[SCSI] Change return type of scsi_queue_insert() into void
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /*
79  * Function:    scsi_unprep_request()
80  *
81  * Purpose:     Remove all preparation done for a request, including its
82  *              associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:   req     - request to unprepare
85  *
86  * Lock status: Assumed that no locks are held upon entry.
87  *
88  * Returns:     Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92         struct scsi_cmnd *cmd = req->special;
93
94         blk_unprep_request(req);
95         req->special = NULL;
96
97         scsi_put_command(cmd);
98 }
99
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114         struct Scsi_Host *host = cmd->device->host;
115         struct scsi_device *device = cmd->device;
116         struct scsi_target *starget = scsi_target(device);
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         switch (reason) {
137         case SCSI_MLQUEUE_HOST_BUSY:
138                 host->host_blocked = host->max_host_blocked;
139                 break;
140         case SCSI_MLQUEUE_DEVICE_BUSY:
141         case SCSI_MLQUEUE_EH_RETRY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         if (unbusy)
154                 scsi_device_unbusy(device);
155
156         /*
157          * Requeue this command.  It will go before all other commands
158          * that are already in the queue.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         kblockd_schedule_work(q, &device->requeue_work);
165 }
166
167 /*
168  * Function:    scsi_queue_insert()
169  *
170  * Purpose:     Insert a command in the midlevel queue.
171  *
172  * Arguments:   cmd    - command that we are adding to queue.
173  *              reason - why we are inserting command to queue.
174  *
175  * Lock status: Assumed that lock is not held upon entry.
176  *
177  * Returns:     Nothing.
178  *
179  * Notes:       We do this for one of two cases.  Either the host is busy
180  *              and it cannot accept any more commands for the time being,
181  *              or the device returned QUEUE_FULL and can accept no more
182  *              commands.
183  * Notes:       This could be called either from an interrupt context or a
184  *              normal process context.
185  */
186 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187 {
188         __scsi_queue_insert(cmd, reason, 1);
189 }
190 /**
191  * scsi_execute - insert request and wait for the result
192  * @sdev:       scsi device
193  * @cmd:        scsi command
194  * @data_direction: data direction
195  * @buffer:     data buffer
196  * @bufflen:    len of buffer
197  * @sense:      optional sense buffer
198  * @timeout:    request timeout in seconds
199  * @retries:    number of times to retry request
200  * @flags:      or into request flags;
201  * @resid:      optional residual length
202  *
203  * returns the req->errors value which is the scsi_cmnd result
204  * field.
205  */
206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207                  int data_direction, void *buffer, unsigned bufflen,
208                  unsigned char *sense, int timeout, int retries, int flags,
209                  int *resid)
210 {
211         struct request *req;
212         int write = (data_direction == DMA_TO_DEVICE);
213         int ret = DRIVER_ERROR << 24;
214
215         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216         if (!req)
217                 return ret;
218
219         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
220                                         buffer, bufflen, __GFP_WAIT))
221                 goto out;
222
223         req->cmd_len = COMMAND_SIZE(cmd[0]);
224         memcpy(req->cmd, cmd, req->cmd_len);
225         req->sense = sense;
226         req->sense_len = 0;
227         req->retries = retries;
228         req->timeout = timeout;
229         req->cmd_type = REQ_TYPE_BLOCK_PC;
230         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232         /*
233          * head injection *required* here otherwise quiesce won't work
234          */
235         blk_execute_rq(req->q, NULL, req, 1);
236
237         /*
238          * Some devices (USB mass-storage in particular) may transfer
239          * garbage data together with a residue indicating that the data
240          * is invalid.  Prevent the garbage from being misinterpreted
241          * and prevent security leaks by zeroing out the excess data.
242          */
243         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246         if (resid)
247                 *resid = req->resid_len;
248         ret = req->errors;
249  out:
250         blk_put_request(req);
251
252         return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258                      int data_direction, void *buffer, unsigned bufflen,
259                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
260                      int *resid)
261 {
262         char *sense = NULL;
263         int result;
264         
265         if (sshdr) {
266                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267                 if (!sense)
268                         return DRIVER_ERROR << 24;
269         }
270         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271                               sense, timeout, retries, 0, resid);
272         if (sshdr)
273                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275         kfree(sense);
276         return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd     - command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293         cmd->serial_number = 0;
294         scsi_set_resid(cmd, 0);
295         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296         if (cmd->cmd_len == 0)
297                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302         struct Scsi_Host *shost = sdev->host;
303         struct scsi_target *starget = scsi_target(sdev);
304         unsigned long flags;
305
306         spin_lock_irqsave(shost->host_lock, flags);
307         shost->host_busy--;
308         starget->target_busy--;
309         if (unlikely(scsi_host_in_recovery(shost) &&
310                      (shost->host_failed || shost->host_eh_scheduled)))
311                 scsi_eh_wakeup(shost);
312         spin_unlock(shost->host_lock);
313         spin_lock(sdev->request_queue->queue_lock);
314         sdev->device_busy--;
315         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327         struct Scsi_Host *shost = current_sdev->host;
328         struct scsi_device *sdev, *tmp;
329         struct scsi_target *starget = scsi_target(current_sdev);
330         unsigned long flags;
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         starget->starget_sdev_user = NULL;
334         spin_unlock_irqrestore(shost->host_lock, flags);
335
336         /*
337          * Call blk_run_queue for all LUNs on the target, starting with
338          * current_sdev. We race with others (to set starget_sdev_user),
339          * but in most cases, we will be first. Ideally, each LU on the
340          * target would get some limited time or requests on the target.
341          */
342         blk_run_queue(current_sdev->request_queue);
343
344         spin_lock_irqsave(shost->host_lock, flags);
345         if (starget->starget_sdev_user)
346                 goto out;
347         list_for_each_entry_safe(sdev, tmp, &starget->devices,
348                         same_target_siblings) {
349                 if (sdev == current_sdev)
350                         continue;
351                 if (scsi_device_get(sdev))
352                         continue;
353
354                 spin_unlock_irqrestore(shost->host_lock, flags);
355                 blk_run_queue(sdev->request_queue);
356                 spin_lock_irqsave(shost->host_lock, flags);
357         
358                 scsi_device_put(sdev);
359         }
360  out:
361         spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367                 return 1;
368
369         return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374         return ((starget->can_queue > 0 &&
375                  starget->target_busy >= starget->can_queue) ||
376                  starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382             shost->host_blocked || shost->host_self_blocked)
383                 return 1;
384
385         return 0;
386 }
387
388 /*
389  * Function:    scsi_run_queue()
390  *
391  * Purpose:     Select a proper request queue to serve next
392  *
393  * Arguments:   q       - last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:       The previous command was completely finished, start
398  *              a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402         struct scsi_device *sdev = q->queuedata;
403         struct Scsi_Host *shost;
404         LIST_HEAD(starved_list);
405         unsigned long flags;
406
407         shost = sdev->host;
408         if (scsi_target(sdev)->single_lun)
409                 scsi_single_lun_run(sdev);
410
411         spin_lock_irqsave(shost->host_lock, flags);
412         list_splice_init(&shost->starved_list, &starved_list);
413
414         while (!list_empty(&starved_list)) {
415                 /*
416                  * As long as shost is accepting commands and we have
417                  * starved queues, call blk_run_queue. scsi_request_fn
418                  * drops the queue_lock and can add us back to the
419                  * starved_list.
420                  *
421                  * host_lock protects the starved_list and starved_entry.
422                  * scsi_request_fn must get the host_lock before checking
423                  * or modifying starved_list or starved_entry.
424                  */
425                 if (scsi_host_is_busy(shost))
426                         break;
427
428                 sdev = list_entry(starved_list.next,
429                                   struct scsi_device, starved_entry);
430                 list_del_init(&sdev->starved_entry);
431                 if (scsi_target_is_busy(scsi_target(sdev))) {
432                         list_move_tail(&sdev->starved_entry,
433                                        &shost->starved_list);
434                         continue;
435                 }
436
437                 spin_unlock(shost->host_lock);
438                 spin_lock(sdev->request_queue->queue_lock);
439                 __blk_run_queue(sdev->request_queue);
440                 spin_unlock(sdev->request_queue->queue_lock);
441                 spin_lock(shost->host_lock);
442         }
443         /* put any unprocessed entries back */
444         list_splice(&starved_list, &shost->starved_list);
445         spin_unlock_irqrestore(shost->host_lock, flags);
446
447         blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452         struct scsi_device *sdev;
453         struct request_queue *q;
454
455         sdev = container_of(work, struct scsi_device, requeue_work);
456         q = sdev->request_queue;
457         scsi_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct scsi_device *sdev = cmd->device;
481         struct request *req = cmd->request;
482         unsigned long flags;
483
484         /*
485          * We need to hold a reference on the device to avoid the queue being
486          * killed after the unlock and before scsi_run_queue is invoked which
487          * may happen because scsi_unprep_request() puts the command which
488          * releases its reference on the device.
