ufs: tune bkops while power managment events
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE         2
42
43 struct scsi_host_sg_pool {
44         size_t          size;
45         char            *name;
46         struct kmem_cache       *slab;
47         mempool_t       *pool;
48 };
49
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55         SP(8),
56         SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62         SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69         SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY        3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85         struct Scsi_Host *host = cmd->device->host;
86         struct scsi_device *device = cmd->device;
87         struct scsi_target *starget = scsi_target(device);
88
89         /*
90          * Set the appropriate busy bit for the device/host.
91          *
92          * If the host/device isn't busy, assume that something actually
93          * completed, and that we should be able to queue a command now.
94          *
95          * Note that the prior mid-layer assumption that any host could
96          * always queue at least one command is now broken.  The mid-layer
97          * will implement a user specifiable stall (see
98          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99          * if a command is requeued with no other commands outstanding
100          * either for the device or for the host.
101          */
102         switch (reason) {
103         case SCSI_MLQUEUE_HOST_BUSY:
104                 atomic_set(&host->host_blocked, host->max_host_blocked);
105                 break;
106         case SCSI_MLQUEUE_DEVICE_BUSY:
107         case SCSI_MLQUEUE_EH_RETRY:
108                 atomic_set(&device->device_blocked,
109                            device->max_device_blocked);
110                 break;
111         case SCSI_MLQUEUE_TARGET_BUSY:
112                 atomic_set(&starget->target_blocked,
113                            starget->max_target_blocked);
114                 break;
115         }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120         struct scsi_device *sdev = cmd->device;
121         struct request_queue *q = cmd->request->q;
122
123         blk_mq_requeue_request(cmd->request);
124         blk_mq_kick_requeue_list(q);
125         put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142         struct scsi_device *device = cmd->device;
143         struct request_queue *q = device->request_queue;
144         unsigned long flags;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_cleanup_queue() finishes.
163          */
164         cmd->result = 0;
165         if (q->mq_ops) {
166                 scsi_mq_requeue_cmd(cmd);
167                 return;
168         }
169         spin_lock_irqsave(q->queue_lock, flags);
170         blk_requeue_request(q, cmd->request);
171         kblockd_schedule_work(&device->requeue_work);
172         spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196         __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:       scsi device
201  * @cmd:        scsi command
202  * @data_direction: data direction
203  * @buffer:     data buffer
204  * @bufflen:    len of buffer
205  * @sense:      optional sense buffer
206  * @timeout:    request timeout in seconds
207  * @retries:    number of times to retry request
208  * @flags:      or into request flags;
209  * @resid:      optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215                  int data_direction, void *buffer, unsigned bufflen,
216                  unsigned char *sense, int timeout, int retries, u64 flags,
217                  int *resid)
218 {
219         struct request *req;
220         int write = (data_direction == DMA_TO_DEVICE);
221         int ret = DRIVER_ERROR << 24;
222
223         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224         if (!req)
225                 return ret;
226         blk_rq_set_block_pc(req);
227
228         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
229                                         buffer, bufflen, __GFP_WAIT))
230                 goto out;
231
232         req->cmd_len = COMMAND_SIZE(cmd[0]);
233         memcpy(req->cmd, cmd, req->cmd_len);
234         req->sense = sense;
235         req->sense_len = 0;
236         req->retries = retries;
237         req->timeout = timeout;
238         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240         /*
241          * head injection *required* here otherwise quiesce won't work
242          */
243         blk_execute_rq(req->q, NULL, req, 1);
244
245         /*
246          * Some devices (USB mass-storage in particular) may transfer
247          * garbage data together with a residue indicating that the data
248          * is invalid.  Prevent the garbage from being misinterpreted
249          * and prevent security leaks by zeroing out the excess data.
250          */
251         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254         if (resid)
255                 *resid = req->resid_len;
256         ret = req->errors;
257  out:
258         blk_put_request(req);
259
260         return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265                      int data_direction, void *buffer, unsigned bufflen,
266                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
267                      int *resid, u64 flags)
268 {
269         char *sense = NULL;
270         int result;
271         
272         if (sshdr) {
273                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274                 if (!sense)
275                         return DRIVER_ERROR << 24;
276         }
277         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278                               sense, timeout, retries, flags, resid);
279         if (sshdr)
280                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282         kfree(sense);
283         return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd     - command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300         cmd->serial_number = 0;
301         scsi_set_resid(cmd, 0);
302         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303         if (cmd->cmd_len == 0)
304                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309         struct Scsi_Host *shost = sdev->host;
310         struct scsi_target *starget = scsi_target(sdev);
311         unsigned long flags;
312
313         atomic_dec(&shost->host_busy);
314         if (starget->can_queue > 0)
315                 atomic_dec(&starget->target_busy);
316
317         if (unlikely(scsi_host_in_recovery(shost) &&
318                      (shost->host_failed || shost->host_eh_scheduled))) {
319                 spin_lock_irqsave(shost->host_lock, flags);
320                 scsi_eh_wakeup(shost);
321                 spin_unlock_irqrestore(shost->host_lock, flags);
322         }
323
324         atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329         if (q->mq_ops)
330                 blk_mq_start_hw_queues(q);
331         else
332                 blk_run_queue(q);
333 }
334
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344         struct Scsi_Host *shost = current_sdev->host;
345         struct scsi_device *sdev, *tmp;
346         struct scsi_target *starget = scsi_target(current_sdev);
347         unsigned long flags;
348
349         spin_lock_irqsave(shost->host_lock, flags);
350         starget->starget_sdev_user = NULL;
351         spin_unlock_irqrestore(shost->host_lock, flags);
352
353         /*
354          * Call blk_run_queue for all LUNs on the target, starting with
355          * current_sdev. We race with others (to set starget_sdev_user),
356          * but in most cases, we will be first. Ideally, each LU on the
357          * target would get some limited time or requests on the target.
358          */
359         scsi_kick_queue(current_sdev->request_queue);
360
361         spin_lock_irqsave(shost->host_lock, flags);
362         if (starget->starget_sdev_user)
363                 goto out;
364         list_for_each_entry_safe(sdev, tmp, &starget->devices,
365                         same_target_siblings) {
366                 if (sdev == current_sdev)
367                         continue;
368                 if (scsi_device_get(sdev))
369                         continue;
370
371                 spin_unlock_irqrestore(shost->host_lock, flags);
372                 scsi_kick_queue(sdev->request_queue);
373                 spin_lock_irqsave(shost->host_lock, flags);
374         
375                 scsi_device_put(sdev);
376         }
377  out:
378         spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384                 return true;
385         if (atomic_read(&sdev->device_blocked) > 0)
386                 return true;
387         return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392         if (starget->can_queue > 0) {
393                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394                         return true;
395                 if (atomic_read(&starget->target_blocked) > 0)
396                         return true;
397         }
398         return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if (shost->can_queue > 0 &&
404             atomic_read(&shost->host_busy) >= shost->can_queue)
405                 return true;
406         if (atomic_read(&shost->host_blocked) > 0)
407                 return true;
408         if (shost->host_self_blocked)
409                 return true;
410         return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415         LIST_HEAD(starved_list);
416         struct scsi_device *sdev;
417         unsigned long flags;
418
419         spin_lock_irqsave(shost->host_lock, flags);
420         list_splice_init(&shost->starved_list, &starved_list);
421
422         while (!list_empty(&starved_list)) {
423                 struct request_queue *slq;
424
425                 /*
426                  * As long as shost is accepting commands and we have
427                  * starved queues, call blk_run_queue. scsi_request_fn
428                  * drops the queue_lock and can add us back to the
429                  * starved_list.
430                  *
431                  * host_lock protects the starved_list and starved_entry.
432                  * scsi_request_fn must get the host_lock before checking
433                  * or modifying starved_list or starved_entry.
434                  */
435                 if (scsi_host_is_busy(shost))
436                         break;
437
438                 sdev = list_entry(starved_list.next,
439                                   struct scsi_device, starved_entry);
440                 list_del_init(&sdev->starved_entry);
441                 if (scsi_target_is_busy(scsi_target(sdev))) {
442                         list_move_tail(&sdev->starved_entry,
443                                        &shost->starved_list);
444                         continue;
445                 }
446
447                 /*
448                  * Once we drop the host lock, a racing scsi_remove_device()
449                  * call may remove the sdev from the starved list and destroy
450                  * it and the queue.  Mitigate by taking a reference to the
451                  * queue and never touching the sdev again after we drop the
452                  * host lock.  Note: if __scsi_remove_device() invokes
453                  * blk_cleanup_queue() before the queue is run from this
454                  * function then blk_run_queue() will return immediately since
455                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456                  */
457                 slq = sdev->request_queue;
458                 if (!blk_get_queue(slq))
459                         continue;
460                 spin_unlock_irqrestore(shost->host_lock, flags);
461
462                 scsi_kick_queue(slq);
463                 blk_put_queue(slq);
464
465                 spin_lock_irqsave(shost->host_lock, flags);
466         }
467         /* put any unprocessed entries back */
468         list_splice(&starved_list, &shost->starved_list);
469         spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486         struct scsi_device *sdev = q->queuedata;
487
488         if (scsi_target(sdev)->single_lun)
489                 scsi_single_lun_run(sdev);
490         if (!list_empty(&sdev->host->starved_list))
491                 scsi_starved_list_run(sdev->host);
492
493         if (q->mq_ops)
494                 blk_mq_start_stopped_hw_queues(q, false);
495         else
496                 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501         struct scsi_device *sdev;
502         struct request_queue *q;
503
504         sdev = container_of(work, struct scsi_device, requeue_work);
505         q = sdev->request_queue;
506         scsi_run_queue(q);
507 }
508
509 /*
510  * Function:    scsi_requeue_command()
511  *
512  * Purpose:     Handle post-processing of completed commands.
513  *
514  * Arguments:   q       - queue to operate on
515  *              cmd     - command that may need to be requeued.
516  *
517  * Returns:     Nothing
518  *
519  * Notes:       After command completion, there may be blocks left
520  *              over which weren't finished by the previous command
521  *              this can be for a number of reasons - the main one is
522  *              I/O errors in the middle of the request, in which case
523  *              we need to request the blocks that come after the bad
524  *              sector.
