Merge tag 'lsk-v3.10-15.05-android' into develop-3.10
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76         return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88         unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY        3
99
100 /*
101  * Function:    scsi_unprep_request()
102  *
103  * Purpose:     Remove all preparation done for a request, including its
104  *              associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:   req     - request to unprepare
107  *
108  * Lock status: Assumed that no locks are held upon entry.
109  *
110  * Returns:     Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114         struct scsi_cmnd *cmd = req->special;
115
116         blk_unprep_request(req);
117         req->special = NULL;
118
119         scsi_put_command(cmd);
120 }
121
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136         struct Scsi_Host *host = cmd->device->host;
137         struct scsi_device *device = cmd->device;
138         struct scsi_target *starget = scsi_target(device);
139         struct request_queue *q = device->request_queue;
140         unsigned long flags;
141
142         SCSI_LOG_MLQUEUE(1,
143                  printk("Inserting command %p into mlqueue\n", cmd));
144
145         /*
146          * Set the appropriate busy bit for the device/host.
147          *
148          * If the host/device isn't busy, assume that something actually
149          * completed, and that we should be able to queue a command now.
150          *
151          * Note that the prior mid-layer assumption that any host could
152          * always queue at least one command is now broken.  The mid-layer
153          * will implement a user specifiable stall (see
154          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155          * if a command is requeued with no other commands outstanding
156          * either for the device or for the host.
157          */
158         switch (reason) {
159         case SCSI_MLQUEUE_HOST_BUSY:
160                 host->host_blocked = host->max_host_blocked;
161                 break;
162         case SCSI_MLQUEUE_DEVICE_BUSY:
163         case SCSI_MLQUEUE_EH_RETRY:
164                 device->device_blocked = device->max_device_blocked;
165                 break;
166         case SCSI_MLQUEUE_TARGET_BUSY:
167                 starget->target_blocked = starget->max_target_blocked;
168                 break;
169         }
170
171         /*
172          * Decrement the counters, since these commands are no longer
173          * active on the host/device.
174          */
175         if (unbusy)
176                 scsi_device_unbusy(device);
177
178         /*
179          * Requeue this command.  It will go before all other commands
180          * that are already in the queue. Schedule requeue work under
181          * lock such that the kblockd_schedule_work() call happens
182          * before blk_cleanup_queue() finishes.
183          */
184         spin_lock_irqsave(q->queue_lock, flags);
185         blk_requeue_request(q, cmd->request);
186         kblockd_schedule_work(q, &device->requeue_work);
187         spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211         __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:       scsi device
216  * @cmd:        scsi command
217  * @data_direction: data direction
218  * @buffer:     data buffer
219  * @bufflen:    len of buffer
220  * @sense:      optional sense buffer
221  * @timeout:    request timeout in seconds
222  * @retries:    number of times to retry request
223  * @flags:      or into request flags;
224  * @resid:      optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230                  int data_direction, void *buffer, unsigned bufflen,
231                  unsigned char *sense, int timeout, int retries, int flags,
232                  int *resid)
233 {
234         struct request *req;
235         int write = (data_direction == DMA_TO_DEVICE);
236         int ret = DRIVER_ERROR << 24;
237
238         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239         if (!req)
240                 return ret;
241
242         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
243                                         buffer, bufflen, __GFP_WAIT))
244                 goto out;
245
246         req->cmd_len = COMMAND_SIZE(cmd[0]);
247         memcpy(req->cmd, cmd, req->cmd_len);
248         req->sense = sense;
249         req->sense_len = 0;
250         req->retries = retries;
251         req->timeout = timeout;
252         req->cmd_type = REQ_TYPE_BLOCK_PC;
253         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255         /*
256          * head injection *required* here otherwise quiesce won't work
257          */
258         blk_execute_rq(req->q, NULL, req, 1);
259
260         /*
261          * Some devices (USB mass-storage in particular) may transfer
262          * garbage data together with a residue indicating that the data
263          * is invalid.  Prevent the garbage from being misinterpreted
264          * and prevent security leaks by zeroing out the excess data.
265          */
266         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269         if (resid)
270                 *resid = req->resid_len;
271         ret = req->errors;
272  out:
273         blk_put_request(req);
274
275         return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280                      int data_direction, void *buffer, unsigned bufflen,
281                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
282                      int *resid, int flags)
283 {
284         char *sense = NULL;
285         int result;
286         
287         if (sshdr) {
288                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289                 if (!sense)
290                         return DRIVER_ERROR << 24;
291         }
292         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293                               sense, timeout, retries, flags, resid);
294         if (sshdr)
295                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296
297         kfree(sense);
298         return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd     - command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315         cmd->serial_number = 0;
316         scsi_set_resid(cmd, 0);
317         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318         if (cmd->cmd_len == 0)
319                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324         struct Scsi_Host *shost = sdev->host;
325         struct scsi_target *starget = scsi_target(sdev);
326         unsigned long flags;
327
328         spin_lock_irqsave(shost->host_lock, flags);
329         shost->host_busy--;
330         starget->target_busy--;
331         if (unlikely(scsi_host_in_recovery(shost) &&
332                      (shost->host_failed || shost->host_eh_scheduled)))
333                 scsi_eh_wakeup(shost);
334         spin_unlock(shost->host_lock);
335         spin_lock(sdev->request_queue->queue_lock);
336         sdev->device_busy--;
337         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349         struct Scsi_Host *shost = current_sdev->host;
350         struct scsi_device *sdev, *tmp;
351         struct scsi_target *starget = scsi_target(current_sdev);
352         unsigned long flags;
353
354         spin_lock_irqsave(shost->host_lock, flags);
355         starget->starget_sdev_user = NULL;
356         spin_unlock_irqrestore(shost->host_lock, flags);
357
358         /*
359          * Call blk_run_queue for all LUNs on the target, starting with
360          * current_sdev. We race with others (to set starget_sdev_user),
361          * but in most cases, we will be first. Ideally, each LU on the
362          * target would get some limited time or requests on the target.
363          */
364         blk_run_queue(current_sdev->request_queue);
365
366         spin_lock_irqsave(shost->host_lock, flags);
367         if (starget->starget_sdev_user)
368                 goto out;
369         list_for_each_entry_safe(sdev, tmp, &starget->devices,
370                         same_target_siblings) {
371                 if (sdev == current_sdev)
372                         continue;
373                 if (scsi_device_get(sdev))
374                         continue;
375
376                 spin_unlock_irqrestore(shost->host_lock, flags);
377                 blk_run_queue(sdev->request_queue);
378                 spin_lock_irqsave(shost->host_lock, flags);
379         
380                 scsi_device_put(sdev);
381         }
382  out:
383         spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389                 return 1;
390
391         return 0;
392 }
393
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396         return ((starget->can_queue > 0 &&
397                  starget->target_busy >= starget->can_queue) ||
398                  starget->target_blocked);
399 }
400
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404             shost->host_blocked || shost->host_self_blocked)
405                 return 1;
406
407         return 0;
408 }
409
410 /*
411  * Function:    scsi_run_queue()
412  *
413  * Purpose:     Select a proper request queue to serve next
414  *
415  * Arguments:   q       - last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:       The previous command was completely finished, start
420  *              a new one if possible.
421  */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424         struct scsi_device *sdev = q->queuedata;
425         struct Scsi_Host *shost;
426         LIST_HEAD(starved_list);
427         unsigned long flags;
428
429         shost = sdev->host;
430         if (scsi_target(sdev)->single_lun)
431                 scsi_single_lun_run(sdev);
432
433         spin_lock_irqsave(shost->host_lock, flags);
434         list_splice_init(&shost->starved_list, &starved_list);
435
436         while (!list_empty(&starved_list)) {
437                 /*
438                  * As long as shost is accepting commands and we have
439                  * starved queues, call blk_run_queue. scsi_request_fn
440                  * drops the queue_lock and can add us back to the
441                  * starved_list.
442                  *
443                  * host_lock protects the starved_list and starved_entry.
444                  * scsi_request_fn must get the host_lock before checking
445                  * or modifying starved_list or starved_entry.
446                  */
447                 if (scsi_host_is_busy(shost))
448                         break;
449
450                 sdev = list_entry(starved_list.next,
451                                   struct scsi_device, starved_entry);
452                 list_del_init(&sdev->starved_entry);
453                 if (scsi_target_is_busy(scsi_target(sdev))) {
454                         list_move_tail(&sdev->starved_entry,
455                                        &shost->starved_list);
456                         continue;
457                 }
458
459                 spin_unlock(shost->host_lock);
460                 spin_lock(sdev->request_queue->queue_lock);
461                 __blk_run_queue(sdev->request_queue);
462                 spin_unlock(sdev->request_queue->queue_lock);
463                 spin_lock(shost->host_lock);
464         }
465         /* put any unprocessed entries back */
466         list_splice(&starved_list, &shost->starved_list);
467         spin_unlock_irqrestore(shost->host_lock, flags);
468
469         blk_run_queue(q);
470 }
471
472 void scsi_requeue_run_queue(struct work_struct *work)
473 {
474         struct scsi_device *sdev;
475         struct request_queue *q;
476
477         sdev = container_of(work, struct scsi_device, requeue_work);
478         q = sdev->request_queue;
479         scsi_run_queue(q);
480 }
481
482 /*
483  * Function:    scsi_requeue_command()
484  *
485  * Purpose:     Handle post-processing of completed commands.
486  *
487  * Arguments:   q       - queue to operate on
488  *              cmd     - command that may need to be requeued.
