0580711c2c579ccb85baa553191c5fad796fbce8
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include <trace/events/scsi.h>
33
34 #include "scsi_priv.h"
35 #include "scsi_logging.h"
36
37
38 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
39 #define SG_MEMPOOL_SIZE         2
40
41 struct scsi_host_sg_pool {
42         size_t          size;
43         char            *name;
44         struct kmem_cache       *slab;
45         mempool_t       *pool;
46 };
47
48 #define SP(x) { x, "sgpool-" __stringify(x) }
49 #if (SCSI_MAX_SG_SEGMENTS < 32)
50 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
51 #endif
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 32)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 64)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 128)
60         SP(128),
61 #if (SCSI_MAX_SG_SEGMENTS > 256)
62 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
63 #endif
64 #endif
65 #endif
66 #endif
67         SP(SCSI_MAX_SG_SEGMENTS)
68 };
69 #undef SP
70
71 struct kmem_cache *scsi_sdb_cache;
72
73 /*
74  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
75  * not change behaviour from the previous unplug mechanism, experimentation
76  * may prove this needs changing.
77  */
78 #define SCSI_QUEUE_DELAY        3
79
80 static void
81 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
82 {
83         struct Scsi_Host *host = cmd->device->host;
84         struct scsi_device *device = cmd->device;
85         struct scsi_target *starget = scsi_target(device);
86
87         /*
88          * Set the appropriate busy bit for the device/host.
89          *
90          * If the host/device isn't busy, assume that something actually
91          * completed, and that we should be able to queue a command now.
92          *
93          * Note that the prior mid-layer assumption that any host could
94          * always queue at least one command is now broken.  The mid-layer
95          * will implement a user specifiable stall (see
96          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
97          * if a command is requeued with no other commands outstanding
98          * either for the device or for the host.
99          */
100         switch (reason) {
101         case SCSI_MLQUEUE_HOST_BUSY:
102                 host->host_blocked = host->max_host_blocked;
103                 break;
104         case SCSI_MLQUEUE_DEVICE_BUSY:
105         case SCSI_MLQUEUE_EH_RETRY:
106                 device->device_blocked = device->max_device_blocked;
107                 break;
108         case SCSI_MLQUEUE_TARGET_BUSY:
109                 starget->target_blocked = starget->max_target_blocked;
110                 break;
111         }
112 }
113
114 /**
115  * __scsi_queue_insert - private queue insertion
116  * @cmd: The SCSI command being requeued
117  * @reason:  The reason for the requeue
118  * @unbusy: Whether the queue should be unbusied
119  *
120  * This is a private queue insertion.  The public interface
121  * scsi_queue_insert() always assumes the queue should be unbusied
122  * because it's always called before the completion.  This function is
123  * for a requeue after completion, which should only occur in this
124  * file.
125  */
126 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
127 {
128         struct scsi_device *device = cmd->device;
129         struct request_queue *q = device->request_queue;
130         unsigned long flags;
131
132         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
133                 "Inserting command %p into mlqueue\n", cmd));
134
135         scsi_set_blocked(cmd, reason);
136
137         /*
138          * Decrement the counters, since these commands are no longer
139          * active on the host/device.
140          */
141         if (unbusy)
142                 scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue. Schedule requeue work under
147          * lock such that the kblockd_schedule_work() call happens
148          * before blk_cleanup_queue() finishes.
149          */
150         cmd->result = 0;
151         spin_lock_irqsave(q->queue_lock, flags);
152         blk_requeue_request(q, cmd->request);
153         kblockd_schedule_work(&device->requeue_work);
154         spin_unlock_irqrestore(q->queue_lock, flags);
155 }
156
157 /*
158  * Function:    scsi_queue_insert()
159  *
160  * Purpose:     Insert a command in the midlevel queue.
161  *
162  * Arguments:   cmd    - command that we are adding to queue.
163  *              reason - why we are inserting command to queue.
164  *
165  * Lock status: Assumed that lock is not held upon entry.
166  *
167  * Returns:     Nothing.
168  *
169  * Notes:       We do this for one of two cases.  Either the host is busy
170  *              and it cannot accept any more commands for the time being,
171  *              or the device returned QUEUE_FULL and can accept no more
172  *              commands.
173  * Notes:       This could be called either from an interrupt context or a
174  *              normal process context.
175  */
176 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
177 {
178         __scsi_queue_insert(cmd, reason, 1);
179 }
180 /**
181  * scsi_execute - insert request and wait for the result
182  * @sdev:       scsi device
183  * @cmd:        scsi command
184  * @data_direction: data direction
185  * @buffer:     data buffer
186  * @bufflen:    len of buffer
187  * @sense:      optional sense buffer
188  * @timeout:    request timeout in seconds
189  * @retries:    number of times to retry request
190  * @flags:      or into request flags;
191  * @resid:      optional residual length
192  *
193  * returns the req->errors value which is the scsi_cmnd result
194  * field.
195  */
196 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
197                  int data_direction, void *buffer, unsigned bufflen,
198                  unsigned char *sense, int timeout, int retries, u64 flags,
199                  int *resid)
200 {
201         struct request *req;
202         int write = (data_direction == DMA_TO_DEVICE);
203         int ret = DRIVER_ERROR << 24;
204
205         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
206         if (!req)
207                 return ret;
208         blk_rq_set_block_pc(req);
209
210         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
211                                         buffer, bufflen, __GFP_WAIT))
212                 goto out;
213
214         req->cmd_len = COMMAND_SIZE(cmd[0]);
215         memcpy(req->cmd, cmd, req->cmd_len);
216         req->sense = sense;
217         req->sense_len = 0;
218         req->retries = retries;
219         req->timeout = timeout;
220         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
221
222         /*
223          * head injection *required* here otherwise quiesce won't work
224          */
225         blk_execute_rq(req->q, NULL, req, 1);
226
227         /*
228          * Some devices (USB mass-storage in particular) may transfer
229          * garbage data together with a residue indicating that the data
230          * is invalid.  Prevent the garbage from being misinterpreted
231          * and prevent security leaks by zeroing out the excess data.
232          */
233         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
234                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
235
236         if (resid)
237                 *resid = req->resid_len;
238         ret = req->errors;
239  out:
240         blk_put_request(req);
241
242         return ret;
243 }
244 EXPORT_SYMBOL(scsi_execute);
245
246 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
247                      int data_direction, void *buffer, unsigned bufflen,
248                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
249                      int *resid, u64 flags)
250 {
251         char *sense = NULL;
252         int result;
253         
254         if (sshdr) {
255                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
256                 if (!sense)
257                         return DRIVER_ERROR << 24;
258         }
259         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
260                               sense, timeout, retries, flags, resid);
261         if (sshdr)
262                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
263
264         kfree(sense);
265         return result;
266 }
267 EXPORT_SYMBOL(scsi_execute_req_flags);
268
269 /*
270  * Function:    scsi_init_cmd_errh()
271  *
272  * Purpose:     Initialize cmd fields related to error handling.
273  *
274  * Arguments:   cmd     - command that is ready to be queued.
275  *
276  * Notes:       This function has the job of initializing a number of
277  *              fields related to error handling.   Typically this will
278  *              be called once for each command, as required.
279  */
280 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
281 {
282         cmd->serial_number = 0;
283         scsi_set_resid(cmd, 0);
284         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
285         if (cmd->cmd_len == 0)
286                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
287 }
288
289 void scsi_device_unbusy(struct scsi_device *sdev)
290 {
291         struct Scsi_Host *shost = sdev->host;
292         struct scsi_target *starget = scsi_target(sdev);
293         unsigned long flags;
294
295         spin_lock_irqsave(shost->host_lock, flags);
296         shost->host_busy--;
297         atomic_dec(&starget->target_busy);
298         if (unlikely(scsi_host_in_recovery(shost) &&
299                      (shost->host_failed || shost->host_eh_scheduled)))
300                 scsi_eh_wakeup(shost);
301         spin_unlock(shost->host_lock);
302         spin_lock(sdev->request_queue->queue_lock);
303         sdev->device_busy--;
304         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
305 }
306
307 /*
308  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
309  * and call blk_run_queue for all the scsi_devices on the target -
310  * including current_sdev first.
311  *
312  * Called with *no* scsi locks held.
313  */
314 static void scsi_single_lun_run(struct scsi_device *current_sdev)
315 {
316         struct Scsi_Host *shost = current_sdev->host;
317         struct scsi_device *sdev, *tmp;
318         struct scsi_target *starget = scsi_target(current_sdev);
319         unsigned long flags;
320
321         spin_lock_irqsave(shost->host_lock, flags);
322         starget->starget_sdev_user = NULL;
323         spin_unlock_irqrestore(shost->host_lock, flags);
324
325         /*
326          * Call blk_run_queue for all LUNs on the target, starting with
327          * current_sdev. We race with others (to set starget_sdev_user),
328          * but in most cases, we will be first. Ideally, each LU on the
329          * target would get some limited time or requests on the target.
330          */
331         blk_run_queue(current_sdev->request_queue);
332
333         spin_lock_irqsave(shost->host_lock, flags);
334         if (starget->starget_sdev_user)
335                 goto out;
336         list_for_each_entry_safe(sdev, tmp, &starget->devices,
337                         same_target_siblings) {
338                 if (sdev == current_sdev)
339                         continue;
340                 if (scsi_device_get(sdev))
341                         continue;
342
343                 spin_unlock_irqrestore(shost->host_lock, flags);
344                 blk_run_queue(sdev->request_queue);
345                 spin_lock_irqsave(shost->host_lock, flags);
346         
347                 scsi_device_put(sdev);
348         }
349  out:
350         spin_unlock_irqrestore(shost->host_lock, flags);
351 }
352
353 static inline int scsi_device_is_busy(struct scsi_device *sdev)
354 {
355         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
356                 return 1;
357
358         return 0;
359 }
360
361 static inline int scsi_target_is_busy(struct scsi_target *starget)
362 {
363         return ((starget->can_queue > 0 &&
364                  atomic_read(&starget->target_busy) >= starget->can_queue) ||
365                  starget->target_blocked);
366 }
367
368 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
369 {
370         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
371             shost->host_blocked || shost->host_self_blocked)
372                 return 1;
373
374         return 0;
375 }
376
377 static void scsi_starved_list_run(struct Scsi_Host *shost)
378 {
379         LIST_HEAD(starved_list);
380         struct scsi_device *sdev;
381         unsigned long flags;
382
383         spin_lock_irqsave(shost->host_lock, flags);
384         list_splice_init(&shost->starved_list, &starved_list);
385
386         while (!list_empty(&starved_list)) {
387                 struct request_queue *slq;
388
389                 /*
390                  * As long as shost is accepting commands and we have
391                  * starved queues, call blk_run_queue. scsi_request_fn
392                  * drops the queue_lock and can add us back to the
393                  * starved_list.