525  * Notes:       Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529         struct scsi_device *sdev = cmd->device;
530         struct request *req = cmd->request;
531         unsigned long flags;
532
533         spin_lock_irqsave(q->queue_lock, flags);
534         blk_unprep_request(req);
535         req->special = NULL;
536         scsi_put_command(cmd);
537         blk_requeue_request(q, req);
538         spin_unlock_irqrestore(q->queue_lock, flags);
539
540         scsi_run_queue(q);
541
542         put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547         struct scsi_device *sdev = cmd->device;
548         struct request_queue *q = sdev->request_queue;
549
550         scsi_put_command(cmd);
551         scsi_run_queue(q);
552
553         put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558         struct scsi_device *sdev;
559
560         shost_for_each_device(sdev, shost)
561                 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566         unsigned int index;
567
568         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570         if (nents <= 8)
571                 index = 0;
572         else
573                 index = get_count_order(nents) - 3;
574
575         return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580         struct scsi_host_sg_pool *sgp;
581
582         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583         mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588         struct scsi_host_sg_pool *sgp;
589
590         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591         return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596         if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597                 return;
598         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602                               gfp_t gfp_mask, bool mq)
603 {
604         struct scatterlist *first_chunk = NULL;
605         int ret;
606
607         BUG_ON(!nents);
608
609         if (mq) {
610                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611                         sdb->table.nents = nents;
612                         sg_init_table(sdb->table.sgl, sdb->table.nents);
613                         return 0;
614                 }
615                 first_chunk = sdb->table.sgl;
616         }
617
618         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619                                first_chunk, gfp_mask, scsi_sg_alloc);
620         if (unlikely(ret))
621                 scsi_free_sgtable(sdb, mq);
622         return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627         if (cmd->request->cmd_type == REQ_TYPE_FS) {
628                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630                 if (drv->uninit_command)
631                         drv->uninit_command(cmd);
632         }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637         if (cmd->sdb.table.nents)
638                 scsi_free_sgtable(&cmd->sdb, true);
639         if (cmd->request->next_rq && cmd->request->next_rq->special)
640                 scsi_free_sgtable(cmd->request->next_rq->special, true);
641         if (scsi_prot_sg_count(cmd))
642                 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct Scsi_Host *shost = sdev->host;
649         unsigned long flags;
650
651         scsi_mq_free_sgtables(cmd);
652         scsi_uninit_cmd(cmd);
653
654         if (shost->use_cmd_list) {
655                 BUG_ON(list_empty(&cmd->list));
656                 spin_lock_irqsave(&sdev->list_lock, flags);
657                 list_del_init(&cmd->list);
658                 spin_unlock_irqrestore(&sdev->list_lock, flags);
659         }
660 }
661
662 /*
663  * Function:    scsi_release_buffers()
664  *
665  * Purpose:     Free resources allocate for a scsi_command.
666  *
667  * Arguments:   cmd     - command that we are bailing.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       In the event that an upper level driver rejects a
674  *              command, we must release resources allocated during
675  *              the __init_io() function.  Primarily this would involve
676  *              the scatter-gather table.
677  */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680         if (cmd->sdb.table.nents)
681                 scsi_free_sgtable(&cmd->sdb, false);
682
683         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685         if (scsi_prot_sg_count(cmd))
686                 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693         scsi_free_sgtable(bidi_sdb, false);
694         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695         cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699                 unsigned int bytes, unsigned int bidi_bytes)
700 {
701         struct scsi_cmnd *cmd = req->special;
702         struct scsi_device *sdev = cmd->device;
703         struct request_queue *q = sdev->request_queue;
704
705         if (blk_update_request(req, error, bytes))
706                 return true;
707
708         /* Bidi request must be completed as a whole */
709         if (unlikely(bidi_bytes) &&
710             blk_update_request(req->next_rq, error, bidi_bytes))
711                 return true;
712
713         if (blk_queue_add_random(q))
714                 add_disk_randomness(req->rq_disk);
715
716         if (req->mq_ctx) {
717                 /*
718                  * In the MQ case the command gets freed by __blk_mq_end_io,
719                  * so we have to do all cleanup that depends on it earlier.
720                  *
721                  * We also can't kick the queues from irq context, so we
722                  * will have to defer it to a workqueue.
723                  */
724                 scsi_mq_uninit_cmd(cmd);
725
726                 __blk_mq_end_io(req, error);
727
728                 if (scsi_target(sdev)->single_lun ||
729                     !list_empty(&sdev->host->starved_list))
730                         kblockd_schedule_work(&sdev->requeue_work);
731                 else
732                         blk_mq_start_stopped_hw_queues(q, true);
733
734                 put_device(&sdev->sdev_gendev);
735         } else {
736                 unsigned long flags;
737
738                 spin_lock_irqsave(q->queue_lock, flags);
739                 blk_finish_request(req, error);
740                 spin_unlock_irqrestore(q->queue_lock, flags);
741
742                 if (bidi_bytes)
743                         scsi_release_bidi_buffers(cmd);
744                 scsi_release_buffers(cmd);
745                 scsi_next_command(cmd);
746         }
747
748         return false;
749 }
750
751 /**
752  * __scsi_error_from_host_byte - translate SCSI error code into errno
753  * @cmd:        SCSI command (unused)
754  * @result:     scsi error code
755  *
756  * Translate SCSI error code into standard UNIX errno.
757  * Return values:
758  * -ENOLINK     temporary transport failure
759  * -EREMOTEIO   permanent target failure, do not retry
760  * -EBADE       permanent nexus failure, retry on other path
761  * -ENOSPC      No write space available
762  * -ENODATA     Medium error
763  * -EIO         unspecified I/O error
764  */
765 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
766 {
767         int error = 0;
768
769         switch(host_byte(result)) {
770         case DID_TRANSPORT_FAILFAST:
771                 error = -ENOLINK;
772                 break;
773         case DID_TARGET_FAILURE:
774                 set_host_byte(cmd, DID_OK);
775                 error = -EREMOTEIO;
776                 break;
777         case DID_NEXUS_FAILURE:
778                 set_host_byte(cmd, DID_OK);
779                 error = -EBADE;
780                 break;
781         case DID_ALLOC_FAILURE:
782                 set_host_byte(cmd, DID_OK);
783                 error = -ENOSPC;
784                 break;
785         case DID_MEDIUM_ERROR:
786                 set_host_byte(cmd, DID_OK);
787                 error = -ENODATA;
788                 break;
789         default:
790                 error = -EIO;
791                 break;
792         }
793
794         return error;
795 }
796
797 /*
798  * Function:    scsi_io_completion()
799  *
800  * Purpose:     Completion processing for block device I/O requests.
801  *
802  * Arguments:   cmd   - command that is finished.
803  *
804  * Lock status: Assumed that no lock is held upon entry.
805  *
806  * Returns:     Nothing
807  *
808  * Notes:       We will finish off the specified number of sectors.  If we
809  *              are done, the command block will be released and the queue
810  *              function will be goosed.  If we are not done then we have to
811  *              figure out what to do next:
812  *
813  *              a) We can call scsi_requeue_command().  The request
814  *                 will be unprepared and put back on the queue.  Then
815  *                 a new command will be created for it.  This should
816  *                 be used if we made forward progress, or if we want
817  *                 to switch from READ(10) to READ(6) for example.
818  *
819  *              b) We can call __scsi_queue_insert().  The request will
820  *                 be put back on the queue and retried using the same
821  *                 command as before, possibly after a delay.
822  *
823  *              c) We can call scsi_end_request() with -EIO to fail
824  *                 the remainder of the request.
825  */
826 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
827 {
828         int result = cmd->result;
829         struct request_queue *q = cmd->device->request_queue;
830         struct request *req = cmd->request;
831         int error = 0;
832         struct scsi_sense_hdr sshdr;
833         int sense_valid = 0;
834         int sense_deferred = 0;
835         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
836               ACTION_DELAYED_RETRY} action;
837         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
838
839         if (result) {
840                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
841                 if (sense_valid)
842                         sense_deferred = scsi_sense_is_deferred(&sshdr);
843         }
844
845         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
846                 if (result) {
847                         if (sense_valid && req->sense) {
848                                 /*
849                                  * SG_IO wants current and deferred errors
850                                  */
851                                 int len = 8 + cmd->sense_buffer[7];
852
853                                 if (len > SCSI_SENSE_BUFFERSIZE)
854                                         len = SCSI_SENSE_BUFFERSIZE;
855                                 memcpy(req->sense, cmd->sense_buffer,  len);
856                                 req->sense_len = len;
857                         }
858                         if (!sense_deferred)
859                                 error = __scsi_error_from_host_byte(cmd, result);
860                 }
861                 /*
862                  * __scsi_error_from_host_byte may have reset the host_byte
863                  */
864                 req->errors = cmd->result;
865
866                 req->resid_len = scsi_get_resid(cmd);
867
868                 if (scsi_bidi_cmnd(cmd)) {
869                         /*
870                          * Bidi commands Must be complete as a whole,
871                          * both sides at once.
872                          */
873                         req->next_rq->resid_len = scsi_in(cmd)->resid;
874                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
875                                         blk_rq_bytes(req->next_rq)))
876                                 BUG();
877                         return;
878                 }
879         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
880                 /*
881                  * Certain non BLOCK_PC requests are commands that don't
882                  * actually transfer anything (FLUSH), so cannot use
883                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
884                  * This sets the error explicitly for the problem case.
885                  */
886                 error = __scsi_error_from_host_byte(cmd, result);
887         }
888
889         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
890         BUG_ON(blk_bidi_rq(req));
891
892         /*
893          * Next deal with any sectors which we were able to correctly
894          * handle.
895          */
896         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
897                 "%u sectors total, %d bytes done.\n",
898                 blk_rq_sectors(req), good_bytes));
899
900         /*
901          * Recovered errors need reporting, but they're always treated
902          * as success, so fiddle the result code here.  For BLOCK_PC
903          * we already took a copy of the original into rq->errors which
904          * is what gets returned to the user
905          */
906         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
907                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
908                  * print since caller wants ATA registers. Only occurs on
909                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
910                  */
911                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
912                         ;
913                 else if (!(req->cmd_flags & REQ_QUIET))
914                         scsi_print_sense("", cmd);
915                 result = 0;
916                 /* BLOCK_PC may have set error */
917                 error = 0;
918         }
919
920         /*
921          * If we finished all bytes in the request we are done now.
922          */
923         if (!scsi_end_request(req, error, good_bytes, 0))
924                 return;
925
926         /*
927          * Kill remainder if no retrys.
928          */
929         if (error && scsi_noretry_cmd(cmd)) {
930                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
931                         BUG();
932                 return;
933         }
934
935         /*
936          * If there had been no error, but we have leftover bytes in the
937          * requeues just queue the command up again.
938          */
939         if (result == 0)
940                 goto requeue;
941
942         error = __scsi_error_from_host_byte(cmd, result);
943
944         if (host_byte(result) == DID_RESET) {
945                 /* Third party bus reset or reset for error recovery
946                  * reasons.  Just retry the command and see what
947                  * happens.
948                  */
949                 action = ACTION_RETRY;
950         } else if (sense_valid && !sense_deferred) {
951                 switch (sshdr.sense_key) {
952                 case UNIT_ATTENTION:
953                         if (cmd->device->removable) {
954                                 /* Detected disc change.  Set a bit
955                                  * and quietly refuse further access.