489  *
490  * Returns:     Nothing
491  *
492  * Notes:       After command completion, there may be blocks left
493  *              over which weren't finished by the previous command
494  *              this can be for a number of reasons - the main one is
495  *              I/O errors in the middle of the request, in which case
496  *              we need to request the blocks that come after the bad
497  *              sector.
498  * Notes:       Upon return, cmd is a stale pointer.
499  */
500 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
501 {
502         struct scsi_device *sdev = cmd->device;
503         struct request *req = cmd->request;
504         unsigned long flags;
505
506         /*
507          * We need to hold a reference on the device to avoid the queue being
508          * killed after the unlock and before scsi_run_queue is invoked which
509          * may happen because scsi_unprep_request() puts the command which
510          * releases its reference on the device.
511          */
512         get_device(&sdev->sdev_gendev);
513
514         spin_lock_irqsave(q->queue_lock, flags);
515         scsi_unprep_request(req);
516         blk_requeue_request(q, req);
517         spin_unlock_irqrestore(q->queue_lock, flags);
518
519         scsi_run_queue(q);
520
521         put_device(&sdev->sdev_gendev);
522 }
523
524 void scsi_next_command(struct scsi_cmnd *cmd)
525 {
526         struct scsi_device *sdev = cmd->device;
527         struct request_queue *q = sdev->request_queue;
528
529         /* need to hold a reference on the device before we let go of the cmd */
530         get_device(&sdev->sdev_gendev);
531
532         scsi_put_command(cmd);
533         scsi_run_queue(q);
534
535         /* ok to remove device now */
536         put_device(&sdev->sdev_gendev);
537 }
538
539 void scsi_run_host_queues(struct Scsi_Host *shost)
540 {
541         struct scsi_device *sdev;
542
543         shost_for_each_device(sdev, shost)
544                 scsi_run_queue(sdev->request_queue);
545 }
546
547 static void __scsi_release_buffers(struct scsi_cmnd *, int);
548
549 /*
550  * Function:    scsi_end_request()
551  *
552  * Purpose:     Post-processing of completed commands (usually invoked at end
553  *              of upper level post-processing and scsi_io_completion).
554  *
555  * Arguments:   cmd      - command that is complete.
556  *              error    - 0 if I/O indicates success, < 0 for I/O error.
557  *              bytes    - number of bytes of completed I/O
558  *              requeue  - indicates whether we should requeue leftovers.
559  *
560  * Lock status: Assumed that lock is not held upon entry.
561  *
562  * Returns:     cmd if requeue required, NULL otherwise.
563  *
564  * Notes:       This is called for block device requests in order to
565  *              mark some number of sectors as complete.
566  * 
567  *              We are guaranteeing that the request queue will be goosed
568  *              at some point during this call.
569  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
570  */
571 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
572                                           int bytes, int requeue)
573 {
574         struct request_queue *q = cmd->device->request_queue;
575         struct request *req = cmd->request;
576
577         /*
578          * If there are blocks left over at the end, set up the command
579          * to queue the remainder of them.
580          */
581         if (blk_end_request(req, error, bytes)) {
582                 /* kill remainder if no retrys */
583                 if (error && scsi_noretry_cmd(cmd))
584                         blk_end_request_all(req, error);
585                 else {
586                         if (requeue) {
587                                 /*
588                                  * Bleah.  Leftovers again.  Stick the
589                                  * leftovers in the front of the
590                                  * queue, and goose the queue again.
591                                  */
592                                 scsi_release_buffers(cmd);
593                                 scsi_requeue_command(q, cmd);
594                                 cmd = NULL;
595                         }
596                         return cmd;
597                 }
598         }
599
600         /*
601          * This will goose the queue request function at the end, so we don't
602          * need to worry about launching another command.
603          */
604         __scsi_release_buffers(cmd, 0);
605         scsi_next_command(cmd);
606         return NULL;
607 }
608
609 static inline unsigned int scsi_sgtable_index(unsigned short nents)
610 {
611         unsigned int index;
612
613         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
614
615         if (nents <= 8)
616                 index = 0;
617         else
618                 index = get_count_order(nents) - 3;
619
620         return index;
621 }
622
623 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
624 {
625         struct scsi_host_sg_pool *sgp;
626
627         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
628         mempool_free(sgl, sgp->pool);
629 }
630
631 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
632 {
633         struct scsi_host_sg_pool *sgp;
634
635         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
636         return mempool_alloc(sgp->pool, gfp_mask);
637 }
638
639 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
640                               gfp_t gfp_mask)
641 {
642         int ret;
643
644         BUG_ON(!nents);
645
646         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
647                                gfp_mask, scsi_sg_alloc);
648         if (unlikely(ret))
649                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
650                                 scsi_sg_free);
651
652         return ret;
653 }
654
655 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
656 {
657         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
658 }
659
660 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
661 {
662
663         if (cmd->sdb.table.nents)
664                 scsi_free_sgtable(&cmd->sdb);
665
666         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
667
668         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
669                 struct scsi_data_buffer *bidi_sdb =
670                         cmd->request->next_rq->special;
671                 scsi_free_sgtable(bidi_sdb);
672                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
673                 cmd->request->next_rq->special = NULL;
674         }
675
676         if (scsi_prot_sg_count(cmd))
677                 scsi_free_sgtable(cmd->prot_sdb);
678 }
679
680 /*
681  * Function:    scsi_release_buffers()
682  *
683  * Purpose:     Completion processing for block device I/O requests.
684  *
685  * Arguments:   cmd     - command that we are bailing.
686  *
687  * Lock status: Assumed that no lock is held upon entry.
688  *
689  * Returns:     Nothing
690  *
691  * Notes:       In the event that an upper level driver rejects a
692  *              command, we must release resources allocated during
693  *              the __init_io() function.  Primarily this would involve
694  *              the scatter-gather table, and potentially any bounce
695  *              buffers.
696  */
697 void scsi_release_buffers(struct scsi_cmnd *cmd)
698 {
699         __scsi_release_buffers(cmd, 1);
700 }
701 EXPORT_SYMBOL(scsi_release_buffers);
702
703 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
704 {
705         int error = 0;
706
707         switch(host_byte(result)) {
708         case DID_TRANSPORT_FAILFAST:
709                 error = -ENOLINK;
710                 break;
711         case DID_TARGET_FAILURE:
712                 set_host_byte(cmd, DID_OK);
713                 error = -EREMOTEIO;
714                 break;
715         case DID_NEXUS_FAILURE:
716                 set_host_byte(cmd, DID_OK);
717                 error = -EBADE;
718                 break;
719         default:
720                 error = -EIO;
721                 break;
722         }
723
724         return error;
725 }
726
727 /*
728  * Function:    scsi_io_completion()
729  *
730  * Purpose:     Completion processing for block device I/O requests.
731  *
732  * Arguments:   cmd   - command that is finished.
733  *
734  * Lock status: Assumed that no lock is held upon entry.
735  *
736  * Returns:     Nothing
737  *
738  * Notes:       This function is matched in terms of capabilities to
739  *              the function that created the scatter-gather list.
740  *              In other words, if there are no bounce buffers
741  *              (the normal case for most drivers), we don't need
742  *              the logic to deal with cleaning up afterwards.
743  *
744  *              We must call scsi_end_request().  This will finish off
745  *              the specified number of sectors.  If we are done, the
746  *              command block will be released and the queue function
747  *              will be goosed.  If we are not done then we have to
748  *              figure out what to do next:
749  *
750  *              a) We can call scsi_requeue_command().  The request
751  *                 will be unprepared and put back on the queue.  Then
752  *                 a new command will be created for it.  This should
753  *                 be used if we made forward progress, or if we want
754  *                 to switch from READ(10) to READ(6) for example.
755  *
756  *              b) We can call scsi_queue_insert().  The request will
757  *                 be put back on the queue and retried using the same
758  *                 command as before, possibly after a delay.
759  *
760  *              c) We can call blk_end_request() with -EIO to fail
761  *                 the remainder of the request.
762  */
763 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
764 {
765         int result = cmd->result;
766         struct request_queue *q = cmd->device->request_queue;
767         struct request *req = cmd->request;
768         int error = 0;
769         struct scsi_sense_hdr sshdr;
770         int sense_valid = 0;
771         int sense_deferred = 0;
772         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
773               ACTION_DELAYED_RETRY} action;
774         char *description = NULL;
775
776         if (result) {
777                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
778                 if (sense_valid)
779                         sense_deferred = scsi_sense_is_deferred(&sshdr);
780         }
781
782         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
783                 if (result) {
784                         if (sense_valid && req->sense) {
785                                 /*
786                                  * SG_IO wants current and deferred errors
787                                  */
788                                 int len = 8 + cmd->sense_buffer[7];
789
790                                 if (len > SCSI_SENSE_BUFFERSIZE)
791                                         len = SCSI_SENSE_BUFFERSIZE;
792                                 memcpy(req->sense, cmd->sense_buffer,  len);
793                                 req->sense_len = len;
794                         }
795                         if (!sense_deferred)
796                                 error = __scsi_error_from_host_byte(cmd, result);
797                 }
798                 /*
799                  * __scsi_error_from_host_byte may have reset the host_byte
800                  */
801                 req->errors = cmd->result;
802
803                 req->resid_len = scsi_get_resid(cmd);
804
805                 if (scsi_bidi_cmnd(cmd)) {
806                         /*
807                          * Bidi commands Must be complete as a whole,
808                          * both sides at once.
