
3545 #ifdef HPSA_DEBUG
3546         int i;
3547         char temp_name[17];
3548
3549         dev_info(dev, "Controller Configuration information\n");
3550         dev_info(dev, "------------------------------------\n");
3551         for (i = 0; i < 4; i++)
3552                 temp_name[i] = readb(&(tb->Signature[i]));
3553         temp_name[4] = '\0';
3554         dev_info(dev, "   Signature = %s\n", temp_name);
3555         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3556         dev_info(dev, "   Transport methods supported = 0x%x\n",
3557                readl(&(tb->TransportSupport)));
3558         dev_info(dev, "   Transport methods active = 0x%x\n",
3559                readl(&(tb->TransportActive)));
3560         dev_info(dev, "   Requested transport Method = 0x%x\n",
3561                readl(&(tb->HostWrite.TransportRequest)));
3562         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3563                readl(&(tb->HostWrite.CoalIntDelay)));
3564         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3565                readl(&(tb->HostWrite.CoalIntCount)));
3566         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3567                readl(&(tb->CmdsOutMax)));
3568         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3569         for (i = 0; i < 16; i++)
3570                 temp_name[i] = readb(&(tb->ServerName[i]));
3571         temp_name[16] = '\0';
3572         dev_info(dev, "   Server Name = %s\n", temp_name);
3573         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3574                 readl(&(tb->HeartBeat)));
3575 #endif                          /* HPSA_DEBUG */
3576 }
3577
3578 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3579 {
3580         int i, offset, mem_type, bar_type;
3581
3582         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3583                 return 0;
3584         offset = 0;
3585         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3586                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3587                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3588                         offset += 4;
3589                 else {
3590                         mem_type = pci_resource_flags(pdev, i) &
3591                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3592                         switch (mem_type) {
3593                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3594                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3595                                 offset += 4;    /* 32 bit */
3596                                 break;
3597                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3598                                 offset += 8;
3599                                 break;
3600                         default:        /* reserved in PCI 2.2 */
3601                                 dev_warn(&pdev->dev,
3602                                        "base address is invalid\n");
3603                                 return -1;
3604                                 break;
3605                         }
3606                 }
3607                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3608                         return i + 1;
3609         }
3610         return -1;
3611 }
3612
3613 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3614  * controllers that are capable. If not, we use IO-APIC mode.
3615  */
3616
3617 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3618 {
3619 #ifdef CONFIG_PCI_MSI
3620         int err;
3621         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3622         {0, 2}, {0, 3}
3623         };
3624
3625         /* Some boards advertise MSI but don't really support it */
3626         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3627             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3628                 goto default_int_mode;
3629         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3630                 dev_info(&h->pdev->dev, "MSIX\n");
3631                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3632                 if (!err) {
3633                         h->intr[0] = hpsa_msix_entries[0].vector;
3634                         h->intr[1] = hpsa_msix_entries[1].vector;
3635                         h->intr[2] = hpsa_msix_entries[2].vector;
3636                         h->intr[3] = hpsa_msix_entries[3].vector;
3637                         h->msix_vector = 1;
3638                         return;
3639                 }
3640                 if (err > 0) {
3641                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3642                                "available\n", err);
3643                         goto default_int_mode;
3644                 } else {
3645                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3646                                err);
3647                         goto default_int_mode;
3648                 }
3649         }
3650         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3651                 dev_info(&h->pdev->dev, "MSI\n");
3652                 if (!pci_enable_msi(h->pdev))
3653                         h->msi_vector = 1;
3654                 else
3655                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3656         }
3657 default_int_mode:
3658 #endif                          /* CONFIG_PCI_MSI */
3659         /* if we get here we're going to use the default interrupt mode */
3660         h->intr[h->intr_mode] = h->pdev->irq;
3661 }
3662
3663 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3664 {
3665         int i;
3666         u32 subsystem_vendor_id, subsystem_device_id;
3667
3668         subsystem_vendor_id = pdev->subsystem_vendor;
3669         subsystem_device_id = pdev->subsystem_device;
3670         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3671                     subsystem_vendor_id;
3672
3673         for (i = 0; i < ARRAY_SIZE(products); i++)
3674                 if (*board_id == products[i].board_id)
3675                         return i;
3676
3677         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3678                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3679                 !hpsa_allow_any) {
3680                 dev_warn(&pdev->dev, "unrecognized board ID: "
3681                         "0x%08x, ignoring.\n", *board_id);
3682                         return -ENODEV;
3683         }
3684         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3685 }
3686
3687 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3688 {
3689         u16 command;
3690
3691         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3692         return ((command & PCI_COMMAND_MEMORY) == 0);
3693 }
3694
