045822befad9749c38efb98e835ec78bdf68c581
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         cmd->result = 0;
141         spin_lock_irqsave(q->queue_lock, flags);
142         blk_requeue_request(q, cmd->request);
143         kblockd_schedule_work(q, &device->requeue_work);
144         spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168         __scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:       scsi device
173  * @cmd:        scsi command
174  * @data_direction: data direction
175  * @buffer:     data buffer
176  * @bufflen:    len of buffer
177  * @sense:      optional sense buffer
178  * @timeout:    request timeout in seconds
179  * @retries:    number of times to retry request
180  * @flags:      or into request flags;
181  * @resid:      optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187                  int data_direction, void *buffer, unsigned bufflen,
188                  unsigned char *sense, int timeout, int retries, u64 flags,
189                  int *resid)
190 {
191         struct request *req;
192         int write = (data_direction == DMA_TO_DEVICE);
193         int ret = DRIVER_ERROR << 24;
194
195         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196         if (!req)
197                 return ret;
198
199         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
200                                         buffer, bufflen, __GFP_WAIT))
201                 goto out;
202
203         req->cmd_len = COMMAND_SIZE(cmd[0]);
204         memcpy(req->cmd, cmd, req->cmd_len);
205         req->sense = sense;
206         req->sense_len = 0;
207         req->retries = retries;
208         req->timeout = timeout;
209         req->cmd_type = REQ_TYPE_BLOCK_PC;
210         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211
212         /*
213          * head injection *required* here otherwise quiesce won't work
214          */
215         blk_execute_rq(req->q, NULL, req, 1);
216
217         /*
218          * Some devices (USB mass-storage in particular) may transfer
219          * garbage data together with a residue indicating that the data
220          * is invalid.  Prevent the garbage from being misinterpreted
221          * and prevent security leaks by zeroing out the excess data.
222          */
223         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225
226         if (resid)
227                 *resid = req->resid_len;
228         ret = req->errors;
229  out:
230         blk_put_request(req);
231
232         return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
239                      int *resid, u64 flags)
240 {
241         char *sense = NULL;
242         int result;
243         
244         if (sshdr) {
245                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246                 if (!sense)
247                         return DRIVER_ERROR << 24;
248         }
249         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250                               sense, timeout, retries, flags, resid);
251         if (sshdr)
252                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253
254         kfree(sense);
255         return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd     - command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272         cmd->serial_number = 0;
273         scsi_set_resid(cmd, 0);
274         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275         if (cmd->cmd_len == 0)
276                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281         struct Scsi_Host *shost = sdev->host;
282         struct scsi_target *starget = scsi_target(sdev);
283         unsigned long flags;
284
285         spin_lock_irqsave(shost->host_lock, flags);
286         shost->host_busy--;
287         starget->target_busy--;
288         if (unlikely(scsi_host_in_recovery(shost) &&
289                      (shost->host_failed || shost->host_eh_scheduled)))
290                 scsi_eh_wakeup(shost);
291         spin_unlock(shost->host_lock);
292         spin_lock(sdev->request_queue->queue_lock);
293         sdev->device_busy--;
294         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306         struct Scsi_Host *shost = current_sdev->host;
307         struct scsi_device *sdev, *tmp;
308         struct scsi_target *starget = scsi_target(current_sdev);
309         unsigned long flags;
310
311         spin_lock_irqsave(shost->host_lock, flags);
312         starget->starget_sdev_user = NULL;
313         spin_unlock_irqrestore(shost->host_lock, flags);
314
315         /*
316          * Call blk_run_queue for all LUNs on the target, starting with
317          * current_sdev. We race with others (to set starget_sdev_user),
318          * but in most cases, we will be first. Ideally, each LU on the
319          * target would get some limited time or requests on the target.
320          */
321         blk_run_queue(current_sdev->request_queue);
322
323         spin_lock_irqsave(shost->host_lock, flags);
324         if (starget->starget_sdev_user)
325                 goto out;
326         list_for_each_entry_safe(sdev, tmp, &starget->devices,
327                         same_target_siblings) {
328                 if (sdev == current_sdev)
329                         continue;
330                 if (scsi_device_get(sdev))
331                         continue;
332
333                 spin_unlock_irqrestore(shost->host_lock, flags);
334                 blk_run_queue(sdev->request_queue);
335                 spin_lock_irqsave(shost->host_lock, flags);
336         
337                 scsi_device_put(sdev);
338         }
339  out:
340         spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346                 return 1;
347
348         return 0;
349 }
350
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353         return ((starget->can_queue > 0 &&
354                  starget->target_busy >= starget->can_queue) ||
355                  starget->target_blocked);
356 }
357
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361             shost->host_blocked || shost->host_self_blocked)
362                 return 1;
363
364         return 0;
365 }
366
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369         LIST_HEAD(starved_list);
370         struct scsi_device *sdev;
371         unsigned long flags;
372
373         spin_lock_irqsave(shost->host_lock, flags);
374         list_splice_init(&shost->starved_list, &starved_list);
375
376         while (!list_empty(&starved_list)) {
377                 struct request_queue *slq;
378
379                 /*
380                  * As long as shost is accepting commands and we have
381                  * starved queues, call blk_run_queue. scsi_request_fn
382                  * drops the queue_lock and can add us back to the
383                  * starved_list.
384                  *
385                  * host_lock protects the starved_list and starved_entry.
386                  * scsi_request_fn must get the host_lock before checking
387                  * or modifying starved_list or starved_entry.
388                  */
389                 if (scsi_host_is_busy(shost))
390                         break;
391
392                 sdev = list_entry(starved_list.next,
393                                   struct scsi_device, starved_entry);
394                 list_del_init(&sdev->starved_entry);
395                 if (scsi_target_is_busy(scsi_target(sdev))) {
396                         list_move_tail(&sdev->starved_entry,
397                                        &shost->starved_list);
398                         continue;
399                 }
400
401                 /*
402                  * Once we drop the host lock, a racing scsi_remove_device()
403                  * call may remove the sdev from the starved list and destroy
404                  * it and the queue.  Mitigate by taking a reference to the
405                  * queue and never touching the sdev again after we drop the
406                  * host lock.  Note: if __scsi_remove_device() invokes
407                  * blk_cleanup_queue() before the queue is run from this
408                  * function then blk_run_queue() will return immediately since
409                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410                  */
411                 slq = sdev->request_queue;
412                 if (!blk_get_queue(slq))
413                         continue;
414                 spin_unlock_irqrestore(shost->host_lock, flags);
415
416                 blk_run_queue(slq);
417                 blk_put_queue(slq);
418
419                 spin_lock_irqsave(shost->host_lock, flags);
420         }
421         /* put any unprocessed entries back */
422         list_splice(&starved_list, &shost->starved_list);
423         spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440         struct scsi_device *sdev = q->queuedata;
441
442         if (scsi_target(sdev)->single_lun)
443                 scsi_single_lun_run(sdev);
444         if (!list_empty(&sdev->host->starved_list))
445                 scsi_starved_list_run(sdev->host);
446
447         blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452         struct scsi_device *sdev;
453         struct request_queue *q;
454
455         sdev = container_of(work, struct scsi_device, requeue_work);
456         q = sdev->request_queue;
457         scsi_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct scsi_device *sdev = cmd->device;
481         struct request *req = cmd->request;
482         unsigned long flags;
483
484         spin_lock_irqsave(q->queue_lock, flags);
485         blk_unprep_request(req);
486         req->special = NULL;
487         scsi_put_command(cmd);
488         blk_requeue_request(q, req);
489         spin_unlock_irqrestore(q->queue_lock, flags);
490
491         scsi_run_queue(q);
492
493         put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request_queue *q = sdev->request_queue;
500
501         scsi_put_command(cmd);
502         scsi_run_queue(q);
503
504         put_device(&sdev->sdev_gendev);
505 }
506
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509         struct scsi_device *sdev;
510
511         shost_for_each_device(sdev, shost)
512                 scsi_run_queue(sdev->request_queue);
513 }
514
515 static inline unsigned int scsi_sgtable_index(unsigned short nents)
516 {
517         unsigned int index;
518
519         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
520
521         if (nents <= 8)
522                 index = 0;
523         else
524                 index = get_count_order(nents) - 3;
525
526         return index;
527 }
528
529 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
530 {
531         struct scsi_host_sg_pool *sgp;
532
533         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
534         mempool_free(sgl, sgp->pool);
535 }
536
537 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
538 {
539         struct scsi_host_sg_pool *sgp;
540
541         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
542         return mempool_alloc(sgp->pool, gfp_mask);
543 }
544
545 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
546                               gfp_t gfp_mask)
547 {
548         int ret;
549
550         BUG_ON(!nents);
551
552         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
553                                gfp_mask, scsi_sg_alloc);
554         if (unlikely(ret))
555                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
556                                 scsi_sg_free);
557
558         return ret;
559 }
560
561 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
562 {
563         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
564 }
565
566 /*
567  * Function:    scsi_release_buffers()
568  *
569  * Purpose:     Free resources allocate for a scsi_command.