809                          */
810                         req->next_rq->resid_len = scsi_in(cmd)->resid;
811
812                         scsi_release_buffers(cmd);
813                         blk_end_request_all(req, 0);
814
815                         scsi_next_command(cmd);
816                         return;
817                 }
818         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
819                 /*
820                  * Certain non BLOCK_PC requests are commands that don't
821                  * actually transfer anything (FLUSH), so cannot use
822                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
823                  * This sets the error explicitly for the problem case.
824                  */
825                 error = __scsi_error_from_host_byte(cmd, result);
826         }
827
828         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
829         BUG_ON(blk_bidi_rq(req));
830
831         /*
832          * Next deal with any sectors which we were able to correctly
833          * handle.
834          */
835         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
836                                       "%d bytes done.\n",
837                                       blk_rq_sectors(req), good_bytes));
838
839         /*
840          * Recovered errors need reporting, but they're always treated
841          * as success, so fiddle the result code here.  For BLOCK_PC
842          * we already took a copy of the original into rq->errors which
843          * is what gets returned to the user
844          */
845         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
846                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
847                  * print since caller wants ATA registers. Only occurs on
848                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
849                  */
850                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
851                         ;
852                 else if (!(req->cmd_flags & REQ_QUIET))
853                         scsi_print_sense("", cmd);
854                 result = 0;
855                 /* BLOCK_PC may have set error */
856                 error = 0;
857         }
858
859         /*
860          * A number of bytes were successfully read.  If there
861          * are leftovers and there is some kind of error
862          * (result != 0), retry the rest.
863          */
864         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
865                 return;
866
867         error = __scsi_error_from_host_byte(cmd, result);
868
869         if (host_byte(result) == DID_RESET) {
870                 /* Third party bus reset or reset for error recovery
871                  * reasons.  Just retry the command and see what
872                  * happens.
873                  */
874                 action = ACTION_RETRY;
875         } else if (sense_valid && !sense_deferred) {
876                 switch (sshdr.sense_key) {
877                 case UNIT_ATTENTION:
878                         if (cmd->device->removable) {
879                                 /* Detected disc change.  Set a bit
880                                  * and quietly refuse further access.
881                                  */
882                                 cmd->device->changed = 1;
883                                 description = "Media Changed";
884                                 action = ACTION_FAIL;
885                         } else {
886                                 /* Must have been a power glitch, or a
887                                  * bus reset.  Could not have been a
888                                  * media change, so we just retry the
889                                  * command and see what happens.
890                                  */
891                                 action = ACTION_RETRY;
892                         }
893                         break;
894                 case ILLEGAL_REQUEST:
895                         /* If we had an ILLEGAL REQUEST returned, then
896                          * we may have performed an unsupported
897                          * command.  The only thing this should be
898                          * would be a ten byte read where only a six
899                          * byte read was supported.  Also, on a system
900                          * where READ CAPACITY failed, we may have
901                          * read past the end of the disk.
902                          */
903                         if ((cmd->device->use_10_for_rw &&
904                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
905                             (cmd->cmnd[0] == READ_10 ||
906                              cmd->cmnd[0] == WRITE_10)) {
907                                 /* This will issue a new 6-byte command. */
908                                 cmd->device->use_10_for_rw = 0;
909                                 action = ACTION_REPREP;
910                         } else if (sshdr.asc == 0x10) /* DIX */ {
911                                 description = "Host Data Integrity Failure";
912                                 action = ACTION_FAIL;
913                                 error = -EILSEQ;
914                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
915                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
916                                 switch (cmd->cmnd[0]) {
917                                 case UNMAP:
918                                         description = "Discard failure";
919                                         break;
920                                 case WRITE_SAME:
921                                 case WRITE_SAME_16:
922                                         if (cmd->cmnd[1] & 0x8)
923                                                 description = "Discard failure";
924                                         else
925                                                 description =
926                                                         "Write same failure";
927                                         break;
928                                 default:
929                                         description = "Invalid command failure";
930                                         break;
931                                 }
932                                 action = ACTION_FAIL;
933                                 error = -EREMOTEIO;
934                         } else
935                                 action = ACTION_FAIL;
936                         break;
937                 case ABORTED_COMMAND:
938                         action = ACTION_FAIL;
939                         if (sshdr.asc == 0x10) { /* DIF */
940                                 description = "Target Data Integrity Failure";
941                                 error = -EILSEQ;
942                         }
943                         break;
944                 case NOT_READY:
945                         /* If the device is in the process of becoming
946                          * ready, or has a temporary blockage, retry.
947                          */
948                         if (sshdr.asc == 0x04) {
949                                 switch (sshdr.ascq) {
950                                 case 0x01: /* becoming ready */
951                                 case 0x04: /* format in progress */
952                                 case 0x05: /* rebuild in progress */
953                                 case 0x06: /* recalculation in progress */
954                                 case 0x07: /* operation in progress */
955                                 case 0x08: /* Long write in progress */
956                                 case 0x09: /* self test in progress */
957                                 case 0x14: /* space allocation in progress */
958                                         action = ACTION_DELAYED_RETRY;
959                                         break;
960                                 default:
961                                         description = "Device not ready";
962                                         action = ACTION_FAIL;
963                                         break;
964                                 }
965                         } else {
966                                 description = "Device not ready";
967                                 action = ACTION_FAIL;
968                         }
969                         break;
970                 case VOLUME_OVERFLOW:
971                         /* See SSC3rXX or current. */
972                         action = ACTION_FAIL;
973                         break;
974                 default:
975                         description = "Unhandled sense code";
976                         action = ACTION_FAIL;
977                         break;
978                 }
979         } else {
980                 description = "Unhandled error code";
981                 action = ACTION_FAIL;
982         }
983
984         switch (action) {
985         case ACTION_FAIL:
986                 /* Give up and fail the remainder of the request */
987                 scsi_release_buffers(cmd);
988                 if (!(req->cmd_flags & REQ_QUIET)) {
989                         if (description)
990                                 scmd_printk(KERN_INFO, cmd, "%s\n",
991                                             description);
992                         scsi_print_result(cmd);
993                         if (driver_byte(result) & DRIVER_SENSE)
994                                 scsi_print_sense("", cmd);
995                         scsi_print_command(cmd);
996                 }
997                 if (blk_end_request_err(req, error))
998                         scsi_requeue_command(q, cmd);
999                 else
1000                         scsi_next_command(cmd);
1001                 break;
1002         case ACTION_REPREP:
1003                 /* Unprep the request and put it back at the head of the queue.
1004                  * A new command will be prepared and issued.
1005                  */
1006                 scsi_release_buffers(cmd);
1007                 scsi_requeue_command(q, cmd);
1008                 break;
1009         case ACTION_RETRY:
1010                 /* Retry the same command immediately */
1011                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1012                 break;
1013         case ACTION_DELAYED_RETRY:
1014                 /* Retry the same command after a delay */
1015                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1016                 break;
1017         }
1018 }
1019
1020 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1021                              gfp_t gfp_mask)
1022 {
1023         int count;
1024
1025         /*
1026          * If sg table allocation fails, requeue request later.
1027          */
1028         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1029                                         gfp_mask))) {
1030                 return BLKPREP_DEFER;
1031         }
1032
1033         req->buffer = NULL;
1034
1035         /* 
1036          * Next, walk the list, and fill in the addresses and sizes of
1037          * each segment.
1038          */
1039         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1040         BUG_ON(count > sdb->table.nents);
1041         sdb->table.nents = count;
1042         sdb->length = blk_rq_bytes(req);
1043         return BLKPREP_OK;
1044 }
1045
1046 /*
1047  * Function:    scsi_init_io()
1048  *
1049  * Purpose:     SCSI I/O initialize function.
1050  *
1051  * Arguments:   cmd   - Command descriptor we wish to initialize
1052  *
1053  * Returns:     0 on success
1054  *              BLKPREP_DEFER if the failure is retryable
1055  *              BLKPREP_KILL if the failure is fatal
1056  */
1057 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1058 {
1059         struct request *rq = cmd->request;
1060
1061         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1062         if (error)
1063                 goto err_exit;
1064
1065         if (blk_bidi_rq(rq)) {
1066                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1067                         scsi_sdb_cache, GFP_ATOMIC);
1068                 if (!bidi_sdb) {
1069                         error = BLKPREP_DEFER;
1070                         goto err_exit;
1071                 }
1072
1073                 rq->next_rq->special = bidi_sdb;
1074                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1075                 if (error)
1076                         goto err_exit;
1077         }
1078
1079         if (blk_integrity_rq(rq)) {
1080                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1081                 int ivecs, count;
1082
1083                 BUG_ON(prot_sdb == NULL);
1084                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1085
1086                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1087                         error = BLKPREP_DEFER;
1088                         goto err_exit;
1089                 }
1090
1091                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1092                                                 prot_sdb->table.sgl);
1093                 BUG_ON(unlikely(count > ivecs));
1094                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1095
1096                 cmd->prot_sdb = prot_sdb;
1097                 cmd->prot_sdb->table.nents = count;
1098         }
1099
1100         return BLKPREP_OK ;
1101
1102 err_exit:
1103         scsi_release_buffers(cmd);
1104         cmd->request->special = NULL;
1105         scsi_put_command(cmd);
1106         return error;
1107 }
1108 EXPORT_SYMBOL(scsi_init_io);
1109
1110 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1111                 struct request *req)
1112 {
1113         struct scsi_cmnd *cmd;
1114
1115         if (!req->special) {
1116                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1117                 if (unlikely(!cmd))
1118                         return NULL;
1119                 req->special = cmd;
1120         } else {
1121                 cmd = req->special;
1122         }
1123
1124         /* pull a tag out of the request if we have one */
1125         cmd->tag = req->tag;
1126         cmd->request = req;
1127
1128         cmd->cmnd = req->cmd;
1129         cmd->prot_op = SCSI_PROT_NORMAL;
1130
1131         return cmd;
1132 }
1133
1134 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1135 {
1136         struct scsi_cmnd *cmd;
1137         int ret = scsi_prep_state_check(sdev, req);
1138
1139         if (ret != BLKPREP_OK)
1140                 return ret;
1141
1142         cmd = scsi_get_cmd_from_req(sdev, req);
1143         if (unlikely(!cmd))
1144                 return BLKPREP_DEFER;
1145
1146         /*
1147          * BLOCK_PC requests may transfer data, in which case they must
1148          * a bio attached to them.  Or they might contain a SCSI command
1149          * that does not transfer data, in which case they may optionally
1150          * submit a request without an attached bio.