3695 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3696         unsigned long *memory_bar)
3697 {
3698         int i;
3699
3700         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3701                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3702                         /* addressing mode bits already removed */
3703                         *memory_bar = pci_resource_start(pdev, i);
3704                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3705                                 *memory_bar);
3706                         return 0;
3707                 }
3708         dev_warn(&pdev->dev, "no memory BAR found\n");
3709         return -ENODEV;
3710 }
3711
3712 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3713         void __iomem *vaddr, int wait_for_ready)
3714 {
3715         int i, iterations;
3716         u32 scratchpad;
3717         if (wait_for_ready)
3718                 iterations = HPSA_BOARD_READY_ITERATIONS;
3719         else
3720                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3721
3722         for (i = 0; i < iterations; i++) {
3723                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3724                 if (wait_for_ready) {
3725                         if (scratchpad == HPSA_FIRMWARE_READY)
3726                                 return 0;
3727                 } else {
3728                         if (scratchpad != HPSA_FIRMWARE_READY)
3729                                 return 0;
3730                 }
3731                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3732         }
3733         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3734         return -ENODEV;
3735 }
3736
3737 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3738         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3739         u64 *cfg_offset)
3740 {
3741         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3742         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3743         *cfg_base_addr &= (u32) 0x0000ffff;
3744         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3745         if (*cfg_base_addr_index == -1) {
3746                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3747                 return -ENODEV;
3748         }
3749         return 0;
3750 }
3751
3752 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3753 {
3754         u64 cfg_offset;
3755         u32 cfg_base_addr;
3756         u64 cfg_base_addr_index;
3757         u32 trans_offset;
3758         int rc;
3759
3760         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3761                 &cfg_base_addr_index, &cfg_offset);
3762         if (rc)
3763                 return rc;
3764         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3765                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3766         if (!h->cfgtable)
3767                 return -ENOMEM;
3768         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3769         if (rc)
3770                 return rc;
3771         /* Find performant mode table. */
3772         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3773         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3774                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3775                                 sizeof(*h->transtable));
3776         if (!h->transtable)
3777                 return -ENOMEM;
3778         return 0;
3779 }
3780
3781 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3782 {
3783         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3784
3785         /* Limit commands in memory limited kdump scenario. */
3786         if (reset_devices && h->max_commands > 32)
3787                 h->max_commands = 32;
3788
3789         if (h->max_commands < 16) {
3790                 dev_warn(&h->pdev->dev, "Controller reports "
3791                         "max supported commands of %d, an obvious lie. "
3792                         "Using 16.  Ensure that firmware is up to date.\n",
3793                         h->max_commands);
3794                 h->max_commands = 16;
3795         }
3796 }
3797
3798 /* Interrogate the hardware for some limits:
3799  * max commands, max SG elements without chaining, and with chaining,
3800  * SG chain block size, etc.
3801  */
3802 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3803 {
3804         hpsa_get_max_perf_mode_cmds(h);
3805         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3806         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3807         /*
3808          * Limit in-command s/g elements to 32 save dma'able memory.
3809          * Howvever spec says if 0, use 31
3810          */
3811         h->max_cmd_sg_entries = 31;
3812         if (h->maxsgentries > 512) {
3813                 h->max_cmd_sg_entries = 32;
3814                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3815                 h->maxsgentries--; /* save one for chain pointer */
3816         } else {
3817                 h->maxsgentries = 31; /* default to traditional values */
3818                 h->chainsize = 0;
3819         }
3820 }
3821
3822 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3823 {
3824         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3825             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3826             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3827             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3828                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3829                 return false;
3830         }
3831         return true;
3832 }
3833
3834 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3835 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3836 {
3837 #ifdef CONFIG_X86
3838         u32 prefetch;
3839
3840         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3841         prefetch |= 0x100;
3842         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3843 #endif
3844 }
3845
3846 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3847  * in a prefetch beyond physical memory.
3848  */
3849 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3850 {
3851         u32 dma_prefetch;
3852
3853         if (h->board_id != 0x3225103C)
3854                 return;
3855         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3856         dma_prefetch |= 0x8000;
3857         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3858 }
3859
3860 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3861 {
3862         int i;
3863         u32 doorbell_value;
3864         unsigned long flags;
3865
3866         /* under certain very rare conditions, this can take awhile.
3867          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3868          * as we enter this code.)