489          */
490         get_device(&sdev->sdev_gendev);
491
492         spin_lock_irqsave(q->queue_lock, flags);
493         scsi_unprep_request(req);
494         blk_requeue_request(q, req);
495         spin_unlock_irqrestore(q->queue_lock, flags);
496
497         scsi_run_queue(q);
498
499         put_device(&sdev->sdev_gendev);
500 }
501
502 void scsi_next_command(struct scsi_cmnd *cmd)
503 {
504         struct scsi_device *sdev = cmd->device;
505         struct request_queue *q = sdev->request_queue;
506
507         /* need to hold a reference on the device before we let go of the cmd */
508         get_device(&sdev->sdev_gendev);
509
510         scsi_put_command(cmd);
511         scsi_run_queue(q);
512
513         /* ok to remove device now */
514         put_device(&sdev->sdev_gendev);
515 }
516
517 void scsi_run_host_queues(struct Scsi_Host *shost)
518 {
519         struct scsi_device *sdev;
520
521         shost_for_each_device(sdev, shost)
522                 scsi_run_queue(sdev->request_queue);
523 }
524
525 static void __scsi_release_buffers(struct scsi_cmnd *, int);
526
527 /*
528  * Function:    scsi_end_request()
529  *
530  * Purpose:     Post-processing of completed commands (usually invoked at end
531  *              of upper level post-processing and scsi_io_completion).
532  *
533  * Arguments:   cmd      - command that is complete.
534  *              error    - 0 if I/O indicates success, < 0 for I/O error.
535  *              bytes    - number of bytes of completed I/O
536  *              requeue  - indicates whether we should requeue leftovers.
537  *
538  * Lock status: Assumed that lock is not held upon entry.
539  *
540  * Returns:     cmd if requeue required, NULL otherwise.
541  *
542  * Notes:       This is called for block device requests in order to
543  *              mark some number of sectors as complete.
544  * 
545  *              We are guaranteeing that the request queue will be goosed
546  *              at some point during this call.
547  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
548  */
549 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
550                                           int bytes, int requeue)
551 {
552         struct request_queue *q = cmd->device->request_queue;
553         struct request *req = cmd->request;
554
555         /*
556          * If there are blocks left over at the end, set up the command
557          * to queue the remainder of them.
558          */
559         if (blk_end_request(req, error, bytes)) {
560                 /* kill remainder if no retrys */
561                 if (error && scsi_noretry_cmd(cmd))
562                         blk_end_request_all(req, error);
563                 else {
564                         if (requeue) {
565                                 /*
566                                  * Bleah.  Leftovers again.  Stick the
567                                  * leftovers in the front of the
568                                  * queue, and goose the queue again.
569                                  */
570                                 scsi_release_buffers(cmd);
571                                 scsi_requeue_command(q, cmd);
572                                 cmd = NULL;
573                         }
574                         return cmd;
575                 }
576         }
577
578         /*
579          * This will goose the queue request function at the end, so we don't
580          * need to worry about launching another command.
581          */
582         __scsi_release_buffers(cmd, 0);
583         scsi_next_command(cmd);
584         return NULL;
585 }
586
587 static inline unsigned int scsi_sgtable_index(unsigned short nents)
588 {
589         unsigned int index;
590
591         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
592
593         if (nents <= 8)
594                 index = 0;
595         else
596                 index = get_count_order(nents) - 3;
597
598         return index;
599 }
600
601 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
602 {
603         struct scsi_host_sg_pool *sgp;
604
605         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
606         mempool_free(sgl, sgp->pool);
607 }
608
609 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
610 {
611         struct scsi_host_sg_pool *sgp;
612
613         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
614         return mempool_alloc(sgp->pool, gfp_mask);
615 }
616
617 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
618                               gfp_t gfp_mask)
619 {
620         int ret;
621
622         BUG_ON(!nents);
623
624         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
625                                gfp_mask, scsi_sg_alloc);
626         if (unlikely(ret))
627                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
628                                 scsi_sg_free);
629
630         return ret;
631 }
632
633 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
634 {
635         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
636 }
637
638 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
639 {
640
641         if (cmd->sdb.table.nents)
642                 scsi_free_sgtable(&cmd->sdb);
643
644         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
645
646         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
647                 struct scsi_data_buffer *bidi_sdb =
648                         cmd->request->next_rq->special;
649                 scsi_free_sgtable(bidi_sdb);
650                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
651                 cmd->request->next_rq->special = NULL;
652         }
653
654         if (scsi_prot_sg_count(cmd))
655                 scsi_free_sgtable(cmd->prot_sdb);
656 }
657
658 /*
659  * Function:    scsi_release_buffers()
660  *
661  * Purpose:     Completion processing for block device I/O requests.
662  *
663  * Arguments:   cmd     - command that we are bailing.
664  *
665  * Lock status: Assumed that no lock is held upon entry.
666  *
667  * Returns:     Nothing
668  *
669  * Notes:       In the event that an upper level driver rejects a
670  *              command, we must release resources allocated during
671  *              the __init_io() function.  Primarily this would involve
672  *              the scatter-gather table, and potentially any bounce
673  *              buffers.
674  */
675 void scsi_release_buffers(struct scsi_cmnd *cmd)
676 {
677         __scsi_release_buffers(cmd, 1);
678 }
679 EXPORT_SYMBOL(scsi_release_buffers);
680
681 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
682 {
683         int error = 0;
684
685         switch(host_byte(result)) {
686         case DID_TRANSPORT_FAILFAST:
687                 error = -ENOLINK;
688                 break;
689         case DID_TARGET_FAILURE:
690                 set_host_byte(cmd, DID_OK);
691                 error = -EREMOTEIO;
692                 break;
693         case DID_NEXUS_FAILURE:
694                 set_host_byte(cmd, DID_OK);
695                 error = -EBADE;
696                 break;
697         default:
698                 error = -EIO;
699                 break;
700         }
701
702         return error;
703 }
704
705 /*
706  * Function:    scsi_io_completion()
707  *
708  * Purpose:     Completion processing for block device I/O requests.
709  *
710  * Arguments:   cmd   - command that is finished.
711  *
712  * Lock status: Assumed that no lock is held upon entry.
713  *
714  * Returns:     Nothing
715  *
716  * Notes:       This function is matched in terms of capabilities to
717  *              the function that created the scatter-gather list.
718  *              In other words, if there are no bounce buffers
719  *              (the normal case for most drivers), we don't need
720  *              the logic to deal with cleaning up afterwards.
721  *
722  *              We must call scsi_end_request().  This will finish off
723  *              the specified number of sectors.  If we are done, the
724  *              command block will be released and the queue function
725  *              will be goosed.  If we are not done then we have to
726  *              figure out what to do next:
727  *
728  *              a) We can call scsi_requeue_command().  The request
729  *                 will be unprepared and put back on the queue.  Then
730  *                 a new command will be created for it.  This should
731  *                 be used if we made forward progress, or if we want
732  *                 to switch from READ(10) to READ(6) for example.
733  *
734  *              b) We can call scsi_queue_insert().  The request will
735  *                 be put back on the queue and retried using the same
736  *                 command as before, possibly after a delay.
737  *
738  *              c) We can call blk_end_request() with -EIO to fail
739  *                 the remainder of the request.
740  */
741 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
742 {
743         int result = cmd->result;
744         struct request_queue *q = cmd->device->request_queue;
745         struct request *req = cmd->request;
746         int error = 0;
747         struct scsi_sense_hdr sshdr;
748         int sense_valid = 0;
749         int sense_deferred = 0;
750         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
751               ACTION_DELAYED_RETRY} action;
752         char *description = NULL;
753
754         if (result) {
755                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
756                 if (sense_valid)
757                         sense_deferred = scsi_sense_is_deferred(&sshdr);
758         }
759
760         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
761                 req->errors = result;
762                 if (result) {
763                         if (sense_valid && req->sense) {
764                                 /*
765                                  * SG_IO wants current and deferred errors
766                                  */
767                                 int len = 8 + cmd->sense_buffer[7];
768
769                                 if (len > SCSI_SENSE_BUFFERSIZE)
770                                         len = SCSI_SENSE_BUFFERSIZE;
771                                 memcpy(req->sense, cmd->sense_buffer,  len);
772                                 req->sense_len = len;
773                         }
774                         if (!sense_deferred)
775                                 error = __scsi_error_from_host_byte(cmd, result);
776                 }
777
778                 req->resid_len = scsi_get_resid(cmd);
779
780                 if (scsi_bidi_cmnd(cmd)) {
781                         /*
782                          * Bidi commands Must be complete as a whole,
783                          * both sides at once.
784                          */
785                         req->next_rq->resid_len = scsi_in(cmd)->resid;
786
787                         scsi_release_buffers(cmd);
788                         blk_end_request_all(req, 0);
789
790                         scsi_next_command(cmd);
791                         return;
792                 }
793         }
794
795         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
796         BUG_ON(blk_bidi_rq(req));
797
798         /*
799          * Next deal with any sectors which we were able to correctly
800          * handle.
801          */
802         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
803                                       "%d bytes done.\n",
804                                       blk_rq_sectors(req), good_bytes));
805
806         /*
807          * Recovered errors need reporting, but they're always treated
808          * as success, so fiddle the result code here.  For BLOCK_PC
809          * we already took a copy of the original into rq->errors which
810          * is what gets returned to the user
811          */
812         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
813                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
814                  * print since caller wants ATA registers. Only occurs on
815                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
816                  */
817                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
818                         ;
819                 else if (!(req->cmd_flags & REQ_QUIET))
820                         scsi_print_sense("", cmd);
821                 result = 0;
822                 /* BLOCK_PC may have set error */
823                 error = 0;
824         }
825
826         /*
827          * A number of bytes were successfully read.  If there
828          * are leftovers and there is some kind of error
829          * (result != 0), retry the rest.