956                                  */
957                                 cmd->device->changed = 1;
958                                 action = ACTION_FAIL;
959                         } else {
960                                 /* Must have been a power glitch, or a
961                                  * bus reset.  Could not have been a
962                                  * media change, so we just retry the
963                                  * command and see what happens.
964                                  */
965                                 action = ACTION_RETRY;
966                         }
967                         break;
968                 case ILLEGAL_REQUEST:
969                         /* If we had an ILLEGAL REQUEST returned, then
970                          * we may have performed an unsupported
971                          * command.  The only thing this should be
972                          * would be a ten byte read where only a six
973                          * byte read was supported.  Also, on a system
974                          * where READ CAPACITY failed, we may have
975                          * read past the end of the disk.
976                          */
977                         if ((cmd->device->use_10_for_rw &&
978                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
979                             (cmd->cmnd[0] == READ_10 ||
980                              cmd->cmnd[0] == WRITE_10)) {
981                                 /* This will issue a new 6-byte command. */
982                                 cmd->device->use_10_for_rw = 0;
983                                 action = ACTION_REPREP;
984                         } else if (sshdr.asc == 0x10) /* DIX */ {
985                                 action = ACTION_FAIL;
986                                 error = -EILSEQ;
987                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
988                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
989                                 action = ACTION_FAIL;
990                                 error = -EREMOTEIO;
991                         } else
992                                 action = ACTION_FAIL;
993                         break;
994                 case ABORTED_COMMAND:
995                         action = ACTION_FAIL;
996                         if (sshdr.asc == 0x10) /* DIF */
997                                 error = -EILSEQ;
998                         break;
999                 case NOT_READY:
1000                         /* If the device is in the process of becoming
1001                          * ready, or has a temporary blockage, retry.
1002                          */
1003                         if (sshdr.asc == 0x04) {
1004                                 switch (sshdr.ascq) {
1005                                 case 0x01: /* becoming ready */
1006                                 case 0x04: /* format in progress */
1007                                 case 0x05: /* rebuild in progress */
1008                                 case 0x06: /* recalculation in progress */
1009                                 case 0x07: /* operation in progress */
1010                                 case 0x08: /* Long write in progress */
1011                                 case 0x09: /* self test in progress */
1012                                 case 0x14: /* space allocation in progress */
1013                                         action = ACTION_DELAYED_RETRY;
1014                                         break;
1015                                 default:
1016                                         action = ACTION_FAIL;
1017                                         break;
1018                                 }
1019                         } else
1020                                 action = ACTION_FAIL;
1021                         break;
1022                 case VOLUME_OVERFLOW:
1023                         /* See SSC3rXX or current. */
1024                         action = ACTION_FAIL;
1025                         break;
1026                 default:
1027                         action = ACTION_FAIL;
1028                         break;
1029                 }
1030         } else
1031                 action = ACTION_FAIL;
1032
1033         if (action != ACTION_FAIL &&
1034             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1035                 action = ACTION_FAIL;
1036
1037         switch (action) {
1038         case ACTION_FAIL:
1039                 /* Give up and fail the remainder of the request */
1040                 if (!(req->cmd_flags & REQ_QUIET)) {
1041                         scsi_print_result(cmd);
1042                         if (driver_byte(result) & DRIVER_SENSE)
1043                                 scsi_print_sense("", cmd);
1044                         scsi_print_command(cmd);
1045                 }
1046                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1047                         return;
1048                 /*FALLTHRU*/
1049         case ACTION_REPREP:
1050         requeue:
1051                 /* Unprep the request and put it back at the head of the queue.
1052                  * A new command will be prepared and issued.
1053                  */
1054                 if (q->mq_ops) {
1055                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1056                         scsi_mq_uninit_cmd(cmd);
1057                         scsi_mq_requeue_cmd(cmd);
1058                 } else {
1059                         scsi_release_buffers(cmd);
1060                         scsi_requeue_command(q, cmd);
1061                 }
1062                 break;
1063         case ACTION_RETRY:
1064                 /* Retry the same command immediately */
1065                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1066                 break;
1067         case ACTION_DELAYED_RETRY:
1068                 /* Retry the same command after a delay */
1069                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1070                 break;
1071         }
1072 }
1073
1074 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1075                              gfp_t gfp_mask)
1076 {
1077         int count;
1078
1079         /*
1080          * If sg table allocation fails, requeue request later.
1081          */
1082         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1083                                         gfp_mask, req->mq_ctx != NULL)))
1084                 return BLKPREP_DEFER;
1085
1086         /* 
1087          * Next, walk the list, and fill in the addresses and sizes of
1088          * each segment.
1089          */
1090         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1091         BUG_ON(count > sdb->table.nents);
1092         sdb->table.nents = count;
1093         sdb->length = blk_rq_bytes(req);
1094         return BLKPREP_OK;
1095 }
1096
1097 /*
1098  * Function:    scsi_init_io()
1099  *
1100  * Purpose:     SCSI I/O initialize function.
1101  *
1102  * Arguments:   cmd   - Command descriptor we wish to initialize
1103  *
1104  * Returns:     0 on success
1105  *              BLKPREP_DEFER if the failure is retryable
1106  *              BLKPREP_KILL if the failure is fatal
1107  */
1108 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1109 {
1110         struct scsi_device *sdev = cmd->device;
1111         struct request *rq = cmd->request;
1112         bool is_mq = (rq->mq_ctx != NULL);
1113         int error;
1114
1115         BUG_ON(!rq->nr_phys_segments);
1116
1117         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1118         if (error)
1119                 goto err_exit;
1120
1121         if (blk_bidi_rq(rq)) {
1122                 if (!rq->q->mq_ops) {
1123                         struct scsi_data_buffer *bidi_sdb =
1124                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1125                         if (!bidi_sdb) {
1126                                 error = BLKPREP_DEFER;
1127                                 goto err_exit;
1128                         }
1129
1130                         rq->next_rq->special = bidi_sdb;
1131                 }
1132
1133                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1134                                           GFP_ATOMIC);
1135                 if (error)
1136                         goto err_exit;
1137         }
1138
1139         if (blk_integrity_rq(rq)) {
1140                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1141                 int ivecs, count;
1142
1143                 BUG_ON(prot_sdb == NULL);
1144                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1145
1146                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1147                         error = BLKPREP_DEFER;
1148                         goto err_exit;
1149                 }
1150
1151                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1152                                                 prot_sdb->table.sgl);
1153                 BUG_ON(unlikely(count > ivecs));
1154                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1155
1156                 cmd->prot_sdb = prot_sdb;
1157                 cmd->prot_sdb->table.nents = count;
1158         }
1159
1160         return BLKPREP_OK;
1161 err_exit:
1162         if (is_mq) {
1163                 scsi_mq_free_sgtables(cmd);
1164         } else {
1165                 scsi_release_buffers(cmd);
1166                 cmd->request->special = NULL;
1167                 scsi_put_command(cmd);
1168                 put_device(&sdev->sdev_gendev);
1169         }
1170         return error;
1171 }
1172 EXPORT_SYMBOL(scsi_init_io);
1173
1174 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1175                 struct request *req)
1176 {
1177         struct scsi_cmnd *cmd;
1178
1179         if (!req->special) {
1180                 /* Bail if we can't get a reference to the device */
1181                 if (!get_device(&sdev->sdev_gendev))
1182                         return NULL;
1183
1184                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1185                 if (unlikely(!cmd)) {
1186                         put_device(&sdev->sdev_gendev);
1187                         return NULL;
1188                 }
1189                 req->special = cmd;
1190         } else {
1191                 cmd = req->special;
1192         }
1193
1194         /* pull a tag out of the request if we have one */
1195         cmd->tag = req->tag;
1196         cmd->request = req;
1197
1198         cmd->cmnd = req->cmd;
1199         cmd->prot_op = SCSI_PROT_NORMAL;
1200
1201         return cmd;
1202 }
1203
1204 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206         struct scsi_cmnd *cmd = req->special;
1207
1208         /*
1209          * BLOCK_PC requests may transfer data, in which case they must
1210          * a bio attached to them.  Or they might contain a SCSI command
1211          * that does not transfer data, in which case they may optionally
1212          * submit a request without an attached bio.
1213          */
1214         if (req->bio) {
1215                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1216                 if (unlikely(ret))
1217                         return ret;
1218         } else {
1219                 BUG_ON(blk_rq_bytes(req));
1220
1221                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1222         }
1223
1224         cmd->cmd_len = req->cmd_len;
1225         cmd->transfersize = blk_rq_bytes(req);
1226         cmd->allowed = req->retries;
1227         return BLKPREP_OK;
1228 }
1229
1230 /*
1231  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1232  * that still need to be translated to SCSI CDBs from the ULD.
1233  */
1234 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1235 {
1236         struct scsi_cmnd *cmd = req->special;
1237
1238         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1239                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1240                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1241                 if (ret != BLKPREP_OK)
1242                         return ret;
1243         }
1244
1245         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1246         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1247 }
1248
1249 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1250 {
1251         struct scsi_cmnd *cmd = req->special;
1252
1253         if (!blk_rq_bytes(req))
1254                 cmd->sc_data_direction = DMA_NONE;
1255         else if (rq_data_dir(req) == WRITE)
1256                 cmd->sc_data_direction = DMA_TO_DEVICE;
1257         else
1258                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1259
1260         switch (req->cmd_type) {
1261         case REQ_TYPE_FS:
1262                 return scsi_setup_fs_cmnd(sdev, req);
1263         case REQ_TYPE_BLOCK_PC:
1264                 return scsi_setup_blk_pc_cmnd(sdev, req);
1265         default:
1266                 return BLKPREP_KILL;
1267         }
1268 }
1269
1270 static int
1271 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1272 {
1273         int ret = BLKPREP_OK;
1274
1275         /*
1276          * If the device is not in running state we will reject some
1277          * or all commands.
1278          */
1279         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1280                 switch (sdev->sdev_state) {
1281                 case SDEV_OFFLINE:
1282                 case SDEV_TRANSPORT_OFFLINE:
1283                         /*
1284                          * If the device is offline we refuse to process any
1285                          * commands.  The device must be brought online
1286                          * before trying any recovery commands.
1287                          */
1288                         sdev_printk(KERN_ERR, sdev,
1289                                     "rejecting I/O to offline device\n");
1290                         ret = BLKPREP_KILL;
1291                         break;
1292                 case SDEV_DEL:
1293                         /*
1294                          * If the device is fully deleted, we refuse to
1295                          * process any commands as well.
1296                          */
1297                         sdev_printk(KERN_ERR, sdev,
1298                                     "rejecting I/O to dead device\n");
1299                         ret = BLKPREP_KILL;
1300                         break;
1301                 case SDEV_QUIESCE:
1302                 case SDEV_BLOCK:
1303                 case SDEV_CREATED_BLOCK:
1304                         /*
1305                          * If the devices is blocked we defer normal commands.