3869          */
3870         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3871                 spin_lock_irqsave(&h->lock, flags);
3872                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3873                 spin_unlock_irqrestore(&h->lock, flags);
3874                 if (!(doorbell_value & CFGTBL_ChangeReq))
3875                         break;
3876                 /* delay and try again */
3877                 usleep_range(10000, 20000);
3878         }
3879 }
3880
3881 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3882 {
3883         u32 trans_support;
3884
3885         trans_support = readl(&(h->cfgtable->TransportSupport));
3886         if (!(trans_support & SIMPLE_MODE))
3887                 return -ENOTSUPP;
3888
3889         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3890         /* Update the field, and then ring the doorbell */
3891         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3892         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3893         hpsa_wait_for_mode_change_ack(h);
3894         print_cfg_table(&h->pdev->dev, h->cfgtable);
3895         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3896                 dev_warn(&h->pdev->dev,
3897                         "unable to get board into simple mode\n");
3898                 return -ENODEV;
3899         }
3900         h->transMethod = CFGTBL_Trans_Simple;
3901         return 0;
3902 }
3903
3904 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3905 {
3906         int prod_index, err;
3907
3908         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3909         if (prod_index < 0)
3910                 return -ENODEV;
3911         h->product_name = products[prod_index].product_name;
3912         h->access = *(products[prod_index].access);
3913
3914         if (hpsa_board_disabled(h->pdev)) {
3915                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3916                 return -ENODEV;
3917         }
3918
3919         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3920                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3921
3922         err = pci_enable_device(h->pdev);
3923         if (err) {
3924                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3925                 return err;
3926         }
3927
3928         err = pci_request_regions(h->pdev, HPSA);
3929         if (err) {
3930                 dev_err(&h->pdev->dev,
3931                         "cannot obtain PCI resources, aborting\n");
3932                 return err;
3933         }
3934         hpsa_interrupt_mode(h);
3935         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3936         if (err)
3937                 goto err_out_free_res;
3938         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3939         if (!h->vaddr) {
3940                 err = -ENOMEM;
3941                 goto err_out_free_res;
3942         }
3943         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3944         if (err)
3945                 goto err_out_free_res;
3946         err = hpsa_find_cfgtables(h);
3947         if (err)
3948                 goto err_out_free_res;
3949         hpsa_find_board_params(h);
3950
3951         if (!hpsa_CISS_signature_present(h)) {
3952                 err = -ENODEV;
3953                 goto err_out_free_res;
3954         }
3955         hpsa_enable_scsi_prefetch(h);
3956         hpsa_p600_dma_prefetch_quirk(h);
3957         err = hpsa_enter_simple_mode(h);
3958         if (err)
3959                 goto err_out_free_res;
3960         return 0;
3961
3962 err_out_free_res:
3963         if (h->transtable)
3964                 iounmap(h->transtable);
3965         if (h->cfgtable)
3966                 iounmap(h->cfgtable);
3967         if (h->vaddr)
3968                 iounmap(h->vaddr);
3969         /*
3970          * Deliberately omit pci_disable_device(): it does something nasty to
3971          * Smart Array controllers that pci_enable_device does not undo
3972          */
3973         pci_release_regions(h->pdev);
3974         return err;
3975 }
3976
3977 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3978 {
3979         int rc;
3980
3981 #define HBA_INQUIRY_BYTE_COUNT 64
3982         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3983         if (!h->hba_inquiry_data)
3984                 return;
3985         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3986                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3987         if (rc != 0) {
3988                 kfree(h->hba_inquiry_data);
3989                 h->hba_inquiry_data = NULL;
3990         }
3991 }
3992
3993 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3994 {
3995         int rc, i;
3996
3997         if (!reset_devices)
3998                 return 0;
3999
4000         /* Reset the controller with a PCI power-cycle or via doorbell */
4001         rc = hpsa_kdump_hard_reset_controller(pdev);
4002
4003         /* -ENOTSUPP here means we cannot reset the controller
4004          * but it's already (and still) up and running in
4005          * "performant mode".  Or, it might be 640x, which can't reset
4006          * due to concerns about shared bbwc between 6402/6404 pair.