1151          */
1152         if (req->bio) {
1153                 int ret;
1154
1155                 BUG_ON(!req->nr_phys_segments);
1156
1157                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1158                 if (unlikely(ret))
1159                         return ret;
1160         } else {
1161                 BUG_ON(blk_rq_bytes(req));
1162
1163                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164                 req->buffer = NULL;
1165         }
1166
1167         cmd->cmd_len = req->cmd_len;
1168         if (!blk_rq_bytes(req))
1169                 cmd->sc_data_direction = DMA_NONE;
1170         else if (rq_data_dir(req) == WRITE)
1171                 cmd->sc_data_direction = DMA_TO_DEVICE;
1172         else
1173                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1174         
1175         cmd->transfersize = blk_rq_bytes(req);
1176         cmd->allowed = req->retries;
1177         return BLKPREP_OK;
1178 }
1179 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1180
1181 /*
1182  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1183  * from filesystems that still need to be translated to SCSI CDBs from
1184  * the ULD.
1185  */
1186 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1187 {
1188         struct scsi_cmnd *cmd;
1189         int ret = scsi_prep_state_check(sdev, req);
1190
1191         if (ret != BLKPREP_OK)
1192                 return ret;
1193
1194         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1195                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1196                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1197                 if (ret != BLKPREP_OK)
1198                         return ret;
1199         }
1200
1201         /*
1202          * Filesystem requests must transfer data.
1203          */
1204         BUG_ON(!req->nr_phys_segments);
1205
1206         cmd = scsi_get_cmd_from_req(sdev, req);
1207         if (unlikely(!cmd))
1208                 return BLKPREP_DEFER;
1209
1210         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1211         return scsi_init_io(cmd, GFP_ATOMIC);
1212 }
1213 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1214
1215 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1216 {
1217         int ret = BLKPREP_OK;
1218
1219         /*
1220          * If the device is not in running state we will reject some
1221          * or all commands.
1222          */
1223         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1224                 switch (sdev->sdev_state) {
1225                 case SDEV_OFFLINE:
1226                 case SDEV_TRANSPORT_OFFLINE:
1227                         /*
1228                          * If the device is offline we refuse to process any
1229                          * commands.  The device must be brought online
1230                          * before trying any recovery commands.
1231                          */
1232                         sdev_printk(KERN_ERR, sdev,
1233                                     "rejecting I/O to offline device\n");
1234                         ret = BLKPREP_KILL;
1235                         break;
1236                 case SDEV_DEL:
1237                         /*
1238                          * If the device is fully deleted, we refuse to
1239                          * process any commands as well.
1240                          */
1241                         sdev_printk(KERN_ERR, sdev,
1242                                     "rejecting I/O to dead device\n");
1243                         ret = BLKPREP_KILL;
1244                         break;
1245                 case SDEV_BLOCK:
1246                 case SDEV_CREATED_BLOCK:
1247                         ret = BLKPREP_DEFER;
1248                         break;
1249                 case SDEV_QUIESCE:
1250                         /*
1251                          * If the devices is blocked we defer normal commands.
1252                          */
1253                         if (!(req->cmd_flags & REQ_PREEMPT))
1254                                 ret = BLKPREP_DEFER;
1255                         break;
1256                 default:
1257                         /*
1258                          * For any other not fully online state we only allow
1259                          * special commands.  In particular any user initiated
1260                          * command is not allowed.
1261                          */
1262                         if (!(req->cmd_flags & REQ_PREEMPT))
1263                                 ret = BLKPREP_KILL;
1264                         break;
1265                 }
1266         }
1267         return ret;
1268 }
1269 EXPORT_SYMBOL(scsi_prep_state_check);
1270
1271 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1272 {
1273         struct scsi_device *sdev = q->queuedata;
1274
1275         switch (ret) {
1276         case BLKPREP_KILL:
1277                 req->errors = DID_NO_CONNECT << 16;
1278                 /* release the command and kill it */
1279                 if (req->special) {
1280                         struct scsi_cmnd *cmd = req->special;
1281                         scsi_release_buffers(cmd);
1282                         scsi_put_command(cmd);
1283                         req->special = NULL;
1284                 }
1285                 break;
1286         case BLKPREP_DEFER:
1287                 /*
1288                  * If we defer, the blk_peek_request() returns NULL, but the
1289                  * queue must be restarted, so we schedule a callback to happen
1290                  * shortly.
1291                  */
1292                 if (sdev->device_busy == 0)
1293                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1294                 break;
1295         default:
1296                 req->cmd_flags |= REQ_DONTPREP;
1297         }
1298
1299         return ret;
1300 }
1301 EXPORT_SYMBOL(scsi_prep_return);
1302
1303 int scsi_prep_fn(struct request_queue *q, struct request *req)
1304 {
1305         struct scsi_device *sdev = q->queuedata;
1306         int ret = BLKPREP_KILL;
1307
1308         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1309                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1310         return scsi_prep_return(q, req, ret);
1311 }
1312 EXPORT_SYMBOL(scsi_prep_fn);
1313
1314 /*
1315  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1316  * return 0.
1317  *
1318  * Called with the queue_lock held.
1319  */
1320 static inline int scsi_dev_queue_ready(struct request_queue *q,
1321                                   struct scsi_device *sdev)
1322 {
1323         if (sdev->device_busy == 0 && sdev->device_blocked) {
1324                 /*
1325                  * unblock after device_blocked iterates to zero
1326                  */
1327                 if (--sdev->device_blocked == 0) {
1328                         SCSI_LOG_MLQUEUE(3,
1329                                    sdev_printk(KERN_INFO, sdev,
1330                                    "unblocking device at zero depth\n"));
1331                 } else {
1332                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1333                         return 0;
1334                 }
1335         }
1336         if (scsi_device_is_busy(sdev))
1337                 return 0;
1338
1339         return 1;
1340 }
1341
1342
1343 /*
1344  * scsi_target_queue_ready: checks if there we can send commands to target
1345  * @sdev: scsi device on starget to check.
1346  *
1347  * Called with the host lock held.
1348  */
1349 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1350                                            struct scsi_device *sdev)
1351 {
1352         struct scsi_target *starget = scsi_target(sdev);
1353
1354         if (starget->single_lun) {
1355                 if (starget->starget_sdev_user &&
1356                     starget->starget_sdev_user != sdev)
1357                         return 0;
1358                 starget->starget_sdev_user = sdev;
1359         }
1360
1361         if (starget->target_busy == 0 && starget->target_blocked) {
1362                 /*
1363                  * unblock after target_blocked iterates to zero
1364                  */
1365                 if (--starget->target_blocked == 0) {
1366                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1367                                          "unblocking target at zero depth\n"));
1368                 } else
1369                         return 0;
1370         }
1371
1372         if (scsi_target_is_busy(starget)) {
1373                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1374                 return 0;
1375         }
1376
1377         return 1;
1378 }
1379
1380 /*
1381  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1382  * return 0. We must end up running the queue again whenever 0 is
1383  * returned, else IO can hang.
1384  *
1385  * Called with host_lock held.
1386  */
1387 static inline int scsi_host_queue_ready(struct request_queue *q,
1388                                    struct Scsi_Host *shost,
1389                                    struct scsi_device *sdev)
1390 {
1391         if (scsi_host_in_recovery(shost))
1392                 return 0;
1393         if (shost->host_busy == 0 && shost->host_blocked) {
1394                 /*
1395                  * unblock after host_blocked iterates to zero
1396                  */
1397                 if (--shost->host_blocked == 0) {
1398                         SCSI_LOG_MLQUEUE(3,
1399                                 printk("scsi%d unblocking host at zero depth\n",
1400                                         shost->host_no));
1401                 } else {
1402                         return 0;
1403                 }
1404         }
1405         if (scsi_host_is_busy(shost)) {
1406                 if (list_empty(&sdev->starved_entry))
1407                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1408                 return 0;
1409         }
1410
1411         /* We're OK to process the command, so we can't be starved */
1412         if (!list_empty(&sdev->starved_entry))
1413                 list_del_init(&sdev->starved_entry);
1414
1415         return 1;
1416 }
1417
1418 /*
1419  * Busy state exporting function for request stacking drivers.
1420  *
1421  * For efficiency, no lock is taken to check the busy state of
1422  * shost/starget/sdev, since the returned value is not guaranteed and
1423  * may be changed after request stacking drivers call the function,
1424  * regardless of taking lock or not.
1425  *
1426  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427  * needs to return 'not busy'. Otherwise, request stacking drivers
1428  * may hold requests forever.