570  *
571  * Arguments:   cmd     - command that we are bailing.
572  *
573  * Lock status: Assumed that no lock is held upon entry.
574  *
575  * Returns:     Nothing
576  *
577  * Notes:       In the event that an upper level driver rejects a
578  *              command, we must release resources allocated during
579  *              the __init_io() function.  Primarily this would involve
580  *              the scatter-gather table.
581  */
582 void scsi_release_buffers(struct scsi_cmnd *cmd)
583 {
584         if (cmd->sdb.table.nents)
585                 scsi_free_sgtable(&cmd->sdb);
586
587         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
588
589         if (scsi_prot_sg_count(cmd))
590                 scsi_free_sgtable(cmd->prot_sdb);
591 }
592 EXPORT_SYMBOL(scsi_release_buffers);
593
594 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
597
598         scsi_free_sgtable(bidi_sdb);
599         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
600         cmd->request->next_rq->special = NULL;
601 }
602
603 /**
604  * __scsi_error_from_host_byte - translate SCSI error code into errno
605  * @cmd:        SCSI command (unused)
606  * @result:     scsi error code
607  *
608  * Translate SCSI error code into standard UNIX errno.
609  * Return values:
610  * -ENOLINK     temporary transport failure
611  * -EREMOTEIO   permanent target failure, do not retry
612  * -EBADE       permanent nexus failure, retry on other path
613  * -ENOSPC      No write space available
614  * -ENODATA     Medium error
615  * -EIO         unspecified I/O error
616  */
617 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
618 {
619         int error = 0;
620
621         switch(host_byte(result)) {
622         case DID_TRANSPORT_FAILFAST:
623                 error = -ENOLINK;
624                 break;
625         case DID_TARGET_FAILURE:
626                 set_host_byte(cmd, DID_OK);
627                 error = -EREMOTEIO;
628                 break;
629         case DID_NEXUS_FAILURE:
630                 set_host_byte(cmd, DID_OK);
631                 error = -EBADE;
632                 break;
633         case DID_ALLOC_FAILURE:
634                 set_host_byte(cmd, DID_OK);
635                 error = -ENOSPC;
636                 break;
637         case DID_MEDIUM_ERROR:
638                 set_host_byte(cmd, DID_OK);
639                 error = -ENODATA;
640                 break;
641         default:
642                 error = -EIO;
643                 break;
644         }
645
646         return error;
647 }
648
649 /*
650  * Function:    scsi_io_completion()
651  *
652  * Purpose:     Completion processing for block device I/O requests.
653  *
654  * Arguments:   cmd   - command that is finished.
655  *
656  * Lock status: Assumed that no lock is held upon entry.
657  *
658  * Returns:     Nothing
659  *
660  * Notes:       We will finish off the specified number of sectors.  If we
661  *              are done, the command block will be released and the queue
662  *              function will be goosed.  If we are not done then we have to
663  *              figure out what to do next:
664  *
665  *              a) We can call scsi_requeue_command().  The request
666  *                 will be unprepared and put back on the queue.  Then
667  *                 a new command will be created for it.  This should
668  *                 be used if we made forward progress, or if we want
669  *                 to switch from READ(10) to READ(6) for example.
670  *
671  *              b) We can call __scsi_queue_insert().  The request will
672  *                 be put back on the queue and retried using the same
673  *                 command as before, possibly after a delay.
674  *
675  *              c) We can call blk_end_request() with -EIO to fail
676  *                 the remainder of the request.
677  */
678 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
679 {
680         int result = cmd->result;
681         struct request_queue *q = cmd->device->request_queue;
682         struct request *req = cmd->request;
683         int error = 0;
684         struct scsi_sense_hdr sshdr;
685         int sense_valid = 0;
686         int sense_deferred = 0;
687         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
688               ACTION_DELAYED_RETRY} action;
689         char *description = NULL;
690         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
691
692         if (result) {
693                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
694                 if (sense_valid)
695                         sense_deferred = scsi_sense_is_deferred(&sshdr);
696         }
697
698         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
699                 if (result) {
700                         if (sense_valid && req->sense) {
701                                 /*
702                                  * SG_IO wants current and deferred errors
703                                  */
704                                 int len = 8 + cmd->sense_buffer[7];
705
706                                 if (len > SCSI_SENSE_BUFFERSIZE)
707                                         len = SCSI_SENSE_BUFFERSIZE;
708                                 memcpy(req->sense, cmd->sense_buffer,  len);
709                                 req->sense_len = len;
710                         }
711                         if (!sense_deferred)
712                                 error = __scsi_error_from_host_byte(cmd, result);
713                 }
714                 /*
715                  * __scsi_error_from_host_byte may have reset the host_byte
716                  */
717                 req->errors = cmd->result;
718
719                 req->resid_len = scsi_get_resid(cmd);
720
721                 if (scsi_bidi_cmnd(cmd)) {
722                         /*
723                          * Bidi commands Must be complete as a whole,
724                          * both sides at once.
725                          */
726                         req->next_rq->resid_len = scsi_in(cmd)->resid;
727
728                         scsi_release_buffers(cmd);
729                         scsi_release_bidi_buffers(cmd);
730
731                         blk_end_request_all(req, 0);
732
733                         scsi_next_command(cmd);
734                         return;
735                 }
736         }
737
738         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
739         BUG_ON(blk_bidi_rq(req));
740
741         /*
742          * Next deal with any sectors which we were able to correctly
743          * handle.
744          */
745         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
746                                       "%d bytes done.\n",
747                                       blk_rq_sectors(req), good_bytes));
748
749         /*
750          * Recovered errors need reporting, but they're always treated
751          * as success, so fiddle the result code here.  For BLOCK_PC
752          * we already took a copy of the original into rq->errors which
753          * is what gets returned to the user
754          */
755         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
756                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
757                  * print since caller wants ATA registers. Only occurs on
758                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
759                  */
760                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
761                         ;
762                 else if (!(req->cmd_flags & REQ_QUIET))
763                         scsi_print_sense("", cmd);
764                 result = 0;
765                 /* BLOCK_PC may have set error */
766                 error = 0;
767         }
768
769         /*
770          * If we finished all bytes in the request we are done now.
771          */
772         if (!blk_end_request(req, error, good_bytes))
773                 goto next_command;
774
775         /*
776          * Kill remainder if no retrys.
777          */
778         if (error && scsi_noretry_cmd(cmd)) {
779                 blk_end_request_all(req, error);
780                 goto next_command;
781         }
782
783         /*
784          * If there had been no error, but we have leftover bytes in the
785          * requeues just queue the command up again.
786          */
787         if (result == 0)
788                 goto requeue;
789
790         error = __scsi_error_from_host_byte(cmd, result);
791
792         if (host_byte(result) == DID_RESET) {
793                 /* Third party bus reset or reset for error recovery
794                  * reasons.  Just retry the command and see what
795                  * happens.
796                  */
797                 action = ACTION_RETRY;
798         } else if (sense_valid && !sense_deferred) {
799                 switch (sshdr.sense_key) {
800                 case UNIT_ATTENTION:
801                         if (cmd->device->removable) {
802                                 /* Detected disc change.  Set a bit
803                                  * and quietly refuse further access.
804                                  */
805                                 cmd->device->changed = 1;
806                                 description = "Media Changed";
807                                 action = ACTION_FAIL;
808                         } else {
809                                 /* Must have been a power glitch, or a
810                                  * bus reset.  Could not have been a
811                                  * media change, so we just retry the
812                                  * command and see what happens.
813                                  */
814                                 action = ACTION_RETRY;
815                         }
816                         break;
817                 case ILLEGAL_REQUEST:
818                         /* If we had an ILLEGAL REQUEST returned, then
819                          * we may have performed an unsupported
820                          * command.  The only thing this should be
821                          * would be a ten byte read where only a six
822                          * byte read was supported.  Also, on a system
823                          * where READ CAPACITY failed, we may have
824                          * read past the end of the disk.
825                          */
826                         if ((cmd->device->use_10_for_rw &&
827                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
828                             (cmd->cmnd[0] == READ_10 ||
829                              cmd->cmnd[0] == WRITE_10)) {
830                                 /* This will issue a new 6-byte command. */
831                                 cmd->device->use_10_for_rw = 0;
832                                 action = ACTION_REPREP;
833                         } else if (sshdr.asc == 0x10) /* DIX */ {
834                                 description = "Host Data Integrity Failure";
835                                 action = ACTION_FAIL;
836                                 error = -EILSEQ;
837                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
838                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
839                                 switch (cmd->cmnd[0]) {
840                                 case UNMAP:
841                                         description = "Discard failure";
842                                         break;
843                                 case WRITE_SAME:
844                                 case WRITE_SAME_16:
845                                         if (cmd->cmnd[1] & 0x8)
846                                                 description = "Discard failure";
847                                         else
848                                                 description =
849                                                         "Write same failure";
850                                         break;
851                                 default:
852                                         description = "Invalid command failure";
853                                         break;
854                                 }
855                                 action = ACTION_FAIL;
856                                 error = -EREMOTEIO;
857                         } else
858                                 action = ACTION_FAIL;
859                         break;
860                 case ABORTED_COMMAND:
861                         action = ACTION_FAIL;
862                         if (sshdr.asc == 0x10) { /* DIF */
863                                 description = "Target Data Integrity Failure";
864                                 error = -EILSEQ;
865                         }
866                         break;
867                 case NOT_READY:
868                         /* If the device is in the process of becoming
869                          * ready, or has a temporary blockage, retry.