394                  *
395                  * host_lock protects the starved_list and starved_entry.
396                  * scsi_request_fn must get the host_lock before checking
397                  * or modifying starved_list or starved_entry.
398                  */
399                 if (scsi_host_is_busy(shost))
400                         break;
401
402                 sdev = list_entry(starved_list.next,
403                                   struct scsi_device, starved_entry);
404                 list_del_init(&sdev->starved_entry);
405                 if (scsi_target_is_busy(scsi_target(sdev))) {
406                         list_move_tail(&sdev->starved_entry,
407                                        &shost->starved_list);
408                         continue;
409                 }
410
411                 /*
412                  * Once we drop the host lock, a racing scsi_remove_device()
413                  * call may remove the sdev from the starved list and destroy
414                  * it and the queue.  Mitigate by taking a reference to the
415                  * queue and never touching the sdev again after we drop the
416                  * host lock.  Note: if __scsi_remove_device() invokes
417                  * blk_cleanup_queue() before the queue is run from this
418                  * function then blk_run_queue() will return immediately since
419                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
420                  */
421                 slq = sdev->request_queue;
422                 if (!blk_get_queue(slq))
423                         continue;
424                 spin_unlock_irqrestore(shost->host_lock, flags);
425
426                 blk_run_queue(slq);
427                 blk_put_queue(slq);
428
429                 spin_lock_irqsave(shost->host_lock, flags);
430         }
431         /* put any unprocessed entries back */
432         list_splice(&starved_list, &shost->starved_list);
433         spin_unlock_irqrestore(shost->host_lock, flags);
434 }
435
436 /*
437  * Function:   scsi_run_queue()
438  *
439  * Purpose:    Select a proper request queue to serve next
440  *
441  * Arguments:  q       - last request's queue
442  *
443  * Returns:     Nothing
444  *
445  * Notes:      The previous command was completely finished, start
446  *             a new one if possible.
447  */
448 static void scsi_run_queue(struct request_queue *q)
449 {
450         struct scsi_device *sdev = q->queuedata;
451
452         if (scsi_target(sdev)->single_lun)
453                 scsi_single_lun_run(sdev);
454         if (!list_empty(&sdev->host->starved_list))
455                 scsi_starved_list_run(sdev->host);
456
457         blk_run_queue(q);
458 }
459
460 void scsi_requeue_run_queue(struct work_struct *work)
461 {
462         struct scsi_device *sdev;
463         struct request_queue *q;
464
465         sdev = container_of(work, struct scsi_device, requeue_work);
466         q = sdev->request_queue;
467         scsi_run_queue(q);
468 }
469
470 /*
471  * Function:    scsi_requeue_command()
472  *
473  * Purpose:     Handle post-processing of completed commands.
474  *
475  * Arguments:   q       - queue to operate on
476  *              cmd     - command that may need to be requeued.
477  *
478  * Returns:     Nothing
479  *
480  * Notes:       After command completion, there may be blocks left
481  *              over which weren't finished by the previous command
482  *              this can be for a number of reasons - the main one is
483  *              I/O errors in the middle of the request, in which case
484  *              we need to request the blocks that come after the bad
485  *              sector.
486  * Notes:       Upon return, cmd is a stale pointer.
487  */
488 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
489 {
490         struct scsi_device *sdev = cmd->device;
491         struct request *req = cmd->request;
492         unsigned long flags;
493
494         spin_lock_irqsave(q->queue_lock, flags);
495         blk_unprep_request(req);
496         req->special = NULL;
497         scsi_put_command(cmd);
498         blk_requeue_request(q, req);
499         spin_unlock_irqrestore(q->queue_lock, flags);
500
501         scsi_run_queue(q);
502
503         put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_next_command(struct scsi_cmnd *cmd)
507 {
508         struct scsi_device *sdev = cmd->device;
509         struct request_queue *q = sdev->request_queue;
510
511         scsi_put_command(cmd);
512         scsi_run_queue(q);
513
514         put_device(&sdev->sdev_gendev);
515 }
516
517 void scsi_run_host_queues(struct Scsi_Host *shost)
518 {
519         struct scsi_device *sdev;
520
521         shost_for_each_device(sdev, shost)
522                 scsi_run_queue(sdev->request_queue);
523 }
524
525 static inline unsigned int scsi_sgtable_index(unsigned short nents)
526 {
527         unsigned int index;
528
529         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
530
531         if (nents <= 8)
532                 index = 0;
533         else
534                 index = get_count_order(nents) - 3;
535
536         return index;
537 }
538
539 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
540 {
541         struct scsi_host_sg_pool *sgp;
542
543         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
544         mempool_free(sgl, sgp->pool);
545 }
546
547 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
548 {
549         struct scsi_host_sg_pool *sgp;
550
551         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
552         return mempool_alloc(sgp->pool, gfp_mask);
553 }
554
555 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
556                               gfp_t gfp_mask)
557 {
558         int ret;
559
560         BUG_ON(!nents);
561
562         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
563                                gfp_mask, scsi_sg_alloc);
564         if (unlikely(ret))
565                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
566                                 scsi_sg_free);
567
568         return ret;
569 }
570
571 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
572 {
573         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
574 }
575
576 /*
577  * Function:    scsi_release_buffers()
578  *
579  * Purpose:     Free resources allocate for a scsi_command.
580  *
581  * Arguments:   cmd     - command that we are bailing.
582  *
583  * Lock status: Assumed that no lock is held upon entry.
584  *
585  * Returns:     Nothing
586  *
587  * Notes:       In the event that an upper level driver rejects a
588  *              command, we must release resources allocated during
589  *              the __init_io() function.  Primarily this would involve
590  *              the scatter-gather table.
591  */
592 static void scsi_release_buffers(struct scsi_cmnd *cmd)
593 {
594         if (cmd->sdb.table.nents)
595                 scsi_free_sgtable(&cmd->sdb);
596
597         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
598
599         if (scsi_prot_sg_count(cmd))
600                 scsi_free_sgtable(cmd->prot_sdb);
601 }
602
603 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
604 {
605         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
606
607         scsi_free_sgtable(bidi_sdb);
608         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
609         cmd->request->next_rq->special = NULL;
610 }
611
612 /**
613  * __scsi_error_from_host_byte - translate SCSI error code into errno
614  * @cmd:        SCSI command (unused)
615  * @result:     scsi error code
616  *
617  * Translate SCSI error code into standard UNIX errno.
618  * Return values:
619  * -ENOLINK     temporary transport failure
620  * -EREMOTEIO   permanent target failure, do not retry
621  * -EBADE       permanent nexus failure, retry on other path
622  * -ENOSPC      No write space available
623  * -ENODATA     Medium error
624  * -EIO         unspecified I/O error
625  */
626 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
627 {
628         int error = 0;
629
630         switch(host_byte(result)) {
631         case DID_TRANSPORT_FAILFAST:
632                 error = -ENOLINK;
633                 break;
634         case DID_TARGET_FAILURE:
635                 set_host_byte(cmd, DID_OK);
636                 error = -EREMOTEIO;
637                 break;
638         case DID_NEXUS_FAILURE:
639                 set_host_byte(cmd, DID_OK);
640                 error = -EBADE;
641                 break;
642         case DID_ALLOC_FAILURE:
643                 set_host_byte(cmd, DID_OK);
644                 error = -ENOSPC;
645                 break;
646         case DID_MEDIUM_ERROR:
647                 set_host_byte(cmd, DID_OK);
648                 error = -ENODATA;
649                 break;
650         default:
651                 error = -EIO;
652                 break;
653         }
654
655         return error;
656 }
657
658 /*
659  * Function:    scsi_io_completion()
660  *
661  * Purpose:     Completion processing for block device I/O requests.
662  *
663  * Arguments:   cmd   - command that is finished.
664  *
665  * Lock status: Assumed that no lock is held upon entry.
666  *
667  * Returns:     Nothing
668  *
669  * Notes:       We will finish off the specified number of sectors.  If we
670  *              are done, the command block will be released and the queue
671  *              function will be goosed.  If we are not done then we have to
672  *              figure out what to do next:
673  *
674  *              a) We can call scsi_requeue_command().  The request
675  *                 will be unprepared and put back on the queue.  Then
676  *                 a new command will be created for it.  This should
677  *                 be used if we made forward progress, or if we want
678  *                 to switch from READ(10) to READ(6) for example.
679  *
680  *              b) We can call __scsi_queue_insert().  The request will
681  *                 be put back on the queue and retried using the same
682  *                 command as before, possibly after a delay.
683  *
684  *              c) We can call blk_end_request() with -EIO to fail
685  *                 the remainder of the request.