830          */
831         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
832                 return;
833
834         error = __scsi_error_from_host_byte(cmd, result);
835
836         if (host_byte(result) == DID_RESET) {
837                 /* Third party bus reset or reset for error recovery
838                  * reasons.  Just retry the command and see what
839                  * happens.
840                  */
841                 action = ACTION_RETRY;
842         } else if (sense_valid && !sense_deferred) {
843                 switch (sshdr.sense_key) {
844                 case UNIT_ATTENTION:
845                         if (cmd->device->removable) {
846                                 /* Detected disc change.  Set a bit
847                                  * and quietly refuse further access.
848                                  */
849                                 cmd->device->changed = 1;
850                                 description = "Media Changed";
851                                 action = ACTION_FAIL;
852                         } else {
853                                 /* Must have been a power glitch, or a
854                                  * bus reset.  Could not have been a
855                                  * media change, so we just retry the
856                                  * command and see what happens.
857                                  */
858                                 action = ACTION_RETRY;
859                         }
860                         break;
861                 case ILLEGAL_REQUEST:
862                         /* If we had an ILLEGAL REQUEST returned, then
863                          * we may have performed an unsupported
864                          * command.  The only thing this should be
865                          * would be a ten byte read where only a six
866                          * byte read was supported.  Also, on a system
867                          * where READ CAPACITY failed, we may have
868                          * read past the end of the disk.
869                          */
870                         if ((cmd->device->use_10_for_rw &&
871                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
872                             (cmd->cmnd[0] == READ_10 ||
873                              cmd->cmnd[0] == WRITE_10)) {
874                                 /* This will issue a new 6-byte command. */
875                                 cmd->device->use_10_for_rw = 0;
876                                 action = ACTION_REPREP;
877                         } else if (sshdr.asc == 0x10) /* DIX */ {
878                                 description = "Host Data Integrity Failure";
879                                 action = ACTION_FAIL;
880                                 error = -EILSEQ;
881                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
882                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
883                                    (cmd->cmnd[0] == UNMAP ||
884                                     cmd->cmnd[0] == WRITE_SAME_16 ||
885                                     cmd->cmnd[0] == WRITE_SAME)) {
886                                 description = "Discard failure";
887                                 action = ACTION_FAIL;
888                                 error = -EREMOTEIO;
889                         } else
890                                 action = ACTION_FAIL;
891                         break;
892                 case ABORTED_COMMAND:
893                         action = ACTION_FAIL;
894                         if (sshdr.asc == 0x10) { /* DIF */
895                                 description = "Target Data Integrity Failure";
896                                 error = -EILSEQ;
897                         }
898                         break;
899                 case NOT_READY:
900                         /* If the device is in the process of becoming
901                          * ready, or has a temporary blockage, retry.
902                          */
903                         if (sshdr.asc == 0x04) {
904                                 switch (sshdr.ascq) {
905                                 case 0x01: /* becoming ready */
906                                 case 0x04: /* format in progress */
907                                 case 0x05: /* rebuild in progress */
908                                 case 0x06: /* recalculation in progress */
909                                 case 0x07: /* operation in progress */
910                                 case 0x08: /* Long write in progress */
911                                 case 0x09: /* self test in progress */
912                                 case 0x14: /* space allocation in progress */
913                                         action = ACTION_DELAYED_RETRY;
914                                         break;
915                                 default:
916                                         description = "Device not ready";
917                                         action = ACTION_FAIL;
918                                         break;
919                                 }
920                         } else {
921                                 description = "Device not ready";
922                                 action = ACTION_FAIL;
923                         }
924                         break;
925                 case VOLUME_OVERFLOW:
926                         /* See SSC3rXX or current. */
927                         action = ACTION_FAIL;
928                         break;
929                 default:
930                         description = "Unhandled sense code";
931                         action = ACTION_FAIL;
932                         break;
933                 }
934         } else {
935                 description = "Unhandled error code";
936                 action = ACTION_FAIL;
937         }
938
939         switch (action) {
940         case ACTION_FAIL:
941                 /* Give up and fail the remainder of the request */
942                 scsi_release_buffers(cmd);
943                 if (!(req->cmd_flags & REQ_QUIET)) {
944                         if (description)
945                                 scmd_printk(KERN_INFO, cmd, "%s\n",
946                                             description);
947                         scsi_print_result(cmd);
948                         if (driver_byte(result) & DRIVER_SENSE)
949                                 scsi_print_sense("", cmd);
950                         scsi_print_command(cmd);
951                 }
952                 if (blk_end_request_err(req, error))
953                         scsi_requeue_command(q, cmd);
954                 else
955                         scsi_next_command(cmd);
956                 break;
957         case ACTION_REPREP:
958                 /* Unprep the request and put it back at the head of the queue.
959                  * A new command will be prepared and issued.
960                  */
961                 scsi_release_buffers(cmd);
962                 scsi_requeue_command(q, cmd);
963                 break;
964         case ACTION_RETRY:
965                 /* Retry the same command immediately */
966                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
967                 break;
968         case ACTION_DELAYED_RETRY:
969                 /* Retry the same command after a delay */
970                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
971                 break;
972         }
973 }
974
975 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
976                              gfp_t gfp_mask)
977 {
978         int count;
979
980         /*
981          * If sg table allocation fails, requeue request later.
982          */
983         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
984                                         gfp_mask))) {
985                 return BLKPREP_DEFER;
986         }
987
988         req->buffer = NULL;
989
990         /* 
991          * Next, walk the list, and fill in the addresses and sizes of
992          * each segment.
993          */
994         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
995         BUG_ON(count > sdb->table.nents);
996         sdb->table.nents = count;
997         sdb->length = blk_rq_bytes(req);
998         return BLKPREP_OK;
999 }
1000
1001 /*
1002  * Function:    scsi_init_io()
1003  *
1004  * Purpose:     SCSI I/O initialize function.
1005  *
1006  * Arguments:   cmd   - Command descriptor we wish to initialize
1007  *
1008  * Returns:     0 on success
1009  *              BLKPREP_DEFER if the failure is retryable
1010  *              BLKPREP_KILL if the failure is fatal
1011  */
1012 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1013 {
1014         struct request *rq = cmd->request;
1015
1016         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1017         if (error)
1018                 goto err_exit;
1019
1020         if (blk_bidi_rq(rq)) {
1021                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1022                         scsi_sdb_cache, GFP_ATOMIC);
1023                 if (!bidi_sdb) {
1024                         error = BLKPREP_DEFER;
1025                         goto err_exit;
1026                 }
1027
1028                 rq->next_rq->special = bidi_sdb;
1029                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1030                 if (error)
1031                         goto err_exit;
1032         }
1033
1034         if (blk_integrity_rq(rq)) {
1035                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1036                 int ivecs, count;
1037
1038                 BUG_ON(prot_sdb == NULL);
1039                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1040
1041                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1042                         error = BLKPREP_DEFER;
1043                         goto err_exit;
1044                 }
1045
1046                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1047                                                 prot_sdb->table.sgl);
1048                 BUG_ON(unlikely(count > ivecs));
1049                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1050
1051                 cmd->prot_sdb = prot_sdb;
1052                 cmd->prot_sdb->table.nents = count;
1053         }
1054
1055         return BLKPREP_OK ;
1056
1057 err_exit:
1058         scsi_release_buffers(cmd);
1059         cmd->request->special = NULL;
1060         scsi_put_command(cmd);
1061         return error;
1062 }
1063 EXPORT_SYMBOL(scsi_init_io);
1064
1065 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1066                 struct request *req)
1067 {
1068         struct scsi_cmnd *cmd;
1069
1070         if (!req->special) {
1071                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1072                 if (unlikely(!cmd))
1073                         return NULL;
1074                 req->special = cmd;
1075         } else {
1076                 cmd = req->special;
1077         }
1078
1079         /* pull a tag out of the request if we have one */
1080         cmd->tag = req->tag;
1081         cmd->request = req;
1082
1083         cmd->cmnd = req->cmd;
1084         cmd->prot_op = SCSI_PROT_NORMAL;
1085
1086         return cmd;
1087 }
1088
1089 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1090 {
1091         struct scsi_cmnd *cmd;
1092         int ret = scsi_prep_state_check(sdev, req);
1093
1094         if (ret != BLKPREP_OK)
1095                 return ret;
1096
1097         cmd = scsi_get_cmd_from_req(sdev, req);
1098         if (unlikely(!cmd))
1099                 return BLKPREP_DEFER;
1100
1101         /*
1102          * BLOCK_PC requests may transfer data, in which case they must
1103          * a bio attached to them.  Or they might contain a SCSI command
1104          * that does not transfer data, in which case they may optionally
1105          * submit a request without an attached bio.