870                          */
871                         if (sshdr.asc == 0x04) {
872                                 switch (sshdr.ascq) {
873                                 case 0x01: /* becoming ready */
874                                 case 0x04: /* format in progress */
875                                 case 0x05: /* rebuild in progress */
876                                 case 0x06: /* recalculation in progress */
877                                 case 0x07: /* operation in progress */
878                                 case 0x08: /* Long write in progress */
879                                 case 0x09: /* self test in progress */
880                                 case 0x14: /* space allocation in progress */
881                                         action = ACTION_DELAYED_RETRY;
882                                         break;
883                                 default:
884                                         description = "Device not ready";
885                                         action = ACTION_FAIL;
886                                         break;
887                                 }
888                         } else {
889                                 description = "Device not ready";
890                                 action = ACTION_FAIL;
891                         }
892                         break;
893                 case VOLUME_OVERFLOW:
894                         /* See SSC3rXX or current. */
895                         action = ACTION_FAIL;
896                         break;
897                 default:
898                         description = "Unhandled sense code";
899                         action = ACTION_FAIL;
900                         break;
901                 }
902         } else {
903                 description = "Unhandled error code";
904                 action = ACTION_FAIL;
905         }
906
907         if (action != ACTION_FAIL &&
908             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
909                 action = ACTION_FAIL;
910                 description = "Command timed out";
911         }
912
913         switch (action) {
914         case ACTION_FAIL:
915                 /* Give up and fail the remainder of the request */
916                 if (!(req->cmd_flags & REQ_QUIET)) {
917                         if (description)
918                                 scmd_printk(KERN_INFO, cmd, "%s\n",
919                                             description);
920                         scsi_print_result(cmd);
921                         if (driver_byte(result) & DRIVER_SENSE)
922                                 scsi_print_sense("", cmd);
923                         scsi_print_command(cmd);
924                 }
925                 if (!blk_end_request_err(req, error))
926                         goto next_command;
927                 /*FALLTHRU*/
928         case ACTION_REPREP:
929         requeue:
930                 /* Unprep the request and put it back at the head of the queue.
931                  * A new command will be prepared and issued.
932                  */
933                 scsi_release_buffers(cmd);
934                 scsi_requeue_command(q, cmd);
935                 break;
936         case ACTION_RETRY:
937                 /* Retry the same command immediately */
938                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
939                 break;
940         case ACTION_DELAYED_RETRY:
941                 /* Retry the same command after a delay */
942                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
943                 break;
944         }
945         return;
946
947 next_command:
948         scsi_release_buffers(cmd);
949         scsi_next_command(cmd);
950 }
951
952 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
953                              gfp_t gfp_mask)
954 {
955         int count;
956
957         /*
958          * If sg table allocation fails, requeue request later.
959          */
960         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
961                                         gfp_mask))) {
962                 return BLKPREP_DEFER;
963         }
964
965         req->buffer = NULL;
966
967         /* 
968          * Next, walk the list, and fill in the addresses and sizes of
969          * each segment.
970          */
971         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
972         BUG_ON(count > sdb->table.nents);
973         sdb->table.nents = count;
974         sdb->length = blk_rq_bytes(req);
975         return BLKPREP_OK;
976 }
977
978 /*
979  * Function:    scsi_init_io()
980  *
981  * Purpose:     SCSI I/O initialize function.
982  *
983  * Arguments:   cmd   - Command descriptor we wish to initialize
984  *
985  * Returns:     0 on success
986  *              BLKPREP_DEFER if the failure is retryable
987  *              BLKPREP_KILL if the failure is fatal
988  */
989 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
990 {
991         struct scsi_device *sdev = cmd->device;
992         struct request *rq = cmd->request;
993
994         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
995         if (error)
996                 goto err_exit;
997
998         if (blk_bidi_rq(rq)) {
999                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1000                         scsi_sdb_cache, GFP_ATOMIC);
1001                 if (!bidi_sdb) {
1002                         error = BLKPREP_DEFER;
1003                         goto err_exit;
1004                 }
1005
1006                 rq->next_rq->special = bidi_sdb;
1007                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1008                 if (error)
1009                         goto err_exit;
1010         }
1011
1012         if (blk_integrity_rq(rq)) {
1013                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1014                 int ivecs, count;
1015
1016                 BUG_ON(prot_sdb == NULL);
1017                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1018
1019                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1020                         error = BLKPREP_DEFER;
1021                         goto err_exit;
1022                 }
1023
1024                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1025                                                 prot_sdb->table.sgl);
1026                 BUG_ON(unlikely(count > ivecs));
1027                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1028
1029                 cmd->prot_sdb = prot_sdb;
1030                 cmd->prot_sdb->table.nents = count;
1031         }
1032
1033         return BLKPREP_OK ;
1034
1035 err_exit:
1036         scsi_release_buffers(cmd);
1037         cmd->request->special = NULL;
1038         scsi_put_command(cmd);
1039         put_device(&sdev->sdev_gendev);
1040         return error;
1041 }
1042 EXPORT_SYMBOL(scsi_init_io);
1043
1044 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1045                 struct request *req)
1046 {
1047         struct scsi_cmnd *cmd;
1048
1049         if (!req->special) {
1050                 /* Bail if we can't get a reference to the device */
1051                 if (!get_device(&sdev->sdev_gendev))
1052                         return NULL;
1053
1054                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1055                 if (unlikely(!cmd)) {
1056                         put_device(&sdev->sdev_gendev);
1057                         return NULL;
1058                 }
1059                 req->special = cmd;
1060         } else {
1061                 cmd = req->special;
1062         }
1063
1064         /* pull a tag out of the request if we have one */
1065         cmd->tag = req->tag;
1066         cmd->request = req;
1067
1068         cmd->cmnd = req->cmd;
1069         cmd->prot_op = SCSI_PROT_NORMAL;
1070
1071         return cmd;
1072 }
1073
1074 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1075 {
1076         struct scsi_cmnd *cmd;
1077         int ret = scsi_prep_state_check(sdev, req);
1078
1079         if (ret != BLKPREP_OK)
1080                 return ret;
1081
1082         cmd = scsi_get_cmd_from_req(sdev, req);
1083         if (unlikely(!cmd))
1084                 return BLKPREP_DEFER;
1085
1086         /*
1087          * BLOCK_PC requests may transfer data, in which case they must
1088          * a bio attached to them.  Or they might contain a SCSI command
1089          * that does not transfer data, in which case they may optionally
1090          * submit a request without an attached bio.
1091          */
1092         if (req->bio) {
1093                 int ret;
1094
1095                 BUG_ON(!req->nr_phys_segments);
1096
1097                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1098                 if (unlikely(ret))
1099                         return ret;
1100         } else {
1101                 BUG_ON(blk_rq_bytes(req));
1102
1103                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1104                 req->buffer = NULL;
1105         }
1106
1107         cmd->cmd_len = req->cmd_len;
1108         if (!blk_rq_bytes(req))
1109                 cmd->sc_data_direction = DMA_NONE;
1110         else if (rq_data_dir(req) == WRITE)
1111                 cmd->sc_data_direction = DMA_TO_DEVICE;
1112         else
1113                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1114         
1115         cmd->transfersize = blk_rq_bytes(req);
1116         cmd->allowed = req->retries;
1117         return BLKPREP_OK;
1118 }
1119 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1120
1121 /*
1122  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1123  * from filesystems that still need to be translated to SCSI CDBs from
1124  * the ULD.
1125  */
1126 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1127 {
1128         struct scsi_cmnd *cmd;
1129         int ret = scsi_prep_state_check(sdev, req);
1130
1131         if (ret != BLKPREP_OK)
1132                 return ret;
1133
1134         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1135                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1136                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1137                 if (ret != BLKPREP_OK)
1138                         return ret;
1139         }
1140
1141         /*
1142          * Filesystem requests must transfer data.
1143          */
1144         BUG_ON(!req->nr_phys_segments);
1145
1146         cmd = scsi_get_cmd_from_req(sdev, req);
1147         if (unlikely(!cmd))
1148                 return BLKPREP_DEFER;
1149
1150         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1151         return scsi_init_io(cmd, GFP_ATOMIC);
1152 }
1153 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1154
1155 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1156 {
1157         int ret = BLKPREP_OK;
1158
1159         /*
1160          * If the device is not in running state we will reject some
1161          * or all commands.