686  */
687 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
688 {
689         int result = cmd->result;
690         struct request_queue *q = cmd->device->request_queue;
691         struct request *req = cmd->request;
692         int error = 0;
693         struct scsi_sense_hdr sshdr;
694         int sense_valid = 0;
695         int sense_deferred = 0;
696         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
697               ACTION_DELAYED_RETRY} action;
698         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
699
700         if (result) {
701                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
702                 if (sense_valid)
703                         sense_deferred = scsi_sense_is_deferred(&sshdr);
704         }
705
706         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
707                 if (result) {
708                         if (sense_valid && req->sense) {
709                                 /*
710                                  * SG_IO wants current and deferred errors
711                                  */
712                                 int len = 8 + cmd->sense_buffer[7];
713
714                                 if (len > SCSI_SENSE_BUFFERSIZE)
715                                         len = SCSI_SENSE_BUFFERSIZE;
716                                 memcpy(req->sense, cmd->sense_buffer,  len);
717                                 req->sense_len = len;
718                         }
719                         if (!sense_deferred)
720                                 error = __scsi_error_from_host_byte(cmd, result);
721                 }
722                 /*
723                  * __scsi_error_from_host_byte may have reset the host_byte
724                  */
725                 req->errors = cmd->result;
726
727                 req->resid_len = scsi_get_resid(cmd);
728
729                 if (scsi_bidi_cmnd(cmd)) {
730                         /*
731                          * Bidi commands Must be complete as a whole,
732                          * both sides at once.
733                          */
734                         req->next_rq->resid_len = scsi_in(cmd)->resid;
735
736                         scsi_release_buffers(cmd);
737                         scsi_release_bidi_buffers(cmd);
738
739                         blk_end_request_all(req, 0);
740
741                         scsi_next_command(cmd);
742                         return;
743                 }
744         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
745                 /*
746                  * Certain non BLOCK_PC requests are commands that don't
747                  * actually transfer anything (FLUSH), so cannot use
748                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
749                  * This sets the error explicitly for the problem case.
750                  */
751                 error = __scsi_error_from_host_byte(cmd, result);
752         }
753
754         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
755         BUG_ON(blk_bidi_rq(req));
756
757         /*
758          * Next deal with any sectors which we were able to correctly
759          * handle.
760          */
761         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
762                 "%u sectors total, %d bytes done.\n",
763                 blk_rq_sectors(req), good_bytes));
764
765         /*
766          * Recovered errors need reporting, but they're always treated
767          * as success, so fiddle the result code here.  For BLOCK_PC
768          * we already took a copy of the original into rq->errors which
769          * is what gets returned to the user
770          */
771         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
772                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
773                  * print since caller wants ATA registers. Only occurs on
774                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
775                  */
776                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
777                         ;
778                 else if (!(req->cmd_flags & REQ_QUIET))
779                         scsi_print_sense("", cmd);
780                 result = 0;
781                 /* BLOCK_PC may have set error */
782                 error = 0;
783         }
784
785         /*
786          * If we finished all bytes in the request we are done now.
787          */
788         if (!blk_end_request(req, error, good_bytes))
789                 goto next_command;
790
791         /*
792          * Kill remainder if no retrys.
793          */
794         if (error && scsi_noretry_cmd(cmd)) {
795                 blk_end_request_all(req, error);
796                 goto next_command;
797         }
798
799         /*
800          * If there had been no error, but we have leftover bytes in the
801          * requeues just queue the command up again.
802          */
803         if (result == 0)
804                 goto requeue;
805
806         error = __scsi_error_from_host_byte(cmd, result);
807
808         if (host_byte(result) == DID_RESET) {
809                 /* Third party bus reset or reset for error recovery
810                  * reasons.  Just retry the command and see what
811                  * happens.
812                  */
813                 action = ACTION_RETRY;
814         } else if (sense_valid && !sense_deferred) {
815                 switch (sshdr.sense_key) {
816                 case UNIT_ATTENTION:
817                         if (cmd->device->removable) {
818                                 /* Detected disc change.  Set a bit
819                                  * and quietly refuse further access.
820                                  */
821                                 cmd->device->changed = 1;
822                                 action = ACTION_FAIL;
823                         } else {
824                                 /* Must have been a power glitch, or a
825                                  * bus reset.  Could not have been a
826                                  * media change, so we just retry the
827                                  * command and see what happens.
828                                  */
829                                 action = ACTION_RETRY;
830                         }
831                         break;
832                 case ILLEGAL_REQUEST:
833                         /* If we had an ILLEGAL REQUEST returned, then
834                          * we may have performed an unsupported
835                          * command.  The only thing this should be
836                          * would be a ten byte read where only a six
837                          * byte read was supported.  Also, on a system
838                          * where READ CAPACITY failed, we may have
839                          * read past the end of the disk.
840                          */
841                         if ((cmd->device->use_10_for_rw &&
842                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
843                             (cmd->cmnd[0] == READ_10 ||
844                              cmd->cmnd[0] == WRITE_10)) {
845                                 /* This will issue a new 6-byte command. */
846                                 cmd->device->use_10_for_rw = 0;
847                                 action = ACTION_REPREP;
848                         } else if (sshdr.asc == 0x10) /* DIX */ {
849                                 action = ACTION_FAIL;
850                                 error = -EILSEQ;
851                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
852                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
853                                 action = ACTION_FAIL;
854                                 error = -EREMOTEIO;
855                         } else
856                                 action = ACTION_FAIL;
857                         break;
858                 case ABORTED_COMMAND:
859                         action = ACTION_FAIL;
860                         if (sshdr.asc == 0x10) /* DIF */
861                                 error = -EILSEQ;
862                         break;
863                 case NOT_READY:
864                         /* If the device is in the process of becoming
865                          * ready, or has a temporary blockage, retry.
866                          */
867                         if (sshdr.asc == 0x04) {
868                                 switch (sshdr.ascq) {
869                                 case 0x01: /* becoming ready */
870                                 case 0x04: /* format in progress */
871                                 case 0x05: /* rebuild in progress */
872                                 case 0x06: /* recalculation in progress */
873                                 case 0x07: /* operation in progress */
874                                 case 0x08: /* Long write in progress */
875                                 case 0x09: /* self test in progress */
876                                 case 0x14: /* space allocation in progress */
877                                         action = ACTION_DELAYED_RETRY;
878                                         break;
879                                 default:
880                                         action = ACTION_FAIL;
881                                         break;
882                                 }
883                         } else
884                                 action = ACTION_FAIL;
885                         break;
886                 case VOLUME_OVERFLOW:
887                         /* See SSC3rXX or current. */
888                         action = ACTION_FAIL;
889                         break;
890                 default:
891                         action = ACTION_FAIL;
892                         break;
893                 }
894         } else
895                 action = ACTION_FAIL;
896
897         if (action != ACTION_FAIL &&
898             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
899                 action = ACTION_FAIL;
900
901         switch (action) {
902         case ACTION_FAIL:
903                 /* Give up and fail the remainder of the request */
904                 if (!(req->cmd_flags & REQ_QUIET)) {
905                         scsi_print_result(cmd);
906                         if (driver_byte(result) & DRIVER_SENSE)
907                                 scsi_print_sense("", cmd);
908                         scsi_print_command(cmd);
909                 }
910                 if (!blk_end_request_err(req, error))
911                         goto next_command;
912                 /*FALLTHRU*/
913         case ACTION_REPREP:
914         requeue:
915                 /* Unprep the request and put it back at the head of the queue.
916                  * A new command will be prepared and issued.
917                  */
918                 scsi_release_buffers(cmd);
919                 scsi_requeue_command(q, cmd);
920                 break;
921         case ACTION_RETRY:
922                 /* Retry the same command immediately */
923                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924                 break;
925         case ACTION_DELAYED_RETRY:
926                 /* Retry the same command after a delay */
927                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928                 break;
929         }
930         return;
931
932 next_command:
933         scsi_release_buffers(cmd);
934         scsi_next_command(cmd);
935 }
936
937 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
938                              gfp_t gfp_mask)
939 {
940         int count;
941
942         /*
943          * If sg table allocation fails, requeue request later.
944          */
945         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
946                                         gfp_mask))) {
947                 return BLKPREP_DEFER;
948         }
949
950         /* 
951          * Next, walk the list, and fill in the addresses and sizes of
952          * each segment.
953          */
954         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
955         BUG_ON(count > sdb->table.nents);
956         sdb->table.nents = count;
957         sdb->length = blk_rq_bytes(req);
958         return BLKPREP_OK;
959 }
960
961 /*
962  * Function:    scsi_init_io()
963  *
964  * Purpose:     SCSI I/O initialize function.
965  *
966  * Arguments:   cmd   - Command descriptor we wish to initialize
967  *
968  * Returns:     0 on success
969  *              BLKPREP_DEFER if the failure is retryable
970  *              BLKPREP_KILL if the failure is fatal
971  */
972 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
973 {
974         struct scsi_device *sdev = cmd->device;
975         struct request *rq = cmd->request;
976         int error;
977
978         BUG_ON(!rq->nr_phys_segments);
979
980         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
981         if (error)
982                 goto err_exit;
983
984         if (blk_bidi_rq(rq)) {
985                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
986                         scsi_sdb_cache, GFP_ATOMIC);
987                 if (!bidi_sdb) {
988                         error = BLKPREP_DEFER;
989                         goto err_exit;
990                 }
991
992                 rq->next_rq->special = bidi_sdb;
993                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
994                 if (error)
995                         goto err_exit;
996         }
997
998         if (blk_integrity_rq(rq)) {
999                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1000                 int ivecs, count;
1001
1002                 BUG_ON(prot_sdb == NULL);
1003                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1004
1005                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1006                         error = BLKPREP_DEFER;
1007                         goto err_exit;
1008                 }
1009
1010                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1011                                                 prot_sdb->table.sgl);
1012                 BUG_ON(unlikely(count > ivecs));
1013                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1014
1015                 cmd->prot_sdb = prot_sdb;
1016                 cmd->prot_sdb->table.nents = count;
1017         }
1018
1019         return BLKPREP_OK ;
1020
1021 err_exit:
1022         scsi_release_buffers(cmd);
1023         cmd->request->special = NULL;
1024         scsi_put_command(cmd);
1025         put_device(&sdev->sdev_gendev);
1026         return error;
1027 }
1028 EXPORT_SYMBOL(scsi_init_io);
1029
1030 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1031                 struct request *req)
1032 {
1033         struct scsi_cmnd *cmd;
1034
1035         if (!req->special) {
1036                 /* Bail if we can't get a reference to the device */
1037                 if (!get_device(&sdev->sdev_gendev))
1038                         return NULL;
1039
1040                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1041                 if (unlikely(!cmd)) {
1042                         put_device(&sdev->sdev_gendev);
1043                         return NULL;
1044                 }
1045                 req->special = cmd;
1046         } else {
1047                 cmd = req->special;
1048         }
1049
1050         /* pull a tag out of the request if we have one */
1051         cmd->tag = req->tag;
1052         cmd->request = req;
1053
1054         cmd->cmnd = req->cmd;
1055         cmd->prot_op = SCSI_PROT_NORMAL;
1056
1057         return cmd;
1058 }
1059
1060 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1061 {
1062         struct scsi_cmnd *cmd = req->special;
1063
1064         /*
1065          * BLOCK_PC requests may transfer data, in which case they must
1066          * a bio attached to them.  Or they might contain a SCSI command
1067          * that does not transfer data, in which case they may optionally
1068          * submit a request without an attached bio.