1306                          */
1307                         if (!(req->cmd_flags & REQ_PREEMPT))
1308                                 ret = BLKPREP_DEFER;
1309                         break;
1310                 default:
1311                         /*
1312                          * For any other not fully online state we only allow
1313                          * special commands.  In particular any user initiated
1314                          * command is not allowed.
1315                          */
1316                         if (!(req->cmd_flags & REQ_PREEMPT))
1317                                 ret = BLKPREP_KILL;
1318                         break;
1319                 }
1320         }
1321         return ret;
1322 }
1323
1324 static int
1325 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1326 {
1327         struct scsi_device *sdev = q->queuedata;
1328
1329         switch (ret) {
1330         case BLKPREP_KILL:
1331                 req->errors = DID_NO_CONNECT << 16;
1332                 /* release the command and kill it */
1333                 if (req->special) {
1334                         struct scsi_cmnd *cmd = req->special;
1335                         scsi_release_buffers(cmd);
1336                         scsi_put_command(cmd);
1337                         put_device(&sdev->sdev_gendev);
1338                         req->special = NULL;
1339                 }
1340                 break;
1341         case BLKPREP_DEFER:
1342                 /*
1343                  * If we defer, the blk_peek_request() returns NULL, but the
1344                  * queue must be restarted, so we schedule a callback to happen
1345                  * shortly.
1346                  */
1347                 if (atomic_read(&sdev->device_busy) == 0)
1348                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1349                 break;
1350         default:
1351                 req->cmd_flags |= REQ_DONTPREP;
1352         }
1353
1354         return ret;
1355 }
1356
1357 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1358 {
1359         struct scsi_device *sdev = q->queuedata;
1360         struct scsi_cmnd *cmd;
1361         int ret;
1362
1363         ret = scsi_prep_state_check(sdev, req);
1364         if (ret != BLKPREP_OK)
1365                 goto out;
1366
1367         cmd = scsi_get_cmd_from_req(sdev, req);
1368         if (unlikely(!cmd)) {
1369                 ret = BLKPREP_DEFER;
1370                 goto out;
1371         }
1372
1373         ret = scsi_setup_cmnd(sdev, req);
1374 out:
1375         return scsi_prep_return(q, req, ret);
1376 }
1377
1378 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1379 {
1380         scsi_uninit_cmd(req->special);
1381 }
1382
1383 /*
1384  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1385  * return 0.
1386  *
1387  * Called with the queue_lock held.
1388  */
1389 static inline int scsi_dev_queue_ready(struct request_queue *q,
1390                                   struct scsi_device *sdev)
1391 {
1392         unsigned int busy;
1393
1394         busy = atomic_inc_return(&sdev->device_busy) - 1;
1395         if (atomic_read(&sdev->device_blocked)) {
1396                 if (busy)
1397                         goto out_dec;
1398
1399                 /*
1400                  * unblock after device_blocked iterates to zero
1401                  */
1402                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1403                         /*
1404                          * For the MQ case we take care of this in the caller.
1405                          */
1406                         if (!q->mq_ops)
1407                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1408                         goto out_dec;
1409                 }
1410                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1411                                    "unblocking device at zero depth\n"));
1412         }
1413
1414         if (busy >= sdev->queue_depth)
1415                 goto out_dec;
1416
1417         return 1;
1418 out_dec:
1419         atomic_dec(&sdev->device_busy);
1420         return 0;
1421 }
1422
1423 /*
1424  * scsi_target_queue_ready: checks if there we can send commands to target
1425  * @sdev: scsi device on starget to check.
1426  */
1427 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1428                                            struct scsi_device *sdev)
1429 {
1430         struct scsi_target *starget = scsi_target(sdev);
1431         unsigned int busy;
1432
1433         if (starget->single_lun) {
1434                 spin_lock_irq(shost->host_lock);
1435                 if (starget->starget_sdev_user &&
1436                     starget->starget_sdev_user != sdev) {
1437                         spin_unlock_irq(shost->host_lock);
1438                         return 0;
1439                 }
1440                 starget->starget_sdev_user = sdev;
1441                 spin_unlock_irq(shost->host_lock);
1442         }
1443
1444         if (starget->can_queue <= 0)
1445                 return 1;
1446
1447         busy = atomic_inc_return(&starget->target_busy) - 1;
1448         if (atomic_read(&starget->target_blocked) > 0) {
1449                 if (busy)
1450                         goto starved;
1451
1452                 /*
1453                  * unblock after target_blocked iterates to zero
1454                  */
1455                 if (atomic_dec_return(&starget->target_blocked) > 0)
1456                         goto out_dec;
1457
1458                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1459                                  "unblocking target at zero depth\n"));
1460         }
1461
1462         if (busy >= starget->can_queue)
1463                 goto starved;
1464
1465         return 1;
1466
1467 starved:
1468         spin_lock_irq(shost->host_lock);
1469         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1470         spin_unlock_irq(shost->host_lock);
1471 out_dec:
1472         if (starget->can_queue > 0)
1473                 atomic_dec(&starget->target_busy);
1474         return 0;
1475 }
1476
1477 /*
1478  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1479  * return 0. We must end up running the queue again whenever 0 is
1480  * returned, else IO can hang.
1481  */
1482 static inline int scsi_host_queue_ready(struct request_queue *q,
1483                                    struct Scsi_Host *shost,
1484                                    struct scsi_device *sdev)
1485 {
1486         unsigned int busy;
1487
1488         if (scsi_host_in_recovery(shost))
1489                 return 0;
1490
1491         busy = atomic_inc_return(&shost->host_busy) - 1;
1492         if (atomic_read(&shost->host_blocked) > 0) {
1493                 if (busy)
1494                         goto starved;
1495
1496                 /*
1497                  * unblock after host_blocked iterates to zero
1498                  */
1499                 if (atomic_dec_return(&shost->host_blocked) > 0)
1500                         goto out_dec;
1501
1502                 SCSI_LOG_MLQUEUE(3,
1503                         shost_printk(KERN_INFO, shost,
1504                                      "unblocking host at zero depth\n"));
1505         }
1506
1507         if (shost->can_queue > 0 && busy >= shost->can_queue)
1508                 goto starved;
1509         if (shost->host_self_blocked)
1510                 goto starved;
1511
1512         /* We're OK to process the command, so we can't be starved */
1513         if (!list_empty(&sdev->starved_entry)) {
1514                 spin_lock_irq(shost->host_lock);
1515                 if (!list_empty(&sdev->starved_entry))
1516                         list_del_init(&sdev->starved_entry);
1517                 spin_unlock_irq(shost->host_lock);
1518         }
1519
1520         return 1;
1521
1522 starved:
1523         spin_lock_irq(shost->host_lock);
1524         if (list_empty(&sdev->starved_entry))
1525                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1526         spin_unlock_irq(shost->host_lock);
1527 out_dec:
1528         atomic_dec(&shost->host_busy);
1529         return 0;
1530 }
1531
1532 /*
1533  * Busy state exporting function for request stacking drivers.
1534  *
1535  * For efficiency, no lock is taken to check the busy state of
1536  * shost/starget/sdev, since the returned value is not guaranteed and
1537  * may be changed after request stacking drivers call the function,
1538  * regardless of taking lock or not.
1539  *
1540  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1541  * needs to return 'not busy'. Otherwise, request stacking drivers
1542  * may hold requests forever.
1543  */
1544 static int scsi_lld_busy(struct request_queue *q)
1545 {
1546         struct scsi_device *sdev = q->queuedata;
1547         struct Scsi_Host *shost;
1548
1549         if (blk_queue_dying(q))
1550                 return 0;
1551
1552         shost = sdev->host;
1553
1554         /*
1555          * Ignore host/starget busy state.
1556          * Since block layer does not have a concept of fairness across
1557          * multiple queues, congestion of host/starget needs to be handled
1558          * in SCSI layer.
1559          */
1560         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1561                 return 1;
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * Kill a request for a dead device
1568  */
1569 static void scsi_kill_request(struct request *req, struct request_queue *q)
1570 {
1571         struct scsi_cmnd *cmd = req->special;
1572         struct scsi_device *sdev;
1573         struct scsi_target *starget;
1574         struct Scsi_Host *shost;
1575
1576         blk_start_request(req);
1577
1578         scmd_printk(KERN_INFO, cmd, "killing request\n");
1579
1580         sdev = cmd->device;
1581         starget = scsi_target(sdev);
1582         shost = sdev->host;
1583         scsi_init_cmd_errh(cmd);
1584         cmd->result = DID_NO_CONNECT << 16;
1585         atomic_inc(&cmd->device->iorequest_cnt);
1586
1587         /*
1588          * SCSI request completion path will do scsi_device_unbusy(),
1589          * bump busy counts.  To bump the counters, we need to dance
1590          * with the locks as normal issue path does.
1591          */
1592         atomic_inc(&sdev->device_busy);
1593         atomic_inc(&shost->host_busy);
1594         if (starget->can_queue > 0)
1595                 atomic_inc(&starget->target_busy);
1596
1597         blk_complete_request(req);
1598 }
1599
1600 static void scsi_softirq_done(struct request *rq)
1601 {
1602         struct scsi_cmnd *cmd = rq->special;
1603         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1604         int disposition;
1605
1606         INIT_LIST_HEAD(&cmd->eh_entry);
1607
1608         atomic_inc(&cmd->device->iodone_cnt);
1609         if (cmd->result)
1610                 atomic_inc(&cmd->device->ioerr_cnt);
1611
1612         disposition = scsi_decide_disposition(cmd);
1613         if (disposition != SUCCESS &&
1614             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1615                 sdev_printk(KERN_ERR, cmd->device,
1616                             "timing out command, waited %lus\n",
1617                             wait_for/HZ);
1618                 disposition = SUCCESS;
1619         }
1620
1621         scsi_log_completion(cmd, disposition);
1622
1623         switch (disposition) {
1624                 case SUCCESS:
1625                         scsi_finish_command(cmd);
1626                         break;
1627                 case NEEDS_RETRY:
1628                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1629                         break;
1630                 case ADD_TO_MLQUEUE:
1631                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1632                         break;
1633                 default:
1634                         if (!scsi_eh_scmd_add(cmd, 0))
1635                                 scsi_finish_command(cmd);
1636         }
1637 }
1638
1639 /**
1640  * scsi_done - Invoke completion on finished SCSI command.
1641  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1642  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1643  *
1644  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1645  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1646  * calls blk_complete_request() for further processing.
1647  *
1648  * This function is interrupt context safe.