1162          */
1163         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1164                 switch (sdev->sdev_state) {
1165                 case SDEV_OFFLINE:
1166                 case SDEV_TRANSPORT_OFFLINE:
1167                         /*
1168                          * If the device is offline we refuse to process any
1169                          * commands.  The device must be brought online
1170                          * before trying any recovery commands.
1171                          */
1172                         sdev_printk(KERN_ERR, sdev,
1173                                     "rejecting I/O to offline device\n");
1174                         ret = BLKPREP_KILL;
1175                         break;
1176                 case SDEV_DEL:
1177                         /*
1178                          * If the device is fully deleted, we refuse to
1179                          * process any commands as well.
1180                          */
1181                         sdev_printk(KERN_ERR, sdev,
1182                                     "rejecting I/O to dead device\n");
1183                         ret = BLKPREP_KILL;
1184                         break;
1185                 case SDEV_QUIESCE:
1186                 case SDEV_BLOCK:
1187                 case SDEV_CREATED_BLOCK:
1188                         /*
1189                          * If the devices is blocked we defer normal commands.
1190                          */
1191                         if (!(req->cmd_flags & REQ_PREEMPT))
1192                                 ret = BLKPREP_DEFER;
1193                         break;
1194                 default:
1195                         /*
1196                          * For any other not fully online state we only allow
1197                          * special commands.  In particular any user initiated
1198                          * command is not allowed.
1199                          */
1200                         if (!(req->cmd_flags & REQ_PREEMPT))
1201                                 ret = BLKPREP_KILL;
1202                         break;
1203                 }
1204         }
1205         return ret;
1206 }
1207 EXPORT_SYMBOL(scsi_prep_state_check);
1208
1209 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1210 {
1211         struct scsi_device *sdev = q->queuedata;
1212
1213         switch (ret) {
1214         case BLKPREP_KILL:
1215                 req->errors = DID_NO_CONNECT << 16;
1216                 /* release the command and kill it */
1217                 if (req->special) {
1218                         struct scsi_cmnd *cmd = req->special;
1219                         scsi_release_buffers(cmd);
1220                         scsi_put_command(cmd);
1221                         put_device(&sdev->sdev_gendev);
1222                         req->special = NULL;
1223                 }
1224                 break;
1225         case BLKPREP_DEFER:
1226                 /*
1227                  * If we defer, the blk_peek_request() returns NULL, but the
1228                  * queue must be restarted, so we schedule a callback to happen
1229                  * shortly.
1230                  */
1231                 if (sdev->device_busy == 0)
1232                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1233                 break;
1234         default:
1235                 req->cmd_flags |= REQ_DONTPREP;
1236         }
1237
1238         return ret;
1239 }
1240 EXPORT_SYMBOL(scsi_prep_return);
1241
1242 int scsi_prep_fn(struct request_queue *q, struct request *req)
1243 {
1244         struct scsi_device *sdev = q->queuedata;
1245         int ret = BLKPREP_KILL;
1246
1247         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1248                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1249         return scsi_prep_return(q, req, ret);
1250 }
1251 EXPORT_SYMBOL(scsi_prep_fn);
1252
1253 /*
1254  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1255  * return 0.
1256  *
1257  * Called with the queue_lock held.
1258  */
1259 static inline int scsi_dev_queue_ready(struct request_queue *q,
1260                                   struct scsi_device *sdev)
1261 {
1262         if (sdev->device_busy == 0 && sdev->device_blocked) {
1263                 /*
1264                  * unblock after device_blocked iterates to zero
1265                  */
1266                 if (--sdev->device_blocked == 0) {
1267                         SCSI_LOG_MLQUEUE(3,
1268                                    sdev_printk(KERN_INFO, sdev,
1269                                    "unblocking device at zero depth\n"));
1270                 } else {
1271                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1272                         return 0;
1273                 }
1274         }
1275         if (scsi_device_is_busy(sdev))
1276                 return 0;
1277
1278         return 1;
1279 }
1280
1281
1282 /*
1283  * scsi_target_queue_ready: checks if there we can send commands to target
1284  * @sdev: scsi device on starget to check.
1285  *
1286  * Called with the host lock held.
1287  */
1288 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1289                                            struct scsi_device *sdev)
1290 {
1291         struct scsi_target *starget = scsi_target(sdev);
1292
1293         if (starget->single_lun) {
1294                 if (starget->starget_sdev_user &&
1295                     starget->starget_sdev_user != sdev)
1296                         return 0;
1297                 starget->starget_sdev_user = sdev;
1298         }
1299
1300         if (starget->target_busy == 0 && starget->target_blocked) {
1301                 /*
1302                  * unblock after target_blocked iterates to zero
1303                  */
1304                 if (--starget->target_blocked == 0) {
1305                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1306                                          "unblocking target at zero depth\n"));
1307                 } else
1308                         return 0;
1309         }
1310
1311         if (scsi_target_is_busy(starget)) {
1312                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1313                 return 0;
1314         }
1315
1316         return 1;
1317 }
1318
1319 /*
1320  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1321  * return 0. We must end up running the queue again whenever 0 is
1322  * returned, else IO can hang.
1323  *
1324  * Called with host_lock held.
1325  */
1326 static inline int scsi_host_queue_ready(struct request_queue *q,
1327                                    struct Scsi_Host *shost,
1328                                    struct scsi_device *sdev)
1329 {
1330         if (scsi_host_in_recovery(shost))
1331                 return 0;
1332         if (shost->host_busy == 0 && shost->host_blocked) {
1333                 /*
1334                  * unblock after host_blocked iterates to zero
1335                  */
1336                 if (--shost->host_blocked == 0) {
1337                         SCSI_LOG_MLQUEUE(3,
1338                                 printk("scsi%d unblocking host at zero depth\n",
1339                                         shost->host_no));
1340                 } else {
1341                         return 0;
1342                 }
1343         }
1344         if (scsi_host_is_busy(shost)) {
1345                 if (list_empty(&sdev->starved_entry))
1346                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1347                 return 0;
1348         }
1349
1350         /* We're OK to process the command, so we can't be starved */
1351         if (!list_empty(&sdev->starved_entry))
1352                 list_del_init(&sdev->starved_entry);
1353
1354         return 1;
1355 }
1356
1357 /*
1358  * Busy state exporting function for request stacking drivers.
1359  *
1360  * For efficiency, no lock is taken to check the busy state of
1361  * shost/starget/sdev, since the returned value is not guaranteed and
1362  * may be changed after request stacking drivers call the function,
1363  * regardless of taking lock or not.
1364  *
1365  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1366  * needs to return 'not busy'. Otherwise, request stacking drivers
1367  * may hold requests forever.
1368  */
1369 static int scsi_lld_busy(struct request_queue *q)
1370 {
1371         struct scsi_device *sdev = q->queuedata;
1372         struct Scsi_Host *shost;
1373
1374         if (blk_queue_dying(q))
1375                 return 0;
1376
1377         shost = sdev->host;
1378
1379         /*
1380          * Ignore host/starget busy state.
1381          * Since block layer does not have a concept of fairness across
1382          * multiple queues, congestion of host/starget needs to be handled
1383          * in SCSI layer.
1384          */
1385         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1386                 return 1;
1387
1388         return 0;
1389 }
1390
1391 /*
1392  * Kill a request for a dead device
1393  */
1394 static void scsi_kill_request(struct request *req, struct request_queue *q)
1395 {
1396         struct scsi_cmnd *cmd = req->special;
1397         struct scsi_device *sdev;
1398         struct scsi_target *starget;
1399         struct Scsi_Host *shost;
1400
1401         blk_start_request(req);
1402
1403         scmd_printk(KERN_INFO, cmd, "killing request\n");
1404
1405         sdev = cmd->device;
1406         starget = scsi_target(sdev);
1407         shost = sdev->host;
1408         scsi_init_cmd_errh(cmd);
1409         cmd->result = DID_NO_CONNECT << 16;
1410         atomic_inc(&cmd->device->iorequest_cnt);
1411
1412         /*
1413          * SCSI request completion path will do scsi_device_unbusy(),
1414          * bump busy counts.  To bump the counters, we need to dance
1415          * with the locks as normal issue path does.
1416          */
1417         sdev->device_busy++;
1418         spin_unlock(sdev->request_queue->queue_lock);
1419         spin_lock(shost->host_lock);
1420         shost->host_busy++;
1421         starget->target_busy++;
1422         spin_unlock(shost->host_lock);
1423         spin_lock(sdev->request_queue->queue_lock);
1424
1425         blk_complete_request(req);
1426 }
1427
1428 static void scsi_softirq_done(struct request *rq)
1429 {
1430         struct scsi_cmnd *cmd = rq->special;
1431         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1432         int disposition;
1433
1434         INIT_LIST_HEAD(&cmd->eh_entry);
1435
1436         atomic_inc(&cmd->device->iodone_cnt);
1437         if (cmd->result)
1438                 atomic_inc(&cmd->device->ioerr_cnt);
1439
1440         disposition = scsi_decide_disposition(cmd);
1441         if (disposition != SUCCESS &&
1442             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1443                 sdev_printk(KERN_ERR, cmd->device,
1444                             "timing out command, waited %lus\n",
1445                             wait_for/HZ);
1446                 disposition = SUCCESS;
1447         }
1448                         
1449         scsi_log_completion(cmd, disposition);
1450
1451         switch (disposition) {
1452                 case SUCCESS:
1453                         scsi_finish_command(cmd);
1454                         break;
1455                 case NEEDS_RETRY:
1456                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1457                         break;
1458                 case ADD_TO_MLQUEUE:
1459                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1460                         break;
1461                 default:
1462                         if (!scsi_eh_scmd_add(cmd, 0))
1463                                 scsi_finish_command(cmd);
1464         }
1465 }
1466
1467 /*
1468  * Function:    scsi_request_fn()
1469  *
1470  * Purpose:     Main strategy routine for SCSI.