1069          */
1070         if (req->bio) {
1071                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1072                 if (unlikely(ret))
1073                         return ret;
1074         } else {
1075                 BUG_ON(blk_rq_bytes(req));
1076
1077                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1078         }
1079
1080         cmd->cmd_len = req->cmd_len;
1081         cmd->transfersize = blk_rq_bytes(req);
1082         cmd->allowed = req->retries;
1083         return BLKPREP_OK;
1084 }
1085
1086 /*
1087  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1088  * that still need to be translated to SCSI CDBs from the ULD.
1089  */
1090 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092         struct scsi_cmnd *cmd = req->special;
1093
1094         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1095                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1096                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1097                 if (ret != BLKPREP_OK)
1098                         return ret;
1099         }
1100
1101         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1102         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1103 }
1104
1105 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1106 {
1107         struct scsi_cmnd *cmd = req->special;
1108
1109         if (!blk_rq_bytes(req))
1110                 cmd->sc_data_direction = DMA_NONE;
1111         else if (rq_data_dir(req) == WRITE)
1112                 cmd->sc_data_direction = DMA_TO_DEVICE;
1113         else
1114                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1115
1116         switch (req->cmd_type) {
1117         case REQ_TYPE_FS:
1118                 return scsi_setup_fs_cmnd(sdev, req);
1119         case REQ_TYPE_BLOCK_PC:
1120                 return scsi_setup_blk_pc_cmnd(sdev, req);
1121         default:
1122                 return BLKPREP_KILL;
1123         }
1124 }
1125
1126 static int
1127 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1128 {
1129         int ret = BLKPREP_OK;
1130
1131         /*
1132          * If the device is not in running state we will reject some
1133          * or all commands.
1134          */
1135         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1136                 switch (sdev->sdev_state) {
1137                 case SDEV_OFFLINE:
1138                 case SDEV_TRANSPORT_OFFLINE:
1139                         /*
1140                          * If the device is offline we refuse to process any
1141                          * commands.  The device must be brought online
1142                          * before trying any recovery commands.
1143                          */
1144                         sdev_printk(KERN_ERR, sdev,
1145                                     "rejecting I/O to offline device\n");
1146                         ret = BLKPREP_KILL;
1147                         break;
1148                 case SDEV_DEL:
1149                         /*
1150                          * If the device is fully deleted, we refuse to
1151                          * process any commands as well.
1152                          */
1153                         sdev_printk(KERN_ERR, sdev,
1154                                     "rejecting I/O to dead device\n");
1155                         ret = BLKPREP_KILL;
1156                         break;
1157                 case SDEV_QUIESCE:
1158                 case SDEV_BLOCK:
1159                 case SDEV_CREATED_BLOCK:
1160                         /*
1161                          * If the devices is blocked we defer normal commands.
1162                          */
1163                         if (!(req->cmd_flags & REQ_PREEMPT))
1164                                 ret = BLKPREP_DEFER;
1165                         break;
1166                 default:
1167                         /*
1168                          * For any other not fully online state we only allow
1169                          * special commands.  In particular any user initiated
1170                          * command is not allowed.
1171                          */
1172                         if (!(req->cmd_flags & REQ_PREEMPT))
1173                                 ret = BLKPREP_KILL;
1174                         break;
1175                 }
1176         }
1177         return ret;
1178 }
1179
1180 static int
1181 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1182 {
1183         struct scsi_device *sdev = q->queuedata;
1184
1185         switch (ret) {
1186         case BLKPREP_KILL:
1187                 req->errors = DID_NO_CONNECT << 16;
1188                 /* release the command and kill it */
1189                 if (req->special) {
1190                         struct scsi_cmnd *cmd = req->special;
1191                         scsi_release_buffers(cmd);
1192                         scsi_put_command(cmd);
1193                         put_device(&sdev->sdev_gendev);
1194                         req->special = NULL;
1195                 }
1196                 break;
1197         case BLKPREP_DEFER:
1198                 /*
1199                  * If we defer, the blk_peek_request() returns NULL, but the
1200                  * queue must be restarted, so we schedule a callback to happen
1201                  * shortly.
1202                  */
1203                 if (sdev->device_busy == 0)
1204                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1205                 break;
1206         default:
1207                 req->cmd_flags |= REQ_DONTPREP;
1208         }
1209
1210         return ret;
1211 }
1212
1213 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1214 {
1215         struct scsi_device *sdev = q->queuedata;
1216         struct scsi_cmnd *cmd;
1217         int ret;
1218
1219         ret = scsi_prep_state_check(sdev, req);
1220         if (ret != BLKPREP_OK)
1221                 goto out;
1222
1223         cmd = scsi_get_cmd_from_req(sdev, req);
1224         if (unlikely(!cmd)) {
1225                 ret = BLKPREP_DEFER;
1226                 goto out;
1227         }
1228
1229         ret = scsi_setup_cmnd(sdev, req);
1230 out:
1231         return scsi_prep_return(q, req, ret);
1232 }
1233
1234 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1235 {
1236         if (req->cmd_type == REQ_TYPE_FS) {
1237                 struct scsi_cmnd *cmd = req->special;
1238                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1239
1240                 if (drv->uninit_command)
1241                         drv->uninit_command(cmd);
1242         }
1243 }
1244
1245 /*
1246  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1247  * return 0.
1248  *
1249  * Called with the queue_lock held.
1250  */
1251 static inline int scsi_dev_queue_ready(struct request_queue *q,
1252                                   struct scsi_device *sdev)
1253 {
1254         if (sdev->device_busy == 0 && sdev->device_blocked) {
1255                 /*
1256                  * unblock after device_blocked iterates to zero
1257                  */
1258                 if (--sdev->device_blocked == 0) {
1259                         SCSI_LOG_MLQUEUE(3,
1260                                    sdev_printk(KERN_INFO, sdev,
1261                                    "unblocking device at zero depth\n"));
1262                 } else {
1263                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1264                         return 0;
1265                 }
1266         }
1267         if (scsi_device_is_busy(sdev))
1268                 return 0;
1269
1270         return 1;
1271 }
1272
1273
1274 /*
1275  * scsi_target_queue_ready: checks if there we can send commands to target
1276  * @sdev: scsi device on starget to check.
1277  */
1278 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1279                                            struct scsi_device *sdev)
1280 {
1281         struct scsi_target *starget = scsi_target(sdev);
1282         unsigned int busy;
1283
1284         if (starget->single_lun) {
1285                 spin_lock_irq(shost->host_lock);
1286                 if (starget->starget_sdev_user &&
1287                     starget->starget_sdev_user != sdev) {
1288                         spin_unlock_irq(shost->host_lock);
1289                         return 0;
1290                 }
1291                 starget->starget_sdev_user = sdev;
1292                 spin_unlock_irq(shost->host_lock);
1293         }
1294
1295         busy = atomic_inc_return(&starget->target_busy) - 1;
1296         if (starget->target_blocked) {
1297                 if (busy)
1298                         goto starved;
1299
1300                 /*
1301                  * unblock after target_blocked iterates to zero
1302                  */
1303                 spin_lock_irq(shost->host_lock);
1304                 if (--starget->target_blocked != 0) {
1305                         spin_unlock_irq(shost->host_lock);
1306                         goto out_dec;
1307                 }
1308                 spin_unlock_irq(shost->host_lock);
1309
1310                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311                                  "unblocking target at zero depth\n"));
1312         }
1313
1314         if (starget->can_queue > 0 && busy >= starget->can_queue)
1315                 goto starved;
1316
1317         return 1;
1318
1319 starved:
1320         spin_lock_irq(shost->host_lock);
1321         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1322         spin_unlock_irq(shost->host_lock);
1323 out_dec:
1324         atomic_dec(&starget->target_busy);
1325         return 0;
1326 }
1327
1328 /*
1329  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1330  * return 0. We must end up running the queue again whenever 0 is
1331  * returned, else IO can hang.
1332  */
1333 static inline int scsi_host_queue_ready(struct request_queue *q,
1334                                    struct Scsi_Host *shost,
1335                                    struct scsi_device *sdev)
1336 {
1337         int ret = 0;
1338
1339         spin_lock_irq(shost->host_lock);
1340
1341         if (scsi_host_in_recovery(shost))
1342                 goto out;
1343         if (shost->host_busy == 0 && shost->host_blocked) {
1344                 /*
1345                  * unblock after host_blocked iterates to zero
1346                  */
1347                 if (--shost->host_blocked != 0)
1348                         goto out;
1349
1350                 SCSI_LOG_MLQUEUE(3,
1351                         shost_printk(KERN_INFO, shost,
1352                                      "unblocking host at zero depth\n"));
1353         }
1354         if (scsi_host_is_busy(shost)) {
1355                 if (list_empty(&sdev->starved_entry))
1356                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1357                 goto out;
1358         }
1359
1360         /* We're OK to process the command, so we can't be starved */
1361         if (!list_empty(&sdev->starved_entry))
1362                 list_del_init(&sdev->starved_entry);
1363
1364         shost->host_busy++;
1365         ret = 1;
1366 out:
1367         spin_unlock_irq(shost->host_lock);
1368         return ret;
1369 }
1370
1371 /*
1372  * Busy state exporting function for request stacking drivers.