1649  */
1650 static void scsi_done(struct scsi_cmnd *cmd)
1651 {
1652         trace_scsi_dispatch_cmd_done(cmd);
1653         blk_complete_request(cmd->request);
1654 }
1655
1656 /*
1657  * Function:    scsi_request_fn()
1658  *
1659  * Purpose:     Main strategy routine for SCSI.
1660  *
1661  * Arguments:   q       - Pointer to actual queue.
1662  *
1663  * Returns:     Nothing
1664  *
1665  * Lock status: IO request lock assumed to be held when called.
1666  */
1667 static void scsi_request_fn(struct request_queue *q)
1668         __releases(q->queue_lock)
1669         __acquires(q->queue_lock)
1670 {
1671         struct scsi_device *sdev = q->queuedata;
1672         struct Scsi_Host *shost;
1673         struct scsi_cmnd *cmd;
1674         struct request *req;
1675
1676         /*
1677          * To start with, we keep looping until the queue is empty, or until
1678          * the host is no longer able to accept any more requests.
1679          */
1680         shost = sdev->host;
1681         for (;;) {
1682                 int rtn;
1683                 /*
1684                  * get next queueable request.  We do this early to make sure
1685                  * that the request is fully prepared even if we cannot
1686                  * accept it.
1687                  */
1688                 req = blk_peek_request(q);
1689                 if (!req)
1690                         break;
1691
1692                 if (unlikely(!scsi_device_online(sdev))) {
1693                         sdev_printk(KERN_ERR, sdev,
1694                                     "rejecting I/O to offline device\n");
1695                         scsi_kill_request(req, q);
1696                         continue;
1697                 }
1698
1699                 if (!scsi_dev_queue_ready(q, sdev))
1700                         break;
1701
1702                 /*
1703                  * Remove the request from the request list.
1704                  */
1705                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1706                         blk_start_request(req);
1707
1708                 spin_unlock_irq(q->queue_lock);
1709                 cmd = req->special;
1710                 if (unlikely(cmd == NULL)) {
1711                         printk(KERN_CRIT "impossible request in %s.\n"
1712                                          "please mail a stack trace to "
1713                                          "linux-scsi@vger.kernel.org\n",
1714                                          __func__);
1715                         blk_dump_rq_flags(req, "foo");
1716                         BUG();
1717                 }
1718
1719                 /*
1720                  * We hit this when the driver is using a host wide
1721                  * tag map. For device level tag maps the queue_depth check
1722                  * in the device ready fn would prevent us from trying
1723                  * to allocate a tag. Since the map is a shared host resource
1724                  * we add the dev to the starved list so it eventually gets
1725                  * a run when a tag is freed.
1726                  */
1727                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1728                         spin_lock_irq(shost->host_lock);
1729                         if (list_empty(&sdev->starved_entry))
1730                                 list_add_tail(&sdev->starved_entry,
1731                                               &shost->starved_list);
1732                         spin_unlock_irq(shost->host_lock);
1733                         goto not_ready;
1734                 }
1735
1736                 if (!scsi_target_queue_ready(shost, sdev))
1737                         goto not_ready;
1738
1739                 if (!scsi_host_queue_ready(q, shost, sdev))
1740                         goto host_not_ready;
1741
1742                 /*
1743                  * Finally, initialize any error handling parameters, and set up
1744                  * the timers for timeouts.
1745                  */
1746                 scsi_init_cmd_errh(cmd);
1747
1748                 /*
1749                  * Dispatch the command to the low-level driver.
1750                  */
1751                 cmd->scsi_done = scsi_done;
1752                 rtn = scsi_dispatch_cmd(cmd);
1753                 if (rtn) {
1754                         scsi_queue_insert(cmd, rtn);
1755                         spin_lock_irq(q->queue_lock);
1756                         goto out_delay;
1757                 }
1758                 spin_lock_irq(q->queue_lock);
1759         }
1760
1761         return;
1762
1763  host_not_ready:
1764         if (scsi_target(sdev)->can_queue > 0)
1765                 atomic_dec(&scsi_target(sdev)->target_busy);
1766  not_ready:
1767         /*
1768          * lock q, handle tag, requeue req, and decrement device_busy. We
1769          * must return with queue_lock held.
1770          *
1771          * Decrementing device_busy without checking it is OK, as all such
1772          * cases (host limits or settings) should run the queue at some
1773          * later time.
1774          */
1775         spin_lock_irq(q->queue_lock);
1776         blk_requeue_request(q, req);
1777         atomic_dec(&sdev->device_busy);
1778 out_delay:
1779         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1780                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1781 }
1782
1783 static inline int prep_to_mq(int ret)
1784 {
1785         switch (ret) {
1786         case BLKPREP_OK:
1787                 return 0;
1788         case BLKPREP_DEFER:
1789                 return BLK_MQ_RQ_QUEUE_BUSY;
1790         default:
1791                 return BLK_MQ_RQ_QUEUE_ERROR;
1792         }
1793 }
1794
1795 static int scsi_mq_prep_fn(struct request *req)
1796 {
1797         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1798         struct scsi_device *sdev = req->q->queuedata;
1799         struct Scsi_Host *shost = sdev->host;
1800         unsigned char *sense_buf = cmd->sense_buffer;
1801         struct scatterlist *sg;
1802
1803         memset(cmd, 0, sizeof(struct scsi_cmnd));
1804
1805         req->special = cmd;
1806
1807         cmd->request = req;
1808         cmd->device = sdev;
1809         cmd->sense_buffer = sense_buf;
1810
1811         cmd->tag = req->tag;
1812
1813         cmd->cmnd = req->cmd;
1814         cmd->prot_op = SCSI_PROT_NORMAL;
1815
1816         INIT_LIST_HEAD(&cmd->list);
1817         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1818         cmd->jiffies_at_alloc = jiffies;
1819
1820         if (shost->use_cmd_list) {
1821                 spin_lock_irq(&sdev->list_lock);
1822                 list_add_tail(&cmd->list, &sdev->cmd_list);
1823                 spin_unlock_irq(&sdev->list_lock);
1824         }
1825
1826         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1827         cmd->sdb.table.sgl = sg;
1828
1829         if (scsi_host_get_prot(shost)) {
1830                 cmd->prot_sdb = (void *)sg +
1831                         shost->sg_tablesize * sizeof(struct scatterlist);
1832                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1833
1834                 cmd->prot_sdb->table.sgl =
1835                         (struct scatterlist *)(cmd->prot_sdb + 1);
1836         }
1837
1838         if (blk_bidi_rq(req)) {
1839                 struct request *next_rq = req->next_rq;
1840                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1841
1842                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1843                 bidi_sdb->table.sgl =
1844                         (struct scatterlist *)(bidi_sdb + 1);
1845
1846                 next_rq->special = bidi_sdb;
1847         }
1848
1849         return scsi_setup_cmnd(sdev, req);
1850 }
1851
1852 static void scsi_mq_done(struct scsi_cmnd *cmd)
1853 {
1854         trace_scsi_dispatch_cmd_done(cmd);
1855         blk_mq_complete_request(cmd->request);
1856 }
1857
1858 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req)
1859 {
1860         struct request_queue *q = req->q;
1861         struct scsi_device *sdev = q->queuedata;
1862         struct Scsi_Host *shost = sdev->host;
1863         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1864         int ret;
1865         int reason;
1866
1867         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1868         if (ret)
1869                 goto out;
1870
1871         ret = BLK_MQ_RQ_QUEUE_BUSY;
1872         if (!get_device(&sdev->sdev_gendev))
1873                 goto out;
1874
1875         if (!scsi_dev_queue_ready(q, sdev))
1876                 goto out_put_device;
1877         if (!scsi_target_queue_ready(shost, sdev))
1878                 goto out_dec_device_busy;
1879         if (!scsi_host_queue_ready(q, shost, sdev))
1880                 goto out_dec_target_busy;
1881
1882         if (!(req->cmd_flags & REQ_DONTPREP)) {
1883                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1884                 if (ret)
1885                         goto out_dec_host_busy;
1886                 req->cmd_flags |= REQ_DONTPREP;
1887         }
1888
1889         scsi_init_cmd_errh(cmd);
1890         cmd->scsi_done = scsi_mq_done;
1891
1892         reason = scsi_dispatch_cmd(cmd);
1893         if (reason) {
1894                 scsi_set_blocked(cmd, reason);
1895                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1896                 goto out_dec_host_busy;
1897         }
1898
1899         return BLK_MQ_RQ_QUEUE_OK;
1900
1901 out_dec_host_busy:
1902         atomic_dec(&shost->host_busy);
1903 out_dec_target_busy:
1904         if (scsi_target(sdev)->can_queue > 0)
1905                 atomic_dec(&scsi_target(sdev)->target_busy);
1906 out_dec_device_busy:
1907         atomic_dec(&sdev->device_busy);
1908 out_put_device:
1909         put_device(&sdev->sdev_gendev);
1910 out:
1911         switch (ret) {
1912         case BLK_MQ_RQ_QUEUE_BUSY:
1913                 blk_mq_stop_hw_queue(hctx);
1914                 if (atomic_read(&sdev->device_busy) == 0 &&
1915                     !scsi_device_blocked(sdev))
1916                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1917                 break;
1918         case BLK_MQ_RQ_QUEUE_ERROR:
1919                 /*
1920                  * Make sure to release all allocated ressources when
1921                  * we hit an error, as we will never see this command
1922                  * again.
1923                  */
1924                 if (req->cmd_flags & REQ_DONTPREP)
1925                         scsi_mq_uninit_cmd(cmd);
1926                 break;
1927         default:
1928                 break;
1929         }
1930         return ret;
1931 }
1932
1933 static int scsi_init_request(void *data, struct request *rq,
1934                 unsigned int hctx_idx, unsigned int request_idx,
1935                 unsigned int numa_node)
1936 {
1937         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1938
1939         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1940                         numa_node);
1941         if (!cmd->sense_buffer)
1942                 return -ENOMEM;
1943         return 0;
1944 }
1945
1946 static void scsi_exit_request(void *data, struct request *rq,
1947                 unsigned int hctx_idx, unsigned int request_idx)
1948 {
1949         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1950
1951         kfree(cmd->sense_buffer);
1952 }
1953
1954 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1955 {
1956         struct device *host_dev;
1957         u64 bounce_limit = 0xffffffff;
1958
1959         if (shost->unchecked_isa_dma)
1960                 return BLK_BOUNCE_ISA;
1961         /*
1962          * Platforms with virtual-DMA translation
1963          * hardware have no practical limit.