4007          */
4008         if (rc == -ENOTSUPP)
4009                 return rc; /* just try to do the kdump anyhow. */
4010         if (rc)
4011                 return -ENODEV;
4012
4013         /* Now try to get the controller to respond to a no-op */
4014         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4015         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4016                 if (hpsa_noop(pdev) == 0)
4017                         break;
4018                 else
4019                         dev_warn(&pdev->dev, "no-op failed%s\n",
4020                                         (i < 11 ? "; re-trying" : ""));
4021         }
4022         return 0;
4023 }
4024
4025 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4026 {
4027         h->cmd_pool_bits = kzalloc(
4028                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4029                 sizeof(unsigned long), GFP_KERNEL);
4030         h->cmd_pool = pci_alloc_consistent(h->pdev,
4031                     h->nr_cmds * sizeof(*h->cmd_pool),
4032                     &(h->cmd_pool_dhandle));
4033         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4034                     h->nr_cmds * sizeof(*h->errinfo_pool),
4035                     &(h->errinfo_pool_dhandle));
4036         if ((h->cmd_pool_bits == NULL)
4037             || (h->cmd_pool == NULL)
4038             || (h->errinfo_pool == NULL)) {
4039                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4040                 return -ENOMEM;
4041         }
4042         return 0;
4043 }
4044
4045 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4046 {
4047         kfree(h->cmd_pool_bits);
4048         if (h->cmd_pool)
4049                 pci_free_consistent(h->pdev,
4050                             h->nr_cmds * sizeof(struct CommandList),
4051                             h->cmd_pool, h->cmd_pool_dhandle);
4052         if (h->errinfo_pool)
4053                 pci_free_consistent(h->pdev,
4054                             h->nr_cmds * sizeof(struct ErrorInfo),
4055                             h->errinfo_pool,
4056                             h->errinfo_pool_dhandle);
4057 }
4058
4059 static int hpsa_request_irq(struct ctlr_info *h,
4060         irqreturn_t (*msixhandler)(int, void *),
4061         irqreturn_t (*intxhandler)(int, void *))
4062 {
4063         int rc;
4064
4065         if (h->msix_vector || h->msi_vector)
4066                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4067                                 0, h->devname, h);
4068         else
4069                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4070                                 IRQF_SHARED, h->devname, h);
4071         if (rc) {
4072                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4073                        h->intr[h->intr_mode], h->devname);
4074                 return -ENODEV;
4075         }
4076         return 0;
4077 }
4078
4079 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4080 {
4081         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4082                 HPSA_RESET_TYPE_CONTROLLER)) {
4083                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4084                 return -EIO;
4085         }
4086
4087         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4088         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4089                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4090                 return -1;
4091         }
4092
4093         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4094         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4095                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4096                         "after soft reset.\n");
4097                 return -1;
4098         }
4099
4100         return 0;
4101 }
4102
4103 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4104 {
4105         free_irq(h->intr[h->intr_mode], h);
4106 #ifdef CONFIG_PCI_MSI
4107         if (h->msix_vector)
4108                 pci_disable_msix(h->pdev);
4109         else if (h->msi_vector)
4110                 pci_disable_msi(h->pdev);
4111 #endif /* CONFIG_PCI_MSI */
4112         hpsa_free_sg_chain_blocks(h);
4113         hpsa_free_cmd_pool(h);
4114         kfree(h->blockFetchTable);
4115         pci_free_consistent(h->pdev, h->reply_pool_size,
4116                 h->reply_pool, h->reply_pool_dhandle);
4117         if (h->vaddr)
4118                 iounmap(h->vaddr);
4119         if (h->transtable)
4120                 iounmap(h->transtable);
4121         if (h->cfgtable)
4122                 iounmap(h->cfgtable);
4123         pci_release_regions(h->pdev);
4124         kfree(h);
4125 }
4126
4127 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4128 {
4129         assert_spin_locked(&lockup_detector_lock);
4130         if (!hpsa_lockup_detector)
4131                 return;
4132         if (h->lockup_detected)
4133                 return; /* already stopped the lockup detector */
4134         list_del(&h->lockup_list);
4135 }
4136
4137 /* Called when controller lockup detected. */
4138 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4139 {
4140         struct CommandList *c = NULL;
4141
4142         assert_spin_locked(&h->lock);
4143         /* Mark all outstanding commands as failed and complete them. */
4144         while (!list_empty(list)) {
4145                 c = list_entry(list->next, struct CommandList, list);
4146                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4147                 finish_cmd(c, c->Header.Tag.lower);
4148         }
4149 }
4150
4151 static void controller_lockup_detected(struct ctlr_info *h)
4152 {
4153         unsigned long flags;
4154
4155         assert_spin_locked(&lockup_detector_lock);
4156         remove_ctlr_from_lockup_detector_list(h);
4157         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4158         spin_lock_irqsave(&h->lock, flags);
4159         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4160         spin_unlock_irqrestore(&h->lock, flags);
4161         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4162                         h->lockup_detected);
4163         pci_disable_device(h->pdev);
4164         spin_lock_irqsave(&h->lock, flags);
4165         fail_all_cmds_on_list(h, &h->cmpQ);
4166         fail_all_cmds_on_list(h, &h->reqQ);
4167         spin_unlock_irqrestore(&h->lock, flags);
4168 }
4169
4170 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4171 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4172
4173 static void detect_controller_lockup(struct ctlr_info *h)
4174 {
4175         u64 now;
4176         u32 heartbeat;
4177         unsigned long flags;
4178
4179         assert_spin_locked(&lockup_detector_lock);
4180         now = get_jiffies_64();
4181         /* If we've received an interrupt recently, we're ok. */
4182         if (time_after64(h->last_intr_timestamp +
4183                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4184                 return;
4185
4186         /*
4187          * If we've already checked the heartbeat recently, we're ok.