1373  *
1374  * For efficiency, no lock is taken to check the busy state of
1375  * shost/starget/sdev, since the returned value is not guaranteed and
1376  * may be changed after request stacking drivers call the function,
1377  * regardless of taking lock or not.
1378  *
1379  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1380  * needs to return 'not busy'. Otherwise, request stacking drivers
1381  * may hold requests forever.
1382  */
1383 static int scsi_lld_busy(struct request_queue *q)
1384 {
1385         struct scsi_device *sdev = q->queuedata;
1386         struct Scsi_Host *shost;
1387
1388         if (blk_queue_dying(q))
1389                 return 0;
1390
1391         shost = sdev->host;
1392
1393         /*
1394          * Ignore host/starget busy state.
1395          * Since block layer does not have a concept of fairness across
1396          * multiple queues, congestion of host/starget needs to be handled
1397          * in SCSI layer.
1398          */
1399         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1400                 return 1;
1401
1402         return 0;
1403 }
1404
1405 /*
1406  * Kill a request for a dead device
1407  */
1408 static void scsi_kill_request(struct request *req, struct request_queue *q)
1409 {
1410         struct scsi_cmnd *cmd = req->special;
1411         struct scsi_device *sdev;
1412         struct scsi_target *starget;
1413         struct Scsi_Host *shost;
1414
1415         blk_start_request(req);
1416
1417         scmd_printk(KERN_INFO, cmd, "killing request\n");
1418
1419         sdev = cmd->device;
1420         starget = scsi_target(sdev);
1421         shost = sdev->host;
1422         scsi_init_cmd_errh(cmd);
1423         cmd->result = DID_NO_CONNECT << 16;
1424         atomic_inc(&cmd->device->iorequest_cnt);
1425
1426         /*
1427          * SCSI request completion path will do scsi_device_unbusy(),
1428          * bump busy counts.  To bump the counters, we need to dance
1429          * with the locks as normal issue path does.
1430          */
1431         sdev->device_busy++;
1432         spin_unlock(sdev->request_queue->queue_lock);
1433         spin_lock(shost->host_lock);
1434         shost->host_busy++;
1435         atomic_inc(&starget->target_busy);
1436         spin_unlock(shost->host_lock);
1437         spin_lock(sdev->request_queue->queue_lock);
1438
1439         blk_complete_request(req);
1440 }
1441
1442 static void scsi_softirq_done(struct request *rq)
1443 {
1444         struct scsi_cmnd *cmd = rq->special;
1445         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1446         int disposition;
1447
1448         INIT_LIST_HEAD(&cmd->eh_entry);
1449
1450         atomic_inc(&cmd->device->iodone_cnt);
1451         if (cmd->result)
1452                 atomic_inc(&cmd->device->ioerr_cnt);
1453
1454         disposition = scsi_decide_disposition(cmd);
1455         if (disposition != SUCCESS &&
1456             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1457                 sdev_printk(KERN_ERR, cmd->device,
1458                             "timing out command, waited %lus\n",
1459                             wait_for/HZ);
1460                 disposition = SUCCESS;
1461         }
1462
1463         scsi_log_completion(cmd, disposition);
1464
1465         switch (disposition) {
1466                 case SUCCESS:
1467                         scsi_finish_command(cmd);
1468                         break;
1469                 case NEEDS_RETRY:
1470                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1471                         break;
1472                 case ADD_TO_MLQUEUE:
1473                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1474                         break;
1475                 default:
1476                         if (!scsi_eh_scmd_add(cmd, 0))
1477                                 scsi_finish_command(cmd);
1478         }
1479 }
1480
1481 /**
1482  * scsi_done - Invoke completion on finished SCSI command.
1483  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1484  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1485  *
1486  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1487  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1488  * calls blk_complete_request() for further processing.
1489  *
1490  * This function is interrupt context safe.
1491  */
1492 static void scsi_done(struct scsi_cmnd *cmd)
1493 {
1494         trace_scsi_dispatch_cmd_done(cmd);
1495         blk_complete_request(cmd->request);
1496 }
1497
1498 /*
1499  * Function:    scsi_request_fn()
1500  *
1501  * Purpose:     Main strategy routine for SCSI.
1502  *
1503  * Arguments:   q       - Pointer to actual queue.
1504  *
1505  * Returns:     Nothing
1506  *
1507  * Lock status: IO request lock assumed to be held when called.
1508  */
1509 static void scsi_request_fn(struct request_queue *q)
1510         __releases(q->queue_lock)
1511         __acquires(q->queue_lock)
1512 {
1513         struct scsi_device *sdev = q->queuedata;
1514         struct Scsi_Host *shost;
1515         struct scsi_cmnd *cmd;
1516         struct request *req;
1517
1518         /*
1519          * To start with, we keep looping until the queue is empty, or until
1520          * the host is no longer able to accept any more requests.
1521          */
1522         shost = sdev->host;
1523         for (;;) {
1524                 int rtn;
1525                 /*
1526                  * get next queueable request.  We do this early to make sure
1527                  * that the request is fully prepared even if we cannot
1528                  * accept it.
1529                  */
1530                 req = blk_peek_request(q);
1531                 if (!req || !scsi_dev_queue_ready(q, sdev))
1532                         break;
1533
1534                 if (unlikely(!scsi_device_online(sdev))) {
1535                         sdev_printk(KERN_ERR, sdev,
1536                                     "rejecting I/O to offline device\n");
1537                         scsi_kill_request(req, q);
1538                         continue;
1539                 }
1540
1541
1542                 /*
1543                  * Remove the request from the request list.
1544                  */
1545                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1546                         blk_start_request(req);
1547                 sdev->device_busy++;
1548
1549                 spin_unlock_irq(q->queue_lock);
1550                 cmd = req->special;
1551                 if (unlikely(cmd == NULL)) {
1552                         printk(KERN_CRIT "impossible request in %s.\n"
1553                                          "please mail a stack trace to "
1554                                          "linux-scsi@vger.kernel.org\n",
1555                                          __func__);
1556                         blk_dump_rq_flags(req, "foo");
1557                         BUG();
1558                 }
1559
1560                 /*
1561                  * We hit this when the driver is using a host wide
1562                  * tag map. For device level tag maps the queue_depth check
1563                  * in the device ready fn would prevent us from trying
1564                  * to allocate a tag. Since the map is a shared host resource
1565                  * we add the dev to the starved list so it eventually gets
1566                  * a run when a tag is freed.
1567                  */
1568                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1569                         spin_lock_irq(shost->host_lock);
1570                         if (list_empty(&sdev->starved_entry))
1571                                 list_add_tail(&sdev->starved_entry,
1572                                               &shost->starved_list);
1573                         spin_unlock_irq(shost->host_lock);
1574                         goto not_ready;
1575                 }
1576
1577                 if (!scsi_target_queue_ready(shost, sdev))
1578                         goto not_ready;
1579
1580                 if (!scsi_host_queue_ready(q, shost, sdev))
1581                         goto host_not_ready;
1582
1583                 /*
1584                  * Finally, initialize any error handling parameters, and set up
1585                  * the timers for timeouts.
1586                  */
1587                 scsi_init_cmd_errh(cmd);
1588
1589                 /*
1590                  * Dispatch the command to the low-level driver.
1591                  */
1592                 cmd->scsi_done = scsi_done;
1593                 rtn = scsi_dispatch_cmd(cmd);
1594                 if (rtn) {
1595                         scsi_queue_insert(cmd, rtn);
1596                         spin_lock_irq(q->queue_lock);
1597                         goto out_delay;
1598                 }
1599                 spin_lock_irq(q->queue_lock);
1600         }
1601
1602         return;
1603
1604  host_not_ready:
1605         atomic_dec(&scsi_target(sdev)->target_busy);
1606  not_ready:
1607         /*
1608          * lock q, handle tag, requeue req, and decrement device_busy. We
1609          * must return with queue_lock held.
1610          *
1611          * Decrementing device_busy without checking it is OK, as all such
1612          * cases (host limits or settings) should run the queue at some
1613          * later time.
1614          */
1615         spin_lock_irq(q->queue_lock);
1616         blk_requeue_request(q, req);
1617         sdev->device_busy--;
1618 out_delay:
1619         if (sdev->device_busy == 0 && !scsi_device_blocked(sdev))
1620                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1621 }
1622
1623 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1624 {
1625         struct device *host_dev;
1626         u64 bounce_limit = 0xffffffff;
1627
1628         if (shost->unchecked_isa_dma)
1629                 return BLK_BOUNCE_ISA;
1630         /*
1631          * Platforms with virtual-DMA translation
1632          * hardware have no practical limit.
1633          */
1634         if (!PCI_DMA_BUS_IS_PHYS)
1635                 return BLK_BOUNCE_ANY;
1636
1637         host_dev = scsi_get_device(shost);
1638         if (host_dev && host_dev->dma_mask)
1639                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1640
1641         return bounce_limit;
1642 }
1643
1644 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1645                                          request_fn_proc *request_fn)
1646 {
1647         struct request_queue *q;
1648         struct device *dev = shost->dma_dev;
1649
1650         q = blk_init_queue(request_fn, NULL);
1651         if (!q)
1652                 return NULL;
1653
1654         /*
1655          * this limit is imposed by hardware restrictions
1656          */
1657         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1658                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1659
1660         if (scsi_host_prot_dma(shost)) {
1661                 shost->sg_prot_tablesize =
1662                         min_not_zero(shost->sg_prot_tablesize,
1663                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1664                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1665                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1666         }
1667
1668         blk_queue_max_hw_sectors(q, shost->max_sectors);
1669         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1670         blk_queue_segment_boundary(q, shost->dma_boundary);
1671         dma_set_seg_boundary(dev, shost->dma_boundary);
1672
1673         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1674
1675         if (!shost->use_clustering)
1676                 q->limits.cluster = 0;
1677
1678         /*
1679          * set a reasonable default alignment on word boundaries: the
1680          * host and device may alter it using
1681          * blk_queue_update_dma_alignment() later.