1106          */
1107         if (req->bio) {
1108                 int ret;
1109
1110                 BUG_ON(!req->nr_phys_segments);
1111
1112                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1113                 if (unlikely(ret))
1114                         return ret;
1115         } else {
1116                 BUG_ON(blk_rq_bytes(req));
1117
1118                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1119                 req->buffer = NULL;
1120         }
1121
1122         cmd->cmd_len = req->cmd_len;
1123         if (!blk_rq_bytes(req))
1124                 cmd->sc_data_direction = DMA_NONE;
1125         else if (rq_data_dir(req) == WRITE)
1126                 cmd->sc_data_direction = DMA_TO_DEVICE;
1127         else
1128                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1129         
1130         cmd->transfersize = blk_rq_bytes(req);
1131         cmd->allowed = req->retries;
1132         return BLKPREP_OK;
1133 }
1134 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1135
1136 /*
1137  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1138  * from filesystems that still need to be translated to SCSI CDBs from
1139  * the ULD.
1140  */
1141 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1142 {
1143         struct scsi_cmnd *cmd;
1144         int ret = scsi_prep_state_check(sdev, req);
1145
1146         if (ret != BLKPREP_OK)
1147                 return ret;
1148
1149         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1150                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1151                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1152                 if (ret != BLKPREP_OK)
1153                         return ret;
1154         }
1155
1156         /*
1157          * Filesystem requests must transfer data.
1158          */
1159         BUG_ON(!req->nr_phys_segments);
1160
1161         cmd = scsi_get_cmd_from_req(sdev, req);
1162         if (unlikely(!cmd))
1163                 return BLKPREP_DEFER;
1164
1165         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1166         return scsi_init_io(cmd, GFP_ATOMIC);
1167 }
1168 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1169
1170 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1171 {
1172         int ret = BLKPREP_OK;
1173
1174         /*
1175          * If the device is not in running state we will reject some
1176          * or all commands.
1177          */
1178         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1179                 switch (sdev->sdev_state) {
1180                 case SDEV_OFFLINE:
1181                 case SDEV_TRANSPORT_OFFLINE:
1182                         /*
1183                          * If the device is offline we refuse to process any
1184                          * commands.  The device must be brought online
1185                          * before trying any recovery commands.
1186                          */
1187                         sdev_printk(KERN_ERR, sdev,
1188                                     "rejecting I/O to offline device\n");
1189                         ret = BLKPREP_KILL;
1190                         break;
1191                 case SDEV_DEL:
1192                         /*
1193                          * If the device is fully deleted, we refuse to
1194                          * process any commands as well.
1195                          */
1196                         sdev_printk(KERN_ERR, sdev,
1197                                     "rejecting I/O to dead device\n");
1198                         ret = BLKPREP_KILL;
1199                         break;
1200                 case SDEV_QUIESCE:
1201                 case SDEV_BLOCK:
1202                 case SDEV_CREATED_BLOCK:
1203                         /*
1204                          * If the devices is blocked we defer normal commands.
1205                          */
1206                         if (!(req->cmd_flags & REQ_PREEMPT))
1207                                 ret = BLKPREP_DEFER;
1208                         break;
1209                 default:
1210                         /*
1211                          * For any other not fully online state we only allow
1212                          * special commands.  In particular any user initiated
1213                          * command is not allowed.
1214                          */
1215                         if (!(req->cmd_flags & REQ_PREEMPT))
1216                                 ret = BLKPREP_KILL;
1217                         break;
1218                 }
1219         }
1220         return ret;
1221 }
1222 EXPORT_SYMBOL(scsi_prep_state_check);
1223
1224 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1225 {
1226         struct scsi_device *sdev = q->queuedata;
1227
1228         switch (ret) {
1229         case BLKPREP_KILL:
1230                 req->errors = DID_NO_CONNECT << 16;
1231                 /* release the command and kill it */
1232                 if (req->special) {
1233                         struct scsi_cmnd *cmd = req->special;
1234                         scsi_release_buffers(cmd);
1235                         scsi_put_command(cmd);
1236                         req->special = NULL;
1237                 }
1238                 break;
1239         case BLKPREP_DEFER:
1240                 /*
1241                  * If we defer, the blk_peek_request() returns NULL, but the
1242                  * queue must be restarted, so we schedule a callback to happen
1243                  * shortly.
1244                  */
1245                 if (sdev->device_busy == 0)
1246                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1247                 break;
1248         default:
1249                 req->cmd_flags |= REQ_DONTPREP;
1250         }
1251
1252         return ret;
1253 }
1254 EXPORT_SYMBOL(scsi_prep_return);
1255
1256 int scsi_prep_fn(struct request_queue *q, struct request *req)
1257 {
1258         struct scsi_device *sdev = q->queuedata;
1259         int ret = BLKPREP_KILL;
1260
1261         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1262                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1263         return scsi_prep_return(q, req, ret);
1264 }
1265 EXPORT_SYMBOL(scsi_prep_fn);
1266
1267 /*
1268  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1269  * return 0.
1270  *
1271  * Called with the queue_lock held.
1272  */
1273 static inline int scsi_dev_queue_ready(struct request_queue *q,
1274                                   struct scsi_device *sdev)
1275 {
1276         if (sdev->device_busy == 0 && sdev->device_blocked) {
1277                 /*
1278                  * unblock after device_blocked iterates to zero
1279                  */
1280                 if (--sdev->device_blocked == 0) {
1281                         SCSI_LOG_MLQUEUE(3,
1282                                    sdev_printk(KERN_INFO, sdev,
1283                                    "unblocking device at zero depth\n"));
1284                 } else {
1285                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1286                         return 0;
1287                 }
1288         }
1289         if (scsi_device_is_busy(sdev))
1290                 return 0;
1291
1292         return 1;
1293 }
1294
1295
1296 /*
1297  * scsi_target_queue_ready: checks if there we can send commands to target
1298  * @sdev: scsi device on starget to check.
1299  *
1300  * Called with the host lock held.
1301  */
1302 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303                                            struct scsi_device *sdev)
1304 {
1305         struct scsi_target *starget = scsi_target(sdev);
1306
1307         if (starget->single_lun) {
1308                 if (starget->starget_sdev_user &&
1309                     starget->starget_sdev_user != sdev)
1310                         return 0;
1311                 starget->starget_sdev_user = sdev;
1312         }
1313
1314         if (starget->target_busy == 0 && starget->target_blocked) {
1315                 /*
1316                  * unblock after target_blocked iterates to zero
1317                  */
1318                 if (--starget->target_blocked == 0) {
1319                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1320                                          "unblocking target at zero depth\n"));
1321                 } else
1322                         return 0;
1323         }
1324
1325         if (scsi_target_is_busy(starget)) {
1326                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327                 return 0;
1328         }
1329
1330         return 1;
1331 }
1332
1333 /*
1334  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335  * return 0. We must end up running the queue again whenever 0 is
1336  * returned, else IO can hang.
1337  *
1338  * Called with host_lock held.
1339  */
1340 static inline int scsi_host_queue_ready(struct request_queue *q,
1341                                    struct Scsi_Host *shost,
1342                                    struct scsi_device *sdev)
1343 {
1344         if (scsi_host_in_recovery(shost))
1345                 return 0;
1346         if (shost->host_busy == 0 && shost->host_blocked) {
1347                 /*
1348                  * unblock after host_blocked iterates to zero
1349                  */
1350                 if (--shost->host_blocked == 0) {
1351                         SCSI_LOG_MLQUEUE(3,
1352                                 printk("scsi%d unblocking host at zero depth\n",
1353                                         shost->host_no));
1354                 } else {
1355                         return 0;
1356                 }
1357         }
1358         if (scsi_host_is_busy(shost)) {
1359                 if (list_empty(&sdev->starved_entry))
1360                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1361                 return 0;
1362         }
1363
1364         /* We're OK to process the command, so we can't be starved */
1365         if (!list_empty(&sdev->starved_entry))
1366                 list_del_init(&sdev->starved_entry);
1367
1368         return 1;
1369 }
1370
1371 /*
1372  * Busy state exporting function for request stacking drivers.
1373  *
1374  * For efficiency, no lock is taken to check the busy state of
1375  * shost/starget/sdev, since the returned value is not guaranteed and
1376  * may be changed after request stacking drivers call the function,
1377  * regardless of taking lock or not.
1378  *
1379  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1380  * needs to return 'not busy'. Otherwise, request stacking drivers
1381  * may hold requests forever.
1382  */
1383 static int scsi_lld_busy(struct request_queue *q)
1384 {
1385         struct scsi_device *sdev = q->queuedata;
1386         struct Scsi_Host *shost;
1387
1388         if (blk_queue_dead(q))
1389                 return 0;
1390
1391         shost = sdev->host;
1392
1393         /*
1394          * Ignore host/starget busy state.
1395          * Since block layer does not have a concept of fairness across
1396          * multiple queues, congestion of host/starget needs to be handled
1397          * in SCSI layer.