1471  *
1472  * Arguments:   q       - Pointer to actual queue.
1473  *
1474  * Returns:     Nothing
1475  *
1476  * Lock status: IO request lock assumed to be held when called.
1477  */
1478 static void scsi_request_fn(struct request_queue *q)
1479         __releases(q->queue_lock)
1480         __acquires(q->queue_lock)
1481 {
1482         struct scsi_device *sdev = q->queuedata;
1483         struct Scsi_Host *shost;
1484         struct scsi_cmnd *cmd;
1485         struct request *req;
1486
1487         /*
1488          * To start with, we keep looping until the queue is empty, or until
1489          * the host is no longer able to accept any more requests.
1490          */
1491         shost = sdev->host;
1492         for (;;) {
1493                 int rtn;
1494                 /*
1495                  * get next queueable request.  We do this early to make sure
1496                  * that the request is fully prepared even if we cannot 
1497                  * accept it.
1498                  */
1499                 req = blk_peek_request(q);
1500                 if (!req || !scsi_dev_queue_ready(q, sdev))
1501                         break;
1502
1503                 if (unlikely(!scsi_device_online(sdev))) {
1504                         sdev_printk(KERN_ERR, sdev,
1505                                     "rejecting I/O to offline device\n");
1506                         scsi_kill_request(req, q);
1507                         continue;
1508                 }
1509
1510
1511                 /*
1512                  * Remove the request from the request list.
1513                  */
1514                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1515                         blk_start_request(req);
1516                 sdev->device_busy++;
1517
1518                 spin_unlock(q->queue_lock);
1519                 cmd = req->special;
1520                 if (unlikely(cmd == NULL)) {
1521                         printk(KERN_CRIT "impossible request in %s.\n"
1522                                          "please mail a stack trace to "
1523                                          "linux-scsi@vger.kernel.org\n",
1524                                          __func__);
1525                         blk_dump_rq_flags(req, "foo");
1526                         BUG();
1527                 }
1528                 spin_lock(shost->host_lock);
1529
1530                 /*
1531                  * We hit this when the driver is using a host wide
1532                  * tag map. For device level tag maps the queue_depth check
1533                  * in the device ready fn would prevent us from trying
1534                  * to allocate a tag. Since the map is a shared host resource
1535                  * we add the dev to the starved list so it eventually gets
1536                  * a run when a tag is freed.
1537                  */
1538                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1539                         if (list_empty(&sdev->starved_entry))
1540                                 list_add_tail(&sdev->starved_entry,
1541                                               &shost->starved_list);
1542                         goto not_ready;
1543                 }
1544
1545                 if (!scsi_target_queue_ready(shost, sdev))
1546                         goto not_ready;
1547
1548                 if (!scsi_host_queue_ready(q, shost, sdev))
1549                         goto not_ready;
1550
1551                 scsi_target(sdev)->target_busy++;
1552                 shost->host_busy++;
1553
1554                 /*
1555                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1556                  *              take the lock again.
1557                  */
1558                 spin_unlock_irq(shost->host_lock);
1559
1560                 /*
1561                  * Finally, initialize any error handling parameters, and set up
1562                  * the timers for timeouts.
1563                  */
1564                 scsi_init_cmd_errh(cmd);
1565
1566                 /*
1567                  * Dispatch the command to the low-level driver.
1568                  */
1569                 rtn = scsi_dispatch_cmd(cmd);
1570                 spin_lock_irq(q->queue_lock);
1571                 if (rtn)
1572                         goto out_delay;
1573         }
1574
1575         return;
1576
1577  not_ready:
1578         spin_unlock_irq(shost->host_lock);
1579
1580         /*
1581          * lock q, handle tag, requeue req, and decrement device_busy. We
1582          * must return with queue_lock held.
1583          *
1584          * Decrementing device_busy without checking it is OK, as all such
1585          * cases (host limits or settings) should run the queue at some
1586          * later time.
1587          */
1588         spin_lock_irq(q->queue_lock);
1589         blk_requeue_request(q, req);
1590         sdev->device_busy--;
1591 out_delay:
1592         if (sdev->device_busy == 0)
1593                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1594 }
1595
1596 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1597 {
1598         struct device *host_dev;
1599         u64 bounce_limit = 0xffffffff;
1600
1601         if (shost->unchecked_isa_dma)
1602                 return BLK_BOUNCE_ISA;
1603         /*
1604          * Platforms with virtual-DMA translation
1605          * hardware have no practical limit.
1606          */
1607         if (!PCI_DMA_BUS_IS_PHYS)
1608                 return BLK_BOUNCE_ANY;
1609
1610         host_dev = scsi_get_device(shost);
1611         if (host_dev && host_dev->dma_mask)
1612                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1613
1614         return bounce_limit;
1615 }
1616 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1617
1618 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1619                                          request_fn_proc *request_fn)
1620 {
1621         struct request_queue *q;
1622         struct device *dev = shost->dma_dev;
1623
1624         q = blk_init_queue(request_fn, NULL);
1625         if (!q)
1626                 return NULL;
1627
1628         /*
1629          * this limit is imposed by hardware restrictions
1630          */
1631         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1632                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1633
1634         if (scsi_host_prot_dma(shost)) {
1635                 shost->sg_prot_tablesize =
1636                         min_not_zero(shost->sg_prot_tablesize,
1637                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1638                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1639                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1640         }
1641
1642         blk_queue_max_hw_sectors(q, shost->max_sectors);
1643         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1644         blk_queue_segment_boundary(q, shost->dma_boundary);
1645         dma_set_seg_boundary(dev, shost->dma_boundary);
1646
1647         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1648
1649         if (!shost->use_clustering)
1650                 q->limits.cluster = 0;
1651
1652         /*
1653          * set a reasonable default alignment on word boundaries: the
1654          * host and device may alter it using
1655          * blk_queue_update_dma_alignment() later.
1656          */
1657         blk_queue_dma_alignment(q, 0x03);
1658
1659         return q;
1660 }
1661 EXPORT_SYMBOL(__scsi_alloc_queue);
1662
1663 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1664 {
1665         struct request_queue *q;
1666
1667         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1668         if (!q)
1669                 return NULL;
1670
1671         blk_queue_prep_rq(q, scsi_prep_fn);
1672         blk_queue_softirq_done(q, scsi_softirq_done);
1673         blk_queue_rq_timed_out(q, scsi_times_out);
1674         blk_queue_lld_busy(q, scsi_lld_busy);
1675         return q;
1676 }
1677
1678 /*
1679  * Function:    scsi_block_requests()
1680  *
1681  * Purpose:     Utility function used by low-level drivers to prevent further
1682  *              commands from being queued to the device.
1683  *
1684  * Arguments:   shost       - Host in question
1685  *
1686  * Returns:     Nothing
1687  *
1688  * Lock status: No locks are assumed held.
1689  *
1690  * Notes:       There is no timer nor any other means by which the requests
1691  *              get unblocked other than the low-level driver calling
1692  *              scsi_unblock_requests().
1693  */
1694 void scsi_block_requests(struct Scsi_Host *shost)
1695 {
1696         shost->host_self_blocked = 1;
1697 }
1698 EXPORT_SYMBOL(scsi_block_requests);
1699
1700 /*
1701  * Function:    scsi_unblock_requests()
1702  *
1703  * Purpose:     Utility function used by low-level drivers to allow further
1704  *              commands from being queued to the device.
1705  *
1706  * Arguments:   shost       - Host in question
1707  *
1708  * Returns:     Nothing
1709  *
1710  * Lock status: No locks are assumed held.
1711  *
1712  * Notes:       There is no timer nor any other means by which the requests
1713  *              get unblocked other than the low-level driver calling
1714  *              scsi_unblock_requests().
1715  *
1716  *              This is done as an API function so that changes to the
1717  *              internals of the scsi mid-layer won't require wholesale
1718  *              changes to drivers that use this feature.