1964          */
1965         if (!PCI_DMA_BUS_IS_PHYS)
1966                 return BLK_BOUNCE_ANY;
1967
1968         host_dev = scsi_get_device(shost);
1969         if (host_dev && host_dev->dma_mask)
1970                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1971
1972         return bounce_limit;
1973 }
1974
1975 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1976 {
1977         struct device *dev = shost->dma_dev;
1978
1979         /*
1980          * this limit is imposed by hardware restrictions
1981          */
1982         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1983                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1984
1985         if (scsi_host_prot_dma(shost)) {
1986                 shost->sg_prot_tablesize =
1987                         min_not_zero(shost->sg_prot_tablesize,
1988                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1989                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1990                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1991         }
1992
1993         blk_queue_max_hw_sectors(q, shost->max_sectors);
1994         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1995         blk_queue_segment_boundary(q, shost->dma_boundary);
1996         dma_set_seg_boundary(dev, shost->dma_boundary);
1997
1998         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1999
2000         if (!shost->use_clustering)
2001                 q->limits.cluster = 0;
2002
2003         /*
2004          * set a reasonable default alignment on word boundaries: the
2005          * host and device may alter it using
2006          * blk_queue_update_dma_alignment() later.
2007          */
2008         blk_queue_dma_alignment(q, 0x03);
2009 }
2010
2011 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2012                                          request_fn_proc *request_fn)
2013 {
2014         struct request_queue *q;
2015
2016         q = blk_init_queue(request_fn, NULL);
2017         if (!q)
2018                 return NULL;
2019         __scsi_init_queue(shost, q);
2020         return q;
2021 }
2022 EXPORT_SYMBOL(__scsi_alloc_queue);
2023
2024 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2025 {
2026         struct request_queue *q;
2027
2028         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2029         if (!q)
2030                 return NULL;
2031
2032         blk_queue_prep_rq(q, scsi_prep_fn);
2033         blk_queue_unprep_rq(q, scsi_unprep_fn);
2034         blk_queue_softirq_done(q, scsi_softirq_done);
2035         blk_queue_rq_timed_out(q, scsi_times_out);
2036         blk_queue_lld_busy(q, scsi_lld_busy);
2037         return q;
2038 }
2039
2040 static struct blk_mq_ops scsi_mq_ops = {
2041         .map_queue      = blk_mq_map_queue,
2042         .queue_rq       = scsi_queue_rq,
2043         .complete       = scsi_softirq_done,
2044         .timeout        = scsi_times_out,
2045         .init_request   = scsi_init_request,
2046         .exit_request   = scsi_exit_request,
2047 };
2048
2049 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2050 {
2051         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2052         if (IS_ERR(sdev->request_queue))
2053                 return NULL;
2054
2055         sdev->request_queue->queuedata = sdev;
2056         __scsi_init_queue(sdev->host, sdev->request_queue);
2057         return sdev->request_queue;
2058 }
2059
2060 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2061 {
2062         unsigned int cmd_size, sgl_size, tbl_size;
2063
2064         tbl_size = shost->sg_tablesize;
2065         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2066                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2067         sgl_size = tbl_size * sizeof(struct scatterlist);
2068         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2069         if (scsi_host_get_prot(shost))
2070                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2071
2072         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2073         shost->tag_set.ops = &scsi_mq_ops;
2074         shost->tag_set.nr_hw_queues = 1;
2075         shost->tag_set.queue_depth = shost->can_queue;
2076         shost->tag_set.cmd_size = cmd_size;
2077         shost->tag_set.numa_node = NUMA_NO_NODE;
2078         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2079         shost->tag_set.driver_data = shost;
2080
2081         return blk_mq_alloc_tag_set(&shost->tag_set);
2082 }
2083
2084 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2085 {
2086         blk_mq_free_tag_set(&shost->tag_set);
2087 }
2088
2089 /*
2090  * Function:    scsi_block_requests()
2091  *
2092  * Purpose:     Utility function used by low-level drivers to prevent further
2093  *              commands from being queued to the device.
2094  *
2095  * Arguments:   shost       - Host in question
2096  *
2097  * Returns:     Nothing
2098  *
2099  * Lock status: No locks are assumed held.
2100  *
2101  * Notes:       There is no timer nor any other means by which the requests
2102  *              get unblocked other than the low-level driver calling
2103  *              scsi_unblock_requests().
2104  */
2105 void scsi_block_requests(struct Scsi_Host *shost)
2106 {
2107         shost->host_self_blocked = 1;
2108 }
2109 EXPORT_SYMBOL(scsi_block_requests);
2110
2111 /*
2112  * Function:    scsi_unblock_requests()
2113  *
2114  * Purpose:     Utility function used by low-level drivers to allow further
2115  *              commands from being queued to the device.
2116  *
2117  * Arguments:   shost       - Host in question
2118  *
2119  * Returns:     Nothing
2120  *
2121  * Lock status: No locks are assumed held.
2122  *
2123  * Notes:       There is no timer nor any other means by which the requests
2124  *              get unblocked other than the low-level driver calling
2125  *              scsi_unblock_requests().
2126  *
2127  *              This is done as an API function so that changes to the
2128  *              internals of the scsi mid-layer won't require wholesale
2129  *              changes to drivers that use this feature.
2130  */
2131 void scsi_unblock_requests(struct Scsi_Host *shost)
2132 {
2133         shost->host_self_blocked = 0;
2134         scsi_run_host_queues(shost);
2135 }
2136 EXPORT_SYMBOL(scsi_unblock_requests);
2137
2138 int __init scsi_init_queue(void)
2139 {
2140         int i;
2141
2142         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2143                                            sizeof(struct scsi_data_buffer),
2144                                            0, 0, NULL);
2145         if (!scsi_sdb_cache) {
2146                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2147                 return -ENOMEM;
2148         }
2149
2150         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2151                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2152                 int size = sgp->size * sizeof(struct scatterlist);
2153
2154                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2155                                 SLAB_HWCACHE_ALIGN, NULL);
2156                 if (!sgp->slab) {
2157                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2158                                         sgp->name);
2159                         goto cleanup_sdb;
2160                 }
2161
2162                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2163                                                      sgp->slab);
2164                 if (!sgp->pool) {
2165                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2166                                         sgp->name);
2167                         goto cleanup_sdb;
2168                 }
2169         }
2170
2171         return 0;
2172
2173 cleanup_sdb:
2174         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2175                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2176                 if (sgp->pool)
2177                         mempool_destroy(sgp->pool);
2178                 if (sgp->slab)
2179                         kmem_cache_destroy(sgp->slab);
2180         }
2181         kmem_cache_destroy(scsi_sdb_cache);
2182
2183         return -ENOMEM;
2184 }
2185
2186 void scsi_exit_queue(void)
2187 {
2188         int i;
2189
2190         kmem_cache_destroy(scsi_sdb_cache);
2191
2192         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2193                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2194                 mempool_destroy(sgp->pool);
2195                 kmem_cache_destroy(sgp->slab);
2196         }
2197 }
2198
2199 /**
2200  *      scsi_mode_select - issue a mode select
2201  *      @sdev:  SCSI device to be queried
2202  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2203  *      @sp:    Save page bit (0 == don't save, 1 == save)
2204  *      @modepage: mode page being requested
2205  *      @buffer: request buffer (may not be smaller than eight bytes)
2206  *      @len:   length of request buffer.
2207  *      @timeout: command timeout
2208  *      @retries: number of retries before failing
2209  *      @data: returns a structure abstracting the mode header data
2210  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2211  *              must be SCSI_SENSE_BUFFERSIZE big.
2212  *
2213  *      Returns zero if successful; negative error number or scsi
2214  *      status on error
2215  *
2216  */
2217 int
2218 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2219                  unsigned char *buffer, int len, int timeout, int retries,
2220                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2221 {
2222         unsigned char cmd[10];
2223         unsigned char *real_buffer;
2224         int ret;
2225
2226         memset(cmd, 0, sizeof(cmd));
2227         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2228
2229         if (sdev->use_10_for_ms) {
2230                 if (len > 65535)
2231                         return -EINVAL;
2232                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2233                 if (!real_buffer)
2234                         return -ENOMEM;
2235                 memcpy(real_buffer + 8, buffer, len);
2236                 len += 8;
2237                 real_buffer[0] = 0;
2238                 real_buffer[1] = 0;
2239                 real_buffer[2] = data->medium_type;
2240                 real_buffer[3] = data->device_specific;
2241                 real_buffer[4] = data->longlba ? 0x01 : 0;
2242                 real_buffer[5] = 0;
2243                 real_buffer[6] = data->block_descriptor_length >> 8;
2244                 real_buffer[7] = data->block_descriptor_length;
2245
2246                 cmd[0] = MODE_SELECT_10;
2247                 cmd[7] = len >> 8;
2248                 cmd[8] = len;
2249         } else {
2250                 if (len > 255 || data->block_descriptor_length > 255 ||
2251                     data->longlba)
2252                         return -EINVAL;
2253
2254                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2255                 if (!real_buffer)
2256                         return -ENOMEM;
2257                 memcpy(real_buffer + 4, buffer, len);
2258                 len += 4;
2259                 real_buffer[0] = 0;
2260                 real_buffer[1] = data->medium_type;
2261                 real_buffer[2] = data->device_specific;
2262                 real_buffer[3] = data->block_descriptor_length;
2263                 
2264
2265                 cmd[0] = MODE_SELECT;
2266                 cmd[4] = len;
2267         }
2268
2269         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2270                                sshdr, timeout, retries, NULL);
2271         kfree(real_buffer);
2272         return ret;
2273 }
2274 EXPORT_SYMBOL_GPL(scsi_mode_select);
2275
2276 /**
2277  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2278  *      @sdev:  SCSI device to be queried
2279  *      @dbd:   set if mode sense will allow block descriptors to be returned
2280  *      @modepage: mode page being requested
2281  *      @buffer: request buffer (may not be smaller than eight bytes)
2282  *      @len:   length of request buffer.
2283  *      @timeout: command timeout
2284  *      @retries: number of retries before failing
2285  *      @data: returns a structure abstracting the mode header data
2286  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2287  *              must be SCSI_SENSE_BUFFERSIZE big.
2288  *
2289  *      Returns zero if unsuccessful, or the header offset (either 4
2290  *      or 8 depending on whether a six or ten byte command was
2291  *      issued) if successful.