1398          */
1399         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1400                 return 1;
1401
1402         return 0;
1403 }
1404
1405 /*
1406  * Kill a request for a dead device
1407  */
1408 static void scsi_kill_request(struct request *req, struct request_queue *q)
1409 {
1410         struct scsi_cmnd *cmd = req->special;
1411         struct scsi_device *sdev;
1412         struct scsi_target *starget;
1413         struct Scsi_Host *shost;
1414
1415         blk_start_request(req);
1416
1417         scmd_printk(KERN_INFO, cmd, "killing request\n");
1418
1419         sdev = cmd->device;
1420         starget = scsi_target(sdev);
1421         shost = sdev->host;
1422         scsi_init_cmd_errh(cmd);
1423         cmd->result = DID_NO_CONNECT << 16;
1424         atomic_inc(&cmd->device->iorequest_cnt);
1425
1426         /*
1427          * SCSI request completion path will do scsi_device_unbusy(),
1428          * bump busy counts.  To bump the counters, we need to dance
1429          * with the locks as normal issue path does.
1430          */
1431         sdev->device_busy++;
1432         spin_unlock(sdev->request_queue->queue_lock);
1433         spin_lock(shost->host_lock);
1434         shost->host_busy++;
1435         starget->target_busy++;
1436         spin_unlock(shost->host_lock);
1437         spin_lock(sdev->request_queue->queue_lock);
1438
1439         blk_complete_request(req);
1440 }
1441
1442 static void scsi_softirq_done(struct request *rq)
1443 {
1444         struct scsi_cmnd *cmd = rq->special;
1445         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1446         int disposition;
1447
1448         INIT_LIST_HEAD(&cmd->eh_entry);
1449
1450         atomic_inc(&cmd->device->iodone_cnt);
1451         if (cmd->result)
1452                 atomic_inc(&cmd->device->ioerr_cnt);
1453
1454         disposition = scsi_decide_disposition(cmd);
1455         if (disposition != SUCCESS &&
1456             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1457                 sdev_printk(KERN_ERR, cmd->device,
1458                             "timing out command, waited %lus\n",
1459                             wait_for/HZ);
1460                 disposition = SUCCESS;
1461         }
1462                         
1463         scsi_log_completion(cmd, disposition);
1464
1465         switch (disposition) {
1466                 case SUCCESS:
1467                         scsi_finish_command(cmd);
1468                         break;
1469                 case NEEDS_RETRY:
1470                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1471                         break;
1472                 case ADD_TO_MLQUEUE:
1473                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1474                         break;
1475                 default:
1476                         if (!scsi_eh_scmd_add(cmd, 0))
1477                                 scsi_finish_command(cmd);
1478         }
1479 }
1480
1481 /*
1482  * Function:    scsi_request_fn()
1483  *
1484  * Purpose:     Main strategy routine for SCSI.
1485  *
1486  * Arguments:   q       - Pointer to actual queue.
1487  *
1488  * Returns:     Nothing
1489  *
1490  * Lock status: IO request lock assumed to be held when called.
1491  */
1492 static void scsi_request_fn(struct request_queue *q)
1493 {
1494         struct scsi_device *sdev = q->queuedata;
1495         struct Scsi_Host *shost;
1496         struct scsi_cmnd *cmd;
1497         struct request *req;
1498
1499         if(!get_device(&sdev->sdev_gendev))
1500                 /* We must be tearing the block queue down already */
1501                 return;
1502
1503         /*
1504          * To start with, we keep looping until the queue is empty, or until
1505          * the host is no longer able to accept any more requests.
1506          */
1507         shost = sdev->host;
1508         for (;;) {
1509                 int rtn;
1510                 /*
1511                  * get next queueable request.  We do this early to make sure
1512                  * that the request is fully prepared even if we cannot 
1513                  * accept it.
1514                  */
1515                 req = blk_peek_request(q);
1516                 if (!req || !scsi_dev_queue_ready(q, sdev))
1517                         break;
1518
1519                 if (unlikely(!scsi_device_online(sdev))) {
1520                         sdev_printk(KERN_ERR, sdev,
1521                                     "rejecting I/O to offline device\n");
1522                         scsi_kill_request(req, q);
1523                         continue;
1524                 }
1525
1526
1527                 /*
1528                  * Remove the request from the request list.
1529                  */
1530                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1531                         blk_start_request(req);
1532                 sdev->device_busy++;
1533
1534                 spin_unlock(q->queue_lock);
1535                 cmd = req->special;
1536                 if (unlikely(cmd == NULL)) {
1537                         printk(KERN_CRIT "impossible request in %s.\n"
1538                                          "please mail a stack trace to "
1539                                          "linux-scsi@vger.kernel.org\n",
1540                                          __func__);
1541                         blk_dump_rq_flags(req, "foo");
1542                         BUG();
1543                 }
1544                 spin_lock(shost->host_lock);
1545
1546                 /*
1547                  * We hit this when the driver is using a host wide
1548                  * tag map. For device level tag maps the queue_depth check
1549                  * in the device ready fn would prevent us from trying
1550                  * to allocate a tag. Since the map is a shared host resource
1551                  * we add the dev to the starved list so it eventually gets
1552                  * a run when a tag is freed.
1553                  */
1554                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1555                         if (list_empty(&sdev->starved_entry))
1556                                 list_add_tail(&sdev->starved_entry,
1557                                               &shost->starved_list);
1558                         goto not_ready;
1559                 }
1560
1561                 if (!scsi_target_queue_ready(shost, sdev))
1562                         goto not_ready;
1563
1564                 if (!scsi_host_queue_ready(q, shost, sdev))
1565                         goto not_ready;
1566
1567                 scsi_target(sdev)->target_busy++;
1568                 shost->host_busy++;
1569
1570                 /*
1571                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572                  *              take the lock again.
1573                  */
1574                 spin_unlock_irq(shost->host_lock);
1575
1576                 /*
1577                  * Finally, initialize any error handling parameters, and set up
1578                  * the timers for timeouts.
1579                  */
1580                 scsi_init_cmd_errh(cmd);
1581
1582                 /*
1583                  * Dispatch the command to the low-level driver.
1584                  */
1585                 rtn = scsi_dispatch_cmd(cmd);
1586                 spin_lock_irq(q->queue_lock);
1587                 if (rtn)
1588                         goto out_delay;
1589         }
1590
1591         goto out;
1592
1593  not_ready:
1594         spin_unlock_irq(shost->host_lock);
1595
1596         /*
1597          * lock q, handle tag, requeue req, and decrement device_busy. We
1598          * must return with queue_lock held.
1599          *
1600          * Decrementing device_busy without checking it is OK, as all such
1601          * cases (host limits or settings) should run the queue at some
1602          * later time.
1603          */
1604         spin_lock_irq(q->queue_lock);
1605         blk_requeue_request(q, req);
1606         sdev->device_busy--;
1607 out_delay:
1608         if (sdev->device_busy == 0)
1609                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1610 out:
1611         /* must be careful here...if we trigger the ->remove() function
1612          * we cannot be holding the q lock */
1613         spin_unlock_irq(q->queue_lock);
1614         put_device(&sdev->sdev_gendev);
1615         spin_lock_irq(q->queue_lock);
1616 }
1617
1618 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619 {
1620         struct device *host_dev;
1621         u64 bounce_limit = 0xffffffff;
1622
1623         if (shost->unchecked_isa_dma)
1624                 return BLK_BOUNCE_ISA;
1625         /*
1626          * Platforms with virtual-DMA translation
1627          * hardware have no practical limit.
1628          */
1629         if (!PCI_DMA_BUS_IS_PHYS)
1630                 return BLK_BOUNCE_ANY;
1631
1632         host_dev = scsi_get_device(shost);
1633         if (host_dev && host_dev->dma_mask)
1634                 bounce_limit = *host_dev->dma_mask;
1635
1636         return bounce_limit;
1637 }
1638 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639
1640 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641                                          request_fn_proc *request_fn)
1642 {
1643         struct request_queue *q;
1644         struct device *dev = shost->dma_dev;
1645
1646         q = blk_init_queue(request_fn, NULL);
1647         if (!q)
1648                 return NULL;
1649
1650         /*
1651          * this limit is imposed by hardware restrictions
1652          */
1653         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1654                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1655
1656         if (scsi_host_prot_dma(shost)) {
1657                 shost->sg_prot_tablesize =
1658                         min_not_zero(shost->sg_prot_tablesize,
1659                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1660                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1661                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662         }
1663
1664         blk_queue_max_hw_sectors(q, shost->max_sectors);
1665         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1666         blk_queue_segment_boundary(q, shost->dma_boundary);
1667         dma_set_seg_boundary(dev, shost->dma_boundary);
1668
1669         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1670
1671         if (!shost->use_clustering)
1672                 q->limits.cluster = 0;
1673
1674         /*
1675          * set a reasonable default alignment on word boundaries: the
1676          * host and device may alter it using
1677          * blk_queue_update_dma_alignment() later.
1678          */
1679         blk_queue_dma_alignment(q, 0x03);
1680
1681         return q;
1682 }
1683 EXPORT_SYMBOL(__scsi_alloc_queue);
1684
1685 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1686 {
1687         struct request_queue *q;
1688
1689         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690         if (!q)
1691                 return NULL;
1692
1693         blk_queue_prep_rq(q, scsi_prep_fn);
1694         blk_queue_softirq_done(q, scsi_softirq_done);
1695         blk_queue_rq_timed_out(q, scsi_times_out);
1696         blk_queue_lld_busy(q, scsi_lld_busy);
1697         return q;
1698 }
1699
1700 /*
1701  * Function:    scsi_block_requests()
1702  *
1703  * Purpose:     Utility function used by low-level drivers to prevent further
1704  *              commands from being queued to the device.