1682          */
1683         blk_queue_dma_alignment(q, 0x03);
1684
1685         return q;
1686 }
1687 EXPORT_SYMBOL(__scsi_alloc_queue);
1688
1689 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1690 {
1691         struct request_queue *q;
1692
1693         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1694         if (!q)
1695                 return NULL;
1696
1697         blk_queue_prep_rq(q, scsi_prep_fn);
1698         blk_queue_unprep_rq(q, scsi_unprep_fn);
1699         blk_queue_softirq_done(q, scsi_softirq_done);
1700         blk_queue_rq_timed_out(q, scsi_times_out);
1701         blk_queue_lld_busy(q, scsi_lld_busy);
1702         return q;
1703 }
1704
1705 /*
1706  * Function:    scsi_block_requests()
1707  *
1708  * Purpose:     Utility function used by low-level drivers to prevent further
1709  *              commands from being queued to the device.
1710  *
1711  * Arguments:   shost       - Host in question
1712  *
1713  * Returns:     Nothing
1714  *
1715  * Lock status: No locks are assumed held.
1716  *
1717  * Notes:       There is no timer nor any other means by which the requests
1718  *              get unblocked other than the low-level driver calling
1719  *              scsi_unblock_requests().
1720  */
1721 void scsi_block_requests(struct Scsi_Host *shost)
1722 {
1723         shost->host_self_blocked = 1;
1724 }
1725 EXPORT_SYMBOL(scsi_block_requests);
1726
1727 /*
1728  * Function:    scsi_unblock_requests()
1729  *
1730  * Purpose:     Utility function used by low-level drivers to allow further
1731  *              commands from being queued to the device.
1732  *
1733  * Arguments:   shost       - Host in question
1734  *
1735  * Returns:     Nothing
1736  *
1737  * Lock status: No locks are assumed held.
1738  *
1739  * Notes:       There is no timer nor any other means by which the requests
1740  *              get unblocked other than the low-level driver calling
1741  *              scsi_unblock_requests().
1742  *
1743  *              This is done as an API function so that changes to the
1744  *              internals of the scsi mid-layer won't require wholesale
1745  *              changes to drivers that use this feature.
1746  */
1747 void scsi_unblock_requests(struct Scsi_Host *shost)
1748 {
1749         shost->host_self_blocked = 0;
1750         scsi_run_host_queues(shost);
1751 }
1752 EXPORT_SYMBOL(scsi_unblock_requests);
1753
1754 int __init scsi_init_queue(void)
1755 {
1756         int i;
1757
1758         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1759                                            sizeof(struct scsi_data_buffer),
1760                                            0, 0, NULL);
1761         if (!scsi_sdb_cache) {
1762                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1763                 return -ENOMEM;
1764         }
1765
1766         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1767                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1768                 int size = sgp->size * sizeof(struct scatterlist);
1769
1770                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1771                                 SLAB_HWCACHE_ALIGN, NULL);
1772                 if (!sgp->slab) {
1773                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1774                                         sgp->name);
1775                         goto cleanup_sdb;
1776                 }
1777
1778                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1779                                                      sgp->slab);
1780                 if (!sgp->pool) {
1781                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1782                                         sgp->name);
1783                         goto cleanup_sdb;
1784                 }
1785         }
1786
1787         return 0;
1788
1789 cleanup_sdb:
1790         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792                 if (sgp->pool)
1793                         mempool_destroy(sgp->pool);
1794                 if (sgp->slab)
1795                         kmem_cache_destroy(sgp->slab);
1796         }
1797         kmem_cache_destroy(scsi_sdb_cache);
1798
1799         return -ENOMEM;
1800 }
1801
1802 void scsi_exit_queue(void)
1803 {
1804         int i;
1805
1806         kmem_cache_destroy(scsi_sdb_cache);
1807
1808         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810                 mempool_destroy(sgp->pool);
1811                 kmem_cache_destroy(sgp->slab);
1812         }
1813 }
1814
1815 /**
1816  *      scsi_mode_select - issue a mode select
1817  *      @sdev:  SCSI device to be queried
1818  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1819  *      @sp:    Save page bit (0 == don't save, 1 == save)
1820  *      @modepage: mode page being requested
1821  *      @buffer: request buffer (may not be smaller than eight bytes)
1822  *      @len:   length of request buffer.
1823  *      @timeout: command timeout
1824  *      @retries: number of retries before failing
1825  *      @data: returns a structure abstracting the mode header data
1826  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1827  *              must be SCSI_SENSE_BUFFERSIZE big.
1828  *
1829  *      Returns zero if successful; negative error number or scsi
1830  *      status on error
1831  *
1832  */
1833 int
1834 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1835                  unsigned char *buffer, int len, int timeout, int retries,
1836                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1837 {
1838         unsigned char cmd[10];
1839         unsigned char *real_buffer;
1840         int ret;
1841
1842         memset(cmd, 0, sizeof(cmd));
1843         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1844
1845         if (sdev->use_10_for_ms) {
1846                 if (len > 65535)
1847                         return -EINVAL;
1848                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1849                 if (!real_buffer)
1850                         return -ENOMEM;
1851                 memcpy(real_buffer + 8, buffer, len);
1852                 len += 8;
1853                 real_buffer[0] = 0;
1854                 real_buffer[1] = 0;
1855                 real_buffer[2] = data->medium_type;
1856                 real_buffer[3] = data->device_specific;
1857                 real_buffer[4] = data->longlba ? 0x01 : 0;
1858                 real_buffer[5] = 0;
1859                 real_buffer[6] = data->block_descriptor_length >> 8;
1860                 real_buffer[7] = data->block_descriptor_length;
1861
1862                 cmd[0] = MODE_SELECT_10;
1863                 cmd[7] = len >> 8;
1864                 cmd[8] = len;
1865         } else {
1866                 if (len > 255 || data->block_descriptor_length > 255 ||
1867                     data->longlba)
1868                         return -EINVAL;
1869
1870                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1871                 if (!real_buffer)
1872                         return -ENOMEM;
1873                 memcpy(real_buffer + 4, buffer, len);
1874                 len += 4;
1875                 real_buffer[0] = 0;
1876                 real_buffer[1] = data->medium_type;
1877                 real_buffer[2] = data->device_specific;
1878                 real_buffer[3] = data->block_descriptor_length;
1879                 
1880
1881                 cmd[0] = MODE_SELECT;
1882                 cmd[4] = len;
1883         }
1884
1885         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1886                                sshdr, timeout, retries, NULL);
1887         kfree(real_buffer);
1888         return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(scsi_mode_select);
1891
1892 /**
1893  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1894  *      @sdev:  SCSI device to be queried
1895  *      @dbd:   set if mode sense will allow block descriptors to be returned
1896  *      @modepage: mode page being requested
1897  *      @buffer: request buffer (may not be smaller than eight bytes)
1898  *      @len:   length of request buffer.
1899  *      @timeout: command timeout
1900  *      @retries: number of retries before failing
1901  *      @data: returns a structure abstracting the mode header data
1902  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1903  *              must be SCSI_SENSE_BUFFERSIZE big.
1904  *
1905  *      Returns zero if unsuccessful, or the header offset (either 4
1906  *      or 8 depending on whether a six or ten byte command was
1907  *      issued) if successful.
1908  */
1909 int
1910 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1911                   unsigned char *buffer, int len, int timeout, int retries,
1912                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1913 {
1914         unsigned char cmd[12];
1915         int use_10_for_ms;
1916         int header_length;
1917         int result;
1918         struct scsi_sense_hdr my_sshdr;
1919
1920         memset(data, 0, sizeof(*data));
1921         memset(&cmd[0], 0, 12);
1922         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1923         cmd[2] = modepage;
1924
1925         /* caller might not be interested in sense, but we need it */
1926         if (!sshdr)
1927                 sshdr = &my_sshdr;
1928
1929  retry:
1930         use_10_for_ms = sdev->use_10_for_ms;
1931
1932         if (use_10_for_ms) {
1933                 if (len < 8)
1934                         len = 8;
1935
1936                 cmd[0] = MODE_SENSE_10;
1937                 cmd[8] = len;
1938                 header_length = 8;
1939         } else {
1940                 if (len < 4)
1941                         len = 4;
1942
1943                 cmd[0] = MODE_SENSE;
1944                 cmd[4] = len;
1945                 header_length = 4;
1946         }
1947
1948         memset(buffer, 0, len);
1949
1950         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1951                                   sshdr, timeout, retries, NULL);
1952
1953         /* This code looks awful: what it's doing is making sure an
1954          * ILLEGAL REQUEST sense return identifies the actual command
1955          * byte as the problem.  MODE_SENSE commands can return
1956          * ILLEGAL REQUEST if the code page isn't supported */
1957
1958         if (use_10_for_ms && !scsi_status_is_good(result) &&
1959             (driver_byte(result) & DRIVER_SENSE)) {
1960                 if (scsi_sense_valid(sshdr)) {
1961                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1962                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1963                                 /* 
1964                                  * Invalid command operation code
1965                                  */
1966                                 sdev->use_10_for_ms = 0;
1967                                 goto retry;
1968                         }
1969                 }
1970         }
1971
1972         if(scsi_status_is_good(result)) {
1973                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1974                              (modepage == 6 || modepage == 8))) {
1975                         /* Initio breakage? */
1976                         header_length = 0;
1977                         data->length = 13;
1978                         data->medium_type = 0;
1979                         data->device_specific = 0;
1980                         data->longlba = 0;
1981                         data->block_descriptor_length = 0;
1982                 } else if(use_10_for_ms) {
1983                         data->length = buffer[0]*256 + buffer[1] + 2;
1984                         data->medium_type = buffer[2];
1985                         data->device_specific = buffer[3];
1986                         data->longlba = buffer[4] & 0x01;
1987                         data->block_descriptor_length = buffer[6]*256
1988                                 + buffer[7];
1989                 } else {
1990                         data->length = buffer[0] + 1;
1991                         data->medium_type = buffer[1];
1992                         data->device_specific = buffer[2];
1993                         data->block_descriptor_length = buffer[3];
1994                 }
1995                 data->header_length = header_length;
1996         }
1997
1998         return result;
1999 }
2000 EXPORT_SYMBOL(scsi_mode_sense);
2001
2002 /**
2003  *      scsi_test_unit_ready - test if unit is ready
2004  *      @sdev:  scsi device to change the state of.