4188          * This could happen if someone sends us a signal. We
4189          * otherwise don't care about signals in this thread.
4190          */
4191         if (time_after64(h->last_heartbeat_timestamp +
4192                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4193                 return;
4194
4195         /* If heartbeat has not changed since we last looked, we're not ok. */
4196         spin_lock_irqsave(&h->lock, flags);
4197         heartbeat = readl(&h->cfgtable->HeartBeat);
4198         spin_unlock_irqrestore(&h->lock, flags);
4199         if (h->last_heartbeat == heartbeat) {
4200                 controller_lockup_detected(h);
4201                 return;
4202         }
4203
4204         /* We're ok. */
4205         h->last_heartbeat = heartbeat;
4206         h->last_heartbeat_timestamp = now;
4207 }
4208
4209 static int detect_controller_lockup_thread(void *notused)
4210 {
4211         struct ctlr_info *h;
4212         unsigned long flags;
4213
4214         while (1) {
4215                 struct list_head *this, *tmp;
4216
4217                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4218                 if (kthread_should_stop())
4219                         break;
4220                 spin_lock_irqsave(&lockup_detector_lock, flags);
4221                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4222                         h = list_entry(this, struct ctlr_info, lockup_list);
4223                         detect_controller_lockup(h);
4224                 }
4225                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4226         }
4227         return 0;
4228 }
4229
4230 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4231 {
4232         unsigned long flags;
4233
4234         spin_lock_irqsave(&lockup_detector_lock, flags);
4235         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4236         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4237 }
4238
4239 static void start_controller_lockup_detector(struct ctlr_info *h)
4240 {
4241         /* Start the lockup detector thread if not already started */
4242         if (!hpsa_lockup_detector) {
4243                 spin_lock_init(&lockup_detector_lock);
4244                 hpsa_lockup_detector =
4245                         kthread_run(detect_controller_lockup_thread,
4246                                                 NULL, HPSA);
4247         }
4248         if (!hpsa_lockup_detector) {
4249                 dev_warn(&h->pdev->dev,
4250                         "Could not start lockup detector thread\n");
4251                 return;
4252         }
4253         add_ctlr_to_lockup_detector_list(h);
4254 }
4255
4256 static void stop_controller_lockup_detector(struct ctlr_info *h)
4257 {
4258         unsigned long flags;
4259
4260         spin_lock_irqsave(&lockup_detector_lock, flags);
4261         remove_ctlr_from_lockup_detector_list(h);
4262         /* If the list of ctlr's to monitor is empty, stop the thread */
4263         if (list_empty(&hpsa_ctlr_list)) {
4264                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4265                 kthread_stop(hpsa_lockup_detector);
4266                 spin_lock_irqsave(&lockup_detector_lock, flags);
4267                 hpsa_lockup_detector = NULL;
4268         }
4269         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4270 }
4271
4272 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4273                                     const struct pci_device_id *ent)
4274 {
4275         int dac, rc;
4276         struct ctlr_info *h;
4277         int try_soft_reset = 0;
4278         unsigned long flags;
4279
4280         if (number_of_controllers == 0)
4281                 printk(KERN_INFO DRIVER_NAME "\n");
4282
4283         rc = hpsa_init_reset_devices(pdev);
4284         if (rc) {
4285                 if (rc != -ENOTSUPP)
4286                         return rc;
4287                 /* If the reset fails in a particular way (it has no way to do
4288                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4289                  * a soft reset once we get the controller configured up to the
4290                  * point that it can accept a command.
4291                  */
4292                 try_soft_reset = 1;
4293                 rc = 0;
4294         }
4295
4296 reinit_after_soft_reset:
4297
4298         /* Command structures must be aligned on a 32-byte boundary because
4299          * the 5 lower bits of the address are used by the hardware. and by
4300          * the driver.  See comments in hpsa.h for more info.