1705  *
1706  * Arguments:   shost       - Host in question
1707  *
1708  * Returns:     Nothing
1709  *
1710  * Lock status: No locks are assumed held.
1711  *
1712  * Notes:       There is no timer nor any other means by which the requests
1713  *              get unblocked other than the low-level driver calling
1714  *              scsi_unblock_requests().
1715  */
1716 void scsi_block_requests(struct Scsi_Host *shost)
1717 {
1718         shost->host_self_blocked = 1;
1719 }
1720 EXPORT_SYMBOL(scsi_block_requests);
1721
1722 /*
1723  * Function:    scsi_unblock_requests()
1724  *
1725  * Purpose:     Utility function used by low-level drivers to allow further
1726  *              commands from being queued to the device.
1727  *
1728  * Arguments:   shost       - Host in question
1729  *
1730  * Returns:     Nothing
1731  *
1732  * Lock status: No locks are assumed held.
1733  *
1734  * Notes:       There is no timer nor any other means by which the requests
1735  *              get unblocked other than the low-level driver calling
1736  *              scsi_unblock_requests().
1737  *
1738  *              This is done as an API function so that changes to the
1739  *              internals of the scsi mid-layer won't require wholesale
1740  *              changes to drivers that use this feature.
1741  */
1742 void scsi_unblock_requests(struct Scsi_Host *shost)
1743 {
1744         shost->host_self_blocked = 0;
1745         scsi_run_host_queues(shost);
1746 }
1747 EXPORT_SYMBOL(scsi_unblock_requests);
1748
1749 int __init scsi_init_queue(void)
1750 {
1751         int i;
1752
1753         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1754                                            sizeof(struct scsi_data_buffer),
1755                                            0, 0, NULL);
1756         if (!scsi_sdb_cache) {
1757                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1758                 return -ENOMEM;
1759         }
1760
1761         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1762                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1763                 int size = sgp->size * sizeof(struct scatterlist);
1764
1765                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1766                                 SLAB_HWCACHE_ALIGN, NULL);
1767                 if (!sgp->slab) {
1768                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1769                                         sgp->name);
1770                         goto cleanup_sdb;
1771                 }
1772
1773                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1774                                                      sgp->slab);
1775                 if (!sgp->pool) {
1776                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1777                                         sgp->name);
1778                         goto cleanup_sdb;
1779                 }
1780         }
1781
1782         return 0;
1783
1784 cleanup_sdb:
1785         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1786                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1787                 if (sgp->pool)
1788                         mempool_destroy(sgp->pool);
1789                 if (sgp->slab)
1790                         kmem_cache_destroy(sgp->slab);
1791         }
1792         kmem_cache_destroy(scsi_sdb_cache);
1793
1794         return -ENOMEM;
1795 }
1796
1797 void scsi_exit_queue(void)
1798 {
1799         int i;
1800
1801         kmem_cache_destroy(scsi_sdb_cache);
1802
1803         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1804                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1805                 mempool_destroy(sgp->pool);
1806                 kmem_cache_destroy(sgp->slab);
1807         }
1808 }
1809
1810 /**
1811  *      scsi_mode_select - issue a mode select
1812  *      @sdev:  SCSI device to be queried
1813  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1814  *      @sp:    Save page bit (0 == don't save, 1 == save)
1815  *      @modepage: mode page being requested
1816  *      @buffer: request buffer (may not be smaller than eight bytes)
1817  *      @len:   length of request buffer.
1818  *      @timeout: command timeout
1819  *      @retries: number of retries before failing
1820  *      @data: returns a structure abstracting the mode header data
1821  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1822  *              must be SCSI_SENSE_BUFFERSIZE big.
1823  *
1824  *      Returns zero if successful; negative error number or scsi
1825  *      status on error
1826  *
1827  */
1828 int
1829 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1830                  unsigned char *buffer, int len, int timeout, int retries,
1831                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1832 {
1833         unsigned char cmd[10];
1834         unsigned char *real_buffer;
1835         int ret;
1836
1837         memset(cmd, 0, sizeof(cmd));
1838         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1839
1840         if (sdev->use_10_for_ms) {
1841                 if (len > 65535)
1842                         return -EINVAL;
1843                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1844                 if (!real_buffer)
1845                         return -ENOMEM;
1846                 memcpy(real_buffer + 8, buffer, len);
1847                 len += 8;
1848                 real_buffer[0] = 0;
1849                 real_buffer[1] = 0;
1850                 real_buffer[2] = data->medium_type;
1851                 real_buffer[3] = data->device_specific;
1852                 real_buffer[4] = data->longlba ? 0x01 : 0;
1853                 real_buffer[5] = 0;
1854                 real_buffer[6] = data->block_descriptor_length >> 8;
1855                 real_buffer[7] = data->block_descriptor_length;
1856
1857                 cmd[0] = MODE_SELECT_10;
1858                 cmd[7] = len >> 8;
1859                 cmd[8] = len;
1860         } else {
1861                 if (len > 255 || data->block_descriptor_length > 255 ||
1862                     data->longlba)
1863                         return -EINVAL;
1864
1865                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1866                 if (!real_buffer)
1867                         return -ENOMEM;
1868                 memcpy(real_buffer + 4, buffer, len);
1869                 len += 4;
1870                 real_buffer[0] = 0;
1871                 real_buffer[1] = data->medium_type;
1872                 real_buffer[2] = data->device_specific;
1873                 real_buffer[3] = data->block_descriptor_length;
1874                 
1875
1876                 cmd[0] = MODE_SELECT;
1877                 cmd[4] = len;
1878         }
1879
1880         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1881                                sshdr, timeout, retries, NULL);
1882         kfree(real_buffer);
1883         return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(scsi_mode_select);
1886
1887 /**
1888  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1889  *      @sdev:  SCSI device to be queried
1890  *      @dbd:   set if mode sense will allow block descriptors to be returned
1891  *      @modepage: mode page being requested
1892  *      @buffer: request buffer (may not be smaller than eight bytes)
1893  *      @len:   length of request buffer.
1894  *      @timeout: command timeout
1895  *      @retries: number of retries before failing
1896  *      @data: returns a structure abstracting the mode header data
1897  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1898  *              must be SCSI_SENSE_BUFFERSIZE big.
1899  *
1900  *      Returns zero if unsuccessful, or the header offset (either 4
1901  *      or 8 depending on whether a six or ten byte command was
1902  *      issued) if successful.
1903  */
1904 int
1905 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1906                   unsigned char *buffer, int len, int timeout, int retries,
1907                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1908 {
1909         unsigned char cmd[12];
1910         int use_10_for_ms;
1911         int header_length;
1912         int result;
1913         struct scsi_sense_hdr my_sshdr;
1914
1915         memset(data, 0, sizeof(*data));
1916         memset(&cmd[0], 0, 12);
1917         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1918         cmd[2] = modepage;
1919
1920         /* caller might not be interested in sense, but we need it */
1921         if (!sshdr)
1922                 sshdr = &my_sshdr;
1923
1924  retry:
1925         use_10_for_ms = sdev->use_10_for_ms;
1926
1927         if (use_10_for_ms) {
1928                 if (len < 8)
1929                         len = 8;
1930
1931                 cmd[0] = MODE_SENSE_10;
1932                 cmd[8] = len;
1933                 header_length = 8;
1934         } else {
1935                 if (len < 4)
1936                         len = 4;
1937
1938                 cmd[0] = MODE_SENSE;
1939                 cmd[4] = len;
1940                 header_length = 4;
1941         }
1942
1943         memset(buffer, 0, len);
1944
1945         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1946                                   sshdr, timeout, retries, NULL);
1947
1948         /* This code looks awful: what it's doing is making sure an
1949          * ILLEGAL REQUEST sense return identifies the actual command
1950          * byte as the problem.  MODE_SENSE commands can return
1951          * ILLEGAL REQUEST if the code page isn't supported */
1952
1953         if (use_10_for_ms && !scsi_status_is_good(result) &&
1954             (driver_byte(result) & DRIVER_SENSE)) {
1955                 if (scsi_sense_valid(sshdr)) {
1956                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1957                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1958                                 /* 
1959                                  * Invalid command operation code
1960                                  */
1961                                 sdev->use_10_for_ms = 0;
1962                                 goto retry;
1963                         }
1964                 }
1965         }
1966
1967         if(scsi_status_is_good(result)) {
1968                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1969                              (modepage == 6 || modepage == 8))) {
1970                         /* Initio breakage? */
1971                         header_length = 0;
1972                         data->length = 13;
1973                         data->medium_type = 0;
1974                         data->device_specific = 0;
1975                         data->longlba = 0;
1976                         data->block_descriptor_length = 0;
1977                 } else if(use_10_for_ms) {
1978                         data->length = buffer[0]*256 + buffer[1] + 2;
1979                         data->medium_type = buffer[2];
1980                         data->device_specific = buffer[3];
1981                         data->longlba = buffer[4] & 0x01;
1982                         data->block_descriptor_length = buffer[6]*256
1983                                 + buffer[7];
1984                 } else {
1985                         data->length = buffer[0] + 1;
1986                         data->medium_type = buffer[1];
1987                         data->device_specific = buffer[2];
1988                         data->block_descriptor_length = buffer[3];
1989                 }
1990                 data->header_length = header_length;
1991         }
1992
1993         return result;
1994 }
1995 EXPORT_SYMBOL(scsi_mode_sense);
1996
1997 /**
1998  *      scsi_test_unit_ready - test if unit is ready
1999  *      @sdev:  scsi device to change the state of.