1429  */
1430 static int scsi_lld_busy(struct request_queue *q)
1431 {
1432         struct scsi_device *sdev = q->queuedata;
1433         struct Scsi_Host *shost;
1434
1435         if (blk_queue_dying(q))
1436                 return 0;
1437
1438         shost = sdev->host;
1439
1440         /*
1441          * Ignore host/starget busy state.
1442          * Since block layer does not have a concept of fairness across
1443          * multiple queues, congestion of host/starget needs to be handled
1444          * in SCSI layer.
1445          */
1446         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447                 return 1;
1448
1449         return 0;
1450 }
1451
1452 /*
1453  * Kill a request for a dead device
1454  */
1455 static void scsi_kill_request(struct request *req, struct request_queue *q)
1456 {
1457         struct scsi_cmnd *cmd = req->special;
1458         struct scsi_device *sdev;
1459         struct scsi_target *starget;
1460         struct Scsi_Host *shost;
1461
1462         blk_start_request(req);
1463
1464         scmd_printk(KERN_INFO, cmd, "killing request\n");
1465
1466         sdev = cmd->device;
1467         starget = scsi_target(sdev);
1468         shost = sdev->host;
1469         scsi_init_cmd_errh(cmd);
1470         cmd->result = DID_NO_CONNECT << 16;
1471         atomic_inc(&cmd->device->iorequest_cnt);
1472
1473         /*
1474          * SCSI request completion path will do scsi_device_unbusy(),
1475          * bump busy counts.  To bump the counters, we need to dance
1476          * with the locks as normal issue path does.
1477          */
1478         sdev->device_busy++;
1479         spin_unlock(sdev->request_queue->queue_lock);
1480         spin_lock(shost->host_lock);
1481         shost->host_busy++;
1482         starget->target_busy++;
1483         spin_unlock(shost->host_lock);
1484         spin_lock(sdev->request_queue->queue_lock);
1485
1486         blk_complete_request(req);
1487 }
1488
1489 static void scsi_softirq_done(struct request *rq)
1490 {
1491         struct scsi_cmnd *cmd = rq->special;
1492         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1493         int disposition;
1494
1495         INIT_LIST_HEAD(&cmd->eh_entry);
1496
1497         atomic_inc(&cmd->device->iodone_cnt);
1498         if (cmd->result)
1499                 atomic_inc(&cmd->device->ioerr_cnt);
1500
1501         disposition = scsi_decide_disposition(cmd);
1502         if (disposition != SUCCESS &&
1503             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1504                 sdev_printk(KERN_ERR, cmd->device,
1505                             "timing out command, waited %lus\n",
1506                             wait_for/HZ);
1507                 disposition = SUCCESS;
1508         }
1509                         
1510         scsi_log_completion(cmd, disposition);
1511
1512         switch (disposition) {
1513                 case SUCCESS:
1514                         scsi_finish_command(cmd);
1515                         break;
1516                 case NEEDS_RETRY:
1517                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1518                         break;
1519                 case ADD_TO_MLQUEUE:
1520                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1521                         break;
1522                 default:
1523                         if (!scsi_eh_scmd_add(cmd, 0))
1524                                 scsi_finish_command(cmd);
1525         }
1526 }
1527
1528 /*
1529  * Function:    scsi_request_fn()
1530  *
1531  * Purpose:     Main strategy routine for SCSI.
1532  *
1533  * Arguments:   q       - Pointer to actual queue.
1534  *
1535  * Returns:     Nothing
1536  *
1537  * Lock status: IO request lock assumed to be held when called.
1538  */
1539 static void scsi_request_fn(struct request_queue *q)
1540 {
1541         struct scsi_device *sdev = q->queuedata;
1542         struct Scsi_Host *shost;
1543         struct scsi_cmnd *cmd;
1544         struct request *req;
1545
1546         if(!get_device(&sdev->sdev_gendev))
1547                 /* We must be tearing the block queue down already */
1548                 return;
1549
1550         /*
1551          * To start with, we keep looping until the queue is empty, or until
1552          * the host is no longer able to accept any more requests.
1553          */
1554         shost = sdev->host;
1555         for (;;) {
1556                 int rtn;
1557                 /*
1558                  * get next queueable request.  We do this early to make sure
1559                  * that the request is fully prepared even if we cannot 
1560                  * accept it.
1561                  */
1562                 req = blk_peek_request(q);
1563                 if (!req || !scsi_dev_queue_ready(q, sdev))
1564                         break;
1565
1566                 if (unlikely(!scsi_device_online(sdev))) {
1567                         sdev_printk(KERN_ERR, sdev,
1568                                     "rejecting I/O to offline device\n");
1569                         scsi_kill_request(req, q);
1570                         continue;
1571                 }
1572
1573
1574                 /*
1575                  * Remove the request from the request list.
1576                  */
1577                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1578                         blk_start_request(req);
1579                 sdev->device_busy++;
1580
1581                 spin_unlock(q->queue_lock);
1582                 cmd = req->special;
1583                 if (unlikely(cmd == NULL)) {
1584                         printk(KERN_CRIT "impossible request in %s.\n"
1585                                          "please mail a stack trace to "
1586                                          "linux-scsi@vger.kernel.org\n",
1587                                          __func__);
1588                         blk_dump_rq_flags(req, "foo");
1589                         BUG();
1590                 }
1591                 spin_lock(shost->host_lock);
1592
1593                 /*
1594                  * We hit this when the driver is using a host wide
1595                  * tag map. For device level tag maps the queue_depth check
1596                  * in the device ready fn would prevent us from trying
1597                  * to allocate a tag. Since the map is a shared host resource
1598                  * we add the dev to the starved list so it eventually gets
1599                  * a run when a tag is freed.
1600                  */
1601                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1602                         if (list_empty(&sdev->starved_entry))
1603                                 list_add_tail(&sdev->starved_entry,
1604                                               &shost->starved_list);
1605                         goto not_ready;
1606                 }
1607
1608                 if (!scsi_target_queue_ready(shost, sdev))
1609                         goto not_ready;
1610
1611                 if (!scsi_host_queue_ready(q, shost, sdev))
1612                         goto not_ready;
1613
1614                 scsi_target(sdev)->target_busy++;
1615                 shost->host_busy++;
1616
1617                 /*
1618                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1619                  *              take the lock again.
1620                  */
1621                 spin_unlock_irq(shost->host_lock);
1622
1623                 /*
1624                  * Finally, initialize any error handling parameters, and set up
1625                  * the timers for timeouts.
1626                  */
1627                 scsi_init_cmd_errh(cmd);
1628
1629                 /*
1630                  * Dispatch the command to the low-level driver.
1631                  */
1632                 rtn = scsi_dispatch_cmd(cmd);
1633                 spin_lock_irq(q->queue_lock);
1634                 if (rtn)
1635                         goto out_delay;
1636         }
1637
1638         goto out;
1639
1640  not_ready:
1641         spin_unlock_irq(shost->host_lock);
1642
1643         /*
1644          * lock q, handle tag, requeue req, and decrement device_busy. We
1645          * must return with queue_lock held.
1646          *
1647          * Decrementing device_busy without checking it is OK, as all such
1648          * cases (host limits or settings) should run the queue at some
1649          * later time.
1650          */
1651         spin_lock_irq(q->queue_lock);
1652         blk_requeue_request(q, req);
1653         sdev->device_busy--;
1654 out_delay:
1655         if (sdev->device_busy == 0)
1656                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1657 out:
1658         /* must be careful here...if we trigger the ->remove() function
1659          * we cannot be holding the q lock */
1660         spin_unlock_irq(q->queue_lock);
1661         put_device(&sdev->sdev_gendev);
1662         spin_lock_irq(q->queue_lock);
1663 }
1664
1665 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1666 {
1667         struct device *host_dev;
1668         u64 bounce_limit = 0xffffffff;
1669
1670         if (shost->unchecked_isa_dma)
1671                 return BLK_BOUNCE_ISA;
1672         /*
1673          * Platforms with virtual-DMA translation
1674          * hardware have no practical limit.
1675          */
1676         if (!PCI_DMA_BUS_IS_PHYS)
1677                 return BLK_BOUNCE_ANY;
1678
1679         host_dev = scsi_get_device(shost);
1680         if (host_dev && host_dev->dma_mask)
1681                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1682
1683         return bounce_limit;
1684 }
1685 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1686
1687 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1688                                          request_fn_proc *request_fn)
1689 {
1690         struct request_queue *q;
1691         struct device *dev = shost->dma_dev;
1692
1693         q = blk_init_queue(request_fn, NULL);
1694         if (!q)
1695                 return NULL;
1696
1697         /*
1698          * this limit is imposed by hardware restrictions
1699          */
1700         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1701                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1702
1703         if (scsi_host_prot_dma(shost)) {
1704                 shost->sg_prot_tablesize =
1705                         min_not_zero(shost->sg_prot_tablesize,
1706                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1707                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1708                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1709         }
1710
1711         blk_queue_max_hw_sectors(q, shost->max_sectors);
1712         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1713         blk_queue_segment_boundary(q, shost->dma_boundary);
1714         dma_set_seg_boundary(dev, shost->dma_boundary);
1715
1716         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1717
1718         if (!shost->use_clustering)
1719                 q->limits.cluster = 0;
1720
1721         /*
1722          * set a reasonable default alignment on word boundaries: the
1723          * host and device may alter it using
1724          * blk_queue_update_dma_alignment() later.