1719  */
1720 void scsi_unblock_requests(struct Scsi_Host *shost)
1721 {
1722         shost->host_self_blocked = 0;
1723         scsi_run_host_queues(shost);
1724 }
1725 EXPORT_SYMBOL(scsi_unblock_requests);
1726
1727 int __init scsi_init_queue(void)
1728 {
1729         int i;
1730
1731         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1732                                            sizeof(struct scsi_data_buffer),
1733                                            0, 0, NULL);
1734         if (!scsi_sdb_cache) {
1735                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1736                 return -ENOMEM;
1737         }
1738
1739         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1740                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1741                 int size = sgp->size * sizeof(struct scatterlist);
1742
1743                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1744                                 SLAB_HWCACHE_ALIGN, NULL);
1745                 if (!sgp->slab) {
1746                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1747                                         sgp->name);
1748                         goto cleanup_sdb;
1749                 }
1750
1751                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1752                                                      sgp->slab);
1753                 if (!sgp->pool) {
1754                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1755                                         sgp->name);
1756                         goto cleanup_sdb;
1757                 }
1758         }
1759
1760         return 0;
1761
1762 cleanup_sdb:
1763         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1764                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1765                 if (sgp->pool)
1766                         mempool_destroy(sgp->pool);
1767                 if (sgp->slab)
1768                         kmem_cache_destroy(sgp->slab);
1769         }
1770         kmem_cache_destroy(scsi_sdb_cache);
1771
1772         return -ENOMEM;
1773 }
1774
1775 void scsi_exit_queue(void)
1776 {
1777         int i;
1778
1779         kmem_cache_destroy(scsi_sdb_cache);
1780
1781         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1782                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1783                 mempool_destroy(sgp->pool);
1784                 kmem_cache_destroy(sgp->slab);
1785         }
1786 }
1787
1788 /**
1789  *      scsi_mode_select - issue a mode select
1790  *      @sdev:  SCSI device to be queried
1791  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1792  *      @sp:    Save page bit (0 == don't save, 1 == save)
1793  *      @modepage: mode page being requested
1794  *      @buffer: request buffer (may not be smaller than eight bytes)
1795  *      @len:   length of request buffer.
1796  *      @timeout: command timeout
1797  *      @retries: number of retries before failing
1798  *      @data: returns a structure abstracting the mode header data
1799  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1800  *              must be SCSI_SENSE_BUFFERSIZE big.
1801  *
1802  *      Returns zero if successful; negative error number or scsi
1803  *      status on error
1804  *
1805  */
1806 int
1807 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1808                  unsigned char *buffer, int len, int timeout, int retries,
1809                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1810 {
1811         unsigned char cmd[10];
1812         unsigned char *real_buffer;
1813         int ret;
1814
1815         memset(cmd, 0, sizeof(cmd));
1816         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1817
1818         if (sdev->use_10_for_ms) {
1819                 if (len > 65535)
1820                         return -EINVAL;
1821                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1822                 if (!real_buffer)
1823                         return -ENOMEM;
1824                 memcpy(real_buffer + 8, buffer, len);
1825                 len += 8;
1826                 real_buffer[0] = 0;
1827                 real_buffer[1] = 0;
1828                 real_buffer[2] = data->medium_type;
1829                 real_buffer[3] = data->device_specific;
1830                 real_buffer[4] = data->longlba ? 0x01 : 0;
1831                 real_buffer[5] = 0;
1832                 real_buffer[6] = data->block_descriptor_length >> 8;
1833                 real_buffer[7] = data->block_descriptor_length;
1834
1835                 cmd[0] = MODE_SELECT_10;
1836                 cmd[7] = len >> 8;
1837                 cmd[8] = len;
1838         } else {
1839                 if (len > 255 || data->block_descriptor_length > 255 ||
1840                     data->longlba)
1841                         return -EINVAL;
1842
1843                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1844                 if (!real_buffer)
1845                         return -ENOMEM;
1846                 memcpy(real_buffer + 4, buffer, len);
1847                 len += 4;
1848                 real_buffer[0] = 0;
1849                 real_buffer[1] = data->medium_type;
1850                 real_buffer[2] = data->device_specific;
1851                 real_buffer[3] = data->block_descriptor_length;
1852                 
1853
1854                 cmd[0] = MODE_SELECT;
1855                 cmd[4] = len;
1856         }
1857
1858         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1859                                sshdr, timeout, retries, NULL);
1860         kfree(real_buffer);
1861         return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(scsi_mode_select);
1864
1865 /**
1866  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1867  *      @sdev:  SCSI device to be queried
1868  *      @dbd:   set if mode sense will allow block descriptors to be returned
1869  *      @modepage: mode page being requested
1870  *      @buffer: request buffer (may not be smaller than eight bytes)
1871  *      @len:   length of request buffer.
1872  *      @timeout: command timeout
1873  *      @retries: number of retries before failing
1874  *      @data: returns a structure abstracting the mode header data
1875  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1876  *              must be SCSI_SENSE_BUFFERSIZE big.
1877  *
1878  *      Returns zero if unsuccessful, or the header offset (either 4
1879  *      or 8 depending on whether a six or ten byte command was
1880  *      issued) if successful.
1881  */
1882 int
1883 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1884                   unsigned char *buffer, int len, int timeout, int retries,
1885                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1886 {
1887         unsigned char cmd[12];
1888         int use_10_for_ms;
1889         int header_length;
1890         int result;
1891         struct scsi_sense_hdr my_sshdr;
1892
1893         memset(data, 0, sizeof(*data));
1894         memset(&cmd[0], 0, 12);
1895         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1896         cmd[2] = modepage;
1897
1898         /* caller might not be interested in sense, but we need it */
1899         if (!sshdr)
1900                 sshdr = &my_sshdr;
1901
1902  retry:
1903         use_10_for_ms = sdev->use_10_for_ms;
1904
1905         if (use_10_for_ms) {
1906                 if (len < 8)
1907                         len = 8;
1908
1909                 cmd[0] = MODE_SENSE_10;
1910                 cmd[8] = len;
1911                 header_length = 8;
1912         } else {
1913                 if (len < 4)
1914                         len = 4;
1915
1916                 cmd[0] = MODE_SENSE;
1917                 cmd[4] = len;
1918                 header_length = 4;
1919         }
1920
1921         memset(buffer, 0, len);
1922
1923         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1924                                   sshdr, timeout, retries, NULL);
1925
1926         /* This code looks awful: what it's doing is making sure an
1927          * ILLEGAL REQUEST sense return identifies the actual command
1928          * byte as the problem.  MODE_SENSE commands can return
1929          * ILLEGAL REQUEST if the code page isn't supported */
1930
1931         if (use_10_for_ms && !scsi_status_is_good(result) &&
1932             (driver_byte(result) & DRIVER_SENSE)) {
1933                 if (scsi_sense_valid(sshdr)) {
1934                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1935                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1936                                 /* 
1937                                  * Invalid command operation code
1938                                  */
1939                                 sdev->use_10_for_ms = 0;
1940                                 goto retry;
1941                         }
1942                 }
1943         }
1944
1945         if(scsi_status_is_good(result)) {
1946                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1947                              (modepage == 6 || modepage == 8))) {
1948                         /* Initio breakage? */
1949                         header_length = 0;
1950                         data->length = 13;
1951                         data->medium_type = 0;
1952                         data->device_specific = 0;
1953                         data->longlba = 0;
1954                         data->block_descriptor_length = 0;
1955                 } else if(use_10_for_ms) {
1956                         data->length = buffer[0]*256 + buffer[1] + 2;
1957                         data->medium_type = buffer[2];
1958                         data->device_specific = buffer[3];
1959                         data->longlba = buffer[4] & 0x01;
1960                         data->block_descriptor_length = buffer[6]*256
1961                                 + buffer[7];
1962                 } else {
1963                         data->length = buffer[0] + 1;
1964                         data->medium_type = buffer[1];
1965                         data->device_specific = buffer[2];
1966                         data->block_descriptor_length = buffer[3];
1967                 }
1968                 data->header_length = header_length;
1969         }
1970
1971         return result;
1972 }
1973 EXPORT_SYMBOL(scsi_mode_sense);
1974
1975 /**
1976  *      scsi_test_unit_ready - test if unit is ready
1977  *      @sdev:  scsi device to change the state of.
1978  *      @timeout: command timeout
1979  *      @retries: number of retries before failing
1980  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1981  *              returning sense. Make sure that this is cleared before passing
1982  *              in.
1983  *
1984  *      Returns zero if unsuccessful or an error if TUR failed.  For
1985  *      removable media, UNIT_ATTENTION sets ->changed flag.
1986  **/
1987 int
1988 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1989                      struct scsi_sense_hdr *sshdr_external)
1990 {
1991         char cmd[] = {
1992                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1993         };
1994         struct scsi_sense_hdr *sshdr;
1995         int result;
1996
1997         if (!sshdr_external)
1998                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1999         else
2000                 sshdr = sshdr_external;
2001
2002         /* try to eat the UNIT_ATTENTION if there are enough retries */
2003         do {
2004                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2005                                           timeout, retries, NULL);
2006                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2007                     sshdr->sense_key == UNIT_ATTENTION)
2008                         sdev->changed = 1;
2009         } while (scsi_sense_valid(sshdr) &&
2010                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2011
2012         if (!sshdr_external)
2013                 kfree(sshdr);
2014         return result;
2015 }
2016 EXPORT_SYMBOL(scsi_test_unit_ready);
2017
2018 /**
2019  *      scsi_device_set_state - Take the given device through the device state model.