2000  *      @timeout: command timeout
2001  *      @retries: number of retries before failing
2002  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2003  *              returning sense. Make sure that this is cleared before passing
2004  *              in.
2005  *
2006  *      Returns zero if unsuccessful or an error if TUR failed.  For
2007  *      removable media, UNIT_ATTENTION sets ->changed flag.
2008  **/
2009 int
2010 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2011                      struct scsi_sense_hdr *sshdr_external)
2012 {
2013         char cmd[] = {
2014                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2015         };
2016         struct scsi_sense_hdr *sshdr;
2017         int result;
2018
2019         if (!sshdr_external)
2020                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2021         else
2022                 sshdr = sshdr_external;
2023
2024         /* try to eat the UNIT_ATTENTION if there are enough retries */
2025         do {
2026                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2027                                           timeout, retries, NULL);
2028                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2029                     sshdr->sense_key == UNIT_ATTENTION)
2030                         sdev->changed = 1;
2031         } while (scsi_sense_valid(sshdr) &&
2032                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2033
2034         if (!sshdr_external)
2035                 kfree(sshdr);
2036         return result;
2037 }
2038 EXPORT_SYMBOL(scsi_test_unit_ready);
2039
2040 /**
2041  *      scsi_device_set_state - Take the given device through the device state model.
2042  *      @sdev:  scsi device to change the state of.
2043  *      @state: state to change to.
2044  *
2045  *      Returns zero if unsuccessful or an error if the requested 
2046  *      transition is illegal.
2047  */
2048 int
2049 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2050 {
2051         enum scsi_device_state oldstate = sdev->sdev_state;
2052
2053         if (state == oldstate)
2054                 return 0;
2055
2056         switch (state) {
2057         case SDEV_CREATED:
2058                 switch (oldstate) {
2059                 case SDEV_CREATED_BLOCK:
2060                         break;
2061                 default:
2062                         goto illegal;
2063                 }
2064                 break;
2065                         
2066         case SDEV_RUNNING:
2067                 switch (oldstate) {
2068                 case SDEV_CREATED:
2069                 case SDEV_OFFLINE:
2070                 case SDEV_TRANSPORT_OFFLINE:
2071                 case SDEV_QUIESCE:
2072                 case SDEV_BLOCK:
2073                         break;
2074                 default:
2075                         goto illegal;
2076                 }
2077                 break;
2078
2079         case SDEV_QUIESCE:
2080                 switch (oldstate) {
2081                 case SDEV_RUNNING:
2082                 case SDEV_OFFLINE:
2083                 case SDEV_TRANSPORT_OFFLINE:
2084                         break;
2085                 default:
2086                         goto illegal;
2087                 }
2088                 break;
2089
2090         case SDEV_OFFLINE:
2091         case SDEV_TRANSPORT_OFFLINE:
2092                 switch (oldstate) {
2093                 case SDEV_CREATED:
2094                 case SDEV_RUNNING:
2095                 case SDEV_QUIESCE:
2096                 case SDEV_BLOCK:
2097                         break;
2098                 default:
2099                         goto illegal;
2100                 }
2101                 break;
2102
2103         case SDEV_BLOCK:
2104                 switch (oldstate) {
2105                 case SDEV_RUNNING:
2106                 case SDEV_CREATED_BLOCK:
2107                         break;
2108                 default:
2109                         goto illegal;
2110                 }
2111                 break;
2112
2113         case SDEV_CREATED_BLOCK:
2114                 switch (oldstate) {
2115                 case SDEV_CREATED:
2116                         break;
2117                 default:
2118                         goto illegal;
2119                 }
2120                 break;
2121
2122         case SDEV_CANCEL:
2123                 switch (oldstate) {
2124                 case SDEV_CREATED:
2125                 case SDEV_RUNNING:
2126                 case SDEV_QUIESCE:
2127                 case SDEV_OFFLINE:
2128                 case SDEV_TRANSPORT_OFFLINE:
2129                 case SDEV_BLOCK:
2130                         break;
2131                 default:
2132                         goto illegal;
2133                 }
2134                 break;
2135
2136         case SDEV_DEL:
2137                 switch (oldstate) {
2138                 case SDEV_CREATED:
2139                 case SDEV_RUNNING:
2140                 case SDEV_OFFLINE:
2141                 case SDEV_TRANSPORT_OFFLINE:
2142                 case SDEV_CANCEL:
2143                         break;
2144                 default:
2145                         goto illegal;
2146                 }
2147                 break;
2148
2149         }
2150         sdev->sdev_state = state;
2151         return 0;
2152
2153  illegal:
2154         SCSI_LOG_ERROR_RECOVERY(1, 
2155                                 sdev_printk(KERN_ERR, sdev,
2156                                             "Illegal state transition %s->%s\n",
2157                                             scsi_device_state_name(oldstate),
2158                                             scsi_device_state_name(state))
2159                                 );
2160         return -EINVAL;
2161 }
2162 EXPORT_SYMBOL(scsi_device_set_state);
2163
2164 /**
2165  *      sdev_evt_emit - emit a single SCSI device uevent
2166  *      @sdev: associated SCSI device
2167  *      @evt: event to emit
2168  *
2169  *      Send a single uevent (scsi_event) to the associated scsi_device.
2170  */
2171 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2172 {
2173         int idx = 0;
2174         char *envp[3];
2175
2176         switch (evt->evt_type) {
2177         case SDEV_EVT_MEDIA_CHANGE:
2178                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2179                 break;
2180
2181         default:
2182                 /* do nothing */
2183                 break;
2184         }
2185
2186         envp[idx++] = NULL;
2187
2188         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2189 }
2190
2191 /**
2192  *      sdev_evt_thread - send a uevent for each scsi event
2193  *      @work: work struct for scsi_device
2194  *
2195  *      Dispatch queued events to their associated scsi_device kobjects
2196  *      as uevents.
2197  */
2198 void scsi_evt_thread(struct work_struct *work)
2199 {
2200         struct scsi_device *sdev;
2201         LIST_HEAD(event_list);
2202
2203         sdev = container_of(work, struct scsi_device, event_work);
2204
2205         while (1) {
2206                 struct scsi_event *evt;
2207                 struct list_head *this, *tmp;
2208                 unsigned long flags;
2209
2210                 spin_lock_irqsave(&sdev->list_lock, flags);
2211                 list_splice_init(&sdev->event_list, &event_list);
2212                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2213
2214                 if (list_empty(&event_list))
2215                         break;
2216
2217                 list_for_each_safe(this, tmp, &event_list) {
2218                         evt = list_entry(this, struct scsi_event, node);
2219                         list_del(&evt->node);
2220                         scsi_evt_emit(sdev, evt);
2221                         kfree(evt);
2222                 }
2223         }
2224 }
2225
2226 /**
2227  *      sdev_evt_send - send asserted event to uevent thread
2228  *      @sdev: scsi_device event occurred on
2229  *      @evt: event to send
2230  *
2231  *      Assert scsi device event asynchronously.
2232  */
2233 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2234 {
2235         unsigned long flags;
2236
2237 #if 0
2238         /* FIXME: currently this check eliminates all media change events
2239          * for polled devices.  Need to update to discriminate between AN
2240          * and polled events */
2241         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2242                 kfree(evt);
2243                 return;
2244         }
2245 #endif
2246
2247         spin_lock_irqsave(&sdev->list_lock, flags);
2248         list_add_tail(&evt->node, &sdev->event_list);
2249         schedule_work(&sdev->event_work);
2250         spin_unlock_irqrestore(&sdev->list_lock, flags);
2251 }
2252 EXPORT_SYMBOL_GPL(sdev_evt_send);
2253
2254 /**
2255  *      sdev_evt_alloc - allocate a new scsi event
2256  *      @evt_type: type of event to allocate
2257  *      @gfpflags: GFP flags for allocation
2258  *
2259  *      Allocates and returns a new scsi_event.
2260  */
2261 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2262                                   gfp_t gfpflags)
2263 {
2264         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2265         if (!evt)
2266                 return NULL;
2267
2268         evt->evt_type = evt_type;
2269         INIT_LIST_HEAD(&evt->node);
2270
2271         /* evt_type-specific initialization, if any */
2272         switch (evt_type) {
2273         case SDEV_EVT_MEDIA_CHANGE:
2274         default:
2275                 /* do nothing */
2276                 break;
2277         }
2278
2279         return evt;
2280 }
2281 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282
2283 /**
2284  *      sdev_evt_send_simple - send asserted event to uevent thread
2285  *      @sdev: scsi_device event occurred on
2286  *      @evt_type: type of event to send
2287  *      @gfpflags: GFP flags for allocation
2288  *
2289  *      Assert scsi device event asynchronously, given an event type.