4301          */
4302 #define COMMANDLIST_ALIGNMENT 32
4303         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4304         h = kzalloc(sizeof(*h), GFP_KERNEL);
4305         if (!h)
4306                 return -ENOMEM;
4307
4308         h->pdev = pdev;
4309         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4310         INIT_LIST_HEAD(&h->cmpQ);
4311         INIT_LIST_HEAD(&h->reqQ);
4312         spin_lock_init(&h->lock);
4313         spin_lock_init(&h->scan_lock);
4314         rc = hpsa_pci_init(h);
4315         if (rc != 0)
4316                 goto clean1;
4317
4318         sprintf(h->devname, HPSA "%d", number_of_controllers);
4319         h->ctlr = number_of_controllers;
4320         number_of_controllers++;
4321
4322         /* configure PCI DMA stuff */
4323         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4324         if (rc == 0) {
4325                 dac = 1;
4326         } else {
4327                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4328                 if (rc == 0) {
4329                         dac = 0;
4330                 } else {
4331                         dev_err(&pdev->dev, "no suitable DMA available\n");
4332                         goto clean1;
4333                 }
4334         }
4335
4336         /* make sure the board interrupts are off */
4337         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4338
4339         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4340                 goto clean2;
4341         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4342                h->devname, pdev->device,
4343                h->intr[h->intr_mode], dac ? "" : " not");
4344         if (hpsa_allocate_cmd_pool(h))
4345                 goto clean4;
4346         if (hpsa_allocate_sg_chain_blocks(h))
4347                 goto clean4;
4348         init_waitqueue_head(&h->scan_wait_queue);
4349         h->scan_finished = 1; /* no scan currently in progress */
4350
4351         pci_set_drvdata(pdev, h);
4352         h->ndevices = 0;
4353         h->scsi_host = NULL;
4354         spin_lock_init(&h->devlock);
4355         hpsa_put_ctlr_into_performant_mode(h);
4356
4357         /* At this point, the controller is ready to take commands.
4358          * Now, if reset_devices and the hard reset didn't work, try
4359          * the soft reset and see if that works.
4360          */
4361         if (try_soft_reset) {
4362
4363                 /* This is kind of gross.  We may or may not get a completion
4364                  * from the soft reset command, and if we do, then the value
4365                  * from the fifo may or may not be valid.  So, we wait 10 secs
4366                  * after the reset throwing away any completions we get during
4367                  * that time.  Unregister the interrupt handler and register
4368                  * fake ones to scoop up any residual completions.
4369                  */
4370                 spin_lock_irqsave(&h->lock, flags);
4371                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4372                 spin_unlock_irqrestore(&h->lock, flags);
4373                 free_irq(h->intr[h->intr_mode], h);
4374                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4375                                         hpsa_intx_discard_completions);
4376                 if (rc) {
4377                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4378                                 "soft reset.\n");
4379                         goto clean4;
4380                 }
4381
4382                 rc = hpsa_kdump_soft_reset(h);
4383                 if (rc)
4384                         /* Neither hard nor soft reset worked, we're hosed. */
4385                         goto clean4;
4386
4387                 dev_info(&h->pdev->dev, "Board READY.\n");
4388                 dev_info(&h->pdev->dev,
4389                         "Waiting for stale completions to drain.\n");
4390                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4391                 msleep(10000);
4392                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4393
4394                 rc = controller_reset_failed(h->cfgtable);
4395                 if (rc)
4396                         dev_info(&h->pdev->dev,
4397                                 "Soft reset appears to have failed.\n");
4398
4399                 /* since the controller's reset, we have to go back and re-init
4400                  * everything.  Easiest to just forget what we've done and do it
4401                  * all over again.
4402                  */
4403                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4404                 try_soft_reset = 0;
4405                 if (rc)
4406                         /* don't go to clean4, we already unallocated */
4407                         return -ENODEV;
4408
4409                 goto reinit_after_soft_reset;
4410         }
4411
4412         /* Turn the interrupts on so we can service requests */
4413         h->access.set_intr_mask(h, HPSA_INTR_ON);
4414
4415         hpsa_hba_inquiry(h);
4416         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4417         start_controller_lockup_detector(h);
4418         return 1;
4419
4420 clean4:
4421         hpsa_free_sg_chain_blocks(h);
4422         hpsa_free_cmd_pool(h);
4423         free_irq(h->intr[h->intr_mode], h);
4424 clean2:
4425 clean1:
4426         kfree(h);
4427         return rc;
4428 }
4429
4430 static void hpsa_flush_cache(struct ctlr_info *h)
4431 {
4432         char *flush_buf;
4433         struct CommandList *c;
4434
4435         flush_buf = kzalloc(4, GFP_KERNEL);
4436         if (!flush_buf)
4437                 return;
4438
4439         c = cmd_special_alloc(h);
4440         if (!c) {
4441                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4442                 goto out_of_memory;
4443         }
4444         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4445                 RAID_CTLR_LUNID, TYPE_CMD);
4446         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4447         if (c->err_info->CommandStatus != 0)
4448                 dev_warn(&h->pdev->dev,
4449                         "error flushing cache on controller\n");
4450         cmd_special_free(h, c);
4451 out_of_memory:
4452         kfree(flush_buf);
4453 }
4454
4455 static void hpsa_shutdown(struct pci_dev *pdev)
4456 {
4457         struct ctlr_info *h;
4458
4459         h = pci_get_drvdata(pdev);
4460         /* Turn board interrupts off  and send the flush cache command
4461          * sendcmd will turn off interrupt, and send the flush...