1725          */
1726         blk_queue_dma_alignment(q, 0x03);
1727
1728         return q;
1729 }
1730 EXPORT_SYMBOL(__scsi_alloc_queue);
1731
1732 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1733 {
1734         struct request_queue *q;
1735
1736         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1737         if (!q)
1738                 return NULL;
1739
1740         blk_queue_prep_rq(q, scsi_prep_fn);
1741         blk_queue_softirq_done(q, scsi_softirq_done);
1742         blk_queue_rq_timed_out(q, scsi_times_out);
1743         blk_queue_lld_busy(q, scsi_lld_busy);
1744         return q;
1745 }
1746
1747 /*
1748  * Function:    scsi_block_requests()
1749  *
1750  * Purpose:     Utility function used by low-level drivers to prevent further
1751  *              commands from being queued to the device.
1752  *
1753  * Arguments:   shost       - Host in question
1754  *
1755  * Returns:     Nothing
1756  *
1757  * Lock status: No locks are assumed held.
1758  *
1759  * Notes:       There is no timer nor any other means by which the requests
1760  *              get unblocked other than the low-level driver calling
1761  *              scsi_unblock_requests().
1762  */
1763 void scsi_block_requests(struct Scsi_Host *shost)
1764 {
1765         shost->host_self_blocked = 1;
1766 }
1767 EXPORT_SYMBOL(scsi_block_requests);
1768
1769 /*
1770  * Function:    scsi_unblock_requests()
1771  *
1772  * Purpose:     Utility function used by low-level drivers to allow further
1773  *              commands from being queued to the device.
1774  *
1775  * Arguments:   shost       - Host in question
1776  *
1777  * Returns:     Nothing
1778  *
1779  * Lock status: No locks are assumed held.
1780  *
1781  * Notes:       There is no timer nor any other means by which the requests
1782  *              get unblocked other than the low-level driver calling
1783  *              scsi_unblock_requests().
1784  *
1785  *              This is done as an API function so that changes to the
1786  *              internals of the scsi mid-layer won't require wholesale
1787  *              changes to drivers that use this feature.
1788  */
1789 void scsi_unblock_requests(struct Scsi_Host *shost)
1790 {
1791         shost->host_self_blocked = 0;
1792         scsi_run_host_queues(shost);
1793 }
1794 EXPORT_SYMBOL(scsi_unblock_requests);
1795
1796 int __init scsi_init_queue(void)
1797 {
1798         int i;
1799
1800         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1801                                            sizeof(struct scsi_data_buffer),
1802                                            0, 0, NULL);
1803         if (!scsi_sdb_cache) {
1804                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1805                 return -ENOMEM;
1806         }
1807
1808         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810                 int size = sgp->size * sizeof(struct scatterlist);
1811
1812                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1813                                 SLAB_HWCACHE_ALIGN, NULL);
1814                 if (!sgp->slab) {
1815                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1816                                         sgp->name);
1817                         goto cleanup_sdb;
1818                 }
1819
1820                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1821                                                      sgp->slab);
1822                 if (!sgp->pool) {
1823                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1824                                         sgp->name);
1825                         goto cleanup_sdb;
1826                 }
1827         }
1828
1829         return 0;
1830
1831 cleanup_sdb:
1832         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1833                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1834                 if (sgp->pool)
1835                         mempool_destroy(sgp->pool);
1836                 if (sgp->slab)
1837                         kmem_cache_destroy(sgp->slab);
1838         }
1839         kmem_cache_destroy(scsi_sdb_cache);
1840
1841         return -ENOMEM;
1842 }
1843
1844 void scsi_exit_queue(void)
1845 {
1846         int i;
1847
1848         kmem_cache_destroy(scsi_sdb_cache);
1849
1850         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1851                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1852                 mempool_destroy(sgp->pool);
1853                 kmem_cache_destroy(sgp->slab);
1854         }
1855 }
1856
1857 /**
1858  *      scsi_mode_select - issue a mode select
1859  *      @sdev:  SCSI device to be queried
1860  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1861  *      @sp:    Save page bit (0 == don't save, 1 == save)
1862  *      @modepage: mode page being requested
1863  *      @buffer: request buffer (may not be smaller than eight bytes)
1864  *      @len:   length of request buffer.
1865  *      @timeout: command timeout
1866  *      @retries: number of retries before failing
1867  *      @data: returns a structure abstracting the mode header data
1868  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1869  *              must be SCSI_SENSE_BUFFERSIZE big.
1870  *
1871  *      Returns zero if successful; negative error number or scsi
1872  *      status on error
1873  *
1874  */
1875 int
1876 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1877                  unsigned char *buffer, int len, int timeout, int retries,
1878                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1879 {
1880         unsigned char cmd[10];
1881         unsigned char *real_buffer;
1882         int ret;
1883
1884         memset(cmd, 0, sizeof(cmd));
1885         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1886
1887         if (sdev->use_10_for_ms) {
1888                 if (len > 65535)
1889                         return -EINVAL;
1890                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1891                 if (!real_buffer)
1892                         return -ENOMEM;
1893                 memcpy(real_buffer + 8, buffer, len);
1894                 len += 8;
1895                 real_buffer[0] = 0;
1896                 real_buffer[1] = 0;
1897                 real_buffer[2] = data->medium_type;
1898                 real_buffer[3] = data->device_specific;
1899                 real_buffer[4] = data->longlba ? 0x01 : 0;
1900                 real_buffer[5] = 0;
1901                 real_buffer[6] = data->block_descriptor_length >> 8;
1902                 real_buffer[7] = data->block_descriptor_length;
1903
1904                 cmd[0] = MODE_SELECT_10;
1905                 cmd[7] = len >> 8;
1906                 cmd[8] = len;
1907         } else {
1908                 if (len > 255 || data->block_descriptor_length > 255 ||
1909                     data->longlba)
1910                         return -EINVAL;
1911
1912                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1913                 if (!real_buffer)
1914                         return -ENOMEM;
1915                 memcpy(real_buffer + 4, buffer, len);
1916                 len += 4;
1917                 real_buffer[0] = 0;
1918                 real_buffer[1] = data->medium_type;
1919                 real_buffer[2] = data->device_specific;
1920                 real_buffer[3] = data->block_descriptor_length;
1921                 
1922
1923                 cmd[0] = MODE_SELECT;
1924                 cmd[4] = len;
1925         }
1926
1927         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1928                                sshdr, timeout, retries, NULL);
1929         kfree(real_buffer);
1930         return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(scsi_mode_select);
1933
1934 /**
1935  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1936  *      @sdev:  SCSI device to be queried
1937  *      @dbd:   set if mode sense will allow block descriptors to be returned
1938  *      @modepage: mode page being requested
1939  *      @buffer: request buffer (may not be smaller than eight bytes)
1940  *      @len:   length of request buffer.
1941  *      @timeout: command timeout
1942  *      @retries: number of retries before failing
1943  *      @data: returns a structure abstracting the mode header data
1944  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1945  *              must be SCSI_SENSE_BUFFERSIZE big.
1946  *
1947  *      Returns zero if unsuccessful, or the header offset (either 4
1948  *      or 8 depending on whether a six or ten byte command was
1949  *      issued) if successful.
1950  */
1951 int
1952 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1953                   unsigned char *buffer, int len, int timeout, int retries,
1954                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1955 {
1956         unsigned char cmd[12];
1957         int use_10_for_ms;
1958         int header_length;
1959         int result;
1960         struct scsi_sense_hdr my_sshdr;
1961
1962         memset(data, 0, sizeof(*data));
1963         memset(&cmd[0], 0, 12);
1964         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1965         cmd[2] = modepage;
1966
1967         /* caller might not be interested in sense, but we need it */
1968         if (!sshdr)
1969                 sshdr = &my_sshdr;
1970
1971  retry:
1972         use_10_for_ms = sdev->use_10_for_ms;
1973
1974         if (use_10_for_ms) {
1975                 if (len < 8)
1976                         len = 8;
1977
1978                 cmd[0] = MODE_SENSE_10;
1979                 cmd[8] = len;
1980                 header_length = 8;
1981         } else {
1982                 if (len < 4)
1983                         len = 4;
1984
1985                 cmd[0] = MODE_SENSE;
1986                 cmd[4] = len;
1987                 header_length = 4;
1988         }
1989
1990         memset(buffer, 0, len);
1991
1992         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1993                                   sshdr, timeout, retries, NULL);
1994
1995         /* This code looks awful: what it's doing is making sure an
1996          * ILLEGAL REQUEST sense return identifies the actual command
1997          * byte as the problem.  MODE_SENSE commands can return
1998          * ILLEGAL REQUEST if the code page isn't supported */
1999
2000         if (use_10_for_ms && !scsi_status_is_good(result) &&
2001             (driver_byte(result) & DRIVER_SENSE)) {
2002                 if (scsi_sense_valid(sshdr)) {
2003                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2004                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2005                                 /* 
2006                                  * Invalid command operation code
2007                                  */
2008                                 sdev->use_10_for_ms = 0;
2009                                 goto retry;
2010                         }
2011                 }
2012         }
2013
2014         if(scsi_status_is_good(result)) {
2015                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2016                              (modepage == 6 || modepage == 8))) {
2017                         /* Initio breakage? */
2018                         header_length = 0;
2019                         data->length = 13;
2020                         data->medium_type = 0;
2021                         data->device_specific = 0;
2022                         data->longlba = 0;
2023                         data->block_descriptor_length = 0;
2024                 } else if(use_10_for_ms) {
2025                         data->length = buffer[0]*256 + buffer[1] + 2;
2026                         data->medium_type = buffer[2];
2027                         data->device_specific = buffer[3];
2028                         data->longlba = buffer[4] & 0x01;
2029                         data->block_descriptor_length = buffer[6]*256
2030                                 + buffer[7];
2031                 } else {
2032                         data->length = buffer[0] + 1;
2033                         data->medium_type = buffer[1];
2034                         data->device_specific = buffer[2];
2035                         data->block_descriptor_length = buffer[3];
2036                 }
2037                 data->header_length = header_length;
2038         }
2039
2040         return result;
2041 }
2042 EXPORT_SYMBOL(scsi_mode_sense);
2043
2044 /**
2045  *      scsi_test_unit_ready - test if unit is ready
2046  *      @sdev:  scsi device to change the state of.