2005  *      @timeout: command timeout
2006  *      @retries: number of retries before failing
2007  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2008  *              returning sense. Make sure that this is cleared before passing
2009  *              in.
2010  *
2011  *      Returns zero if unsuccessful or an error if TUR failed.  For
2012  *      removable media, UNIT_ATTENTION sets ->changed flag.
2013  **/
2014 int
2015 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2016                      struct scsi_sense_hdr *sshdr_external)
2017 {
2018         char cmd[] = {
2019                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2020         };
2021         struct scsi_sense_hdr *sshdr;
2022         int result;
2023
2024         if (!sshdr_external)
2025                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2026         else
2027                 sshdr = sshdr_external;
2028
2029         /* try to eat the UNIT_ATTENTION if there are enough retries */
2030         do {
2031                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2032                                           timeout, retries, NULL);
2033                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2034                     sshdr->sense_key == UNIT_ATTENTION)
2035                         sdev->changed = 1;
2036         } while (scsi_sense_valid(sshdr) &&
2037                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2038
2039         if (!sshdr_external)
2040                 kfree(sshdr);
2041         return result;
2042 }
2043 EXPORT_SYMBOL(scsi_test_unit_ready);
2044
2045 /**
2046  *      scsi_device_set_state - Take the given device through the device state model.
2047  *      @sdev:  scsi device to change the state of.
2048  *      @state: state to change to.
2049  *
2050  *      Returns zero if unsuccessful or an error if the requested 
2051  *      transition is illegal.
2052  */
2053 int
2054 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2055 {
2056         enum scsi_device_state oldstate = sdev->sdev_state;
2057
2058         if (state == oldstate)
2059                 return 0;
2060
2061         switch (state) {
2062         case SDEV_CREATED:
2063                 switch (oldstate) {
2064                 case SDEV_CREATED_BLOCK:
2065                         break;
2066                 default:
2067                         goto illegal;
2068                 }
2069                 break;
2070                         
2071         case SDEV_RUNNING:
2072                 switch (oldstate) {
2073                 case SDEV_CREATED:
2074                 case SDEV_OFFLINE:
2075                 case SDEV_TRANSPORT_OFFLINE:
2076                 case SDEV_QUIESCE:
2077                 case SDEV_BLOCK:
2078                         break;
2079                 default:
2080                         goto illegal;
2081                 }
2082                 break;
2083
2084         case SDEV_QUIESCE:
2085                 switch (oldstate) {
2086                 case SDEV_RUNNING:
2087                 case SDEV_OFFLINE:
2088                 case SDEV_TRANSPORT_OFFLINE:
2089                         break;
2090                 default:
2091                         goto illegal;
2092                 }
2093                 break;
2094
2095         case SDEV_OFFLINE:
2096         case SDEV_TRANSPORT_OFFLINE:
2097                 switch (oldstate) {
2098                 case SDEV_CREATED:
2099                 case SDEV_RUNNING:
2100                 case SDEV_QUIESCE:
2101                 case SDEV_BLOCK:
2102                         break;
2103                 default:
2104                         goto illegal;
2105                 }
2106                 break;
2107
2108         case SDEV_BLOCK:
2109                 switch (oldstate) {
2110                 case SDEV_RUNNING:
2111                 case SDEV_CREATED_BLOCK:
2112                         break;
2113                 default:
2114                         goto illegal;
2115                 }
2116                 break;
2117
2118         case SDEV_CREATED_BLOCK:
2119                 switch (oldstate) {
2120                 case SDEV_CREATED:
2121                         break;
2122                 default:
2123                         goto illegal;
2124                 }
2125                 break;
2126
2127         case SDEV_CANCEL:
2128                 switch (oldstate) {
2129                 case SDEV_CREATED:
2130                 case SDEV_RUNNING:
2131                 case SDEV_QUIESCE:
2132                 case SDEV_OFFLINE:
2133                 case SDEV_TRANSPORT_OFFLINE:
2134                 case SDEV_BLOCK:
2135                         break;
2136                 default:
2137                         goto illegal;
2138                 }
2139                 break;
2140
2141         case SDEV_DEL:
2142                 switch (oldstate) {
2143                 case SDEV_CREATED:
2144                 case SDEV_RUNNING:
2145                 case SDEV_OFFLINE:
2146                 case SDEV_TRANSPORT_OFFLINE:
2147                 case SDEV_CANCEL:
2148                 case SDEV_CREATED_BLOCK:
2149                         break;
2150                 default:
2151                         goto illegal;
2152                 }
2153                 break;
2154
2155         }
2156         sdev->sdev_state = state;
2157         return 0;
2158
2159  illegal:
2160         SCSI_LOG_ERROR_RECOVERY(1,
2161                                 sdev_printk(KERN_ERR, sdev,
2162                                             "Illegal state transition %s->%s",
2163                                             scsi_device_state_name(oldstate),
2164                                             scsi_device_state_name(state))
2165                                 );
2166         return -EINVAL;
2167 }
2168 EXPORT_SYMBOL(scsi_device_set_state);
2169
2170 /**
2171  *      sdev_evt_emit - emit a single SCSI device uevent
2172  *      @sdev: associated SCSI device
2173  *      @evt: event to emit
2174  *
2175  *      Send a single uevent (scsi_event) to the associated scsi_device.
2176  */
2177 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2178 {
2179         int idx = 0;
2180         char *envp[3];
2181
2182         switch (evt->evt_type) {
2183         case SDEV_EVT_MEDIA_CHANGE:
2184                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2185                 break;
2186         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2187                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2188                 break;
2189         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2190                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2191                 break;
2192         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2193                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2194                 break;
2195         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2196                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2197                 break;
2198         case SDEV_EVT_LUN_CHANGE_REPORTED:
2199                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2200                 break;
2201         default:
2202                 /* do nothing */
2203                 break;
2204         }
2205
2206         envp[idx++] = NULL;
2207
2208         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2209 }
2210
2211 /**
2212  *      sdev_evt_thread - send a uevent for each scsi event
2213  *      @work: work struct for scsi_device
2214  *
2215  *      Dispatch queued events to their associated scsi_device kobjects
2216  *      as uevents.
2217  */
2218 void scsi_evt_thread(struct work_struct *work)
2219 {
2220         struct scsi_device *sdev;
2221         enum scsi_device_event evt_type;
2222         LIST_HEAD(event_list);
2223
2224         sdev = container_of(work, struct scsi_device, event_work);
2225
2226         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2227                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2228                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2229
2230         while (1) {
2231                 struct scsi_event *evt;
2232                 struct list_head *this, *tmp;
2233                 unsigned long flags;
2234
2235                 spin_lock_irqsave(&sdev->list_lock, flags);
2236                 list_splice_init(&sdev->event_list, &event_list);
2237                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2238
2239                 if (list_empty(&event_list))
2240                         break;
2241
2242                 list_for_each_safe(this, tmp, &event_list) {
2243                         evt = list_entry(this, struct scsi_event, node);
2244                         list_del(&evt->node);
2245                         scsi_evt_emit(sdev, evt);
2246                         kfree(evt);
2247                 }
2248         }
2249 }
2250
2251 /**
2252  *      sdev_evt_send - send asserted event to uevent thread
2253  *      @sdev: scsi_device event occurred on
2254  *      @evt: event to send
2255  *
2256  *      Assert scsi device event asynchronously.
2257  */
2258 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2259 {
2260         unsigned long flags;
2261
2262 #if 0
2263         /* FIXME: currently this check eliminates all media change events
2264          * for polled devices.  Need to update to discriminate between AN
2265          * and polled events */
2266         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2267                 kfree(evt);
2268                 return;
2269         }
2270 #endif
2271
2272         spin_lock_irqsave(&sdev->list_lock, flags);
2273         list_add_tail(&evt->node, &sdev->event_list);
2274         schedule_work(&sdev->event_work);
2275         spin_unlock_irqrestore(&sdev->list_lock, flags);
2276 }
2277 EXPORT_SYMBOL_GPL(sdev_evt_send);
2278
2279 /**
2280  *      sdev_evt_alloc - allocate a new scsi event
2281  *      @evt_type: type of event to allocate
2282  *      @gfpflags: GFP flags for allocation
2283  *
2284  *      Allocates and returns a new scsi_event.
2285  */
2286 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2287                                   gfp_t gfpflags)
2288 {
2289         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2290         if (!evt)
2291                 return NULL;
2292
2293         evt->evt_type = evt_type;
2294         INIT_LIST_HEAD(&evt->node);
2295
2296         /* evt_type-specific initialization, if any */
2297         switch (evt_type) {
2298         case SDEV_EVT_MEDIA_CHANGE:
2299         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2300         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2301         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2302         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2303         case SDEV_EVT_LUN_CHANGE_REPORTED:
2304         default:
2305                 /* do nothing */
2306                 break;
2307         }
2308
2309         return evt;
2310 }
2311 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2312
2313 /**
2314  *      sdev_evt_send_simple - send asserted event to uevent thread
2315  *      @sdev: scsi_device event occurred on
2316  *      @evt_type: type of event to send
2317  *      @gfpflags: GFP flags for allocation
2318  *
2319  *      Assert scsi device event asynchronously, given an event type.