4462          * To write all data in the battery backed cache to disks
4463          */
4464         hpsa_flush_cache(h);
4465         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4466         free_irq(h->intr[h->intr_mode], h);
4467 #ifdef CONFIG_PCI_MSI
4468         if (h->msix_vector)
4469                 pci_disable_msix(h->pdev);
4470         else if (h->msi_vector)
4471                 pci_disable_msi(h->pdev);
4472 #endif                          /* CONFIG_PCI_MSI */
4473 }
4474
4475 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4476 {
4477         int i;
4478
4479         for (i = 0; i < h->ndevices; i++)
4480                 kfree(h->dev[i]);
4481 }
4482
4483 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4484 {
4485         struct ctlr_info *h;
4486
4487         if (pci_get_drvdata(pdev) == NULL) {
4488                 dev_err(&pdev->dev, "unable to remove device\n");
4489                 return;
4490         }
4491         h = pci_get_drvdata(pdev);
4492         stop_controller_lockup_detector(h);
4493         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4494         hpsa_shutdown(pdev);
4495         iounmap(h->vaddr);
4496         iounmap(h->transtable);
4497         iounmap(h->cfgtable);
4498         hpsa_free_device_info(h);
4499         hpsa_free_sg_chain_blocks(h);
4500         pci_free_consistent(h->pdev,
4501                 h->nr_cmds * sizeof(struct CommandList),
4502                 h->cmd_pool, h->cmd_pool_dhandle);
4503         pci_free_consistent(h->pdev,
4504                 h->nr_cmds * sizeof(struct ErrorInfo),
4505                 h->errinfo_pool, h->errinfo_pool_dhandle);
4506         pci_free_consistent(h->pdev, h->reply_pool_size,
4507                 h->reply_pool, h->reply_pool_dhandle);
4508         kfree(h->cmd_pool_bits);
4509         kfree(h->blockFetchTable);
4510         kfree(h->hba_inquiry_data);
4511         /*
4512          * Deliberately omit pci_disable_device(): it does something nasty to
4513          * Smart Array controllers that pci_enable_device does not undo
4514          */
4515         pci_release_regions(pdev);
4516         pci_set_drvdata(pdev, NULL);
4517         kfree(h);
4518 }
4519
4520 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4521         __attribute__((unused)) pm_message_t state)
4522 {
4523         return -ENOSYS;
4524 }
4525
4526 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4527 {
4528         return -ENOSYS;
4529 }
4530
4531 static struct pci_driver hpsa_pci_driver = {
4532         .name = HPSA,
4533         .probe = hpsa_init_one,
4534         .remove = __devexit_p(hpsa_remove_one),
4535         .id_table = hpsa_pci_device_id, /* id_table */
4536         .shutdown = hpsa_shutdown,
4537         .suspend = hpsa_suspend,
4538         .resume = hpsa_resume,
4539 };
4540
4541 /* Fill in bucket_map[], given nsgs (the max number of
4542  * scatter gather elements supported) and bucket[],
4543  * which is an array of 8 integers.  The bucket[] array
4544  * contains 8 different DMA transfer sizes (in 16
4545  * byte increments) which the controller uses to fetch
4546  * commands.  This function fills in bucket_map[], which
4547  * maps a given number of scatter gather elements to one of
4548  * the 8 DMA transfer sizes.  The point of it is to allow the
4549  * controller to only do as much DMA as needed to fetch the
4550  * command, with the DMA transfer size encoded in the lower
4551  * bits of the command address.
4552  */
4553 static void  calc_bucket_map(int bucket[], int num_buckets,
4554         int nsgs, int *bucket_map)
4555 {
4556         int i, j, b, size;
4557
4558         /* even a command with 0 SGs requires 4 blocks */
4559 #define MINIMUM_TRANSFER_BLOCKS 4
4560 #define NUM_BUCKETS 8
4561         /* Note, bucket_map must have nsgs+1 entries. */
4562         for (i = 0; i <= nsgs; i++) {
4563                 /* Compute size of a command with i SG entries */
4564                 size = i + MINIMUM_TRANSFER_BLOCKS;
4565                 b = num_buckets; /* Assume the biggest bucket */
4566                 /* Find the bucket that is just big enough */
4567                 for (j = 0; j < 8; j++) {
4568                         if (bucket[j] >= size) {
4569                                 b = j;
4570                                 break;
4571                         }
4572                 }
4573                 /* for a command with i SG entries, use bucket b. */
4574                 bucket_map[i] = b;
4575         }
4576 }
4577
4578 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4579         u32 use_short_tags)
4580 {
4581         int i;
4582         unsigned long register_value;
4583
4584         /* This is a bit complicated.  There are 8 registers on
4585          * the controller which we write to to tell it 8 different
4586          * sizes of commands which there may be.  It's a way of
4587          * reducing the DMA done to fetch each command.  Encoded into
4588          * each command's tag are 3 bits which communicate to the controller
4589          * which of the eight sizes that command fits within.  The size of
4590          * each command depends on how many scatter gather entries there are.