2047  *      @timeout: command timeout
2048  *      @retries: number of retries before failing
2049  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2050  *              returning sense. Make sure that this is cleared before passing
2051  *              in.
2052  *
2053  *      Returns zero if unsuccessful or an error if TUR failed.  For
2054  *      removable media, UNIT_ATTENTION sets ->changed flag.
2055  **/
2056 int
2057 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2058                      struct scsi_sense_hdr *sshdr_external)
2059 {
2060         char cmd[] = {
2061                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2062         };
2063         struct scsi_sense_hdr *sshdr;
2064         int result;
2065
2066         if (!sshdr_external)
2067                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2068         else
2069                 sshdr = sshdr_external;
2070
2071         /* try to eat the UNIT_ATTENTION if there are enough retries */
2072         do {
2073                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2074                                           timeout, retries, NULL);
2075                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2076                     sshdr->sense_key == UNIT_ATTENTION)
2077                         sdev->changed = 1;
2078         } while (scsi_sense_valid(sshdr) &&
2079                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2080
2081         if (!sshdr_external)
2082                 kfree(sshdr);
2083         return result;
2084 }
2085 EXPORT_SYMBOL(scsi_test_unit_ready);
2086
2087 /**
2088  *      scsi_device_set_state - Take the given device through the device state model.
2089  *      @sdev:  scsi device to change the state of.
2090  *      @state: state to change to.
2091  *
2092  *      Returns zero if unsuccessful or an error if the requested 
2093  *      transition is illegal.
2094  */
2095 int
2096 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2097 {
2098         enum scsi_device_state oldstate = sdev->sdev_state;
2099
2100         if (state == oldstate)
2101                 return 0;
2102
2103         switch (state) {
2104         case SDEV_CREATED:
2105                 switch (oldstate) {
2106                 case SDEV_CREATED_BLOCK:
2107                         break;
2108                 default:
2109                         goto illegal;
2110                 }
2111                 break;
2112                         
2113         case SDEV_RUNNING:
2114                 switch (oldstate) {
2115                 case SDEV_CREATED:
2116                 case SDEV_OFFLINE:
2117                 case SDEV_TRANSPORT_OFFLINE:
2118                 case SDEV_QUIESCE:
2119                 case SDEV_BLOCK:
2120                         break;
2121                 default:
2122                         goto illegal;
2123                 }
2124                 break;
2125
2126         case SDEV_QUIESCE:
2127                 switch (oldstate) {
2128                 case SDEV_RUNNING:
2129                 case SDEV_OFFLINE:
2130                 case SDEV_TRANSPORT_OFFLINE:
2131                         break;
2132                 default:
2133                         goto illegal;
2134                 }
2135                 break;
2136
2137         case SDEV_OFFLINE:
2138         case SDEV_TRANSPORT_OFFLINE:
2139                 switch (oldstate) {
2140                 case SDEV_CREATED:
2141                 case SDEV_RUNNING:
2142                 case SDEV_QUIESCE:
2143                 case SDEV_BLOCK:
2144                         break;
2145                 default:
2146                         goto illegal;
2147                 }
2148                 break;
2149
2150         case SDEV_BLOCK:
2151                 switch (oldstate) {
2152                 case SDEV_RUNNING:
2153                 case SDEV_CREATED_BLOCK:
2154                         break;
2155                 default:
2156                         goto illegal;
2157                 }
2158                 break;
2159
2160         case SDEV_CREATED_BLOCK:
2161                 switch (oldstate) {
2162                 case SDEV_CREATED:
2163                         break;
2164                 default:
2165                         goto illegal;
2166                 }
2167                 break;
2168
2169         case SDEV_CANCEL:
2170                 switch (oldstate) {
2171                 case SDEV_CREATED:
2172                 case SDEV_RUNNING:
2173                 case SDEV_QUIESCE:
2174                 case SDEV_OFFLINE:
2175                 case SDEV_TRANSPORT_OFFLINE:
2176                 case SDEV_BLOCK:
2177                         break;
2178                 default:
2179                         goto illegal;
2180                 }
2181                 break;
2182
2183         case SDEV_DEL:
2184                 switch (oldstate) {
2185                 case SDEV_CREATED:
2186                 case SDEV_RUNNING:
2187                 case SDEV_OFFLINE:
2188                 case SDEV_TRANSPORT_OFFLINE:
2189                 case SDEV_CANCEL:
2190                         break;
2191                 default:
2192                         goto illegal;
2193                 }
2194                 break;
2195
2196         }
2197         sdev->sdev_state = state;
2198         return 0;
2199
2200  illegal:
2201         SCSI_LOG_ERROR_RECOVERY(1, 
2202                                 sdev_printk(KERN_ERR, sdev,
2203                                             "Illegal state transition %s->%s\n",
2204                                             scsi_device_state_name(oldstate),
2205                                             scsi_device_state_name(state))
2206                                 );
2207         return -EINVAL;
2208 }
2209 EXPORT_SYMBOL(scsi_device_set_state);
2210
2211 /**
2212  *      sdev_evt_emit - emit a single SCSI device uevent
2213  *      @sdev: associated SCSI device
2214  *      @evt: event to emit
2215  *
2216  *      Send a single uevent (scsi_event) to the associated scsi_device.
2217  */
2218 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2219 {
2220         int idx = 0;
2221         char *envp[3];
2222
2223         switch (evt->evt_type) {
2224         case SDEV_EVT_MEDIA_CHANGE:
2225                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2226                 break;
2227
2228         default:
2229                 /* do nothing */
2230                 break;
2231         }
2232
2233         envp[idx++] = NULL;
2234
2235         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2236 }
2237
2238 /**
2239  *      sdev_evt_thread - send a uevent for each scsi event
2240  *      @work: work struct for scsi_device
2241  *
2242  *      Dispatch queued events to their associated scsi_device kobjects
2243  *      as uevents.
2244  */
2245 void scsi_evt_thread(struct work_struct *work)
2246 {
2247         struct scsi_device *sdev;
2248         LIST_HEAD(event_list);
2249
2250         sdev = container_of(work, struct scsi_device, event_work);
2251
2252         while (1) {
2253                 struct scsi_event *evt;
2254                 struct list_head *this, *tmp;
2255                 unsigned long flags;
2256
2257                 spin_lock_irqsave(&sdev->list_lock, flags);
2258                 list_splice_init(&sdev->event_list, &event_list);
2259                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2260
2261                 if (list_empty(&event_list))
2262                         break;
2263
2264                 list_for_each_safe(this, tmp, &event_list) {
2265                         evt = list_entry(this, struct scsi_event, node);
2266                         list_del(&evt->node);
2267                         scsi_evt_emit(sdev, evt);
2268                         kfree(evt);
2269                 }
2270         }
2271 }
2272
2273 /**
2274  *      sdev_evt_send - send asserted event to uevent thread
2275  *      @sdev: scsi_device event occurred on
2276  *      @evt: event to send
2277  *
2278  *      Assert scsi device event asynchronously.
2279  */
2280 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2281 {
2282         unsigned long flags;
2283
2284 #if 0
2285         /* FIXME: currently this check eliminates all media change events
2286          * for polled devices.  Need to update to discriminate between AN
2287          * and polled events */
2288         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2289                 kfree(evt);
2290                 return;
2291         }
2292 #endif
2293
2294         spin_lock_irqsave(&sdev->list_lock, flags);
2295         list_add_tail(&evt->node, &sdev->event_list);
2296         schedule_work(&sdev->event_work);
2297         spin_unlock_irqrestore(&sdev->list_lock, flags);
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_send);
2300
2301 /**
2302  *      sdev_evt_alloc - allocate a new scsi event
2303  *      @evt_type: type of event to allocate
2304  *      @gfpflags: GFP flags for allocation
2305  *
2306  *      Allocates and returns a new scsi_event.
2307  */
2308 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2309                                   gfp_t gfpflags)
2310 {
2311         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2312         if (!evt)
2313                 return NULL;
2314
2315         evt->evt_type = evt_type;
2316         INIT_LIST_HEAD(&evt->node);
2317
2318         /* evt_type-specific initialization, if any */
2319         switch (evt_type) {
2320         case SDEV_EVT_MEDIA_CHANGE:
2321         default:
2322                 /* do nothing */
2323                 break;
2324         }
2325
2326         return evt;
2327 }
2328 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2329
2330 /**
2331  *      sdev_evt_send_simple - send asserted event to uevent thread
2332  *      @sdev: scsi_device event occurred on
2333  *      @evt_type: type of event to send
2334  *      @gfpflags: GFP flags for allocation
2335  *
2336  *      Assert scsi device event asynchronously, given an event type.
2337  */
2338 void sdev_evt_send_simple(struct scsi_device *sdev,
2339                           enum scsi_device_event evt_type, gfp_t gfpflags)
2340 {
2341         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2342         if (!evt) {
2343                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2344                             evt_type);
2345                 return;
2346         }
2347
2348         sdev_evt_send(sdev, evt);
2349 }
2350 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2351
2352 /**
2353  *      scsi_device_quiesce - Block user issued commands.