2292  */
2293 int
2294 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2295                   unsigned char *buffer, int len, int timeout, int retries,
2296                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2297 {
2298         unsigned char cmd[12];
2299         int use_10_for_ms;
2300         int header_length;
2301         int result;
2302         struct scsi_sense_hdr my_sshdr;
2303
2304         memset(data, 0, sizeof(*data));
2305         memset(&cmd[0], 0, 12);
2306         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2307         cmd[2] = modepage;
2308
2309         /* caller might not be interested in sense, but we need it */
2310         if (!sshdr)
2311                 sshdr = &my_sshdr;
2312
2313  retry:
2314         use_10_for_ms = sdev->use_10_for_ms;
2315
2316         if (use_10_for_ms) {
2317                 if (len < 8)
2318                         len = 8;
2319
2320                 cmd[0] = MODE_SENSE_10;
2321                 cmd[8] = len;
2322                 header_length = 8;
2323         } else {
2324                 if (len < 4)
2325                         len = 4;
2326
2327                 cmd[0] = MODE_SENSE;
2328                 cmd[4] = len;
2329                 header_length = 4;
2330         }
2331
2332         memset(buffer, 0, len);
2333
2334         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2335                                   sshdr, timeout, retries, NULL);
2336
2337         /* This code looks awful: what it's doing is making sure an
2338          * ILLEGAL REQUEST sense return identifies the actual command
2339          * byte as the problem.  MODE_SENSE commands can return
2340          * ILLEGAL REQUEST if the code page isn't supported */
2341
2342         if (use_10_for_ms && !scsi_status_is_good(result) &&
2343             (driver_byte(result) & DRIVER_SENSE)) {
2344                 if (scsi_sense_valid(sshdr)) {
2345                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2346                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2347                                 /* 
2348                                  * Invalid command operation code
2349                                  */
2350                                 sdev->use_10_for_ms = 0;
2351                                 goto retry;
2352                         }
2353                 }
2354         }
2355
2356         if(scsi_status_is_good(result)) {
2357                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2358                              (modepage == 6 || modepage == 8))) {
2359                         /* Initio breakage? */
2360                         header_length = 0;
2361                         data->length = 13;
2362                         data->medium_type = 0;
2363                         data->device_specific = 0;
2364                         data->longlba = 0;
2365                         data->block_descriptor_length = 0;
2366                 } else if(use_10_for_ms) {
2367                         data->length = buffer[0]*256 + buffer[1] + 2;
2368                         data->medium_type = buffer[2];
2369                         data->device_specific = buffer[3];
2370                         data->longlba = buffer[4] & 0x01;
2371                         data->block_descriptor_length = buffer[6]*256
2372                                 + buffer[7];
2373                 } else {
2374                         data->length = buffer[0] + 1;
2375                         data->medium_type = buffer[1];
2376                         data->device_specific = buffer[2];
2377                         data->block_descriptor_length = buffer[3];
2378                 }
2379                 data->header_length = header_length;
2380         }
2381
2382         return result;
2383 }
2384 EXPORT_SYMBOL(scsi_mode_sense);
2385
2386 /**
2387  *      scsi_test_unit_ready - test if unit is ready
2388  *      @sdev:  scsi device to change the state of.
2389  *      @timeout: command timeout
2390  *      @retries: number of retries before failing
2391  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2392  *              returning sense. Make sure that this is cleared before passing
2393  *              in.
2394  *
2395  *      Returns zero if unsuccessful or an error if TUR failed.  For
2396  *      removable media, UNIT_ATTENTION sets ->changed flag.
2397  **/
2398 int
2399 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2400                      struct scsi_sense_hdr *sshdr_external)
2401 {
2402         char cmd[] = {
2403                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2404         };
2405         struct scsi_sense_hdr *sshdr;
2406         int result;
2407
2408         if (!sshdr_external)
2409                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2410         else
2411                 sshdr = sshdr_external;
2412
2413         /* try to eat the UNIT_ATTENTION if there are enough retries */
2414         do {
2415                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2416                                           timeout, retries, NULL);
2417                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2418                     sshdr->sense_key == UNIT_ATTENTION)
2419                         sdev->changed = 1;
2420         } while (scsi_sense_valid(sshdr) &&
2421                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2422
2423         if (!sshdr_external)
2424                 kfree(sshdr);
2425         return result;
2426 }
2427 EXPORT_SYMBOL(scsi_test_unit_ready);
2428
2429 /**
2430  *      scsi_device_set_state - Take the given device through the device state model.
2431  *      @sdev:  scsi device to change the state of.
2432  *      @state: state to change to.
2433  *
2434  *      Returns zero if unsuccessful or an error if the requested 
2435  *      transition is illegal.
2436  */
2437 int
2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2439 {
2440         enum scsi_device_state oldstate = sdev->sdev_state;
2441
2442         if (state == oldstate)
2443                 return 0;
2444
2445         switch (state) {
2446         case SDEV_CREATED:
2447                 switch (oldstate) {
2448                 case SDEV_CREATED_BLOCK:
2449                         break;
2450                 default:
2451                         goto illegal;
2452                 }
2453                 break;
2454                         
2455         case SDEV_RUNNING:
2456                 switch (oldstate) {
2457                 case SDEV_CREATED:
2458                 case SDEV_OFFLINE:
2459                 case SDEV_TRANSPORT_OFFLINE:
2460                 case SDEV_QUIESCE:
2461                 case SDEV_BLOCK:
2462                         break;
2463                 default:
2464                         goto illegal;
2465                 }
2466                 break;
2467
2468         case SDEV_QUIESCE:
2469                 switch (oldstate) {
2470                 case SDEV_RUNNING:
2471                 case SDEV_OFFLINE:
2472                 case SDEV_TRANSPORT_OFFLINE:
2473                         break;
2474                 default:
2475                         goto illegal;
2476                 }
2477                 break;
2478
2479         case SDEV_OFFLINE:
2480         case SDEV_TRANSPORT_OFFLINE:
2481                 switch (oldstate) {
2482                 case SDEV_CREATED:
2483                 case SDEV_RUNNING:
2484                 case SDEV_QUIESCE:
2485                 case SDEV_BLOCK:
2486                         break;
2487                 default:
2488                         goto illegal;
2489                 }
2490                 break;
2491
2492         case SDEV_BLOCK:
2493                 switch (oldstate) {
2494                 case SDEV_RUNNING:
2495                 case SDEV_CREATED_BLOCK:
2496                         break;
2497                 default:
2498                         goto illegal;
2499                 }
2500                 break;
2501
2502         case SDEV_CREATED_BLOCK:
2503                 switch (oldstate) {
2504                 case SDEV_CREATED:
2505                         break;
2506                 default:
2507                         goto illegal;
2508                 }
2509                 break;
2510
2511         case SDEV_CANCEL:
2512                 switch (oldstate) {
2513                 case SDEV_CREATED:
2514                 case SDEV_RUNNING:
2515                 case SDEV_QUIESCE:
2516                 case SDEV_OFFLINE:
2517                 case SDEV_TRANSPORT_OFFLINE:
2518                 case SDEV_BLOCK:
2519                         break;
2520                 default:
2521                         goto illegal;
2522                 }
2523                 break;
2524
2525         case SDEV_DEL:
2526                 switch (oldstate) {
2527                 case SDEV_CREATED:
2528                 case SDEV_RUNNING:
2529                 case SDEV_OFFLINE:
2530                 case SDEV_TRANSPORT_OFFLINE:
2531                 case SDEV_CANCEL:
2532                 case SDEV_CREATED_BLOCK:
2533                         break;
2534                 default:
2535                         goto illegal;
2536                 }
2537                 break;
2538
2539         }
2540         sdev->sdev_state = state;
2541         return 0;
2542
2543  illegal:
2544         SCSI_LOG_ERROR_RECOVERY(1,
2545                                 sdev_printk(KERN_ERR, sdev,
2546                                             "Illegal state transition %s->%s",
2547                                             scsi_device_state_name(oldstate),
2548                                             scsi_device_state_name(state))
2549                                 );
2550         return -EINVAL;
2551 }
2552 EXPORT_SYMBOL(scsi_device_set_state);
2553
2554 /**
2555  *      sdev_evt_emit - emit a single SCSI device uevent
2556  *      @sdev: associated SCSI device
2557  *      @evt: event to emit
2558  *
2559  *      Send a single uevent (scsi_event) to the associated scsi_device.
2560  */
2561 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2562 {
2563         int idx = 0;
2564         char *envp[3];
2565
2566         switch (evt->evt_type) {
2567         case SDEV_EVT_MEDIA_CHANGE:
2568                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2569                 break;
2570         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2571                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2572                 break;
2573         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2574                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2575                 break;
2576         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2577                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2578                 break;
2579         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2581                 break;
2582         case SDEV_EVT_LUN_CHANGE_REPORTED:
2583                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2584                 break;
2585         default:
2586                 /* do nothing */
2587                 break;
2588         }
2589
2590         envp[idx++] = NULL;
2591
2592         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2593 }
2594
2595 /**
2596  *      sdev_evt_thread - send a uevent for each scsi event
2597  *      @work: work struct for scsi_device
2598  *
2599  *      Dispatch queued events to their associated scsi_device kobjects
2600  *      as uevents.
2601  */
2602 void scsi_evt_thread(struct work_struct *work)
2603 {
2604         struct scsi_device *sdev;
2605         enum scsi_device_event evt_type;
2606         LIST_HEAD(event_list);
2607
2608         sdev = container_of(work, struct scsi_device, event_work);
2609
2610         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2611                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2612                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2613
2614         while (1) {
2615                 struct scsi_event *evt;
2616                 struct list_head *this, *tmp;
2617                 unsigned long flags;
2618
2619                 spin_lock_irqsave(&sdev->list_lock, flags);
2620                 list_splice_init(&sdev->event_list, &event_list);
2621                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2622
2623                 if (list_empty(&event_list))
2624                         break;
2625
2626                 list_for_each_safe(this, tmp, &event_list) {
2627                         evt = list_entry(this, struct scsi_event, node);
2628                         list_del(&evt->node);
2629                         scsi_evt_emit(sdev, evt);
2630                         kfree(evt);
2631                 }
2632         }
2633 }
2634
2635 /**
2636  *      sdev_evt_send - send asserted event to uevent thread
2637  *      @sdev: scsi_device event occurred on
2638  *      @evt: event to send
2639  *
2640  *      Assert scsi device event asynchronously.
2641  */
2642 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2643 {
2644         unsigned long flags;
2645
2646 #if 0
2647         /* FIXME: currently this check eliminates all media change events
2648          * for polled devices.  Need to update to discriminate between AN
2649          * and polled events */
2650         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2651                 kfree(evt);
2652                 return;
2653         }
2654 #endif
2655
2656         spin_lock_irqsave(&sdev->list_lock, flags);
2657         list_add_tail(&evt->node, &sdev->event_list);
2658         schedule_work(&sdev->event_work);
2659         spin_unlock_irqrestore(&sdev->list_lock, flags);
2660 }
2661 EXPORT_SYMBOL_GPL(sdev_evt_send);
2662
2663 /**
2664  *      sdev_evt_alloc - allocate a new scsi event
2665  *      @evt_type: type of event to allocate
2666  *      @gfpflags: GFP flags for allocation
2667  *
2668  *      Allocates and returns a new scsi_event.