4591          * Each SG entry requires 16 bytes.  The eight registers are programmed
4592          * with the number of 16-byte blocks a command of that size requires.
4593          * The smallest command possible requires 5 such 16 byte blocks.
4594          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4595          * blocks.  Note, this only extends to the SG entries contained
4596          * within the command block, and does not extend to chained blocks
4597          * of SG elements.   bft[] contains the eight values we write to
4598          * the registers.  They are not evenly distributed, but have more
4599          * sizes for small commands, and fewer sizes for larger commands.
4600          */
4601         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4602         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4603         /*  5 = 1 s/g entry or 4k
4604          *  6 = 2 s/g entry or 8k
4605          *  8 = 4 s/g entry or 16k
4606          * 10 = 6 s/g entry or 24k
4607          */
4608
4609         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4610
4611         /* Controller spec: zero out this buffer. */
4612         memset(h->reply_pool, 0, h->reply_pool_size);
4613         h->reply_pool_head = h->reply_pool;
4614
4615         bft[7] = SG_ENTRIES_IN_CMD + 4;
4616         calc_bucket_map(bft, ARRAY_SIZE(bft),
4617                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4618         for (i = 0; i < 8; i++)
4619                 writel(bft[i], &h->transtable->BlockFetch[i]);
4620
4621         /* size of controller ring buffer */
4622         writel(h->max_commands, &h->transtable->RepQSize);
4623         writel(1, &h->transtable->RepQCount);
4624         writel(0, &h->transtable->RepQCtrAddrLow32);
4625         writel(0, &h->transtable->RepQCtrAddrHigh32);
4626         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4627         writel(0, &h->transtable->RepQAddr0High32);
4628         writel(CFGTBL_Trans_Performant | use_short_tags,
4629                 &(h->cfgtable->HostWrite.TransportRequest));
4630         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4631         hpsa_wait_for_mode_change_ack(h);
4632         register_value = readl(&(h->cfgtable->TransportActive));
4633         if (!(register_value & CFGTBL_Trans_Performant)) {
4634                 dev_warn(&h->pdev->dev, "unable to get board into"
4635                                         " performant mode\n");
4636                 return;
4637         }
4638         /* Change the access methods to the performant access methods */
4639         h->access = SA5_performant_access;
4640         h->transMethod = CFGTBL_Trans_Performant;
4641 }
4642
4643 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4644 {
4645         u32 trans_support;
4646
4647         if (hpsa_simple_mode)
4648                 return;
4649
4650         trans_support = readl(&(h->cfgtable->TransportSupport));
4651         if (!(trans_support & PERFORMANT_MODE))
4652                 return;
4653
4654         hpsa_get_max_perf_mode_cmds(h);
4655         /* Performant mode ring buffer and supporting data structures */
4656         h->reply_pool_size = h->max_commands * sizeof(u64);
4657         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4658                                 &(h->reply_pool_dhandle));
4659
4660         /* Need a block fetch table for performant mode */
4661         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4662                                 sizeof(u32)), GFP_KERNEL);
4663
4664         if ((h->reply_pool == NULL)
4665                 || (h->blockFetchTable == NULL))
4666                 goto clean_up;
4667
4668         hpsa_enter_performant_mode(h,
4669                 trans_support & CFGTBL_Trans_use_short_tags);
4670
4671         return;
4672
4673 clean_up:
4674         if (h->reply_pool)
4675                 pci_free_consistent(h->pdev, h->reply_pool_size,
4676                         h->reply_pool, h->reply_pool_dhandle);
4677         kfree(h->blockFetchTable);
4678 }
4679
4680 /*
4681  *  This is it.  Register the PCI driver information for the cards we control
4682  *  the OS will call our registered routines when it finds one of our cards.
4683  */
4684 static int __init hpsa_init(void)
4685 {
4686         return pci_register_driver(&hpsa_pci_driver);
4687 }
4688
4689 static void __exit hpsa_cleanup(void)
4690 {
4691         pci_unregister_driver(&hpsa_pci_driver);
4692 }
4693
4694 module_init(hpsa_init);
4695 module_exit(hpsa_cleanup);