2354  *      @sdev:  scsi device to quiesce.
2355  *
2356  *      This works by trying to transition to the SDEV_QUIESCE state
2357  *      (which must be a legal transition).  When the device is in this
2358  *      state, only special requests will be accepted, all others will
2359  *      be deferred.  Since special requests may also be requeued requests,
2360  *      a successful return doesn't guarantee the device will be 
2361  *      totally quiescent.
2362  *
2363  *      Must be called with user context, may sleep.
2364  *
2365  *      Returns zero if unsuccessful or an error if not.
2366  */
2367 int
2368 scsi_device_quiesce(struct scsi_device *sdev)
2369 {
2370         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2371         if (err)
2372                 return err;
2373
2374         scsi_run_queue(sdev->request_queue);
2375         while (sdev->device_busy) {
2376                 msleep_interruptible(200);
2377                 scsi_run_queue(sdev->request_queue);
2378         }
2379         return 0;
2380 }
2381 EXPORT_SYMBOL(scsi_device_quiesce);
2382
2383 /**
2384  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2385  *      @sdev:  scsi device to resume.
2386  *
2387  *      Moves the device from quiesced back to running and restarts the
2388  *      queues.
2389  *
2390  *      Must be called with user context, may sleep.
2391  */
2392 void scsi_device_resume(struct scsi_device *sdev)
2393 {
2394         /* check if the device state was mutated prior to resume, and if
2395          * so assume the state is being managed elsewhere (for example
2396          * device deleted during suspend)
2397          */
2398         if (sdev->sdev_state != SDEV_QUIESCE ||
2399             scsi_device_set_state(sdev, SDEV_RUNNING))
2400                 return;
2401         scsi_run_queue(sdev->request_queue);
2402 }
2403 EXPORT_SYMBOL(scsi_device_resume);
2404
2405 static void
2406 device_quiesce_fn(struct scsi_device *sdev, void *data)
2407 {
2408         scsi_device_quiesce(sdev);
2409 }
2410
2411 void
2412 scsi_target_quiesce(struct scsi_target *starget)
2413 {
2414         starget_for_each_device(starget, NULL, device_quiesce_fn);
2415 }
2416 EXPORT_SYMBOL(scsi_target_quiesce);
2417
2418 static void
2419 device_resume_fn(struct scsi_device *sdev, void *data)
2420 {
2421         scsi_device_resume(sdev);
2422 }
2423
2424 void
2425 scsi_target_resume(struct scsi_target *starget)
2426 {
2427         starget_for_each_device(starget, NULL, device_resume_fn);
2428 }
2429 EXPORT_SYMBOL(scsi_target_resume);
2430
2431 /**
2432  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2433  * @sdev:       device to block
2434  *
2435  * Block request made by scsi lld's to temporarily stop all
2436  * scsi commands on the specified device.  Called from interrupt
2437  * or normal process context.
2438  *
2439  * Returns zero if successful or error if not
2440  *
2441  * Notes:       
2442  *      This routine transitions the device to the SDEV_BLOCK state
2443  *      (which must be a legal transition).  When the device is in this
2444  *      state, all commands are deferred until the scsi lld reenables
2445  *      the device with scsi_device_unblock or device_block_tmo fires.
2446  */
2447 int
2448 scsi_internal_device_block(struct scsi_device *sdev)
2449 {
2450         struct request_queue *q = sdev->request_queue;
2451         unsigned long flags;
2452         int err = 0;
2453
2454         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2455         if (err) {
2456                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2457
2458                 if (err)
2459                         return err;
2460         }
2461
2462         /* 
2463          * The device has transitioned to SDEV_BLOCK.  Stop the
2464          * block layer from calling the midlayer with this device's
2465          * request queue. 
2466          */
2467         spin_lock_irqsave(q->queue_lock, flags);
2468         blk_stop_queue(q);
2469         spin_unlock_irqrestore(q->queue_lock, flags);
2470
2471         return 0;
2472 }
2473 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2474  
2475 /**
2476  * scsi_internal_device_unblock - resume a device after a block request
2477  * @sdev:       device to resume
2478  * @new_state:  state to set devices to after unblocking
2479  *
2480  * Called by scsi lld's or the midlayer to restart the device queue
2481  * for the previously suspended scsi device.  Called from interrupt or
2482  * normal process context.
2483  *
2484  * Returns zero if successful or error if not.
2485  *
2486  * Notes:       
2487  *      This routine transitions the device to the SDEV_RUNNING state
2488  *      or to one of the offline states (which must be a legal transition)
2489  *      allowing the midlayer to goose the queue for this device.
2490  */
2491 int
2492 scsi_internal_device_unblock(struct scsi_device *sdev,
2493                              enum scsi_device_state new_state)
2494 {
2495         struct request_queue *q = sdev->request_queue; 
2496         unsigned long flags;
2497
2498         /*
2499          * Try to transition the scsi device to SDEV_RUNNING or one of the
2500          * offlined states and goose the device queue if successful.
2501          */
2502         if ((sdev->sdev_state == SDEV_BLOCK) ||
2503             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2504                 sdev->sdev_state = new_state;
2505         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2506                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2507                     new_state == SDEV_OFFLINE)
2508                         sdev->sdev_state = new_state;
2509                 else
2510                         sdev->sdev_state = SDEV_CREATED;
2511         } else if (sdev->sdev_state != SDEV_CANCEL &&
2512                  sdev->sdev_state != SDEV_OFFLINE)
2513                 return -EINVAL;
2514
2515         spin_lock_irqsave(q->queue_lock, flags);
2516         blk_start_queue(q);
2517         spin_unlock_irqrestore(q->queue_lock, flags);
2518
2519         return 0;
2520 }
2521 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2522
2523 static void
2524 device_block(struct scsi_device *sdev, void *data)
2525 {
2526         scsi_internal_device_block(sdev);
2527 }
2528
2529 static int
2530 target_block(struct device *dev, void *data)
2531 {
2532         if (scsi_is_target_device(dev))
2533                 starget_for_each_device(to_scsi_target(dev), NULL,
2534                                         device_block);
2535         return 0;
2536 }
2537
2538 void
2539 scsi_target_block(struct device *dev)
2540 {
2541         if (scsi_is_target_device(dev))
2542                 starget_for_each_device(to_scsi_target(dev), NULL,
2543                                         device_block);
2544         else
2545                 device_for_each_child(dev, NULL, target_block);
2546 }
2547 EXPORT_SYMBOL_GPL(scsi_target_block);
2548
2549 static void
2550 device_unblock(struct scsi_device *sdev, void *data)
2551 {
2552         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2553 }
2554
2555 static int
2556 target_unblock(struct device *dev, void *data)
2557 {
2558         if (scsi_is_target_device(dev))
2559                 starget_for_each_device(to_scsi_target(dev), data,
2560                                         device_unblock);
2561         return 0;
2562 }
2563
2564 void
2565 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2566 {
2567         if (scsi_is_target_device(dev))
2568                 starget_for_each_device(to_scsi_target(dev), &new_state,
2569                                         device_unblock);
2570         else
2571                 device_for_each_child(dev, &new_state, target_unblock);
2572 }
2573 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2574
2575 /**
2576  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2577  * @sgl:        scatter-gather list
2578  * @sg_count:   number of segments in sg
2579  * @offset:     offset in bytes into sg, on return offset into the mapped area
2580  * @len:        bytes to map, on return number of bytes mapped
2581  *
2582  * Returns virtual address of the start of the mapped page
2583  */
2584 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2585                           size_t *offset, size_t *len)
2586 {
2587         int i;
2588         size_t sg_len = 0, len_complete = 0;
2589         struct scatterlist *sg;
2590         struct page *page;
2591
2592         WARN_ON(!irqs_disabled());
2593
2594         for_each_sg(sgl, sg, sg_count, i) {
2595                 len_complete = sg_len; /* Complete sg-entries */
2596                 sg_len += sg->length;
2597                 if (sg_len > *offset)
2598                         break;
2599         }
2600
2601         if (unlikely(i == sg_count)) {
2602                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2603                         "elements %d\n",
2604                        __func__, sg_len, *offset, sg_count);
2605                 WARN_ON(1);
2606                 return NULL;
2607         }
2608
2609         /* Offset starting from the beginning of first page in this sg-entry */
2610         *offset = *offset - len_complete + sg->offset;
2611
2612         /* Assumption: contiguous pages can be accessed as "page + i" */
2613         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2614         *offset &= ~PAGE_MASK;
2615
2616         /* Bytes in this sg-entry from *offset to the end of the page */
2617         sg_len = PAGE_SIZE - *offset;
2618         if (*len > sg_len)
2619                 *len = sg_len;
2620
2621         return kmap_atomic(page);
2622 }
2623 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2624
2625 /**
2626  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2627  * @virt:       virtual address to be unmapped
2628  */
2629 void scsi_kunmap_atomic_sg(void *virt)
2630 {
2631         kunmap_atomic(virt);
2632 }
2633 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2634
2635 void sdev_disable_disk_events(struct scsi_device *sdev)
2636 {
2637         atomic_inc(&sdev->disk_events_disable_depth);
2638 }
2639 EXPORT_SYMBOL(sdev_disable_disk_events);
2640
2641 void sdev_enable_disk_events(struct scsi_device *sdev)
2642 {
2643         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2644                 return;
2645         atomic_dec(&sdev->disk_events_disable_depth);
2646 }
2647 EXPORT_SYMBOL(sdev_enable_disk_events);