2320  */
2321 void sdev_evt_send_simple(struct scsi_device *sdev,
2322                           enum scsi_device_event evt_type, gfp_t gfpflags)
2323 {
2324         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2325         if (!evt) {
2326                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2327                             evt_type);
2328                 return;
2329         }
2330
2331         sdev_evt_send(sdev, evt);
2332 }
2333 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2334
2335 /**
2336  *      scsi_device_quiesce - Block user issued commands.
2337  *      @sdev:  scsi device to quiesce.
2338  *
2339  *      This works by trying to transition to the SDEV_QUIESCE state
2340  *      (which must be a legal transition).  When the device is in this
2341  *      state, only special requests will be accepted, all others will
2342  *      be deferred.  Since special requests may also be requeued requests,
2343  *      a successful return doesn't guarantee the device will be 
2344  *      totally quiescent.
2345  *
2346  *      Must be called with user context, may sleep.
2347  *
2348  *      Returns zero if unsuccessful or an error if not.
2349  */
2350 int
2351 scsi_device_quiesce(struct scsi_device *sdev)
2352 {
2353         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2354         if (err)
2355                 return err;
2356
2357         scsi_run_queue(sdev->request_queue);
2358         while (sdev->device_busy) {
2359                 msleep_interruptible(200);
2360                 scsi_run_queue(sdev->request_queue);
2361         }
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(scsi_device_quiesce);
2365
2366 /**
2367  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2368  *      @sdev:  scsi device to resume.
2369  *
2370  *      Moves the device from quiesced back to running and restarts the
2371  *      queues.
2372  *
2373  *      Must be called with user context, may sleep.
2374  */
2375 void scsi_device_resume(struct scsi_device *sdev)
2376 {
2377         /* check if the device state was mutated prior to resume, and if
2378          * so assume the state is being managed elsewhere (for example
2379          * device deleted during suspend)
2380          */
2381         if (sdev->sdev_state != SDEV_QUIESCE ||
2382             scsi_device_set_state(sdev, SDEV_RUNNING))
2383                 return;
2384         scsi_run_queue(sdev->request_queue);
2385 }
2386 EXPORT_SYMBOL(scsi_device_resume);
2387
2388 static void
2389 device_quiesce_fn(struct scsi_device *sdev, void *data)
2390 {
2391         scsi_device_quiesce(sdev);
2392 }
2393
2394 void
2395 scsi_target_quiesce(struct scsi_target *starget)
2396 {
2397         starget_for_each_device(starget, NULL, device_quiesce_fn);
2398 }
2399 EXPORT_SYMBOL(scsi_target_quiesce);
2400
2401 static void
2402 device_resume_fn(struct scsi_device *sdev, void *data)
2403 {
2404         scsi_device_resume(sdev);
2405 }
2406
2407 void
2408 scsi_target_resume(struct scsi_target *starget)
2409 {
2410         starget_for_each_device(starget, NULL, device_resume_fn);
2411 }
2412 EXPORT_SYMBOL(scsi_target_resume);
2413
2414 /**
2415  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2416  * @sdev:       device to block
2417  *
2418  * Block request made by scsi lld's to temporarily stop all
2419  * scsi commands on the specified device.  Called from interrupt
2420  * or normal process context.
2421  *
2422  * Returns zero if successful or error if not
2423  *
2424  * Notes:       
2425  *      This routine transitions the device to the SDEV_BLOCK state
2426  *      (which must be a legal transition).  When the device is in this
2427  *      state, all commands are deferred until the scsi lld reenables
2428  *      the device with scsi_device_unblock or device_block_tmo fires.
2429  */
2430 int
2431 scsi_internal_device_block(struct scsi_device *sdev)
2432 {
2433         struct request_queue *q = sdev->request_queue;
2434         unsigned long flags;
2435         int err = 0;
2436
2437         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2438         if (err) {
2439                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2440
2441                 if (err)
2442                         return err;
2443         }
2444
2445         /* 
2446          * The device has transitioned to SDEV_BLOCK.  Stop the
2447          * block layer from calling the midlayer with this device's
2448          * request queue. 
2449          */
2450         spin_lock_irqsave(q->queue_lock, flags);
2451         blk_stop_queue(q);
2452         spin_unlock_irqrestore(q->queue_lock, flags);
2453
2454         return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2457  
2458 /**
2459  * scsi_internal_device_unblock - resume a device after a block request
2460  * @sdev:       device to resume
2461  * @new_state:  state to set devices to after unblocking
2462  *
2463  * Called by scsi lld's or the midlayer to restart the device queue
2464  * for the previously suspended scsi device.  Called from interrupt or
2465  * normal process context.
2466  *
2467  * Returns zero if successful or error if not.
2468  *
2469  * Notes:       
2470  *      This routine transitions the device to the SDEV_RUNNING state
2471  *      or to one of the offline states (which must be a legal transition)
2472  *      allowing the midlayer to goose the queue for this device.
2473  */
2474 int
2475 scsi_internal_device_unblock(struct scsi_device *sdev,
2476                              enum scsi_device_state new_state)
2477 {
2478         struct request_queue *q = sdev->request_queue; 
2479         unsigned long flags;
2480
2481         /*
2482          * Try to transition the scsi device to SDEV_RUNNING or one of the
2483          * offlined states and goose the device queue if successful.
2484          */
2485         if ((sdev->sdev_state == SDEV_BLOCK) ||
2486             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2487                 sdev->sdev_state = new_state;
2488         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2489                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2490                     new_state == SDEV_OFFLINE)
2491                         sdev->sdev_state = new_state;
2492                 else
2493                         sdev->sdev_state = SDEV_CREATED;
2494         } else if (sdev->sdev_state != SDEV_CANCEL &&
2495                  sdev->sdev_state != SDEV_OFFLINE)
2496                 return -EINVAL;
2497
2498         spin_lock_irqsave(q->queue_lock, flags);
2499         blk_start_queue(q);
2500         spin_unlock_irqrestore(q->queue_lock, flags);
2501
2502         return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2505
2506 static void
2507 device_block(struct scsi_device *sdev, void *data)
2508 {
2509         scsi_internal_device_block(sdev);
2510 }
2511
2512 static int
2513 target_block(struct device *dev, void *data)
2514 {
2515         if (scsi_is_target_device(dev))
2516                 starget_for_each_device(to_scsi_target(dev), NULL,
2517                                         device_block);
2518         return 0;
2519 }
2520
2521 void
2522 scsi_target_block(struct device *dev)
2523 {
2524         if (scsi_is_target_device(dev))
2525                 starget_for_each_device(to_scsi_target(dev), NULL,
2526                                         device_block);
2527         else
2528                 device_for_each_child(dev, NULL, target_block);
2529 }
2530 EXPORT_SYMBOL_GPL(scsi_target_block);
2531
2532 static void
2533 device_unblock(struct scsi_device *sdev, void *data)
2534 {
2535         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2536 }
2537
2538 static int
2539 target_unblock(struct device *dev, void *data)
2540 {
2541         if (scsi_is_target_device(dev))
2542                 starget_for_each_device(to_scsi_target(dev), data,
2543                                         device_unblock);
2544         return 0;
2545 }
2546
2547 void
2548 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2549 {
2550         if (scsi_is_target_device(dev))
2551                 starget_for_each_device(to_scsi_target(dev), &new_state,
2552                                         device_unblock);
2553         else
2554                 device_for_each_child(dev, &new_state, target_unblock);
2555 }
2556 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2557
2558 /**
2559  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2560  * @sgl:        scatter-gather list
2561  * @sg_count:   number of segments in sg
2562  * @offset:     offset in bytes into sg, on return offset into the mapped area
2563  * @len:        bytes to map, on return number of bytes mapped
2564  *
2565  * Returns virtual address of the start of the mapped page
2566  */
2567 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2568                           size_t *offset, size_t *len)
2569 {
2570         int i;
2571         size_t sg_len = 0, len_complete = 0;
2572         struct scatterlist *sg;
2573         struct page *page;
2574
2575         WARN_ON(!irqs_disabled());
2576
2577         for_each_sg(sgl, sg, sg_count, i) {
2578                 len_complete = sg_len; /* Complete sg-entries */
2579                 sg_len += sg->length;
2580                 if (sg_len > *offset)
2581                         break;
2582         }
2583
2584         if (unlikely(i == sg_count)) {
2585                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2586                         "elements %d\n",
2587                        __func__, sg_len, *offset, sg_count);
2588                 WARN_ON(1);
2589                 return NULL;
2590         }
2591
2592         /* Offset starting from the beginning of first page in this sg-entry */
2593         *offset = *offset - len_complete + sg->offset;
2594
2595         /* Assumption: contiguous pages can be accessed as "page + i" */
2596         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2597         *offset &= ~PAGE_MASK;
2598
2599         /* Bytes in this sg-entry from *offset to the end of the page */
2600         sg_len = PAGE_SIZE - *offset;
2601         if (*len > sg_len)
2602                 *len = sg_len;
2603
2604         return kmap_atomic(page);
2605 }
2606 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2607
2608 /**
2609  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2610  * @virt:       virtual address to be unmapped
2611  */
2612 void scsi_kunmap_atomic_sg(void *virt)
2613 {
2614         kunmap_atomic(virt);
2615 }
2616 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2617
2618 void sdev_disable_disk_events(struct scsi_device *sdev)
2619 {
2620         atomic_inc(&sdev->disk_events_disable_depth);
2621 }
2622 EXPORT_SYMBOL(sdev_disable_disk_events);
2623
2624 void sdev_enable_disk_events(struct scsi_device *sdev)
2625 {
2626         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2627                 return;
2628         atomic_dec(&sdev->disk_events_disable_depth);
2629 }
2630 EXPORT_SYMBOL(sdev_enable_disk_events);