2020  *      @sdev:  scsi device to change the state of.
2021  *      @state: state to change to.
2022  *
2023  *      Returns zero if unsuccessful or an error if the requested 
2024  *      transition is illegal.
2025  */
2026 int
2027 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2028 {
2029         enum scsi_device_state oldstate = sdev->sdev_state;
2030
2031         if (state == oldstate)
2032                 return 0;
2033
2034         switch (state) {
2035         case SDEV_CREATED:
2036                 switch (oldstate) {
2037                 case SDEV_CREATED_BLOCK:
2038                         break;
2039                 default:
2040                         goto illegal;
2041                 }
2042                 break;
2043                         
2044         case SDEV_RUNNING:
2045                 switch (oldstate) {
2046                 case SDEV_CREATED:
2047                 case SDEV_OFFLINE:
2048                 case SDEV_TRANSPORT_OFFLINE:
2049                 case SDEV_QUIESCE:
2050                 case SDEV_BLOCK:
2051                         break;
2052                 default:
2053                         goto illegal;
2054                 }
2055                 break;
2056
2057         case SDEV_QUIESCE:
2058                 switch (oldstate) {
2059                 case SDEV_RUNNING:
2060                 case SDEV_OFFLINE:
2061                 case SDEV_TRANSPORT_OFFLINE:
2062                         break;
2063                 default:
2064                         goto illegal;
2065                 }
2066                 break;
2067
2068         case SDEV_OFFLINE:
2069         case SDEV_TRANSPORT_OFFLINE:
2070                 switch (oldstate) {
2071                 case SDEV_CREATED:
2072                 case SDEV_RUNNING:
2073                 case SDEV_QUIESCE:
2074                 case SDEV_BLOCK:
2075                         break;
2076                 default:
2077                         goto illegal;
2078                 }
2079                 break;
2080
2081         case SDEV_BLOCK:
2082                 switch (oldstate) {
2083                 case SDEV_RUNNING:
2084                 case SDEV_CREATED_BLOCK:
2085                         break;
2086                 default:
2087                         goto illegal;
2088                 }
2089                 break;
2090
2091         case SDEV_CREATED_BLOCK:
2092                 switch (oldstate) {
2093                 case SDEV_CREATED:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_CANCEL:
2101                 switch (oldstate) {
2102                 case SDEV_CREATED:
2103                 case SDEV_RUNNING:
2104                 case SDEV_QUIESCE:
2105                 case SDEV_OFFLINE:
2106                 case SDEV_TRANSPORT_OFFLINE:
2107                 case SDEV_BLOCK:
2108                         break;
2109                 default:
2110                         goto illegal;
2111                 }
2112                 break;
2113
2114         case SDEV_DEL:
2115                 switch (oldstate) {
2116                 case SDEV_CREATED:
2117                 case SDEV_RUNNING:
2118                 case SDEV_OFFLINE:
2119                 case SDEV_TRANSPORT_OFFLINE:
2120                 case SDEV_CANCEL:
2121                 case SDEV_CREATED_BLOCK:
2122                         break;
2123                 default:
2124                         goto illegal;
2125                 }
2126                 break;
2127
2128         }
2129         sdev->sdev_state = state;
2130         return 0;
2131
2132  illegal:
2133         SCSI_LOG_ERROR_RECOVERY(1, 
2134                                 sdev_printk(KERN_ERR, sdev,
2135                                             "Illegal state transition %s->%s\n",
2136                                             scsi_device_state_name(oldstate),
2137                                             scsi_device_state_name(state))
2138                                 );
2139         return -EINVAL;
2140 }
2141 EXPORT_SYMBOL(scsi_device_set_state);
2142
2143 /**
2144  *      sdev_evt_emit - emit a single SCSI device uevent
2145  *      @sdev: associated SCSI device
2146  *      @evt: event to emit
2147  *
2148  *      Send a single uevent (scsi_event) to the associated scsi_device.
2149  */
2150 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2151 {
2152         int idx = 0;
2153         char *envp[3];
2154
2155         switch (evt->evt_type) {
2156         case SDEV_EVT_MEDIA_CHANGE:
2157                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2158                 break;
2159         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2160                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2161                 break;
2162         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2163                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2164                 break;
2165         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2166                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2167                 break;
2168         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2169                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2170                 break;
2171         case SDEV_EVT_LUN_CHANGE_REPORTED:
2172                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2173                 break;
2174         default:
2175                 /* do nothing */
2176                 break;
2177         }
2178
2179         envp[idx++] = NULL;
2180
2181         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2182 }
2183
2184 /**
2185  *      sdev_evt_thread - send a uevent for each scsi event
2186  *      @work: work struct for scsi_device
2187  *
2188  *      Dispatch queued events to their associated scsi_device kobjects
2189  *      as uevents.
2190  */
2191 void scsi_evt_thread(struct work_struct *work)
2192 {
2193         struct scsi_device *sdev;
2194         enum scsi_device_event evt_type;
2195         LIST_HEAD(event_list);
2196
2197         sdev = container_of(work, struct scsi_device, event_work);
2198
2199         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2200                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2201                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2202
2203         while (1) {
2204                 struct scsi_event *evt;
2205                 struct list_head *this, *tmp;
2206                 unsigned long flags;
2207
2208                 spin_lock_irqsave(&sdev->list_lock, flags);
2209                 list_splice_init(&sdev->event_list, &event_list);
2210                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2211
2212                 if (list_empty(&event_list))
2213                         break;
2214
2215                 list_for_each_safe(this, tmp, &event_list) {
2216                         evt = list_entry(this, struct scsi_event, node);
2217                         list_del(&evt->node);
2218                         scsi_evt_emit(sdev, evt);
2219                         kfree(evt);
2220                 }
2221         }
2222 }
2223
2224 /**
2225  *      sdev_evt_send - send asserted event to uevent thread
2226  *      @sdev: scsi_device event occurred on
2227  *      @evt: event to send
2228  *
2229  *      Assert scsi device event asynchronously.
2230  */
2231 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2232 {
2233         unsigned long flags;
2234
2235 #if 0
2236         /* FIXME: currently this check eliminates all media change events
2237          * for polled devices.  Need to update to discriminate between AN
2238          * and polled events */
2239         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2240                 kfree(evt);
2241                 return;
2242         }
2243 #endif
2244
2245         spin_lock_irqsave(&sdev->list_lock, flags);
2246         list_add_tail(&evt->node, &sdev->event_list);
2247         schedule_work(&sdev->event_work);
2248         spin_unlock_irqrestore(&sdev->list_lock, flags);
2249 }
2250 EXPORT_SYMBOL_GPL(sdev_evt_send);
2251
2252 /**
2253  *      sdev_evt_alloc - allocate a new scsi event
2254  *      @evt_type: type of event to allocate
2255  *      @gfpflags: GFP flags for allocation
2256  *
2257  *      Allocates and returns a new scsi_event.
2258  */
2259 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2260                                   gfp_t gfpflags)
2261 {
2262         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2263         if (!evt)
2264                 return NULL;
2265
2266         evt->evt_type = evt_type;
2267         INIT_LIST_HEAD(&evt->node);
2268
2269         /* evt_type-specific initialization, if any */
2270         switch (evt_type) {
2271         case SDEV_EVT_MEDIA_CHANGE:
2272         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2273         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2274         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2275         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2276         case SDEV_EVT_LUN_CHANGE_REPORTED:
2277         default:
2278                 /* do nothing */
2279                 break;
2280         }
2281
2282         return evt;
2283 }
2284 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2285
2286 /**
2287  *      sdev_evt_send_simple - send asserted event to uevent thread
2288  *      @sdev: scsi_device event occurred on
2289  *      @evt_type: type of event to send
2290  *      @gfpflags: GFP flags for allocation
2291  *
2292  *      Assert scsi device event asynchronously, given an event type.
2293  */
2294 void sdev_evt_send_simple(struct scsi_device *sdev,
2295                           enum scsi_device_event evt_type, gfp_t gfpflags)
2296 {
2297         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2298         if (!evt) {
2299                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2300                             evt_type);
2301                 return;
2302         }
2303
2304         sdev_evt_send(sdev, evt);
2305 }
2306 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2307
2308 /**
2309  *      scsi_device_quiesce - Block user issued commands.
2310  *      @sdev:  scsi device to quiesce.
2311  *
2312  *      This works by trying to transition to the SDEV_QUIESCE state
2313  *      (which must be a legal transition).  When the device is in this
2314  *      state, only special requests will be accepted, all others will
2315  *      be deferred.  Since special requests may also be requeued requests,
2316  *      a successful return doesn't guarantee the device will be 
2317  *      totally quiescent.
2318  *
2319  *      Must be called with user context, may sleep.