2669  */
2670 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2671                                   gfp_t gfpflags)
2672 {
2673         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2674         if (!evt)
2675                 return NULL;
2676
2677         evt->evt_type = evt_type;
2678         INIT_LIST_HEAD(&evt->node);
2679
2680         /* evt_type-specific initialization, if any */
2681         switch (evt_type) {
2682         case SDEV_EVT_MEDIA_CHANGE:
2683         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2684         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2685         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2686         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2687         case SDEV_EVT_LUN_CHANGE_REPORTED:
2688         default:
2689                 /* do nothing */
2690                 break;
2691         }
2692
2693         return evt;
2694 }
2695 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2696
2697 /**
2698  *      sdev_evt_send_simple - send asserted event to uevent thread
2699  *      @sdev: scsi_device event occurred on
2700  *      @evt_type: type of event to send
2701  *      @gfpflags: GFP flags for allocation
2702  *
2703  *      Assert scsi device event asynchronously, given an event type.
2704  */
2705 void sdev_evt_send_simple(struct scsi_device *sdev,
2706                           enum scsi_device_event evt_type, gfp_t gfpflags)
2707 {
2708         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2709         if (!evt) {
2710                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2711                             evt_type);
2712                 return;
2713         }
2714
2715         sdev_evt_send(sdev, evt);
2716 }
2717 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2718
2719 /**
2720  *      scsi_device_quiesce - Block user issued commands.
2721  *      @sdev:  scsi device to quiesce.
2722  *
2723  *      This works by trying to transition to the SDEV_QUIESCE state
2724  *      (which must be a legal transition).  When the device is in this
2725  *      state, only special requests will be accepted, all others will
2726  *      be deferred.  Since special requests may also be requeued requests,
2727  *      a successful return doesn't guarantee the device will be 
2728  *      totally quiescent.
2729  *
2730  *      Must be called with user context, may sleep.
2731  *
2732  *      Returns zero if unsuccessful or an error if not.
2733  */
2734 int
2735 scsi_device_quiesce(struct scsi_device *sdev)
2736 {
2737         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2738         if (err)
2739                 return err;
2740
2741         scsi_run_queue(sdev->request_queue);
2742         while (atomic_read(&sdev->device_busy)) {
2743                 msleep_interruptible(200);
2744                 scsi_run_queue(sdev->request_queue);
2745         }
2746         return 0;
2747 }
2748 EXPORT_SYMBOL(scsi_device_quiesce);
2749
2750 /**
2751  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2752  *      @sdev:  scsi device to resume.
2753  *
2754  *      Moves the device from quiesced back to running and restarts the
2755  *      queues.
2756  *
2757  *      Must be called with user context, may sleep.
2758  */
2759 void scsi_device_resume(struct scsi_device *sdev)
2760 {
2761         /* check if the device state was mutated prior to resume, and if
2762          * so assume the state is being managed elsewhere (for example
2763          * device deleted during suspend)
2764          */
2765         if (sdev->sdev_state != SDEV_QUIESCE ||
2766             scsi_device_set_state(sdev, SDEV_RUNNING))
2767                 return;
2768         scsi_run_queue(sdev->request_queue);
2769 }
2770 EXPORT_SYMBOL(scsi_device_resume);
2771
2772 static void
2773 device_quiesce_fn(struct scsi_device *sdev, void *data)
2774 {
2775         scsi_device_quiesce(sdev);
2776 }
2777
2778 void
2779 scsi_target_quiesce(struct scsi_target *starget)
2780 {
2781         starget_for_each_device(starget, NULL, device_quiesce_fn);
2782 }
2783 EXPORT_SYMBOL(scsi_target_quiesce);
2784
2785 static void
2786 device_resume_fn(struct scsi_device *sdev, void *data)
2787 {
2788         scsi_device_resume(sdev);
2789 }
2790
2791 void
2792 scsi_target_resume(struct scsi_target *starget)
2793 {
2794         starget_for_each_device(starget, NULL, device_resume_fn);
2795 }
2796 EXPORT_SYMBOL(scsi_target_resume);
2797
2798 /**
2799  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2800  * @sdev:       device to block
2801  *
2802  * Block request made by scsi lld's to temporarily stop all
2803  * scsi commands on the specified device.  Called from interrupt
2804  * or normal process context.
2805  *
2806  * Returns zero if successful or error if not
2807  *
2808  * Notes:       
2809  *      This routine transitions the device to the SDEV_BLOCK state
2810  *      (which must be a legal transition).  When the device is in this
2811  *      state, all commands are deferred until the scsi lld reenables
2812  *      the device with scsi_device_unblock or device_block_tmo fires.
2813  */
2814 int
2815 scsi_internal_device_block(struct scsi_device *sdev)
2816 {
2817         struct request_queue *q = sdev->request_queue;
2818         unsigned long flags;
2819         int err = 0;
2820
2821         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2822         if (err) {
2823                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825                 if (err)
2826                         return err;
2827         }
2828
2829         /* 
2830          * The device has transitioned to SDEV_BLOCK.  Stop the
2831          * block layer from calling the midlayer with this device's
2832          * request queue. 
2833          */
2834         if (q->mq_ops) {
2835                 blk_mq_stop_hw_queues(q);
2836         } else {
2837                 spin_lock_irqsave(q->queue_lock, flags);
2838                 blk_stop_queue(q);
2839                 spin_unlock_irqrestore(q->queue_lock, flags);
2840         }
2841
2842         return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2845  
2846 /**
2847  * scsi_internal_device_unblock - resume a device after a block request
2848  * @sdev:       device to resume
2849  * @new_state:  state to set devices to after unblocking
2850  *
2851  * Called by scsi lld's or the midlayer to restart the device queue
2852  * for the previously suspended scsi device.  Called from interrupt or
2853  * normal process context.
2854  *
2855  * Returns zero if successful or error if not.
2856  *
2857  * Notes:       
2858  *      This routine transitions the device to the SDEV_RUNNING state
2859  *      or to one of the offline states (which must be a legal transition)
2860  *      allowing the midlayer to goose the queue for this device.
2861  */
2862 int
2863 scsi_internal_device_unblock(struct scsi_device *sdev,
2864                              enum scsi_device_state new_state)
2865 {
2866         struct request_queue *q = sdev->request_queue; 
2867         unsigned long flags;
2868
2869         /*
2870          * Try to transition the scsi device to SDEV_RUNNING or one of the
2871          * offlined states and goose the device queue if successful.
2872          */
2873         if ((sdev->sdev_state == SDEV_BLOCK) ||
2874             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2875                 sdev->sdev_state = new_state;
2876         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2877                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2878                     new_state == SDEV_OFFLINE)
2879                         sdev->sdev_state = new_state;
2880                 else
2881                         sdev->sdev_state = SDEV_CREATED;
2882         } else if (sdev->sdev_state != SDEV_CANCEL &&
2883                  sdev->sdev_state != SDEV_OFFLINE)
2884                 return -EINVAL;
2885
2886         if (q->mq_ops) {
2887                 blk_mq_start_stopped_hw_queues(q, false);
2888         } else {
2889                 spin_lock_irqsave(q->queue_lock, flags);
2890                 blk_start_queue(q);
2891                 spin_unlock_irqrestore(q->queue_lock, flags);
2892         }
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2897
2898 static void
2899 device_block(struct scsi_device *sdev, void *data)
2900 {
2901         scsi_internal_device_block(sdev);
2902 }
2903
2904 static int
2905 target_block(struct device *dev, void *data)
2906 {
2907         if (scsi_is_target_device(dev))
2908                 starget_for_each_device(to_scsi_target(dev), NULL,
2909                                         device_block);
2910         return 0;
2911 }
2912
2913 void
2914 scsi_target_block(struct device *dev)
2915 {
2916         if (scsi_is_target_device(dev))
2917                 starget_for_each_device(to_scsi_target(dev), NULL,
2918                                         device_block);
2919         else
2920                 device_for_each_child(dev, NULL, target_block);
2921 }
2922 EXPORT_SYMBOL_GPL(scsi_target_block);
2923
2924 static void
2925 device_unblock(struct scsi_device *sdev, void *data)
2926 {
2927         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2928 }
2929
2930 static int
2931 target_unblock(struct device *dev, void *data)
2932 {
2933         if (scsi_is_target_device(dev))
2934                 starget_for_each_device(to_scsi_target(dev), data,
2935                                         device_unblock);
2936         return 0;
2937 }
2938
2939 void
2940 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2941 {
2942         if (scsi_is_target_device(dev))
2943                 starget_for_each_device(to_scsi_target(dev), &new_state,
2944                                         device_unblock);
2945         else
2946                 device_for_each_child(dev, &new_state, target_unblock);
2947 }
2948 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2949
2950 /**
2951  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2952  * @sgl:        scatter-gather list
2953  * @sg_count:   number of segments in sg
2954  * @offset:     offset in bytes into sg, on return offset into the mapped area
2955  * @len:        bytes to map, on return number of bytes mapped
2956  *
2957  * Returns virtual address of the start of the mapped page
2958  */
2959 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2960                           size_t *offset, size_t *len)
2961 {
2962         int i;
2963         size_t sg_len = 0, len_complete = 0;
2964         struct scatterlist *sg;
2965         struct page *page;
2966
2967         WARN_ON(!irqs_disabled());
2968
2969         for_each_sg(sgl, sg, sg_count, i) {
2970                 len_complete = sg_len; /* Complete sg-entries */
2971                 sg_len += sg->length;
2972                 if (sg_len > *offset)
2973                         break;
2974         }
2975
2976         if (unlikely(i == sg_count)) {
2977                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2978                         "elements %d\n",
2979                        __func__, sg_len, *offset, sg_count);
2980                 WARN_ON(1);
2981                 return NULL;
2982         }
2983
2984         /* Offset starting from the beginning of first page in this sg-entry */
2985         *offset = *offset - len_complete + sg->offset;
2986
2987         /* Assumption: contiguous pages can be accessed as "page + i" */
2988         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2989         *offset &= ~PAGE_MASK;
2990
2991         /* Bytes in this sg-entry from *offset to the end of the page */
2992         sg_len = PAGE_SIZE - *offset;
2993         if (*len > sg_len)
2994                 *len = sg_len;
2995
2996         return kmap_atomic(page);
2997 }
2998 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2999
3000 /**
3001  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3002  * @virt:       virtual address to be unmapped
3003  */
3004 void scsi_kunmap_atomic_sg(void *virt)
3005 {
3006         kunmap_atomic(virt);
3007 }
3008 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3009
3010 void sdev_disable_disk_events(struct scsi_device *sdev)
3011 {
3012         atomic_inc(&sdev->disk_events_disable_depth);
3013 }
3014 EXPORT_SYMBOL(sdev_disable_disk_events);
3015
3016 void sdev_enable_disk_events(struct scsi_device *sdev)
3017 {
3018         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3019                 return;
3020         atomic_dec(&sdev->disk_events_disable_depth);
3021 }
3022 EXPORT_SYMBOL(sdev_enable_disk_events);