2290  */
2291 void sdev_evt_send_simple(struct scsi_device *sdev,
2292                           enum scsi_device_event evt_type, gfp_t gfpflags)
2293 {
2294         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2295         if (!evt) {
2296                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2297                             evt_type);
2298                 return;
2299         }
2300
2301         sdev_evt_send(sdev, evt);
2302 }
2303 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304
2305 /**
2306  *      scsi_device_quiesce - Block user issued commands.
2307  *      @sdev:  scsi device to quiesce.
2308  *
2309  *      This works by trying to transition to the SDEV_QUIESCE state
2310  *      (which must be a legal transition).  When the device is in this
2311  *      state, only special requests will be accepted, all others will
2312  *      be deferred.  Since special requests may also be requeued requests,
2313  *      a successful return doesn't guarantee the device will be 
2314  *      totally quiescent.
2315  *
2316  *      Must be called with user context, may sleep.
2317  *
2318  *      Returns zero if unsuccessful or an error if not.
2319  */
2320 int
2321 scsi_device_quiesce(struct scsi_device *sdev)
2322 {
2323         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2324         if (err)
2325                 return err;
2326
2327         scsi_run_queue(sdev->request_queue);
2328         while (sdev->device_busy) {
2329                 msleep_interruptible(200);
2330                 scsi_run_queue(sdev->request_queue);
2331         }
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(scsi_device_quiesce);
2335
2336 /**
2337  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2338  *      @sdev:  scsi device to resume.
2339  *
2340  *      Moves the device from quiesced back to running and restarts the
2341  *      queues.
2342  *
2343  *      Must be called with user context, may sleep.
2344  */
2345 void scsi_device_resume(struct scsi_device *sdev)
2346 {
2347         /* check if the device state was mutated prior to resume, and if
2348          * so assume the state is being managed elsewhere (for example
2349          * device deleted during suspend)
2350          */
2351         if (sdev->sdev_state != SDEV_QUIESCE ||
2352             scsi_device_set_state(sdev, SDEV_RUNNING))
2353                 return;
2354         scsi_run_queue(sdev->request_queue);
2355 }
2356 EXPORT_SYMBOL(scsi_device_resume);
2357
2358 static void
2359 device_quiesce_fn(struct scsi_device *sdev, void *data)
2360 {
2361         scsi_device_quiesce(sdev);
2362 }
2363
2364 void
2365 scsi_target_quiesce(struct scsi_target *starget)
2366 {
2367         starget_for_each_device(starget, NULL, device_quiesce_fn);
2368 }
2369 EXPORT_SYMBOL(scsi_target_quiesce);
2370
2371 static void
2372 device_resume_fn(struct scsi_device *sdev, void *data)
2373 {
2374         scsi_device_resume(sdev);
2375 }
2376
2377 void
2378 scsi_target_resume(struct scsi_target *starget)
2379 {
2380         starget_for_each_device(starget, NULL, device_resume_fn);
2381 }
2382 EXPORT_SYMBOL(scsi_target_resume);
2383
2384 /**
2385  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2386  * @sdev:       device to block
2387  *
2388  * Block request made by scsi lld's to temporarily stop all
2389  * scsi commands on the specified device.  Called from interrupt
2390  * or normal process context.
2391  *
2392  * Returns zero if successful or error if not
2393  *
2394  * Notes:       
2395  *      This routine transitions the device to the SDEV_BLOCK state
2396  *      (which must be a legal transition).  When the device is in this
2397  *      state, all commands are deferred until the scsi lld reenables
2398  *      the device with scsi_device_unblock or device_block_tmo fires.
2399  */
2400 int
2401 scsi_internal_device_block(struct scsi_device *sdev)
2402 {
2403         struct request_queue *q = sdev->request_queue;
2404         unsigned long flags;
2405         int err = 0;
2406
2407         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2408         if (err) {
2409                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2410
2411                 if (err)
2412                         return err;
2413         }
2414
2415         /* 
2416          * The device has transitioned to SDEV_BLOCK.  Stop the
2417          * block layer from calling the midlayer with this device's
2418          * request queue. 
2419          */
2420         spin_lock_irqsave(q->queue_lock, flags);
2421         blk_stop_queue(q);
2422         spin_unlock_irqrestore(q->queue_lock, flags);
2423
2424         return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2427  
2428 /**
2429  * scsi_internal_device_unblock - resume a device after a block request
2430  * @sdev:       device to resume
2431  * @new_state:  state to set devices to after unblocking
2432  *
2433  * Called by scsi lld's or the midlayer to restart the device queue
2434  * for the previously suspended scsi device.  Called from interrupt or
2435  * normal process context.
2436  *
2437  * Returns zero if successful or error if not.
2438  *
2439  * Notes:       
2440  *      This routine transitions the device to the SDEV_RUNNING state
2441  *      or to one of the offline states (which must be a legal transition)
2442  *      allowing the midlayer to goose the queue for this device.
2443  */
2444 int
2445 scsi_internal_device_unblock(struct scsi_device *sdev,
2446                              enum scsi_device_state new_state)
2447 {
2448         struct request_queue *q = sdev->request_queue; 
2449         unsigned long flags;
2450
2451         /*
2452          * Try to transition the scsi device to SDEV_RUNNING or one of the
2453          * offlined states and goose the device queue if successful.
2454          */
2455         if (sdev->sdev_state == SDEV_BLOCK)
2456                 sdev->sdev_state = new_state;
2457         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2458                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2459                     new_state == SDEV_OFFLINE)
2460                         sdev->sdev_state = new_state;
2461                 else
2462                         sdev->sdev_state = SDEV_CREATED;
2463         } else if (sdev->sdev_state != SDEV_CANCEL &&
2464                  sdev->sdev_state != SDEV_OFFLINE)
2465                 return -EINVAL;
2466
2467         spin_lock_irqsave(q->queue_lock, flags);
2468         blk_start_queue(q);
2469         spin_unlock_irqrestore(q->queue_lock, flags);
2470
2471         return 0;
2472 }
2473 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2474
2475 static void
2476 device_block(struct scsi_device *sdev, void *data)
2477 {
2478         scsi_internal_device_block(sdev);
2479 }
2480
2481 static int
2482 target_block(struct device *dev, void *data)
2483 {
2484         if (scsi_is_target_device(dev))
2485                 starget_for_each_device(to_scsi_target(dev), NULL,
2486                                         device_block);
2487         return 0;
2488 }
2489
2490 void
2491 scsi_target_block(struct device *dev)
2492 {
2493         if (scsi_is_target_device(dev))
2494                 starget_for_each_device(to_scsi_target(dev), NULL,
2495                                         device_block);
2496         else
2497                 device_for_each_child(dev, NULL, target_block);
2498 }
2499 EXPORT_SYMBOL_GPL(scsi_target_block);
2500
2501 static void
2502 device_unblock(struct scsi_device *sdev, void *data)
2503 {
2504         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2505 }
2506
2507 static int
2508 target_unblock(struct device *dev, void *data)
2509 {
2510         if (scsi_is_target_device(dev))
2511                 starget_for_each_device(to_scsi_target(dev), data,
2512                                         device_unblock);
2513         return 0;
2514 }
2515
2516 void
2517 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2518 {
2519         if (scsi_is_target_device(dev))
2520                 starget_for_each_device(to_scsi_target(dev), &new_state,
2521                                         device_unblock);
2522         else
2523                 device_for_each_child(dev, &new_state, target_unblock);
2524 }
2525 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2526
2527 /**
2528  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2529  * @sgl:        scatter-gather list
2530  * @sg_count:   number of segments in sg
2531  * @offset:     offset in bytes into sg, on return offset into the mapped area
2532  * @len:        bytes to map, on return number of bytes mapped
2533  *
2534  * Returns virtual address of the start of the mapped page
2535  */
2536 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2537                           size_t *offset, size_t *len)
2538 {
2539         int i;
2540         size_t sg_len = 0, len_complete = 0;
2541         struct scatterlist *sg;
2542         struct page *page;
2543
2544         WARN_ON(!irqs_disabled());
2545
2546         for_each_sg(sgl, sg, sg_count, i) {
2547                 len_complete = sg_len; /* Complete sg-entries */
2548                 sg_len += sg->length;
2549                 if (sg_len > *offset)
2550                         break;
2551         }
2552
2553         if (unlikely(i == sg_count)) {
2554                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2555                         "elements %d\n",
2556                        __func__, sg_len, *offset, sg_count);
2557                 WARN_ON(1);
2558                 return NULL;
2559         }
2560
2561         /* Offset starting from the beginning of first page in this sg-entry */
2562         *offset = *offset - len_complete + sg->offset;
2563
2564         /* Assumption: contiguous pages can be accessed as "page + i" */
2565         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2566         *offset &= ~PAGE_MASK;
2567
2568         /* Bytes in this sg-entry from *offset to the end of the page */
2569         sg_len = PAGE_SIZE - *offset;
2570         if (*len > sg_len)
2571                 *len = sg_len;
2572
2573         return kmap_atomic(page);
2574 }
2575 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2576
2577 /**
2578  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2579  * @virt:       virtual address to be unmapped
2580  */
2581 void scsi_kunmap_atomic_sg(void *virt)
2582 {
2583         kunmap_atomic(virt);
2584 }
2585 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);