2320  *
2321  *      Returns zero if unsuccessful or an error if not.
2322  */
2323 int
2324 scsi_device_quiesce(struct scsi_device *sdev)
2325 {
2326         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2327         if (err)
2328                 return err;
2329
2330         scsi_run_queue(sdev->request_queue);
2331         while (sdev->device_busy) {
2332                 msleep_interruptible(200);
2333                 scsi_run_queue(sdev->request_queue);
2334         }
2335         return 0;
2336 }
2337 EXPORT_SYMBOL(scsi_device_quiesce);
2338
2339 /**
2340  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2341  *      @sdev:  scsi device to resume.
2342  *
2343  *      Moves the device from quiesced back to running and restarts the
2344  *      queues.
2345  *
2346  *      Must be called with user context, may sleep.
2347  */
2348 void scsi_device_resume(struct scsi_device *sdev)
2349 {
2350         /* check if the device state was mutated prior to resume, and if
2351          * so assume the state is being managed elsewhere (for example
2352          * device deleted during suspend)
2353          */
2354         if (sdev->sdev_state != SDEV_QUIESCE ||
2355             scsi_device_set_state(sdev, SDEV_RUNNING))
2356                 return;
2357         scsi_run_queue(sdev->request_queue);
2358 }
2359 EXPORT_SYMBOL(scsi_device_resume);
2360
2361 static void
2362 device_quiesce_fn(struct scsi_device *sdev, void *data)
2363 {
2364         scsi_device_quiesce(sdev);
2365 }
2366
2367 void
2368 scsi_target_quiesce(struct scsi_target *starget)
2369 {
2370         starget_for_each_device(starget, NULL, device_quiesce_fn);
2371 }
2372 EXPORT_SYMBOL(scsi_target_quiesce);
2373
2374 static void
2375 device_resume_fn(struct scsi_device *sdev, void *data)
2376 {
2377         scsi_device_resume(sdev);
2378 }
2379
2380 void
2381 scsi_target_resume(struct scsi_target *starget)
2382 {
2383         starget_for_each_device(starget, NULL, device_resume_fn);
2384 }
2385 EXPORT_SYMBOL(scsi_target_resume);
2386
2387 /**
2388  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2389  * @sdev:       device to block
2390  *
2391  * Block request made by scsi lld's to temporarily stop all
2392  * scsi commands on the specified device.  Called from interrupt
2393  * or normal process context.
2394  *
2395  * Returns zero if successful or error if not
2396  *
2397  * Notes:       
2398  *      This routine transitions the device to the SDEV_BLOCK state
2399  *      (which must be a legal transition).  When the device is in this
2400  *      state, all commands are deferred until the scsi lld reenables
2401  *      the device with scsi_device_unblock or device_block_tmo fires.
2402  */
2403 int
2404 scsi_internal_device_block(struct scsi_device *sdev)
2405 {
2406         struct request_queue *q = sdev->request_queue;
2407         unsigned long flags;
2408         int err = 0;
2409
2410         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2411         if (err) {
2412                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2413
2414                 if (err)
2415                         return err;
2416         }
2417
2418         /* 
2419          * The device has transitioned to SDEV_BLOCK.  Stop the
2420          * block layer from calling the midlayer with this device's
2421          * request queue. 
2422          */
2423         spin_lock_irqsave(q->queue_lock, flags);
2424         blk_stop_queue(q);
2425         spin_unlock_irqrestore(q->queue_lock, flags);
2426
2427         return 0;
2428 }
2429 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2430  
2431 /**
2432  * scsi_internal_device_unblock - resume a device after a block request
2433  * @sdev:       device to resume
2434  * @new_state:  state to set devices to after unblocking
2435  *
2436  * Called by scsi lld's or the midlayer to restart the device queue
2437  * for the previously suspended scsi device.  Called from interrupt or
2438  * normal process context.
2439  *
2440  * Returns zero if successful or error if not.
2441  *
2442  * Notes:       
2443  *      This routine transitions the device to the SDEV_RUNNING state
2444  *      or to one of the offline states (which must be a legal transition)
2445  *      allowing the midlayer to goose the queue for this device.
2446  */
2447 int
2448 scsi_internal_device_unblock(struct scsi_device *sdev,
2449                              enum scsi_device_state new_state)
2450 {
2451         struct request_queue *q = sdev->request_queue; 
2452         unsigned long flags;
2453
2454         /*
2455          * Try to transition the scsi device to SDEV_RUNNING or one of the
2456          * offlined states and goose the device queue if successful.
2457          */
2458         if ((sdev->sdev_state == SDEV_BLOCK) ||
2459             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2460                 sdev->sdev_state = new_state;
2461         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2462                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2463                     new_state == SDEV_OFFLINE)
2464                         sdev->sdev_state = new_state;
2465                 else
2466                         sdev->sdev_state = SDEV_CREATED;
2467         } else if (sdev->sdev_state != SDEV_CANCEL &&
2468                  sdev->sdev_state != SDEV_OFFLINE)
2469                 return -EINVAL;
2470
2471         spin_lock_irqsave(q->queue_lock, flags);
2472         blk_start_queue(q);
2473         spin_unlock_irqrestore(q->queue_lock, flags);
2474
2475         return 0;
2476 }
2477 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2478
2479 static void
2480 device_block(struct scsi_device *sdev, void *data)
2481 {
2482         scsi_internal_device_block(sdev);
2483 }
2484
2485 static int
2486 target_block(struct device *dev, void *data)
2487 {
2488         if (scsi_is_target_device(dev))
2489                 starget_for_each_device(to_scsi_target(dev), NULL,
2490                                         device_block);
2491         return 0;
2492 }
2493
2494 void
2495 scsi_target_block(struct device *dev)
2496 {
2497         if (scsi_is_target_device(dev))
2498                 starget_for_each_device(to_scsi_target(dev), NULL,
2499                                         device_block);
2500         else
2501                 device_for_each_child(dev, NULL, target_block);
2502 }
2503 EXPORT_SYMBOL_GPL(scsi_target_block);
2504
2505 static void
2506 device_unblock(struct scsi_device *sdev, void *data)
2507 {
2508         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2509 }
2510
2511 static int
2512 target_unblock(struct device *dev, void *data)
2513 {
2514         if (scsi_is_target_device(dev))
2515                 starget_for_each_device(to_scsi_target(dev), data,
2516                                         device_unblock);
2517         return 0;
2518 }
2519
2520 void
2521 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2522 {
2523         if (scsi_is_target_device(dev))
2524                 starget_for_each_device(to_scsi_target(dev), &new_state,
2525                                         device_unblock);
2526         else
2527                 device_for_each_child(dev, &new_state, target_unblock);
2528 }
2529 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2530
2531 /**
2532  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2533  * @sgl:        scatter-gather list
2534  * @sg_count:   number of segments in sg
2535  * @offset:     offset in bytes into sg, on return offset into the mapped area
2536  * @len:        bytes to map, on return number of bytes mapped
2537  *
2538  * Returns virtual address of the start of the mapped page
2539  */
2540 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2541                           size_t *offset, size_t *len)
2542 {
2543         int i;
2544         size_t sg_len = 0, len_complete = 0;
2545         struct scatterlist *sg;
2546         struct page *page;
2547
2548         WARN_ON(!irqs_disabled());
2549
2550         for_each_sg(sgl, sg, sg_count, i) {
2551                 len_complete = sg_len; /* Complete sg-entries */
2552                 sg_len += sg->length;
2553                 if (sg_len > *offset)
2554                         break;
2555         }
2556
2557         if (unlikely(i == sg_count)) {
2558                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2559                         "elements %d\n",
2560                        __func__, sg_len, *offset, sg_count);
2561                 WARN_ON(1);
2562                 return NULL;
2563         }
2564
2565         /* Offset starting from the beginning of first page in this sg-entry */
2566         *offset = *offset - len_complete + sg->offset;
2567
2568         /* Assumption: contiguous pages can be accessed as "page + i" */
2569         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2570         *offset &= ~PAGE_MASK;
2571
2572         /* Bytes in this sg-entry from *offset to the end of the page */
2573         sg_len = PAGE_SIZE - *offset;
2574         if (*len > sg_len)
2575                 *len = sg_len;
2576
2577         return kmap_atomic(page);
2578 }
2579 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2580
2581 /**
2582  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2583  * @virt:       virtual address to be unmapped
2584  */
2585 void scsi_kunmap_atomic_sg(void *virt)
2586 {
2587         kunmap_atomic(virt);
2588 }
2589 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2590
2591 void sdev_disable_disk_events(struct scsi_device *sdev)
2592 {
2593         atomic_inc(&sdev->disk_events_disable_depth);
2594 }
2595 EXPORT_SYMBOL(sdev_disable_disk_events);
2596
2597 void sdev_enable_disk_events(struct scsi_device *sdev)
2598 {
2599         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2600                 return;
2601         atomic_dec(&sdev->disk_events_disable_depth);
2602 }
2603 EXPORT_SYMBOL(sdev_enable_disk_events);